]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: setup_first_chunk enforce dynamic region must exist
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
148 * chunk and serves it for reserved allocations. The amount of
149 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
150 * area doesn't exist, the following variables contain NULL and 0
151 * respectively.
152 */
8fa3ed80 153struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
1328710b 154static int pcpu_reserved_chunk_limit __ro_after_init;
edcb4639 155
8fa3ed80 156DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 157static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 158
8fa3ed80 159struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 160
4f996e23
TH
161/* chunks which need their map areas extended, protected by pcpu_lock */
162static LIST_HEAD(pcpu_map_extend_chunks);
163
b539b87f
TH
164/*
165 * The number of empty populated pages, protected by pcpu_lock. The
166 * reserved chunk doesn't contribute to the count.
167 */
6b9b6f39 168int pcpu_nr_empty_pop_pages;
b539b87f 169
1a4d7607
TH
170/*
171 * Balance work is used to populate or destroy chunks asynchronously. We
172 * try to keep the number of populated free pages between
173 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
174 * empty chunk.
175 */
fe6bd8c3
TH
176static void pcpu_balance_workfn(struct work_struct *work);
177static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
178static bool pcpu_async_enabled __read_mostly;
179static bool pcpu_atomic_alloc_failed;
180
181static void pcpu_schedule_balance_work(void)
182{
183 if (pcpu_async_enabled)
184 schedule_work(&pcpu_balance_work);
185}
a56dbddf 186
020ec653
TH
187static bool pcpu_addr_in_first_chunk(void *addr)
188{
189 void *first_start = pcpu_first_chunk->base_addr;
190
191 return addr >= first_start && addr < first_start + pcpu_unit_size;
192}
193
194static bool pcpu_addr_in_reserved_chunk(void *addr)
195{
196 void *first_start = pcpu_first_chunk->base_addr;
197
198 return addr >= first_start &&
199 addr < first_start + pcpu_reserved_chunk_limit;
200}
201
d9b55eeb 202static int __pcpu_size_to_slot(int size)
fbf59bc9 203{
cae3aeb8 204 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
205 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206}
207
d9b55eeb
TH
208static int pcpu_size_to_slot(int size)
209{
210 if (size == pcpu_unit_size)
211 return pcpu_nr_slots - 1;
212 return __pcpu_size_to_slot(size);
213}
214
fbf59bc9
TH
215static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
216{
217 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
218 return 0;
219
220 return pcpu_size_to_slot(chunk->free_size);
221}
222
88999a89
TH
223/* set the pointer to a chunk in a page struct */
224static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
225{
226 page->index = (unsigned long)pcpu;
227}
228
229/* obtain pointer to a chunk from a page struct */
230static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
231{
232 return (struct pcpu_chunk *)page->index;
233}
234
235static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 236{
2f39e637 237 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
238}
239
9983b6f0
TH
240static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
241 unsigned int cpu, int page_idx)
fbf59bc9 242{
bba174f5 243 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 244 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
245}
246
88999a89
TH
247static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
248 int *rs, int *re, int end)
ce3141a2
TH
249{
250 *rs = find_next_zero_bit(chunk->populated, end, *rs);
251 *re = find_next_bit(chunk->populated, end, *rs + 1);
252}
253
88999a89
TH
254static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
255 int *rs, int *re, int end)
ce3141a2
TH
256{
257 *rs = find_next_bit(chunk->populated, end, *rs);
258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259}
260
261/*
262 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 263 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
264 * be integer variables and will be set to start and end page index of
265 * the current region.
266 */
267#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271
272#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276
fbf59bc9 277/**
90459ce0 278 * pcpu_mem_zalloc - allocate memory
1880d93b 279 * @size: bytes to allocate
fbf59bc9 280 *
1880d93b 281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 282 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 283 * memory is always zeroed.
fbf59bc9 284 *
ccea34b5
TH
285 * CONTEXT:
286 * Does GFP_KERNEL allocation.
287 *
fbf59bc9 288 * RETURNS:
1880d93b 289 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 290 */
90459ce0 291static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 292{
099a19d9
TH
293 if (WARN_ON_ONCE(!slab_is_available()))
294 return NULL;
295
1880d93b
TH
296 if (size <= PAGE_SIZE)
297 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
298 else
299 return vzalloc(size);
1880d93b 300}
fbf59bc9 301
1880d93b
TH
302/**
303 * pcpu_mem_free - free memory
304 * @ptr: memory to free
1880d93b 305 *
90459ce0 306 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 307 */
1d5cfdb0 308static void pcpu_mem_free(void *ptr)
1880d93b 309{
1d5cfdb0 310 kvfree(ptr);
fbf59bc9
TH
311}
312
b539b87f
TH
313/**
314 * pcpu_count_occupied_pages - count the number of pages an area occupies
315 * @chunk: chunk of interest
316 * @i: index of the area in question
317 *
318 * Count the number of pages chunk's @i'th area occupies. When the area's
319 * start and/or end address isn't aligned to page boundary, the straddled
320 * page is included in the count iff the rest of the page is free.
321 */
322static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
323{
324 int off = chunk->map[i] & ~1;
325 int end = chunk->map[i + 1] & ~1;
326
327 if (!PAGE_ALIGNED(off) && i > 0) {
328 int prev = chunk->map[i - 1];
329
330 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
331 off = round_down(off, PAGE_SIZE);
332 }
333
334 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
335 int next = chunk->map[i + 1];
336 int nend = chunk->map[i + 2] & ~1;
337
338 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
339 end = round_up(end, PAGE_SIZE);
340 }
341
342 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
343}
344
fbf59bc9
TH
345/**
346 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
347 * @chunk: chunk of interest
348 * @oslot: the previous slot it was on
349 *
350 * This function is called after an allocation or free changed @chunk.
351 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
352 * moved to the slot. Note that the reserved chunk is never put on
353 * chunk slots.
ccea34b5
TH
354 *
355 * CONTEXT:
356 * pcpu_lock.
fbf59bc9
TH
357 */
358static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
359{
360 int nslot = pcpu_chunk_slot(chunk);
361
edcb4639 362 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
363 if (oslot < nslot)
364 list_move(&chunk->list, &pcpu_slot[nslot]);
365 else
366 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
367 }
368}
369
9f7dcf22 370/**
833af842
TH
371 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
372 * @chunk: chunk of interest
9c824b6a 373 * @is_atomic: the allocation context
9f7dcf22 374 *
9c824b6a
TH
375 * Determine whether area map of @chunk needs to be extended. If
376 * @is_atomic, only the amount necessary for a new allocation is
377 * considered; however, async extension is scheduled if the left amount is
378 * low. If !@is_atomic, it aims for more empty space. Combined, this
379 * ensures that the map is likely to have enough available space to
380 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 381 *
ccea34b5 382 * CONTEXT:
833af842 383 * pcpu_lock.
ccea34b5 384 *
9f7dcf22 385 * RETURNS:
833af842
TH
386 * New target map allocation length if extension is necessary, 0
387 * otherwise.
9f7dcf22 388 */
9c824b6a 389static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 390{
9c824b6a
TH
391 int margin, new_alloc;
392
4f996e23
TH
393 lockdep_assert_held(&pcpu_lock);
394
9c824b6a
TH
395 if (is_atomic) {
396 margin = 3;
9f7dcf22 397
9c824b6a 398 if (chunk->map_alloc <
4f996e23
TH
399 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
400 if (list_empty(&chunk->map_extend_list)) {
401 list_add_tail(&chunk->map_extend_list,
402 &pcpu_map_extend_chunks);
403 pcpu_schedule_balance_work();
404 }
405 }
9c824b6a
TH
406 } else {
407 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
408 }
409
410 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
411 return 0;
412
413 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 414 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
415 new_alloc *= 2;
416
833af842
TH
417 return new_alloc;
418}
419
420/**
421 * pcpu_extend_area_map - extend area map of a chunk
422 * @chunk: chunk of interest
423 * @new_alloc: new target allocation length of the area map
424 *
425 * Extend area map of @chunk to have @new_alloc entries.
426 *
427 * CONTEXT:
428 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
429 *
430 * RETURNS:
431 * 0 on success, -errno on failure.
432 */
433static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
434{
435 int *old = NULL, *new = NULL;
436 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
437 unsigned long flags;
438
6710e594
TH
439 lockdep_assert_held(&pcpu_alloc_mutex);
440
90459ce0 441 new = pcpu_mem_zalloc(new_size);
833af842 442 if (!new)
9f7dcf22 443 return -ENOMEM;
ccea34b5 444
833af842
TH
445 /* acquire pcpu_lock and switch to new area map */
446 spin_lock_irqsave(&pcpu_lock, flags);
447
448 if (new_alloc <= chunk->map_alloc)
449 goto out_unlock;
9f7dcf22 450
833af842 451 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
452 old = chunk->map;
453
454 memcpy(new, old, old_size);
9f7dcf22 455
9f7dcf22
TH
456 chunk->map_alloc = new_alloc;
457 chunk->map = new;
833af842
TH
458 new = NULL;
459
460out_unlock:
461 spin_unlock_irqrestore(&pcpu_lock, flags);
462
463 /*
464 * pcpu_mem_free() might end up calling vfree() which uses
465 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
466 */
1d5cfdb0
TH
467 pcpu_mem_free(old);
468 pcpu_mem_free(new);
833af842 469
9f7dcf22
TH
470 return 0;
471}
472
a16037c8
TH
473/**
474 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
475 * @chunk: chunk the candidate area belongs to
476 * @off: the offset to the start of the candidate area
477 * @this_size: the size of the candidate area
478 * @size: the size of the target allocation
479 * @align: the alignment of the target allocation
480 * @pop_only: only allocate from already populated region
481 *
482 * We're trying to allocate @size bytes aligned at @align. @chunk's area
483 * at @off sized @this_size is a candidate. This function determines
484 * whether the target allocation fits in the candidate area and returns the
485 * number of bytes to pad after @off. If the target area doesn't fit, -1
486 * is returned.
