]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
Merge branch 'dev' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
fbf59bc9
TH
70
71#include <asm/cacheflush.h>
e0100983 72#include <asm/sections.h>
fbf59bc9 73#include <asm/tlbflush.h>
3b034b0d 74#include <asm/io.h>
fbf59bc9 75
fbf59bc9
TH
76#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
78
bbddff05 79#ifdef CONFIG_SMP
e0100983
TH
80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81#ifndef __addr_to_pcpu_ptr
82#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
e0100983
TH
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
e0100983 92#endif
bbddff05
TH
93#else /* CONFIG_SMP */
94/* on UP, it's always identity mapped */
95#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
96#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
97#endif /* CONFIG_SMP */
e0100983 98
fbf59bc9
TH
99struct pcpu_chunk {
100 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
101 int free_size; /* free bytes in the chunk */
102 int contig_hint; /* max contiguous size hint */
bba174f5 103 void *base_addr; /* base address of this chunk */
fbf59bc9
TH
104 int map_used; /* # of map entries used */
105 int map_alloc; /* # of map entries allocated */
106 int *map; /* allocation map */
88999a89 107 void *data; /* chunk data */
8d408b4b 108 bool immutable; /* no [de]population allowed */
ce3141a2 109 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
110};
111
40150d37
TH
112static int pcpu_unit_pages __read_mostly;
113static int pcpu_unit_size __read_mostly;
2f39e637 114static int pcpu_nr_units __read_mostly;
6563297c 115static int pcpu_atom_size __read_mostly;
40150d37
TH
116static int pcpu_nr_slots __read_mostly;
117static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 118
2f39e637
TH
119/* cpus with the lowest and highest unit numbers */
120static unsigned int pcpu_first_unit_cpu __read_mostly;
121static unsigned int pcpu_last_unit_cpu __read_mostly;
122
fbf59bc9 123/* the address of the first chunk which starts with the kernel static area */
40150d37 124void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
125EXPORT_SYMBOL_GPL(pcpu_base_addr);
126
fb435d52
TH
127static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
128const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 129
6563297c
TH
130/* group information, used for vm allocation */
131static int pcpu_nr_groups __read_mostly;
132static const unsigned long *pcpu_group_offsets __read_mostly;
133static const size_t *pcpu_group_sizes __read_mostly;
134
ae9e6bc9
TH
135/*
136 * The first chunk which always exists. Note that unlike other
137 * chunks, this one can be allocated and mapped in several different
138 * ways and thus often doesn't live in the vmalloc area.
139 */
140static struct pcpu_chunk *pcpu_first_chunk;
141
142/*
143 * Optional reserved chunk. This chunk reserves part of the first
144 * chunk and serves it for reserved allocations. The amount of
145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
146 * area doesn't exist, the following variables contain NULL and 0
147 * respectively.
148 */
edcb4639 149static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
150static int pcpu_reserved_chunk_limit;
151
fbf59bc9 152/*
ccea34b5
TH
153 * Synchronization rules.
154 *
155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
156 * protects allocation/reclaim paths, chunks, populated bitmap and
157 * vmalloc mapping. The latter is a spinlock and protects the index
158 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
159 *
160 * During allocation, pcpu_alloc_mutex is kept locked all the time and
161 * pcpu_lock is grabbed and released as necessary. All actual memory
403a91b1
JK
162 * allocations are done using GFP_KERNEL with pcpu_lock released. In
163 * general, percpu memory can't be allocated with irq off but
164 * irqsave/restore are still used in alloc path so that it can be used
165 * from early init path - sched_init() specifically.
ccea34b5
TH
166 *
167 * Free path accesses and alters only the index data structures, so it
168 * can be safely called from atomic context. When memory needs to be
169 * returned to the system, free path schedules reclaim_work which
170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
171 * reclaimed, release both locks and frees the chunks. Note that it's
172 * necessary to grab both locks to remove a chunk from circulation as
173 * allocation path might be referencing the chunk with only
174 * pcpu_alloc_mutex locked.
fbf59bc9 175 */
ccea34b5
TH
176static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
177static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 178
40150d37 179static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 180
a56dbddf
TH
181/* reclaim work to release fully free chunks, scheduled from free path */
182static void pcpu_reclaim(struct work_struct *work);
183static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
184
020ec653
TH
185static bool pcpu_addr_in_first_chunk(void *addr)
186{
187 void *first_start = pcpu_first_chunk->base_addr;
188
189 return addr >= first_start && addr < first_start + pcpu_unit_size;
190}
191
192static bool pcpu_addr_in_reserved_chunk(void *addr)
193{
194 void *first_start = pcpu_first_chunk->base_addr;
195
196 return addr >= first_start &&
197 addr < first_start + pcpu_reserved_chunk_limit;
198}
199
d9b55eeb 200static int __pcpu_size_to_slot(int size)
fbf59bc9 201{
cae3aeb8 202 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
204}
205
d9b55eeb
TH
206static int pcpu_size_to_slot(int size)
207{
208 if (size == pcpu_unit_size)
209 return pcpu_nr_slots - 1;
210 return __pcpu_size_to_slot(size);
211}
212
fbf59bc9
TH
213static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
214{
215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
216 return 0;
217
218 return pcpu_size_to_slot(chunk->free_size);
219}
220
88999a89
TH
221/* set the pointer to a chunk in a page struct */
222static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
223{
224 page->index = (unsigned long)pcpu;
225}
226
227/* obtain pointer to a chunk from a page struct */
228static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
229{
230 return (struct pcpu_chunk *)page->index;
231}
232
233static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 234{
2f39e637 235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
236}
237
9983b6f0
TH
238static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
239 unsigned int cpu, int page_idx)
fbf59bc9 240{
bba174f5 241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 242 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
243}
244
88999a89
TH
245static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
246 int *rs, int *re, int end)
ce3141a2
TH
247{
248 *rs = find_next_zero_bit(chunk->populated, end, *rs);
249 *re = find_next_bit(chunk->populated, end, *rs + 1);
250}
251
88999a89
TH
252static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
253 int *rs, int *re, int end)
ce3141a2
TH
254{
255 *rs = find_next_bit(chunk->populated, end, *rs);
256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
257}
258
259/*
260 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 261 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
262 * be integer variables and will be set to start and end page index of
263 * the current region.
264 */
265#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
267 (rs) < (re); \
268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
269
270#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
272 (rs) < (re); \
273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
274
fbf59bc9 275/**
1880d93b
TH
276 * pcpu_mem_alloc - allocate memory
277 * @size: bytes to allocate
fbf59bc9 278 *
1880d93b
TH
279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
280 * kzalloc() is used; otherwise, vmalloc() is used. The returned
281 * memory is always zeroed.
fbf59bc9 282 *
ccea34b5
TH
283 * CONTEXT:
284 * Does GFP_KERNEL allocation.
285 *
fbf59bc9 286 * RETURNS:
1880d93b 287 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 288 */
1880d93b 289static void *pcpu_mem_alloc(size_t size)
fbf59bc9 290{
099a19d9
TH
291 if (WARN_ON_ONCE(!slab_is_available()))
292 return NULL;
293
1880d93b
TH
294 if (size <= PAGE_SIZE)
295 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
296 else
297 return vzalloc(size);
1880d93b 298}
fbf59bc9 299
1880d93b
TH
300/**
301 * pcpu_mem_free - free memory
302 * @ptr: memory to free
303 * @size: size of the area
304 *
305 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
306 */
307static void pcpu_mem_free(void *ptr, size_t size)
308{
fbf59bc9 309 if (size <= PAGE_SIZE)
1880d93b 310 kfree(ptr);
fbf59bc9 311 else
1880d93b 312 vfree(ptr);
fbf59bc9
TH
313}
314
315/**
316 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
317 * @chunk: chunk of interest
318 * @oslot: the previous slot it was on
319 *
320 * This function is called after an allocation or free changed @chunk.
