]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/percpu.c
percpu: implement partial chunk depopulation
[mirror_ubuntu-jammy-kernel.git] / mm / percpu.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
fbf59bc9 2/*
88999a89 3 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
5e81ee3e 8 * Copyright (C) 2017 Facebook Inc.
bfacd38f 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
5e81ee3e 10 *
9c015162
DZF
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
fbf59bc9
TH
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
9c015162
DZF
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
5e81ee3e 30 * are not online yet. In short, the first chunk is structured like so:
9c015162
DZF
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
fbf59bc9 38 *
5e81ee3e 39 * The allocator organizes chunks into lists according to free size and
3c7be18a
RG
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
44 *
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
5e81ee3e
DZF
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
52 *
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
9c015162 58 *
4091fb95 59 * To use this allocator, arch code should do the following:
fbf59bc9 60 *
fbf59bc9 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
fbf59bc9 64 *
8d408b4b
TH
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
67 */
68
870d4b12
JP
69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
fbf59bc9 71#include <linux/bitmap.h>
d7d29ac7 72#include <linux/cpumask.h>
57c8a661 73#include <linux/memblock.h>
fd1e8a1f 74#include <linux/err.h>
ca460b3c 75#include <linux/lcm.h>
fbf59bc9 76#include <linux/list.h>
a530b795 77#include <linux/log2.h>
fbf59bc9
TH
78#include <linux/mm.h>
79#include <linux/module.h>
80#include <linux/mutex.h>
81#include <linux/percpu.h>
82#include <linux/pfn.h>
fbf59bc9 83#include <linux/slab.h>
ccea34b5 84#include <linux/spinlock.h>
fbf59bc9 85#include <linux/vmalloc.h>
a56dbddf 86#include <linux/workqueue.h>
f528f0b8 87#include <linux/kmemleak.h>
71546d10 88#include <linux/sched.h>
28307d93 89#include <linux/sched/mm.h>
3c7be18a 90#include <linux/memcontrol.h>
fbf59bc9
TH
91
92#include <asm/cacheflush.h>
e0100983 93#include <asm/sections.h>
fbf59bc9 94#include <asm/tlbflush.h>
3b034b0d 95#include <asm/io.h>
fbf59bc9 96
df95e795
DZ
97#define CREATE_TRACE_POINTS
98#include <trace/events/percpu.h>
99
8fa3ed80
DZ
100#include "percpu-internal.h"
101
ac9380f6
RG
102/*
103 * The slots are sorted by the size of the biggest continuous free area.
104 * 1-31 bytes share the same slot.
105 */
40064aec 106#define PCPU_SLOT_BASE_SHIFT 5
8744d859
DZ
107/* chunks in slots below this are subject to being sidelined on failed alloc */
108#define PCPU_SLOT_FAIL_THRESHOLD 3
40064aec 109
1a4d7607
TH
110#define PCPU_EMPTY_POP_PAGES_LOW 2
111#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 112
bbddff05 113#ifdef CONFIG_SMP
e0100983
TH
114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
115#ifndef __addr_to_pcpu_ptr
116#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
117 (void __percpu *)((unsigned long)(addr) - \
118 (unsigned long)pcpu_base_addr + \
119 (unsigned long)__per_cpu_start)
e0100983
TH
120#endif
121#ifndef __pcpu_ptr_to_addr
122#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
123 (void __force *)((unsigned long)(ptr) + \
124 (unsigned long)pcpu_base_addr - \
125 (unsigned long)__per_cpu_start)
e0100983 126#endif
bbddff05
TH
127#else /* CONFIG_SMP */
128/* on UP, it's always identity mapped */
129#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
130#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
131#endif /* CONFIG_SMP */
e0100983 132
1328710b
DM
133static int pcpu_unit_pages __ro_after_init;
134static int pcpu_unit_size __ro_after_init;
135static int pcpu_nr_units __ro_after_init;
136static int pcpu_atom_size __ro_after_init;
8fa3ed80 137int pcpu_nr_slots __ro_after_init;
1c29a3ce 138int pcpu_free_slot __ro_after_init;
f1833241
RG
139int pcpu_sidelined_slot __ro_after_init;
140int pcpu_to_depopulate_slot __ro_after_init;
1328710b 141static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 142
a855b84c 143/* cpus with the lowest and highest unit addresses */
1328710b
DM
144static unsigned int pcpu_low_unit_cpu __ro_after_init;
145static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 146
fbf59bc9 147/* the address of the first chunk which starts with the kernel static area */
1328710b 148void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
149EXPORT_SYMBOL_GPL(pcpu_base_addr);
150
1328710b
DM
151static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
152const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 153
6563297c 154/* group information, used for vm allocation */
1328710b
DM
155static int pcpu_nr_groups __ro_after_init;
156static const unsigned long *pcpu_group_offsets __ro_after_init;
157static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 158
ae9e6bc9
TH
159/*
160 * The first chunk which always exists. Note that unlike other
161 * chunks, this one can be allocated and mapped in several different
162 * ways and thus often doesn't live in the vmalloc area.
163 */
8fa3ed80 164struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
165
166/*
167 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
168 * chunk and serves it for reserved allocations. When the reserved
169 * region doesn't exist, the following variable is NULL.
ae9e6bc9 170 */
8fa3ed80 171struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 172
8fa3ed80 173DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 174static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 175
3c7be18a 176struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
fbf59bc9 177
4f996e23
TH
178/* chunks which need their map areas extended, protected by pcpu_lock */
179static LIST_HEAD(pcpu_map_extend_chunks);
180
b539b87f 181/*
0760fa3d
RG
182 * The number of empty populated pages by chunk type, protected by pcpu_lock.
183 * The reserved chunk doesn't contribute to the count.
b539b87f 184 */
0760fa3d 185int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES];
b539b87f 186
7e8a6304
DZF
187/*
188 * The number of populated pages in use by the allocator, protected by
189 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
190 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
191 * and increments/decrements this count by 1).
192 */
193static unsigned long pcpu_nr_populated;
194
1a4d7607
TH
195/*
196 * Balance work is used to populate or destroy chunks asynchronously. We
197 * try to keep the number of populated free pages between
198 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
199 * empty chunk.
200 */
fe6bd8c3
TH
201static void pcpu_balance_workfn(struct work_struct *work);
202static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
203static bool pcpu_async_enabled __read_mostly;
204static bool pcpu_atomic_alloc_failed;
205
206static void pcpu_schedule_balance_work(void)
207{
208 if (pcpu_async_enabled)
209 schedule_work(&pcpu_balance_work);
210}
a56dbddf 211
c0ebfdc3 212/**
560f2c23
DZF
213 * pcpu_addr_in_chunk - check if the address is served from this chunk
214 * @chunk: chunk of interest
215 * @addr: percpu address
c0ebfdc3
DZF
216 *
217 * RETURNS:
560f2c23 218 * True if the address is served from this chunk.
c0ebfdc3 219 */
560f2c23 220static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 221{
c0ebfdc3
DZF
222 void *start_addr, *end_addr;
223
560f2c23 224 if (!chunk)
c0ebfdc3 225 return false;
020ec653 226
560f2c23
DZF
227 start_addr = chunk->base_addr + chunk->start_offset;
228 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
229 chunk->end_offset;
c0ebfdc3
DZF
230
231 return addr >= start_addr && addr < end_addr;
020ec653
TH
232}
233
d9b55eeb 234static int __pcpu_size_to_slot(int size)
fbf59bc9 235{
cae3aeb8 236 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
237 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
238}
239
d9b55eeb
TH
240static int pcpu_size_to_slot(int size)
241{
242 if (size == pcpu_unit_size)
1c29a3ce 243 return pcpu_free_slot;
d9b55eeb
TH
244 return __pcpu_size_to_slot(size);
245}
246
fbf59bc9
TH
247static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
248{
92c14cab
DZ
249 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
250
251 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
252 chunk_md->contig_hint == 0)
fbf59bc9
TH
253 return 0;
254
92c14cab 255 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
fbf59bc9
TH
256}
257
88999a89
TH
258/* set the pointer to a chunk in a page struct */
259static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
260{
261 page->index = (unsigned long)pcpu;
262}
263
264/* obtain pointer to a chunk from a page struct */
265static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
266{
267 return (struct pcpu_chunk *)page->index;
268}
269
270static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 271{
2f39e637 272 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
273}
274
c0ebfdc3
DZF
275static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
276{
277 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
278}
279
9983b6f0
TH
280static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
281 unsigned int cpu, int page_idx)
fbf59bc9 282{
c0ebfdc3
DZF
283 return (unsigned long)chunk->base_addr +
284 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
285}
286
ca460b3c
DZF
287/*
288 * The following are helper functions to help access bitmaps and convert
289 * between bitmap offsets to address offsets.
290 */
291static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292{
293 return chunk->alloc_map +
294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295}
296
297static unsigned long pcpu_off_to_block_index(int off)
298{
299 return off / PCPU_BITMAP_BLOCK_BITS;
300}
301
302static unsigned long pcpu_off_to_block_off(int off)
303{
304 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305}
306
b185cd0d
DZF
307static unsigned long pcpu_block_off_to_off(int index, int off)
308{
309 return index * PCPU_BITMAP_BLOCK_BITS + off;
310}
311
8ea2e1e3
RG
312/**
313 * pcpu_check_block_hint - check against the contig hint
314 * @block: block of interest
315 * @bits: size of allocation
316 * @align: alignment of area (max PAGE_SIZE)
317 *
318 * Check to see if the allocation can fit in the block's contig hint.
319 * Note, a chunk uses the same hints as a block so this can also check against
320 * the chunk's contig hint.
321 */
322static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
323 size_t align)
324{
325 int bit_off = ALIGN(block->contig_hint_start, align) -
326 block->contig_hint_start;
327
328 return bit_off + bits <= block->contig_hint;
329}
330
382b88e9
DZ
331/*
332 * pcpu_next_hint - determine which hint to use
333 * @block: block of interest
334 * @alloc_bits: size of allocation
335 *
336 * This determines if we should scan based on the scan_hint or first_free.
337 * In general, we want to scan from first_free to fulfill allocations by
338 * first fit. However, if we know a scan_hint at position scan_hint_start
339 * cannot fulfill an allocation, we can begin scanning from there knowing
340 * the contig_hint will be our fallback.
341 */
342static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
343{
344 /*
345 * The three conditions below determine if we can skip past the
346 * scan_hint. First, does the scan hint exist. Second, is the
347 * contig_hint after the scan_hint (possibly not true iff
348 * contig_hint == scan_hint). Third, is the allocation request
349 * larger than the scan_hint.
350 */
351 if (block->scan_hint &&
352 block->contig_hint_start > block->scan_hint_start &&
353 alloc_bits > block->scan_hint)
354 return block->scan_hint_start + block->scan_hint;
355
356 return block->first_free;
357}
358
525ca84d
DZF
359/**
360 * pcpu_next_md_free_region - finds the next hint free area
361 * @chunk: chunk of interest
362 * @bit_off: chunk offset
363 * @bits: size of free area
364 *
365 * Helper function for pcpu_for_each_md_free_region. It checks
366 * block->contig_hint and performs aggregation across blocks to find the
367 * next hint. It modifies bit_off and bits in-place to be consumed in the
368 * loop.
369 */
370static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
371 int *bits)
372{
373 int i = pcpu_off_to_block_index(*bit_off);
374 int block_off = pcpu_off_to_block_off(*bit_off);
375 struct pcpu_block_md *block;
376
377 *bits = 0;
378 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
379 block++, i++) {
380 /* handles contig area across blocks */
381 if (*bits) {
382 *bits += block->left_free;
383 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
384 continue;
385 return;
386 }
387
388 /*
389 * This checks three things. First is there a contig_hint to
390 * check. Second, have we checked this hint before by
391 * comparing the block_off. Third, is this the same as the
392 * right contig hint. In the last case, it spills over into
393 * the next block and should be handled by the contig area
394 * across blocks code.
395 */
396 *bits = block->contig_hint;
397 if (*bits && block->contig_hint_start >= block_off &&
398 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
399 *bit_off = pcpu_block_off_to_off(i,
400 block->contig_hint_start);
401 return;
402 }
1fa4df3e
DZ
403 /* reset to satisfy the second predicate above */
404 block_off = 0;
525ca84d
DZF
405
406 *bits = block->right_free;
407 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
408 }
409}
410
b4c2116c
DZF
411/**
412 * pcpu_next_fit_region - finds fit areas for a given allocation request
413 * @chunk: chunk of interest
414 * @alloc_bits: size of allocation
415 * @align: alignment of area (max PAGE_SIZE)
416 * @bit_off: chunk offset
417 * @bits: size of free area
418 *
419 * Finds the next free region that is viable for use with a given size and
420 * alignment. This only returns if there is a valid area to be used for this
421 * allocation. block->first_free is returned if the allocation request fits
422 * within the block to see if the request can be fulfilled prior to the contig
423 * hint.
424 */
425static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
426 int align, int *bit_off, int *bits)
427{
428 int i = pcpu_off_to_block_index(*bit_off);
429 int block_off = pcpu_off_to_block_off(*bit_off);
430 struct pcpu_block_md *block;
431
432 *bits = 0;
433 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
434 block++, i++) {
435 /* handles contig area across blocks */
436 if (*bits) {
437 *bits += block->left_free;
438 if (*bits >= alloc_bits)
439 return;
440 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
441 continue;
442 }
443
444 /* check block->contig_hint */
445 *bits = ALIGN(block->contig_hint_start, align) -
446 block->contig_hint_start;
447 /*
448 * This uses the block offset to determine if this has been
449 * checked in the prior iteration.
450 */
451 if (block->contig_hint &&
452 block->contig_hint_start >= block_off &&
453 block->contig_hint >= *bits + alloc_bits) {
382b88e9
DZ
454 int start = pcpu_next_hint(block, alloc_bits);
455
b4c2116c 456 *bits += alloc_bits + block->contig_hint_start -
382b88e9
DZ
457 start;
458 *bit_off = pcpu_block_off_to_off(i, start);
b4c2116c
DZF
459 return;
460 }
1fa4df3e
DZ
461 /* reset to satisfy the second predicate above */
462 block_off = 0;
b4c2116c
DZF
463
464 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
465 align);
466 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
467 *bit_off = pcpu_block_off_to_off(i, *bit_off);
468 if (*bits >= alloc_bits)
469 return;
470 }
471
472 /* no valid offsets were found - fail condition */
473 *bit_off = pcpu_chunk_map_bits(chunk);
474}
475
525ca84d
DZF
476/*
477 * Metadata free area iterators. These perform aggregation of free areas
478 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
479 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
480 * a fit is found for the allocation request.