487 *
488 * If @pop_only is %true, this function only considers the already
489 * populated part of the candidate area.
490 */
491static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
492 int size, int align, bool pop_only)
493{
494 int cand_off = off;
495
496 while (true) {
497 int head = ALIGN(cand_off, align) - off;
498 int page_start, page_end, rs, re;
499
500 if (this_size < head + size)
501 return -1;
502
503 if (!pop_only)
504 return head;
505
506 /*
507 * If the first unpopulated page is beyond the end of the
508 * allocation, the whole allocation is populated;
509 * otherwise, retry from the end of the unpopulated area.
510 */
511 page_start = PFN_DOWN(head + off);
512 page_end = PFN_UP(head + off + size);
513
514 rs = page_start;
515 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
516 if (rs >= page_end)
517 return head;
518 cand_off = re * PAGE_SIZE;
519 }
520}
521
fbf59bc9
TH
522/**
523 * pcpu_alloc_area - allocate area from a pcpu_chunk
524 * @chunk: chunk of interest
cae3aeb8 525 * @size: wanted size in bytes
fbf59bc9 526 * @align: wanted align
a16037c8 527 * @pop_only: allocate only from the populated area
b539b87f 528 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
529 *
530 * Try to allocate @size bytes area aligned at @align from @chunk.
531 * Note that this function only allocates the offset. It doesn't
532 * populate or map the area.
533 *
9f7dcf22
TH
534 * @chunk->map must have at least two free slots.
535 *
ccea34b5
TH
536 * CONTEXT:
537 * pcpu_lock.
538 *
fbf59bc9 539 * RETURNS:
9f7dcf22
TH
540 * Allocated offset in @chunk on success, -1 if no matching area is
541 * found.
fbf59bc9 542 */
a16037c8 543static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 544 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
545{
546 int oslot = pcpu_chunk_slot(chunk);
547 int max_contig = 0;
548 int i, off;
3d331ad7 549 bool seen_free = false;
723ad1d9 550 int *p;
fbf59bc9 551
3d331ad7 552 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 553 int head, tail;
723ad1d9
AV
554 int this_size;
555
556 off = *p;
557 if (off & 1)
558 continue;
fbf59bc9 559
723ad1d9 560 this_size = (p[1] & ~1) - off;
a16037c8
TH
561
562 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
563 pop_only);
564 if (head < 0) {
3d331ad7
AV
565 if (!seen_free) {
566 chunk->first_free = i;
567 seen_free = true;
568 }
723ad1d9 569 max_contig = max(this_size, max_contig);
fbf59bc9
TH
570 continue;
571 }
572
573 /*
574 * If head is small or the previous block is free,
575 * merge'em. Note that 'small' is defined as smaller
576 * than sizeof(int), which is very small but isn't too
577 * uncommon for percpu allocations.
578 */
723ad1d9 579 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 580 *p = off += head;
723ad1d9 581 if (p[-1] & 1)
fbf59bc9 582 chunk->free_size -= head;
21ddfd38
JZ
583 else
584 max_contig = max(*p - p[-1], max_contig);
723ad1d9 585 this_size -= head;
fbf59bc9
TH
586 head = 0;
587 }
588
589 /* if tail is small, just keep it around */
723ad1d9
AV
590 tail = this_size - head - size;
591 if (tail < sizeof(int)) {
fbf59bc9 592 tail = 0;
723ad1d9
AV
593 size = this_size - head;
594 }
fbf59bc9
TH
595
596 /* split if warranted */
597 if (head || tail) {
706c16f2
AV
598 int nr_extra = !!head + !!tail;
599
600 /* insert new subblocks */
723ad1d9 601 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
602 sizeof(chunk->map[0]) * (chunk->map_used - i));
603 chunk->map_used += nr_extra;
604
fbf59bc9 605 if (head) {
3d331ad7
AV
606 if (!seen_free) {
607 chunk->first_free = i;
608 seen_free = true;
609 }
723ad1d9
AV
610 *++p = off += head;
611 ++i;
706c16f2
AV
612 max_contig = max(head, max_contig);
613 }
614 if (tail) {
723ad1d9 615 p[1] = off + size;
706c16f2 616 max_contig = max(tail, max_contig);
fbf59bc9 617 }
fbf59bc9
TH
618 }
619
3d331ad7
AV
620 if (!seen_free)
621 chunk->first_free = i + 1;
622
fbf59bc9 623 /* update hint and mark allocated */
723ad1d9 624 if (i + 1 == chunk->map_used)
fbf59bc9
TH
625 chunk->contig_hint = max_contig; /* fully scanned */
626 else
627 chunk->contig_hint = max(chunk->contig_hint,
628 max_contig);
629
723ad1d9
AV
630 chunk->free_size -= size;
631 *p |= 1;
fbf59bc9 632
b539b87f 633 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
634 pcpu_chunk_relocate(chunk, oslot);
635 return off;
636 }
637
638 chunk->contig_hint = max_contig; /* fully scanned */
639 pcpu_chunk_relocate(chunk, oslot);
640
9f7dcf22
TH
641 /* tell the upper layer that this chunk has no matching area */
642 return -1;
fbf59bc9
TH
643}
644
645/**
646 * pcpu_free_area - free area to a pcpu_chunk
647 * @chunk: chunk of interest
648 * @freeme: offset of area to free
b539b87f 649 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
650 *
651 * Free area starting from @freeme to @chunk. Note that this function
652 * only modifies the allocation map. It doesn't depopulate or unmap
653 * the area.
ccea34b5
TH
654 *
655 * CONTEXT:
656 * pcpu_lock.
fbf59bc9 657 */
b539b87f
TH
658static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
659 int *occ_pages_p)
fbf59bc9
TH
660{
661 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
662 int off = 0;
663 unsigned i, j;
664 int to_free = 0;
665 int *p;
666
5ccd30e4 667 lockdep_assert_held(&pcpu_lock);
30a5b536 668 pcpu_stats_area_dealloc(chunk);
5ccd30e4 669
723ad1d9
AV
670 freeme |= 1; /* we are searching for <given offset, in use> pair */
671
672 i = 0;
673 j = chunk->map_used;
674 while (i != j) {
675 unsigned k = (i + j) / 2;
676 off = chunk->map[k];
677 if (off < freeme)
678 i = k + 1;
679 else if (off > freeme)
680 j = k;
681 else
682 i = j = k;
683 }
fbf59bc9 684 BUG_ON(off != freeme);
fbf59bc9 685
3d331ad7
AV
686 if (i < chunk->first_free)
687 chunk->first_free = i;
688
723ad1d9
AV
689 p = chunk->map + i;
690 *p = off &= ~1;
691 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 692
b539b87f
TH
693 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
694
723ad1d9
AV
695 /* merge with next? */
696 if (!(p[1] & 1))
697 to_free++;
fbf59bc9 698 /* merge with previous? */
723ad1d9
AV
699 if (i > 0 && !(p[-1] & 1)) {
700 to_free++;
fbf59bc9 701 i--;
723ad1d9 702 p--;
fbf59bc9 703 }
723ad1d9
AV
704 if (to_free) {
705 chunk->map_used -= to_free;
706 memmove(p + 1, p + 1 + to_free,
707 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
708 }
709
723ad1d9 710 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
711 pcpu_chunk_relocate(chunk, oslot);
712}
713
6081089f
TH
714static struct pcpu_chunk *pcpu_alloc_chunk(void)
715{
716 struct pcpu_chunk *chunk;
717
90459ce0 718 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
719 if (!chunk)
720 return NULL;
721
90459ce0
BL
722 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
723 sizeof(chunk->map[0]));
6081089f 724 if (!chunk->map) {
1d5cfdb0 725 pcpu_mem_free(chunk);
6081089f
TH
726 return NULL;
727 }
728
729 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
730 chunk->map[0] = 0;
731 chunk->map[1] = pcpu_unit_size | 1;
732 chunk->map_used = 1;
30a5b536 733 chunk->has_reserved = false;
6081089f
TH
734
735 INIT_LIST_HEAD(&chunk->list);
4f996e23 736 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
737 chunk->free_size = pcpu_unit_size;
738 chunk->contig_hint = pcpu_unit_size;
739
740 return chunk;
741}
742
743static void pcpu_free_chunk(struct pcpu_chunk *chunk)
744{
745 if (!chunk)
746 return;
1d5cfdb0
TH
747 pcpu_mem_free(chunk->map);
748 pcpu_mem_free(chunk);
6081089f
TH
749}
750
b539b87f
TH
751/**
752 * pcpu_chunk_populated - post-population bookkeeping
753 * @chunk: pcpu_chunk which got populated
754 * @page_start: the start page
755 * @page_end: the end page
756 *
757 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
758 * the bookkeeping information accordingly. Must be called after each
759 * successful population.