321 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
322 * moved to the slot. Note that the reserved chunk is never put on
323 * chunk slots.
ccea34b5
TH
324 *
325 * CONTEXT:
326 * pcpu_lock.
fbf59bc9
TH
327 */
328static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
329{
330 int nslot = pcpu_chunk_slot(chunk);
331
edcb4639 332 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
333 if (oslot < nslot)
334 list_move(&chunk->list, &pcpu_slot[nslot]);
335 else
336 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
337 }
338}
339
9f7dcf22 340/**
833af842
TH
341 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
342 * @chunk: chunk of interest
9f7dcf22 343 *
833af842 344 * Determine whether area map of @chunk needs to be extended to
25985edc 345 * accommodate a new allocation.
9f7dcf22 346 *
ccea34b5 347 * CONTEXT:
833af842 348 * pcpu_lock.
ccea34b5 349 *
9f7dcf22 350 * RETURNS:
833af842
TH
351 * New target map allocation length if extension is necessary, 0
352 * otherwise.
9f7dcf22 353 */
833af842 354static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
355{
356 int new_alloc;
9f7dcf22 357
9f7dcf22
TH
358 if (chunk->map_alloc >= chunk->map_used + 2)
359 return 0;
360
361 new_alloc = PCPU_DFL_MAP_ALLOC;
362 while (new_alloc < chunk->map_used + 2)
363 new_alloc *= 2;
364
833af842
TH
365 return new_alloc;
366}
367
368/**
369 * pcpu_extend_area_map - extend area map of a chunk
370 * @chunk: chunk of interest
371 * @new_alloc: new target allocation length of the area map
372 *
373 * Extend area map of @chunk to have @new_alloc entries.
374 *
375 * CONTEXT:
376 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
377 *
378 * RETURNS:
379 * 0 on success, -errno on failure.
380 */
381static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
382{
383 int *old = NULL, *new = NULL;
384 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
385 unsigned long flags;
386
387 new = pcpu_mem_alloc(new_size);
388 if (!new)
9f7dcf22 389 return -ENOMEM;
ccea34b5 390
833af842
TH
391 /* acquire pcpu_lock and switch to new area map */
392 spin_lock_irqsave(&pcpu_lock, flags);
393
394 if (new_alloc <= chunk->map_alloc)
395 goto out_unlock;
9f7dcf22 396
833af842 397 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
398 old = chunk->map;
399
400 memcpy(new, old, old_size);
9f7dcf22 401
9f7dcf22
TH
402 chunk->map_alloc = new_alloc;
403 chunk->map = new;
833af842
TH
404 new = NULL;
405
406out_unlock:
407 spin_unlock_irqrestore(&pcpu_lock, flags);
408
409 /*
410 * pcpu_mem_free() might end up calling vfree() which uses
411 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
412 */
413 pcpu_mem_free(old, old_size);
414 pcpu_mem_free(new, new_size);
415
9f7dcf22
TH
416 return 0;
417}
418
fbf59bc9
TH
419/**
420 * pcpu_split_block - split a map block
421 * @chunk: chunk of interest
422 * @i: index of map block to split
cae3aeb8
TH
423 * @head: head size in bytes (can be 0)
424 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
425 *
426 * Split the @i'th map block into two or three blocks. If @head is
427 * non-zero, @head bytes block is inserted before block @i moving it
428 * to @i+1 and reducing its size by @head bytes.
429 *
430 * If @tail is non-zero, the target block, which can be @i or @i+1
431 * depending on @head, is reduced by @tail bytes and @tail byte block
432 * is inserted after the target block.
433 *
25985edc 434 * @chunk->map must have enough free slots to accommodate the split.
ccea34b5
TH
435 *
436 * CONTEXT:
437 * pcpu_lock.
fbf59bc9 438 */
9f7dcf22
TH
439static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
440 int head, int tail)
fbf59bc9
TH
441{
442 int nr_extra = !!head + !!tail;
1880d93b 443
9f7dcf22 444 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 445
9f7dcf22 446 /* insert new subblocks */
fbf59bc9
TH
447 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
448 sizeof(chunk->map[0]) * (chunk->map_used - i));
449 chunk->map_used += nr_extra;
450
451 if (head) {
452 chunk->map[i + 1] = chunk->map[i] - head;
453 chunk->map[i++] = head;
454 }
455 if (tail) {
456 chunk->map[i++] -= tail;
457 chunk->map[i] = tail;
458 }
fbf59bc9
TH
459}
460
461/**
462 * pcpu_alloc_area - allocate area from a pcpu_chunk
463 * @chunk: chunk of interest
cae3aeb8 464 * @size: wanted size in bytes
fbf59bc9
TH
465 * @align: wanted align
466 *
467 * Try to allocate @size bytes area aligned at @align from @chunk.
468 * Note that this function only allocates the offset. It doesn't
469 * populate or map the area.
470 *
9f7dcf22
TH
471 * @chunk->map must have at least two free slots.
472 *
ccea34b5
TH
473 * CONTEXT:
474 * pcpu_lock.
475 *
fbf59bc9 476 * RETURNS:
9f7dcf22
TH
477 * Allocated offset in @chunk on success, -1 if no matching area is
478 * found.
fbf59bc9
TH
479 */
480static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
481{
482 int oslot = pcpu_chunk_slot(chunk);
483 int max_contig = 0;
484 int i, off;
485
fbf59bc9
TH
486 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
487 bool is_last = i + 1 == chunk->map_used;
488 int head, tail;
489
490 /* extra for alignment requirement */
491 head = ALIGN(off, align) - off;
492 BUG_ON(i == 0 && head != 0);
493
494 if (chunk->map[i] < 0)
495 continue;
496 if (chunk->map[i] < head + size) {
497 max_contig = max(chunk->map[i], max_contig);
498 continue;
499 }
500
501 /*
502 * If head is small or the previous block is free,
503 * merge'em. Note that 'small' is defined as smaller
504 * than sizeof(int), which is very small but isn't too
505 * uncommon for percpu allocations.
506 */
507 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
508 if (chunk->map[i - 1] > 0)
509 chunk->map[i - 1] += head;
510 else {
511 chunk->map[i - 1] -= head;
512 chunk->free_size -= head;
513 }
514 chunk->map[i] -= head;
515 off += head;
516 head = 0;
517 }
518
519 /* if tail is small, just keep it around */
520 tail = chunk->map[i] - head - size;
521 if (tail < sizeof(int))
522 tail = 0;
523
524 /* split if warranted */
525 if (head || tail) {
9f7dcf22 526 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
527 if (head) {
528 i++;
529 off += head;
530 max_contig = max(chunk->map[i - 1], max_contig);
531 }
532 if (tail)
533 max_contig = max(chunk->map[i + 1], max_contig);
534 }
535
536 /* update hint and mark allocated */
537 if (is_last)
538 chunk->contig_hint = max_contig; /* fully scanned */
539 else
540 chunk->contig_hint = max(chunk->contig_hint,
541 max_contig);
542
543 chunk->free_size -= chunk->map[i];
544 chunk->map[i] = -chunk->map[i];
545
546 pcpu_chunk_relocate(chunk, oslot);
547 return off;
548 }
549
550 chunk->contig_hint = max_contig; /* fully scanned */
551 pcpu_chunk_relocate(chunk, oslot);
552
9f7dcf22
TH
553 /* tell the upper layer that this chunk has no matching area */
554 return -1;
fbf59bc9
TH
555}
556
557/**
558 * pcpu_free_area - free area to a pcpu_chunk
559 * @chunk: chunk of interest
560 * @freeme: offset of area to free
561 *
562 * Free area starting from @freeme to @chunk. Note that this function
563 * only modifies the allocation map. It doesn't depopulate or unmap
564 * the area.
