]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: indent the population block in pcpu_alloc()
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
bbddff05 80#ifdef CONFIG_SMP
e0100983
TH
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
e0100983
TH
87#endif
88#ifndef __pcpu_ptr_to_addr
89#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
e0100983 93#endif
bbddff05
TH
94#else /* CONFIG_SMP */
95/* on UP, it's always identity mapped */
96#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98#endif /* CONFIG_SMP */
e0100983 99
fbf59bc9
TH
100struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
bba174f5 104 void *base_addr; /* base address of this chunk */
723ad1d9 105 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
88999a89 108 void *data; /* chunk data */
3d331ad7 109 int first_free; /* no free below this */
8d408b4b 110 bool immutable; /* no [de]population allowed */
ce3141a2 111 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
112};
113
40150d37
TH
114static int pcpu_unit_pages __read_mostly;
115static int pcpu_unit_size __read_mostly;
2f39e637 116static int pcpu_nr_units __read_mostly;
6563297c 117static int pcpu_atom_size __read_mostly;
40150d37
TH
118static int pcpu_nr_slots __read_mostly;
119static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 120
a855b84c
TH
121/* cpus with the lowest and highest unit addresses */
122static unsigned int pcpu_low_unit_cpu __read_mostly;
123static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 124
fbf59bc9 125/* the address of the first chunk which starts with the kernel static area */
40150d37 126void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
127EXPORT_SYMBOL_GPL(pcpu_base_addr);
128
fb435d52
TH
129static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
130const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 131
6563297c
TH
132/* group information, used for vm allocation */
133static int pcpu_nr_groups __read_mostly;
134static const unsigned long *pcpu_group_offsets __read_mostly;
135static const size_t *pcpu_group_sizes __read_mostly;
136
ae9e6bc9
TH
137/*
138 * The first chunk which always exists. Note that unlike other
139 * chunks, this one can be allocated and mapped in several different
140 * ways and thus often doesn't live in the vmalloc area.
141 */
142static struct pcpu_chunk *pcpu_first_chunk;
143
144/*
145 * Optional reserved chunk. This chunk reserves part of the first
146 * chunk and serves it for reserved allocations. The amount of
147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
148 * area doesn't exist, the following variables contain NULL and 0
149 * respectively.
150 */
edcb4639 151static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
152static int pcpu_reserved_chunk_limit;
153
fbf59bc9 154/*
b38d08f3
TH
155 * Free path accesses and alters only the index data structures and can be
156 * safely called from atomic context. When memory needs to be returned to
157 * the system, free path schedules reclaim_work.
fbf59bc9 158 */
b38d08f3
TH
159static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
160static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
fbf59bc9 161
40150d37 162static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 163
a56dbddf
TH
164/* reclaim work to release fully free chunks, scheduled from free path */
165static void pcpu_reclaim(struct work_struct *work);
166static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
167
020ec653
TH
168static bool pcpu_addr_in_first_chunk(void *addr)
169{
170 void *first_start = pcpu_first_chunk->base_addr;
171
172 return addr >= first_start && addr < first_start + pcpu_unit_size;
173}
174
175static bool pcpu_addr_in_reserved_chunk(void *addr)
176{
177 void *first_start = pcpu_first_chunk->base_addr;
178
179 return addr >= first_start &&
180 addr < first_start + pcpu_reserved_chunk_limit;
181}
182
d9b55eeb 183static int __pcpu_size_to_slot(int size)
fbf59bc9 184{
cae3aeb8 185 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
186 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
187}
188
d9b55eeb
TH
189static int pcpu_size_to_slot(int size)
190{
191 if (size == pcpu_unit_size)
192 return pcpu_nr_slots - 1;
193 return __pcpu_size_to_slot(size);
194}
195
fbf59bc9
TH
196static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
197{
198 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
199 return 0;
200
201 return pcpu_size_to_slot(chunk->free_size);
202}
203
88999a89
TH
204/* set the pointer to a chunk in a page struct */
205static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
206{
207 page->index = (unsigned long)pcpu;
208}
209
210/* obtain pointer to a chunk from a page struct */
211static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
212{
213 return (struct pcpu_chunk *)page->index;
214}
215
216static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 217{
2f39e637 218 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
219}
220
9983b6f0
TH
221static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
222 unsigned int cpu, int page_idx)
fbf59bc9 223{
bba174f5 224 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 225 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
226}
227
88999a89
TH
228static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
229 int *rs, int *re, int end)
ce3141a2
TH
230{
231 *rs = find_next_zero_bit(chunk->populated, end, *rs);
232 *re = find_next_bit(chunk->populated, end, *rs + 1);
233}
234
88999a89
TH
235static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
236 int *rs, int *re, int end)
ce3141a2
TH
237{
238 *rs = find_next_bit(chunk->populated, end, *rs);
239 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
240}
241
242/*
243 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 244 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
245 * be integer variables and will be set to start and end page index of
246 * the current region.
247 */
248#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
250 (rs) < (re); \
251 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
252
253#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
254 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
255 (rs) < (re); \
256 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
257
fbf59bc9 258/**
90459ce0 259 * pcpu_mem_zalloc - allocate memory
1880d93b 260 * @size: bytes to allocate
fbf59bc9 261 *
1880d93b 262 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 263 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 264 * memory is always zeroed.
fbf59bc9 265 *
ccea34b5
TH
266 * CONTEXT:
267 * Does GFP_KERNEL allocation.
268 *
fbf59bc9 269 * RETURNS:
1880d93b 270 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 271 */
90459ce0 272static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 273{
099a19d9
TH
274 if (WARN_ON_ONCE(!slab_is_available()))
275 return NULL;
276
1880d93b
TH
277 if (size <= PAGE_SIZE)
278 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
279 else
280 return vzalloc(size);
1880d93b 281}
fbf59bc9 282
1880d93b
TH
283/**
284 * pcpu_mem_free - free memory
285 * @ptr: memory to free
286 * @size: size of the area
287 *
90459ce0 288 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
289 */
290static void pcpu_mem_free(void *ptr, size_t size)
291{
fbf59bc9 292 if (size <= PAGE_SIZE)
1880d93b 293 kfree(ptr);
fbf59bc9 294 else
1880d93b 295 vfree(ptr);
fbf59bc9
TH
296}
297
298/**
299 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
300 * @chunk: chunk of interest
301 * @oslot: the previous slot it was on
302 *
303 * This function is called after an allocation or free changed @chunk.
304 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
305 * moved to the slot. Note that the reserved chunk is never put on
306 * chunk slots.
ccea34b5
TH
307 *
308 * CONTEXT:
309 * pcpu_lock.
fbf59bc9
TH
310 */
311static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
312{
313 int nslot = pcpu_chunk_slot(chunk);
314
edcb4639 315 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
316 if (oslot < nslot)
317 list_move(&chunk->list, &pcpu_slot[nslot]);
318 else
319 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
320 }
321}
322
9f7dcf22 323/**
833af842
TH
324 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
325 * @chunk: chunk of interest
9f7dcf22 326 *
833af842 327 * Determine whether area map of @chunk needs to be extended to
25985edc 328 * accommodate a new allocation.
9f7dcf22 329 *
ccea34b5 330 * CONTEXT:
833af842 331 * pcpu_lock.
ccea34b5 332 *
9f7dcf22 333 * RETURNS:
833af842
TH
334 * New target map allocation length if extension is necessary, 0
335 * otherwise.
9f7dcf22 336 */
833af842 337static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
338{
339 int new_alloc;
9f7dcf22 340
723ad1d9 341 if (chunk->map_alloc >= chunk->map_used + 3)
9f7dcf22
TH
342 return 0;
343
344 new_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9 345 while (new_alloc < chunk->map_used + 3)
9f7dcf22
TH
346 new_alloc *= 2;
347
833af842
TH
348 return new_alloc;
349}
350
351/**
352 * pcpu_extend_area_map - extend area map of a chunk
353 * @chunk: chunk of interest
354 * @new_alloc: new target allocation length of the area map
355 *
356 * Extend area map of @chunk to have @new_alloc entries.
