]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/percpu.c
percpu: use block scan_hint to only scan forward
[mirror_ubuntu-jammy-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
5e81ee3e
DZF
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
9c015162 10 * This file is released under the GPLv2 license.
fbf59bc9 11 *
9c015162
DZF
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
fbf59bc9
TH
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
9c015162
DZF
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
5e81ee3e 31 * are not online yet. In short, the first chunk is structured like so:
9c015162
DZF
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
fbf59bc9 39 *
5e81ee3e
DZF
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
9c015162 54 *
4091fb95 55 * To use this allocator, arch code should do the following:
fbf59bc9 56 *
fbf59bc9 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
fbf59bc9 60 *
8d408b4b
TH
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
63 */
64
870d4b12
JP
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
fbf59bc9 67#include <linux/bitmap.h>
57c8a661 68#include <linux/memblock.h>
fd1e8a1f 69#include <linux/err.h>
ca460b3c 70#include <linux/lcm.h>
fbf59bc9 71#include <linux/list.h>
a530b795 72#include <linux/log2.h>
fbf59bc9
TH
73#include <linux/mm.h>
74#include <linux/module.h>
75#include <linux/mutex.h>
76#include <linux/percpu.h>
77#include <linux/pfn.h>
fbf59bc9 78#include <linux/slab.h>
ccea34b5 79#include <linux/spinlock.h>
fbf59bc9 80#include <linux/vmalloc.h>
a56dbddf 81#include <linux/workqueue.h>
f528f0b8 82#include <linux/kmemleak.h>
71546d10 83#include <linux/sched.h>
fbf59bc9
TH
84
85#include <asm/cacheflush.h>
e0100983 86#include <asm/sections.h>
fbf59bc9 87#include <asm/tlbflush.h>
3b034b0d 88#include <asm/io.h>
fbf59bc9 89
df95e795
DZ
90#define CREATE_TRACE_POINTS
91#include <trace/events/percpu.h>
92
8fa3ed80
DZ
93#include "percpu-internal.h"
94
40064aec
DZF
95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96#define PCPU_SLOT_BASE_SHIFT 5
8744d859
DZ
97/* chunks in slots below this are subject to being sidelined on failed alloc */
98#define PCPU_SLOT_FAIL_THRESHOLD 3
40064aec 99
1a4d7607
TH
100#define PCPU_EMPTY_POP_PAGES_LOW 2
101#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 102
bbddff05 103#ifdef CONFIG_SMP
e0100983
TH
104/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105#ifndef __addr_to_pcpu_ptr
106#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
107 (void __percpu *)((unsigned long)(addr) - \
108 (unsigned long)pcpu_base_addr + \
109 (unsigned long)__per_cpu_start)
e0100983
TH
110#endif
111#ifndef __pcpu_ptr_to_addr
112#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
113 (void __force *)((unsigned long)(ptr) + \
114 (unsigned long)pcpu_base_addr - \
115 (unsigned long)__per_cpu_start)
e0100983 116#endif
bbddff05
TH
117#else /* CONFIG_SMP */
118/* on UP, it's always identity mapped */
119#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
120#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
121#endif /* CONFIG_SMP */
e0100983 122
1328710b
DM
123static int pcpu_unit_pages __ro_after_init;
124static int pcpu_unit_size __ro_after_init;
125static int pcpu_nr_units __ro_after_init;
126static int pcpu_atom_size __ro_after_init;
8fa3ed80 127int pcpu_nr_slots __ro_after_init;
1328710b 128static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 129
a855b84c 130/* cpus with the lowest and highest unit addresses */
1328710b
DM
131static unsigned int pcpu_low_unit_cpu __ro_after_init;
132static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 133
fbf59bc9 134/* the address of the first chunk which starts with the kernel static area */
1328710b 135void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
136EXPORT_SYMBOL_GPL(pcpu_base_addr);
137
1328710b
DM
138static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
139const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 140
6563297c 141/* group information, used for vm allocation */
1328710b
DM
142static int pcpu_nr_groups __ro_after_init;
143static const unsigned long *pcpu_group_offsets __ro_after_init;
144static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 145
ae9e6bc9
TH
146/*
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
150 */
8fa3ed80 151struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
152
153/*
154 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
155 * chunk and serves it for reserved allocations. When the reserved
156 * region doesn't exist, the following variable is NULL.
ae9e6bc9 157 */
8fa3ed80 158struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 159
8fa3ed80 160DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 161static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 162
8fa3ed80 163struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 164
4f996e23
TH
165/* chunks which need their map areas extended, protected by pcpu_lock */
166static LIST_HEAD(pcpu_map_extend_chunks);
167
b539b87f
TH
168/*
169 * The number of empty populated pages, protected by pcpu_lock. The
170 * reserved chunk doesn't contribute to the count.
171 */
6b9b6f39 172int pcpu_nr_empty_pop_pages;
b539b87f 173
7e8a6304
DZF
174/*
175 * The number of populated pages in use by the allocator, protected by
176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178 * and increments/decrements this count by 1).
179 */
180static unsigned long pcpu_nr_populated;
181
1a4d7607
TH
182/*
183 * Balance work is used to populate or destroy chunks asynchronously. We
184 * try to keep the number of populated free pages between
185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186 * empty chunk.
187 */
fe6bd8c3
TH
188static void pcpu_balance_workfn(struct work_struct *work);
189static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
190static bool pcpu_async_enabled __read_mostly;
191static bool pcpu_atomic_alloc_failed;
192
193static void pcpu_schedule_balance_work(void)
194{
195 if (pcpu_async_enabled)
196 schedule_work(&pcpu_balance_work);
197}
a56dbddf 198
c0ebfdc3 199/**
560f2c23
DZF
200 * pcpu_addr_in_chunk - check if the address is served from this chunk
201 * @chunk: chunk of interest
202 * @addr: percpu address
c0ebfdc3
DZF
203 *
204 * RETURNS:
560f2c23 205 * True if the address is served from this chunk.
c0ebfdc3 206 */
560f2c23 207static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 208{
c0ebfdc3
DZF
209 void *start_addr, *end_addr;
210
560f2c23 211 if (!chunk)
c0ebfdc3 212 return false;
020ec653 213
560f2c23
DZF
214 start_addr = chunk->base_addr + chunk->start_offset;
215 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
216 chunk->end_offset;
c0ebfdc3
DZF
217
218 return addr >= start_addr && addr < end_addr;
020ec653
TH
219}
220
d9b55eeb 221static int __pcpu_size_to_slot(int size)
fbf59bc9 222{
cae3aeb8 223 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
224 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
225}
226
d9b55eeb
TH
227static int pcpu_size_to_slot(int size)
228{
229 if (size == pcpu_unit_size)
230 return pcpu_nr_slots - 1;
231 return __pcpu_size_to_slot(size);
232}
233
fbf59bc9
TH
234static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
235{
40064aec 236 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
237 return 0;
238
3e54097b 239 return pcpu_size_to_slot(chunk->contig_bits * PCPU_MIN_ALLOC_SIZE);
fbf59bc9
TH
240}
241
88999a89
TH
242/* set the pointer to a chunk in a page struct */
243static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
244{
245 page->index = (unsigned long)pcpu;
246}
247
248/* obtain pointer to a chunk from a page struct */
249static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
250{
251 return (struct pcpu_chunk *)page->index;
252}
253
254static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 255{
2f39e637 256 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
257}
258
c0ebfdc3
DZF
259static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
260{
261 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
262}
263
9983b6f0
TH
264static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
265 unsigned int cpu, int page_idx)
fbf59bc9 266{
c0ebfdc3
DZF
267 return (unsigned long)chunk->base_addr +
268 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
269}
270
91e914c5 271static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 272{
91e914c5
DZF
273 *rs = find_next_zero_bit(bitmap, end, *rs);
274 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
275}
276
91e914c5 277static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 278{
91e914c5
DZF
279 *rs = find_next_bit(bitmap, end, *rs);
280 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
281}
282
283/*
91e914c5
DZF
284 * Bitmap region iterators. Iterates over the bitmap between
285 * [@start, @end) in @chunk. @rs and @re should be integer variables
286 * and will be set to start and end index of the current free region.
ce3141a2 287 */
91e914c5
DZF
288#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
289 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
290 (rs) < (re); \
291 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 292
91e914c5
DZF
293#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
294 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
295 (rs) < (re); \
296 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 297
ca460b3c
DZF
298/*
299 * The following are helper functions to help access bitmaps and convert
300 * between bitmap offsets to address offsets.
301 */
302static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
303{
304 return chunk->alloc_map +
305 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
306}
307
308static unsigned long pcpu_off_to_block_index(int off)
309{
310 return off / PCPU_BITMAP_BLOCK_BITS;
311}
312
313static unsigned long pcpu_off_to_block_off(int off)
314{
315 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
316}
317
b185cd0d
DZF
318static unsigned long pcpu_block_off_to_off(int index, int off)
319{
320 return index * PCPU_BITMAP_BLOCK_BITS + off;
321}
322
382b88e9
DZ
323/*
324 * pcpu_next_hint - determine which hint to use
325 * @block: block of interest
326 * @alloc_bits: size of allocation
327 *
328 * This determines if we should scan based on the scan_hint or first_free.
329 * In general, we want to scan from first_free to fulfill allocations by
330 * first fit. However, if we know a scan_hint at position scan_hint_start
331 * cannot fulfill an allocation, we can begin scanning from there knowing
332 * the contig_hint will be our fallback.
333 */
334static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
335{
336 /*
337 * The three conditions below determine if we can skip past the
338 * scan_hint. First, does the scan hint exist. Second, is the
339 * contig_hint after the scan_hint (possibly not true iff
340 * contig_hint == scan_hint). Third, is the allocation request
341 * larger than the scan_hint.
342 */
343 if (block->scan_hint &&
344 block->contig_hint_start > block->scan_hint_start &&
345 alloc_bits > block->scan_hint)
346 return block->scan_hint_start + block->scan_hint;
347
348 return block->first_free;
349}
350
525ca84d
DZF
351/**
352 * pcpu_next_md_free_region - finds the next hint free area
353 * @chunk: chunk of interest
354 * @bit_off: chunk offset
355 * @bits: size of free area
356 *
357 * Helper function for pcpu_for_each_md_free_region. It checks
358 * block->contig_hint and performs aggregation across blocks to find the
359 * next hint. It modifies bit_off and bits in-place to be consumed in the
360 * loop.
361 */
362static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
363 int *bits)
364{
365 int i = pcpu_off_to_block_index(*bit_off);
366 int block_off = pcpu_off_to_block_off(*bit_off);
367 struct pcpu_block_md *block;
368
369 *bits = 0;
370 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
371 block++, i++) {
372 /* handles contig area across blocks */
373 if (*bits) {
374 *bits += block->left_free;
375 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
376 continue;
377 return;
378 }
379
380 /*
381 * This checks three things. First is there a contig_hint to
382 * check. Second, have we checked this hint before by
383 * comparing the block_off. Third, is this the same as the
384 * right contig hint. In the last case, it spills over into
385 * the next block and should be handled by the contig area
386 * across blocks code.
387 */
388 *bits = block->contig_hint;
389 if (*bits && block->contig_hint_start >= block_off &&
390 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
391 *bit_off = pcpu_block_off_to_off(i,
392 block->contig_hint_start);
393 return;
394 }
1fa4df3e
DZ
395 /* reset to satisfy the second predicate above */
396 block_off = 0;
525ca84d
DZF
397
398 *bits = block->right_free;
399 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
400 }
401}
402
b4c2116c
DZF
403/**
404 * pcpu_next_fit_region - finds fit areas for a given allocation request
405 * @chunk: chunk of interest
406 * @alloc_bits: size of allocation
407 * @align: alignment of area (max PAGE_SIZE)
408 * @bit_off: chunk offset
409 * @bits: size of free area
410 *
411 * Finds the next free region that is viable for use with a given size and
412 * alignment. This only returns if there is a valid area to be used for this
413 * allocation. block->first_free is returned if the allocation request fits
414 * within the block to see if the request can be fulfilled prior to the contig
415 * hint.
416 */
417static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
418 int align, int *bit_off, int *bits)
419{
420 int i = pcpu_off_to_block_index(*bit_off);
421 int block_off = pcpu_off_to_block_off(*bit_off);
422 struct pcpu_block_md *block;
423
424 *bits = 0;
425 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
426 block++, i++) {
427 /* handles contig area across blocks */
428 if (*bits) {
429 *bits += block->left_free;
430 if (*bits >= alloc_bits)
431 return;
432 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
433 continue;
434 }
435
436 /* check block->contig_hint */
437 *bits = ALIGN(block->contig_hint_start, align) -
438 block->contig_hint_start;
439 /*
440 * This uses the block offset to determine if this has been
441 * checked in the prior iteration.
