]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/percpu.c
percpu: rename pcpu_reclaim_work to pcpu_balance_work
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
79#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
80#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
fbf59bc9 81
bbddff05 82#ifdef CONFIG_SMP
e0100983
TH
83/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
84#ifndef __addr_to_pcpu_ptr
85#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
86 (void __percpu *)((unsigned long)(addr) - \
87 (unsigned long)pcpu_base_addr + \
88 (unsigned long)__per_cpu_start)
e0100983
TH
89#endif
90#ifndef __pcpu_ptr_to_addr
91#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
92 (void __force *)((unsigned long)(ptr) + \
93 (unsigned long)pcpu_base_addr - \
94 (unsigned long)__per_cpu_start)
e0100983 95#endif
bbddff05
TH
96#else /* CONFIG_SMP */
97/* on UP, it's always identity mapped */
98#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
99#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
100#endif /* CONFIG_SMP */
e0100983 101
fbf59bc9
TH
102struct pcpu_chunk {
103 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
104 int free_size; /* free bytes in the chunk */
105 int contig_hint; /* max contiguous size hint */
bba174f5 106 void *base_addr; /* base address of this chunk */
9c824b6a 107
723ad1d9 108 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
109 int map_alloc; /* # of map entries allocated */
110 int *map; /* allocation map */
9c824b6a
TH
111 struct work_struct map_extend_work;/* async ->map[] extension */
112
88999a89 113 void *data; /* chunk data */
3d331ad7 114 int first_free; /* no free below this */
8d408b4b 115 bool immutable; /* no [de]population allowed */
b539b87f 116 int nr_populated; /* # of populated pages */
ce3141a2 117 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
118};
119
40150d37
TH
120static int pcpu_unit_pages __read_mostly;
121static int pcpu_unit_size __read_mostly;
2f39e637 122static int pcpu_nr_units __read_mostly;
6563297c 123static int pcpu_atom_size __read_mostly;
40150d37
TH
124static int pcpu_nr_slots __read_mostly;
125static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 126
a855b84c
TH
127/* cpus with the lowest and highest unit addresses */
128static unsigned int pcpu_low_unit_cpu __read_mostly;
129static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 130
fbf59bc9 131/* the address of the first chunk which starts with the kernel static area */
40150d37 132void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
133EXPORT_SYMBOL_GPL(pcpu_base_addr);
134
fb435d52
TH
135static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
136const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 137
6563297c
TH
138/* group information, used for vm allocation */
139static int pcpu_nr_groups __read_mostly;
140static const unsigned long *pcpu_group_offsets __read_mostly;
141static const size_t *pcpu_group_sizes __read_mostly;
142
ae9e6bc9
TH
143/*
144 * The first chunk which always exists. Note that unlike other
145 * chunks, this one can be allocated and mapped in several different
146 * ways and thus often doesn't live in the vmalloc area.
147 */
148static struct pcpu_chunk *pcpu_first_chunk;
149
150/*
151 * Optional reserved chunk. This chunk reserves part of the first
152 * chunk and serves it for reserved allocations. The amount of
153 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
154 * area doesn't exist, the following variables contain NULL and 0
155 * respectively.
156 */
edcb4639 157static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
158static int pcpu_reserved_chunk_limit;
159
b38d08f3
TH
160static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
161static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
fbf59bc9 162
40150d37 163static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 164
b539b87f
TH
165/*
166 * The number of empty populated pages, protected by pcpu_lock. The
167 * reserved chunk doesn't contribute to the count.