357 *
358 * CONTEXT:
359 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
360 *
361 * RETURNS:
362 * 0 on success, -errno on failure.
363 */
364static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
365{
366 int *old = NULL, *new = NULL;
367 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
368 unsigned long flags;
369
90459ce0 370 new = pcpu_mem_zalloc(new_size);
833af842 371 if (!new)
9f7dcf22 372 return -ENOMEM;
ccea34b5 373
833af842
TH
374 /* acquire pcpu_lock and switch to new area map */
375 spin_lock_irqsave(&pcpu_lock, flags);
376
377 if (new_alloc <= chunk->map_alloc)
378 goto out_unlock;
9f7dcf22 379
833af842 380 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
381 old = chunk->map;
382
383 memcpy(new, old, old_size);
9f7dcf22 384
9f7dcf22
TH
385 chunk->map_alloc = new_alloc;
386 chunk->map = new;
833af842
TH
387 new = NULL;
388
389out_unlock:
390 spin_unlock_irqrestore(&pcpu_lock, flags);
391
392 /*
393 * pcpu_mem_free() might end up calling vfree() which uses
394 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
395 */
396 pcpu_mem_free(old, old_size);
397 pcpu_mem_free(new, new_size);
398
9f7dcf22
TH
399 return 0;
400}
401
a16037c8
TH
402/**
403 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
404 * @chunk: chunk the candidate area belongs to
405 * @off: the offset to the start of the candidate area
406 * @this_size: the size of the candidate area
407 * @size: the size of the target allocation
408 * @align: the alignment of the target allocation
409 * @pop_only: only allocate from already populated region
410 *
411 * We're trying to allocate @size bytes aligned at @align. @chunk's area
412 * at @off sized @this_size is a candidate. This function determines
413 * whether the target allocation fits in the candidate area and returns the
414 * number of bytes to pad after @off. If the target area doesn't fit, -1
415 * is returned.
416 *
417 * If @pop_only is %true, this function only considers the already
418 * populated part of the candidate area.
419 */
420static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
421 int size, int align, bool pop_only)
422{
423 int cand_off = off;
424
425 while (true) {
426 int head = ALIGN(cand_off, align) - off;
427 int page_start, page_end, rs, re;
428
429 if (this_size < head + size)
430 return -1;
431
432 if (!pop_only)
433 return head;
434
435 /*
436 * If the first unpopulated page is beyond the end of the
437 * allocation, the whole allocation is populated;
438 * otherwise, retry from the end of the unpopulated area.
439 */
440 page_start = PFN_DOWN(head + off);
441 page_end = PFN_UP(head + off + size);
442
443 rs = page_start;
444 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
445 if (rs >= page_end)
446 return head;
447 cand_off = re * PAGE_SIZE;
448 }
449}
450
fbf59bc9
TH
451/**
452 * pcpu_alloc_area - allocate area from a pcpu_chunk
453 * @chunk: chunk of interest
cae3aeb8 454 * @size: wanted size in bytes
fbf59bc9 455 * @align: wanted align
a16037c8 456 * @pop_only: allocate only from the populated area
fbf59bc9
TH
457 *
458 * Try to allocate @size bytes area aligned at @align from @chunk.
459 * Note that this function only allocates the offset. It doesn't
460 * populate or map the area.
461 *
9f7dcf22
TH
462 * @chunk->map must have at least two free slots.
463 *
ccea34b5
TH
464 * CONTEXT:
465 * pcpu_lock.
466 *
fbf59bc9 467 * RETURNS:
9f7dcf22
TH
468 * Allocated offset in @chunk on success, -1 if no matching area is
469 * found.
fbf59bc9 470 */
a16037c8
TH
471static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
472 bool pop_only)
fbf59bc9
TH
473{
474 int oslot = pcpu_chunk_slot(chunk);
475 int max_contig = 0;
476 int i, off;
3d331ad7 477 bool seen_free = false;
723ad1d9 478 int *p;
fbf59bc9 479
3d331ad7 480 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 481 int head, tail;
723ad1d9
AV
482 int this_size;
483
484 off = *p;
485 if (off & 1)
486 continue;
fbf59bc9 487
723ad1d9 488 this_size = (p[1] & ~1) - off;
a16037c8
TH
489
490 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
491 pop_only);
492 if (head < 0) {
3d331ad7
AV
493 if (!seen_free) {
494 chunk->first_free = i;
495 seen_free = true;
496 }
723ad1d9 497 max_contig = max(this_size, max_contig);
fbf59bc9
TH
498 continue;
499 }
500
501 /*
502 * If head is small or the previous block is free,
503 * merge'em. Note that 'small' is defined as smaller
504 * than sizeof(int), which is very small but isn't too
505 * uncommon for percpu allocations.
506 */
723ad1d9 507 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 508 *p = off += head;
723ad1d9 509 if (p[-1] & 1)
fbf59bc9 510 chunk->free_size -= head;
21ddfd38
JZ
511 else
512 max_contig = max(*p - p[-1], max_contig);
723ad1d9 513 this_size -= head;
fbf59bc9
TH
514 head = 0;
515 }
516
517 /* if tail is small, just keep it around */
723ad1d9
AV
518 tail = this_size - head - size;
519 if (tail < sizeof(int)) {
fbf59bc9 520 tail = 0;
723ad1d9
AV
521 size = this_size - head;
522 }
fbf59bc9
TH
523
524 /* split if warranted */
525 if (head || tail) {
706c16f2
AV
526 int nr_extra = !!head + !!tail;
527
528 /* insert new subblocks */
723ad1d9 529 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
530 sizeof(chunk->map[0]) * (chunk->map_used - i));
531 chunk->map_used += nr_extra;
532
fbf59bc9 533 if (head) {
3d331ad7
AV
534 if (!seen_free) {
535 chunk->first_free = i;
536 seen_free = true;
537 }
723ad1d9
AV
538 *++p = off += head;
539 ++i;
706c16f2
AV
540 max_contig = max(head, max_contig);
541 }
542 if (tail) {
723ad1d9 543 p[1] = off + size;
706c16f2 544 max_contig = max(tail, max_contig);
fbf59bc9 545 }
fbf59bc9
TH
546 }
547
3d331ad7
AV
548 if (!seen_free)
549 chunk->first_free = i + 1;
550
fbf59bc9 551 /* update hint and mark allocated */
723ad1d9 552 if (i + 1 == chunk->map_used)
fbf59bc9
TH
553 chunk->contig_hint = max_contig; /* fully scanned */
554 else
555 chunk->contig_hint = max(chunk->contig_hint,
556 max_contig);
557
723ad1d9
AV
558 chunk->free_size -= size;
559 *p |= 1;
fbf59bc9
TH
560
561 pcpu_chunk_relocate(chunk, oslot);
562 return off;
563 }
564
565 chunk->contig_hint = max_contig; /* fully scanned */
566 pcpu_chunk_relocate(chunk, oslot);
567
9f7dcf22
TH
568 /* tell the upper layer that this chunk has no matching area */
569 return -1;
fbf59bc9
TH
570}
571
572/**
573 * pcpu_free_area - free area to a pcpu_chunk
574 * @chunk: chunk of interest
575 * @freeme: offset of area to free
576 *
577 * Free area starting from @freeme to @chunk. Note that this function
578 * only modifies the allocation map. It doesn't depopulate or unmap
579 * the area.
ccea34b5
TH
580 *
581 * CONTEXT:
582 * pcpu_lock.