442 */
443 if (block->contig_hint &&
444 block->contig_hint_start >= block_off &&
445 block->contig_hint >= *bits + alloc_bits) {
382b88e9
DZ
446 int start = pcpu_next_hint(block, alloc_bits);
447
b4c2116c 448 *bits += alloc_bits + block->contig_hint_start -
382b88e9
DZ
449 start;
450 *bit_off = pcpu_block_off_to_off(i, start);
b4c2116c
DZF
451 return;
452 }
1fa4df3e
DZ
453 /* reset to satisfy the second predicate above */
454 block_off = 0;
b4c2116c
DZF
455
456 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
457 align);
458 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
459 *bit_off = pcpu_block_off_to_off(i, *bit_off);
460 if (*bits >= alloc_bits)
461 return;
462 }
463
464 /* no valid offsets were found - fail condition */
465 *bit_off = pcpu_chunk_map_bits(chunk);
466}
467
525ca84d
DZF
468/*
469 * Metadata free area iterators. These perform aggregation of free areas
470 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
471 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
472 * a fit is found for the allocation request.
525ca84d
DZF
473 */
474#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
475 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
476 (bit_off) < pcpu_chunk_map_bits((chunk)); \
477 (bit_off) += (bits) + 1, \
478 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
479
b4c2116c
DZF
480#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
481 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
482 &(bits)); \
483 (bit_off) < pcpu_chunk_map_bits((chunk)); \
484 (bit_off) += (bits), \
485 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
486 &(bits)))
487
fbf59bc9 488/**
90459ce0 489 * pcpu_mem_zalloc - allocate memory
1880d93b 490 * @size: bytes to allocate
47504ee0 491 * @gfp: allocation flags
fbf59bc9 492 *
1880d93b 493 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
47504ee0
DZ
494 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
495 * This is to facilitate passing through whitelisted flags. The
496 * returned memory is always zeroed.
fbf59bc9
TH
497 *
498 * RETURNS:
1880d93b 499 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 500 */
47504ee0 501static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
fbf59bc9 502{
099a19d9
TH
503 if (WARN_ON_ONCE(!slab_is_available()))
504 return NULL;
505
1880d93b 506 if (size <= PAGE_SIZE)
554fef1c 507 return kzalloc(size, gfp);
7af4c093 508 else
554fef1c 509 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
1880d93b 510}
fbf59bc9 511
1880d93b
TH
512/**
513 * pcpu_mem_free - free memory
514 * @ptr: memory to free
1880d93b 515 *
90459ce0 516 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 517 */
1d5cfdb0 518static void pcpu_mem_free(void *ptr)
1880d93b 519{
1d5cfdb0 520 kvfree(ptr);
fbf59bc9
TH
521}
522
8744d859
DZ
523static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
524 bool move_front)
525{
526 if (chunk != pcpu_reserved_chunk) {
527 if (move_front)
528 list_move(&chunk->list, &pcpu_slot[slot]);
529 else
530 list_move_tail(&chunk->list, &pcpu_slot[slot]);
531 }
532}
533
534static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
535{
536 __pcpu_chunk_move(chunk, slot, true);
537}
538
fbf59bc9
TH
539/**
540 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
541 * @chunk: chunk of interest
542 * @oslot: the previous slot it was on
543 *
544 * This function is called after an allocation or free changed @chunk.
545 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
546 * moved to the slot. Note that the reserved chunk is never put on
547 * chunk slots.
ccea34b5
TH
548 *
549 * CONTEXT:
550 * pcpu_lock.
fbf59bc9
TH
551 */
552static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
553{
554 int nslot = pcpu_chunk_slot(chunk);
555
8744d859
DZ
556 if (oslot != nslot)
557 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
fbf59bc9
TH
558}
559
b239f7da
DZ
560/*
561 * pcpu_update_empty_pages - update empty page counters
833af842 562 * @chunk: chunk of interest
b239f7da 563 * @nr: nr of empty pages
9f7dcf22 564 *
b239f7da
DZ
565 * This is used to keep track of the empty pages now based on the premise
566 * a md_block covers a page. The hint update functions recognize if a block
567 * is made full or broken to calculate deltas for keeping track of free pages.
9f7dcf22 568 */
b239f7da 569static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
9f7dcf22 570{
b239f7da
DZ
571 chunk->nr_empty_pop_pages += nr;
572 if (chunk != pcpu_reserved_chunk)
573 pcpu_nr_empty_pop_pages += nr;
833af842
TH
574}
575
d9f3a01e
DZ
576/*
577 * pcpu_region_overlap - determines if two regions overlap
578 * @a: start of first region, inclusive
579 * @b: end of first region, exclusive
580 * @x: start of second region, inclusive
581 * @y: end of second region, exclusive
582 *
583 * This is used to determine if the hint region [a, b) overlaps with the
584 * allocated region [x, y).
585 */
586static inline bool pcpu_region_overlap(int a, int b, int x, int y)
587{
588 return (a < y) && (x < b);
589}
590
833af842 591/**
40064aec 592 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 593 * @chunk: chunk of interest
40064aec
DZF
594 * @bit_off: chunk offset
595 * @bits: size of free area
833af842 596 *
13f96637 597 * This updates the chunk's contig hint and starting offset given a free area.
268625a6 598 * Choose the best starting offset if the contig hint is equal.
40064aec
DZF
599 */
600static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
601{
13f96637
DZF
602 if (bits > chunk->contig_bits) {
603 chunk->contig_bits_start = bit_off;
40064aec 604 chunk->contig_bits = bits;
268625a6
DZF
605 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
606 (!bit_off ||
607 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
608 /* use the start with the best alignment */
609 chunk->contig_bits_start = bit_off;
13f96637 610 }
40064aec
DZF
611}
612
613/**
614 * pcpu_chunk_refresh_hint - updates metadata about a chunk
615 * @chunk: chunk of interest
833af842 616 *
525ca84d
DZF
617 * Iterates over the metadata blocks to find the largest contig area.
618 * It also counts the populated pages and uses the delta to update the
619 * global count.
833af842 620 *
40064aec
DZF
621 * Updates:
622 * chunk->contig_bits
13f96637 623 * chunk->contig_bits_start
833af842 624 */
40064aec 625static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 626{
b239f7da 627 int bit_off, bits;
833af842 628
40064aec
DZF
629 /* clear metadata */
630 chunk->contig_bits = 0;
6710e594 631
525ca84d 632 bit_off = chunk->first_bit;
b239f7da 633 bits = 0;
525ca84d
DZF
634 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
635 pcpu_chunk_update(chunk, bit_off, bits);
40064aec 636 }
40064aec 637}
9f7dcf22 638
ca460b3c
DZF
639/**
640 * pcpu_block_update - updates a block given a free area
641 * @block: block of interest
642 * @start: start offset in block
643 * @end: end offset in block
644 *
645 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
646 * expected to be the entirety of the free area within a block. Chooses
647 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
648 */
649static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
650{
651 int contig = end - start;
652
653 block->first_free = min(block->first_free, start);
654 if (start == 0)
655 block->left_free = contig;
656
657 if (end == PCPU_BITMAP_BLOCK_BITS)
658 block->right_free = contig;
659
660 if (contig > block->contig_hint) {
382b88e9
DZ
661 /* promote the old contig_hint to be the new scan_hint */
662 if (start > block->contig_hint_start) {
663 if (block->contig_hint > block->scan_hint) {
664 block->scan_hint_start =
665 block->contig_hint_start;
666 block->scan_hint = block->contig_hint;
667 } else if (start < block->scan_hint_start) {
668 /*
669 * The old contig_hint == scan_hint. But, the
670 * new contig is larger so hold the invariant
671 * scan_hint_start < contig_hint_start.
672 */
673 block->scan_hint = 0;
674 }
675 } else {
676 block->scan_hint = 0;
677 }
ca460b3c
DZF
678 block->contig_hint_start = start;
679 block->contig_hint = contig;
382b88e9
DZ
680 } else if (contig == block->contig_hint) {
681 if (block->contig_hint_start &&
682 (!start ||
683 __ffs(start) > __ffs(block->contig_hint_start))) {
684 /* start has a better alignment so use it */
685 block->contig_hint_start = start;
686 if (start < block->scan_hint_start &&
687 block->contig_hint > block->scan_hint)
688 block->scan_hint = 0;
689 } else if (start > block->scan_hint_start ||
690 block->contig_hint > block->scan_hint) {
691 /*
692 * Knowing contig == contig_hint, update the scan_hint
693 * if it is farther than or larger than the current
694 * scan_hint.
695 */
696 block->scan_hint_start = start;
697 block->scan_hint = contig;
698 }
699 } else {
700 /*
701 * The region is smaller than the contig_hint. So only update
702 * the scan_hint if it is larger than or equal and farther than
703 * the current scan_hint.
704 */
705 if ((start < block->contig_hint_start &&
706 (contig > block->scan_hint ||
707 (contig == block->scan_hint &&
708 start > block->scan_hint_start)))) {
709 block->scan_hint_start = start;
710 block->scan_hint = contig;
711 }
ca460b3c
DZF
712 }
713}
714
b89462a9
DZ
715/*
716 * pcpu_block_update_scan - update a block given a free area from a scan
717 * @chunk: chunk of interest
718 * @bit_off: chunk offset
719 * @bits: size of free area
720 *
721 * Finding the final allocation spot first goes through pcpu_find_block_fit()
722 * to find a block that can hold the allocation and then pcpu_alloc_area()
723 * where a scan is used. When allocations require specific alignments,
724 * we can inadvertently create holes which will not be seen in the alloc
725 * or free paths.
726 *
727 * This takes a given free area hole and updates a block as it may change the
728 * scan_hint. We need to scan backwards to ensure we don't miss free bits
729 * from alignment.
730 */
731static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
732 int bits)
733{
734 int s_off = pcpu_off_to_block_off(bit_off);
735 int e_off = s_off + bits;
736 int s_index, l_bit;
737 struct pcpu_block_md *block;
738
739 if (e_off > PCPU_BITMAP_BLOCK_BITS)
740 return;
741
742 s_index = pcpu_off_to_block_index(bit_off);
743 block = chunk->md_blocks + s_index;
744
745 /* scan backwards in case of alignment skipping free bits */
746 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
747 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
748
749 pcpu_block_update(block, s_off, e_off);
750}
751
ca460b3c
DZF
752/**
753 * pcpu_block_refresh_hint
754 * @chunk: chunk of interest
755 * @index: index of the metadata block
756 *
757 * Scans over the block beginning at first_free and updates the block
758 * metadata accordingly.
759 */
760static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
761{
762 struct pcpu_block_md *block = chunk->md_blocks + index;
763 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
da3afdd5
DZ
764 int rs, re, start; /* region start, region end */
765
766 /* promote scan_hint to contig_hint */
767 if (block->scan_hint) {
768 start = block->scan_hint_start + block->scan_hint;
769 block->contig_hint_start = block->scan_hint_start;
770 block->contig_hint = block->scan_hint;
771 block->scan_hint = 0;
772 } else {
773 start = block->first_free;
774 block->contig_hint = 0;
775 }
ca460b3c 776
da3afdd5 777 block->right_free = 0;
ca460b3c
DZF
778
779 /* iterate over free areas and update the contig hints */
da3afdd5 780 pcpu_for_each_unpop_region(alloc_map, rs, re, start,
ca460b3c
DZF
781 PCPU_BITMAP_BLOCK_BITS) {
782 pcpu_block_update(block, rs, re);
783 }
784}
785
786/**
787 * pcpu_block_update_hint_alloc - update hint on allocation path
788 * @chunk: chunk of interest
789 * @bit_off: chunk offset
790 * @bits: size of request
fc304334
DZF
791 *
792 * Updates metadata for the allocation path. The metadata only has to be
793 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
794 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
795 */
796static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
797 int bits)
798{
b239f7da 799 int nr_empty_pages = 0;
ca460b3c
DZF
800 struct pcpu_block_md *s_block, *e_block, *block;
801 int s_index, e_index; /* block indexes of the freed allocation */
802 int s_off, e_off; /* block offsets of the freed allocation */
803
804 /*
805 * Calculate per block offsets.
806 * The calculation uses an inclusive range, but the resulting offsets
807 * are [start, end). e_index always points to the last block in the
808 * range.
809 */
810 s_index = pcpu_off_to_block_index(bit_off);
811 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
812 s_off = pcpu_off_to_block_off(bit_off);
813 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
814
815 s_block = chunk->md_blocks + s_index;
816 e_block = chunk->md_blocks + e_index;
817
818 /*
819 * Update s_block.
fc304334
DZF
820 * block->first_free must be updated if the allocation takes its place.