525ca84d
DZF
481 */
482#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
483 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
484 (bit_off) < pcpu_chunk_map_bits((chunk)); \
485 (bit_off) += (bits) + 1, \
486 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
487
b4c2116c
DZF
488#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
489 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
490 &(bits)); \
491 (bit_off) < pcpu_chunk_map_bits((chunk)); \
492 (bit_off) += (bits), \
493 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
494 &(bits)))
495
fbf59bc9 496/**
90459ce0 497 * pcpu_mem_zalloc - allocate memory
1880d93b 498 * @size: bytes to allocate
47504ee0 499 * @gfp: allocation flags
fbf59bc9 500 *
1880d93b 501 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
47504ee0
DZ
502 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
503 * This is to facilitate passing through whitelisted flags. The
504 * returned memory is always zeroed.
fbf59bc9
TH
505 *
506 * RETURNS:
1880d93b 507 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 508 */
47504ee0 509static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
fbf59bc9 510{
099a19d9
TH
511 if (WARN_ON_ONCE(!slab_is_available()))
512 return NULL;
513
1880d93b 514 if (size <= PAGE_SIZE)
554fef1c 515 return kzalloc(size, gfp);
7af4c093 516 else
88dca4ca 517 return __vmalloc(size, gfp | __GFP_ZERO);
1880d93b 518}
fbf59bc9 519
1880d93b
TH
520/**
521 * pcpu_mem_free - free memory
522 * @ptr: memory to free
1880d93b 523 *
90459ce0 524 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 525 */
1d5cfdb0 526static void pcpu_mem_free(void *ptr)
1880d93b 527{
1d5cfdb0 528 kvfree(ptr);
fbf59bc9
TH
529}
530
8744d859
DZ
531static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
532 bool move_front)
533{
534 if (chunk != pcpu_reserved_chunk) {
3c7be18a
RG
535 struct list_head *pcpu_slot;
536
537 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
8744d859
DZ
538 if (move_front)
539 list_move(&chunk->list, &pcpu_slot[slot]);
540 else
541 list_move_tail(&chunk->list, &pcpu_slot[slot]);
542 }
543}
544
545static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
546{
547 __pcpu_chunk_move(chunk, slot, true);
548}
549
fbf59bc9
TH
550/**
551 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
552 * @chunk: chunk of interest
553 * @oslot: the previous slot it was on
554 *
555 * This function is called after an allocation or free changed @chunk.
556 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
557 * moved to the slot. Note that the reserved chunk is never put on
558 * chunk slots.
ccea34b5
TH
559 *
560 * CONTEXT:
561 * pcpu_lock.
fbf59bc9
TH
562 */
563static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
564{
565 int nslot = pcpu_chunk_slot(chunk);
566
f1833241
RG
567 /* leave isolated chunks in-place */
568 if (chunk->isolated)
569 return;
570
8744d859
DZ
571 if (oslot != nslot)
572 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
833af842
TH
573}
574
f1833241
RG
575static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
576{
577 enum pcpu_chunk_type type = pcpu_chunk_type(chunk);
578 struct list_head *pcpu_slot = pcpu_chunk_list(type);
579
580 lockdep_assert_held(&pcpu_lock);
581
582 if (!chunk->isolated) {
583 chunk->isolated = true;
584 pcpu_nr_empty_pop_pages[type] -= chunk->nr_empty_pop_pages;
585 }
586 list_move(&chunk->list, &pcpu_slot[pcpu_to_depopulate_slot]);
587}
588
589static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
590{
591 enum pcpu_chunk_type type = pcpu_chunk_type(chunk);
592
593 lockdep_assert_held(&pcpu_lock);
594
595 if (chunk->isolated) {
596 chunk->isolated = false;
597 pcpu_nr_empty_pop_pages[type] += chunk->nr_empty_pop_pages;
598 pcpu_chunk_relocate(chunk, -1);
599 }
600}
601
b239f7da
DZ
602/*
603 * pcpu_update_empty_pages - update empty page counters
833af842 604 * @chunk: chunk of interest
b239f7da 605 * @nr: nr of empty pages
833af842 606 *
b239f7da
DZ
607 * This is used to keep track of the empty pages now based on the premise
608 * a md_block covers a page. The hint update functions recognize if a block
609 * is made full or broken to calculate deltas for keeping track of free pages.
40064aec 610 */
b239f7da 611static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
40064aec 612{
b239f7da 613 chunk->nr_empty_pop_pages += nr;
f1833241 614 if (chunk != pcpu_reserved_chunk && !chunk->isolated)
0760fa3d 615 pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr;
40064aec
DZF
616}
617
d9f3a01e
DZ
618/*
619 * pcpu_region_overlap - determines if two regions overlap
620 * @a: start of first region, inclusive
621 * @b: end of first region, exclusive
622 * @x: start of second region, inclusive
623 * @y: end of second region, exclusive
833af842 624 *
d9f3a01e
DZ
625 * This is used to determine if the hint region [a, b) overlaps with the
626 * allocated region [x, y).
833af842 627 */
d9f3a01e 628static inline bool pcpu_region_overlap(int a, int b, int x, int y)
833af842 629{
d9f3a01e 630 return (a < y) && (x < b);
40064aec 631}
9f7dcf22 632
ca460b3c
DZF
633/**
634 * pcpu_block_update - updates a block given a free area
635 * @block: block of interest
636 * @start: start offset in block
637 * @end: end offset in block
638 *
639 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
640 * expected to be the entirety of the free area within a block. Chooses
641 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
642 */
643static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
644{
645 int contig = end - start;
646
647 block->first_free = min(block->first_free, start);
648 if (start == 0)
649 block->left_free = contig;
650
047924c9 651 if (end == block->nr_bits)
ca460b3c
DZF
652 block->right_free = contig;
653
654 if (contig > block->contig_hint) {
382b88e9
DZ
655 /* promote the old contig_hint to be the new scan_hint */
656 if (start > block->contig_hint_start) {
657 if (block->contig_hint > block->scan_hint) {
658 block->scan_hint_start =
659 block->contig_hint_start;
660 block->scan_hint = block->contig_hint;
661 } else if (start < block->scan_hint_start) {
662 /*
663 * The old contig_hint == scan_hint. But, the
664 * new contig is larger so hold the invariant
665 * scan_hint_start < contig_hint_start.
666 */
667 block->scan_hint = 0;
668 }
669 } else {
670 block->scan_hint = 0;
671 }
ca460b3c
DZF
672 block->contig_hint_start = start;
673 block->contig_hint = contig;
382b88e9
DZ
674 } else if (contig == block->contig_hint) {
675 if (block->contig_hint_start &&
676 (!start ||
677 __ffs(start) > __ffs(block->contig_hint_start))) {
678 /* start has a better alignment so use it */
679 block->contig_hint_start = start;
680 if (start < block->scan_hint_start &&
681 block->contig_hint > block->scan_hint)
682 block->scan_hint = 0;
683 } else if (start > block->scan_hint_start ||
684 block->contig_hint > block->scan_hint) {
685 /*
686 * Knowing contig == contig_hint, update the scan_hint
687 * if it is farther than or larger than the current
688 * scan_hint.
689 */
690 block->scan_hint_start = start;
691 block->scan_hint = contig;
692 }
693 } else {
694 /*
695 * The region is smaller than the contig_hint. So only update
696 * the scan_hint if it is larger than or equal and farther than
697 * the current scan_hint.
698 */
699 if ((start < block->contig_hint_start &&
700 (contig > block->scan_hint ||
701 (contig == block->scan_hint &&
702 start > block->scan_hint_start)))) {
703 block->scan_hint_start = start;
704 block->scan_hint = contig;
705 }
ca460b3c
DZF
706 }
707}
708
b89462a9
DZ
709/*
710 * pcpu_block_update_scan - update a block given a free area from a scan
711 * @chunk: chunk of interest
712 * @bit_off: chunk offset
713 * @bits: size of free area
714 *
715 * Finding the final allocation spot first goes through pcpu_find_block_fit()
716 * to find a block that can hold the allocation and then pcpu_alloc_area()
717 * where a scan is used. When allocations require specific alignments,
718 * we can inadvertently create holes which will not be seen in the alloc
719 * or free paths.
720 *
721 * This takes a given free area hole and updates a block as it may change the
722 * scan_hint. We need to scan backwards to ensure we don't miss free bits
723 * from alignment.
724 */
725static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
726 int bits)
727{
728 int s_off = pcpu_off_to_block_off(bit_off);
729 int e_off = s_off + bits;
730 int s_index, l_bit;
731 struct pcpu_block_md *block;
732
733 if (e_off > PCPU_BITMAP_BLOCK_BITS)
734 return;
735
736 s_index = pcpu_off_to_block_index(bit_off);
737 block = chunk->md_blocks + s_index;
738
739 /* scan backwards in case of alignment skipping free bits */
740 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
741 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
742
743 pcpu_block_update(block, s_off, e_off);
744}
745
92c14cab
DZ
746/**
747 * pcpu_chunk_refresh_hint - updates metadata about a chunk
748 * @chunk: chunk of interest
d33d9f3d 749 * @full_scan: if we should scan from the beginning
92c14cab
DZ
750 *
751 * Iterates over the metadata blocks to find the largest contig area.
d33d9f3d
DZ
752 * A full scan can be avoided on the allocation path as this is triggered
753 * if we broke the contig_hint. In doing so, the scan_hint will be before
754 * the contig_hint or after if the scan_hint == contig_hint. This cannot
755 * be prevented on freeing as we want to find the largest area possibly
756 * spanning blocks.
92c14cab 757 */
d33d9f3d 758static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
92c14cab
DZ
759{
760 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
761 int bit_off, bits;
762
d33d9f3d
DZ
763 /* promote scan_hint to contig_hint */
764 if (!full_scan && chunk_md->scan_hint) {
765 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
766 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
767 chunk_md->contig_hint = chunk_md->scan_hint;
768 chunk_md->scan_hint = 0;
769 } else {
770 bit_off = chunk_md->first_free;
771 chunk_md->contig_hint = 0;
772 }
92c14cab 773
92c14cab 774 bits = 0;
e837dfde 775 pcpu_for_each_md_free_region(chunk, bit_off, bits)
92c14cab 776 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
ca460b3c
DZF
777}
778
779/**
780 * pcpu_block_refresh_hint
781 * @chunk: chunk of interest
782 * @index: index of the metadata block
783 *
784 * Scans over the block beginning at first_free and updates the block
785 * metadata accordingly.
786 */
787static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
788{
789 struct pcpu_block_md *block = chunk->md_blocks + index;
790 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
e837dfde 791 unsigned int rs, re, start; /* region start, region end */
da3afdd5
DZ
792
793 /* promote scan_hint to contig_hint */
794 if (block->scan_hint) {
795 start = block->scan_hint_start + block->scan_hint;
796 block->contig_hint_start = block->scan_hint_start;
797 block->contig_hint = block->scan_hint;
798 block->scan_hint = 0;
799 } else {
800 start = block->first_free;
801 block->contig_hint = 0;
802 }
ca460b3c 803
da3afdd5 804 block->right_free = 0;
ca460b3c
DZF
805
806 /* iterate over free areas and update the contig hints */
e837dfde
DZ
807 bitmap_for_each_clear_region(alloc_map, rs, re, start,
808 PCPU_BITMAP_BLOCK_BITS)
ca460b3c 809 pcpu_block_update(block, rs, re);
ca460b3c
DZF
810}
811
812/**
813 * pcpu_block_update_hint_alloc - update hint on allocation path
814 * @chunk: chunk of interest
815 * @bit_off: chunk offset
816 * @bits: size of request
fc304334
DZF
817 *
818 * Updates metadata for the allocation path. The metadata only has to be
819 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
820 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
821 */
822static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
823 int bits)
824{
92c14cab 825 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
b239f7da 826 int nr_empty_pages = 0;
ca460b3c
DZF
827 struct pcpu_block_md *s_block, *e_block, *block;
828 int s_index, e_index; /* block indexes of the freed allocation */
829 int s_off, e_off; /* block offsets of the freed allocation */
830
831 /*
832 * Calculate per block offsets.
833 * The calculation uses an inclusive range, but the resulting offsets
834 * are [start, end). e_index always points to the last block in the
835 * range.
836 */
837 s_index = pcpu_off_to_block_index(bit_off);
838 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
839 s_off = pcpu_off_to_block_off(bit_off);
840 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
841
842 s_block = chunk->md_blocks + s_index;
843 e_block = chunk->md_blocks + e_index;
844
845 /*
846 * Update s_block.
fc304334
DZF
847 * block->first_free must be updated if the allocation takes its place.
848 * If the allocation breaks the contig_hint, a scan is required to
849 * restore this hint.
ca460b3c 850 */
b239f7da
DZ
851 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
852 nr_empty_pages++;
853
fc304334
DZF
854 if (s_off == s_block->first_free)
855 s_block->first_free = find_next_zero_bit(
856 pcpu_index_alloc_map(chunk, s_index),
857 PCPU_BITMAP_BLOCK_BITS,
858 s_off + bits);
859
382b88e9
DZ
860 if (pcpu_region_overlap(s_block->scan_hint_start,
861 s_block->scan_hint_start + s_block->scan_hint,
862 s_off,
863 s_off + bits))
864 s_block->scan_hint = 0;
865
d9f3a01e
DZ
866 if (pcpu_region_overlap(s_block->contig_hint_start,
867 s_block->contig_hint_start +
868 s_block->contig_hint,
869 s_off,
870 s_off + bits)) {
fc304334 871 /* block contig hint is broken - scan to fix it */
da3afdd5
DZ
872 if (!s_off)
873 s_block->left_free = 0;
fc304334
DZF
874 pcpu_block_refresh_hint(chunk, s_index);
875 } else {
876 /* update left and right contig manually */
877 s_block->left_free = min(s_block->left_free, s_off);
878 if (s_index == e_index)
879 s_block->right_free = min_t(int, s_block->right_free,
880 PCPU_BITMAP_BLOCK_BITS - e_off);
881 else
882 s_block->right_free = 0;
883 }
ca460b3c
DZF
884
885 /*
886 * Update e_block.
887 */
888 if (s_index != e_index) {
b239f7da
DZ
889 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
890 nr_empty_pages++;
891
fc304334
DZF
892 /*
893 * When the allocation is across blocks, the end is along
894 * the left part of the e_block.