fbf59bc9
TH
583 */
584static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
585{
586 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
587 int off = 0;
588 unsigned i, j;
589 int to_free = 0;
590 int *p;
591
592 freeme |= 1; /* we are searching for <given offset, in use> pair */
593
594 i = 0;
595 j = chunk->map_used;
596 while (i != j) {
597 unsigned k = (i + j) / 2;
598 off = chunk->map[k];
599 if (off < freeme)
600 i = k + 1;
601 else if (off > freeme)
602 j = k;
603 else
604 i = j = k;
605 }
fbf59bc9 606 BUG_ON(off != freeme);
fbf59bc9 607
3d331ad7
AV
608 if (i < chunk->first_free)
609 chunk->first_free = i;
610
723ad1d9
AV
611 p = chunk->map + i;
612 *p = off &= ~1;
613 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 614
723ad1d9
AV
615 /* merge with next? */
616 if (!(p[1] & 1))
617 to_free++;
fbf59bc9 618 /* merge with previous? */
723ad1d9
AV
619 if (i > 0 && !(p[-1] & 1)) {
620 to_free++;
fbf59bc9 621 i--;
723ad1d9 622 p--;
fbf59bc9 623 }
723ad1d9
AV
624 if (to_free) {
625 chunk->map_used -= to_free;
626 memmove(p + 1, p + 1 + to_free,
627 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
628 }
629
723ad1d9 630 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
631 pcpu_chunk_relocate(chunk, oslot);
632}
633
6081089f
TH
634static struct pcpu_chunk *pcpu_alloc_chunk(void)
635{
636 struct pcpu_chunk *chunk;
637
90459ce0 638 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
639 if (!chunk)
640 return NULL;
641
90459ce0
BL
642 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
643 sizeof(chunk->map[0]));
6081089f 644 if (!chunk->map) {
5a838c3b 645 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
646 return NULL;
647 }
648
649 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
650 chunk->map[0] = 0;
651 chunk->map[1] = pcpu_unit_size | 1;
652 chunk->map_used = 1;
6081089f
TH
653
654 INIT_LIST_HEAD(&chunk->list);
655 chunk->free_size = pcpu_unit_size;
656 chunk->contig_hint = pcpu_unit_size;
657
658 return chunk;
659}
660
661static void pcpu_free_chunk(struct pcpu_chunk *chunk)
662{
663 if (!chunk)
664 return;
665 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 666 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
667}
668
9f645532
TH
669/*
670 * Chunk management implementation.
671 *
672 * To allow different implementations, chunk alloc/free and
673 * [de]population are implemented in a separate file which is pulled
674 * into this file and compiled together. The following functions
675 * should be implemented.
676 *
677 * pcpu_populate_chunk - populate the specified range of a chunk
678 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
679 * pcpu_create_chunk - create a new chunk
680 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
681 * pcpu_addr_to_page - translate address to physical address
682 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 683 */
9f645532
TH
684static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
685static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
686static struct pcpu_chunk *pcpu_create_chunk(void);
687static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
688static struct page *pcpu_addr_to_page(void *addr);
689static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 690
b0c9778b
TH
691#ifdef CONFIG_NEED_PER_CPU_KM
692#include "percpu-km.c"
693#else
9f645532 694#include "percpu-vm.c"
b0c9778b 695#endif
fbf59bc9 696
88999a89
TH
697/**
698 * pcpu_chunk_addr_search - determine chunk containing specified address
699 * @addr: address for which the chunk needs to be determined.
700 *
701 * RETURNS:
702 * The address of the found chunk.
703 */
704static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
705{
706 /* is it in the first chunk? */
707 if (pcpu_addr_in_first_chunk(addr)) {
708 /* is it in the reserved area? */
709 if (pcpu_addr_in_reserved_chunk(addr))
710 return pcpu_reserved_chunk;
711 return pcpu_first_chunk;
712 }
713
714 /*
715 * The address is relative to unit0 which might be unused and
716 * thus unmapped. Offset the address to the unit space of the
717 * current processor before looking it up in the vmalloc
718 * space. Note that any possible cpu id can be used here, so
719 * there's no need to worry about preemption or cpu hotplug.
720 */
721 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 722 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
723}
724
fbf59bc9 725/**
edcb4639 726 * pcpu_alloc - the percpu allocator
cae3aeb8 727 * @size: size of area to allocate in bytes
fbf59bc9 728 * @align: alignment of area (max PAGE_SIZE)
edcb4639 729 * @reserved: allocate from the reserved chunk if available
fbf59bc9 730 *
ccea34b5
TH
731 * Allocate percpu area of @size bytes aligned at @align.
732 *
733 * CONTEXT:
734 * Does GFP_KERNEL allocation.
fbf59bc9
TH
735 *
736 * RETURNS:
737 * Percpu pointer to the allocated area on success, NULL on failure.
738 */
43cf38eb 739static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 740{
f2badb0c 741 static int warn_limit = 10;
fbf59bc9 742 struct pcpu_chunk *chunk;
f2badb0c 743 const char *err;
b38d08f3 744 int slot, off, new_alloc, cpu, ret;
403a91b1 745 unsigned long flags;
f528f0b8 746 void __percpu *ptr;
fbf59bc9 747
723ad1d9
AV
748 /*
749 * We want the lowest bit of offset available for in-use/free
2f69fa82 750 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
751 */
752 if (unlikely(align < 2))
753 align = 2;
754
fb009e3a 755 size = ALIGN(size, 2);
2f69fa82 756
8d408b4b 757 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
758 WARN(true, "illegal size (%zu) or align (%zu) for "
759 "percpu allocation\n", size, align);
760 return NULL;
761 }
762
403a91b1 763 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 764
edcb4639
TH
765 /* serve reserved allocations from the reserved chunk if available */
766 if (reserved && pcpu_reserved_chunk) {
767 chunk = pcpu_reserved_chunk;
833af842
TH
768
769 if (size > chunk->contig_hint) {
770 err = "alloc from reserved chunk failed";
ccea34b5 771 goto fail_unlock;
f2badb0c 772 }
833af842
TH
773
774 while ((new_alloc = pcpu_need_to_extend(chunk))) {
775 spin_unlock_irqrestore(&pcpu_lock, flags);
776 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
777 err = "failed to extend area map of reserved chunk";
b38d08f3 778 goto fail;
833af842
TH
779 }
780 spin_lock_irqsave(&pcpu_lock, flags);
781 }
782
a16037c8 783 off = pcpu_alloc_area(chunk, size, align, false);
edcb4639
TH
784 if (off >= 0)
785 goto area_found;
833af842 786
f2badb0c 787 err = "alloc from reserved chunk failed";
ccea34b5 788 goto fail_unlock;
edcb4639
TH
789 }
790
ccea34b5 791restart:
edcb4639 792 /* search through normal chunks */
fbf59bc9
TH
793 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
794 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
795 if (size > chunk->contig_hint)
796 continue;
ccea34b5 797
833af842
TH
798 new_alloc = pcpu_need_to_extend(chunk);
799 if (new_alloc) {
800 spin_unlock_irqrestore(&pcpu_lock, flags);
801 if (pcpu_extend_area_map(chunk,
802 new_alloc) < 0) {
803 err = "failed to extend area map";
b38d08f3 804 goto fail;
833af842
TH
805 }
806 spin_lock_irqsave(&pcpu_lock, flags);
807 /*
808 * pcpu_lock has been dropped, need to
809 * restart cpu_slot list walking.
810 */
811 goto restart;
ccea34b5
TH
812 }
813
a16037c8 814 off = pcpu_alloc_area(chunk, size, align, false);
fbf59bc9
TH
815 if (off >= 0)
816 goto area_found;
fbf59bc9
TH
817 }
818 }
819
403a91b1 820 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 821
b38d08f3
TH
822 /*
823 * No space left. Create a new chunk. We don't want multiple
824 * tasks to create chunks simultaneously. Serialize and create iff
825 * there's still no empty chunk after grabbing the mutex.