821 * If the allocation breaks the contig_hint, a scan is required to
822 * restore this hint.
ca460b3c 823 */
b239f7da
DZ
824 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
825 nr_empty_pages++;
826
fc304334
DZF
827 if (s_off == s_block->first_free)
828 s_block->first_free = find_next_zero_bit(
829 pcpu_index_alloc_map(chunk, s_index),
830 PCPU_BITMAP_BLOCK_BITS,
831 s_off + bits);
832
382b88e9
DZ
833 if (pcpu_region_overlap(s_block->scan_hint_start,
834 s_block->scan_hint_start + s_block->scan_hint,
835 s_off,
836 s_off + bits))
837 s_block->scan_hint = 0;
838
d9f3a01e
DZ
839 if (pcpu_region_overlap(s_block->contig_hint_start,
840 s_block->contig_hint_start +
841 s_block->contig_hint,
842 s_off,
843 s_off + bits)) {
fc304334 844 /* block contig hint is broken - scan to fix it */
da3afdd5
DZ
845 if (!s_off)
846 s_block->left_free = 0;
fc304334
DZF
847 pcpu_block_refresh_hint(chunk, s_index);
848 } else {
849 /* update left and right contig manually */
850 s_block->left_free = min(s_block->left_free, s_off);
851 if (s_index == e_index)
852 s_block->right_free = min_t(int, s_block->right_free,
853 PCPU_BITMAP_BLOCK_BITS - e_off);
854 else
855 s_block->right_free = 0;
856 }
ca460b3c
DZF
857
858 /*
859 * Update e_block.
860 */
861 if (s_index != e_index) {
b239f7da
DZ
862 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
863 nr_empty_pages++;
864
fc304334
DZF
865 /*
866 * When the allocation is across blocks, the end is along
867 * the left part of the e_block.
868 */
869 e_block->first_free = find_next_zero_bit(
870 pcpu_index_alloc_map(chunk, e_index),
871 PCPU_BITMAP_BLOCK_BITS, e_off);
872
873 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
874 /* reset the block */
875 e_block++;
876 } else {
382b88e9
DZ
877 if (e_off > e_block->scan_hint_start)
878 e_block->scan_hint = 0;
879
da3afdd5 880 e_block->left_free = 0;
fc304334
DZF
881 if (e_off > e_block->contig_hint_start) {
882 /* contig hint is broken - scan to fix it */
883 pcpu_block_refresh_hint(chunk, e_index);
884 } else {
fc304334
DZF
885 e_block->right_free =
886 min_t(int, e_block->right_free,
887 PCPU_BITMAP_BLOCK_BITS - e_off);
888 }
889 }
ca460b3c
DZF
890
891 /* update in-between md_blocks */
b239f7da 892 nr_empty_pages += (e_index - s_index - 1);
ca460b3c 893 for (block = s_block + 1; block < e_block; block++) {
382b88e9 894 block->scan_hint = 0;
ca460b3c
DZF
895 block->contig_hint = 0;
896 block->left_free = 0;
897 block->right_free = 0;
898 }
899 }
900
b239f7da
DZ
901 if (nr_empty_pages)
902 pcpu_update_empty_pages(chunk, -nr_empty_pages);
903
fc304334
DZF
904 /*
905 * The only time a full chunk scan is required is if the chunk
906 * contig hint is broken. Otherwise, it means a smaller space
907 * was used and therefore the chunk contig hint is still correct.
908 */
d9f3a01e
DZ
909 if (pcpu_region_overlap(chunk->contig_bits_start,
910 chunk->contig_bits_start + chunk->contig_bits,
911 bit_off,
912 bit_off + bits))
fc304334 913 pcpu_chunk_refresh_hint(chunk);
ca460b3c
DZF
914}
915
916/**
917 * pcpu_block_update_hint_free - updates the block hints on the free path
918 * @chunk: chunk of interest
919 * @bit_off: chunk offset
920 * @bits: size of request
b185cd0d
DZF
921 *
922 * Updates metadata for the allocation path. This avoids a blind block
923 * refresh by making use of the block contig hints. If this fails, it scans
924 * forward and backward to determine the extent of the free area. This is
925 * capped at the boundary of blocks.
926 *
927 * A chunk update is triggered if a page becomes free, a block becomes free,
928 * or the free spans across blocks. This tradeoff is to minimize iterating
929 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
930 * may be off by up to a page, but it will never be more than the available
931 * space. If the contig hint is contained in one block, it will be accurate.
ca460b3c
DZF
932 */
933static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
934 int bits)
935{
b239f7da 936 int nr_empty_pages = 0;
ca460b3c
DZF
937 struct pcpu_block_md *s_block, *e_block, *block;
938 int s_index, e_index; /* block indexes of the freed allocation */
939 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 940 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
941
942 /*
943 * Calculate per block offsets.
944 * The calculation uses an inclusive range, but the resulting offsets
945 * are [start, end). e_index always points to the last block in the
946 * range.
947 */
948 s_index = pcpu_off_to_block_index(bit_off);
949 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
950 s_off = pcpu_off_to_block_off(bit_off);
951 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
952
953 s_block = chunk->md_blocks + s_index;
954 e_block = chunk->md_blocks + e_index;
955
b185cd0d
DZF
956 /*
957 * Check if the freed area aligns with the block->contig_hint.
958 * If it does, then the scan to find the beginning/end of the
959 * larger free area can be avoided.
960 *
961 * start and end refer to beginning and end of the free area
962 * within each their respective blocks. This is not necessarily
963 * the entire free area as it may span blocks past the beginning
964 * or end of the block.
965 */
966 start = s_off;
967 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
968 start = s_block->contig_hint_start;
969 } else {
970 /*
971 * Scan backwards to find the extent of the free area.
972 * find_last_bit returns the starting bit, so if the start bit
973 * is returned, that means there was no last bit and the
974 * remainder of the chunk is free.
975 */
976 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
977 start);
978 start = (start == l_bit) ? 0 : l_bit + 1;
979 }
980
981 end = e_off;
982 if (e_off == e_block->contig_hint_start)
983 end = e_block->contig_hint_start + e_block->contig_hint;
984 else
985 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
986 PCPU_BITMAP_BLOCK_BITS, end);
987
ca460b3c 988 /* update s_block */
b185cd0d 989 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
b239f7da
DZ
990 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
991 nr_empty_pages++;
b185cd0d 992 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
993
994 /* freeing in the same block */
995 if (s_index != e_index) {
996 /* update e_block */
b239f7da
DZ
997 if (end == PCPU_BITMAP_BLOCK_BITS)
998 nr_empty_pages++;
b185cd0d 999 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
1000
1001 /* reset md_blocks in the middle */
b239f7da 1002 nr_empty_pages += (e_index - s_index - 1);
ca460b3c
DZF
1003 for (block = s_block + 1; block < e_block; block++) {
1004 block->first_free = 0;
382b88e9 1005 block->scan_hint = 0;
ca460b3c
DZF
1006 block->contig_hint_start = 0;
1007 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1008 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1009 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1010 }
1011 }
1012
b239f7da
DZ
1013 if (nr_empty_pages)
1014 pcpu_update_empty_pages(chunk, nr_empty_pages);
1015
b185cd0d 1016 /*
b239f7da
DZ
1017 * Refresh chunk metadata when the free makes a block free or spans
1018 * across blocks. The contig_hint may be off by up to a page, but if
1019 * the contig_hint is contained in a block, it will be accurate with
1020 * the else condition below.
b185cd0d 1021 */
b239f7da 1022 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
b185cd0d
DZF
1023 pcpu_chunk_refresh_hint(chunk);
1024 else
1025 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
8e5a2b98 1026 end - start);
ca460b3c
DZF
1027}
1028
40064aec
DZF
1029/**
1030 * pcpu_is_populated - determines if the region is populated
1031 * @chunk: chunk of interest
1032 * @bit_off: chunk offset
1033 * @bits: size of area
1034 * @next_off: return value for the next offset to start searching
1035 *
1036 * For atomic allocations, check if the backing pages are populated.
1037 *
1038 * RETURNS:
1039 * Bool if the backing pages are populated.
1040 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1041 */
1042static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1043 int *next_off)
1044{
1045 int page_start, page_end, rs, re;
833af842 1046
40064aec
DZF
1047 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1048 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 1049
40064aec
DZF
1050 rs = page_start;
1051 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
1052 if (rs >= page_end)
1053 return true;
833af842 1054
40064aec
DZF
1055 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1056 return false;
9f7dcf22
TH
1057}
1058
a16037c8 1059/**
40064aec
DZF
1060 * pcpu_find_block_fit - finds the block index to start searching
1061 * @chunk: chunk of interest
1062 * @alloc_bits: size of request in allocation units
1063 * @align: alignment of area (max PAGE_SIZE bytes)
1064 * @pop_only: use populated regions only
1065 *
b4c2116c
DZF
1066 * Given a chunk and an allocation spec, find the offset to begin searching
1067 * for a free region. This iterates over the bitmap metadata blocks to
1068 * find an offset that will be guaranteed to fit the requirements. It is
1069 * not quite first fit as if the allocation does not fit in the contig hint
1070 * of a block or chunk, it is skipped. This errs on the side of caution
1071 * to prevent excess iteration. Poor alignment can cause the allocator to
1072 * skip over blocks and chunks that have valid free areas.
1073 *
40064aec
DZF
1074 * RETURNS:
1075 * The offset in the bitmap to begin searching.
1076 * -1 if no offset is found.
a16037c8 1077 */
40064aec
DZF
1078static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1079 size_t align, bool pop_only)
a16037c8 1080{
b4c2116c 1081 int bit_off, bits, next_off;
a16037c8 1082
13f96637
DZF
1083 /*
1084 * Check to see if the allocation can fit in the chunk's contig hint.
1085 * This is an optimization to prevent scanning by assuming if it
1086 * cannot fit in the global hint, there is memory pressure and creating
1087 * a new chunk would happen soon.
1088 */
1089 bit_off = ALIGN(chunk->contig_bits_start, align) -
1090 chunk->contig_bits_start;
1091 if (bit_off + alloc_bits > chunk->contig_bits)
1092 return -1;
1093
b4c2116c
DZF
1094 bit_off = chunk->first_bit;
1095 bits = 0;
1096 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 1097 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 1098 &next_off))
40064aec 1099 break;
a16037c8 1100
b4c2116c 1101 bit_off = next_off;
40064aec 1102 bits = 0;
a16037c8 1103 }
40064aec
DZF
1104
1105 if (bit_off == pcpu_chunk_map_bits(chunk))
1106 return -1;
1107
1108 return bit_off;
a16037c8
TH
1109}
1110
b89462a9
DZ
1111/*
1112 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1113 * @map: the address to base the search on
1114 * @size: the bitmap size in bits
1115 * @start: the bitnumber to start searching at
1116 * @nr: the number of zeroed bits we're looking for
1117 * @align_mask: alignment mask for zero area
1118 * @largest_off: offset of the largest area skipped
1119 * @largest_bits: size of the largest area skipped
1120 *
1121 * The @align_mask should be one less than a power of 2.
1122 *
1123 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1124 * the largest area that was skipped. This is imperfect, but in general is
1125 * good enough. The largest remembered region is the largest failed region
1126 * seen. This does not include anything we possibly skipped due to alignment.
1127 * pcpu_block_update_scan() does scan backwards to try and recover what was
1128 * lost to alignment. While this can cause scanning to miss earlier possible
1129 * free areas, smaller allocations will eventually fill those holes.
1130 */
1131static unsigned long pcpu_find_zero_area(unsigned long *map,
1132 unsigned long size,
1133 unsigned long start,
1134 unsigned long nr,
1135 unsigned long align_mask,
1136 unsigned long *largest_off,
1137 unsigned long *largest_bits)
1138{
1139 unsigned long index, end, i, area_off, area_bits;
1140again:
1141 index = find_next_zero_bit(map, size, start);
1142
1143 /* Align allocation */
1144 index = __ALIGN_MASK(index, align_mask);
1145 area_off = index;
1146
1147 end = index + nr;
1148 if (end > size)
1149 return end;
1150 i = find_next_bit(map, end, index);
1151 if (i < end) {
1152 area_bits = i - area_off;
1153 /* remember largest unused area with best alignment */
1154 if (area_bits > *largest_bits ||
1155 (area_bits == *largest_bits && *largest_off &&
1156 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1157 *largest_off = area_off;
1158 *largest_bits = area_bits;
1159 }
1160
1161 start = i + 1;
1162 goto again;
1163 }
1164 return index;
1165}
1166
fbf59bc9 1167/**
40064aec 1168 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 1169 * @chunk: chunk of interest
40064aec
DZF
1170 * @alloc_bits: size of request in allocation units
1171 * @align: alignment of area (max PAGE_SIZE)
1172 * @start: bit_off to start searching
9f7dcf22 1173 *
40064aec 1174 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
1175 * allocation of @alloc_bits with alignment @align. It needs to scan
1176 * the allocation map because if it fits within the block's contig hint,
1177 * @start will be block->first_free. This is an attempt to fill the
1178 * allocation prior to breaking the contig hint. The allocation and
1179 * boundary maps are updated accordingly if it confirms a valid
1180 * free area.
ccea34b5 1181 *
fbf59bc9 1182 * RETURNS:
40064aec
DZF
1183 * Allocated addr offset in @chunk on success.