895 */
896 e_block->first_free = find_next_zero_bit(
897 pcpu_index_alloc_map(chunk, e_index),
898 PCPU_BITMAP_BLOCK_BITS, e_off);
899
900 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
901 /* reset the block */
902 e_block++;
903 } else {
382b88e9
DZ
904 if (e_off > e_block->scan_hint_start)
905 e_block->scan_hint = 0;
906
da3afdd5 907 e_block->left_free = 0;
fc304334
DZF
908 if (e_off > e_block->contig_hint_start) {
909 /* contig hint is broken - scan to fix it */
910 pcpu_block_refresh_hint(chunk, e_index);
911 } else {
fc304334
DZF
912 e_block->right_free =
913 min_t(int, e_block->right_free,
914 PCPU_BITMAP_BLOCK_BITS - e_off);
915 }
916 }
ca460b3c
DZF
917
918 /* update in-between md_blocks */
b239f7da 919 nr_empty_pages += (e_index - s_index - 1);
ca460b3c 920 for (block = s_block + 1; block < e_block; block++) {
382b88e9 921 block->scan_hint = 0;
ca460b3c
DZF
922 block->contig_hint = 0;
923 block->left_free = 0;
924 block->right_free = 0;
925 }
926 }
927
b239f7da
DZ
928 if (nr_empty_pages)
929 pcpu_update_empty_pages(chunk, -nr_empty_pages);
930
d33d9f3d
DZ
931 if (pcpu_region_overlap(chunk_md->scan_hint_start,
932 chunk_md->scan_hint_start +
933 chunk_md->scan_hint,
934 bit_off,
935 bit_off + bits))
936 chunk_md->scan_hint = 0;
937
fc304334
DZF
938 /*
939 * The only time a full chunk scan is required is if the chunk
940 * contig hint is broken. Otherwise, it means a smaller space
941 * was used and therefore the chunk contig hint is still correct.
942 */
92c14cab
DZ
943 if (pcpu_region_overlap(chunk_md->contig_hint_start,
944 chunk_md->contig_hint_start +
945 chunk_md->contig_hint,
d9f3a01e
DZ
946 bit_off,
947 bit_off + bits))
d33d9f3d 948 pcpu_chunk_refresh_hint(chunk, false);
ca460b3c
DZF
949}
950
951/**
952 * pcpu_block_update_hint_free - updates the block hints on the free path
953 * @chunk: chunk of interest
954 * @bit_off: chunk offset
955 * @bits: size of request
b185cd0d
DZF
956 *
957 * Updates metadata for the allocation path. This avoids a blind block
958 * refresh by making use of the block contig hints. If this fails, it scans
959 * forward and backward to determine the extent of the free area. This is
960 * capped at the boundary of blocks.
961 *
962 * A chunk update is triggered if a page becomes free, a block becomes free,
963 * or the free spans across blocks. This tradeoff is to minimize iterating
92c14cab
DZ
964 * over the block metadata to update chunk_md->contig_hint.
965 * chunk_md->contig_hint may be off by up to a page, but it will never be more
966 * than the available space. If the contig hint is contained in one block, it
967 * will be accurate.
ca460b3c
DZF
968 */
969static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
970 int bits)
971{
b239f7da 972 int nr_empty_pages = 0;
ca460b3c
DZF
973 struct pcpu_block_md *s_block, *e_block, *block;
974 int s_index, e_index; /* block indexes of the freed allocation */
975 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 976 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
977
978 /*
979 * Calculate per block offsets.
980 * The calculation uses an inclusive range, but the resulting offsets
981 * are [start, end). e_index always points to the last block in the
982 * range.
983 */
984 s_index = pcpu_off_to_block_index(bit_off);
985 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
986 s_off = pcpu_off_to_block_off(bit_off);
987 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
988
989 s_block = chunk->md_blocks + s_index;
990 e_block = chunk->md_blocks + e_index;
991
b185cd0d
DZF
992 /*
993 * Check if the freed area aligns with the block->contig_hint.
994 * If it does, then the scan to find the beginning/end of the
995 * larger free area can be avoided.
996 *
997 * start and end refer to beginning and end of the free area
998 * within each their respective blocks. This is not necessarily
999 * the entire free area as it may span blocks past the beginning
1000 * or end of the block.
1001 */
1002 start = s_off;
1003 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
1004 start = s_block->contig_hint_start;
1005 } else {
1006 /*
1007 * Scan backwards to find the extent of the free area.
1008 * find_last_bit returns the starting bit, so if the start bit
1009 * is returned, that means there was no last bit and the
1010 * remainder of the chunk is free.
1011 */
1012 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1013 start);
1014 start = (start == l_bit) ? 0 : l_bit + 1;
1015 }
1016
1017 end = e_off;
1018 if (e_off == e_block->contig_hint_start)
1019 end = e_block->contig_hint_start + e_block->contig_hint;
1020 else
1021 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1022 PCPU_BITMAP_BLOCK_BITS, end);
1023
ca460b3c 1024 /* update s_block */
b185cd0d 1025 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
b239f7da
DZ
1026 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1027 nr_empty_pages++;
b185cd0d 1028 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
1029
1030 /* freeing in the same block */
1031 if (s_index != e_index) {
1032 /* update e_block */
b239f7da
DZ
1033 if (end == PCPU_BITMAP_BLOCK_BITS)
1034 nr_empty_pages++;
b185cd0d 1035 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
1036
1037 /* reset md_blocks in the middle */
b239f7da 1038 nr_empty_pages += (e_index - s_index - 1);
ca460b3c
DZF
1039 for (block = s_block + 1; block < e_block; block++) {
1040 block->first_free = 0;
382b88e9 1041 block->scan_hint = 0;
ca460b3c
DZF
1042 block->contig_hint_start = 0;
1043 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1044 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1045 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1046 }
1047 }
1048
b239f7da
DZ
1049 if (nr_empty_pages)
1050 pcpu_update_empty_pages(chunk, nr_empty_pages);
1051
b185cd0d 1052 /*
b239f7da
DZ
1053 * Refresh chunk metadata when the free makes a block free or spans
1054 * across blocks. The contig_hint may be off by up to a page, but if
1055 * the contig_hint is contained in a block, it will be accurate with
1056 * the else condition below.
b185cd0d 1057 */
b239f7da 1058 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
d33d9f3d 1059 pcpu_chunk_refresh_hint(chunk, true);
b185cd0d 1060 else
92c14cab
DZ
1061 pcpu_block_update(&chunk->chunk_md,
1062 pcpu_block_off_to_off(s_index, start),
1063 end);
ca460b3c
DZF
1064}
1065
40064aec
DZF
1066/**
1067 * pcpu_is_populated - determines if the region is populated
1068 * @chunk: chunk of interest
1069 * @bit_off: chunk offset
1070 * @bits: size of area
1071 * @next_off: return value for the next offset to start searching
1072 *
1073 * For atomic allocations, check if the backing pages are populated.
1074 *
1075 * RETURNS:
1076 * Bool if the backing pages are populated.
1077 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1078 */
1079static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1080 int *next_off)
1081{
e837dfde 1082 unsigned int page_start, page_end, rs, re;
833af842 1083
40064aec
DZF
1084 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1085 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 1086
40064aec 1087 rs = page_start;
e837dfde 1088 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
40064aec
DZF
1089 if (rs >= page_end)
1090 return true;
833af842 1091
40064aec
DZF
1092 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1093 return false;
9f7dcf22
TH
1094}
1095
a16037c8 1096/**
40064aec
DZF
1097 * pcpu_find_block_fit - finds the block index to start searching
1098 * @chunk: chunk of interest
1099 * @alloc_bits: size of request in allocation units
1100 * @align: alignment of area (max PAGE_SIZE bytes)
1101 * @pop_only: use populated regions only
1102 *
b4c2116c
DZF
1103 * Given a chunk and an allocation spec, find the offset to begin searching
1104 * for a free region. This iterates over the bitmap metadata blocks to
1105 * find an offset that will be guaranteed to fit the requirements. It is
1106 * not quite first fit as if the allocation does not fit in the contig hint
1107 * of a block or chunk, it is skipped. This errs on the side of caution
1108 * to prevent excess iteration. Poor alignment can cause the allocator to
1109 * skip over blocks and chunks that have valid free areas.
1110 *
40064aec
DZF
1111 * RETURNS:
1112 * The offset in the bitmap to begin searching.
1113 * -1 if no offset is found.
a16037c8 1114 */
40064aec
DZF
1115static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1116 size_t align, bool pop_only)
a16037c8 1117{
92c14cab 1118 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
b4c2116c 1119 int bit_off, bits, next_off;
a16037c8 1120
13f96637 1121 /*
8ea2e1e3
RG
1122 * This is an optimization to prevent scanning by assuming if the
1123 * allocation cannot fit in the global hint, there is memory pressure
1124 * and creating a new chunk would happen soon.
13f96637 1125 */
8ea2e1e3 1126 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
13f96637
DZF
1127 return -1;
1128
d33d9f3d 1129 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
b4c2116c
DZF
1130 bits = 0;
1131 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 1132 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 1133 &next_off))
40064aec 1134 break;
a16037c8 1135
b4c2116c 1136 bit_off = next_off;
40064aec 1137 bits = 0;
a16037c8 1138 }
40064aec
DZF
1139
1140 if (bit_off == pcpu_chunk_map_bits(chunk))
1141 return -1;
1142
1143 return bit_off;
a16037c8
TH
1144}
1145
b89462a9
DZ
1146/*
1147 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1148 * @map: the address to base the search on
1149 * @size: the bitmap size in bits
1150 * @start: the bitnumber to start searching at
1151 * @nr: the number of zeroed bits we're looking for
1152 * @align_mask: alignment mask for zero area
1153 * @largest_off: offset of the largest area skipped
1154 * @largest_bits: size of the largest area skipped
1155 *
1156 * The @align_mask should be one less than a power of 2.
1157 *
1158 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1159 * the largest area that was skipped. This is imperfect, but in general is
1160 * good enough. The largest remembered region is the largest failed region
1161 * seen. This does not include anything we possibly skipped due to alignment.
1162 * pcpu_block_update_scan() does scan backwards to try and recover what was
1163 * lost to alignment. While this can cause scanning to miss earlier possible
1164 * free areas, smaller allocations will eventually fill those holes.
1165 */
1166static unsigned long pcpu_find_zero_area(unsigned long *map,
1167 unsigned long size,
1168 unsigned long start,
1169 unsigned long nr,
1170 unsigned long align_mask,
1171 unsigned long *largest_off,
1172 unsigned long *largest_bits)
1173{
1174 unsigned long index, end, i, area_off, area_bits;
1175again:
1176 index = find_next_zero_bit(map, size, start);
1177
1178 /* Align allocation */
1179 index = __ALIGN_MASK(index, align_mask);
1180 area_off = index;
1181
1182 end = index + nr;
1183 if (end > size)
1184 return end;
1185 i = find_next_bit(map, end, index);
1186 if (i < end) {
1187 area_bits = i - area_off;
1188 /* remember largest unused area with best alignment */
1189 if (area_bits > *largest_bits ||
1190 (area_bits == *largest_bits && *largest_off &&
1191 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1192 *largest_off = area_off;
1193 *largest_bits = area_bits;
1194 }
1195
1196 start = i + 1;
1197 goto again;
1198 }
1199 return index;
1200}
1201
fbf59bc9 1202/**
40064aec 1203 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 1204 * @chunk: chunk of interest
40064aec
DZF
1205 * @alloc_bits: size of request in allocation units
1206 * @align: alignment of area (max PAGE_SIZE)
1207 * @start: bit_off to start searching
9f7dcf22 1208 *
40064aec 1209 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
1210 * allocation of @alloc_bits with alignment @align. It needs to scan
1211 * the allocation map because if it fits within the block's contig hint,
1212 * @start will be block->first_free. This is an attempt to fill the
1213 * allocation prior to breaking the contig hint. The allocation and
1214 * boundary maps are updated accordingly if it confirms a valid
1215 * free area.
ccea34b5 1216 *
fbf59bc9 1217 * RETURNS:
40064aec
DZF
1218 * Allocated addr offset in @chunk on success.
1219 * -1 if no matching area is found.
fbf59bc9 1220 */
40064aec
DZF
1221static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1222 size_t align, int start)
fbf59bc9 1223{
92c14cab 1224 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
40064aec 1225 size_t align_mask = (align) ? (align - 1) : 0;
b89462a9 1226 unsigned long area_off = 0, area_bits = 0;
40064aec 1227 int bit_off, end, oslot;
a16037c8 1228
40064aec 1229 lockdep_assert_held(&pcpu_lock);
fbf59bc9 1230
40064aec 1231 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1232
40064aec
DZF
1233 /*
1234 * Search to find a fit.
1235 */
8c43004a
DZ
1236 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1237 pcpu_chunk_map_bits(chunk));
b89462a9
DZ
1238 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1239 align_mask, &area_off, &area_bits);
40064aec
DZF
1240 if (bit_off >= end)
1241 return -1;
fbf59bc9 1242
b89462a9
DZ
1243 if (area_bits)
1244 pcpu_block_update_scan(chunk, area_off, area_bits);
1245
40064aec
DZF
1246 /* update alloc map */
1247 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 1248
40064aec
DZF
1249 /* update boundary map */
1250 set_bit(bit_off, chunk->bound_map);
1251 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1252 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 1253
40064aec 1254 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 1255
86b442fb 1256 /* update first free bit */
92c14cab
DZ
1257 if (bit_off == chunk_md->first_free)
1258 chunk_md->first_free = find_next_zero_bit(
86b442fb
DZF
1259 chunk->alloc_map,
1260 pcpu_chunk_map_bits(chunk),
1261 bit_off + alloc_bits);
1262
ca460b3c 1263 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 1264
fbf59bc9
TH
1265 pcpu_chunk_relocate(chunk, oslot);
1266
40064aec 1267 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1268}
1269
1270/**
40064aec 1271 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1272 * @chunk: chunk of interest
40064aec 1273 * @off: addr offset into chunk
ccea34b5 1274 *
40064aec
DZF
1275 * This function determines the size of an allocation to free using
1276 * the boundary bitmap and clears the allocation map.