826 */
827 mutex_lock(&pcpu_alloc_mutex);
828
829 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
830 chunk = pcpu_create_chunk();
831 if (!chunk) {
832 err = "failed to allocate new chunk";
833 goto fail;
834 }
835
836 spin_lock_irqsave(&pcpu_lock, flags);
837 pcpu_chunk_relocate(chunk, -1);
838 } else {
839 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 840 }
ccea34b5 841
b38d08f3 842 mutex_unlock(&pcpu_alloc_mutex);
ccea34b5 843 goto restart;
fbf59bc9
TH
844
845area_found:
403a91b1 846 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 847
dca49645 848 /* populate if not all pages are already there */
e04d3208
TH
849 if (true) {
850 int page_start, page_end, rs, re;
dca49645 851
e04d3208 852 mutex_lock(&pcpu_alloc_mutex);
dca49645 853
e04d3208
TH
854 page_start = PFN_DOWN(off);
855 page_end = PFN_UP(off + size);
b38d08f3 856
e04d3208
TH
857 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
858 WARN_ON(chunk->immutable);
859
860 ret = pcpu_populate_chunk(chunk, rs, re);
861
862 spin_lock_irqsave(&pcpu_lock, flags);
863 if (ret) {
864 mutex_unlock(&pcpu_alloc_mutex);
865 pcpu_free_area(chunk, off);
866 err = "failed to populate";
867 goto fail_unlock;
868 }
869 bitmap_set(chunk->populated, rs, re - rs);
870 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 871 }
fbf59bc9 872
e04d3208
TH
873 mutex_unlock(&pcpu_alloc_mutex);
874 }
ccea34b5 875
dca49645
TH
876 /* clear the areas and return address relative to base address */
877 for_each_possible_cpu(cpu)
878 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
879
f528f0b8
CM
880 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
881 kmemleak_alloc_percpu(ptr, size);
882 return ptr;
ccea34b5
TH
883
884fail_unlock:
403a91b1 885 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 886fail:
f2badb0c
TH
887 if (warn_limit) {
888 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
889 "%s\n", size, align, err);
890 dump_stack();
891 if (!--warn_limit)
892 pr_info("PERCPU: limit reached, disable warning\n");
893 }
ccea34b5 894 return NULL;
fbf59bc9 895}
edcb4639
TH
896
897/**
898 * __alloc_percpu - allocate dynamic percpu area
899 * @size: size of area to allocate in bytes
900 * @align: alignment of area (max PAGE_SIZE)
901 *
9329ba97
TH
902 * Allocate zero-filled percpu area of @size bytes aligned at @align.
903 * Might sleep. Might trigger writeouts.
edcb4639 904 *
ccea34b5
TH
905 * CONTEXT:
906 * Does GFP_KERNEL allocation.
907 *
edcb4639
TH
908 * RETURNS:
909 * Percpu pointer to the allocated area on success, NULL on failure.
910 */
43cf38eb 911void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
912{
913 return pcpu_alloc(size, align, false);
914}
fbf59bc9
TH
915EXPORT_SYMBOL_GPL(__alloc_percpu);
916
edcb4639
TH
917/**
918 * __alloc_reserved_percpu - allocate reserved percpu area
919 * @size: size of area to allocate in bytes
920 * @align: alignment of area (max PAGE_SIZE)
921 *
9329ba97
TH
922 * Allocate zero-filled percpu area of @size bytes aligned at @align
923 * from reserved percpu area if arch has set it up; otherwise,
924 * allocation is served from the same dynamic area. Might sleep.
925 * Might trigger writeouts.
edcb4639 926 *
ccea34b5
TH
927 * CONTEXT:
928 * Does GFP_KERNEL allocation.
929 *
edcb4639
TH
930 * RETURNS:
931 * Percpu pointer to the allocated area on success, NULL on failure.
932 */
43cf38eb 933void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
934{
935 return pcpu_alloc(size, align, true);
936}
937
a56dbddf
TH
938/**
939 * pcpu_reclaim - reclaim fully free chunks, workqueue function
940 * @work: unused
941 *
942 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
943 *
944 * CONTEXT:
945 * workqueue context.
a56dbddf
TH
946 */
947static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 948{
a56dbddf
TH
949 LIST_HEAD(todo);
950 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
951 struct pcpu_chunk *chunk, *next;
952
ccea34b5
TH
953 mutex_lock(&pcpu_alloc_mutex);
954 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
955
956 list_for_each_entry_safe(chunk, next, head, list) {
957 WARN_ON(chunk->immutable);
958
959 /* spare the first one */
960 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
961 continue;
962
a56dbddf
TH
963 list_move(&chunk->list, &todo);
964 }
965
ccea34b5 966 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
967
968 list_for_each_entry_safe(chunk, next, &todo, list) {
a93ace48 969 int rs, re;
dca49645 970
a93ace48
TH
971 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
972 pcpu_depopulate_chunk(chunk, rs, re);
973 bitmap_clear(chunk->populated, rs, re - rs);
974 }
6081089f 975 pcpu_destroy_chunk(chunk);
a56dbddf 976 }
971f3918
TH
977
978 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
979}
980
981/**
982 * free_percpu - free percpu area
983 * @ptr: pointer to area to free
984 *
ccea34b5
TH
985 * Free percpu area @ptr.
986 *
987 * CONTEXT:
988 * Can be called from atomic context.
fbf59bc9 989 */
43cf38eb 990void free_percpu(void __percpu *ptr)
fbf59bc9 991{
129182e5 992 void *addr;
fbf59bc9 993 struct pcpu_chunk *chunk;
ccea34b5 994 unsigned long flags;
fbf59bc9
TH
995 int off;
996
997 if (!ptr)
998 return;
999
f528f0b8
CM
1000 kmemleak_free_percpu(ptr);
1001
129182e5
AM
1002 addr = __pcpu_ptr_to_addr(ptr);
1003
ccea34b5 1004 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1005
1006 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1007 off = addr - chunk->base_addr;
fbf59bc9
TH
1008
1009 pcpu_free_area(chunk, off);
1010
a56dbddf 1011 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1012 if (chunk->free_size == pcpu_unit_size) {
1013 struct pcpu_chunk *pos;
1014
a56dbddf 1015 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1016 if (pos != chunk) {
a56dbddf 1017 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1018 break;
1019 }
1020 }
1021
ccea34b5 1022 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1023}
1024EXPORT_SYMBOL_GPL(free_percpu);
1025
10fad5e4
TH
1026/**
1027 * is_kernel_percpu_address - test whether address is from static percpu area
1028 * @addr: address to test
1029 *
1030 * Test whether @addr belongs to in-kernel static percpu area. Module
1031 * static percpu areas are not considered. For those, use
1032 * is_module_percpu_address().
1033 *
1034 * RETURNS:
1035 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1036 */
1037bool is_kernel_percpu_address(unsigned long addr)
1038{
bbddff05 1039#ifdef CONFIG_SMP
10fad5e4
TH
1040 const size_t static_size = __per_cpu_end - __per_cpu_start;
1041 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1042 unsigned int cpu;
1043
1044 for_each_possible_cpu(cpu) {
1045 void *start = per_cpu_ptr(base, cpu);
1046
1047 if ((void *)addr >= start && (void *)addr < start + static_size)
1048 return true;
1049 }
bbddff05
TH
1050#endif
1051 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1052 return false;
1053}
1054
3b034b0d
VG
1055/**
1056 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1057 * @addr: the address to be converted to physical address
1058 *
1059 * Given @addr which is dereferenceable address obtained via one of
1060 * percpu access macros, this function translates it into its physical
1061 * address. The caller is responsible for ensuring @addr stays valid
1062 * until this function finishes.
1063 *
67589c71
DY
1064 * percpu allocator has special setup for the first chunk, which currently
1065 * supports either embedding in linear address space or vmalloc mapping,
1066 * and, from the second one, the backing allocator (currently either vm or
1067 * km) provides translation.
1068 *
1069 * The addr can be tranlated simply without checking if it falls into the
1070 * first chunk. But the current code reflects better how percpu allocator
1071 * actually works, and the verification can discover both bugs in percpu
1072 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1073 * code.
1074 *
3b034b0d
VG
1075 * RETURNS:
1076 * The physical address for @addr.
1077 */
1078phys_addr_t per_cpu_ptr_to_phys(void *addr)
1079{
9983b6f0
TH
1080 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1081 bool in_first_chunk = false;
a855b84c 1082 unsigned long first_low, first_high;
9983b6f0
TH
1083 unsigned int cpu;
1084
1085 /*
a855b84c 1086 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1087 * necessary but will speed up lookups of addresses which
1088 * aren't in the first chunk.