1184 * -1 if no matching area is found.
fbf59bc9 1185 */
40064aec
DZF
1186static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1187 size_t align, int start)
fbf59bc9 1188{
40064aec 1189 size_t align_mask = (align) ? (align - 1) : 0;
b89462a9 1190 unsigned long area_off = 0, area_bits = 0;
40064aec 1191 int bit_off, end, oslot;
a16037c8 1192
40064aec 1193 lockdep_assert_held(&pcpu_lock);
fbf59bc9 1194
40064aec 1195 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1196
40064aec
DZF
1197 /*
1198 * Search to find a fit.
1199 */
8c43004a
DZ
1200 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1201 pcpu_chunk_map_bits(chunk));
b89462a9
DZ
1202 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1203 align_mask, &area_off, &area_bits);
40064aec
DZF
1204 if (bit_off >= end)
1205 return -1;
fbf59bc9 1206
b89462a9
DZ
1207 if (area_bits)
1208 pcpu_block_update_scan(chunk, area_off, area_bits);
1209
40064aec
DZF
1210 /* update alloc map */
1211 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 1212
40064aec
DZF
1213 /* update boundary map */
1214 set_bit(bit_off, chunk->bound_map);
1215 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1216 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 1217
40064aec 1218 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 1219
86b442fb
DZF
1220 /* update first free bit */
1221 if (bit_off == chunk->first_bit)
1222 chunk->first_bit = find_next_zero_bit(
1223 chunk->alloc_map,
1224 pcpu_chunk_map_bits(chunk),
1225 bit_off + alloc_bits);
1226
ca460b3c 1227 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 1228
fbf59bc9
TH
1229 pcpu_chunk_relocate(chunk, oslot);
1230
40064aec 1231 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1232}
1233
1234/**
40064aec 1235 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1236 * @chunk: chunk of interest
40064aec 1237 * @off: addr offset into chunk
ccea34b5 1238 *
40064aec
DZF
1239 * This function determines the size of an allocation to free using
1240 * the boundary bitmap and clears the allocation map.
fbf59bc9 1241 */
40064aec 1242static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1243{
40064aec 1244 int bit_off, bits, end, oslot;
723ad1d9 1245
5ccd30e4 1246 lockdep_assert_held(&pcpu_lock);
30a5b536 1247 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1248
40064aec 1249 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1250
40064aec 1251 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1252
40064aec
DZF
1253 /* find end index */
1254 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1255 bit_off + 1);
1256 bits = end - bit_off;
1257 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1258
40064aec
DZF
1259 /* update metadata */
1260 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 1261
86b442fb
DZF
1262 /* update first free bit */
1263 chunk->first_bit = min(chunk->first_bit, bit_off);
1264
ca460b3c 1265 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1266
fbf59bc9
TH
1267 pcpu_chunk_relocate(chunk, oslot);
1268}
1269
ca460b3c
DZF
1270static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1271{
1272 struct pcpu_block_md *md_block;
1273
1274 for (md_block = chunk->md_blocks;
1275 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1276 md_block++) {
382b88e9 1277 md_block->scan_hint = 0;
ca460b3c
DZF
1278 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1279 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1280 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1281 }
1282}
1283
40064aec
DZF
1284/**
1285 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1286 * @tmp_addr: the start of the region served
1287 * @map_size: size of the region served
1288 *
1289 * This is responsible for creating the chunks that serve the first chunk. The
1290 * base_addr is page aligned down of @tmp_addr while the region end is page
1291 * aligned up. Offsets are kept track of to determine the region served. All
1292 * this is done to appease the bitmap allocator in avoiding partial blocks.
1293 *
1294 * RETURNS:
1295 * Chunk serving the region at @tmp_addr of @map_size.
1296 */
c0ebfdc3 1297static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1298 int map_size)
10edf5b0
DZF
1299{
1300 struct pcpu_chunk *chunk;
ca460b3c 1301 unsigned long aligned_addr, lcm_align;
40064aec 1302 int start_offset, offset_bits, region_size, region_bits;
f655f405 1303 size_t alloc_size;
c0ebfdc3
DZF
1304
1305 /* region calculations */
1306 aligned_addr = tmp_addr & PAGE_MASK;
1307
1308 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1309
ca460b3c
DZF
1310 /*
1311 * Align the end of the region with the LCM of PAGE_SIZE and
1312 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1313 * the other.
1314 */
1315 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1316 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1317
c0ebfdc3 1318 /* allocate chunk */
f655f405
MR
1319 alloc_size = sizeof(struct pcpu_chunk) +
1320 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1321 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1322 if (!chunk)
1323 panic("%s: Failed to allocate %zu bytes\n", __func__,
1324 alloc_size);
c0ebfdc3 1325
10edf5b0 1326 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1327
1328 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1329 chunk->start_offset = start_offset;
6b9d7c8e 1330 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1331
8ab16c43 1332 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1333 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1334
f655f405
MR
1335 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1336 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1337 if (!chunk->alloc_map)
1338 panic("%s: Failed to allocate %zu bytes\n", __func__,
1339 alloc_size);
1340
1341 alloc_size =
1342 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1343 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1344 if (!chunk->bound_map)
1345 panic("%s: Failed to allocate %zu bytes\n", __func__,
1346 alloc_size);
1347
1348 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1349 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1350 if (!chunk->md_blocks)
1351 panic("%s: Failed to allocate %zu bytes\n", __func__,
1352 alloc_size);
1353
ca460b3c 1354 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1355
1356 /* manage populated page bitmap */
1357 chunk->immutable = true;
8ab16c43
DZF
1358 bitmap_fill(chunk->populated, chunk->nr_pages);
1359 chunk->nr_populated = chunk->nr_pages;
b239f7da 1360 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0 1361
40064aec
DZF
1362 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1363 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1364
1365 if (chunk->start_offset) {
1366 /* hide the beginning of the bitmap */
40064aec
DZF
1367 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1368 bitmap_set(chunk->alloc_map, 0, offset_bits);
1369 set_bit(0, chunk->bound_map);
1370 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1371
86b442fb
DZF
1372 chunk->first_bit = offset_bits;
1373
ca460b3c 1374 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1375 }
1376
6b9d7c8e
DZF
1377 if (chunk->end_offset) {
1378 /* hide the end of the bitmap */
40064aec
DZF
1379 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1380 bitmap_set(chunk->alloc_map,
1381 pcpu_chunk_map_bits(chunk) - offset_bits,
1382 offset_bits);
1383 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1384 chunk->bound_map);
1385 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1386
ca460b3c
DZF
1387 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1388 - offset_bits, offset_bits);
1389 }
40064aec 1390
10edf5b0
DZF
1391 return chunk;
1392}
1393
47504ee0 1394static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
6081089f
TH
1395{
1396 struct pcpu_chunk *chunk;
40064aec 1397 int region_bits;
6081089f 1398
47504ee0 1399 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
6081089f
TH
1400 if (!chunk)
1401 return NULL;
1402
40064aec
DZF
1403 INIT_LIST_HEAD(&chunk->list);
1404 chunk->nr_pages = pcpu_unit_pages;
1405 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1406
40064aec 1407 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
47504ee0 1408 sizeof(chunk->alloc_map[0]), gfp);
40064aec
DZF
1409 if (!chunk->alloc_map)
1410 goto alloc_map_fail;
6081089f 1411
40064aec 1412 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
47504ee0 1413 sizeof(chunk->bound_map[0]), gfp);
40064aec
DZF
1414 if (!chunk->bound_map)
1415 goto bound_map_fail;
6081089f 1416
ca460b3c 1417 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
47504ee0 1418 sizeof(chunk->md_blocks[0]), gfp);
ca460b3c
DZF
1419 if (!chunk->md_blocks)
1420 goto md_blocks_fail;
1421
1422 pcpu_init_md_blocks(chunk);
1423
40064aec
DZF
1424 /* init metadata */
1425 chunk->contig_bits = region_bits;
1426 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1427
6081089f 1428 return chunk;
40064aec 1429
ca460b3c
DZF
1430md_blocks_fail:
1431 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1432bound_map_fail:
1433 pcpu_mem_free(chunk->alloc_map);
1434alloc_map_fail:
1435 pcpu_mem_free(chunk);
1436
1437 return NULL;
6081089f
TH
1438}
1439
1440static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1441{
1442 if (!chunk)
1443 return;
6685b357 1444 pcpu_mem_free(chunk->md_blocks);
40064aec
DZF
1445 pcpu_mem_free(chunk->bound_map);
1446 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1447 pcpu_mem_free(chunk);
6081089f
TH
1448}
1449
b539b87f
TH
1450/**
1451 * pcpu_chunk_populated - post-population bookkeeping
1452 * @chunk: pcpu_chunk which got populated
1453 * @page_start: the start page
1454 * @page_end: the end page
1455 *
1456 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1457 * the bookkeeping information accordingly. Must be called after each
1458 * successful population.
40064aec
DZF
1459 *
1460 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1461 * is to serve an allocation in that area.
b539b87f 1462 */
40064aec 1463static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
b239f7da 1464 int page_end)
b539b87f
TH
1465{
1466 int nr = page_end - page_start;
1467
1468 lockdep_assert_held(&pcpu_lock);
1469
1470 bitmap_set(chunk->populated, page_start, nr);
1471 chunk->nr_populated += nr;
7e8a6304 1472 pcpu_nr_populated += nr;
40064aec 1473
b239f7da 1474 pcpu_update_empty_pages(chunk, nr);
b539b87f
TH
1475}
1476
1477/**
1478 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1479 * @chunk: pcpu_chunk which got depopulated
1480 * @page_start: the start page
1481 * @page_end: the end page
1482 *
1483 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1484 * Update the bookkeeping information accordingly. Must be called after
1485 * each successful depopulation.
1486 */
1487static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1488 int page_start, int page_end)
1489{
1490 int nr = page_end - page_start;
1491
1492 lockdep_assert_held(&pcpu_lock);
1493
1494 bitmap_clear(chunk->populated, page_start, nr);
1495 chunk->nr_populated -= nr;
7e8a6304 1496 pcpu_nr_populated -= nr;
b239f7da
DZ
1497
1498 pcpu_update_empty_pages(chunk, -nr);
b539b87f
TH
1499}
1500
9f645532
TH
1501/*
1502 * Chunk management implementation.
1503 *
1504 * To allow different implementations, chunk alloc/free and
1505 * [de]population are implemented in a separate file which is pulled
1506 * into this file and compiled together. The following functions
1507 * should be implemented.
1508 *
1509 * pcpu_populate_chunk - populate the specified range of a chunk
1510 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1511 * pcpu_create_chunk - create a new chunk
1512 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1513 * pcpu_addr_to_page - translate address to physical address
1514 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1515 */
15d9f3d1 1516static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
47504ee0 1517 int page_start, int page_end, gfp_t gfp);
15d9f3d1
DZ
1518static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1519 int page_start, int page_end);
47504ee0 1520static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
9f645532
TH
1521static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1522static struct page *pcpu_addr_to_page(void *addr);
1523static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1524
b0c9778b
TH
1525#ifdef CONFIG_NEED_PER_CPU_KM
1526#include "percpu-km.c"
1527#else
9f645532 1528#include "percpu-vm.c"
b0c9778b 1529#endif
fbf59bc9 1530
88999a89
TH
1531/**
1532 * pcpu_chunk_addr_search - determine chunk containing specified address
1533 * @addr: address for which the chunk needs to be determined.
1534 *
c0ebfdc3
DZF
1535 * This is an internal function that handles all but static allocations.
1536 * Static percpu address values should never be passed into the allocator.
1537 *
88999a89
TH
1538 * RETURNS:
1539 * The address of the found chunk.
1540 */
1541static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1542{
c0ebfdc3 1543 /* is it in the dynamic region (first chunk)? */
560f2c23 1544 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1545 return pcpu_first_chunk;
c0ebfdc3
DZF
1546
1547 /* is it in the reserved region? */
560f2c23 1548 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1549 return pcpu_reserved_chunk;
88999a89
TH
1550
1551 /*
1552 * The address is relative to unit0 which might be unused and
1553 * thus unmapped. Offset the address to the unit space of the
1554 * current processor before looking it up in the vmalloc
1555 * space. Note that any possible cpu id can be used here, so
1556 * there's no need to worry about preemption or cpu hotplug.