5b32af91
RG
1277 *
1278 * RETURNS:
1279 * Number of freed bytes.
fbf59bc9 1280 */
5b32af91 1281static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1282{
92c14cab 1283 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
5b32af91 1284 int bit_off, bits, end, oslot, freed;
723ad1d9 1285
5ccd30e4 1286 lockdep_assert_held(&pcpu_lock);
30a5b536 1287 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1288
40064aec 1289 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1290
40064aec 1291 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1292
40064aec
DZF
1293 /* find end index */
1294 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1295 bit_off + 1);
1296 bits = end - bit_off;
1297 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1298
5b32af91
RG
1299 freed = bits * PCPU_MIN_ALLOC_SIZE;
1300
40064aec 1301 /* update metadata */
5b32af91 1302 chunk->free_bytes += freed;
b539b87f 1303
86b442fb 1304 /* update first free bit */
92c14cab 1305 chunk_md->first_free = min(chunk_md->first_free, bit_off);
86b442fb 1306
ca460b3c 1307 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1308
fbf59bc9 1309 pcpu_chunk_relocate(chunk, oslot);
5b32af91
RG
1310
1311 return freed;
fbf59bc9
TH
1312}
1313
047924c9
DZ
1314static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1315{
1316 block->scan_hint = 0;
1317 block->contig_hint = nr_bits;
1318 block->left_free = nr_bits;
1319 block->right_free = nr_bits;
1320 block->first_free = 0;
1321 block->nr_bits = nr_bits;
1322}
1323
ca460b3c
DZF
1324static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1325{
1326 struct pcpu_block_md *md_block;
1327
92c14cab
DZ
1328 /* init the chunk's block */
1329 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1330
ca460b3c
DZF
1331 for (md_block = chunk->md_blocks;
1332 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
047924c9
DZ
1333 md_block++)
1334 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
ca460b3c
DZF
1335}
1336
40064aec
DZF
1337/**
1338 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1339 * @tmp_addr: the start of the region served
1340 * @map_size: size of the region served
1341 *
1342 * This is responsible for creating the chunks that serve the first chunk. The
1343 * base_addr is page aligned down of @tmp_addr while the region end is page
1344 * aligned up. Offsets are kept track of to determine the region served. All
1345 * this is done to appease the bitmap allocator in avoiding partial blocks.
1346 *
1347 * RETURNS:
1348 * Chunk serving the region at @tmp_addr of @map_size.
1349 */
c0ebfdc3 1350static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1351 int map_size)
10edf5b0
DZF
1352{
1353 struct pcpu_chunk *chunk;
ca460b3c 1354 unsigned long aligned_addr, lcm_align;
40064aec 1355 int start_offset, offset_bits, region_size, region_bits;
f655f405 1356 size_t alloc_size;
c0ebfdc3
DZF
1357
1358 /* region calculations */
1359 aligned_addr = tmp_addr & PAGE_MASK;
1360
1361 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1362
ca460b3c
DZF
1363 /*
1364 * Align the end of the region with the LCM of PAGE_SIZE and
1365 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1366 * the other.
1367 */
1368 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1369 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1370
c0ebfdc3 1371 /* allocate chunk */
61cf93d3
DZ
1372 alloc_size = struct_size(chunk, populated,
1373 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
f655f405
MR
1374 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1375 if (!chunk)
1376 panic("%s: Failed to allocate %zu bytes\n", __func__,
1377 alloc_size);
c0ebfdc3 1378
10edf5b0 1379 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1380
1381 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1382 chunk->start_offset = start_offset;
6b9d7c8e 1383 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1384
8ab16c43 1385 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1386 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1387
f655f405
MR
1388 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1389 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1390 if (!chunk->alloc_map)
1391 panic("%s: Failed to allocate %zu bytes\n", __func__,
1392 alloc_size);
1393
1394 alloc_size =
1395 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1396 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1397 if (!chunk->bound_map)
1398 panic("%s: Failed to allocate %zu bytes\n", __func__,
1399 alloc_size);
1400
1401 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1402 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1403 if (!chunk->md_blocks)
1404 panic("%s: Failed to allocate %zu bytes\n", __func__,
1405 alloc_size);
1406
3c7be18a
RG
1407#ifdef CONFIG_MEMCG_KMEM
1408 /* first chunk isn't memcg-aware */
1409 chunk->obj_cgroups = NULL;
1410#endif
ca460b3c 1411 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1412
1413 /* manage populated page bitmap */
1414 chunk->immutable = true;
8ab16c43
DZF
1415 bitmap_fill(chunk->populated, chunk->nr_pages);
1416 chunk->nr_populated = chunk->nr_pages;
b239f7da 1417 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0 1418
40064aec 1419 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1420
1421 if (chunk->start_offset) {
1422 /* hide the beginning of the bitmap */
40064aec
DZF
1423 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1424 bitmap_set(chunk->alloc_map, 0, offset_bits);
1425 set_bit(0, chunk->bound_map);
1426 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1427
92c14cab 1428 chunk->chunk_md.first_free = offset_bits;
86b442fb 1429
ca460b3c 1430 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1431 }
1432
6b9d7c8e
DZF
1433 if (chunk->end_offset) {
1434 /* hide the end of the bitmap */
40064aec
DZF
1435 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1436 bitmap_set(chunk->alloc_map,
1437 pcpu_chunk_map_bits(chunk) - offset_bits,
1438 offset_bits);
1439 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1440 chunk->bound_map);
1441 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1442
ca460b3c
DZF
1443 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1444 - offset_bits, offset_bits);
1445 }
40064aec 1446
10edf5b0
DZF
1447 return chunk;
1448}
1449
3c7be18a 1450static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
6081089f
TH
1451{
1452 struct pcpu_chunk *chunk;
40064aec 1453 int region_bits;
6081089f 1454
47504ee0 1455 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
6081089f
TH
1456 if (!chunk)
1457 return NULL;
1458
40064aec
DZF
1459 INIT_LIST_HEAD(&chunk->list);
1460 chunk->nr_pages = pcpu_unit_pages;
1461 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1462
40064aec 1463 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
47504ee0 1464 sizeof(chunk->alloc_map[0]), gfp);
40064aec
DZF
1465 if (!chunk->alloc_map)
1466 goto alloc_map_fail;
6081089f 1467
40064aec 1468 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
47504ee0 1469 sizeof(chunk->bound_map[0]), gfp);
40064aec
DZF
1470 if (!chunk->bound_map)
1471 goto bound_map_fail;
6081089f 1472
ca460b3c 1473 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
47504ee0 1474 sizeof(chunk->md_blocks[0]), gfp);
ca460b3c
DZF
1475 if (!chunk->md_blocks)
1476 goto md_blocks_fail;
1477
3c7be18a
RG
1478#ifdef CONFIG_MEMCG_KMEM
1479 if (pcpu_is_memcg_chunk(type)) {
1480 chunk->obj_cgroups =
1481 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1482 sizeof(struct obj_cgroup *), gfp);
1483 if (!chunk->obj_cgroups)
1484 goto objcg_fail;
1485 }
1486#endif
1487
ca460b3c
DZF
1488 pcpu_init_md_blocks(chunk);
1489
40064aec 1490 /* init metadata */
40064aec 1491 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1492
6081089f 1493 return chunk;
40064aec 1494
3c7be18a
RG
1495#ifdef CONFIG_MEMCG_KMEM
1496objcg_fail:
1497 pcpu_mem_free(chunk->md_blocks);
1498#endif
ca460b3c
DZF
1499md_blocks_fail:
1500 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1501bound_map_fail:
1502 pcpu_mem_free(chunk->alloc_map);
1503alloc_map_fail:
1504 pcpu_mem_free(chunk);
1505
1506 return NULL;
6081089f
TH
1507}
1508
1509static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1510{
1511 if (!chunk)
1512 return;
3c7be18a
RG
1513#ifdef CONFIG_MEMCG_KMEM
1514 pcpu_mem_free(chunk->obj_cgroups);
1515#endif
6685b357 1516 pcpu_mem_free(chunk->md_blocks);
40064aec
DZF
1517 pcpu_mem_free(chunk->bound_map);
1518 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1519 pcpu_mem_free(chunk);
6081089f
TH
1520}
1521
b539b87f
TH
1522/**
1523 * pcpu_chunk_populated - post-population bookkeeping
1524 * @chunk: pcpu_chunk which got populated
1525 * @page_start: the start page
1526 * @page_end: the end page
1527 *
1528 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1529 * the bookkeeping information accordingly. Must be called after each
1530 * successful population.
40064aec
DZF
1531 *
1532 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1533 * is to serve an allocation in that area.
b539b87f 1534 */
40064aec 1535static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
b239f7da 1536 int page_end)
b539b87f
TH
1537{
1538 int nr = page_end - page_start;
1539
1540 lockdep_assert_held(&pcpu_lock);
1541
1542 bitmap_set(chunk->populated, page_start, nr);
1543 chunk->nr_populated += nr;
7e8a6304 1544 pcpu_nr_populated += nr;
40064aec 1545
b239f7da 1546 pcpu_update_empty_pages(chunk, nr);
b539b87f
TH
1547}
1548
1549/**
1550 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1551 * @chunk: pcpu_chunk which got depopulated
1552 * @page_start: the start page
1553 * @page_end: the end page
1554 *
1555 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1556 * Update the bookkeeping information accordingly. Must be called after
1557 * each successful depopulation.
1558 */
1559static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1560 int page_start, int page_end)
1561{
1562 int nr = page_end - page_start;
1563
1564 lockdep_assert_held(&pcpu_lock);
1565
1566 bitmap_clear(chunk->populated, page_start, nr);
1567 chunk->nr_populated -= nr;
7e8a6304 1568 pcpu_nr_populated -= nr;
b239f7da
DZ
1569
1570 pcpu_update_empty_pages(chunk, -nr);
b539b87f
TH
1571}
1572
9f645532
TH
1573/*
1574 * Chunk management implementation.
1575 *
1576 * To allow different implementations, chunk alloc/free and
1577 * [de]population are implemented in a separate file which is pulled
1578 * into this file and compiled together. The following functions
1579 * should be implemented.
1580 *
1581 * pcpu_populate_chunk - populate the specified range of a chunk
1582 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1583 * pcpu_create_chunk - create a new chunk
1584 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1585 * pcpu_addr_to_page - translate address to physical address
1586 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1587 */
15d9f3d1 1588static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
47504ee0 1589 int page_start, int page_end, gfp_t gfp);
15d9f3d1
DZ
1590static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1591 int page_start, int page_end);
3c7be18a
RG
1592static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
1593 gfp_t gfp);
9f645532
TH
1594static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1595static struct page *pcpu_addr_to_page(void *addr);
1596static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1597
b0c9778b
TH
1598#ifdef CONFIG_NEED_PER_CPU_KM
1599#include "percpu-km.c"
1600#else
9f645532 1601#include "percpu-vm.c"
b0c9778b 1602#endif
fbf59bc9 1603
88999a89
TH
1604/**
1605 * pcpu_chunk_addr_search - determine chunk containing specified address
1606 * @addr: address for which the chunk needs to be determined.
1607 *
c0ebfdc3
DZF
1608 * This is an internal function that handles all but static allocations.
1609 * Static percpu address values should never be passed into the allocator.
1610 *
88999a89
TH
1611 * RETURNS:
1612 * The address of the found chunk.
1613 */
1614static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1615{
c0ebfdc3 1616 /* is it in the dynamic region (first chunk)? */
560f2c23 1617 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1618 return pcpu_first_chunk;
c0ebfdc3
DZF
1619
1620 /* is it in the reserved region? */
560f2c23 1621 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1622 return pcpu_reserved_chunk;
88999a89
TH
1623
1624 /*
1625 * The address is relative to unit0 which might be unused and
1626 * thus unmapped. Offset the address to the unit space of the
1627 * current processor before looking it up in the vmalloc
1628 * space. Note that any possible cpu id can be used here, so
1629 * there's no need to worry about preemption or cpu hotplug.
1630 */
1631 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1632 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1633}
1634
3c7be18a
RG
1635#ifdef CONFIG_MEMCG_KMEM
1636static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1637 struct obj_cgroup **objcgp)
1638{
1639 struct obj_cgroup *objcg;
1640
279c3393 1641 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
3c7be18a
RG
1642 return PCPU_CHUNK_ROOT;
1643
1644 objcg = get_obj_cgroup_from_current();
1645 if (!objcg)
1646 return PCPU_CHUNK_ROOT;
1647
1648 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1649 obj_cgroup_put(objcg);
1650 return PCPU_FAIL_ALLOC;
1651 }
1652
1653 *objcgp = objcg;
1654 return PCPU_CHUNK_MEMCG;
1655}
1656
1657static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1658 struct pcpu_chunk *chunk, int off,
1659 size_t size)
1660{
1661 if (!objcg)
1662 return;
1663
1664 if (chunk) {
1665 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
772616b0
RG
1666
1667 rcu_read_lock();
1668 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1669 size * num_possible_cpus());
1670 rcu_read_unlock();
3c7be18a
RG
1671 } else {
1672 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1673 obj_cgroup_put(objcg);
1674 }
1675}
1676
1677static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1678{
1679 struct obj_cgroup *objcg;
1680
1681 if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
1682 return;
1683
1684 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1685 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1686
1687 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1688
772616b0
RG
1689 rcu_read_lock();
1690 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1691 -(size * num_possible_cpus()));
1692 rcu_read_unlock();
1693
3c7be18a
RG
1694 obj_cgroup_put(objcg);
1695}
1696
1697#else /* CONFIG_MEMCG_KMEM */
1698static enum pcpu_chunk_type
1699pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1700{
1701 return PCPU_CHUNK_ROOT;
1702}
1703
1704static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1705 struct pcpu_chunk *chunk, int off,
1706 size_t size)
1707{
1708}
1709
1710static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1711{
1712}
1713#endif /* CONFIG_MEMCG_KMEM */
1714
fbf59bc9 1715/**
edcb4639 1716 * pcpu_alloc - the percpu allocator
cae3aeb8 1717 * @size: size of area to allocate in bytes
fbf59bc9 1718 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1719 * @reserved: allocate from the reserved chunk if available
5835d96e 1720 * @gfp: allocation flags
fbf59bc9 1721 *
5835d96e 1722 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
0ea7eeec
DB
1723 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1724 * then no warning will be triggered on invalid or failed allocation
1725 * requests.
fbf59bc9
TH
1726 *
1727 * RETURNS:
1728 * Percpu pointer to the allocated area on success, NULL on failure.
1729 */
5835d96e
TH
1730static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1731 gfp_t gfp)
fbf59bc9 1732{
28307d93
FM
1733 gfp_t pcpu_gfp;
1734 bool is_atomic;
1735 bool do_warn;
3c7be18a
RG
1736 enum pcpu_chunk_type type;
1737 struct list_head *pcpu_slot;
1738 struct obj_cgroup *objcg = NULL;
f2badb0c 1739 static int warn_limit = 10;
8744d859 1740 struct pcpu_chunk *chunk, *next;
f2badb0c 1741 const char *err;
40064aec 1742 int slot, off, cpu, ret;
403a91b1 1743 unsigned long flags;
f528f0b8 1744 void __percpu *ptr;
40064aec 1745 size_t bits, bit_align;
fbf59bc9 1746
28307d93
FM
1747 gfp = current_gfp_context(gfp);
1748 /* whitelisted flags that can be passed to the backing allocators */
1749 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1750 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1751 do_warn = !(gfp & __GFP_NOWARN);
1752
723ad1d9 1753 /*
40064aec
DZF
1754 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1755 * therefore alignment must be a minimum of that many bytes.