1089 */
a855b84c
TH
1090 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1091 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1092 pcpu_unit_pages);
1093 if ((unsigned long)addr >= first_low &&
1094 (unsigned long)addr < first_high) {
9983b6f0
TH
1095 for_each_possible_cpu(cpu) {
1096 void *start = per_cpu_ptr(base, cpu);
1097
1098 if (addr >= start && addr < start + pcpu_unit_size) {
1099 in_first_chunk = true;
1100 break;
1101 }
1102 }
1103 }
1104
1105 if (in_first_chunk) {
eac522ef 1106 if (!is_vmalloc_addr(addr))
020ec653
TH
1107 return __pa(addr);
1108 else
9f57bd4d
ES
1109 return page_to_phys(vmalloc_to_page(addr)) +
1110 offset_in_page(addr);
020ec653 1111 } else
9f57bd4d
ES
1112 return page_to_phys(pcpu_addr_to_page(addr)) +
1113 offset_in_page(addr);
3b034b0d
VG
1114}
1115
fbf59bc9 1116/**
fd1e8a1f
TH
1117 * pcpu_alloc_alloc_info - allocate percpu allocation info
1118 * @nr_groups: the number of groups
1119 * @nr_units: the number of units
1120 *
1121 * Allocate ai which is large enough for @nr_groups groups containing
1122 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1123 * cpu_map array which is long enough for @nr_units and filled with
1124 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1125 * pointer of other groups.
1126 *
1127 * RETURNS:
1128 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1129 * failure.
1130 */
1131struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1132 int nr_units)
1133{
1134 struct pcpu_alloc_info *ai;
1135 size_t base_size, ai_size;
1136 void *ptr;
1137 int unit;
1138
1139 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1140 __alignof__(ai->groups[0].cpu_map[0]));
1141 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1142
999c17e3 1143 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1144 if (!ptr)
1145 return NULL;
1146 ai = ptr;
1147 ptr += base_size;
1148
1149 ai->groups[0].cpu_map = ptr;
1150
1151 for (unit = 0; unit < nr_units; unit++)
1152 ai->groups[0].cpu_map[unit] = NR_CPUS;
1153
1154 ai->nr_groups = nr_groups;
1155 ai->__ai_size = PFN_ALIGN(ai_size);
1156
1157 return ai;
1158}
1159
1160/**
1161 * pcpu_free_alloc_info - free percpu allocation info
1162 * @ai: pcpu_alloc_info to free
1163 *
1164 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1165 */
1166void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1167{
999c17e3 1168 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1169}
1170
fd1e8a1f
TH
1171/**
1172 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1173 * @lvl: loglevel
1174 * @ai: allocation info to dump
1175 *
1176 * Print out information about @ai using loglevel @lvl.
1177 */
1178static void pcpu_dump_alloc_info(const char *lvl,
1179 const struct pcpu_alloc_info *ai)
033e48fb 1180{
fd1e8a1f 1181 int group_width = 1, cpu_width = 1, width;
033e48fb 1182 char empty_str[] = "--------";
fd1e8a1f
TH
1183 int alloc = 0, alloc_end = 0;
1184 int group, v;
1185 int upa, apl; /* units per alloc, allocs per line */
1186
1187 v = ai->nr_groups;
1188 while (v /= 10)
1189 group_width++;
033e48fb 1190
fd1e8a1f 1191 v = num_possible_cpus();
033e48fb 1192 while (v /= 10)
fd1e8a1f
TH
1193 cpu_width++;
1194 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1195
fd1e8a1f
TH
1196 upa = ai->alloc_size / ai->unit_size;
1197 width = upa * (cpu_width + 1) + group_width + 3;
1198 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1199
fd1e8a1f
TH
1200 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1201 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1202 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1203
fd1e8a1f
TH
1204 for (group = 0; group < ai->nr_groups; group++) {
1205 const struct pcpu_group_info *gi = &ai->groups[group];
1206 int unit = 0, unit_end = 0;
1207
1208 BUG_ON(gi->nr_units % upa);
1209 for (alloc_end += gi->nr_units / upa;
1210 alloc < alloc_end; alloc++) {
1211 if (!(alloc % apl)) {
cb129820 1212 printk(KERN_CONT "\n");
fd1e8a1f
TH
1213 printk("%spcpu-alloc: ", lvl);
1214 }
cb129820 1215 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1216
1217 for (unit_end += upa; unit < unit_end; unit++)
1218 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1219 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1220 gi->cpu_map[unit]);
1221 else
cb129820 1222 printk(KERN_CONT "%s ", empty_str);
033e48fb 1223 }
033e48fb 1224 }
cb129820 1225 printk(KERN_CONT "\n");
033e48fb 1226}
033e48fb 1227
fbf59bc9 1228/**
8d408b4b 1229 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1230 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1231 * @base_addr: mapped address
8d408b4b
TH
1232 *
1233 * Initialize the first percpu chunk which contains the kernel static
1234 * perpcu area. This function is to be called from arch percpu area
38a6be52 1235 * setup path.
8d408b4b 1236 *
fd1e8a1f
TH
1237 * @ai contains all information necessary to initialize the first
1238 * chunk and prime the dynamic percpu allocator.
1239 *
1240 * @ai->static_size is the size of static percpu area.
1241 *
1242 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1243 * reserve after the static area in the first chunk. This reserves
1244 * the first chunk such that it's available only through reserved
1245 * percpu allocation. This is primarily used to serve module percpu
1246 * static areas on architectures where the addressing model has
1247 * limited offset range for symbol relocations to guarantee module
1248 * percpu symbols fall inside the relocatable range.
1249 *
fd1e8a1f
TH
1250 * @ai->dyn_size determines the number of bytes available for dynamic
1251 * allocation in the first chunk. The area between @ai->static_size +
1252 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1253 *
fd1e8a1f
TH
1254 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1255 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1256 * @ai->dyn_size.
8d408b4b 1257 *
fd1e8a1f
TH
1258 * @ai->atom_size is the allocation atom size and used as alignment
1259 * for vm areas.
8d408b4b 1260 *
fd1e8a1f
TH
1261 * @ai->alloc_size is the allocation size and always multiple of
1262 * @ai->atom_size. This is larger than @ai->atom_size if
1263 * @ai->unit_size is larger than @ai->atom_size.
1264 *
1265 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1266 * percpu areas. Units which should be colocated are put into the
1267 * same group. Dynamic VM areas will be allocated according to these
1268 * groupings. If @ai->nr_groups is zero, a single group containing
1269 * all units is assumed.
8d408b4b 1270 *
38a6be52
TH
1271 * The caller should have mapped the first chunk at @base_addr and
1272 * copied static data to each unit.
fbf59bc9 1273 *
edcb4639
TH
1274 * If the first chunk ends up with both reserved and dynamic areas, it
1275 * is served by two chunks - one to serve the core static and reserved
1276 * areas and the other for the dynamic area. They share the same vm
1277 * and page map but uses different area allocation map to stay away
1278 * from each other. The latter chunk is circulated in the chunk slots
1279 * and available for dynamic allocation like any other chunks.
1280 *
fbf59bc9 1281 * RETURNS:
fb435d52 1282 * 0 on success, -errno on failure.