ccea34b5
TH
565 *
566 * CONTEXT:
567 * pcpu_lock.
fbf59bc9
TH
568 */
569static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
570{
571 int oslot = pcpu_chunk_slot(chunk);
572 int i, off;
573
574 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
575 if (off == freeme)
576 break;
577 BUG_ON(off != freeme);
578 BUG_ON(chunk->map[i] > 0);
579
580 chunk->map[i] = -chunk->map[i];
581 chunk->free_size += chunk->map[i];
582
583 /* merge with previous? */
584 if (i > 0 && chunk->map[i - 1] >= 0) {
585 chunk->map[i - 1] += chunk->map[i];
586 chunk->map_used--;
587 memmove(&chunk->map[i], &chunk->map[i + 1],
588 (chunk->map_used - i) * sizeof(chunk->map[0]));
589 i--;
590 }
591 /* merge with next? */
592 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
593 chunk->map[i] += chunk->map[i + 1];
594 chunk->map_used--;
595 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
596 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
597 }
598
599 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
600 pcpu_chunk_relocate(chunk, oslot);
601}
602
6081089f
TH
603static struct pcpu_chunk *pcpu_alloc_chunk(void)
604{
605 struct pcpu_chunk *chunk;
606
099a19d9 607 chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
6081089f
TH
608 if (!chunk)
609 return NULL;
610
611 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
612 if (!chunk->map) {
613 kfree(chunk);
614 return NULL;
615 }
616
617 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
618 chunk->map[chunk->map_used++] = pcpu_unit_size;
619
620 INIT_LIST_HEAD(&chunk->list);
621 chunk->free_size = pcpu_unit_size;
622 chunk->contig_hint = pcpu_unit_size;
623
624 return chunk;
625}
626
627static void pcpu_free_chunk(struct pcpu_chunk *chunk)
628{
629 if (!chunk)
630 return;
631 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
632 kfree(chunk);
633}
634
9f645532
TH
635/*
636 * Chunk management implementation.
637 *
638 * To allow different implementations, chunk alloc/free and
639 * [de]population are implemented in a separate file which is pulled
640 * into this file and compiled together. The following functions
641 * should be implemented.
642 *
643 * pcpu_populate_chunk - populate the specified range of a chunk
644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
645 * pcpu_create_chunk - create a new chunk
646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
647 * pcpu_addr_to_page - translate address to physical address
648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 649 */
9f645532
TH
650static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
651static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
652static struct pcpu_chunk *pcpu_create_chunk(void);
653static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
654static struct page *pcpu_addr_to_page(void *addr);
655static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 656
b0c9778b
TH
657#ifdef CONFIG_NEED_PER_CPU_KM
658#include "percpu-km.c"
659#else
9f645532 660#include "percpu-vm.c"
b0c9778b 661#endif
fbf59bc9 662
88999a89
TH
663/**
664 * pcpu_chunk_addr_search - determine chunk containing specified address
665 * @addr: address for which the chunk needs to be determined.
666 *
667 * RETURNS:
668 * The address of the found chunk.
669 */
670static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
671{
672 /* is it in the first chunk? */
673 if (pcpu_addr_in_first_chunk(addr)) {
674 /* is it in the reserved area? */
675 if (pcpu_addr_in_reserved_chunk(addr))
676 return pcpu_reserved_chunk;
677 return pcpu_first_chunk;
678 }
679
680 /*
681 * The address is relative to unit0 which might be unused and
682 * thus unmapped. Offset the address to the unit space of the
683 * current processor before looking it up in the vmalloc
684 * space. Note that any possible cpu id can be used here, so
685 * there's no need to worry about preemption or cpu hotplug.
686 */
687 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 688 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
689}
690
fbf59bc9 691/**
edcb4639 692 * pcpu_alloc - the percpu allocator
cae3aeb8 693 * @size: size of area to allocate in bytes
fbf59bc9 694 * @align: alignment of area (max PAGE_SIZE)
edcb4639 695 * @reserved: allocate from the reserved chunk if available
fbf59bc9 696 *
ccea34b5
TH
697 * Allocate percpu area of @size bytes aligned at @align.
698 *
699 * CONTEXT:
700 * Does GFP_KERNEL allocation.
fbf59bc9
TH
701 *
702 * RETURNS:
703 * Percpu pointer to the allocated area on success, NULL on failure.
704 */
43cf38eb 705static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 706{
f2badb0c 707 static int warn_limit = 10;
fbf59bc9 708 struct pcpu_chunk *chunk;
f2badb0c 709 const char *err;
833af842 710 int slot, off, new_alloc;
403a91b1 711 unsigned long flags;
fbf59bc9 712
8d408b4b 713 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
714 WARN(true, "illegal size (%zu) or align (%zu) for "
715 "percpu allocation\n", size, align);
716 return NULL;
717 }
718
ccea34b5 719 mutex_lock(&pcpu_alloc_mutex);
403a91b1 720 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 721
edcb4639
TH
722 /* serve reserved allocations from the reserved chunk if available */
723 if (reserved && pcpu_reserved_chunk) {
724 chunk = pcpu_reserved_chunk;
833af842
TH
725
726 if (size > chunk->contig_hint) {
727 err = "alloc from reserved chunk failed";
ccea34b5 728 goto fail_unlock;
f2badb0c 729 }
833af842
TH
730
731 while ((new_alloc = pcpu_need_to_extend(chunk))) {
732 spin_unlock_irqrestore(&pcpu_lock, flags);
733 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
734 err = "failed to extend area map of reserved chunk";
735 goto fail_unlock_mutex;
736 }
737 spin_lock_irqsave(&pcpu_lock, flags);
738 }
739
edcb4639
TH
740 off = pcpu_alloc_area(chunk, size, align);
741 if (off >= 0)
742 goto area_found;
833af842 743
f2badb0c 744 err = "alloc from reserved chunk failed";
ccea34b5 745 goto fail_unlock;
edcb4639
TH
746 }
747
ccea34b5 748restart:
edcb4639 749 /* search through normal chunks */
fbf59bc9
TH
750 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
751 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
752 if (size > chunk->contig_hint)
753 continue;
ccea34b5 754
833af842
TH
755 new_alloc = pcpu_need_to_extend(chunk);
756 if (new_alloc) {
757 spin_unlock_irqrestore(&pcpu_lock, flags);
758 if (pcpu_extend_area_map(chunk,
759 new_alloc) < 0) {
760 err = "failed to extend area map";
761 goto fail_unlock_mutex;
762 }
763 spin_lock_irqsave(&pcpu_lock, flags);
764 /*
765 * pcpu_lock has been dropped, need to
766 * restart cpu_slot list walking.