760 */
761static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
762 int page_start, int page_end)
763{
764 int nr = page_end - page_start;
765
766 lockdep_assert_held(&pcpu_lock);
767
768 bitmap_set(chunk->populated, page_start, nr);
769 chunk->nr_populated += nr;
770 pcpu_nr_empty_pop_pages += nr;
771}
772
773/**
774 * pcpu_chunk_depopulated - post-depopulation bookkeeping
775 * @chunk: pcpu_chunk which got depopulated
776 * @page_start: the start page
777 * @page_end: the end page
778 *
779 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
780 * Update the bookkeeping information accordingly. Must be called after
781 * each successful depopulation.
782 */
783static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
784 int page_start, int page_end)
785{
786 int nr = page_end - page_start;
787
788 lockdep_assert_held(&pcpu_lock);
789
790 bitmap_clear(chunk->populated, page_start, nr);
791 chunk->nr_populated -= nr;
792 pcpu_nr_empty_pop_pages -= nr;
793}
794
9f645532
TH
795/*
796 * Chunk management implementation.
797 *
798 * To allow different implementations, chunk alloc/free and
799 * [de]population are implemented in a separate file which is pulled
800 * into this file and compiled together. The following functions
801 * should be implemented.
802 *
803 * pcpu_populate_chunk - populate the specified range of a chunk
804 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
805 * pcpu_create_chunk - create a new chunk
806 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
807 * pcpu_addr_to_page - translate address to physical address
808 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 809 */
9f645532
TH
810static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
811static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
812static struct pcpu_chunk *pcpu_create_chunk(void);
813static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
814static struct page *pcpu_addr_to_page(void *addr);
815static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 816
b0c9778b
TH
817#ifdef CONFIG_NEED_PER_CPU_KM
818#include "percpu-km.c"
819#else
9f645532 820#include "percpu-vm.c"
b0c9778b 821#endif
fbf59bc9 822
88999a89
TH
823/**
824 * pcpu_chunk_addr_search - determine chunk containing specified address
825 * @addr: address for which the chunk needs to be determined.
826 *
827 * RETURNS:
828 * The address of the found chunk.
829 */
830static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
831{
832 /* is it in the first chunk? */
833 if (pcpu_addr_in_first_chunk(addr)) {
834 /* is it in the reserved area? */
835 if (pcpu_addr_in_reserved_chunk(addr))
836 return pcpu_reserved_chunk;
837 return pcpu_first_chunk;
838 }
839
840 /*
841 * The address is relative to unit0 which might be unused and
842 * thus unmapped. Offset the address to the unit space of the
843 * current processor before looking it up in the vmalloc
844 * space. Note that any possible cpu id can be used here, so
845 * there's no need to worry about preemption or cpu hotplug.
846 */
847 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 848 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
849}
850
fbf59bc9 851/**
edcb4639 852 * pcpu_alloc - the percpu allocator
cae3aeb8 853 * @size: size of area to allocate in bytes
fbf59bc9 854 * @align: alignment of area (max PAGE_SIZE)
edcb4639 855 * @reserved: allocate from the reserved chunk if available
5835d96e 856 * @gfp: allocation flags
fbf59bc9 857 *
5835d96e
TH
858 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
859 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
860 *
861 * RETURNS:
862 * Percpu pointer to the allocated area on success, NULL on failure.
863 */
5835d96e
TH
864static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
865 gfp_t gfp)
fbf59bc9 866{
f2badb0c 867 static int warn_limit = 10;
fbf59bc9 868 struct pcpu_chunk *chunk;
f2badb0c 869 const char *err;
6ae833c7 870 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 871 int occ_pages = 0;
b38d08f3 872 int slot, off, new_alloc, cpu, ret;
403a91b1 873 unsigned long flags;
f528f0b8 874 void __percpu *ptr;
fbf59bc9 875
723ad1d9
AV
876 /*
877 * We want the lowest bit of offset available for in-use/free
2f69fa82 878 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
879 */
880 if (unlikely(align < 2))
881 align = 2;
882
fb009e3a 883 size = ALIGN(size, 2);
2f69fa82 884
3ca45a46 885 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
886 !is_power_of_2(align))) {
756a025f
JP
887 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
888 size, align);
fbf59bc9
TH
889 return NULL;
890 }
891
6710e594
TH
892 if (!is_atomic)
893 mutex_lock(&pcpu_alloc_mutex);
894
403a91b1 895 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 896
edcb4639
TH
897 /* serve reserved allocations from the reserved chunk if available */
898 if (reserved && pcpu_reserved_chunk) {
899 chunk = pcpu_reserved_chunk;
833af842
TH
900
901 if (size > chunk->contig_hint) {
902 err = "alloc from reserved chunk failed";
ccea34b5 903 goto fail_unlock;
f2badb0c 904 }
833af842 905
9c824b6a 906 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 907 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
908 if (is_atomic ||
909 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 910 err = "failed to extend area map of reserved chunk";
b38d08f3 911 goto fail;
833af842
TH
912 }
913 spin_lock_irqsave(&pcpu_lock, flags);
914 }
915
b539b87f
TH
916 off = pcpu_alloc_area(chunk, size, align, is_atomic,
917 &occ_pages);
edcb4639
TH
918 if (off >= 0)
919 goto area_found;
833af842 920
f2badb0c 921 err = "alloc from reserved chunk failed";
ccea34b5 922 goto fail_unlock;
edcb4639
TH
923 }
924
ccea34b5 925restart:
edcb4639 926 /* search through normal chunks */
fbf59bc9
TH
927 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
928 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
929 if (size > chunk->contig_hint)
930 continue;
ccea34b5 931
9c824b6a 932 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 933 if (new_alloc) {
5835d96e
TH
934 if (is_atomic)
935 continue;
833af842
TH
936 spin_unlock_irqrestore(&pcpu_lock, flags);
937 if (pcpu_extend_area_map(chunk,
938 new_alloc) < 0) {
939 err = "failed to extend area map";
b38d08f3 940 goto fail;
833af842
TH
941 }
942 spin_lock_irqsave(&pcpu_lock, flags);
943 /*
944 * pcpu_lock has been dropped, need to
945 * restart cpu_slot list walking.
946 */
947 goto restart;
ccea34b5
TH
948 }
949
b539b87f
TH
950 off = pcpu_alloc_area(chunk, size, align, is_atomic,
951 &occ_pages);
fbf59bc9
TH
952 if (off >= 0)
953 goto area_found;
fbf59bc9
TH
954 }
955 }
956
403a91b1 957 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 958
b38d08f3
TH
959 /*
960 * No space left. Create a new chunk. We don't want multiple
961 * tasks to create chunks simultaneously. Serialize and create iff
962 * there's still no empty chunk after grabbing the mutex.
963 */
11df02bf
DZ
964 if (is_atomic) {
965 err = "atomic alloc failed, no space left";
5835d96e 966 goto fail;
11df02bf 967 }
5835d96e 968
b38d08f3
TH
969 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
970 chunk = pcpu_create_chunk();
971 if (!chunk) {
972 err = "failed to allocate new chunk";
973 goto fail;
974 }
975
976 spin_lock_irqsave(&pcpu_lock, flags);
977 pcpu_chunk_relocate(chunk, -1);
978 } else {
979 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 980 }
ccea34b5 981
ccea34b5 982 goto restart;
fbf59bc9
TH
983
984area_found:
30a5b536 985 pcpu_stats_area_alloc(chunk, size);
403a91b1 986 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 987
dca49645 988 /* populate if not all pages are already there */
5835d96e 989 if (!is_atomic) {
e04d3208 990 int page_start, page_end, rs, re;
dca49645 991
e04d3208
TH
992 page_start = PFN_DOWN(off);
993 page_end = PFN_UP(off + size);
b38d08f3 994
e04d3208
TH
995 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
996 WARN_ON(chunk->immutable);
997
998 ret = pcpu_populate_chunk(chunk, rs, re);
999
1000 spin_lock_irqsave(&pcpu_lock, flags);
1001 if (ret) {
b539b87f 1002 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1003 err = "failed to populate";
1004 goto fail_unlock;
1005 }
b539b87f 1006 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1007 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1008 }
fbf59bc9 1009
e04d3208
TH
1010 mutex_unlock(&pcpu_alloc_mutex);
1011 }
ccea34b5 1012
320661b0
TE
1013 if (chunk != pcpu_reserved_chunk) {
1014 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1015 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1016 spin_unlock_irqrestore(&pcpu_lock, flags);
1017 }
b539b87f 1018
1a4d7607
TH
1019 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1020 pcpu_schedule_balance_work();
1021
dca49645
TH
1022 /* clear the areas and return address relative to base address */
1023 for_each_possible_cpu(cpu)
1024 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1025
f528f0b8 1026 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1027 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1028
1029 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1030 chunk->base_addr, off, ptr);
1031
f528f0b8 1032 return ptr;
ccea34b5
TH
1033
1034fail_unlock:
403a91b1 1035 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1036fail:
df95e795
DZ
1037 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1038
5835d96e 1039 if (!is_atomic && warn_limit) {
870d4b12 1040 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1041 size, align, is_atomic, err);
f2badb0c
TH
1042 dump_stack();
1043 if (!--warn_limit)
870d4b12 1044 pr_info("limit reached, disable warning\n");
f2badb0c 1045 }
1a4d7607
TH
1046 if (is_atomic) {
1047 /* see the flag handling in pcpu_blance_workfn() */
1048 pcpu_atomic_alloc_failed = true;
1049 pcpu_schedule_balance_work();
6710e594
TH
1050 } else {
1051 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1052 }
ccea34b5 1053 return NULL;
fbf59bc9 1054}
edcb4639
TH
1055
1056/**
5835d96e 1057 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1058 * @size: size of area to allocate in bytes
1059 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1060 * @gfp: allocation flags
edcb4639 1061 *
5835d96e
TH
1062 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1063 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1064 * be called from any context but is a lot more likely to fail.