fbf59bc9 1283 */
fb435d52
TH
1284int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1285 void *base_addr)
fbf59bc9 1286{
635b75fc 1287 static char cpus_buf[4096] __initdata;
099a19d9
TH
1288 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1289 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1290 size_t dyn_size = ai->dyn_size;
1291 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1292 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1293 unsigned long *group_offsets;
1294 size_t *group_sizes;
fb435d52 1295 unsigned long *unit_off;
fbf59bc9 1296 unsigned int cpu;
fd1e8a1f
TH
1297 int *unit_map;
1298 int group, unit, i;
fbf59bc9 1299
635b75fc
TH
1300 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1301
1302#define PCPU_SETUP_BUG_ON(cond) do { \
1303 if (unlikely(cond)) { \
1304 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1305 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1306 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1307 BUG(); \
1308 } \
1309} while (0)
1310
2f39e637 1311 /* sanity checks */
635b75fc 1312 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1313#ifdef CONFIG_SMP
635b75fc 1314 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1315 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1316#endif
635b75fc 1317 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1318 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1319 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1320 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1321 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1322 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1323 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1324
6563297c 1325 /* process group information and build config tables accordingly */
999c17e3
SS
1326 group_offsets = memblock_virt_alloc(ai->nr_groups *
1327 sizeof(group_offsets[0]), 0);
1328 group_sizes = memblock_virt_alloc(ai->nr_groups *
1329 sizeof(group_sizes[0]), 0);
1330 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1331 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1332
fd1e8a1f 1333 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1334 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1335
1336 pcpu_low_unit_cpu = NR_CPUS;
1337 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1338
fd1e8a1f
TH
1339 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1340 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1341
6563297c
TH
1342 group_offsets[group] = gi->base_offset;
1343 group_sizes[group] = gi->nr_units * ai->unit_size;
1344
fd1e8a1f
TH
1345 for (i = 0; i < gi->nr_units; i++) {
1346 cpu = gi->cpu_map[i];
1347 if (cpu == NR_CPUS)
1348 continue;
8d408b4b 1349
635b75fc
TH
1350 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1351 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1352 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1353
fd1e8a1f 1354 unit_map[cpu] = unit + i;
fb435d52
TH
1355 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1356
a855b84c
TH
1357 /* determine low/high unit_cpu */
1358 if (pcpu_low_unit_cpu == NR_CPUS ||
1359 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1360 pcpu_low_unit_cpu = cpu;
1361 if (pcpu_high_unit_cpu == NR_CPUS ||
1362 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1363 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1364 }
2f39e637 1365 }
fd1e8a1f
TH
1366 pcpu_nr_units = unit;
1367
1368 for_each_possible_cpu(cpu)
635b75fc
TH
1369 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1370
1371 /* we're done parsing the input, undefine BUG macro and dump config */
1372#undef PCPU_SETUP_BUG_ON
bcbea798 1373 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1374
6563297c
TH
1375 pcpu_nr_groups = ai->nr_groups;
1376 pcpu_group_offsets = group_offsets;
1377 pcpu_group_sizes = group_sizes;
fd1e8a1f 1378 pcpu_unit_map = unit_map;
fb435d52 1379 pcpu_unit_offsets = unit_off;
2f39e637
TH
1380
1381 /* determine basic parameters */
fd1e8a1f 1382 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1383 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1384 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1385 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1386 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1387
d9b55eeb
TH
1388 /*
1389 * Allocate chunk slots. The additional last slot is for
1390 * empty chunks.
1391 */
1392 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1393 pcpu_slot = memblock_virt_alloc(
1394 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1395 for (i = 0; i < pcpu_nr_slots; i++)
1396 INIT_LIST_HEAD(&pcpu_slot[i]);
1397
edcb4639
TH
1398 /*
1399 * Initialize static chunk. If reserved_size is zero, the
1400 * static chunk covers static area + dynamic allocation area
1401 * in the first chunk. If reserved_size is not zero, it
1402 * covers static area + reserved area (mostly used for module
1403 * static percpu allocation).
1404 */
999c17e3 1405 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1406 INIT_LIST_HEAD(&schunk->list);
bba174f5 1407 schunk->base_addr = base_addr;
61ace7fa
TH
1408 schunk->map = smap;
1409 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1410 schunk->immutable = true;
ce3141a2 1411 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1412
fd1e8a1f
TH
1413 if (ai->reserved_size) {
1414 schunk->free_size = ai->reserved_size;
ae9e6bc9 1415 pcpu_reserved_chunk = schunk;
fd1e8a1f 1416 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1417 } else {
1418 schunk->free_size = dyn_size;
1419 dyn_size = 0; /* dynamic area covered */
1420 }
2441d15c 1421 schunk->contig_hint = schunk->free_size;
fbf59bc9 1422
723ad1d9
AV
1423 schunk->map[0] = 1;
1424 schunk->map[1] = ai->static_size;
1425 schunk->map_used = 1;
61ace7fa 1426 if (schunk->free_size)
723ad1d9
AV
1427 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1428 else
1429 schunk->map[1] |= 1;
61ace7fa 1430
edcb4639
TH
1431 /* init dynamic chunk if necessary */
1432 if (dyn_size) {
999c17e3 1433 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1434 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1435 dchunk->base_addr = base_addr;
edcb4639
TH
1436 dchunk->map = dmap;
1437 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1438 dchunk->immutable = true;
ce3141a2 1439 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1440
1441 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1442 dchunk->map[0] = 1;
1443 dchunk->map[1] = pcpu_reserved_chunk_limit;
1444 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1445 dchunk->map_used = 2;
edcb4639
TH
1446 }
1447
2441d15c 1448 /* link the first chunk in */
ae9e6bc9
TH
1449 pcpu_first_chunk = dchunk ?: schunk;
1450 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1451
1452 /* we're done */
bba174f5 1453 pcpu_base_addr = base_addr;
fb435d52 1454 return 0;
fbf59bc9 1455}
66c3a757 1456
bbddff05
TH
1457#ifdef CONFIG_SMP
1458
17f3609c 1459const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1460 [PCPU_FC_AUTO] = "auto",
1461 [PCPU_FC_EMBED] = "embed",
1462 [PCPU_FC_PAGE] = "page",
f58dc01b 1463};
66c3a757 1464
f58dc01b 1465enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1466
f58dc01b
TH
1467static int __init percpu_alloc_setup(char *str)
1468{
5479c78a
CG
1469 if (!str)
1470 return -EINVAL;
1471
f58dc01b
TH
1472 if (0)
1473 /* nada */;
1474#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1475 else if (!strcmp(str, "embed"))
1476 pcpu_chosen_fc = PCPU_FC_EMBED;
1477#endif
1478#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1479 else if (!strcmp(str, "page"))
1480 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1481#endif
1482 else
1483 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1484
f58dc01b 1485 return 0;
66c3a757 1486}
f58dc01b 1487early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1488
3c9a024f
TH
1489/*
1490 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1491 * Build it if needed by the arch config or the generic setup is going
1492 * to be used.
1493 */
08fc4580
TH
1494#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1495 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1496#define BUILD_EMBED_FIRST_CHUNK
1497#endif
1498
1499/* build pcpu_page_first_chunk() iff needed by the arch config */
1500#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1501#define BUILD_PAGE_FIRST_CHUNK
1502#endif
1503
1504/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1505#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1506/**
1507 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1508 * @reserved_size: the size of reserved percpu area in bytes
1509 * @dyn_size: minimum free size for dynamic allocation in bytes
1510 * @atom_size: allocation atom size
1511 * @cpu_distance_fn: callback to determine distance between cpus, optional
1512 *
1513 * This function determines grouping of units, their mappings to cpus
1514 * and other parameters considering needed percpu size, allocation
1515 * atom size and distances between CPUs.
1516 *
1517 * Groups are always mutliples of atom size and CPUs which are of
1518 * LOCAL_DISTANCE both ways are grouped together and share space for
1519 * units in the same group. The returned configuration is guaranteed
1520 * to have CPUs on different nodes on different groups and >=75% usage
1521 * of allocated virtual address space.
1522 *
1523 * RETURNS:
1524 * On success, pointer to the new allocation_info is returned. On
1525 * failure, ERR_PTR value is returned.
1526 */
1527static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1528 size_t reserved_size, size_t dyn_size,
1529 size_t atom_size,
1530 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1531{
1532 static int group_map[NR_CPUS] __initdata;
1533 static int group_cnt[NR_CPUS] __initdata;
1534 const size_t static_size = __per_cpu_end - __per_cpu_start;
1535 int nr_groups = 1, nr_units = 0;
1536 size_t size_sum, min_unit_size, alloc_size;
1537 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1538 int last_allocs, group, unit;
1539 unsigned int cpu, tcpu;
1540 struct pcpu_alloc_info *ai;
1541 unsigned int *cpu_map;
1542
1543 /* this function may be called multiple times */
1544 memset(group_map, 0, sizeof(group_map));
1545 memset(group_cnt, 0, sizeof(group_cnt));
1546
1547 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1548 size_sum = PFN_ALIGN(static_size + reserved_size +
1549 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1550 dyn_size = size_sum - static_size - reserved_size;
1551
1552 /*
1553 * Determine min_unit_size, alloc_size and max_upa such that
1554 * alloc_size is multiple of atom_size and is the smallest
25985edc 1555 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1556 * or larger than min_unit_size.