1756 * An allocation may have internal fragmentation from rounding up
1757 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1758 */
d2f3c384
DZF
1759 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1760 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1761
d2f3c384 1762 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1763 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1764 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1765
3ca45a46 1766 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1767 !is_power_of_2(align))) {
0ea7eeec 1768 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
756a025f 1769 size, align);
fbf59bc9
TH
1770 return NULL;
1771 }
1772
3c7be18a
RG
1773 type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
1774 if (unlikely(type == PCPU_FAIL_ALLOC))
1775 return NULL;
1776 pcpu_slot = pcpu_chunk_list(type);
1777
f52ba1fe
KT
1778 if (!is_atomic) {
1779 /*
1780 * pcpu_balance_workfn() allocates memory under this mutex,
1781 * and it may wait for memory reclaim. Allow current task
1782 * to become OOM victim, in case of memory pressure.
1783 */
3c7be18a 1784 if (gfp & __GFP_NOFAIL) {
f52ba1fe 1785 mutex_lock(&pcpu_alloc_mutex);
3c7be18a
RG
1786 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1787 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
f52ba1fe 1788 return NULL;
3c7be18a 1789 }
f52ba1fe 1790 }
6710e594 1791
403a91b1 1792 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1793
edcb4639
TH
1794 /* serve reserved allocations from the reserved chunk if available */
1795 if (reserved && pcpu_reserved_chunk) {
1796 chunk = pcpu_reserved_chunk;
833af842 1797
40064aec
DZF
1798 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1799 if (off < 0) {
833af842 1800 err = "alloc from reserved chunk failed";
ccea34b5 1801 goto fail_unlock;
f2badb0c 1802 }
833af842 1803
40064aec 1804 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1805 if (off >= 0)
1806 goto area_found;
833af842 1807
f2badb0c 1808 err = "alloc from reserved chunk failed";
ccea34b5 1809 goto fail_unlock;
edcb4639
TH
1810 }
1811
ccea34b5 1812restart:
edcb4639 1813 /* search through normal chunks */
f1833241 1814 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
8744d859 1815 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
40064aec
DZF
1816 off = pcpu_find_block_fit(chunk, bits, bit_align,
1817 is_atomic);
8744d859
DZ
1818 if (off < 0) {
1819 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1820 pcpu_chunk_move(chunk, 0);
fbf59bc9 1821 continue;
8744d859 1822 }
ccea34b5 1823
40064aec 1824 off = pcpu_alloc_area(chunk, bits, bit_align, off);
f1833241
RG
1825 if (off >= 0) {
1826 pcpu_reintegrate_chunk(chunk);
fbf59bc9 1827 goto area_found;
f1833241 1828 }
fbf59bc9
TH
1829 }
1830 }
1831
403a91b1 1832 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1833
b38d08f3
TH
1834 /*
1835 * No space left. Create a new chunk. We don't want multiple
1836 * tasks to create chunks simultaneously. Serialize and create iff
1837 * there's still no empty chunk after grabbing the mutex.
1838 */
11df02bf
DZ
1839 if (is_atomic) {
1840 err = "atomic alloc failed, no space left";
5835d96e 1841 goto fail;
11df02bf 1842 }
5835d96e 1843
1c29a3ce 1844 if (list_empty(&pcpu_slot[pcpu_free_slot])) {
3c7be18a 1845 chunk = pcpu_create_chunk(type, pcpu_gfp);
b38d08f3
TH
1846 if (!chunk) {
1847 err = "failed to allocate new chunk";
1848 goto fail;
1849 }
1850
1851 spin_lock_irqsave(&pcpu_lock, flags);
1852 pcpu_chunk_relocate(chunk, -1);
1853 } else {
1854 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1855 }
ccea34b5 1856
ccea34b5 1857 goto restart;
fbf59bc9
TH
1858
1859area_found:
30a5b536 1860 pcpu_stats_area_alloc(chunk, size);
403a91b1 1861 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1862
dca49645 1863 /* populate if not all pages are already there */
5835d96e 1864 if (!is_atomic) {
e837dfde 1865 unsigned int page_start, page_end, rs, re;
dca49645 1866
e04d3208
TH
1867 page_start = PFN_DOWN(off);
1868 page_end = PFN_UP(off + size);
b38d08f3 1869
e837dfde
DZ
1870 bitmap_for_each_clear_region(chunk->populated, rs, re,
1871 page_start, page_end) {
e04d3208
TH
1872 WARN_ON(chunk->immutable);
1873
554fef1c 1874 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
e04d3208
TH
1875
1876 spin_lock_irqsave(&pcpu_lock, flags);
1877 if (ret) {
40064aec 1878 pcpu_free_area(chunk, off);
e04d3208
TH
1879 err = "failed to populate";
1880 goto fail_unlock;
1881 }
b239f7da 1882 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1883 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1884 }
fbf59bc9 1885
e04d3208
TH
1886 mutex_unlock(&pcpu_alloc_mutex);
1887 }
ccea34b5 1888
0760fa3d 1889 if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW)
1a4d7607
TH
1890 pcpu_schedule_balance_work();
1891
dca49645
TH
1892 /* clear the areas and return address relative to base address */
1893 for_each_possible_cpu(cpu)
1894 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1895
f528f0b8 1896 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1897 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1898
1899 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1900 chunk->base_addr, off, ptr);
1901
3c7be18a
RG
1902 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1903
f528f0b8 1904 return ptr;
ccea34b5
TH
1905
1906fail_unlock:
403a91b1 1907 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1908fail:
df95e795
DZ
1909 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1910
0ea7eeec 1911 if (!is_atomic && do_warn && warn_limit) {
870d4b12 1912 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1913 size, align, is_atomic, err);
f2badb0c
TH
1914 dump_stack();
1915 if (!--warn_limit)
870d4b12 1916 pr_info("limit reached, disable warning\n");
f2badb0c 1917 }
1a4d7607
TH
1918 if (is_atomic) {
1919 /* see the flag handling in pcpu_blance_workfn() */
1920 pcpu_atomic_alloc_failed = true;
1921 pcpu_schedule_balance_work();
6710e594
TH
1922 } else {
1923 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1924 }
3c7be18a
RG
1925
1926 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1927
ccea34b5 1928 return NULL;
fbf59bc9 1929}
edcb4639
TH
1930
1931/**
5835d96e 1932 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1933 * @size: size of area to allocate in bytes
1934 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1935 * @gfp: allocation flags
edcb4639 1936 *
5835d96e
TH
1937 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1938 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
0ea7eeec
DB
1939 * be called from any context but is a lot more likely to fail. If @gfp
1940 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1941 * allocation requests.
ccea34b5 1942 *
edcb4639
TH
1943 * RETURNS:
1944 * Percpu pointer to the allocated area on success, NULL on failure.
1945 */
5835d96e
TH
1946void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1947{
1948 return pcpu_alloc(size, align, false, gfp);
1949}
1950EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1951
1952/**
1953 * __alloc_percpu - allocate dynamic percpu area
1954 * @size: size of area to allocate in bytes
1955 * @align: alignment of area (max PAGE_SIZE)
1956 *
1957 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1958 */
43cf38eb 1959void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1960{
5835d96e 1961 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1962}
fbf59bc9
TH
1963EXPORT_SYMBOL_GPL(__alloc_percpu);
1964
edcb4639
TH
1965/**
1966 * __alloc_reserved_percpu - allocate reserved percpu area
1967 * @size: size of area to allocate in bytes
1968 * @align: alignment of area (max PAGE_SIZE)
1969 *
9329ba97
TH
1970 * Allocate zero-filled percpu area of @size bytes aligned at @align
1971 * from reserved percpu area if arch has set it up; otherwise,
1972 * allocation is served from the same dynamic area. Might sleep.
1973 * Might trigger writeouts.
edcb4639 1974 *
ccea34b5
TH
1975 * CONTEXT:
1976 * Does GFP_KERNEL allocation.
1977 *
edcb4639
TH
1978 * RETURNS:
1979 * Percpu pointer to the allocated area on success, NULL on failure.
1980 */
43cf38eb 1981void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1982{
5835d96e 1983 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1984}
1985
a56dbddf 1986/**
67c2669d 1987 * pcpu_balance_free - manage the amount of free chunks
3c7be18a 1988 * @type: chunk type
f1833241 1989 * @empty_only: free chunks only if there are no populated pages
a56dbddf 1990 *
f1833241
RG
1991 * If empty_only is %false, reclaim all fully free chunks regardless of the
1992 * number of populated pages. Otherwise, only reclaim chunks that have no
1993 * populated pages.
a56dbddf 1994 */
f1833241 1995static void pcpu_balance_free(enum pcpu_chunk_type type, bool empty_only)
fbf59bc9 1996{
fe6bd8c3 1997 LIST_HEAD(to_free);
3c7be18a 1998 struct list_head *pcpu_slot = pcpu_chunk_list(type);
1c29a3ce 1999 struct list_head *free_head = &pcpu_slot[pcpu_free_slot];
a56dbddf
TH
2000 struct pcpu_chunk *chunk, *next;
2001
1a4d7607
TH
2002 /*
2003 * There's no reason to keep around multiple unused chunks and VM
2004 * areas can be scarce. Destroy all free chunks except for one.
2005 */
ccea34b5 2006 spin_lock_irq(&pcpu_lock);
a56dbddf 2007
fe6bd8c3 2008 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
2009 WARN_ON(chunk->immutable);
2010
2011 /* spare the first one */
fe6bd8c3 2012 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
2013 continue;
2014
f1833241
RG
2015 if (!empty_only || chunk->nr_empty_pop_pages == 0)
2016 list_move(&chunk->list, &to_free);
a56dbddf
TH
2017 }
2018
ccea34b5 2019 spin_unlock_irq(&pcpu_lock);
a56dbddf 2020
fe6bd8c3 2021 list_for_each_entry_safe(chunk, next, &to_free, list) {
e837dfde 2022 unsigned int rs, re;
dca49645 2023
e837dfde
DZ
2024 bitmap_for_each_set_region(chunk->populated, rs, re, 0,
2025 chunk->nr_pages) {
a93ace48 2026 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
2027 spin_lock_irq(&pcpu_lock);
2028 pcpu_chunk_depopulated(chunk, rs, re);
2029 spin_unlock_irq(&pcpu_lock);
a93ace48 2030 }
6081089f 2031 pcpu_destroy_chunk(chunk);
accd4f36 2032 cond_resched();
a56dbddf 2033 }
67c2669d
RG
2034}
2035
2036/**
2037 * pcpu_balance_populated - manage the amount of populated pages
2038 * @type: chunk type
2039 *
2040 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2041 * It is possible that this is called when physical memory is scarce causing
2042 * OOM killer to be triggered. We should avoid doing so until an actual
2043 * allocation causes the failure as it is possible that requests can be
2044 * serviced from already backed regions.
2045 */
2046static void pcpu_balance_populated(enum pcpu_chunk_type type)
2047{
2048 /* gfp flags passed to underlying allocators */
2049 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2050 struct list_head *pcpu_slot = pcpu_chunk_list(type);
2051 struct pcpu_chunk *chunk;
2052 int slot, nr_to_pop, ret;
971f3918 2053
1a4d7607
TH
2054 /*
2055 * Ensure there are certain number of free populated pages for
2056 * atomic allocs. Fill up from the most packed so that atomic
2057 * allocs don't increase fragmentation. If atomic allocation
2058 * failed previously, always populate the maximum amount. This
2059 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2060 * failing indefinitely; however, large atomic allocs are not
2061 * something we support properly and can be highly unreliable and
2062 * inefficient.
2063 */
2064retry_pop:
2065 if (pcpu_atomic_alloc_failed) {
2066 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2067 /* best effort anyway, don't worry about synchronization */
2068 pcpu_atomic_alloc_failed = false;
2069 } else {
2070 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
0760fa3d 2071 pcpu_nr_empty_pop_pages[type],
1a4d7607
TH
2072 0, PCPU_EMPTY_POP_PAGES_HIGH);
2073 }
2074
1c29a3ce 2075 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
e837dfde 2076 unsigned int nr_unpop = 0, rs, re;
1a4d7607
TH
2077
2078 if (!nr_to_pop)
2079 break;
2080
2081 spin_lock_irq(&pcpu_lock);
2082 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 2083 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
2084 if (nr_unpop)
2085 break;
2086 }
2087 spin_unlock_irq(&pcpu_lock);
2088
2089 if (!nr_unpop)
2090 continue;
2091
2092 /* @chunk can't go away while pcpu_alloc_mutex is held */
e837dfde
DZ
2093 bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2094 chunk->nr_pages) {
2095 int nr = min_t(int, re - rs, nr_to_pop);
1a4d7607 2096
47504ee0 2097 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1a4d7607
TH
2098 if (!ret) {
2099 nr_to_pop -= nr;
2100 spin_lock_irq(&pcpu_lock);
b239f7da 2101 pcpu_chunk_populated(chunk, rs, rs + nr);
1a4d7607
TH
2102 spin_unlock_irq(&pcpu_lock);
2103 } else {
2104 nr_to_pop = 0;
2105 }
2106
2107 if (!nr_to_pop)
2108 break;
2109 }
2110 }
2111
2112 if (nr_to_pop) {
2113 /* ran out of chunks to populate, create a new one and retry */
3c7be18a 2114 chunk = pcpu_create_chunk(type, gfp);
1a4d7607
TH
2115 if (chunk) {
2116 spin_lock_irq(&pcpu_lock);
2117 pcpu_chunk_relocate(chunk, -1);
2118 spin_unlock_irq(&pcpu_lock);
2119 goto retry_pop;
2120 }
2121 }
fbf59bc9
TH
2122}
2123
f1833241
RG
2124/**
2125 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2126 * @type: chunk type
2127 *
2128 * Scan over chunks in the depopulate list and try to release unused populated
2129 * pages back to the system. Depopulated chunks are sidelined to prevent
2130 * repopulating these pages unless required. Fully free chunks are reintegrated
2131 * and freed accordingly (1 is kept around). If we drop below the empty
2132 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2133 * Each chunk is scanned in the reverse order to keep populated pages close to
2134 * the beginning of the chunk.
2135 */
2136static void pcpu_reclaim_populated(enum pcpu_chunk_type type)
2137{
2138 struct list_head *pcpu_slot = pcpu_chunk_list(type);
2139 struct pcpu_chunk *chunk;
2140 struct pcpu_block_md *block;
2141 int i, end;
2142
2143 spin_lock_irq(&pcpu_lock);
2144
2145restart:
2146 /*
2147 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2148 * longer discoverable to allocations whom may populate pages. The only
2149 * other accessor is the free path which only returns area back to the
2150 * allocator not touching the populated bitmap.