ccea34b5 1065 *
edcb4639
TH
1066 * RETURNS:
1067 * Percpu pointer to the allocated area on success, NULL on failure.
1068 */
5835d96e
TH
1069void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1070{
1071 return pcpu_alloc(size, align, false, gfp);
1072}
1073EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1074
1075/**
1076 * __alloc_percpu - allocate dynamic percpu area
1077 * @size: size of area to allocate in bytes
1078 * @align: alignment of area (max PAGE_SIZE)
1079 *
1080 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1081 */
43cf38eb 1082void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1083{
5835d96e 1084 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1085}
fbf59bc9
TH
1086EXPORT_SYMBOL_GPL(__alloc_percpu);
1087
edcb4639
TH
1088/**
1089 * __alloc_reserved_percpu - allocate reserved percpu area
1090 * @size: size of area to allocate in bytes
1091 * @align: alignment of area (max PAGE_SIZE)
1092 *
9329ba97
TH
1093 * Allocate zero-filled percpu area of @size bytes aligned at @align
1094 * from reserved percpu area if arch has set it up; otherwise,
1095 * allocation is served from the same dynamic area. Might sleep.
1096 * Might trigger writeouts.
edcb4639 1097 *
ccea34b5
TH
1098 * CONTEXT:
1099 * Does GFP_KERNEL allocation.
1100 *
edcb4639
TH
1101 * RETURNS:
1102 * Percpu pointer to the allocated area on success, NULL on failure.
1103 */
43cf38eb 1104void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1105{
5835d96e 1106 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1107}
1108
a56dbddf 1109/**
1a4d7607 1110 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1111 * @work: unused
1112 *
1113 * Reclaim all fully free chunks except for the first one.
1114 */
fe6bd8c3 1115static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1116{
fe6bd8c3
TH
1117 LIST_HEAD(to_free);
1118 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1119 struct pcpu_chunk *chunk, *next;
1a4d7607 1120 int slot, nr_to_pop, ret;
a56dbddf 1121
1a4d7607
TH
1122 /*
1123 * There's no reason to keep around multiple unused chunks and VM
1124 * areas can be scarce. Destroy all free chunks except for one.
1125 */
ccea34b5
TH
1126 mutex_lock(&pcpu_alloc_mutex);
1127 spin_lock_irq(&pcpu_lock);
a56dbddf 1128
fe6bd8c3 1129 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1130 WARN_ON(chunk->immutable);
1131
1132 /* spare the first one */
fe6bd8c3 1133 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1134 continue;
1135
4f996e23 1136 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1137 list_move(&chunk->list, &to_free);
a56dbddf
TH
1138 }
1139
ccea34b5 1140 spin_unlock_irq(&pcpu_lock);
a56dbddf 1141
fe6bd8c3 1142 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1143 int rs, re;
dca49645 1144
a93ace48
TH
1145 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1146 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1147 spin_lock_irq(&pcpu_lock);
1148 pcpu_chunk_depopulated(chunk, rs, re);
1149 spin_unlock_irq(&pcpu_lock);
a93ace48 1150 }
6081089f 1151 pcpu_destroy_chunk(chunk);
a56dbddf 1152 }
971f3918 1153
4f996e23
TH
1154 /* service chunks which requested async area map extension */
1155 do {
1156 int new_alloc = 0;
1157
1158 spin_lock_irq(&pcpu_lock);
1159
1160 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1161 struct pcpu_chunk, map_extend_list);
1162 if (chunk) {
1163 list_del_init(&chunk->map_extend_list);
1164 new_alloc = pcpu_need_to_extend(chunk, false);
1165 }
1166
1167 spin_unlock_irq(&pcpu_lock);
1168
1169 if (new_alloc)
1170 pcpu_extend_area_map(chunk, new_alloc);
1171 } while (chunk);
1172
1a4d7607
TH
1173 /*
1174 * Ensure there are certain number of free populated pages for
1175 * atomic allocs. Fill up from the most packed so that atomic
1176 * allocs don't increase fragmentation. If atomic allocation
1177 * failed previously, always populate the maximum amount. This
1178 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1179 * failing indefinitely; however, large atomic allocs are not
1180 * something we support properly and can be highly unreliable and
1181 * inefficient.
1182 */
1183retry_pop:
1184 if (pcpu_atomic_alloc_failed) {
1185 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1186 /* best effort anyway, don't worry about synchronization */
1187 pcpu_atomic_alloc_failed = false;
1188 } else {
1189 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1190 pcpu_nr_empty_pop_pages,
1191 0, PCPU_EMPTY_POP_PAGES_HIGH);
1192 }
1193
1194 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1195 int nr_unpop = 0, rs, re;
1196
1197 if (!nr_to_pop)
1198 break;
1199
1200 spin_lock_irq(&pcpu_lock);
1201 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1202 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1203 if (nr_unpop)
1204 break;
1205 }
1206 spin_unlock_irq(&pcpu_lock);
1207
1208 if (!nr_unpop)
1209 continue;
1210
1211 /* @chunk can't go away while pcpu_alloc_mutex is held */
1212 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1213 int nr = min(re - rs, nr_to_pop);
1214
1215 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1216 if (!ret) {
1217 nr_to_pop -= nr;
1218 spin_lock_irq(&pcpu_lock);
1219 pcpu_chunk_populated(chunk, rs, rs + nr);
1220 spin_unlock_irq(&pcpu_lock);
1221 } else {
1222 nr_to_pop = 0;
1223 }
1224
1225 if (!nr_to_pop)
1226 break;
1227 }
1228 }
1229
1230 if (nr_to_pop) {
1231 /* ran out of chunks to populate, create a new one and retry */
1232 chunk = pcpu_create_chunk();
1233 if (chunk) {
1234 spin_lock_irq(&pcpu_lock);
1235 pcpu_chunk_relocate(chunk, -1);
1236 spin_unlock_irq(&pcpu_lock);
1237 goto retry_pop;
1238 }
1239 }
1240
971f3918 1241 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1242}
1243
1244/**
1245 * free_percpu - free percpu area
1246 * @ptr: pointer to area to free
1247 *
ccea34b5
TH
1248 * Free percpu area @ptr.
1249 *
1250 * CONTEXT:
1251 * Can be called from atomic context.
fbf59bc9 1252 */
43cf38eb 1253void free_percpu(void __percpu *ptr)
fbf59bc9 1254{
129182e5 1255 void *addr;
fbf59bc9 1256 struct pcpu_chunk *chunk;
ccea34b5 1257 unsigned long flags;
b539b87f 1258 int off, occ_pages;
fbf59bc9
TH
1259
1260 if (!ptr)
1261 return;
1262
f528f0b8
CM
1263 kmemleak_free_percpu(ptr);
1264
129182e5
AM
1265 addr = __pcpu_ptr_to_addr(ptr);
1266
ccea34b5 1267 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1268
1269 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1270 off = addr - chunk->base_addr;
fbf59bc9 1271
b539b87f
TH
1272 pcpu_free_area(chunk, off, &occ_pages);
1273
1274 if (chunk != pcpu_reserved_chunk)
1275 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1276
a56dbddf 1277 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1278 if (chunk->free_size == pcpu_unit_size) {
1279 struct pcpu_chunk *pos;
1280
a56dbddf 1281 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1282 if (pos != chunk) {
1a4d7607 1283 pcpu_schedule_balance_work();
fbf59bc9
TH
1284 break;
1285 }
1286 }
1287
df95e795
DZ
1288 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1289
ccea34b5 1290 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1291}
1292EXPORT_SYMBOL_GPL(free_percpu);
1293
383776fa 1294bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1295{
bbddff05 1296#ifdef CONFIG_SMP
10fad5e4
TH
1297 const size_t static_size = __per_cpu_end - __per_cpu_start;
1298 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1299 unsigned int cpu;
1300
1301 for_each_possible_cpu(cpu) {
1302 void *start = per_cpu_ptr(base, cpu);
383776fa 1303 void *va = (void *)addr;
10fad5e4 1304
383776fa 1305 if (va >= start && va < start + static_size) {
8ce371f9 1306 if (can_addr) {
383776fa 1307 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1308 *can_addr += (unsigned long)
1309 per_cpu_ptr(base, get_boot_cpu_id());
1310 }
10fad5e4 1311 return true;
383776fa
TG
1312 }
1313 }
bbddff05
TH
1314#endif
1315 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1316 return false;
1317}
1318
383776fa
TG
1319/**
1320 * is_kernel_percpu_address - test whether address is from static percpu area
1321 * @addr: address to test
1322 *
1323 * Test whether @addr belongs to in-kernel static percpu area. Module
1324 * static percpu areas are not considered. For those, use
1325 * is_module_percpu_address().