767 */
768 goto restart;
ccea34b5
TH
769 }
770
fbf59bc9
TH
771 off = pcpu_alloc_area(chunk, size, align);
772 if (off >= 0)
773 goto area_found;
fbf59bc9
TH
774 }
775 }
776
777 /* hmmm... no space left, create a new chunk */
403a91b1 778 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 779
6081089f 780 chunk = pcpu_create_chunk();
f2badb0c
TH
781 if (!chunk) {
782 err = "failed to allocate new chunk";
ccea34b5 783 goto fail_unlock_mutex;
f2badb0c 784 }
ccea34b5 785
403a91b1 786 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 787 pcpu_chunk_relocate(chunk, -1);
ccea34b5 788 goto restart;
fbf59bc9
TH
789
790area_found:
403a91b1 791 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 792
fbf59bc9
TH
793 /* populate, map and clear the area */
794 if (pcpu_populate_chunk(chunk, off, size)) {
403a91b1 795 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 796 pcpu_free_area(chunk, off);
f2badb0c 797 err = "failed to populate";
ccea34b5 798 goto fail_unlock;
fbf59bc9
TH
799 }
800
ccea34b5
TH
801 mutex_unlock(&pcpu_alloc_mutex);
802
bba174f5
TH
803 /* return address relative to base address */
804 return __addr_to_pcpu_ptr(chunk->base_addr + off);
ccea34b5
TH
805
806fail_unlock:
403a91b1 807 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5
TH
808fail_unlock_mutex:
809 mutex_unlock(&pcpu_alloc_mutex);
f2badb0c
TH
810 if (warn_limit) {
811 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
812 "%s\n", size, align, err);
813 dump_stack();
814 if (!--warn_limit)
815 pr_info("PERCPU: limit reached, disable warning\n");
816 }
ccea34b5 817 return NULL;
fbf59bc9 818}
edcb4639
TH
819
820/**
821 * __alloc_percpu - allocate dynamic percpu area
822 * @size: size of area to allocate in bytes
823 * @align: alignment of area (max PAGE_SIZE)
824 *
9329ba97
TH
825 * Allocate zero-filled percpu area of @size bytes aligned at @align.
826 * Might sleep. Might trigger writeouts.
edcb4639 827 *
ccea34b5
TH
828 * CONTEXT:
829 * Does GFP_KERNEL allocation.
830 *
edcb4639
TH
831 * RETURNS:
832 * Percpu pointer to the allocated area on success, NULL on failure.
833 */
43cf38eb 834void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
835{
836 return pcpu_alloc(size, align, false);
837}
fbf59bc9
TH
838EXPORT_SYMBOL_GPL(__alloc_percpu);
839
edcb4639
TH
840/**
841 * __alloc_reserved_percpu - allocate reserved percpu area
842 * @size: size of area to allocate in bytes
843 * @align: alignment of area (max PAGE_SIZE)
844 *
9329ba97
TH
845 * Allocate zero-filled percpu area of @size bytes aligned at @align
846 * from reserved percpu area if arch has set it up; otherwise,
847 * allocation is served from the same dynamic area. Might sleep.
848 * Might trigger writeouts.
edcb4639 849 *
ccea34b5
TH
850 * CONTEXT:
851 * Does GFP_KERNEL allocation.
852 *
edcb4639
TH
853 * RETURNS:
854 * Percpu pointer to the allocated area on success, NULL on failure.
855 */
43cf38eb 856void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
857{
858 return pcpu_alloc(size, align, true);
859}
860
a56dbddf
TH
861/**
862 * pcpu_reclaim - reclaim fully free chunks, workqueue function
863 * @work: unused
864 *
865 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
866 *
867 * CONTEXT:
868 * workqueue context.
a56dbddf
TH
869 */
870static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 871{
a56dbddf
TH
872 LIST_HEAD(todo);
873 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
874 struct pcpu_chunk *chunk, *next;
875
ccea34b5
TH
876 mutex_lock(&pcpu_alloc_mutex);
877 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
878
879 list_for_each_entry_safe(chunk, next, head, list) {
880 WARN_ON(chunk->immutable);
881
882 /* spare the first one */
883 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
884 continue;
885
a56dbddf
TH
886 list_move(&chunk->list, &todo);
887 }
888
ccea34b5 889 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
890
891 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 892 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
6081089f 893 pcpu_destroy_chunk(chunk);
a56dbddf 894 }
971f3918
TH
895
896 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
897}
898
899/**
900 * free_percpu - free percpu area
901 * @ptr: pointer to area to free
902 *
ccea34b5
TH
903 * Free percpu area @ptr.
904 *
905 * CONTEXT:
906 * Can be called from atomic context.
fbf59bc9 907 */
43cf38eb 908void free_percpu(void __percpu *ptr)
fbf59bc9 909{
129182e5 910 void *addr;
fbf59bc9 911 struct pcpu_chunk *chunk;
ccea34b5 912 unsigned long flags;
fbf59bc9
TH
913 int off;
914
915 if (!ptr)
916 return;
917
129182e5
AM
918 addr = __pcpu_ptr_to_addr(ptr);
919
ccea34b5 920 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
921
922 chunk = pcpu_chunk_addr_search(addr);
bba174f5 923 off = addr - chunk->base_addr;
fbf59bc9
TH
924
925 pcpu_free_area(chunk, off);
926
a56dbddf 927 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
928 if (chunk->free_size == pcpu_unit_size) {
929 struct pcpu_chunk *pos;
930
a56dbddf 931 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 932 if (pos != chunk) {
a56dbddf 933 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
934 break;
935 }
936 }
937
ccea34b5 938 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
939}
940EXPORT_SYMBOL_GPL(free_percpu);
941
10fad5e4
TH
942/**
943 * is_kernel_percpu_address - test whether address is from static percpu area
944 * @addr: address to test
945 *
946 * Test whether @addr belongs to in-kernel static percpu area. Module
947 * static percpu areas are not considered. For those, use
948 * is_module_percpu_address().
949 *
950 * RETURNS:
951 * %true if @addr is from in-kernel static percpu area, %false otherwise.
952 */
953bool is_kernel_percpu_address(unsigned long addr)
954{
bbddff05 955#ifdef CONFIG_SMP
10fad5e4
TH
956 const size_t static_size = __per_cpu_end - __per_cpu_start;
957 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
958 unsigned int cpu;
959
960 for_each_possible_cpu(cpu) {
961 void *start = per_cpu_ptr(base, cpu);
962
963 if ((void *)addr >= start && (void *)addr < start + static_size)
964 return true;
965 }
bbddff05
TH
966#endif
967 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
968 return false;
969}
970
3b034b0d
VG
971/**
972 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
973 * @addr: the address to be converted to physical address
974 *
975 * Given @addr which is dereferenceable address obtained via one of
976 * percpu access macros, this function translates it into its physical
977 * address. The caller is responsible for ensuring @addr stays valid
978 * until this function finishes.
979 *
980 * RETURNS:
981 * The physical address for @addr.
982 */
983phys_addr_t per_cpu_ptr_to_phys(void *addr)
984{
9983b6f0
TH
985 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
986 bool in_first_chunk = false;
987 unsigned long first_start, first_end;
988 unsigned int cpu;
989
990 /*
991 * The following test on first_start/end isn't strictly
992 * necessary but will speed up lookups of addresses which
993 * aren't in the first chunk.
994 */
995 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
996 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
997 pcpu_unit_pages);
998 if ((unsigned long)addr >= first_start &&
999 (unsigned long)addr < first_end) {
1000 for_each_possible_cpu(cpu) {
1001 void *start = per_cpu_ptr(base, cpu);
1002
1003 if (addr >= start && addr < start + pcpu_unit_size) {
1004 in_first_chunk = true;
1005 break;
1006 }
1007 }
1008 }
1009
1010 if (in_first_chunk) {
eac522ef 1011 if (!is_vmalloc_addr(addr))
020ec653
TH
1012 return __pa(addr);
1013 else
1014 return page_to_phys(vmalloc_to_page(addr));
1015 } else
9f645532 1016 return page_to_phys(pcpu_addr_to_page(addr));
3b034b0d
VG
1017}
1018
fbf59bc9 1019/**
fd1e8a1f
TH
1020 * pcpu_alloc_alloc_info - allocate percpu allocation info
1021 * @nr_groups: the number of groups
1022 * @nr_units: the number of units
1023 *
1024 * Allocate ai which is large enough for @nr_groups groups containing
1025 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1026 * cpu_map array which is long enough for @nr_units and filled with
1027 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1028 * pointer of other groups.