1557 */
1558 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1559 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1560}
1561
fbf59bc9 1562/**
edcb4639 1563 * pcpu_alloc - the percpu allocator
cae3aeb8 1564 * @size: size of area to allocate in bytes
fbf59bc9 1565 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1566 * @reserved: allocate from the reserved chunk if available
5835d96e 1567 * @gfp: allocation flags
fbf59bc9 1568 *
5835d96e 1569 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
0ea7eeec
DB
1570 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1571 * then no warning will be triggered on invalid or failed allocation
1572 * requests.
fbf59bc9
TH
1573 *
1574 * RETURNS:
1575 * Percpu pointer to the allocated area on success, NULL on failure.
1576 */
5835d96e
TH
1577static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1578 gfp_t gfp)
fbf59bc9 1579{
554fef1c
DZ
1580 /* whitelisted flags that can be passed to the backing allocators */
1581 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
0ea7eeec
DB
1582 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1583 bool do_warn = !(gfp & __GFP_NOWARN);
f2badb0c 1584 static int warn_limit = 10;
8744d859 1585 struct pcpu_chunk *chunk, *next;
f2badb0c 1586 const char *err;
40064aec 1587 int slot, off, cpu, ret;
403a91b1 1588 unsigned long flags;
f528f0b8 1589 void __percpu *ptr;
40064aec 1590 size_t bits, bit_align;
fbf59bc9 1591
723ad1d9 1592 /*
40064aec
DZF
1593 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1594 * therefore alignment must be a minimum of that many bytes.
1595 * An allocation may have internal fragmentation from rounding up
1596 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1597 */
d2f3c384
DZF
1598 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1599 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1600
d2f3c384 1601 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1602 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1603 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1604
3ca45a46 1605 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1606 !is_power_of_2(align))) {
0ea7eeec 1607 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
756a025f 1608 size, align);
fbf59bc9
TH
1609 return NULL;
1610 }
1611
f52ba1fe
KT
1612 if (!is_atomic) {
1613 /*
1614 * pcpu_balance_workfn() allocates memory under this mutex,
1615 * and it may wait for memory reclaim. Allow current task
1616 * to become OOM victim, in case of memory pressure.
1617 */
1618 if (gfp & __GFP_NOFAIL)
1619 mutex_lock(&pcpu_alloc_mutex);
1620 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1621 return NULL;
1622 }
6710e594 1623
403a91b1 1624 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1625
edcb4639
TH
1626 /* serve reserved allocations from the reserved chunk if available */
1627 if (reserved && pcpu_reserved_chunk) {
1628 chunk = pcpu_reserved_chunk;
833af842 1629
40064aec
DZF
1630 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1631 if (off < 0) {
833af842 1632 err = "alloc from reserved chunk failed";
ccea34b5 1633 goto fail_unlock;
f2badb0c 1634 }
833af842 1635
40064aec 1636 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1637 if (off >= 0)
1638 goto area_found;
833af842 1639
f2badb0c 1640 err = "alloc from reserved chunk failed";
ccea34b5 1641 goto fail_unlock;
edcb4639
TH
1642 }
1643
ccea34b5 1644restart:
edcb4639 1645 /* search through normal chunks */
fbf59bc9 1646 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
8744d859 1647 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
40064aec
DZF
1648 off = pcpu_find_block_fit(chunk, bits, bit_align,
1649 is_atomic);
8744d859
DZ
1650 if (off < 0) {
1651 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1652 pcpu_chunk_move(chunk, 0);
fbf59bc9 1653 continue;
8744d859 1654 }
ccea34b5 1655
40064aec 1656 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1657 if (off >= 0)
1658 goto area_found;
40064aec 1659
fbf59bc9
TH
1660 }
1661 }
1662
403a91b1 1663 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1664
b38d08f3
TH
1665 /*
1666 * No space left. Create a new chunk. We don't want multiple
1667 * tasks to create chunks simultaneously. Serialize and create iff
1668 * there's still no empty chunk after grabbing the mutex.
1669 */
11df02bf
DZ
1670 if (is_atomic) {
1671 err = "atomic alloc failed, no space left";
5835d96e 1672 goto fail;
11df02bf 1673 }
5835d96e 1674
b38d08f3 1675 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
554fef1c 1676 chunk = pcpu_create_chunk(pcpu_gfp);
b38d08f3
TH
1677 if (!chunk) {
1678 err = "failed to allocate new chunk";
1679 goto fail;
1680 }
1681
1682 spin_lock_irqsave(&pcpu_lock, flags);
1683 pcpu_chunk_relocate(chunk, -1);
1684 } else {
1685 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1686 }
ccea34b5 1687
ccea34b5 1688 goto restart;
fbf59bc9
TH
1689
1690area_found:
30a5b536 1691 pcpu_stats_area_alloc(chunk, size);
403a91b1 1692 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1693
dca49645 1694 /* populate if not all pages are already there */
5835d96e 1695 if (!is_atomic) {
e04d3208 1696 int page_start, page_end, rs, re;
dca49645 1697
e04d3208
TH
1698 page_start = PFN_DOWN(off);
1699 page_end = PFN_UP(off + size);
b38d08f3 1700
91e914c5
DZF
1701 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1702 page_start, page_end) {
e04d3208
TH
1703 WARN_ON(chunk->immutable);
1704
554fef1c 1705 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
e04d3208
TH
1706
1707 spin_lock_irqsave(&pcpu_lock, flags);
1708 if (ret) {
40064aec 1709 pcpu_free_area(chunk, off);
e04d3208
TH
1710 err = "failed to populate";
1711 goto fail_unlock;
1712 }
b239f7da 1713 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1714 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1715 }
fbf59bc9 1716
e04d3208
TH
1717 mutex_unlock(&pcpu_alloc_mutex);
1718 }
ccea34b5 1719
1a4d7607
TH
1720 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1721 pcpu_schedule_balance_work();
1722
dca49645
TH
1723 /* clear the areas and return address relative to base address */
1724 for_each_possible_cpu(cpu)
1725 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1726
f528f0b8 1727 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1728 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1729
1730 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1731 chunk->base_addr, off, ptr);
1732
f528f0b8 1733 return ptr;
ccea34b5
TH
1734
1735fail_unlock:
403a91b1 1736 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1737fail:
df95e795
DZ
1738 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1739
0ea7eeec 1740 if (!is_atomic && do_warn && warn_limit) {
870d4b12 1741 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1742 size, align, is_atomic, err);
f2badb0c
TH
1743 dump_stack();
1744 if (!--warn_limit)
870d4b12 1745 pr_info("limit reached, disable warning\n");
f2badb0c 1746 }
1a4d7607
TH
1747 if (is_atomic) {
1748 /* see the flag handling in pcpu_blance_workfn() */
1749 pcpu_atomic_alloc_failed = true;
1750 pcpu_schedule_balance_work();
6710e594
TH
1751 } else {
1752 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1753 }
ccea34b5 1754 return NULL;
fbf59bc9 1755}
edcb4639
TH
1756
1757/**
5835d96e 1758 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1759 * @size: size of area to allocate in bytes
1760 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1761 * @gfp: allocation flags
edcb4639 1762 *
5835d96e
TH
1763 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1764 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
0ea7eeec
DB
1765 * be called from any context but is a lot more likely to fail. If @gfp
1766 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1767 * allocation requests.
ccea34b5 1768 *
edcb4639
TH
1769 * RETURNS:
1770 * Percpu pointer to the allocated area on success, NULL on failure.
1771 */
5835d96e
TH
1772void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1773{
1774 return pcpu_alloc(size, align, false, gfp);
1775}
1776EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1777
1778/**
1779 * __alloc_percpu - allocate dynamic percpu area
1780 * @size: size of area to allocate in bytes
1781 * @align: alignment of area (max PAGE_SIZE)
1782 *
1783 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1784 */
43cf38eb 1785void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1786{
5835d96e 1787 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1788}
fbf59bc9
TH
1789EXPORT_SYMBOL_GPL(__alloc_percpu);
1790
edcb4639
TH
1791/**
1792 * __alloc_reserved_percpu - allocate reserved percpu area
1793 * @size: size of area to allocate in bytes
1794 * @align: alignment of area (max PAGE_SIZE)
1795 *
9329ba97
TH
1796 * Allocate zero-filled percpu area of @size bytes aligned at @align
1797 * from reserved percpu area if arch has set it up; otherwise,
1798 * allocation is served from the same dynamic area. Might sleep.
1799 * Might trigger writeouts.
edcb4639 1800 *
ccea34b5
TH
1801 * CONTEXT:
1802 * Does GFP_KERNEL allocation.
1803 *
edcb4639
TH
1804 * RETURNS:
1805 * Percpu pointer to the allocated area on success, NULL on failure.
1806 */
43cf38eb 1807void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1808{
5835d96e 1809 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1810}
1811
a56dbddf 1812/**
1a4d7607 1813 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1814 * @work: unused
1815 *
47504ee0
DZ
1816 * Reclaim all fully free chunks except for the first one. This is also
1817 * responsible for maintaining the pool of empty populated pages. However,
1818 * it is possible that this is called when physical memory is scarce causing
1819 * OOM killer to be triggered. We should avoid doing so until an actual
1820 * allocation causes the failure as it is possible that requests can be
1821 * serviced from already backed regions.
a56dbddf 1822 */
fe6bd8c3 1823static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1824{
47504ee0 1825 /* gfp flags passed to underlying allocators */
554fef1c 1826 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
fe6bd8c3
TH
1827 LIST_HEAD(to_free);
1828 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1829 struct pcpu_chunk *chunk, *next;
1a4d7607 1830 int slot, nr_to_pop, ret;
a56dbddf 1831
1a4d7607
TH
1832 /*
1833 * There's no reason to keep around multiple unused chunks and VM
1834 * areas can be scarce. Destroy all free chunks except for one.
1835 */
ccea34b5
TH
1836 mutex_lock(&pcpu_alloc_mutex);
1837 spin_lock_irq(&pcpu_lock);
a56dbddf 1838
fe6bd8c3 1839 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1840 WARN_ON(chunk->immutable);
1841
1842 /* spare the first one */
fe6bd8c3 1843 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1844 continue;
1845
fe6bd8c3 1846 list_move(&chunk->list, &to_free);
a56dbddf
TH
1847 }
1848
ccea34b5 1849 spin_unlock_irq(&pcpu_lock);
a56dbddf 1850
fe6bd8c3 1851 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1852 int rs, re;
dca49645 1853
91e914c5
DZF
1854 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1855 chunk->nr_pages) {
a93ace48 1856 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1857 spin_lock_irq(&pcpu_lock);
1858 pcpu_chunk_depopulated(chunk, rs, re);
1859 spin_unlock_irq(&pcpu_lock);
a93ace48 1860 }
6081089f 1861 pcpu_destroy_chunk(chunk);
accd4f36 1862 cond_resched();
a56dbddf 1863 }
971f3918 1864
1a4d7607
TH
1865 /*
1866 * Ensure there are certain number of free populated pages for
1867 * atomic allocs. Fill up from the most packed so that atomic
1868 * allocs don't increase fragmentation. If atomic allocation
1869 * failed previously, always populate the maximum amount. This
1870 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1871 * failing indefinitely; however, large atomic allocs are not
1872 * something we support properly and can be highly unreliable and
1873 * inefficient.
1874 */
1875retry_pop:
1876 if (pcpu_atomic_alloc_failed) {
1877 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1878 /* best effort anyway, don't worry about synchronization */
1879 pcpu_atomic_alloc_failed = false;
1880 } else {
1881 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1882 pcpu_nr_empty_pop_pages,
1883 0, PCPU_EMPTY_POP_PAGES_HIGH);
1884 }
1885
1886 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1887 int nr_unpop = 0, rs, re;
1888
1889 if (!nr_to_pop)
1890 break;
1891
1892 spin_lock_irq(&pcpu_lock);
1893 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1894 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1895 if (nr_unpop)
1896 break;
1897 }
1898 spin_unlock_irq(&pcpu_lock);
1899
1900 if (!nr_unpop)
1901 continue;
1902
1903 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1904 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1905 chunk->nr_pages) {
1a4d7607
TH
1906 int nr = min(re - rs, nr_to_pop);
1907
47504ee0 1908 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1a4d7607
TH
1909 if (!ret) {
1910 nr_to_pop -= nr;
1911 spin_lock_irq(&pcpu_lock);
b239f7da 1912 pcpu_chunk_populated(chunk, rs, rs + nr);
1a4d7607
TH
1913 spin_unlock_irq(&pcpu_lock);
1914 } else {
1915 nr_to_pop = 0;
1916 }
1917
1918 if (!nr_to_pop)
1919 break;
1920 }
1921 }
1922
1923 if (nr_to_pop) {
1924 /* ran out of chunks to populate, create a new one and retry */
47504ee0 1925 chunk = pcpu_create_chunk(gfp);
1a4d7607
TH
1926 if (chunk) {
1927 spin_lock_irq(&pcpu_lock);
1928 pcpu_chunk_relocate(chunk, -1);
1929 spin_unlock_irq(&pcpu_lock);
1930 goto retry_pop;
1931 }
1932 }
1933
971f3918 1934 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1935}
1936
1937/**
1938 * free_percpu - free percpu area
1939 * @ptr: pointer to area to free
1940 *
ccea34b5
TH
1941 * Free percpu area @ptr.