168 */
169static int pcpu_nr_empty_pop_pages;
170
fe6bd8c3
TH
171/* balance work is used to populate or destroy chunks asynchronously */
172static void pcpu_balance_workfn(struct work_struct *work);
173static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
a56dbddf 174
020ec653
TH
175static bool pcpu_addr_in_first_chunk(void *addr)
176{
177 void *first_start = pcpu_first_chunk->base_addr;
178
179 return addr >= first_start && addr < first_start + pcpu_unit_size;
180}
181
182static bool pcpu_addr_in_reserved_chunk(void *addr)
183{
184 void *first_start = pcpu_first_chunk->base_addr;
185
186 return addr >= first_start &&
187 addr < first_start + pcpu_reserved_chunk_limit;
188}
189
d9b55eeb 190static int __pcpu_size_to_slot(int size)
fbf59bc9 191{
cae3aeb8 192 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
193 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
194}
195
d9b55eeb
TH
196static int pcpu_size_to_slot(int size)
197{
198 if (size == pcpu_unit_size)
199 return pcpu_nr_slots - 1;
200 return __pcpu_size_to_slot(size);
201}
202
fbf59bc9
TH
203static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
204{
205 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
206 return 0;
207
208 return pcpu_size_to_slot(chunk->free_size);
209}
210
88999a89
TH
211/* set the pointer to a chunk in a page struct */
212static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
213{
214 page->index = (unsigned long)pcpu;
215}
216
217/* obtain pointer to a chunk from a page struct */
218static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
219{
220 return (struct pcpu_chunk *)page->index;
221}
222
223static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 224{
2f39e637 225 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
226}
227
9983b6f0
TH
228static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
229 unsigned int cpu, int page_idx)
fbf59bc9 230{
bba174f5 231 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 232 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
233}
234
88999a89
TH
235static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
236 int *rs, int *re, int end)
ce3141a2
TH
237{
238 *rs = find_next_zero_bit(chunk->populated, end, *rs);
239 *re = find_next_bit(chunk->populated, end, *rs + 1);
240}
241
88999a89
TH
242static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
243 int *rs, int *re, int end)
ce3141a2
TH
244{
245 *rs = find_next_bit(chunk->populated, end, *rs);
246 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
247}
248
249/*
250 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 251 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
252 * be integer variables and will be set to start and end page index of
253 * the current region.
254 */
255#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
256 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
257 (rs) < (re); \
258 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
259
260#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
261 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
262 (rs) < (re); \
263 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
264
fbf59bc9 265/**
90459ce0 266 * pcpu_mem_zalloc - allocate memory
1880d93b 267 * @size: bytes to allocate
fbf59bc9 268 *
1880d93b 269 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 270 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 271 * memory is always zeroed.
fbf59bc9 272 *
ccea34b5
TH
273 * CONTEXT:
274 * Does GFP_KERNEL allocation.
275 *
fbf59bc9 276 * RETURNS:
1880d93b 277 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 278 */
90459ce0 279static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 280{
099a19d9
TH
281 if (WARN_ON_ONCE(!slab_is_available()))
282 return NULL;
283
1880d93b
TH
284 if (size <= PAGE_SIZE)
285 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
286 else
287 return vzalloc(size);
1880d93b 288}
fbf59bc9 289
1880d93b
TH
290/**
291 * pcpu_mem_free - free memory
292 * @ptr: memory to free
293 * @size: size of the area
294 *
90459ce0 295 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
296 */
297static void pcpu_mem_free(void *ptr, size_t size)
298{
fbf59bc9 299 if (size <= PAGE_SIZE)
1880d93b 300 kfree(ptr);
fbf59bc9 301 else
1880d93b 302 vfree(ptr);
fbf59bc9
TH
303}
304
b539b87f
TH
305/**
306 * pcpu_count_occupied_pages - count the number of pages an area occupies
307 * @chunk: chunk of interest
308 * @i: index of the area in question
309 *
310 * Count the number of pages chunk's @i'th area occupies. When the area's
311 * start and/or end address isn't aligned to page boundary, the straddled
312 * page is included in the count iff the rest of the page is free.
313 */
314static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
315{
316 int off = chunk->map[i] & ~1;
317 int end = chunk->map[i + 1] & ~1;
318
319 if (!PAGE_ALIGNED(off) && i > 0) {
320 int prev = chunk->map[i - 1];
321
322 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
323 off = round_down(off, PAGE_SIZE);
324 }
325
326 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
327 int next = chunk->map[i + 1];
328 int nend = chunk->map[i + 2] & ~1;
329
330 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
331 end = round_up(end, PAGE_SIZE);
332 }
333
334 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
335}
336
fbf59bc9
TH
337/**
338 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
339 * @chunk: chunk of interest
340 * @oslot: the previous slot it was on
341 *
342 * This function is called after an allocation or free changed @chunk.