1029 *
1030 * RETURNS:
1031 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1032 * failure.
1033 */
1034struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1035 int nr_units)
1036{
1037 struct pcpu_alloc_info *ai;
1038 size_t base_size, ai_size;
1039 void *ptr;
1040 int unit;
1041
1042 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1043 __alignof__(ai->groups[0].cpu_map[0]));
1044 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1045
1046 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1047 if (!ptr)
1048 return NULL;
1049 ai = ptr;
1050 ptr += base_size;
1051
1052 ai->groups[0].cpu_map = ptr;
1053
1054 for (unit = 0; unit < nr_units; unit++)
1055 ai->groups[0].cpu_map[unit] = NR_CPUS;
1056
1057 ai->nr_groups = nr_groups;
1058 ai->__ai_size = PFN_ALIGN(ai_size);
1059
1060 return ai;
1061}
1062
1063/**
1064 * pcpu_free_alloc_info - free percpu allocation info
1065 * @ai: pcpu_alloc_info to free
1066 *
1067 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1068 */
1069void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1070{
1071 free_bootmem(__pa(ai), ai->__ai_size);
1072}
1073
fd1e8a1f
TH
1074/**
1075 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1076 * @lvl: loglevel
1077 * @ai: allocation info to dump
1078 *
1079 * Print out information about @ai using loglevel @lvl.
1080 */
1081static void pcpu_dump_alloc_info(const char *lvl,
1082 const struct pcpu_alloc_info *ai)
033e48fb 1083{
fd1e8a1f 1084 int group_width = 1, cpu_width = 1, width;
033e48fb 1085 char empty_str[] = "--------";
fd1e8a1f
TH
1086 int alloc = 0, alloc_end = 0;
1087 int group, v;
1088 int upa, apl; /* units per alloc, allocs per line */
1089
1090 v = ai->nr_groups;
1091 while (v /= 10)
1092 group_width++;
033e48fb 1093
fd1e8a1f 1094 v = num_possible_cpus();
033e48fb 1095 while (v /= 10)
fd1e8a1f
TH
1096 cpu_width++;
1097 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1098
fd1e8a1f
TH
1099 upa = ai->alloc_size / ai->unit_size;
1100 width = upa * (cpu_width + 1) + group_width + 3;
1101 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1102
fd1e8a1f
TH
1103 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1104 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1105 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1106
fd1e8a1f
TH
1107 for (group = 0; group < ai->nr_groups; group++) {
1108 const struct pcpu_group_info *gi = &ai->groups[group];
1109 int unit = 0, unit_end = 0;
1110
1111 BUG_ON(gi->nr_units % upa);
1112 for (alloc_end += gi->nr_units / upa;
1113 alloc < alloc_end; alloc++) {
1114 if (!(alloc % apl)) {
033e48fb 1115 printk("\n");
fd1e8a1f
TH
1116 printk("%spcpu-alloc: ", lvl);
1117 }
1118 printk("[%0*d] ", group_width, group);
1119
1120 for (unit_end += upa; unit < unit_end; unit++)
1121 if (gi->cpu_map[unit] != NR_CPUS)
1122 printk("%0*d ", cpu_width,
1123 gi->cpu_map[unit]);
1124 else
1125 printk("%s ", empty_str);
033e48fb 1126 }
033e48fb
TH
1127 }
1128 printk("\n");
1129}
033e48fb 1130
fbf59bc9 1131/**
8d408b4b 1132 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1133 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1134 * @base_addr: mapped address
8d408b4b
TH
1135 *
1136 * Initialize the first percpu chunk which contains the kernel static
1137 * perpcu area. This function is to be called from arch percpu area
38a6be52 1138 * setup path.
8d408b4b 1139 *
fd1e8a1f
TH
1140 * @ai contains all information necessary to initialize the first
1141 * chunk and prime the dynamic percpu allocator.
1142 *
1143 * @ai->static_size is the size of static percpu area.
1144 *
1145 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1146 * reserve after the static area in the first chunk. This reserves
1147 * the first chunk such that it's available only through reserved
1148 * percpu allocation. This is primarily used to serve module percpu
1149 * static areas on architectures where the addressing model has
1150 * limited offset range for symbol relocations to guarantee module
1151 * percpu symbols fall inside the relocatable range.
1152 *
fd1e8a1f
TH
1153 * @ai->dyn_size determines the number of bytes available for dynamic
1154 * allocation in the first chunk. The area between @ai->static_size +
1155 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1156 *
fd1e8a1f
TH
1157 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1158 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1159 * @ai->dyn_size.
8d408b4b 1160 *
fd1e8a1f
TH
1161 * @ai->atom_size is the allocation atom size and used as alignment
1162 * for vm areas.
8d408b4b 1163 *
fd1e8a1f
TH
1164 * @ai->alloc_size is the allocation size and always multiple of
1165 * @ai->atom_size. This is larger than @ai->atom_size if
1166 * @ai->unit_size is larger than @ai->atom_size.
1167 *
1168 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1169 * percpu areas. Units which should be colocated are put into the
1170 * same group. Dynamic VM areas will be allocated according to these
1171 * groupings. If @ai->nr_groups is zero, a single group containing
1172 * all units is assumed.
8d408b4b 1173 *
38a6be52
TH
1174 * The caller should have mapped the first chunk at @base_addr and
1175 * copied static data to each unit.
fbf59bc9 1176 *
edcb4639
TH
1177 * If the first chunk ends up with both reserved and dynamic areas, it
1178 * is served by two chunks - one to serve the core static and reserved
1179 * areas and the other for the dynamic area. They share the same vm
1180 * and page map but uses different area allocation map to stay away
1181 * from each other. The latter chunk is circulated in the chunk slots
1182 * and available for dynamic allocation like any other chunks.
1183 *
fbf59bc9 1184 * RETURNS:
fb435d52 1185 * 0 on success, -errno on failure.