1326 *
1327 * RETURNS:
1328 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1329 */
1330bool is_kernel_percpu_address(unsigned long addr)
1331{
1332 return __is_kernel_percpu_address(addr, NULL);
1333}
1334
3b034b0d
VG
1335/**
1336 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1337 * @addr: the address to be converted to physical address
1338 *
1339 * Given @addr which is dereferenceable address obtained via one of
1340 * percpu access macros, this function translates it into its physical
1341 * address. The caller is responsible for ensuring @addr stays valid
1342 * until this function finishes.
1343 *
67589c71
DY
1344 * percpu allocator has special setup for the first chunk, which currently
1345 * supports either embedding in linear address space or vmalloc mapping,
1346 * and, from the second one, the backing allocator (currently either vm or
1347 * km) provides translation.
1348 *
bffc4375 1349 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1350 * first chunk. But the current code reflects better how percpu allocator
1351 * actually works, and the verification can discover both bugs in percpu
1352 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1353 * code.
1354 *
3b034b0d
VG
1355 * RETURNS:
1356 * The physical address for @addr.
1357 */
1358phys_addr_t per_cpu_ptr_to_phys(void *addr)
1359{
9983b6f0
TH
1360 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1361 bool in_first_chunk = false;
a855b84c 1362 unsigned long first_low, first_high;
9983b6f0
TH
1363 unsigned int cpu;
1364
1365 /*
a855b84c 1366 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1367 * necessary but will speed up lookups of addresses which
1368 * aren't in the first chunk.
1369 */
a855b84c
TH
1370 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1371 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1372 pcpu_unit_pages);
1373 if ((unsigned long)addr >= first_low &&
1374 (unsigned long)addr < first_high) {
9983b6f0
TH
1375 for_each_possible_cpu(cpu) {
1376 void *start = per_cpu_ptr(base, cpu);
1377
1378 if (addr >= start && addr < start + pcpu_unit_size) {
1379 in_first_chunk = true;
1380 break;
1381 }
1382 }
1383 }
1384
1385 if (in_first_chunk) {
eac522ef 1386 if (!is_vmalloc_addr(addr))
020ec653
TH
1387 return __pa(addr);
1388 else
9f57bd4d
ES
1389 return page_to_phys(vmalloc_to_page(addr)) +
1390 offset_in_page(addr);
020ec653 1391 } else
9f57bd4d
ES
1392 return page_to_phys(pcpu_addr_to_page(addr)) +
1393 offset_in_page(addr);
3b034b0d
VG
1394}
1395
fbf59bc9 1396/**
fd1e8a1f
TH
1397 * pcpu_alloc_alloc_info - allocate percpu allocation info
1398 * @nr_groups: the number of groups
1399 * @nr_units: the number of units
1400 *
1401 * Allocate ai which is large enough for @nr_groups groups containing
1402 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1403 * cpu_map array which is long enough for @nr_units and filled with
1404 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1405 * pointer of other groups.
1406 *
1407 * RETURNS:
1408 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1409 * failure.
1410 */
1411struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1412 int nr_units)
1413{
1414 struct pcpu_alloc_info *ai;
1415 size_t base_size, ai_size;
1416 void *ptr;
1417 int unit;
1418
1419 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1420 __alignof__(ai->groups[0].cpu_map[0]));
1421 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1422
999c17e3 1423 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1424 if (!ptr)
1425 return NULL;
1426 ai = ptr;
1427 ptr += base_size;
1428
1429 ai->groups[0].cpu_map = ptr;
1430
1431 for (unit = 0; unit < nr_units; unit++)
1432 ai->groups[0].cpu_map[unit] = NR_CPUS;
1433
1434 ai->nr_groups = nr_groups;
1435 ai->__ai_size = PFN_ALIGN(ai_size);
1436
1437 return ai;
1438}
1439
1440/**
1441 * pcpu_free_alloc_info - free percpu allocation info
1442 * @ai: pcpu_alloc_info to free
1443 *
1444 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1445 */
1446void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1447{
999c17e3 1448 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1449}
1450
fd1e8a1f
TH
1451/**
1452 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1453 * @lvl: loglevel
1454 * @ai: allocation info to dump
1455 *
1456 * Print out information about @ai using loglevel @lvl.
1457 */
1458static void pcpu_dump_alloc_info(const char *lvl,
1459 const struct pcpu_alloc_info *ai)
033e48fb 1460{
fd1e8a1f 1461 int group_width = 1, cpu_width = 1, width;
033e48fb 1462 char empty_str[] = "--------";
fd1e8a1f
TH
1463 int alloc = 0, alloc_end = 0;
1464 int group, v;
1465 int upa, apl; /* units per alloc, allocs per line */
1466
1467 v = ai->nr_groups;
1468 while (v /= 10)
1469 group_width++;
033e48fb 1470
fd1e8a1f 1471 v = num_possible_cpus();
033e48fb 1472 while (v /= 10)
fd1e8a1f
TH
1473 cpu_width++;
1474 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1475
fd1e8a1f
TH
1476 upa = ai->alloc_size / ai->unit_size;
1477 width = upa * (cpu_width + 1) + group_width + 3;
1478 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1479
fd1e8a1f
TH
1480 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1481 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1482 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1483
fd1e8a1f
TH
1484 for (group = 0; group < ai->nr_groups; group++) {
1485 const struct pcpu_group_info *gi = &ai->groups[group];
1486 int unit = 0, unit_end = 0;
1487
1488 BUG_ON(gi->nr_units % upa);
1489 for (alloc_end += gi->nr_units / upa;
1490 alloc < alloc_end; alloc++) {
1491 if (!(alloc % apl)) {
1170532b 1492 pr_cont("\n");
fd1e8a1f
TH
1493 printk("%spcpu-alloc: ", lvl);
1494 }
1170532b 1495 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1496
1497 for (unit_end += upa; unit < unit_end; unit++)
1498 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1499 pr_cont("%0*d ",
1500 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1501 else
1170532b 1502 pr_cont("%s ", empty_str);
033e48fb 1503 }
033e48fb 1504 }
1170532b 1505 pr_cont("\n");
033e48fb 1506}
033e48fb 1507
fbf59bc9 1508/**
8d408b4b 1509 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1510 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1511 * @base_addr: mapped address
8d408b4b
TH
1512 *
1513 * Initialize the first percpu chunk which contains the kernel static
1514 * perpcu area. This function is to be called from arch percpu area
38a6be52 1515 * setup path.
8d408b4b 1516 *
fd1e8a1f
TH
1517 * @ai contains all information necessary to initialize the first
1518 * chunk and prime the dynamic percpu allocator.
1519 *
1520 * @ai->static_size is the size of static percpu area.
1521 *
1522 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1523 * reserve after the static area in the first chunk. This reserves
1524 * the first chunk such that it's available only through reserved
1525 * percpu allocation. This is primarily used to serve module percpu
1526 * static areas on architectures where the addressing model has
1527 * limited offset range for symbol relocations to guarantee module
1528 * percpu symbols fall inside the relocatable range.
1529 *
fd1e8a1f
TH
1530 * @ai->dyn_size determines the number of bytes available for dynamic
1531 * allocation in the first chunk. The area between @ai->static_size +
1532 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1533 *
fd1e8a1f
TH
1534 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1535 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1536 * @ai->dyn_size.
8d408b4b 1537 *
fd1e8a1f
TH
1538 * @ai->atom_size is the allocation atom size and used as alignment
1539 * for vm areas.
8d408b4b 1540 *
fd1e8a1f
TH
1541 * @ai->alloc_size is the allocation size and always multiple of
1542 * @ai->atom_size. This is larger than @ai->atom_size if
1543 * @ai->unit_size is larger than @ai->atom_size.
1544 *
1545 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1546 * percpu areas. Units which should be colocated are put into the
1547 * same group. Dynamic VM areas will be allocated according to these
1548 * groupings. If @ai->nr_groups is zero, a single group containing
1549 * all units is assumed.
8d408b4b 1550 *
38a6be52
TH
1551 * The caller should have mapped the first chunk at @base_addr and
1552 * copied static data to each unit.
fbf59bc9 1553 *
edcb4639
TH
1554 * If the first chunk ends up with both reserved and dynamic areas, it
1555 * is served by two chunks - one to serve the core static and reserved
1556 * areas and the other for the dynamic area. They share the same vm
1557 * and page map but uses different area allocation map to stay away
1558 * from each other. The latter chunk is circulated in the chunk slots
1559 * and available for dynamic allocation like any other chunks.