343 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
344 * moved to the slot. Note that the reserved chunk is never put on
345 * chunk slots.
ccea34b5
TH
346 *
347 * CONTEXT:
348 * pcpu_lock.
fbf59bc9
TH
349 */
350static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
351{
352 int nslot = pcpu_chunk_slot(chunk);
353
edcb4639 354 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
355 if (oslot < nslot)
356 list_move(&chunk->list, &pcpu_slot[nslot]);
357 else
358 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
359 }
360}
361
9f7dcf22 362/**
833af842
TH
363 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
364 * @chunk: chunk of interest
9c824b6a 365 * @is_atomic: the allocation context
9f7dcf22 366 *
9c824b6a
TH
367 * Determine whether area map of @chunk needs to be extended. If
368 * @is_atomic, only the amount necessary for a new allocation is
369 * considered; however, async extension is scheduled if the left amount is
370 * low. If !@is_atomic, it aims for more empty space. Combined, this
371 * ensures that the map is likely to have enough available space to
372 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 373 *
ccea34b5 374 * CONTEXT:
833af842 375 * pcpu_lock.
ccea34b5 376 *
9f7dcf22 377 * RETURNS:
833af842
TH
378 * New target map allocation length if extension is necessary, 0
379 * otherwise.
9f7dcf22 380 */
9c824b6a 381static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 382{
9c824b6a
TH
383 int margin, new_alloc;
384
385 if (is_atomic) {
386 margin = 3;
9f7dcf22 387
9c824b6a
TH
388 if (chunk->map_alloc <
389 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW)
390 schedule_work(&chunk->map_extend_work);
391 } else {
392 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
393 }
394
395 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
396 return 0;
397
398 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 399 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
400 new_alloc *= 2;
401
833af842
TH
402 return new_alloc;
403}
404
405/**
406 * pcpu_extend_area_map - extend area map of a chunk
407 * @chunk: chunk of interest
408 * @new_alloc: new target allocation length of the area map
409 *
410 * Extend area map of @chunk to have @new_alloc entries.
411 *
412 * CONTEXT:
413 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
414 *
415 * RETURNS:
416 * 0 on success, -errno on failure.
417 */
418static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
419{
420 int *old = NULL, *new = NULL;
421 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
422 unsigned long flags;
423
90459ce0 424 new = pcpu_mem_zalloc(new_size);
833af842 425 if (!new)
9f7dcf22 426 return -ENOMEM;
ccea34b5 427
833af842
TH
428 /* acquire pcpu_lock and switch to new area map */
429 spin_lock_irqsave(&pcpu_lock, flags);
430
431 if (new_alloc <= chunk->map_alloc)
432 goto out_unlock;
9f7dcf22 433
833af842 434 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
435 old = chunk->map;
436
437 memcpy(new, old, old_size);
9f7dcf22 438
9f7dcf22
TH
439 chunk->map_alloc = new_alloc;
440 chunk->map = new;
833af842
TH
441 new = NULL;
442
443out_unlock:
444 spin_unlock_irqrestore(&pcpu_lock, flags);
445
446 /*
447 * pcpu_mem_free() might end up calling vfree() which uses
448 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
449 */
450 pcpu_mem_free(old, old_size);
451 pcpu_mem_free(new, new_size);
452
9f7dcf22
TH
453 return 0;
454}
455
9c824b6a
TH
456static void pcpu_map_extend_workfn(struct work_struct *work)
457{
458 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
459 map_extend_work);
460 int new_alloc;
461
462 spin_lock_irq(&pcpu_lock);
463 new_alloc = pcpu_need_to_extend(chunk, false);
464 spin_unlock_irq(&pcpu_lock);
465
466 if (new_alloc)
467 pcpu_extend_area_map(chunk, new_alloc);
468}
469
a16037c8
TH
470/**
471 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
472 * @chunk: chunk the candidate area belongs to
473 * @off: the offset to the start of the candidate area
474 * @this_size: the size of the candidate area
475 * @size: the size of the target allocation
476 * @align: the alignment of the target allocation
477 * @pop_only: only allocate from already populated region
478 *
479 * We're trying to allocate @size bytes aligned at @align. @chunk's area
480 * at @off sized @this_size is a candidate. This function determines
481 * whether the target allocation fits in the candidate area and returns the
482 * number of bytes to pad after @off. If the target area doesn't fit, -1
483 * is returned.