fbf59bc9 1186 */
fb435d52
TH
1187int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1188 void *base_addr)
fbf59bc9 1189{
635b75fc 1190 static char cpus_buf[4096] __initdata;
099a19d9
TH
1191 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1192 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1193 size_t dyn_size = ai->dyn_size;
1194 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1195 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1196 unsigned long *group_offsets;
1197 size_t *group_sizes;
fb435d52 1198 unsigned long *unit_off;
fbf59bc9 1199 unsigned int cpu;
fd1e8a1f
TH
1200 int *unit_map;
1201 int group, unit, i;
fbf59bc9 1202
635b75fc
TH
1203 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1204
1205#define PCPU_SETUP_BUG_ON(cond) do { \
1206 if (unlikely(cond)) { \
1207 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1208 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1209 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1210 BUG(); \
1211 } \
1212} while (0)
1213
2f39e637 1214 /* sanity checks */
635b75fc 1215 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1216#ifdef CONFIG_SMP
635b75fc 1217 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1218 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1219#endif
635b75fc 1220 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1221 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1222 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1223 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1224 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1225 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1226 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1227
6563297c
TH
1228 /* process group information and build config tables accordingly */
1229 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1230 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
fd1e8a1f 1231 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
fb435d52 1232 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
2f39e637 1233
fd1e8a1f 1234 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1235 unit_map[cpu] = UINT_MAX;
fd1e8a1f 1236 pcpu_first_unit_cpu = NR_CPUS;
2f39e637 1237
fd1e8a1f
TH
1238 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1239 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1240
6563297c
TH
1241 group_offsets[group] = gi->base_offset;
1242 group_sizes[group] = gi->nr_units * ai->unit_size;
1243
fd1e8a1f
TH
1244 for (i = 0; i < gi->nr_units; i++) {
1245 cpu = gi->cpu_map[i];
1246 if (cpu == NR_CPUS)
1247 continue;
8d408b4b 1248
635b75fc
TH
1249 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1250 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1251 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1252
fd1e8a1f 1253 unit_map[cpu] = unit + i;
fb435d52
TH
1254 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1255
fd1e8a1f
TH
1256 if (pcpu_first_unit_cpu == NR_CPUS)
1257 pcpu_first_unit_cpu = cpu;
46b30ea9 1258 pcpu_last_unit_cpu = cpu;
fd1e8a1f 1259 }
2f39e637 1260 }
fd1e8a1f
TH
1261 pcpu_nr_units = unit;
1262
1263 for_each_possible_cpu(cpu)
635b75fc
TH
1264 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1265
1266 /* we're done parsing the input, undefine BUG macro and dump config */
1267#undef PCPU_SETUP_BUG_ON
bcbea798 1268 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1269
6563297c
TH
1270 pcpu_nr_groups = ai->nr_groups;
1271 pcpu_group_offsets = group_offsets;
1272 pcpu_group_sizes = group_sizes;
fd1e8a1f 1273 pcpu_unit_map = unit_map;
fb435d52 1274 pcpu_unit_offsets = unit_off;
2f39e637
TH
1275
1276 /* determine basic parameters */
fd1e8a1f 1277 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1278 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1279 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1280 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1281 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1282
d9b55eeb
TH
1283 /*
1284 * Allocate chunk slots. The additional last slot is for
1285 * empty chunks.
1286 */
1287 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1288 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1289 for (i = 0; i < pcpu_nr_slots; i++)
1290 INIT_LIST_HEAD(&pcpu_slot[i]);
1291
edcb4639
TH
1292 /*
1293 * Initialize static chunk. If reserved_size is zero, the
1294 * static chunk covers static area + dynamic allocation area
1295 * in the first chunk. If reserved_size is not zero, it
1296 * covers static area + reserved area (mostly used for module
1297 * static percpu allocation).
1298 */
2441d15c
TH
1299 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1300 INIT_LIST_HEAD(&schunk->list);
bba174f5 1301 schunk->base_addr = base_addr;
61ace7fa
TH
1302 schunk->map = smap;
1303 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1304 schunk->immutable = true;
ce3141a2 1305 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1306
fd1e8a1f
TH
1307 if (ai->reserved_size) {
1308 schunk->free_size = ai->reserved_size;
ae9e6bc9 1309 pcpu_reserved_chunk = schunk;
fd1e8a1f 1310 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1311 } else {
1312 schunk->free_size = dyn_size;
1313 dyn_size = 0; /* dynamic area covered */
1314 }
2441d15c 1315 schunk->contig_hint = schunk->free_size;
fbf59bc9 1316
fd1e8a1f 1317 schunk->map[schunk->map_used++] = -ai->static_size;
61ace7fa
TH
1318 if (schunk->free_size)
1319 schunk->map[schunk->map_used++] = schunk->free_size;
1320
edcb4639
TH
1321 /* init dynamic chunk if necessary */
1322 if (dyn_size) {
ce3141a2 1323 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639 1324 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1325 dchunk->base_addr = base_addr;
edcb4639
TH
1326 dchunk->map = dmap;
1327 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1328 dchunk->immutable = true;
ce3141a2 1329 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1330
1331 dchunk->contig_hint = dchunk->free_size = dyn_size;
1332 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1333 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1334 }
1335
2441d15c 1336 /* link the first chunk in */
ae9e6bc9
TH
1337 pcpu_first_chunk = dchunk ?: schunk;
1338 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1339
1340 /* we're done */
bba174f5 1341 pcpu_base_addr = base_addr;
fb435d52 1342 return 0;
fbf59bc9 1343}
66c3a757 1344
bbddff05
TH
1345#ifdef CONFIG_SMP
1346
f58dc01b
TH
1347const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1348 [PCPU_FC_AUTO] = "auto",
1349 [PCPU_FC_EMBED] = "embed",
1350 [PCPU_FC_PAGE] = "page",
f58dc01b 1351};
66c3a757 1352
f58dc01b 1353enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1354
f58dc01b
TH
1355static int __init percpu_alloc_setup(char *str)
1356{
1357 if (0)
1358 /* nada */;
1359#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1360 else if (!strcmp(str, "embed"))
1361 pcpu_chosen_fc = PCPU_FC_EMBED;
1362#endif
1363#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1364 else if (!strcmp(str, "page"))
1365 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1366#endif
1367 else
1368 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1369
f58dc01b 1370 return 0;
66c3a757 1371}
f58dc01b 1372early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1373
3c9a024f
TH
1374/*
1375 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1376 * Build it if needed by the arch config or the generic setup is going
1377 * to be used.
1378 */
08fc4580
TH
1379#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1380 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1381#define BUILD_EMBED_FIRST_CHUNK
1382#endif
1383
1384/* build pcpu_page_first_chunk() iff needed by the arch config */
1385#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1386#define BUILD_PAGE_FIRST_CHUNK
1387#endif
1388
1389/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1390#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1391/**
1392 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1393 * @reserved_size: the size of reserved percpu area in bytes
1394 * @dyn_size: minimum free size for dynamic allocation in bytes
1395 * @atom_size: allocation atom size
1396 * @cpu_distance_fn: callback to determine distance between cpus, optional
1397 *
1398 * This function determines grouping of units, their mappings to cpus
1399 * and other parameters considering needed percpu size, allocation
1400 * atom size and distances between CPUs.
1401 *
1402 * Groups are always mutliples of atom size and CPUs which are of
1403 * LOCAL_DISTANCE both ways are grouped together and share space for
1404 * units in the same group. The returned configuration is guaranteed
1405 * to have CPUs on different nodes on different groups and >=75% usage
1406 * of allocated virtual address space.
1407 *
1408 * RETURNS:
1409 * On success, pointer to the new allocation_info is returned. On
1410 * failure, ERR_PTR value is returned.
1411 */
1412static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1413 size_t reserved_size, size_t dyn_size,
1414 size_t atom_size,
1415 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1416{
1417 static int group_map[NR_CPUS] __initdata;
1418 static int group_cnt[NR_CPUS] __initdata;
1419 const size_t static_size = __per_cpu_end - __per_cpu_start;
1420 int nr_groups = 1, nr_units = 0;
1421 size_t size_sum, min_unit_size, alloc_size;
1422 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1423 int last_allocs, group, unit;
1424 unsigned int cpu, tcpu;
1425 struct pcpu_alloc_info *ai;
1426 unsigned int *cpu_map;
1427
1428 /* this function may be called multiple times */
1429 memset(group_map, 0, sizeof(group_map));
1430 memset(group_cnt, 0, sizeof(group_cnt));
1431
1432 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1433 size_sum = PFN_ALIGN(static_size + reserved_size +
1434 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1435 dyn_size = size_sum - static_size - reserved_size;
1436
1437 /*
1438 * Determine min_unit_size, alloc_size and max_upa such that
1439 * alloc_size is multiple of atom_size and is the smallest
25985edc 1440 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1441 * or larger than min_unit_size.