2151 */
2152 while (!list_empty(&pcpu_slot[pcpu_to_depopulate_slot])) {
2153 chunk = list_first_entry(&pcpu_slot[pcpu_to_depopulate_slot],
2154 struct pcpu_chunk, list);
2155 WARN_ON(chunk->immutable);
2156
2157 /*
2158 * Scan chunk's pages in the reverse order to keep populated
2159 * pages close to the beginning of the chunk.
2160 */
2161 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2162 /* no more work to do */
2163 if (chunk->nr_empty_pop_pages == 0)
2164 break;
2165
2166 /* reintegrate chunk to prevent atomic alloc failures */
2167 if (pcpu_nr_empty_pop_pages[type] <
2168 PCPU_EMPTY_POP_PAGES_HIGH) {
2169 pcpu_reintegrate_chunk(chunk);
2170 goto restart;
2171 }
2172
2173 /*
2174 * If the page is empty and populated, start or
2175 * extend the (i, end) range. If i == 0, decrease
2176 * i and perform the depopulation to cover the last
2177 * (first) page in the chunk.
2178 */
2179 block = chunk->md_blocks + i;
2180 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2181 test_bit(i, chunk->populated)) {
2182 if (end == -1)
2183 end = i;
2184 if (i > 0)
2185 continue;
2186 i--;
2187 }
2188
2189 /* depopulate if there is an active range */
2190 if (end == -1)
2191 continue;
2192
2193 spin_unlock_irq(&pcpu_lock);
2194 pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2195 cond_resched();
2196 spin_lock_irq(&pcpu_lock);
2197
2198 pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2199
2200 /* reset the range and continue */
2201 end = -1;
2202 }
2203
2204 if (chunk->free_bytes == pcpu_unit_size)
2205 pcpu_reintegrate_chunk(chunk);
2206 else
2207 list_move(&chunk->list,
2208 &pcpu_slot[pcpu_sidelined_slot]);
2209 }
2210
2211 spin_unlock_irq(&pcpu_lock);
2212}
2213
3c7be18a
RG
2214/**
2215 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2216 * @work: unused
2217 *
f1833241
RG
2218 * For each chunk type, manage the number of fully free chunks and the number of
2219 * populated pages. An important thing to consider is when pages are freed and
2220 * how they contribute to the global counts.
3c7be18a
RG
2221 */
2222static void pcpu_balance_workfn(struct work_struct *work)
2223{
2224 enum pcpu_chunk_type type;
2225
f1833241
RG
2226 /*
2227 * pcpu_balance_free() is called twice because the first time we may
2228 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2229 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2230 * to move fully free chunks to the active list to be freed if
2231 * appropriate.
2232 */
67c2669d
RG
2233 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) {
2234 mutex_lock(&pcpu_alloc_mutex);
f1833241
RG
2235 pcpu_balance_free(type, false);
2236 pcpu_reclaim_populated(type);
67c2669d 2237 pcpu_balance_populated(type);
f1833241 2238 pcpu_balance_free(type, true);
67c2669d
RG
2239 mutex_unlock(&pcpu_alloc_mutex);
2240 }
3c7be18a
RG
2241}
2242
fbf59bc9
TH
2243/**
2244 * free_percpu - free percpu area
2245 * @ptr: pointer to area to free
2246 *
ccea34b5
TH
2247 * Free percpu area @ptr.
2248 *
2249 * CONTEXT:
2250 * Can be called from atomic context.
fbf59bc9 2251 */
43cf38eb 2252void free_percpu(void __percpu *ptr)
fbf59bc9 2253{
129182e5 2254 void *addr;
fbf59bc9 2255 struct pcpu_chunk *chunk;
ccea34b5 2256 unsigned long flags;
3c7be18a 2257 int size, off;
198790d9 2258 bool need_balance = false;
3c7be18a 2259 struct list_head *pcpu_slot;
fbf59bc9
TH
2260
2261 if (!ptr)
2262 return;
2263
f528f0b8
CM
2264 kmemleak_free_percpu(ptr);
2265
129182e5
AM
2266 addr = __pcpu_ptr_to_addr(ptr);
2267
ccea34b5 2268 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
2269
2270 chunk = pcpu_chunk_addr_search(addr);
bba174f5 2271 off = addr - chunk->base_addr;
fbf59bc9 2272
3c7be18a
RG
2273 size = pcpu_free_area(chunk, off);
2274
2275 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
2276
2277 pcpu_memcg_free_hook(chunk, off, size);
fbf59bc9 2278
f1833241
RG
2279 /*
2280 * If there are more than one fully free chunks, wake up grim reaper.
2281 * If the chunk is isolated, it may be in the process of being
2282 * reclaimed. Let reclaim manage cleaning up of that chunk.
2283 */
2284 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
2285 struct pcpu_chunk *pos;
2286
1c29a3ce 2287 list_for_each_entry(pos, &pcpu_slot[pcpu_free_slot], list)
fbf59bc9 2288 if (pos != chunk) {
198790d9 2289 need_balance = true;
fbf59bc9
TH
2290 break;
2291 }
f1833241
RG
2292 } else if (pcpu_should_reclaim_chunk(chunk)) {
2293 pcpu_isolate_chunk(chunk);
2294 need_balance = true;
fbf59bc9
TH
2295 }
2296
df95e795
DZ
2297 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2298
ccea34b5 2299 spin_unlock_irqrestore(&pcpu_lock, flags);
198790d9
JS
2300
2301 if (need_balance)
2302 pcpu_schedule_balance_work();
fbf59bc9
TH
2303}
2304EXPORT_SYMBOL_GPL(free_percpu);
2305
383776fa 2306bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 2307{
bbddff05 2308#ifdef CONFIG_SMP
10fad5e4
TH
2309 const size_t static_size = __per_cpu_end - __per_cpu_start;
2310 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2311 unsigned int cpu;
2312
2313 for_each_possible_cpu(cpu) {
2314 void *start = per_cpu_ptr(base, cpu);
383776fa 2315 void *va = (void *)addr;
10fad5e4 2316
383776fa 2317 if (va >= start && va < start + static_size) {
8ce371f9 2318 if (can_addr) {
383776fa 2319 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
2320 *can_addr += (unsigned long)
2321 per_cpu_ptr(base, get_boot_cpu_id());
2322 }
10fad5e4 2323 return true;
383776fa
TG
2324 }
2325 }
bbddff05
TH
2326#endif
2327 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
2328 return false;
2329}
2330
383776fa
TG
2331/**
2332 * is_kernel_percpu_address - test whether address is from static percpu area
2333 * @addr: address to test
2334 *
2335 * Test whether @addr belongs to in-kernel static percpu area. Module
2336 * static percpu areas are not considered. For those, use
2337 * is_module_percpu_address().
2338 *
2339 * RETURNS:
2340 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2341 */
2342bool is_kernel_percpu_address(unsigned long addr)
2343{
2344 return __is_kernel_percpu_address(addr, NULL);
2345}
2346
3b034b0d
VG
2347/**
2348 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2349 * @addr: the address to be converted to physical address
2350 *
2351 * Given @addr which is dereferenceable address obtained via one of
2352 * percpu access macros, this function translates it into its physical
2353 * address. The caller is responsible for ensuring @addr stays valid
2354 * until this function finishes.
2355 *
67589c71
DY
2356 * percpu allocator has special setup for the first chunk, which currently
2357 * supports either embedding in linear address space or vmalloc mapping,
2358 * and, from the second one, the backing allocator (currently either vm or
2359 * km) provides translation.
2360 *
bffc4375 2361 * The addr can be translated simply without checking if it falls into the
67589c71
DY
2362 * first chunk. But the current code reflects better how percpu allocator
2363 * actually works, and the verification can discover both bugs in percpu
2364 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2365 * code.
2366 *
3b034b0d
VG
2367 * RETURNS:
2368 * The physical address for @addr.
2369 */
2370phys_addr_t per_cpu_ptr_to_phys(void *addr)
2371{
9983b6f0
TH
2372 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2373 bool in_first_chunk = false;
a855b84c 2374 unsigned long first_low, first_high;
9983b6f0
TH
2375 unsigned int cpu;
2376
2377 /*
a855b84c 2378 * The following test on unit_low/high isn't strictly
9983b6f0
TH
2379 * necessary but will speed up lookups of addresses which
2380 * aren't in the first chunk.
c0ebfdc3
DZF
2381 *
2382 * The address check is against full chunk sizes. pcpu_base_addr
2383 * points to the beginning of the first chunk including the
2384 * static region. Assumes good intent as the first chunk may
2385 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 2386 */
c0ebfdc3
DZF
2387 first_low = (unsigned long)pcpu_base_addr +
2388 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2389 first_high = (unsigned long)pcpu_base_addr +
2390 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
2391 if ((unsigned long)addr >= first_low &&
2392 (unsigned long)addr < first_high) {
9983b6f0
TH
2393 for_each_possible_cpu(cpu) {
2394 void *start = per_cpu_ptr(base, cpu);
2395
2396 if (addr >= start && addr < start + pcpu_unit_size) {
2397 in_first_chunk = true;
2398 break;
2399 }
2400 }
2401 }
2402
2403 if (in_first_chunk) {
eac522ef 2404 if (!is_vmalloc_addr(addr))
020ec653
TH
2405 return __pa(addr);
2406 else
9f57bd4d
ES
2407 return page_to_phys(vmalloc_to_page(addr)) +
2408 offset_in_page(addr);
020ec653 2409 } else
9f57bd4d
ES
2410 return page_to_phys(pcpu_addr_to_page(addr)) +
2411 offset_in_page(addr);
3b034b0d
VG
2412}
2413
fbf59bc9 2414/**
fd1e8a1f
TH
2415 * pcpu_alloc_alloc_info - allocate percpu allocation info
2416 * @nr_groups: the number of groups
2417 * @nr_units: the number of units
2418 *
2419 * Allocate ai which is large enough for @nr_groups groups containing
2420 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2421 * cpu_map array which is long enough for @nr_units and filled with
2422 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2423 * pointer of other groups.
2424 *
2425 * RETURNS:
2426 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2427 * failure.
2428 */
2429struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2430 int nr_units)
2431{
2432 struct pcpu_alloc_info *ai;
2433 size_t base_size, ai_size;
2434 void *ptr;
2435 int unit;
2436
14d37612 2437 base_size = ALIGN(struct_size(ai, groups, nr_groups),
fd1e8a1f
TH
2438 __alignof__(ai->groups[0].cpu_map[0]));
2439 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2440
26fb3dae 2441 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
fd1e8a1f
TH
2442 if (!ptr)
2443 return NULL;
2444 ai = ptr;
2445 ptr += base_size;
2446
2447 ai->groups[0].cpu_map = ptr;
2448
2449 for (unit = 0; unit < nr_units; unit++)
2450 ai->groups[0].cpu_map[unit] = NR_CPUS;
2451
2452 ai->nr_groups = nr_groups;
2453 ai->__ai_size = PFN_ALIGN(ai_size);
2454
2455 return ai;
2456}
2457
2458/**
2459 * pcpu_free_alloc_info - free percpu allocation info
2460 * @ai: pcpu_alloc_info to free
2461 *
2462 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2463 */
2464void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2465{
999c17e3 2466 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
2467}
2468
fd1e8a1f
TH
2469/**
2470 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2471 * @lvl: loglevel
2472 * @ai: allocation info to dump
2473 *
2474 * Print out information about @ai using loglevel @lvl.
2475 */
2476static void pcpu_dump_alloc_info(const char *lvl,
2477 const struct pcpu_alloc_info *ai)
033e48fb 2478{
fd1e8a1f 2479 int group_width = 1, cpu_width = 1, width;
033e48fb 2480 char empty_str[] = "--------";
fd1e8a1f
TH
2481 int alloc = 0, alloc_end = 0;
2482 int group, v;
2483 int upa, apl; /* units per alloc, allocs per line */
2484
2485 v = ai->nr_groups;
2486 while (v /= 10)
2487 group_width++;
033e48fb 2488
fd1e8a1f 2489 v = num_possible_cpus();
033e48fb 2490 while (v /= 10)
fd1e8a1f
TH
2491 cpu_width++;
2492 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 2493
fd1e8a1f
TH
2494 upa = ai->alloc_size / ai->unit_size;
2495 width = upa * (cpu_width + 1) + group_width + 3;
2496 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 2497
fd1e8a1f
TH
2498 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2499 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2500 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 2501
fd1e8a1f
TH
2502 for (group = 0; group < ai->nr_groups; group++) {
2503 const struct pcpu_group_info *gi = &ai->groups[group];
2504 int unit = 0, unit_end = 0;
2505
2506 BUG_ON(gi->nr_units % upa);
2507 for (alloc_end += gi->nr_units / upa;
2508 alloc < alloc_end; alloc++) {
2509 if (!(alloc % apl)) {
1170532b 2510 pr_cont("\n");
fd1e8a1f
TH
2511 printk("%spcpu-alloc: ", lvl);
2512 }
1170532b 2513 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
2514
2515 for (unit_end += upa; unit < unit_end; unit++)
2516 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
2517 pr_cont("%0*d ",
2518 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 2519 else
1170532b 2520 pr_cont("%s ", empty_str);
033e48fb 2521 }
033e48fb 2522 }
1170532b 2523 pr_cont("\n");
033e48fb 2524}
033e48fb 2525
fbf59bc9 2526/**
8d408b4b 2527 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 2528 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 2529 * @base_addr: mapped address
8d408b4b
TH
2530 *
2531 * Initialize the first percpu chunk which contains the kernel static
69ab285b 2532 * percpu area. This function is to be called from arch percpu area
38a6be52 2533 * setup path.
8d408b4b 2534 *
fd1e8a1f
TH
2535 * @ai contains all information necessary to initialize the first
2536 * chunk and prime the dynamic percpu allocator.
2537 *
2538 * @ai->static_size is the size of static percpu area.
2539 *
2540 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
2541 * reserve after the static area in the first chunk. This reserves
2542 * the first chunk such that it's available only through reserved
2543 * percpu allocation. This is primarily used to serve module percpu
2544 * static areas on architectures where the addressing model has
2545 * limited offset range for symbol relocations to guarantee module
2546 * percpu symbols fall inside the relocatable range.
2547 *
fd1e8a1f
TH
2548 * @ai->dyn_size determines the number of bytes available for dynamic
2549 * allocation in the first chunk. The area between @ai->static_size +
2550 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 2551 *
fd1e8a1f
TH
2552 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2553 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2554 * @ai->dyn_size.