484 *
485 * If @pop_only is %true, this function only considers the already
486 * populated part of the candidate area.
487 */
488static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
489 int size, int align, bool pop_only)
490{
491 int cand_off = off;
492
493 while (true) {
494 int head = ALIGN(cand_off, align) - off;
495 int page_start, page_end, rs, re;
496
497 if (this_size < head + size)
498 return -1;
499
500 if (!pop_only)
501 return head;
502
503 /*
504 * If the first unpopulated page is beyond the end of the
505 * allocation, the whole allocation is populated;
506 * otherwise, retry from the end of the unpopulated area.
507 */
508 page_start = PFN_DOWN(head + off);
509 page_end = PFN_UP(head + off + size);
510
511 rs = page_start;
512 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
513 if (rs >= page_end)
514 return head;
515 cand_off = re * PAGE_SIZE;
516 }
517}
518
fbf59bc9
TH
519/**
520 * pcpu_alloc_area - allocate area from a pcpu_chunk
521 * @chunk: chunk of interest
cae3aeb8 522 * @size: wanted size in bytes
fbf59bc9 523 * @align: wanted align
a16037c8 524 * @pop_only: allocate only from the populated area
b539b87f 525 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
526 *
527 * Try to allocate @size bytes area aligned at @align from @chunk.
528 * Note that this function only allocates the offset. It doesn't
529 * populate or map the area.
530 *
9f7dcf22
TH
531 * @chunk->map must have at least two free slots.
532 *
ccea34b5
TH
533 * CONTEXT:
534 * pcpu_lock.
535 *
fbf59bc9 536 * RETURNS:
9f7dcf22
TH
537 * Allocated offset in @chunk on success, -1 if no matching area is
538 * found.
fbf59bc9 539 */
a16037c8 540static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 541 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
542{
543 int oslot = pcpu_chunk_slot(chunk);
544 int max_contig = 0;
545 int i, off;
3d331ad7 546 bool seen_free = false;
723ad1d9 547 int *p;
fbf59bc9 548
3d331ad7 549 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 550 int head, tail;
723ad1d9
AV
551 int this_size;
552
553 off = *p;
554 if (off & 1)
555 continue;
fbf59bc9 556
723ad1d9 557 this_size = (p[1] & ~1) - off;
a16037c8
TH
558
559 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
560 pop_only);
561 if (head < 0) {
3d331ad7
AV
562 if (!seen_free) {
563 chunk->first_free = i;
564 seen_free = true;
565 }
723ad1d9 566 max_contig = max(this_size, max_contig);
fbf59bc9
TH
567 continue;
568 }
569
570 /*
571 * If head is small or the previous block is free,
572 * merge'em. Note that 'small' is defined as smaller
573 * than sizeof(int), which is very small but isn't too
574 * uncommon for percpu allocations.