1442 */
1443 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1444
1445 alloc_size = roundup(min_unit_size, atom_size);
1446 upa = alloc_size / min_unit_size;
1447 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1448 upa--;
1449 max_upa = upa;
1450
1451 /* group cpus according to their proximity */
1452 for_each_possible_cpu(cpu) {
1453 group = 0;
1454 next_group:
1455 for_each_possible_cpu(tcpu) {
1456 if (cpu == tcpu)
1457 break;
1458 if (group_map[tcpu] == group && cpu_distance_fn &&
1459 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1460 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1461 group++;
1462 nr_groups = max(nr_groups, group + 1);
1463 goto next_group;
1464 }
1465 }
1466 group_map[cpu] = group;
1467 group_cnt[group]++;
1468 }
1469
1470 /*
1471 * Expand unit size until address space usage goes over 75%
1472 * and then as much as possible without using more address
1473 * space.
1474 */
1475 last_allocs = INT_MAX;
1476 for (upa = max_upa; upa; upa--) {
1477 int allocs = 0, wasted = 0;
1478
1479 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1480 continue;
1481
1482 for (group = 0; group < nr_groups; group++) {
1483 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1484 allocs += this_allocs;
1485 wasted += this_allocs * upa - group_cnt[group];
1486 }
1487
1488 /*
1489 * Don't accept if wastage is over 1/3. The
1490 * greater-than comparison ensures upa==1 always
1491 * passes the following check.
1492 */
1493 if (wasted > num_possible_cpus() / 3)
1494 continue;
1495
1496 /* and then don't consume more memory */
1497 if (allocs > last_allocs)
1498 break;
1499 last_allocs = allocs;
1500 best_upa = upa;
1501 }
1502 upa = best_upa;
1503
1504 /* allocate and fill alloc_info */
1505 for (group = 0; group < nr_groups; group++)
1506 nr_units += roundup(group_cnt[group], upa);
1507
1508 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1509 if (!ai)
1510 return ERR_PTR(-ENOMEM);
1511 cpu_map = ai->groups[0].cpu_map;
1512
1513 for (group = 0; group < nr_groups; group++) {
1514 ai->groups[group].cpu_map = cpu_map;
1515 cpu_map += roundup(group_cnt[group], upa);
1516 }
1517
1518 ai->static_size = static_size;
1519 ai->reserved_size = reserved_size;
1520 ai->dyn_size = dyn_size;
1521 ai->unit_size = alloc_size / upa;
1522 ai->atom_size = atom_size;
1523 ai->alloc_size = alloc_size;
1524
1525 for (group = 0, unit = 0; group_cnt[group]; group++) {
1526 struct pcpu_group_info *gi = &ai->groups[group];
1527
1528 /*
1529 * Initialize base_offset as if all groups are located
1530 * back-to-back. The caller should update this to
1531 * reflect actual allocation.
1532 */
1533 gi->base_offset = unit * ai->unit_size;
1534
1535 for_each_possible_cpu(cpu)
1536 if (group_map[cpu] == group)
1537 gi->cpu_map[gi->nr_units++] = cpu;
1538 gi->nr_units = roundup(gi->nr_units, upa);
1539 unit += gi->nr_units;
1540 }
1541 BUG_ON(unit != nr_units);
1542
1543 return ai;
1544}
1545#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1546
1547#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1548/**
1549 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1550 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1551 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1552 * @atom_size: allocation atom size
1553 * @cpu_distance_fn: callback to determine distance between cpus, optional
1554 * @alloc_fn: function to allocate percpu page
25985edc 1555 * @free_fn: function to free percpu page
66c3a757
TH
1556 *
1557 * This is a helper to ease setting up embedded first percpu chunk and
1558 * can be called where pcpu_setup_first_chunk() is expected.
1559 *
1560 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1561 * by calling @alloc_fn and used as-is without being mapped into
1562 * vmalloc area. Allocations are always whole multiples of @atom_size
1563 * aligned to @atom_size.
1564 *
1565 * This enables the first chunk to piggy back on the linear physical
1566 * mapping which often uses larger page size. Please note that this
1567 * can result in very sparse cpu->unit mapping on NUMA machines thus
1568 * requiring large vmalloc address space. Don't use this allocator if
1569 * vmalloc space is not orders of magnitude larger than distances
1570 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1571 *
4ba6ce25 1572 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1573 *
1574 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1575 * size, the leftover is returned using @free_fn.
66c3a757
TH
1576 *
1577 * RETURNS:
fb435d52 1578 * 0 on success, -errno on failure.
66c3a757 1579 */
4ba6ce25 1580int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1581 size_t atom_size,
1582 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1583 pcpu_fc_alloc_fn_t alloc_fn,
1584 pcpu_fc_free_fn_t free_fn)
66c3a757 1585{
c8826dd5
TH
1586 void *base = (void *)ULONG_MAX;
1587 void **areas = NULL;
fd1e8a1f 1588 struct pcpu_alloc_info *ai;
6ea529a2 1589 size_t size_sum, areas_size, max_distance;
c8826dd5 1590 int group, i, rc;
66c3a757 1591
c8826dd5
TH
1592 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1593 cpu_distance_fn);
fd1e8a1f
TH
1594 if (IS_ERR(ai))
1595 return PTR_ERR(ai);
66c3a757 1596
fd1e8a1f 1597 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1598 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1599
c8826dd5
TH
1600 areas = alloc_bootmem_nopanic(areas_size);
1601 if (!areas) {
fb435d52 1602 rc = -ENOMEM;
c8826dd5 1603 goto out_free;
fa8a7094 1604 }
66c3a757 1605
c8826dd5
TH
1606 /* allocate, copy and determine base address */
1607 for (group = 0; group < ai->nr_groups; group++) {
1608 struct pcpu_group_info *gi = &ai->groups[group];
1609 unsigned int cpu = NR_CPUS;
1610 void *ptr;
1611
1612 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1613 cpu = gi->cpu_map[i];
1614 BUG_ON(cpu == NR_CPUS);
1615
1616 /* allocate space for the whole group */
1617 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1618 if (!ptr) {
1619 rc = -ENOMEM;
1620 goto out_free_areas;
1621 }
1622 areas[group] = ptr;
fd1e8a1f 1623
c8826dd5
TH
1624 base = min(ptr, base);
1625
1626 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1627 if (gi->cpu_map[i] == NR_CPUS) {
1628 /* unused unit, free whole */
1629 free_fn(ptr, ai->unit_size);
1630 continue;
1631 }
1632 /* copy and return the unused part */
1633 memcpy(ptr, __per_cpu_load, ai->static_size);
1634 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1635 }
fa8a7094 1636 }
66c3a757 1637
c8826dd5 1638 /* base address is now known, determine group base offsets */
6ea529a2
TH
1639 max_distance = 0;
1640 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1641 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1642 max_distance = max_t(size_t, max_distance,
1643 ai->groups[group].base_offset);
6ea529a2
TH
1644 }
1645 max_distance += ai->unit_size;
1646
1647 /* warn if maximum distance is further than 75% of vmalloc space */
1648 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1a0c3298 1649 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06
MF
1650 "space 0x%lx\n", max_distance,
1651 (unsigned long)(VMALLOC_END - VMALLOC_START));
6ea529a2
TH
1652#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1653 /* and fail if we have fallback */
1654 rc = -EINVAL;
1655 goto out_free;
1656#endif
1657 }
c8826dd5 1658
004018e2 1659 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1660 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1661 ai->dyn_size, ai->unit_size);
d4b95f80 1662
fb435d52 1663 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1664 goto out_free;
1665
1666out_free_areas:
1667 for (group = 0; group < ai->nr_groups; group++)
1668 free_fn(areas[group],
1669 ai->groups[group].nr_units * ai->unit_size);
1670out_free:
fd1e8a1f 1671 pcpu_free_alloc_info(ai);
c8826dd5
TH
1672 if (areas)
1673 free_bootmem(__pa(areas), areas_size);
fb435d52 1674 return rc;
d4b95f80 1675}
3c9a024f 1676#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1677
3c9a024f 1678#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1679/**
00ae4064 1680 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1681 * @reserved_size: the size of reserved percpu area in bytes
1682 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1683 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1684 * @populate_pte_fn: function to populate pte
1685 *
00ae4064
TH
1686 * This is a helper to ease setting up page-remapped first percpu
1687 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1688 *
1689 * This is the basic allocator. Static percpu area is allocated
1690 * page-by-page into vmalloc area.