1560 *
fbf59bc9 1561 * RETURNS:
fb435d52 1562 * 0 on success, -errno on failure.
fbf59bc9 1563 */
fb435d52
TH
1564int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1565 void *base_addr)
fbf59bc9 1566{
099a19d9
TH
1567 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1568 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1569 size_t dyn_size = ai->dyn_size;
1570 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1571 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1572 unsigned long *group_offsets;
1573 size_t *group_sizes;
fb435d52 1574 unsigned long *unit_off;
fbf59bc9 1575 unsigned int cpu;
fd1e8a1f
TH
1576 int *unit_map;
1577 int group, unit, i;
fbf59bc9 1578
635b75fc
TH
1579#define PCPU_SETUP_BUG_ON(cond) do { \
1580 if (unlikely(cond)) { \
870d4b12
JP
1581 pr_emerg("failed to initialize, %s\n", #cond); \
1582 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1583 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1584 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1585 BUG(); \
1586 } \
1587} while (0)
1588
2f39e637 1589 /* sanity checks */
635b75fc 1590 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1591#ifdef CONFIG_SMP
635b75fc 1592 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1593 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1594#endif
635b75fc 1595 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1596 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1597 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1598 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1599 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1600 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1601 PCPU_SETUP_BUG_ON(!ai->dyn_size);
9f645532 1602 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1603
6563297c 1604 /* process group information and build config tables accordingly */
999c17e3
SS
1605 group_offsets = memblock_virt_alloc(ai->nr_groups *
1606 sizeof(group_offsets[0]), 0);
1607 group_sizes = memblock_virt_alloc(ai->nr_groups *
1608 sizeof(group_sizes[0]), 0);
1609 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1610 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1611
fd1e8a1f 1612 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1613 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1614
1615 pcpu_low_unit_cpu = NR_CPUS;
1616 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1617
fd1e8a1f
TH
1618 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1619 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1620
6563297c
TH
1621 group_offsets[group] = gi->base_offset;
1622 group_sizes[group] = gi->nr_units * ai->unit_size;
1623
fd1e8a1f
TH
1624 for (i = 0; i < gi->nr_units; i++) {
1625 cpu = gi->cpu_map[i];
1626 if (cpu == NR_CPUS)
1627 continue;
8d408b4b 1628
9f295664 1629 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1630 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1631 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1632
fd1e8a1f 1633 unit_map[cpu] = unit + i;
fb435d52
TH
1634 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1635
a855b84c
TH
1636 /* determine low/high unit_cpu */
1637 if (pcpu_low_unit_cpu == NR_CPUS ||
1638 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1639 pcpu_low_unit_cpu = cpu;
1640 if (pcpu_high_unit_cpu == NR_CPUS ||
1641 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1642 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1643 }
2f39e637 1644 }
fd1e8a1f
TH
1645 pcpu_nr_units = unit;
1646
1647 for_each_possible_cpu(cpu)
635b75fc
TH
1648 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1649
1650 /* we're done parsing the input, undefine BUG macro and dump config */
1651#undef PCPU_SETUP_BUG_ON
bcbea798 1652 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1653
6563297c
TH
1654 pcpu_nr_groups = ai->nr_groups;
1655 pcpu_group_offsets = group_offsets;
1656 pcpu_group_sizes = group_sizes;
fd1e8a1f 1657 pcpu_unit_map = unit_map;
fb435d52 1658 pcpu_unit_offsets = unit_off;
2f39e637
TH
1659
1660 /* determine basic parameters */
fd1e8a1f 1661 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1662 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1663 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1664 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1665 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1666
30a5b536
DZ
1667 pcpu_stats_save_ai(ai);
1668
d9b55eeb
TH
1669 /*
1670 * Allocate chunk slots. The additional last slot is for
1671 * empty chunks.
1672 */
1673 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1674 pcpu_slot = memblock_virt_alloc(
1675 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1676 for (i = 0; i < pcpu_nr_slots; i++)
1677 INIT_LIST_HEAD(&pcpu_slot[i]);
1678
edcb4639
TH
1679 /*
1680 * Initialize static chunk. If reserved_size is zero, the
1681 * static chunk covers static area + dynamic allocation area
1682 * in the first chunk. If reserved_size is not zero, it
1683 * covers static area + reserved area (mostly used for module
1684 * static percpu allocation).
1685 */
999c17e3 1686 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1687 INIT_LIST_HEAD(&schunk->list);
4f996e23 1688 INIT_LIST_HEAD(&schunk->map_extend_list);
bba174f5 1689 schunk->base_addr = base_addr;
61ace7fa
TH
1690 schunk->map = smap;
1691 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1692 schunk->immutable = true;
ce3141a2 1693 bitmap_fill(schunk->populated, pcpu_unit_pages);
b539b87f 1694 schunk->nr_populated = pcpu_unit_pages;
edcb4639 1695
fd1e8a1f
TH
1696 if (ai->reserved_size) {
1697 schunk->free_size = ai->reserved_size;
ae9e6bc9 1698 pcpu_reserved_chunk = schunk;
fd1e8a1f 1699 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1700 } else {
1701 schunk->free_size = dyn_size;
1702 dyn_size = 0; /* dynamic area covered */
1703 }
fbf59bc9 1704
fb29a2cc 1705 schunk->contig_hint = schunk->free_size;
723ad1d9
AV
1706 schunk->map[0] = 1;
1707 schunk->map[1] = ai->static_size;
fb29a2cc
DZF
1708 schunk->map[2] = (ai->static_size + schunk->free_size) | 1;
1709 schunk->map_used = 2;
30a5b536 1710 schunk->has_reserved = true;
61ace7fa 1711
edcb4639
TH
1712 /* init dynamic chunk if necessary */
1713 if (dyn_size) {
999c17e3 1714 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1715 INIT_LIST_HEAD(&dchunk->list);
4f996e23 1716 INIT_LIST_HEAD(&dchunk->map_extend_list);
bba174f5 1717 dchunk->base_addr = base_addr;
edcb4639
TH
1718 dchunk->map = dmap;
1719 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1720 dchunk->immutable = true;
ce3141a2 1721 bitmap_fill(dchunk->populated, pcpu_unit_pages);
b539b87f 1722 dchunk->nr_populated = pcpu_unit_pages;
edcb4639
TH
1723
1724 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1725 dchunk->map[0] = 1;
1726 dchunk->map[1] = pcpu_reserved_chunk_limit;
1727 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1728 dchunk->map_used = 2;
30a5b536 1729 dchunk->has_reserved = true;
edcb4639
TH
1730 }
1731
2441d15c 1732 /* link the first chunk in */
ae9e6bc9 1733 pcpu_first_chunk = dchunk ?: schunk;
b539b87f
TH
1734 pcpu_nr_empty_pop_pages +=
1735 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
ae9e6bc9 1736 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1737
30a5b536 1738 pcpu_stats_chunk_alloc();
df95e795 1739 trace_percpu_create_chunk(base_addr);
30a5b536 1740
fbf59bc9 1741 /* we're done */
bba174f5 1742 pcpu_base_addr = base_addr;
fb435d52 1743 return 0;
fbf59bc9 1744}
66c3a757 1745
bbddff05
TH
1746#ifdef CONFIG_SMP
1747
17f3609c 1748const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1749 [PCPU_FC_AUTO] = "auto",
1750 [PCPU_FC_EMBED] = "embed",
1751 [PCPU_FC_PAGE] = "page",
f58dc01b 1752};
66c3a757 1753
f58dc01b 1754enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1755
f58dc01b
TH
1756static int __init percpu_alloc_setup(char *str)
1757{
5479c78a
CG
1758 if (!str)
1759 return -EINVAL;
1760
f58dc01b
TH
1761 if (0)
1762 /* nada */;
1763#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1764 else if (!strcmp(str, "embed"))
1765 pcpu_chosen_fc = PCPU_FC_EMBED;
1766#endif
1767#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1768 else if (!strcmp(str, "page"))
1769 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1770#endif
1771 else
870d4b12 1772 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1773
f58dc01b 1774 return 0;
66c3a757 1775}
f58dc01b 1776early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1777
3c9a024f
TH
1778/*
1779 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1780 * Build it if needed by the arch config or the generic setup is going
1781 * to be used.
1782 */
08fc4580
TH
1783#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1784 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1785#define BUILD_EMBED_FIRST_CHUNK
1786#endif
1787
1788/* build pcpu_page_first_chunk() iff needed by the arch config */
1789#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1790#define BUILD_PAGE_FIRST_CHUNK
1791#endif
1792
1793/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1794#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1795/**
1796 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1797 * @reserved_size: the size of reserved percpu area in bytes
1798 * @dyn_size: minimum free size for dynamic allocation in bytes
1799 * @atom_size: allocation atom size
1800 * @cpu_distance_fn: callback to determine distance between cpus, optional
1801 *
1802 * This function determines grouping of units, their mappings to cpus
1803 * and other parameters considering needed percpu size, allocation
1804 * atom size and distances between CPUs.