575 */
723ad1d9 576 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 577 *p = off += head;
723ad1d9 578 if (p[-1] & 1)
fbf59bc9 579 chunk->free_size -= head;
21ddfd38
JZ
580 else
581 max_contig = max(*p - p[-1], max_contig);
723ad1d9 582 this_size -= head;
fbf59bc9
TH
583 head = 0;
584 }
585
586 /* if tail is small, just keep it around */
723ad1d9
AV
587 tail = this_size - head - size;
588 if (tail < sizeof(int)) {
fbf59bc9 589 tail = 0;
723ad1d9
AV
590 size = this_size - head;
591 }
fbf59bc9
TH
592
593 /* split if warranted */
594 if (head || tail) {
706c16f2
AV
595 int nr_extra = !!head + !!tail;
596
597 /* insert new subblocks */
723ad1d9 598 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
599 sizeof(chunk->map[0]) * (chunk->map_used - i));
600 chunk->map_used += nr_extra;
601
fbf59bc9 602 if (head) {
3d331ad7
AV
603 if (!seen_free) {
604 chunk->first_free = i;
605 seen_free = true;
606 }
723ad1d9
AV
607 *++p = off += head;
608 ++i;
706c16f2
AV
609 max_contig = max(head, max_contig);
610 }
611 if (tail) {
723ad1d9 612 p[1] = off + size;
706c16f2 613 max_contig = max(tail, max_contig);
fbf59bc9 614 }
fbf59bc9
TH
615 }
616
3d331ad7
AV
617 if (!seen_free)
618 chunk->first_free = i + 1;
619
fbf59bc9 620 /* update hint and mark allocated */
723ad1d9 621 if (i + 1 == chunk->map_used)
fbf59bc9
TH
622 chunk->contig_hint = max_contig; /* fully scanned */
623 else
624 chunk->contig_hint = max(chunk->contig_hint,
625 max_contig);
626
723ad1d9
AV
627 chunk->free_size -= size;
628 *p |= 1;
fbf59bc9 629
b539b87f 630 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
631 pcpu_chunk_relocate(chunk, oslot);
632 return off;
633 }
634
635 chunk->contig_hint = max_contig; /* fully scanned */
636 pcpu_chunk_relocate(chunk, oslot);
637
9f7dcf22
TH
638 /* tell the upper layer that this chunk has no matching area */
639 return -1;
fbf59bc9
TH
640}
641
642/**
643 * pcpu_free_area - free area to a pcpu_chunk
644 * @chunk: chunk of interest
645 * @freeme: offset of area to free
b539b87f 646 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
647 *
648 * Free area starting from @freeme to @chunk. Note that this function
649 * only modifies the allocation map. It doesn't depopulate or unmap
650 * the area.
ccea34b5
TH
651 *
652 * CONTEXT:
653 * pcpu_lock.
fbf59bc9 654 */
b539b87f
TH
655static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
656 int *occ_pages_p)
fbf59bc9
TH
657{
658 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
659 int off = 0;
660 unsigned i, j;
661 int to_free = 0;
662 int *p;
663
664 freeme |= 1; /* we are searching for <given offset, in use> pair */
665
666 i = 0;
667 j = chunk->map_used;
668 while (i != j) {
669 unsigned k = (i + j) / 2;
670 off = chunk->map[k];
671 if (off < freeme)
672 i = k + 1;
673 else if (off > freeme)
674 j = k;
675 else
676 i = j = k;
677 }
fbf59bc9 678 BUG_ON(off != freeme);
fbf59bc9 679
3d331ad7
AV
680 if (i < chunk->first_free)
681 chunk->first_free = i;
682
723ad1d9
AV
683 p = chunk->map + i;
684 *p = off &= ~1;
685 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 686
b539b87f
TH
687 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
688
723ad1d9
AV
689 /* merge with next? */
690 if (!(p[1] & 1))
691 to_free++;
fbf59bc9 692 /* merge with previous? */
723ad1d9
AV
693 if (i > 0 && !(p[-1] & 1)) {
694 to_free++;
fbf59bc9 695 i--;
723ad1d9 696 p--;
fbf59bc9 697 }
723ad1d9
AV
698 if (to_free) {
699 chunk->map_used -= to_free;
700 memmove(p + 1, p + 1 + to_free,
701 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
702 }
703
723ad1d9 704 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
705 pcpu_chunk_relocate(chunk, oslot);
706}
707
6081089f
TH
708static struct pcpu_chunk *pcpu_alloc_chunk(void)
709{
710 struct pcpu_chunk *chunk;
711
90459ce0 712 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
713 if (!chunk)
714 return NULL;
715
90459ce0
BL
716 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
717 sizeof(chunk->map[0]));
6081089f 718 if (!chunk->map) {
5a838c3b 719 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
720 return NULL;
721 }
722
723 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
724 chunk->map[0] = 0;
725 chunk->map[1] = pcpu_unit_size | 1;
726 chunk->map_used = 1;
6081089f
TH
727
728 INIT_LIST_HEAD(&chunk->list);
9c824b6a 729 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
6081089f
TH
730 chunk->free_size = pcpu_unit_size;
731 chunk->contig_hint = pcpu_unit_size;
732
733 return chunk;
734}
735
736static void pcpu_free_chunk(struct pcpu_chunk *chunk)
737{
738 if (!chunk)
739 return;
740 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 741 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
742}
743
b539b87f
TH
744/**
745 * pcpu_chunk_populated - post-population bookkeeping
746 * @chunk: pcpu_chunk which got populated
747 * @page_start: the start page
748 * @page_end: the end page
749 *
750 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
751 * the bookkeeping information accordingly. Must be called after each
752 * successful population.