1557 */
1558 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1559
1560 alloc_size = roundup(min_unit_size, atom_size);
1561 upa = alloc_size / min_unit_size;
1562 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1563 upa--;
1564 max_upa = upa;
1565
1566 /* group cpus according to their proximity */
1567 for_each_possible_cpu(cpu) {
1568 group = 0;
1569 next_group:
1570 for_each_possible_cpu(tcpu) {
1571 if (cpu == tcpu)
1572 break;
1573 if (group_map[tcpu] == group && cpu_distance_fn &&
1574 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1575 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1576 group++;
1577 nr_groups = max(nr_groups, group + 1);
1578 goto next_group;
1579 }
1580 }
1581 group_map[cpu] = group;
1582 group_cnt[group]++;
1583 }
1584
1585 /*
1586 * Expand unit size until address space usage goes over 75%
1587 * and then as much as possible without using more address
1588 * space.
1589 */
1590 last_allocs = INT_MAX;
1591 for (upa = max_upa; upa; upa--) {
1592 int allocs = 0, wasted = 0;
1593
1594 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1595 continue;
1596
1597 for (group = 0; group < nr_groups; group++) {
1598 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1599 allocs += this_allocs;
1600 wasted += this_allocs * upa - group_cnt[group];
1601 }
1602
1603 /*
1604 * Don't accept if wastage is over 1/3. The
1605 * greater-than comparison ensures upa==1 always
1606 * passes the following check.
1607 */
1608 if (wasted > num_possible_cpus() / 3)
1609 continue;
1610
1611 /* and then don't consume more memory */
1612 if (allocs > last_allocs)
1613 break;
1614 last_allocs = allocs;
1615 best_upa = upa;
1616 }
1617 upa = best_upa;
1618
1619 /* allocate and fill alloc_info */
1620 for (group = 0; group < nr_groups; group++)
1621 nr_units += roundup(group_cnt[group], upa);
1622
1623 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1624 if (!ai)
1625 return ERR_PTR(-ENOMEM);
1626 cpu_map = ai->groups[0].cpu_map;
1627
1628 for (group = 0; group < nr_groups; group++) {
1629 ai->groups[group].cpu_map = cpu_map;
1630 cpu_map += roundup(group_cnt[group], upa);
1631 }
1632
1633 ai->static_size = static_size;
1634 ai->reserved_size = reserved_size;
1635 ai->dyn_size = dyn_size;
1636 ai->unit_size = alloc_size / upa;
1637 ai->atom_size = atom_size;
1638 ai->alloc_size = alloc_size;
1639
1640 for (group = 0, unit = 0; group_cnt[group]; group++) {
1641 struct pcpu_group_info *gi = &ai->groups[group];
1642
1643 /*
1644 * Initialize base_offset as if all groups are located
1645 * back-to-back. The caller should update this to
1646 * reflect actual allocation.
1647 */
1648 gi->base_offset = unit * ai->unit_size;
1649
1650 for_each_possible_cpu(cpu)
1651 if (group_map[cpu] == group)
1652 gi->cpu_map[gi->nr_units++] = cpu;
1653 gi->nr_units = roundup(gi->nr_units, upa);
1654 unit += gi->nr_units;
1655 }
1656 BUG_ON(unit != nr_units);
1657
1658 return ai;
1659}
1660#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1661
1662#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1663/**
1664 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1665 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1666 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1667 * @atom_size: allocation atom size
1668 * @cpu_distance_fn: callback to determine distance between cpus, optional
1669 * @alloc_fn: function to allocate percpu page
25985edc 1670 * @free_fn: function to free percpu page
66c3a757
TH
1671 *
1672 * This is a helper to ease setting up embedded first percpu chunk and
1673 * can be called where pcpu_setup_first_chunk() is expected.
1674 *
1675 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1676 * by calling @alloc_fn and used as-is without being mapped into
1677 * vmalloc area. Allocations are always whole multiples of @atom_size
1678 * aligned to @atom_size.
1679 *
1680 * This enables the first chunk to piggy back on the linear physical
1681 * mapping which often uses larger page size. Please note that this
1682 * can result in very sparse cpu->unit mapping on NUMA machines thus
1683 * requiring large vmalloc address space. Don't use this allocator if
1684 * vmalloc space is not orders of magnitude larger than distances
1685 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1686 *
4ba6ce25 1687 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1688 *
1689 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1690 * size, the leftover is returned using @free_fn.
66c3a757
TH
1691 *
1692 * RETURNS:
fb435d52 1693 * 0 on success, -errno on failure.
66c3a757 1694 */
4ba6ce25 1695int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1696 size_t atom_size,
1697 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1698 pcpu_fc_alloc_fn_t alloc_fn,
1699 pcpu_fc_free_fn_t free_fn)
66c3a757 1700{
c8826dd5
TH
1701 void *base = (void *)ULONG_MAX;
1702 void **areas = NULL;
fd1e8a1f 1703 struct pcpu_alloc_info *ai;
6ea529a2 1704 size_t size_sum, areas_size, max_distance;
c8826dd5 1705 int group, i, rc;
66c3a757 1706
c8826dd5
TH
1707 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1708 cpu_distance_fn);
fd1e8a1f
TH
1709 if (IS_ERR(ai))
1710 return PTR_ERR(ai);
66c3a757 1711
fd1e8a1f 1712 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1713 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1714
999c17e3 1715 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1716 if (!areas) {
fb435d52 1717 rc = -ENOMEM;
c8826dd5 1718 goto out_free;
fa8a7094 1719 }
66c3a757 1720
c8826dd5
TH
1721 /* allocate, copy and determine base address */
1722 for (group = 0; group < ai->nr_groups; group++) {
1723 struct pcpu_group_info *gi = &ai->groups[group];
1724 unsigned int cpu = NR_CPUS;
1725 void *ptr;
1726
1727 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1728 cpu = gi->cpu_map[i];
1729 BUG_ON(cpu == NR_CPUS);
1730
1731 /* allocate space for the whole group */
1732 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1733 if (!ptr) {
1734 rc = -ENOMEM;
1735 goto out_free_areas;
1736 }
f528f0b8
CM
1737 /* kmemleak tracks the percpu allocations separately */
1738 kmemleak_free(ptr);
c8826dd5 1739 areas[group] = ptr;
fd1e8a1f 1740
c8826dd5 1741 base = min(ptr, base);
42b64281
TH
1742 }
1743
1744 /*
1745 * Copy data and free unused parts. This should happen after all
1746 * allocations are complete; otherwise, we may end up with
1747 * overlapping groups.
1748 */
1749 for (group = 0; group < ai->nr_groups; group++) {
1750 struct pcpu_group_info *gi = &ai->groups[group];
1751 void *ptr = areas[group];
c8826dd5
TH
1752
1753 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1754 if (gi->cpu_map[i] == NR_CPUS) {
1755 /* unused unit, free whole */
1756 free_fn(ptr, ai->unit_size);
1757 continue;
1758 }
1759 /* copy and return the unused part */
1760 memcpy(ptr, __per_cpu_load, ai->static_size);
1761 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1762 }
fa8a7094 1763 }
66c3a757 1764
c8826dd5 1765 /* base address is now known, determine group base offsets */
6ea529a2
TH
1766 max_distance = 0;
1767 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1768 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1769 max_distance = max_t(size_t, max_distance,
1770 ai->groups[group].base_offset);
6ea529a2
TH
1771 }
1772 max_distance += ai->unit_size;
1773
1774 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1775 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1776 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1777 "space 0x%lx\n", max_distance,
8a092171 1778 VMALLOC_TOTAL);
6ea529a2
TH
1779#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1780 /* and fail if we have fallback */
1781 rc = -EINVAL;
1782 goto out_free;
1783#endif
1784 }
c8826dd5 1785
004018e2 1786 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1787 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1788 ai->dyn_size, ai->unit_size);
d4b95f80 1789
fb435d52 1790 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1791 goto out_free;
1792
1793out_free_areas:
1794 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1795 if (areas[group])
1796 free_fn(areas[group],
1797 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1798out_free:
fd1e8a1f 1799 pcpu_free_alloc_info(ai);
c8826dd5 1800 if (areas)
999c17e3 1801 memblock_free_early(__pa(areas), areas_size);
fb435d52 1802 return rc;
d4b95f80 1803}
3c9a024f 1804#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1805
3c9a024f 1806#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1807/**
00ae4064 1808 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1809 * @reserved_size: the size of reserved percpu area in bytes
1810 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1811 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1812 * @populate_pte_fn: function to populate pte
1813 *
00ae4064
TH
1814 * This is a helper to ease setting up page-remapped first percpu
1815 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1816 *
1817 * This is the basic allocator. Static percpu area is allocated
1818 * page-by-page into vmalloc area.