1942 *
1943 * CONTEXT:
1944 * Can be called from atomic context.
fbf59bc9 1945 */
43cf38eb 1946void free_percpu(void __percpu *ptr)
fbf59bc9 1947{
129182e5 1948 void *addr;
fbf59bc9 1949 struct pcpu_chunk *chunk;
ccea34b5 1950 unsigned long flags;
40064aec 1951 int off;
fbf59bc9
TH
1952
1953 if (!ptr)
1954 return;
1955
f528f0b8
CM
1956 kmemleak_free_percpu(ptr);
1957
129182e5
AM
1958 addr = __pcpu_ptr_to_addr(ptr);
1959
ccea34b5 1960 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1961
1962 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1963 off = addr - chunk->base_addr;
fbf59bc9 1964
40064aec 1965 pcpu_free_area(chunk, off);
fbf59bc9 1966
a56dbddf 1967 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1968 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1969 struct pcpu_chunk *pos;
1970
a56dbddf 1971 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1972 if (pos != chunk) {
1a4d7607 1973 pcpu_schedule_balance_work();
fbf59bc9
TH
1974 break;
1975 }
1976 }
1977
df95e795
DZ
1978 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1979
ccea34b5 1980 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1981}
1982EXPORT_SYMBOL_GPL(free_percpu);
1983
383776fa 1984bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1985{
bbddff05 1986#ifdef CONFIG_SMP
10fad5e4
TH
1987 const size_t static_size = __per_cpu_end - __per_cpu_start;
1988 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1989 unsigned int cpu;
1990
1991 for_each_possible_cpu(cpu) {
1992 void *start = per_cpu_ptr(base, cpu);
383776fa 1993 void *va = (void *)addr;
10fad5e4 1994
383776fa 1995 if (va >= start && va < start + static_size) {
8ce371f9 1996 if (can_addr) {
383776fa 1997 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1998 *can_addr += (unsigned long)
1999 per_cpu_ptr(base, get_boot_cpu_id());
2000 }
10fad5e4 2001 return true;
383776fa
TG
2002 }
2003 }
bbddff05
TH
2004#endif
2005 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
2006 return false;
2007}
2008
383776fa
TG
2009/**
2010 * is_kernel_percpu_address - test whether address is from static percpu area
2011 * @addr: address to test
2012 *
2013 * Test whether @addr belongs to in-kernel static percpu area. Module
2014 * static percpu areas are not considered. For those, use
2015 * is_module_percpu_address().
2016 *
2017 * RETURNS:
2018 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2019 */
2020bool is_kernel_percpu_address(unsigned long addr)
2021{
2022 return __is_kernel_percpu_address(addr, NULL);
2023}
2024
3b034b0d
VG
2025/**
2026 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2027 * @addr: the address to be converted to physical address
2028 *
2029 * Given @addr which is dereferenceable address obtained via one of
2030 * percpu access macros, this function translates it into its physical
2031 * address. The caller is responsible for ensuring @addr stays valid
2032 * until this function finishes.
2033 *
67589c71
DY
2034 * percpu allocator has special setup for the first chunk, which currently
2035 * supports either embedding in linear address space or vmalloc mapping,
2036 * and, from the second one, the backing allocator (currently either vm or
2037 * km) provides translation.
2038 *
bffc4375 2039 * The addr can be translated simply without checking if it falls into the
67589c71
DY
2040 * first chunk. But the current code reflects better how percpu allocator
2041 * actually works, and the verification can discover both bugs in percpu
2042 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2043 * code.
2044 *
3b034b0d
VG
2045 * RETURNS:
2046 * The physical address for @addr.
2047 */
2048phys_addr_t per_cpu_ptr_to_phys(void *addr)
2049{
9983b6f0
TH
2050 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2051 bool in_first_chunk = false;
a855b84c 2052 unsigned long first_low, first_high;
9983b6f0
TH
2053 unsigned int cpu;
2054
2055 /*
a855b84c 2056 * The following test on unit_low/high isn't strictly
9983b6f0
TH
2057 * necessary but will speed up lookups of addresses which
2058 * aren't in the first chunk.
c0ebfdc3
DZF
2059 *
2060 * The address check is against full chunk sizes. pcpu_base_addr
2061 * points to the beginning of the first chunk including the
2062 * static region. Assumes good intent as the first chunk may
2063 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 2064 */
c0ebfdc3
DZF
2065 first_low = (unsigned long)pcpu_base_addr +
2066 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2067 first_high = (unsigned long)pcpu_base_addr +
2068 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
2069 if ((unsigned long)addr >= first_low &&
2070 (unsigned long)addr < first_high) {
9983b6f0
TH
2071 for_each_possible_cpu(cpu) {
2072 void *start = per_cpu_ptr(base, cpu);
2073
2074 if (addr >= start && addr < start + pcpu_unit_size) {
2075 in_first_chunk = true;
2076 break;
2077 }
2078 }
2079 }
2080
2081 if (in_first_chunk) {
eac522ef 2082 if (!is_vmalloc_addr(addr))
020ec653
TH
2083 return __pa(addr);
2084 else
9f57bd4d
ES
2085 return page_to_phys(vmalloc_to_page(addr)) +
2086 offset_in_page(addr);
020ec653 2087 } else
9f57bd4d
ES
2088 return page_to_phys(pcpu_addr_to_page(addr)) +
2089 offset_in_page(addr);
3b034b0d
VG
2090}
2091
fbf59bc9 2092/**
fd1e8a1f
TH
2093 * pcpu_alloc_alloc_info - allocate percpu allocation info
2094 * @nr_groups: the number of groups
2095 * @nr_units: the number of units
2096 *
2097 * Allocate ai which is large enough for @nr_groups groups containing
2098 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2099 * cpu_map array which is long enough for @nr_units and filled with
2100 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2101 * pointer of other groups.
2102 *
2103 * RETURNS:
2104 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2105 * failure.
2106 */
2107struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2108 int nr_units)
2109{
2110 struct pcpu_alloc_info *ai;
2111 size_t base_size, ai_size;
2112 void *ptr;
2113 int unit;
2114
2115 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
2116 __alignof__(ai->groups[0].cpu_map[0]));
2117 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2118
26fb3dae 2119 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
fd1e8a1f
TH
2120 if (!ptr)
2121 return NULL;
2122 ai = ptr;
2123 ptr += base_size;
2124
2125 ai->groups[0].cpu_map = ptr;
2126
2127 for (unit = 0; unit < nr_units; unit++)
2128 ai->groups[0].cpu_map[unit] = NR_CPUS;
2129
2130 ai->nr_groups = nr_groups;
2131 ai->__ai_size = PFN_ALIGN(ai_size);
2132
2133 return ai;
2134}
2135
2136/**
2137 * pcpu_free_alloc_info - free percpu allocation info
2138 * @ai: pcpu_alloc_info to free
2139 *
2140 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2141 */
2142void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2143{
999c17e3 2144 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
2145}
2146
fd1e8a1f
TH
2147/**
2148 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2149 * @lvl: loglevel
2150 * @ai: allocation info to dump
2151 *
2152 * Print out information about @ai using loglevel @lvl.
2153 */
2154static void pcpu_dump_alloc_info(const char *lvl,
2155 const struct pcpu_alloc_info *ai)
033e48fb 2156{
fd1e8a1f 2157 int group_width = 1, cpu_width = 1, width;
033e48fb 2158 char empty_str[] = "--------";
fd1e8a1f
TH
2159 int alloc = 0, alloc_end = 0;
2160 int group, v;
2161 int upa, apl; /* units per alloc, allocs per line */
2162
2163 v = ai->nr_groups;
2164 while (v /= 10)
2165 group_width++;
033e48fb 2166
fd1e8a1f 2167 v = num_possible_cpus();
033e48fb 2168 while (v /= 10)
fd1e8a1f
TH
2169 cpu_width++;
2170 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 2171
fd1e8a1f
TH
2172 upa = ai->alloc_size / ai->unit_size;
2173 width = upa * (cpu_width + 1) + group_width + 3;
2174 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 2175
fd1e8a1f
TH
2176 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2177 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2178 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 2179
fd1e8a1f
TH
2180 for (group = 0; group < ai->nr_groups; group++) {
2181 const struct pcpu_group_info *gi = &ai->groups[group];
2182 int unit = 0, unit_end = 0;
2183
2184 BUG_ON(gi->nr_units % upa);
2185 for (alloc_end += gi->nr_units / upa;
2186 alloc < alloc_end; alloc++) {
2187 if (!(alloc % apl)) {
1170532b 2188 pr_cont("\n");
fd1e8a1f
TH
2189 printk("%spcpu-alloc: ", lvl);
2190 }
1170532b 2191 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
2192
2193 for (unit_end += upa; unit < unit_end; unit++)
2194 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
2195 pr_cont("%0*d ",
2196 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 2197 else
1170532b 2198 pr_cont("%s ", empty_str);
033e48fb 2199 }
033e48fb 2200 }
1170532b 2201 pr_cont("\n");
033e48fb 2202}
033e48fb 2203
fbf59bc9 2204/**
8d408b4b 2205 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 2206 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 2207 * @base_addr: mapped address
8d408b4b
TH
2208 *
2209 * Initialize the first percpu chunk which contains the kernel static
2210 * perpcu area. This function is to be called from arch percpu area
38a6be52 2211 * setup path.
8d408b4b 2212 *
fd1e8a1f
TH
2213 * @ai contains all information necessary to initialize the first
2214 * chunk and prime the dynamic percpu allocator.
2215 *
2216 * @ai->static_size is the size of static percpu area.
2217 *
2218 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
2219 * reserve after the static area in the first chunk. This reserves
2220 * the first chunk such that it's available only through reserved
2221 * percpu allocation. This is primarily used to serve module percpu
2222 * static areas on architectures where the addressing model has
2223 * limited offset range for symbol relocations to guarantee module
2224 * percpu symbols fall inside the relocatable range.
2225 *
fd1e8a1f
TH
2226 * @ai->dyn_size determines the number of bytes available for dynamic
2227 * allocation in the first chunk. The area between @ai->static_size +
2228 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 2229 *
fd1e8a1f
TH
2230 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2231 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2232 * @ai->dyn_size.
8d408b4b 2233 *
fd1e8a1f
TH
2234 * @ai->atom_size is the allocation atom size and used as alignment
2235 * for vm areas.
8d408b4b 2236 *
fd1e8a1f
TH
2237 * @ai->alloc_size is the allocation size and always multiple of
2238 * @ai->atom_size. This is larger than @ai->atom_size if
2239 * @ai->unit_size is larger than @ai->atom_size.
2240 *
2241 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2242 * percpu areas. Units which should be colocated are put into the
2243 * same group. Dynamic VM areas will be allocated according to these
2244 * groupings. If @ai->nr_groups is zero, a single group containing
2245 * all units is assumed.
8d408b4b 2246 *
38a6be52
TH
2247 * The caller should have mapped the first chunk at @base_addr and
2248 * copied static data to each unit.
fbf59bc9 2249 *
c0ebfdc3
DZF
2250 * The first chunk will always contain a static and a dynamic region.
2251 * However, the static region is not managed by any chunk. If the first
2252 * chunk also contains a reserved region, it is served by two chunks -
2253 * one for the reserved region and one for the dynamic region. They
2254 * share the same vm, but use offset regions in the area allocation map.