8d408b4b 2555 *
fd1e8a1f
TH
2556 * @ai->atom_size is the allocation atom size and used as alignment
2557 * for vm areas.
8d408b4b 2558 *
fd1e8a1f
TH
2559 * @ai->alloc_size is the allocation size and always multiple of
2560 * @ai->atom_size. This is larger than @ai->atom_size if
2561 * @ai->unit_size is larger than @ai->atom_size.
2562 *
2563 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2564 * percpu areas. Units which should be colocated are put into the
2565 * same group. Dynamic VM areas will be allocated according to these
2566 * groupings. If @ai->nr_groups is zero, a single group containing
2567 * all units is assumed.
8d408b4b 2568 *
38a6be52
TH
2569 * The caller should have mapped the first chunk at @base_addr and
2570 * copied static data to each unit.
fbf59bc9 2571 *
c0ebfdc3
DZF
2572 * The first chunk will always contain a static and a dynamic region.
2573 * However, the static region is not managed by any chunk. If the first
2574 * chunk also contains a reserved region, it is served by two chunks -
2575 * one for the reserved region and one for the dynamic region. They
2576 * share the same vm, but use offset regions in the area allocation map.
2577 * The chunk serving the dynamic region is circulated in the chunk slots
2578 * and available for dynamic allocation like any other chunk.
fbf59bc9 2579 */
163fa234
KW
2580void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2581 void *base_addr)
fbf59bc9 2582{
b9c39442 2583 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 2584 size_t static_size, dyn_size;
0c4169c3 2585 struct pcpu_chunk *chunk;
6563297c
TH
2586 unsigned long *group_offsets;
2587 size_t *group_sizes;
fb435d52 2588 unsigned long *unit_off;
fbf59bc9 2589 unsigned int cpu;
fd1e8a1f
TH
2590 int *unit_map;
2591 int group, unit, i;
c0ebfdc3
DZF
2592 int map_size;
2593 unsigned long tmp_addr;
f655f405 2594 size_t alloc_size;
3c7be18a 2595 enum pcpu_chunk_type type;
fbf59bc9 2596
635b75fc
TH
2597#define PCPU_SETUP_BUG_ON(cond) do { \
2598 if (unlikely(cond)) { \
870d4b12
JP
2599 pr_emerg("failed to initialize, %s\n", #cond); \
2600 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2601 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2602 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2603 BUG(); \
2604 } \
2605} while (0)
2606
2f39e637 2607 /* sanity checks */
635b75fc 2608 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2609#ifdef CONFIG_SMP
635b75fc 2610 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2611 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2612#endif
635b75fc 2613 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2614 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2615 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2616 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2617 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2618 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2619 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2620 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2621 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2622 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2623 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2624 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2625
6563297c 2626 /* process group information and build config tables accordingly */
f655f405
MR
2627 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2628 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2629 if (!group_offsets)
2630 panic("%s: Failed to allocate %zu bytes\n", __func__,
2631 alloc_size);
2632
2633 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2634 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2635 if (!group_sizes)
2636 panic("%s: Failed to allocate %zu bytes\n", __func__,
2637 alloc_size);
2638
2639 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2640 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2641 if (!unit_map)
2642 panic("%s: Failed to allocate %zu bytes\n", __func__,
2643 alloc_size);
2644
2645 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2646 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2647 if (!unit_off)
2648 panic("%s: Failed to allocate %zu bytes\n", __func__,
2649 alloc_size);
2f39e637 2650
fd1e8a1f 2651 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2652 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2653
2654 pcpu_low_unit_cpu = NR_CPUS;
2655 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2656
fd1e8a1f
TH
2657 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2658 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2659
6563297c
TH
2660 group_offsets[group] = gi->base_offset;
2661 group_sizes[group] = gi->nr_units * ai->unit_size;
2662
fd1e8a1f
TH
2663 for (i = 0; i < gi->nr_units; i++) {
2664 cpu = gi->cpu_map[i];
2665 if (cpu == NR_CPUS)
2666 continue;
8d408b4b 2667
9f295664 2668 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2669 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2670 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2671
fd1e8a1f 2672 unit_map[cpu] = unit + i;
fb435d52
TH
2673 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2674
a855b84c
TH
2675 /* determine low/high unit_cpu */
2676 if (pcpu_low_unit_cpu == NR_CPUS ||
2677 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2678 pcpu_low_unit_cpu = cpu;
2679 if (pcpu_high_unit_cpu == NR_CPUS ||
2680 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2681 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2682 }
2f39e637 2683 }
fd1e8a1f
TH
2684 pcpu_nr_units = unit;
2685
2686 for_each_possible_cpu(cpu)
635b75fc
TH
2687 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2688
2689 /* we're done parsing the input, undefine BUG macro and dump config */
2690#undef PCPU_SETUP_BUG_ON
bcbea798 2691 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2692
6563297c
TH
2693 pcpu_nr_groups = ai->nr_groups;
2694 pcpu_group_offsets = group_offsets;
2695 pcpu_group_sizes = group_sizes;
fd1e8a1f 2696 pcpu_unit_map = unit_map;
fb435d52 2697 pcpu_unit_offsets = unit_off;
2f39e637
TH
2698
2699 /* determine basic parameters */
fd1e8a1f 2700 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2701 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2702 pcpu_atom_size = ai->atom_size;
61cf93d3
DZ
2703 pcpu_chunk_struct_size = struct_size(chunk, populated,
2704 BITS_TO_LONGS(pcpu_unit_pages));
cafe8816 2705
30a5b536
DZ
2706 pcpu_stats_save_ai(ai);
2707
d9b55eeb 2708 /*
f1833241
RG
2709 * Allocate chunk slots. The slots after the active slots are:
2710 * sidelined_slot - isolated, depopulated chunks
2711 * free_slot - fully free chunks
2712 * to_depopulate_slot - isolated, chunks to depopulate
d9b55eeb 2713 */
f1833241
RG
2714 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2715 pcpu_free_slot = pcpu_sidelined_slot + 1;
2716 pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2717 pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
3c7be18a
RG
2718 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2719 sizeof(pcpu_chunk_lists[0]) *
2720 PCPU_NR_CHUNK_TYPES,
2721 SMP_CACHE_BYTES);
2722 if (!pcpu_chunk_lists)
f655f405 2723 panic("%s: Failed to allocate %zu bytes\n", __func__,
3c7be18a
RG
2724 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
2725 PCPU_NR_CHUNK_TYPES);
2726
2727 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2728 for (i = 0; i < pcpu_nr_slots; i++)
2729 INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
fbf59bc9 2730
d2f3c384
DZF
2731 /*
2732 * The end of the static region needs to be aligned with the
2733 * minimum allocation size as this offsets the reserved and
2734 * dynamic region. The first chunk ends page aligned by
2735 * expanding the dynamic region, therefore the dynamic region
2736 * can be shrunk to compensate while still staying above the
2737 * configured sizes.
2738 */
2739 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2740 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2741
edcb4639 2742 /*
c0ebfdc3
DZF
2743 * Initialize first chunk.
2744 * If the reserved_size is non-zero, this initializes the reserved
2745 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2746 * and the dynamic region is initialized here. The first chunk,
2747 * pcpu_first_chunk, will always point to the chunk that serves
2748 * the dynamic region.
edcb4639 2749 */
d2f3c384
DZF
2750 tmp_addr = (unsigned long)base_addr + static_size;
2751 map_size = ai->reserved_size ?: dyn_size;
40064aec 2752 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2753
edcb4639 2754 /* init dynamic chunk if necessary */
b9c39442 2755 if (ai->reserved_size) {
0c4169c3 2756 pcpu_reserved_chunk = chunk;
b9c39442 2757
d2f3c384 2758 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2759 ai->reserved_size;
d2f3c384 2760 map_size = dyn_size;
40064aec 2761 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2762 }
2763
2441d15c 2764 /* link the first chunk in */
0c4169c3 2765 pcpu_first_chunk = chunk;
0760fa3d 2766 pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2767 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2768
7e8a6304
DZF
2769 /* include all regions of the first chunk */
2770 pcpu_nr_populated += PFN_DOWN(size_sum);
2771
30a5b536 2772 pcpu_stats_chunk_alloc();
df95e795 2773 trace_percpu_create_chunk(base_addr);
30a5b536 2774
fbf59bc9 2775 /* we're done */
bba174f5 2776 pcpu_base_addr = base_addr;
fbf59bc9 2777}
66c3a757 2778
bbddff05
TH
2779#ifdef CONFIG_SMP
2780
17f3609c 2781const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2782 [PCPU_FC_AUTO] = "auto",
2783 [PCPU_FC_EMBED] = "embed",
2784 [PCPU_FC_PAGE] = "page",
f58dc01b 2785};
66c3a757 2786
f58dc01b 2787enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2788
f58dc01b
TH
2789static int __init percpu_alloc_setup(char *str)
2790{
5479c78a
CG
2791 if (!str)
2792 return -EINVAL;
2793
f58dc01b
TH
2794 if (0)
2795 /* nada */;
2796#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2797 else if (!strcmp(str, "embed"))
2798 pcpu_chosen_fc = PCPU_FC_EMBED;
2799#endif
2800#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2801 else if (!strcmp(str, "page"))
2802 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2803#endif
2804 else
870d4b12 2805 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2806
f58dc01b 2807 return 0;
66c3a757 2808}
f58dc01b 2809early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2810
3c9a024f
TH
2811/*
2812 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2813 * Build it if needed by the arch config or the generic setup is going
2814 * to be used.
2815 */
08fc4580
TH
2816#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2817 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2818#define BUILD_EMBED_FIRST_CHUNK
2819#endif
2820
2821/* build pcpu_page_first_chunk() iff needed by the arch config */
2822#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2823#define BUILD_PAGE_FIRST_CHUNK
2824#endif
2825
2826/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2827#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2828/**
2829 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2830 * @reserved_size: the size of reserved percpu area in bytes
2831 * @dyn_size: minimum free size for dynamic allocation in bytes
2832 * @atom_size: allocation atom size
2833 * @cpu_distance_fn: callback to determine distance between cpus, optional
2834 *
2835 * This function determines grouping of units, their mappings to cpus
2836 * and other parameters considering needed percpu size, allocation
2837 * atom size and distances between CPUs.
2838 *
bffc4375 2839 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2840 * LOCAL_DISTANCE both ways are grouped together and share space for
2841 * units in the same group. The returned configuration is guaranteed
2842 * to have CPUs on different nodes on different groups and >=75% usage
2843 * of allocated virtual address space.
2844 *
2845 * RETURNS:
2846 * On success, pointer to the new allocation_info is returned. On
2847 * failure, ERR_PTR value is returned.
2848 */
258e0815 2849static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
3c9a024f
TH
2850 size_t reserved_size, size_t dyn_size,
2851 size_t atom_size,
2852 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2853{
2854 static int group_map[NR_CPUS] __initdata;
2855 static int group_cnt[NR_CPUS] __initdata;
d7d29ac7 2856 static struct cpumask mask __initdata;
3c9a024f
TH
2857 const size_t static_size = __per_cpu_end - __per_cpu_start;
2858 int nr_groups = 1, nr_units = 0;
2859 size_t size_sum, min_unit_size, alloc_size;
3f649ab7 2860 int upa, max_upa, best_upa; /* units_per_alloc */
3c9a024f
TH
2861 int last_allocs, group, unit;
2862 unsigned int cpu, tcpu;
2863 struct pcpu_alloc_info *ai;
2864 unsigned int *cpu_map;
2865
2866 /* this function may be called multiple times */
2867 memset(group_map, 0, sizeof(group_map));
2868 memset(group_cnt, 0, sizeof(group_cnt));
d7d29ac7 2869 cpumask_clear(&mask);
3c9a024f
TH
2870
2871 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2872 size_sum = PFN_ALIGN(static_size + reserved_size +
2873 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2874 dyn_size = size_sum - static_size - reserved_size;
2875
2876 /*
2877 * Determine min_unit_size, alloc_size and max_upa such that
2878 * alloc_size is multiple of atom_size and is the smallest
25985edc 2879 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2880 * or larger than min_unit_size.
2881 */
2882 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2883
9c015162 2884 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2885 alloc_size = roundup(min_unit_size, atom_size);
2886 upa = alloc_size / min_unit_size;
f09f1243 2887 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2888 upa--;
2889 max_upa = upa;
2890
d7d29ac7
WY
2891 cpumask_copy(&mask, cpu_possible_mask);
2892
3c9a024f 2893 /* group cpus according to their proximity */
d7d29ac7
WY
2894 for (group = 0; !cpumask_empty(&mask); group++) {
2895 /* pop the group's first cpu */
2896 cpu = cpumask_first(&mask);
3c9a024f
TH
2897 group_map[cpu] = group;
2898 group_cnt[group]++;
d7d29ac7
WY
2899 cpumask_clear_cpu(cpu, &mask);
2900
2901 for_each_cpu(tcpu, &mask) {
2902 if (!cpu_distance_fn ||
2903 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2904 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2905 group_map[tcpu] = group;
2906 group_cnt[group]++;
2907 cpumask_clear_cpu(tcpu, &mask);
2908 }
2909 }
3c9a024f 2910 }
d7d29ac7 2911 nr_groups = group;
3c9a024f
TH
2912
2913 /*
9c015162
DZF
2914 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2915 * Expand the unit_size until we use >= 75% of the units allocated.
2916 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2917 */
2918 last_allocs = INT_MAX;
2919 for (upa = max_upa; upa; upa--) {
2920 int allocs = 0, wasted = 0;
2921
f09f1243 2922 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2923 continue;
2924
2925 for (group = 0; group < nr_groups; group++) {
2926 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2927 allocs += this_allocs;
2928 wasted += this_allocs * upa - group_cnt[group];
2929 }
2930
2931 /*
2932 * Don't accept if wastage is over 1/3. The
2933 * greater-than comparison ensures upa==1 always
2934 * passes the following check.