1819 *
1820 * RETURNS:
fb435d52 1821 * 0 on success, -errno on failure.
d4b95f80 1822 */
fb435d52
TH
1823int __init pcpu_page_first_chunk(size_t reserved_size,
1824 pcpu_fc_alloc_fn_t alloc_fn,
1825 pcpu_fc_free_fn_t free_fn,
1826 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1827{
8f05a6a6 1828 static struct vm_struct vm;
fd1e8a1f 1829 struct pcpu_alloc_info *ai;
00ae4064 1830 char psize_str[16];
ce3141a2 1831 int unit_pages;
d4b95f80 1832 size_t pages_size;
ce3141a2 1833 struct page **pages;
fb435d52 1834 int unit, i, j, rc;
d4b95f80 1835
00ae4064
TH
1836 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1837
4ba6ce25 1838 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1839 if (IS_ERR(ai))
1840 return PTR_ERR(ai);
1841 BUG_ON(ai->nr_groups != 1);
1842 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1843
1844 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1845
1846 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1847 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1848 sizeof(pages[0]));
999c17e3 1849 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 1850
8f05a6a6 1851 /* allocate pages */
d4b95f80 1852 j = 0;
fd1e8a1f 1853 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1854 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1855 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1856 void *ptr;
1857
3cbc8565 1858 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1859 if (!ptr) {
00ae4064
TH
1860 pr_warning("PERCPU: failed to allocate %s page "
1861 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1862 goto enomem;
1863 }
f528f0b8
CM
1864 /* kmemleak tracks the percpu allocations separately */
1865 kmemleak_free(ptr);
ce3141a2 1866 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1867 }
1868
8f05a6a6
TH
1869 /* allocate vm area, map the pages and copy static data */
1870 vm.flags = VM_ALLOC;
fd1e8a1f 1871 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1872 vm_area_register_early(&vm, PAGE_SIZE);
1873
fd1e8a1f 1874 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1875 unsigned long unit_addr =
fd1e8a1f 1876 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1877
ce3141a2 1878 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1879 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1880
1881 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1882 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1883 unit_pages);
1884 if (rc < 0)
1885 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1886
8f05a6a6
TH
1887 /*
1888 * FIXME: Archs with virtual cache should flush local
1889 * cache for the linear mapping here - something
1890 * equivalent to flush_cache_vmap() on the local cpu.
1891 * flush_cache_vmap() can't be used as most supporting
1892 * data structures are not set up yet.
1893 */
1894
1895 /* copy static data */
fd1e8a1f 1896 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1897 }
1898
1899 /* we're ready, commit */
1d9d3257 1900 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1901 unit_pages, psize_str, vm.addr, ai->static_size,
1902 ai->reserved_size, ai->dyn_size);
d4b95f80 1903
fb435d52 1904 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1905 goto out_free_ar;
1906
1907enomem:
1908 while (--j >= 0)
ce3141a2 1909 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1910 rc = -ENOMEM;
d4b95f80 1911out_free_ar:
999c17e3 1912 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 1913 pcpu_free_alloc_info(ai);
fb435d52 1914 return rc;
d4b95f80 1915}
3c9a024f 1916#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1917
bbddff05 1918#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1919/*
bbddff05 1920 * Generic SMP percpu area setup.
e74e3962
TH
1921 *
1922 * The embedding helper is used because its behavior closely resembles
1923 * the original non-dynamic generic percpu area setup. This is
1924 * important because many archs have addressing restrictions and might
1925 * fail if the percpu area is located far away from the previous
1926 * location. As an added bonus, in non-NUMA cases, embedding is
1927 * generally a good idea TLB-wise because percpu area can piggy back
1928 * on the physical linear memory mapping which uses large page
1929 * mappings on applicable archs.
1930 */
e74e3962
TH
1931unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1932EXPORT_SYMBOL(__per_cpu_offset);
1933
c8826dd5
TH
1934static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1935 size_t align)
1936{
999c17e3
SS
1937 return memblock_virt_alloc_from_nopanic(
1938 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 1939}
66c3a757 1940
c8826dd5
TH
1941static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1942{
999c17e3 1943 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
1944}
1945
e74e3962
TH
1946void __init setup_per_cpu_areas(void)
1947{
e74e3962
TH
1948 unsigned long delta;
1949 unsigned int cpu;
fb435d52 1950 int rc;
e74e3962
TH
1951
1952 /*
1953 * Always reserve area for module percpu variables. That's
1954 * what the legacy allocator did.
1955 */
fb435d52 1956 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1957 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1958 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1959 if (rc < 0)
bbddff05 1960 panic("Failed to initialize percpu areas.");
e74e3962
TH
1961
1962 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1963 for_each_possible_cpu(cpu)
fb435d52 1964 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1965}
bbddff05
TH
1966#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1967
1968#else /* CONFIG_SMP */
1969
1970/*
1971 * UP percpu area setup.
1972 *
1973 * UP always uses km-based percpu allocator with identity mapping.
1974 * Static percpu variables are indistinguishable from the usual static
1975 * variables and don't require any special preparation.
1976 */
1977void __init setup_per_cpu_areas(void)
1978{
1979 const size_t unit_size =
1980 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1981 PERCPU_DYNAMIC_RESERVE));
1982 struct pcpu_alloc_info *ai;
1983 void *fc;
1984
1985 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
1986 fc = memblock_virt_alloc_from_nopanic(unit_size,
1987 PAGE_SIZE,
1988 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
1989 if (!ai || !fc)
1990 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
1991 /* kmemleak tracks the percpu allocations separately */
1992 kmemleak_free(fc);
bbddff05
TH
1993
1994 ai->dyn_size = unit_size;
1995 ai->unit_size = unit_size;
1996 ai->atom_size = unit_size;
1997 ai->alloc_size = unit_size;
1998 ai->groups[0].nr_units = 1;
1999 ai->groups[0].cpu_map[0] = 0;
2000
2001 if (pcpu_setup_first_chunk(ai, fc) < 0)
2002 panic("Failed to initialize percpu areas.");
3189eddb
HL
2003
2004 pcpu_free_alloc_info(ai);
bbddff05
TH
2005}
2006
2007#endif /* CONFIG_SMP */
099a19d9
TH
2008
2009/*
2010 * First and reserved chunks are initialized with temporary allocation
2011 * map in initdata so that they can be used before slab is online.
2012 * This function is called after slab is brought up and replaces those
2013 * with properly allocated maps.
2014 */
2015void __init percpu_init_late(void)
2016{
2017 struct pcpu_chunk *target_chunks[] =
2018 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2019 struct pcpu_chunk *chunk;
2020 unsigned long flags;
2021 int i;
2022
2023 for (i = 0; (chunk = target_chunks[i]); i++) {
2024 int *map;
2025 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2026
2027 BUILD_BUG_ON(size > PAGE_SIZE);
2028
90459ce0 2029 map = pcpu_mem_zalloc(size);
099a19d9
TH
2030 BUG_ON(!map);
2031
2032 spin_lock_irqsave(&pcpu_lock, flags);
2033 memcpy(map, chunk->map, size);
2034 chunk->map = map;
2035 spin_unlock_irqrestore(&pcpu_lock, flags);
2036 }
2037}