2255 * The chunk serving the dynamic region is circulated in the chunk slots
2256 * and available for dynamic allocation like any other chunk.
edcb4639 2257 *
fbf59bc9 2258 * RETURNS:
fb435d52 2259 * 0 on success, -errno on failure.
fbf59bc9 2260 */
fb435d52
TH
2261int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2262 void *base_addr)
fbf59bc9 2263{
b9c39442 2264 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 2265 size_t static_size, dyn_size;
0c4169c3 2266 struct pcpu_chunk *chunk;
6563297c
TH
2267 unsigned long *group_offsets;
2268 size_t *group_sizes;
fb435d52 2269 unsigned long *unit_off;
fbf59bc9 2270 unsigned int cpu;
fd1e8a1f
TH
2271 int *unit_map;
2272 int group, unit, i;
c0ebfdc3
DZF
2273 int map_size;
2274 unsigned long tmp_addr;
f655f405 2275 size_t alloc_size;
fbf59bc9 2276
635b75fc
TH
2277#define PCPU_SETUP_BUG_ON(cond) do { \
2278 if (unlikely(cond)) { \
870d4b12
JP
2279 pr_emerg("failed to initialize, %s\n", #cond); \
2280 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2281 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2282 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2283 BUG(); \
2284 } \
2285} while (0)
2286
2f39e637 2287 /* sanity checks */
635b75fc 2288 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2289#ifdef CONFIG_SMP
635b75fc 2290 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2291 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2292#endif
635b75fc 2293 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2294 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2295 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2296 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2297 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2298 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2299 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2300 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2301 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2302 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2303 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2304 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2305
6563297c 2306 /* process group information and build config tables accordingly */
f655f405
MR
2307 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2308 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2309 if (!group_offsets)
2310 panic("%s: Failed to allocate %zu bytes\n", __func__,
2311 alloc_size);
2312
2313 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2314 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2315 if (!group_sizes)
2316 panic("%s: Failed to allocate %zu bytes\n", __func__,
2317 alloc_size);
2318
2319 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2320 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2321 if (!unit_map)
2322 panic("%s: Failed to allocate %zu bytes\n", __func__,
2323 alloc_size);
2324
2325 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2326 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2327 if (!unit_off)
2328 panic("%s: Failed to allocate %zu bytes\n", __func__,
2329 alloc_size);
2f39e637 2330
fd1e8a1f 2331 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2332 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2333
2334 pcpu_low_unit_cpu = NR_CPUS;
2335 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2336
fd1e8a1f
TH
2337 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2338 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2339
6563297c
TH
2340 group_offsets[group] = gi->base_offset;
2341 group_sizes[group] = gi->nr_units * ai->unit_size;
2342
fd1e8a1f
TH
2343 for (i = 0; i < gi->nr_units; i++) {
2344 cpu = gi->cpu_map[i];
2345 if (cpu == NR_CPUS)
2346 continue;
8d408b4b 2347
9f295664 2348 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2349 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2350 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2351
fd1e8a1f 2352 unit_map[cpu] = unit + i;
fb435d52
TH
2353 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2354
a855b84c
TH
2355 /* determine low/high unit_cpu */
2356 if (pcpu_low_unit_cpu == NR_CPUS ||
2357 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2358 pcpu_low_unit_cpu = cpu;
2359 if (pcpu_high_unit_cpu == NR_CPUS ||
2360 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2361 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2362 }
2f39e637 2363 }
fd1e8a1f
TH
2364 pcpu_nr_units = unit;
2365
2366 for_each_possible_cpu(cpu)
635b75fc
TH
2367 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2368
2369 /* we're done parsing the input, undefine BUG macro and dump config */
2370#undef PCPU_SETUP_BUG_ON
bcbea798 2371 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2372
6563297c
TH
2373 pcpu_nr_groups = ai->nr_groups;
2374 pcpu_group_offsets = group_offsets;
2375 pcpu_group_sizes = group_sizes;
fd1e8a1f 2376 pcpu_unit_map = unit_map;
fb435d52 2377 pcpu_unit_offsets = unit_off;
2f39e637
TH
2378
2379 /* determine basic parameters */
fd1e8a1f 2380 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2381 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2382 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
2383 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2384 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 2385
30a5b536
DZ
2386 pcpu_stats_save_ai(ai);
2387
d9b55eeb
TH
2388 /*
2389 * Allocate chunk slots. The additional last slot is for
2390 * empty chunks.
2391 */
2392 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
7e1c4e27
MR
2393 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2394 SMP_CACHE_BYTES);
f655f405
MR
2395 if (!pcpu_slot)
2396 panic("%s: Failed to allocate %zu bytes\n", __func__,
2397 pcpu_nr_slots * sizeof(pcpu_slot[0]));
fbf59bc9
TH
2398 for (i = 0; i < pcpu_nr_slots; i++)
2399 INIT_LIST_HEAD(&pcpu_slot[i]);
2400
d2f3c384
DZF
2401 /*
2402 * The end of the static region needs to be aligned with the
2403 * minimum allocation size as this offsets the reserved and
2404 * dynamic region. The first chunk ends page aligned by
2405 * expanding the dynamic region, therefore the dynamic region
2406 * can be shrunk to compensate while still staying above the
2407 * configured sizes.
2408 */
2409 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2410 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2411
edcb4639 2412 /*
c0ebfdc3
DZF
2413 * Initialize first chunk.
2414 * If the reserved_size is non-zero, this initializes the reserved
2415 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2416 * and the dynamic region is initialized here. The first chunk,
2417 * pcpu_first_chunk, will always point to the chunk that serves
2418 * the dynamic region.
edcb4639 2419 */
d2f3c384
DZF
2420 tmp_addr = (unsigned long)base_addr + static_size;
2421 map_size = ai->reserved_size ?: dyn_size;
40064aec 2422 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2423
edcb4639 2424 /* init dynamic chunk if necessary */
b9c39442 2425 if (ai->reserved_size) {
0c4169c3 2426 pcpu_reserved_chunk = chunk;
b9c39442 2427
d2f3c384 2428 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2429 ai->reserved_size;
d2f3c384 2430 map_size = dyn_size;
40064aec 2431 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2432 }
2433
2441d15c 2434 /* link the first chunk in */
0c4169c3 2435 pcpu_first_chunk = chunk;
0cecf50c 2436 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2437 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2438
7e8a6304
DZF
2439 /* include all regions of the first chunk */
2440 pcpu_nr_populated += PFN_DOWN(size_sum);
2441
30a5b536 2442 pcpu_stats_chunk_alloc();
df95e795 2443 trace_percpu_create_chunk(base_addr);
30a5b536 2444
fbf59bc9 2445 /* we're done */
bba174f5 2446 pcpu_base_addr = base_addr;
fb435d52 2447 return 0;
fbf59bc9 2448}
66c3a757 2449
bbddff05
TH
2450#ifdef CONFIG_SMP
2451
17f3609c 2452const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2453 [PCPU_FC_AUTO] = "auto",
2454 [PCPU_FC_EMBED] = "embed",
2455 [PCPU_FC_PAGE] = "page",
f58dc01b 2456};
66c3a757 2457
f58dc01b 2458enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2459
f58dc01b
TH
2460static int __init percpu_alloc_setup(char *str)
2461{
5479c78a
CG
2462 if (!str)
2463 return -EINVAL;
2464
f58dc01b
TH
2465 if (0)
2466 /* nada */;
2467#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2468 else if (!strcmp(str, "embed"))
2469 pcpu_chosen_fc = PCPU_FC_EMBED;
2470#endif
2471#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2472 else if (!strcmp(str, "page"))
2473 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2474#endif
2475 else
870d4b12 2476 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2477
f58dc01b 2478 return 0;
66c3a757 2479}
f58dc01b 2480early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2481
3c9a024f
TH
2482/*
2483 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2484 * Build it if needed by the arch config or the generic setup is going
2485 * to be used.
2486 */
08fc4580
TH
2487#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2488 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2489#define BUILD_EMBED_FIRST_CHUNK
2490#endif
2491
2492/* build pcpu_page_first_chunk() iff needed by the arch config */
2493#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2494#define BUILD_PAGE_FIRST_CHUNK
2495#endif
2496
2497/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2498#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2499/**
2500 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2501 * @reserved_size: the size of reserved percpu area in bytes
2502 * @dyn_size: minimum free size for dynamic allocation in bytes
2503 * @atom_size: allocation atom size
2504 * @cpu_distance_fn: callback to determine distance between cpus, optional
2505 *
2506 * This function determines grouping of units, their mappings to cpus
2507 * and other parameters considering needed percpu size, allocation
2508 * atom size and distances between CPUs.
2509 *
bffc4375 2510 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2511 * LOCAL_DISTANCE both ways are grouped together and share space for
2512 * units in the same group. The returned configuration is guaranteed
2513 * to have CPUs on different nodes on different groups and >=75% usage
2514 * of allocated virtual address space.
2515 *
2516 * RETURNS:
2517 * On success, pointer to the new allocation_info is returned. On
2518 * failure, ERR_PTR value is returned.
2519 */
2520static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2521 size_t reserved_size, size_t dyn_size,
2522 size_t atom_size,
2523 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2524{
2525 static int group_map[NR_CPUS] __initdata;
2526 static int group_cnt[NR_CPUS] __initdata;
2527 const size_t static_size = __per_cpu_end - __per_cpu_start;
2528 int nr_groups = 1, nr_units = 0;
2529 size_t size_sum, min_unit_size, alloc_size;
2530 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2531 int last_allocs, group, unit;
2532 unsigned int cpu, tcpu;
2533 struct pcpu_alloc_info *ai;
2534 unsigned int *cpu_map;
2535
2536 /* this function may be called multiple times */
2537 memset(group_map, 0, sizeof(group_map));
2538 memset(group_cnt, 0, sizeof(group_cnt));
2539
2540 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2541 size_sum = PFN_ALIGN(static_size + reserved_size +
2542 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2543 dyn_size = size_sum - static_size - reserved_size;
2544
2545 /*
2546 * Determine min_unit_size, alloc_size and max_upa such that
2547 * alloc_size is multiple of atom_size and is the smallest
25985edc 2548 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2549 * or larger than min_unit_size.
2550 */
2551 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2552
9c015162 2553 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2554 alloc_size = roundup(min_unit_size, atom_size);
2555 upa = alloc_size / min_unit_size;
f09f1243 2556 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2557 upa--;
2558 max_upa = upa;
2559
2560 /* group cpus according to their proximity */
2561 for_each_possible_cpu(cpu) {
2562 group = 0;
2563 next_group:
2564 for_each_possible_cpu(tcpu) {
2565 if (cpu == tcpu)
2566 break;
2567 if (group_map[tcpu] == group && cpu_distance_fn &&
2568 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2569 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2570 group++;
2571 nr_groups = max(nr_groups, group + 1);
2572 goto next_group;
2573 }
2574 }
2575 group_map[cpu] = group;
2576 group_cnt[group]++;
2577 }
2578
2579 /*
9c015162
DZF
2580 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2581 * Expand the unit_size until we use >= 75% of the units allocated.
2582 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2583 */
2584 last_allocs = INT_MAX;
2585 for (upa = max_upa; upa; upa--) {
2586 int allocs = 0, wasted = 0;
2587
f09f1243 2588 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2589 continue;
2590
2591 for (group = 0; group < nr_groups; group++) {
2592 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2593 allocs += this_allocs;
2594 wasted += this_allocs * upa - group_cnt[group];
2595 }
2596
2597 /*
2598 * Don't accept if wastage is over 1/3. The
2599 * greater-than comparison ensures upa==1 always
2600 * passes the following check.
2601 */
2602 if (wasted > num_possible_cpus() / 3)
2603 continue;
2604
2605 /* and then don't consume more memory */
2606 if (allocs > last_allocs)
2607 break;
2608 last_allocs = allocs;
2609 best_upa = upa;
2610 }
2611 upa = best_upa;
2612
2613 /* allocate and fill alloc_info */
2614 for (group = 0; group < nr_groups; group++)
2615 nr_units += roundup(group_cnt[group], upa);
2616
2617 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2618 if (!ai)
2619 return ERR_PTR(-ENOMEM);
2620 cpu_map = ai->groups[0].cpu_map;
2621
2622 for (group = 0; group < nr_groups; group++) {
2623 ai->groups[group].cpu_map = cpu_map;
2624 cpu_map += roundup(group_cnt[group], upa);
2625 }
2626
2627 ai->static_size = static_size;
2628 ai->reserved_size = reserved_size;
2629 ai->dyn_size = dyn_size;
2630 ai->unit_size = alloc_size / upa;
2631 ai->atom_size = atom_size;
2632 ai->alloc_size = alloc_size;
2633
2de7852f 2634 for (group = 0, unit = 0; group < nr_groups; group++) {
3c9a024f
TH
2635 struct pcpu_group_info *gi = &ai->groups[group];
2636
2637 /*
2638 * Initialize base_offset as if all groups are located
2639 * back-to-back. The caller should update this to
2640 * reflect actual allocation.
2641 */
2642 gi->base_offset = unit * ai->unit_size;
2643
2644 for_each_possible_cpu(cpu)
2645 if (group_map[cpu] == group)
2646 gi->cpu_map[gi->nr_units++] = cpu;
2647 gi->nr_units = roundup(gi->nr_units, upa);
2648 unit += gi->nr_units;
2649 }
2650 BUG_ON(unit != nr_units);
2651
2652 return ai;
2653}
2654#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2655
2656#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2657/**
2658 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2659 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2660 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2661 * @atom_size: allocation atom size
2662 * @cpu_distance_fn: callback to determine distance between cpus, optional
2663 * @alloc_fn: function to allocate percpu page
25985edc 2664 * @free_fn: function to free percpu page
66c3a757
TH
2665 *
2666 * This is a helper to ease setting up embedded first percpu chunk and
2667 * can be called where pcpu_setup_first_chunk() is expected.