1691 *
1692 * RETURNS:
fb435d52 1693 * 0 on success, -errno on failure.
d4b95f80 1694 */
fb435d52
TH
1695int __init pcpu_page_first_chunk(size_t reserved_size,
1696 pcpu_fc_alloc_fn_t alloc_fn,
1697 pcpu_fc_free_fn_t free_fn,
1698 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1699{
8f05a6a6 1700 static struct vm_struct vm;
fd1e8a1f 1701 struct pcpu_alloc_info *ai;
00ae4064 1702 char psize_str[16];
ce3141a2 1703 int unit_pages;
d4b95f80 1704 size_t pages_size;
ce3141a2 1705 struct page **pages;
fb435d52 1706 int unit, i, j, rc;
d4b95f80 1707
00ae4064
TH
1708 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1709
4ba6ce25 1710 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1711 if (IS_ERR(ai))
1712 return PTR_ERR(ai);
1713 BUG_ON(ai->nr_groups != 1);
1714 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1715
1716 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1717
1718 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1719 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1720 sizeof(pages[0]));
ce3141a2 1721 pages = alloc_bootmem(pages_size);
d4b95f80 1722
8f05a6a6 1723 /* allocate pages */
d4b95f80 1724 j = 0;
fd1e8a1f 1725 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1726 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1727 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1728 void *ptr;
1729
3cbc8565 1730 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1731 if (!ptr) {
00ae4064
TH
1732 pr_warning("PERCPU: failed to allocate %s page "
1733 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1734 goto enomem;
1735 }
ce3141a2 1736 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1737 }
1738
8f05a6a6
TH
1739 /* allocate vm area, map the pages and copy static data */
1740 vm.flags = VM_ALLOC;
fd1e8a1f 1741 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1742 vm_area_register_early(&vm, PAGE_SIZE);
1743
fd1e8a1f 1744 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1745 unsigned long unit_addr =
fd1e8a1f 1746 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1747
ce3141a2 1748 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1749 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1750
1751 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1752 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1753 unit_pages);
1754 if (rc < 0)
1755 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1756
8f05a6a6
TH
1757 /*
1758 * FIXME: Archs with virtual cache should flush local
1759 * cache for the linear mapping here - something
1760 * equivalent to flush_cache_vmap() on the local cpu.
1761 * flush_cache_vmap() can't be used as most supporting
1762 * data structures are not set up yet.
1763 */
1764
1765 /* copy static data */
fd1e8a1f 1766 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1767 }
1768
1769 /* we're ready, commit */
1d9d3257 1770 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1771 unit_pages, psize_str, vm.addr, ai->static_size,
1772 ai->reserved_size, ai->dyn_size);
d4b95f80 1773
fb435d52 1774 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1775 goto out_free_ar;
1776
1777enomem:
1778 while (--j >= 0)
ce3141a2 1779 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1780 rc = -ENOMEM;
d4b95f80 1781out_free_ar:
ce3141a2 1782 free_bootmem(__pa(pages), pages_size);
fd1e8a1f 1783 pcpu_free_alloc_info(ai);
fb435d52 1784 return rc;
d4b95f80 1785}
3c9a024f 1786#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1787
bbddff05 1788#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1789/*
bbddff05 1790 * Generic SMP percpu area setup.
e74e3962
TH
1791 *
1792 * The embedding helper is used because its behavior closely resembles
1793 * the original non-dynamic generic percpu area setup. This is
1794 * important because many archs have addressing restrictions and might
1795 * fail if the percpu area is located far away from the previous
1796 * location. As an added bonus, in non-NUMA cases, embedding is
1797 * generally a good idea TLB-wise because percpu area can piggy back
1798 * on the physical linear memory mapping which uses large page
1799 * mappings on applicable archs.
1800 */
e74e3962
TH
1801unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1802EXPORT_SYMBOL(__per_cpu_offset);
1803
c8826dd5
TH
1804static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1805 size_t align)
1806{
1807 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1808}
66c3a757 1809
c8826dd5
TH
1810static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1811{
1812 free_bootmem(__pa(ptr), size);
1813}
1814
e74e3962
TH
1815void __init setup_per_cpu_areas(void)
1816{
e74e3962
TH
1817 unsigned long delta;
1818 unsigned int cpu;
fb435d52 1819 int rc;
e74e3962
TH
1820
1821 /*
1822 * Always reserve area for module percpu variables. That's
1823 * what the legacy allocator did.
1824 */
fb435d52 1825 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1826 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1827 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1828 if (rc < 0)
bbddff05 1829 panic("Failed to initialize percpu areas.");
e74e3962
TH
1830
1831 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1832 for_each_possible_cpu(cpu)
fb435d52 1833 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1834}
bbddff05
TH
1835#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1836
1837#else /* CONFIG_SMP */
1838
1839/*
1840 * UP percpu area setup.
1841 *
1842 * UP always uses km-based percpu allocator with identity mapping.
1843 * Static percpu variables are indistinguishable from the usual static
1844 * variables and don't require any special preparation.
1845 */
1846void __init setup_per_cpu_areas(void)
1847{
1848 const size_t unit_size =
1849 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1850 PERCPU_DYNAMIC_RESERVE));
1851 struct pcpu_alloc_info *ai;
1852 void *fc;
1853
1854 ai = pcpu_alloc_alloc_info(1, 1);
1855 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1856 if (!ai || !fc)
1857 panic("Failed to allocate memory for percpu areas.");
1858
1859 ai->dyn_size = unit_size;
1860 ai->unit_size = unit_size;
1861 ai->atom_size = unit_size;
1862 ai->alloc_size = unit_size;
1863 ai->groups[0].nr_units = 1;
1864 ai->groups[0].cpu_map[0] = 0;
1865
1866 if (pcpu_setup_first_chunk(ai, fc) < 0)
1867 panic("Failed to initialize percpu areas.");
1868}
1869
1870#endif /* CONFIG_SMP */
099a19d9
TH
1871
1872/*
1873 * First and reserved chunks are initialized with temporary allocation
1874 * map in initdata so that they can be used before slab is online.
1875 * This function is called after slab is brought up and replaces those
1876 * with properly allocated maps.
1877 */
1878void __init percpu_init_late(void)
1879{
1880 struct pcpu_chunk *target_chunks[] =
1881 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1882 struct pcpu_chunk *chunk;
1883 unsigned long flags;
1884 int i;
1885
1886 for (i = 0; (chunk = target_chunks[i]); i++) {
1887 int *map;
1888 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1889
1890 BUILD_BUG_ON(size > PAGE_SIZE);
1891
1892 map = pcpu_mem_alloc(size);
1893 BUG_ON(!map);
1894
1895 spin_lock_irqsave(&pcpu_lock, flags);
1896 memcpy(map, chunk->map, size);
1897 chunk->map = map;
1898 spin_unlock_irqrestore(&pcpu_lock, flags);
1899 }
1900}