1805 *
bffc4375 1806 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1807 * LOCAL_DISTANCE both ways are grouped together and share space for
1808 * units in the same group. The returned configuration is guaranteed
1809 * to have CPUs on different nodes on different groups and >=75% usage
1810 * of allocated virtual address space.
1811 *
1812 * RETURNS:
1813 * On success, pointer to the new allocation_info is returned. On
1814 * failure, ERR_PTR value is returned.
1815 */
1816static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1817 size_t reserved_size, size_t dyn_size,
1818 size_t atom_size,
1819 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1820{
1821 static int group_map[NR_CPUS] __initdata;
1822 static int group_cnt[NR_CPUS] __initdata;
1823 const size_t static_size = __per_cpu_end - __per_cpu_start;
1824 int nr_groups = 1, nr_units = 0;
1825 size_t size_sum, min_unit_size, alloc_size;
1826 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1827 int last_allocs, group, unit;
1828 unsigned int cpu, tcpu;
1829 struct pcpu_alloc_info *ai;
1830 unsigned int *cpu_map;
1831
1832 /* this function may be called multiple times */
1833 memset(group_map, 0, sizeof(group_map));
1834 memset(group_cnt, 0, sizeof(group_cnt));
1835
1836 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1837 size_sum = PFN_ALIGN(static_size + reserved_size +
1838 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1839 dyn_size = size_sum - static_size - reserved_size;
1840
1841 /*
1842 * Determine min_unit_size, alloc_size and max_upa such that
1843 * alloc_size is multiple of atom_size and is the smallest
25985edc 1844 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1845 * or larger than min_unit_size.
1846 */
1847 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1848
9c015162 1849 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1850 alloc_size = roundup(min_unit_size, atom_size);
1851 upa = alloc_size / min_unit_size;
f09f1243 1852 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1853 upa--;
1854 max_upa = upa;
1855
1856 /* group cpus according to their proximity */
1857 for_each_possible_cpu(cpu) {
1858 group = 0;
1859 next_group:
1860 for_each_possible_cpu(tcpu) {
1861 if (cpu == tcpu)
1862 break;
1863 if (group_map[tcpu] == group && cpu_distance_fn &&
1864 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1865 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1866 group++;
1867 nr_groups = max(nr_groups, group + 1);
1868 goto next_group;
1869 }
1870 }
1871 group_map[cpu] = group;
1872 group_cnt[group]++;
1873 }
1874
1875 /*
9c015162
DZF
1876 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1877 * Expand the unit_size until we use >= 75% of the units allocated.
1878 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1879 */
1880 last_allocs = INT_MAX;
1881 for (upa = max_upa; upa; upa--) {
1882 int allocs = 0, wasted = 0;
1883
f09f1243 1884 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1885 continue;
1886
1887 for (group = 0; group < nr_groups; group++) {
1888 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1889 allocs += this_allocs;
1890 wasted += this_allocs * upa - group_cnt[group];
1891 }
1892
1893 /*
1894 * Don't accept if wastage is over 1/3. The
1895 * greater-than comparison ensures upa==1 always
1896 * passes the following check.
1897 */
1898 if (wasted > num_possible_cpus() / 3)
1899 continue;
1900
1901 /* and then don't consume more memory */
1902 if (allocs > last_allocs)
1903 break;
1904 last_allocs = allocs;
1905 best_upa = upa;
1906 }
1907 upa = best_upa;
1908
1909 /* allocate and fill alloc_info */
1910 for (group = 0; group < nr_groups; group++)
1911 nr_units += roundup(group_cnt[group], upa);
1912
1913 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1914 if (!ai)
1915 return ERR_PTR(-ENOMEM);
1916 cpu_map = ai->groups[0].cpu_map;
1917
1918 for (group = 0; group < nr_groups; group++) {
1919 ai->groups[group].cpu_map = cpu_map;
1920 cpu_map += roundup(group_cnt[group], upa);
1921 }
1922
1923 ai->static_size = static_size;
1924 ai->reserved_size = reserved_size;
1925 ai->dyn_size = dyn_size;
1926 ai->unit_size = alloc_size / upa;
1927 ai->atom_size = atom_size;
1928 ai->alloc_size = alloc_size;
1929
1930 for (group = 0, unit = 0; group_cnt[group]; group++) {
1931 struct pcpu_group_info *gi = &ai->groups[group];
1932
1933 /*
1934 * Initialize base_offset as if all groups are located
1935 * back-to-back. The caller should update this to
1936 * reflect actual allocation.
1937 */
1938 gi->base_offset = unit * ai->unit_size;
1939
1940 for_each_possible_cpu(cpu)
1941 if (group_map[cpu] == group)
1942 gi->cpu_map[gi->nr_units++] = cpu;
1943 gi->nr_units = roundup(gi->nr_units, upa);
1944 unit += gi->nr_units;
1945 }
1946 BUG_ON(unit != nr_units);
1947
1948 return ai;
1949}
1950#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1951
1952#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1953/**
1954 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1955 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1956 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1957 * @atom_size: allocation atom size
1958 * @cpu_distance_fn: callback to determine distance between cpus, optional
1959 * @alloc_fn: function to allocate percpu page
25985edc 1960 * @free_fn: function to free percpu page
66c3a757
TH
1961 *
1962 * This is a helper to ease setting up embedded first percpu chunk and
1963 * can be called where pcpu_setup_first_chunk() is expected.
1964 *
1965 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1966 * by calling @alloc_fn and used as-is without being mapped into
1967 * vmalloc area. Allocations are always whole multiples of @atom_size
1968 * aligned to @atom_size.
1969 *
1970 * This enables the first chunk to piggy back on the linear physical
1971 * mapping which often uses larger page size. Please note that this
1972 * can result in very sparse cpu->unit mapping on NUMA machines thus
1973 * requiring large vmalloc address space. Don't use this allocator if
1974 * vmalloc space is not orders of magnitude larger than distances
1975 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1976 *
4ba6ce25 1977 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1978 *
1979 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1980 * size, the leftover is returned using @free_fn.
66c3a757
TH
1981 *
1982 * RETURNS:
fb435d52 1983 * 0 on success, -errno on failure.
66c3a757 1984 */
4ba6ce25 1985int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1986 size_t atom_size,
1987 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1988 pcpu_fc_alloc_fn_t alloc_fn,
1989 pcpu_fc_free_fn_t free_fn)
66c3a757 1990{
c8826dd5
TH
1991 void *base = (void *)ULONG_MAX;
1992 void **areas = NULL;
fd1e8a1f 1993 struct pcpu_alloc_info *ai;
93c76b6b 1994 size_t size_sum, areas_size;
1995 unsigned long max_distance;
9b739662 1996 int group, i, highest_group, rc;
66c3a757 1997
c8826dd5
TH
1998 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1999 cpu_distance_fn);
fd1e8a1f
TH
2000 if (IS_ERR(ai))
2001 return PTR_ERR(ai);
66c3a757 2002
fd1e8a1f 2003 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2004 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2005
999c17e3 2006 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2007 if (!areas) {
fb435d52 2008 rc = -ENOMEM;
c8826dd5 2009 goto out_free;
fa8a7094 2010 }
66c3a757 2011
9b739662 2012 /* allocate, copy and determine base address & max_distance */
2013 highest_group = 0;
c8826dd5
TH
2014 for (group = 0; group < ai->nr_groups; group++) {
2015 struct pcpu_group_info *gi = &ai->groups[group];
2016 unsigned int cpu = NR_CPUS;
2017 void *ptr;
2018
2019 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2020 cpu = gi->cpu_map[i];
2021 BUG_ON(cpu == NR_CPUS);
2022
2023 /* allocate space for the whole group */
2024 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2025 if (!ptr) {
2026 rc = -ENOMEM;
2027 goto out_free_areas;
2028 }
f528f0b8
CM
2029 /* kmemleak tracks the percpu allocations separately */
2030 kmemleak_free(ptr);
c8826dd5 2031 areas[group] = ptr;
fd1e8a1f 2032
c8826dd5 2033 base = min(ptr, base);
9b739662 2034 if (ptr > areas[highest_group])
2035 highest_group = group;
2036 }
2037 max_distance = areas[highest_group] - base;
2038 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2039
2040 /* warn if maximum distance is further than 75% of vmalloc space */
2041 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2042 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2043 max_distance, VMALLOC_TOTAL);
2044#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2045 /* and fail if we have fallback */
2046 rc = -EINVAL;
2047 goto out_free_areas;
2048#endif
42b64281
TH
2049 }
2050
2051 /*
2052 * Copy data and free unused parts. This should happen after all
2053 * allocations are complete; otherwise, we may end up with
2054 * overlapping groups.