2935 */
2936 if (wasted > num_possible_cpus() / 3)
2937 continue;
2938
2939 /* and then don't consume more memory */
2940 if (allocs > last_allocs)
2941 break;
2942 last_allocs = allocs;
2943 best_upa = upa;
2944 }
2945 upa = best_upa;
2946
2947 /* allocate and fill alloc_info */
2948 for (group = 0; group < nr_groups; group++)
2949 nr_units += roundup(group_cnt[group], upa);
2950
2951 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2952 if (!ai)
2953 return ERR_PTR(-ENOMEM);
2954 cpu_map = ai->groups[0].cpu_map;
2955
2956 for (group = 0; group < nr_groups; group++) {
2957 ai->groups[group].cpu_map = cpu_map;
2958 cpu_map += roundup(group_cnt[group], upa);
2959 }
2960
2961 ai->static_size = static_size;
2962 ai->reserved_size = reserved_size;
2963 ai->dyn_size = dyn_size;
2964 ai->unit_size = alloc_size / upa;
2965 ai->atom_size = atom_size;
2966 ai->alloc_size = alloc_size;
2967
2de7852f 2968 for (group = 0, unit = 0; group < nr_groups; group++) {
3c9a024f
TH
2969 struct pcpu_group_info *gi = &ai->groups[group];
2970
2971 /*
2972 * Initialize base_offset as if all groups are located
2973 * back-to-back. The caller should update this to
2974 * reflect actual allocation.
2975 */
2976 gi->base_offset = unit * ai->unit_size;
2977
2978 for_each_possible_cpu(cpu)
2979 if (group_map[cpu] == group)
2980 gi->cpu_map[gi->nr_units++] = cpu;
2981 gi->nr_units = roundup(gi->nr_units, upa);
2982 unit += gi->nr_units;
2983 }
2984 BUG_ON(unit != nr_units);
2985
2986 return ai;
2987}
2988#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2989
2990#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2991/**
2992 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2993 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2994 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2995 * @atom_size: allocation atom size
2996 * @cpu_distance_fn: callback to determine distance between cpus, optional
2997 * @alloc_fn: function to allocate percpu page
25985edc 2998 * @free_fn: function to free percpu page
66c3a757
TH
2999 *
3000 * This is a helper to ease setting up embedded first percpu chunk and
3001 * can be called where pcpu_setup_first_chunk() is expected.
3002 *
3003 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
3004 * by calling @alloc_fn and used as-is without being mapped into
3005 * vmalloc area. Allocations are always whole multiples of @atom_size
3006 * aligned to @atom_size.
3007 *
3008 * This enables the first chunk to piggy back on the linear physical
3009 * mapping which often uses larger page size. Please note that this
3010 * can result in very sparse cpu->unit mapping on NUMA machines thus
3011 * requiring large vmalloc address space. Don't use this allocator if
3012 * vmalloc space is not orders of magnitude larger than distances
3013 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 3014 *
4ba6ce25 3015 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
3016 *
3017 * If the needed size is smaller than the minimum or specified unit
c8826dd5 3018 * size, the leftover is returned using @free_fn.
66c3a757
TH
3019 *
3020 * RETURNS:
fb435d52 3021 * 0 on success, -errno on failure.
66c3a757 3022 */
4ba6ce25 3023int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
3024 size_t atom_size,
3025 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3026 pcpu_fc_alloc_fn_t alloc_fn,
3027 pcpu_fc_free_fn_t free_fn)
66c3a757 3028{
c8826dd5
TH
3029 void *base = (void *)ULONG_MAX;
3030 void **areas = NULL;
fd1e8a1f 3031 struct pcpu_alloc_info *ai;
93c76b6b 3032 size_t size_sum, areas_size;
3033 unsigned long max_distance;
163fa234 3034 int group, i, highest_group, rc = 0;
66c3a757 3035
c8826dd5
TH
3036 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3037 cpu_distance_fn);
fd1e8a1f
TH
3038 if (IS_ERR(ai))
3039 return PTR_ERR(ai);
66c3a757 3040
fd1e8a1f 3041 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 3042 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 3043
26fb3dae 3044 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
c8826dd5 3045 if (!areas) {
fb435d52 3046 rc = -ENOMEM;
c8826dd5 3047 goto out_free;
fa8a7094 3048 }
66c3a757 3049
9b739662 3050 /* allocate, copy and determine base address & max_distance */
3051 highest_group = 0;
c8826dd5
TH
3052 for (group = 0; group < ai->nr_groups; group++) {
3053 struct pcpu_group_info *gi = &ai->groups[group];
3054 unsigned int cpu = NR_CPUS;
3055 void *ptr;
3056
3057 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3058 cpu = gi->cpu_map[i];
3059 BUG_ON(cpu == NR_CPUS);
3060
3061 /* allocate space for the whole group */
3062 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
3063 if (!ptr) {
3064 rc = -ENOMEM;
3065 goto out_free_areas;
3066 }
f528f0b8
CM
3067 /* kmemleak tracks the percpu allocations separately */
3068 kmemleak_free(ptr);
c8826dd5 3069 areas[group] = ptr;
fd1e8a1f 3070
c8826dd5 3071 base = min(ptr, base);
9b739662 3072 if (ptr > areas[highest_group])
3073 highest_group = group;
3074 }
3075 max_distance = areas[highest_group] - base;
3076 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3077
3078 /* warn if maximum distance is further than 75% of vmalloc space */
3079 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3080 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3081 max_distance, VMALLOC_TOTAL);
3082#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3083 /* and fail if we have fallback */
3084 rc = -EINVAL;
3085 goto out_free_areas;
3086#endif
42b64281
TH
3087 }
3088
3089 /*
3090 * Copy data and free unused parts. This should happen after all
3091 * allocations are complete; otherwise, we may end up with
3092 * overlapping groups.
3093 */
3094 for (group = 0; group < ai->nr_groups; group++) {
3095 struct pcpu_group_info *gi = &ai->groups[group];
3096 void *ptr = areas[group];
c8826dd5
TH
3097
3098 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3099 if (gi->cpu_map[i] == NR_CPUS) {
3100 /* unused unit, free whole */
3101 free_fn(ptr, ai->unit_size);
3102 continue;
3103 }
3104 /* copy and return the unused part */
3105 memcpy(ptr, __per_cpu_load, ai->static_size);
3106 free_fn(ptr + size_sum, ai->unit_size - size_sum);
3107 }
fa8a7094 3108 }
66c3a757 3109
c8826dd5 3110 /* base address is now known, determine group base offsets */
6ea529a2 3111 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 3112 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 3113 }
c8826dd5 3114
00206a69
MC
3115 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3116 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
fd1e8a1f 3117 ai->dyn_size, ai->unit_size);
d4b95f80 3118
163fa234 3119 pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
3120 goto out_free;
3121
3122out_free_areas:
3123 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
3124 if (areas[group])
3125 free_fn(areas[group],
3126 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 3127out_free:
fd1e8a1f 3128 pcpu_free_alloc_info(ai);
c8826dd5 3129 if (areas)
999c17e3 3130 memblock_free_early(__pa(areas), areas_size);
fb435d52 3131 return rc;
d4b95f80 3132}
3c9a024f 3133#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 3134
3c9a024f 3135#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 3136/**
00ae4064 3137 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
3138 * @reserved_size: the size of reserved percpu area in bytes
3139 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 3140 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
3141 * @populate_pte_fn: function to populate pte
3142 *
00ae4064
TH
3143 * This is a helper to ease setting up page-remapped first percpu
3144 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
3145 *
3146 * This is the basic allocator. Static percpu area is allocated
3147 * page-by-page into vmalloc area.
3148 *
3149 * RETURNS:
fb435d52 3150 * 0 on success, -errno on failure.
d4b95f80 3151 */
fb435d52
TH
3152int __init pcpu_page_first_chunk(size_t reserved_size,
3153 pcpu_fc_alloc_fn_t alloc_fn,
3154 pcpu_fc_free_fn_t free_fn,
3155 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 3156{
8f05a6a6 3157 static struct vm_struct vm;
fd1e8a1f 3158 struct pcpu_alloc_info *ai;
00ae4064 3159 char psize_str[16];
ce3141a2 3160 int unit_pages;
d4b95f80 3161 size_t pages_size;
ce3141a2 3162 struct page **pages;
163fa234 3163 int unit, i, j, rc = 0;
8f606604 3164 int upa;
3165 int nr_g0_units;
d4b95f80 3166
00ae4064
TH
3167 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3168
4ba6ce25 3169 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
3170 if (IS_ERR(ai))
3171 return PTR_ERR(ai);
3172 BUG_ON(ai->nr_groups != 1);
8f606604 3173 upa = ai->alloc_size/ai->unit_size;
3174 nr_g0_units = roundup(num_possible_cpus(), upa);
0b59c25f 3175 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
8f606604 3176 pcpu_free_alloc_info(ai);
3177 return -EINVAL;
3178 }
fd1e8a1f
TH
3179
3180 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
3181
3182 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
3183 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3184 sizeof(pages[0]));
7e1c4e27 3185 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
f655f405
MR
3186 if (!pages)
3187 panic("%s: Failed to allocate %zu bytes\n", __func__,
3188 pages_size);
d4b95f80 3189
8f05a6a6 3190 /* allocate pages */
d4b95f80 3191 j = 0;
8f606604 3192 for (unit = 0; unit < num_possible_cpus(); unit++) {
3193 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 3194 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
3195 void *ptr;
3196
3cbc8565 3197 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 3198 if (!ptr) {
870d4b12 3199 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 3200 psize_str, cpu);
d4b95f80
TH
3201 goto enomem;
3202 }
f528f0b8
CM
3203 /* kmemleak tracks the percpu allocations separately */
3204 kmemleak_free(ptr);
ce3141a2 3205 pages[j++] = virt_to_page(ptr);
d4b95f80 3206 }
8f606604 3207 }
d4b95f80 3208
8f05a6a6
TH
3209 /* allocate vm area, map the pages and copy static data */
3210 vm.flags = VM_ALLOC;
fd1e8a1f 3211 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
3212 vm_area_register_early(&vm, PAGE_SIZE);
3213
fd1e8a1f 3214 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 3215 unsigned long unit_addr =
fd1e8a1f 3216 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 3217
ce3141a2 3218 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
3219 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3220
3221 /* pte already populated, the following shouldn't fail */
fb435d52
TH
3222 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3223 unit_pages);
3224 if (rc < 0)
3225 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 3226
8f05a6a6
TH
3227 /*
3228 * FIXME: Archs with virtual cache should flush local
3229 * cache for the linear mapping here - something
3230 * equivalent to flush_cache_vmap() on the local cpu.
3231 * flush_cache_vmap() can't be used as most supporting
3232 * data structures are not set up yet.
3233 */
3234
3235 /* copy static data */
fd1e8a1f 3236 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
3237 }
3238
3239 /* we're ready, commit */
00206a69
MC
3240 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3241 unit_pages, psize_str, ai->static_size,
fd1e8a1f 3242 ai->reserved_size, ai->dyn_size);
d4b95f80 3243
163fa234 3244 pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
3245 goto out_free_ar;
3246
3247enomem:
3248 while (--j >= 0)
ce3141a2 3249 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 3250 rc = -ENOMEM;
d4b95f80 3251out_free_ar:
999c17e3 3252 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 3253 pcpu_free_alloc_info(ai);
fb435d52 3254 return rc;
d4b95f80 3255}
3c9a024f 3256#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 3257
bbddff05 3258#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 3259/*
bbddff05 3260 * Generic SMP percpu area setup.
e74e3962
TH
3261 *
3262 * The embedding helper is used because its behavior closely resembles
3263 * the original non-dynamic generic percpu area setup. This is
3264 * important because many archs have addressing restrictions and might
3265 * fail if the percpu area is located far away from the previous
3266 * location. As an added bonus, in non-NUMA cases, embedding is
3267 * generally a good idea TLB-wise because percpu area can piggy back
3268 * on the physical linear memory mapping which uses large page
3269 * mappings on applicable archs.
3270 */
e74e3962
TH
3271unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3272EXPORT_SYMBOL(__per_cpu_offset);
3273
c8826dd5
TH
3274static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3275 size_t align)
3276{
26fb3dae 3277 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 3278}
66c3a757 3279
c8826dd5
TH
3280static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3281{
999c17e3 3282 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
3283}
3284
e74e3962
TH
3285void __init setup_per_cpu_areas(void)
3286{
e74e3962
TH
3287 unsigned long delta;
3288 unsigned int cpu;
fb435d52 3289 int rc;
e74e3962
TH
3290
3291 /*
3292 * Always reserve area for module percpu variables. That's
3293 * what the legacy allocator did.
3294 */
fb435d52 3295 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
3296 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3297 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 3298 if (rc < 0)
bbddff05 3299 panic("Failed to initialize percpu areas.");
e74e3962
TH
3300
3301 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3302 for_each_possible_cpu(cpu)
fb435d52 3303 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 3304}
bbddff05
TH
3305#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3306
3307#else /* CONFIG_SMP */
3308
3309/*
3310 * UP percpu area setup.
3311 *
3312 * UP always uses km-based percpu allocator with identity mapping.
3313 * Static percpu variables are indistinguishable from the usual static
3314 * variables and don't require any special preparation.
3315 */
3316void __init setup_per_cpu_areas(void)
3317{
3318 const size_t unit_size =
3319 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3320 PERCPU_DYNAMIC_RESERVE));
3321 struct pcpu_alloc_info *ai;
3322 void *fc;
3323
3324 ai = pcpu_alloc_alloc_info(1, 1);
26fb3dae 3325 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
bbddff05
TH
3326 if (!ai || !fc)
3327 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
3328 /* kmemleak tracks the percpu allocations separately */
3329 kmemleak_free(fc);
bbddff05
TH
3330
3331 ai->dyn_size = unit_size;
3332 ai->unit_size = unit_size;
3333 ai->atom_size = unit_size;
3334 ai->alloc_size = unit_size;
3335 ai->groups[0].nr_units = 1;
3336 ai->groups[0].cpu_map[0] = 0;
3337
163fa234 3338 pcpu_setup_first_chunk(ai, fc);
438a5061 3339 pcpu_free_alloc_info(ai);
bbddff05
TH
3340}
3341
3342#endif /* CONFIG_SMP */
099a19d9 3343
7e8a6304
DZF
3344/*
3345 * pcpu_nr_pages - calculate total number of populated backing pages
3346 *
3347 * This reflects the number of pages populated to back chunks. Metadata is
3348 * excluded in the number exposed in meminfo as the number of backing pages
3349 * scales with the number of cpus and can quickly outweigh the memory used for
3350 * metadata. It also keeps this calculation nice and simple.
3351 *
3352 * RETURNS:
3353 * Total number of populated backing pages in use by the allocator.
3354 */
3355unsigned long pcpu_nr_pages(void)
3356{
3357 return pcpu_nr_populated * pcpu_nr_units;
3358}
3359
1a4d7607
TH
3360/*
3361 * Percpu allocator is initialized early during boot when neither slab or
3362 * workqueue is available. Plug async management until everything is up
3363 * and running.
3364 */
3365static int __init percpu_enable_async(void)
3366{
3367 pcpu_async_enabled = true;
3368 return 0;
3369}
3370subsys_initcall(percpu_enable_async);