2668 *
2669 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2670 * by calling @alloc_fn and used as-is without being mapped into
2671 * vmalloc area. Allocations are always whole multiples of @atom_size
2672 * aligned to @atom_size.
2673 *
2674 * This enables the first chunk to piggy back on the linear physical
2675 * mapping which often uses larger page size. Please note that this
2676 * can result in very sparse cpu->unit mapping on NUMA machines thus
2677 * requiring large vmalloc address space. Don't use this allocator if
2678 * vmalloc space is not orders of magnitude larger than distances
2679 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2680 *
4ba6ce25 2681 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2682 *
2683 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2684 * size, the leftover is returned using @free_fn.
66c3a757
TH
2685 *
2686 * RETURNS:
fb435d52 2687 * 0 on success, -errno on failure.
66c3a757 2688 */
4ba6ce25 2689int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2690 size_t atom_size,
2691 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2692 pcpu_fc_alloc_fn_t alloc_fn,
2693 pcpu_fc_free_fn_t free_fn)
66c3a757 2694{
c8826dd5
TH
2695 void *base = (void *)ULONG_MAX;
2696 void **areas = NULL;
fd1e8a1f 2697 struct pcpu_alloc_info *ai;
93c76b6b 2698 size_t size_sum, areas_size;
2699 unsigned long max_distance;
9b739662 2700 int group, i, highest_group, rc;
66c3a757 2701
c8826dd5
TH
2702 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2703 cpu_distance_fn);
fd1e8a1f
TH
2704 if (IS_ERR(ai))
2705 return PTR_ERR(ai);
66c3a757 2706
fd1e8a1f 2707 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2708 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2709
26fb3dae 2710 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
c8826dd5 2711 if (!areas) {
fb435d52 2712 rc = -ENOMEM;
c8826dd5 2713 goto out_free;
fa8a7094 2714 }
66c3a757 2715
9b739662 2716 /* allocate, copy and determine base address & max_distance */
2717 highest_group = 0;
c8826dd5
TH
2718 for (group = 0; group < ai->nr_groups; group++) {
2719 struct pcpu_group_info *gi = &ai->groups[group];
2720 unsigned int cpu = NR_CPUS;
2721 void *ptr;
2722
2723 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2724 cpu = gi->cpu_map[i];
2725 BUG_ON(cpu == NR_CPUS);
2726
2727 /* allocate space for the whole group */
2728 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2729 if (!ptr) {
2730 rc = -ENOMEM;
2731 goto out_free_areas;
2732 }
f528f0b8
CM
2733 /* kmemleak tracks the percpu allocations separately */
2734 kmemleak_free(ptr);
c8826dd5 2735 areas[group] = ptr;
fd1e8a1f 2736
c8826dd5 2737 base = min(ptr, base);
9b739662 2738 if (ptr > areas[highest_group])
2739 highest_group = group;
2740 }
2741 max_distance = areas[highest_group] - base;
2742 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2743
2744 /* warn if maximum distance is further than 75% of vmalloc space */
2745 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2746 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2747 max_distance, VMALLOC_TOTAL);
2748#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2749 /* and fail if we have fallback */
2750 rc = -EINVAL;
2751 goto out_free_areas;
2752#endif
42b64281
TH
2753 }
2754
2755 /*
2756 * Copy data and free unused parts. This should happen after all
2757 * allocations are complete; otherwise, we may end up with
2758 * overlapping groups.
2759 */
2760 for (group = 0; group < ai->nr_groups; group++) {
2761 struct pcpu_group_info *gi = &ai->groups[group];
2762 void *ptr = areas[group];
c8826dd5
TH
2763
2764 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2765 if (gi->cpu_map[i] == NR_CPUS) {
2766 /* unused unit, free whole */
2767 free_fn(ptr, ai->unit_size);
2768 continue;
2769 }
2770 /* copy and return the unused part */
2771 memcpy(ptr, __per_cpu_load, ai->static_size);
2772 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2773 }
fa8a7094 2774 }
66c3a757 2775
c8826dd5 2776 /* base address is now known, determine group base offsets */
6ea529a2 2777 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2778 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2779 }
c8826dd5 2780
870d4b12 2781 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2782 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2783 ai->dyn_size, ai->unit_size);
d4b95f80 2784
fb435d52 2785 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2786 goto out_free;
2787
2788out_free_areas:
2789 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2790 if (areas[group])
2791 free_fn(areas[group],
2792 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2793out_free:
fd1e8a1f 2794 pcpu_free_alloc_info(ai);
c8826dd5 2795 if (areas)
999c17e3 2796 memblock_free_early(__pa(areas), areas_size);
fb435d52 2797 return rc;
d4b95f80 2798}
3c9a024f 2799#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2800
3c9a024f 2801#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2802/**
00ae4064 2803 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2804 * @reserved_size: the size of reserved percpu area in bytes
2805 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2806 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2807 * @populate_pte_fn: function to populate pte
2808 *
00ae4064
TH
2809 * This is a helper to ease setting up page-remapped first percpu
2810 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2811 *
2812 * This is the basic allocator. Static percpu area is allocated
2813 * page-by-page into vmalloc area.
2814 *
2815 * RETURNS:
fb435d52 2816 * 0 on success, -errno on failure.
d4b95f80 2817 */
fb435d52
TH
2818int __init pcpu_page_first_chunk(size_t reserved_size,
2819 pcpu_fc_alloc_fn_t alloc_fn,
2820 pcpu_fc_free_fn_t free_fn,
2821 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2822{
8f05a6a6 2823 static struct vm_struct vm;
fd1e8a1f 2824 struct pcpu_alloc_info *ai;
00ae4064 2825 char psize_str[16];
ce3141a2 2826 int unit_pages;
d4b95f80 2827 size_t pages_size;
ce3141a2 2828 struct page **pages;
fb435d52 2829 int unit, i, j, rc;
8f606604 2830 int upa;
2831 int nr_g0_units;
d4b95f80 2832
00ae4064
TH
2833 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2834
4ba6ce25 2835 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2836 if (IS_ERR(ai))
2837 return PTR_ERR(ai);
2838 BUG_ON(ai->nr_groups != 1);
8f606604 2839 upa = ai->alloc_size/ai->unit_size;
2840 nr_g0_units = roundup(num_possible_cpus(), upa);
0b59c25f 2841 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
8f606604 2842 pcpu_free_alloc_info(ai);
2843 return -EINVAL;
2844 }
fd1e8a1f
TH
2845
2846 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2847
2848 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2849 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2850 sizeof(pages[0]));
7e1c4e27 2851 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
f655f405
MR
2852 if (!pages)
2853 panic("%s: Failed to allocate %zu bytes\n", __func__,
2854 pages_size);
d4b95f80 2855
8f05a6a6 2856 /* allocate pages */
d4b95f80 2857 j = 0;
8f606604 2858 for (unit = 0; unit < num_possible_cpus(); unit++) {
2859 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2860 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2861 void *ptr;
2862
3cbc8565 2863 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2864 if (!ptr) {
870d4b12 2865 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2866 psize_str, cpu);
d4b95f80
TH
2867 goto enomem;
2868 }
f528f0b8
CM
2869 /* kmemleak tracks the percpu allocations separately */
2870 kmemleak_free(ptr);
ce3141a2 2871 pages[j++] = virt_to_page(ptr);
d4b95f80 2872 }
8f606604 2873 }
d4b95f80 2874
8f05a6a6
TH
2875 /* allocate vm area, map the pages and copy static data */
2876 vm.flags = VM_ALLOC;
fd1e8a1f 2877 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2878 vm_area_register_early(&vm, PAGE_SIZE);
2879
fd1e8a1f 2880 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2881 unsigned long unit_addr =
fd1e8a1f 2882 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2883
ce3141a2 2884 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2885 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2886
2887 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2888 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2889 unit_pages);
2890 if (rc < 0)
2891 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2892
8f05a6a6
TH
2893 /*
2894 * FIXME: Archs with virtual cache should flush local
2895 * cache for the linear mapping here - something
2896 * equivalent to flush_cache_vmap() on the local cpu.
2897 * flush_cache_vmap() can't be used as most supporting
2898 * data structures are not set up yet.
2899 */
2900
2901 /* copy static data */
fd1e8a1f 2902 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2903 }
2904
2905 /* we're ready, commit */
870d4b12 2906 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2907 unit_pages, psize_str, vm.addr, ai->static_size,
2908 ai->reserved_size, ai->dyn_size);
d4b95f80 2909
fb435d52 2910 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2911 goto out_free_ar;
2912
2913enomem:
2914 while (--j >= 0)
ce3141a2 2915 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2916 rc = -ENOMEM;
d4b95f80 2917out_free_ar:
999c17e3 2918 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2919 pcpu_free_alloc_info(ai);
fb435d52 2920 return rc;
d4b95f80 2921}
3c9a024f 2922#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2923
bbddff05 2924#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2925/*
bbddff05 2926 * Generic SMP percpu area setup.
e74e3962
TH
2927 *
2928 * The embedding helper is used because its behavior closely resembles
2929 * the original non-dynamic generic percpu area setup. This is
2930 * important because many archs have addressing restrictions and might
2931 * fail if the percpu area is located far away from the previous
2932 * location. As an added bonus, in non-NUMA cases, embedding is
2933 * generally a good idea TLB-wise because percpu area can piggy back
2934 * on the physical linear memory mapping which uses large page
2935 * mappings on applicable archs.
2936 */
e74e3962
TH
2937unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2938EXPORT_SYMBOL(__per_cpu_offset);
2939
c8826dd5
TH
2940static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2941 size_t align)
2942{
26fb3dae 2943 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2944}
66c3a757 2945
c8826dd5
TH
2946static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2947{
999c17e3 2948 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2949}
2950
e74e3962
TH
2951void __init setup_per_cpu_areas(void)
2952{
e74e3962
TH
2953 unsigned long delta;
2954 unsigned int cpu;
fb435d52 2955 int rc;
e74e3962
TH
2956
2957 /*
2958 * Always reserve area for module percpu variables. That's
2959 * what the legacy allocator did.
2960 */
fb435d52 2961 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2962 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2963 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2964 if (rc < 0)
bbddff05 2965 panic("Failed to initialize percpu areas.");
e74e3962
TH
2966
2967 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2968 for_each_possible_cpu(cpu)
fb435d52 2969 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2970}
bbddff05
TH
2971#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2972
2973#else /* CONFIG_SMP */
2974
2975/*
2976 * UP percpu area setup.
2977 *
2978 * UP always uses km-based percpu allocator with identity mapping.
2979 * Static percpu variables are indistinguishable from the usual static
2980 * variables and don't require any special preparation.
2981 */
2982void __init setup_per_cpu_areas(void)
2983{
2984 const size_t unit_size =
2985 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2986 PERCPU_DYNAMIC_RESERVE));
2987 struct pcpu_alloc_info *ai;
2988 void *fc;
2989
2990 ai = pcpu_alloc_alloc_info(1, 1);
26fb3dae 2991 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2992 if (!ai || !fc)
2993 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2994 /* kmemleak tracks the percpu allocations separately */
2995 kmemleak_free(fc);
bbddff05
TH
2996
2997 ai->dyn_size = unit_size;
2998 ai->unit_size = unit_size;
2999 ai->atom_size = unit_size;
3000 ai->alloc_size = unit_size;
3001 ai->groups[0].nr_units = 1;
3002 ai->groups[0].cpu_map[0] = 0;
3003
3004 if (pcpu_setup_first_chunk(ai, fc) < 0)
3005 panic("Failed to initialize percpu areas.");
438a5061 3006 pcpu_free_alloc_info(ai);
bbddff05
TH
3007}
3008
3009#endif /* CONFIG_SMP */
099a19d9 3010
7e8a6304
DZF
3011/*
3012 * pcpu_nr_pages - calculate total number of populated backing pages
3013 *
3014 * This reflects the number of pages populated to back chunks. Metadata is
3015 * excluded in the number exposed in meminfo as the number of backing pages
3016 * scales with the number of cpus and can quickly outweigh the memory used for
3017 * metadata. It also keeps this calculation nice and simple.
3018 *
3019 * RETURNS:
3020 * Total number of populated backing pages in use by the allocator.
3021 */
3022unsigned long pcpu_nr_pages(void)
3023{
3024 return pcpu_nr_populated * pcpu_nr_units;
3025}
3026
1a4d7607
TH
3027/*
3028 * Percpu allocator is initialized early during boot when neither slab or
3029 * workqueue is available. Plug async management until everything is up
3030 * and running.
3031 */
3032static int __init percpu_enable_async(void)
3033{
3034 pcpu_async_enabled = true;
3035 return 0;
3036}
3037subsys_initcall(percpu_enable_async);