2055 */
2056 for (group = 0; group < ai->nr_groups; group++) {
2057 struct pcpu_group_info *gi = &ai->groups[group];
2058 void *ptr = areas[group];
c8826dd5
TH
2059
2060 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2061 if (gi->cpu_map[i] == NR_CPUS) {
2062 /* unused unit, free whole */
2063 free_fn(ptr, ai->unit_size);
2064 continue;
2065 }
2066 /* copy and return the unused part */
2067 memcpy(ptr, __per_cpu_load, ai->static_size);
2068 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2069 }
fa8a7094 2070 }
66c3a757 2071
c8826dd5 2072 /* base address is now known, determine group base offsets */
6ea529a2 2073 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2074 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2075 }
c8826dd5 2076
870d4b12 2077 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2078 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2079 ai->dyn_size, ai->unit_size);
d4b95f80 2080
fb435d52 2081 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2082 goto out_free;
2083
2084out_free_areas:
2085 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2086 if (areas[group])
2087 free_fn(areas[group],
2088 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2089out_free:
fd1e8a1f 2090 pcpu_free_alloc_info(ai);
c8826dd5 2091 if (areas)
999c17e3 2092 memblock_free_early(__pa(areas), areas_size);
fb435d52 2093 return rc;
d4b95f80 2094}
3c9a024f 2095#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2096
3c9a024f 2097#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2098/**
00ae4064 2099 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2100 * @reserved_size: the size of reserved percpu area in bytes
2101 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2102 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2103 * @populate_pte_fn: function to populate pte
2104 *
00ae4064
TH
2105 * This is a helper to ease setting up page-remapped first percpu
2106 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2107 *
2108 * This is the basic allocator. Static percpu area is allocated
2109 * page-by-page into vmalloc area.
2110 *
2111 * RETURNS:
fb435d52 2112 * 0 on success, -errno on failure.
d4b95f80 2113 */
fb435d52
TH
2114int __init pcpu_page_first_chunk(size_t reserved_size,
2115 pcpu_fc_alloc_fn_t alloc_fn,
2116 pcpu_fc_free_fn_t free_fn,
2117 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2118{
8f05a6a6 2119 static struct vm_struct vm;
fd1e8a1f 2120 struct pcpu_alloc_info *ai;
00ae4064 2121 char psize_str[16];
ce3141a2 2122 int unit_pages;
d4b95f80 2123 size_t pages_size;
ce3141a2 2124 struct page **pages;
fb435d52 2125 int unit, i, j, rc;
8f606604 2126 int upa;
2127 int nr_g0_units;
d4b95f80 2128
00ae4064
TH
2129 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2130
4ba6ce25 2131 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2132 if (IS_ERR(ai))
2133 return PTR_ERR(ai);
2134 BUG_ON(ai->nr_groups != 1);
8f606604 2135 upa = ai->alloc_size/ai->unit_size;
2136 nr_g0_units = roundup(num_possible_cpus(), upa);
2137 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2138 pcpu_free_alloc_info(ai);
2139 return -EINVAL;
2140 }
fd1e8a1f
TH
2141
2142 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2143
2144 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2145 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2146 sizeof(pages[0]));
999c17e3 2147 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2148
8f05a6a6 2149 /* allocate pages */
d4b95f80 2150 j = 0;
8f606604 2151 for (unit = 0; unit < num_possible_cpus(); unit++) {
2152 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2153 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2154 void *ptr;
2155
3cbc8565 2156 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2157 if (!ptr) {
870d4b12 2158 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2159 psize_str, cpu);
d4b95f80
TH
2160 goto enomem;
2161 }
f528f0b8
CM
2162 /* kmemleak tracks the percpu allocations separately */
2163 kmemleak_free(ptr);
ce3141a2 2164 pages[j++] = virt_to_page(ptr);
d4b95f80 2165 }
8f606604 2166 }
d4b95f80 2167
8f05a6a6
TH
2168 /* allocate vm area, map the pages and copy static data */
2169 vm.flags = VM_ALLOC;
fd1e8a1f 2170 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2171 vm_area_register_early(&vm, PAGE_SIZE);
2172
fd1e8a1f 2173 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2174 unsigned long unit_addr =
fd1e8a1f 2175 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2176
ce3141a2 2177 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2178 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2179
2180 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2181 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2182 unit_pages);
2183 if (rc < 0)
2184 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2185
8f05a6a6
TH
2186 /*
2187 * FIXME: Archs with virtual cache should flush local
2188 * cache for the linear mapping here - something
2189 * equivalent to flush_cache_vmap() on the local cpu.
2190 * flush_cache_vmap() can't be used as most supporting
2191 * data structures are not set up yet.
2192 */
2193
2194 /* copy static data */
fd1e8a1f 2195 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2196 }
2197
2198 /* we're ready, commit */
870d4b12 2199 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2200 unit_pages, psize_str, vm.addr, ai->static_size,
2201 ai->reserved_size, ai->dyn_size);
d4b95f80 2202
fb435d52 2203 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2204 goto out_free_ar;
2205
2206enomem:
2207 while (--j >= 0)
ce3141a2 2208 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2209 rc = -ENOMEM;
d4b95f80 2210out_free_ar:
999c17e3 2211 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2212 pcpu_free_alloc_info(ai);
fb435d52 2213 return rc;
d4b95f80 2214}
3c9a024f 2215#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2216
bbddff05 2217#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2218/*
bbddff05 2219 * Generic SMP percpu area setup.
e74e3962
TH
2220 *
2221 * The embedding helper is used because its behavior closely resembles
2222 * the original non-dynamic generic percpu area setup. This is
2223 * important because many archs have addressing restrictions and might
2224 * fail if the percpu area is located far away from the previous
2225 * location. As an added bonus, in non-NUMA cases, embedding is
2226 * generally a good idea TLB-wise because percpu area can piggy back
2227 * on the physical linear memory mapping which uses large page
2228 * mappings on applicable archs.
2229 */
e74e3962
TH
2230unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2231EXPORT_SYMBOL(__per_cpu_offset);
2232
c8826dd5
TH
2233static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2234 size_t align)
2235{
999c17e3
SS
2236 return memblock_virt_alloc_from_nopanic(
2237 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2238}
66c3a757 2239
c8826dd5
TH
2240static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2241{
999c17e3 2242 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2243}
2244
e74e3962
TH
2245void __init setup_per_cpu_areas(void)
2246{
e74e3962
TH
2247 unsigned long delta;
2248 unsigned int cpu;
fb435d52 2249 int rc;
e74e3962
TH
2250
2251 /*
2252 * Always reserve area for module percpu variables. That's
2253 * what the legacy allocator did.
2254 */
fb435d52 2255 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2256 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2257 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2258 if (rc < 0)
bbddff05 2259 panic("Failed to initialize percpu areas.");
e74e3962
TH
2260
2261 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2262 for_each_possible_cpu(cpu)
fb435d52 2263 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2264}
bbddff05
TH
2265#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2266
2267#else /* CONFIG_SMP */
2268
2269/*
2270 * UP percpu area setup.
2271 *
2272 * UP always uses km-based percpu allocator with identity mapping.
2273 * Static percpu variables are indistinguishable from the usual static
2274 * variables and don't require any special preparation.
2275 */
2276void __init setup_per_cpu_areas(void)
2277{
2278 const size_t unit_size =
2279 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2280 PERCPU_DYNAMIC_RESERVE));
2281 struct pcpu_alloc_info *ai;
2282 void *fc;
2283
2284 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2285 fc = memblock_virt_alloc_from_nopanic(unit_size,
2286 PAGE_SIZE,
2287 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2288 if (!ai || !fc)
2289 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2290 /* kmemleak tracks the percpu allocations separately */
2291 kmemleak_free(fc);
bbddff05
TH
2292
2293 ai->dyn_size = unit_size;
2294 ai->unit_size = unit_size;
2295 ai->atom_size = unit_size;
2296 ai->alloc_size = unit_size;
2297 ai->groups[0].nr_units = 1;
2298 ai->groups[0].cpu_map[0] = 0;
2299
2300 if (pcpu_setup_first_chunk(ai, fc) < 0)
2301 panic("Failed to initialize percpu areas.");
2302}
2303
2304#endif /* CONFIG_SMP */
099a19d9
TH
2305
2306/*
2307 * First and reserved chunks are initialized with temporary allocation
2308 * map in initdata so that they can be used before slab is online.
2309 * This function is called after slab is brought up and replaces those
2310 * with properly allocated maps.
2311 */
2312void __init percpu_init_late(void)
2313{
2314 struct pcpu_chunk *target_chunks[] =
2315 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2316 struct pcpu_chunk *chunk;
2317 unsigned long flags;
2318 int i;
2319
2320 for (i = 0; (chunk = target_chunks[i]); i++) {
2321 int *map;
2322 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2323
2324 BUILD_BUG_ON(size > PAGE_SIZE);
2325
90459ce0 2326 map = pcpu_mem_zalloc(size);
099a19d9
TH
2327 BUG_ON(!map);
2328
2329 spin_lock_irqsave(&pcpu_lock, flags);
2330 memcpy(map, chunk->map, size);
2331 chunk->map = map;
2332 spin_unlock_irqrestore(&pcpu_lock, flags);
2333 }
2334}
1a4d7607
TH
2335
2336/*
2337 * Percpu allocator is initialized early during boot when neither slab or
2338 * workqueue is available. Plug async management until everything is up
2339 * and running.
2340 */
2341static int __init percpu_enable_async(void)
2342{
2343 pcpu_async_enabled = true;
2344 return 0;
2345}
2346subsys_initcall(percpu_enable_async);