753 */
754static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
755 int page_start, int page_end)
756{
757 int nr = page_end - page_start;
758
759 lockdep_assert_held(&pcpu_lock);
760
761 bitmap_set(chunk->populated, page_start, nr);
762 chunk->nr_populated += nr;
763 pcpu_nr_empty_pop_pages += nr;
764}
765
766/**
767 * pcpu_chunk_depopulated - post-depopulation bookkeeping
768 * @chunk: pcpu_chunk which got depopulated
769 * @page_start: the start page
770 * @page_end: the end page
771 *
772 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
773 * Update the bookkeeping information accordingly. Must be called after
774 * each successful depopulation.
775 */
776static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
777 int page_start, int page_end)
778{
779 int nr = page_end - page_start;
780
781 lockdep_assert_held(&pcpu_lock);
782
783 bitmap_clear(chunk->populated, page_start, nr);
784 chunk->nr_populated -= nr;
785 pcpu_nr_empty_pop_pages -= nr;
786}
787
9f645532
TH
788/*
789 * Chunk management implementation.
790 *
791 * To allow different implementations, chunk alloc/free and
792 * [de]population are implemented in a separate file which is pulled
793 * into this file and compiled together. The following functions
794 * should be implemented.
795 *
796 * pcpu_populate_chunk - populate the specified range of a chunk
797 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
798 * pcpu_create_chunk - create a new chunk
799 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
800 * pcpu_addr_to_page - translate address to physical address
801 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 802 */
9f645532
TH
803static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
804static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
805static struct pcpu_chunk *pcpu_create_chunk(void);
806static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
807static struct page *pcpu_addr_to_page(void *addr);
808static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 809
b0c9778b
TH
810#ifdef CONFIG_NEED_PER_CPU_KM
811#include "percpu-km.c"
812#else
9f645532 813#include "percpu-vm.c"
b0c9778b 814#endif
fbf59bc9 815
88999a89
TH
816/**
817 * pcpu_chunk_addr_search - determine chunk containing specified address
818 * @addr: address for which the chunk needs to be determined.
819 *
820 * RETURNS:
821 * The address of the found chunk.
822 */
823static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
824{
825 /* is it in the first chunk? */
826 if (pcpu_addr_in_first_chunk(addr)) {
827 /* is it in the reserved area? */
828 if (pcpu_addr_in_reserved_chunk(addr))
829 return pcpu_reserved_chunk;
830 return pcpu_first_chunk;
831 }
832
833 /*
834 * The address is relative to unit0 which might be unused and
835 * thus unmapped. Offset the address to the unit space of the
836 * current processor before looking it up in the vmalloc
837 * space. Note that any possible cpu id can be used here, so
838 * there's no need to worry about preemption or cpu hotplug.
839 */
840 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 841 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
842}
843
fbf59bc9 844/**
edcb4639 845 * pcpu_alloc - the percpu allocator
cae3aeb8 846 * @size: size of area to allocate in bytes
fbf59bc9 847 * @align: alignment of area (max PAGE_SIZE)
edcb4639 848 * @reserved: allocate from the reserved chunk if available
5835d96e 849 * @gfp: allocation flags
fbf59bc9 850 *
5835d96e
TH
851 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
852 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
853 *
854 * RETURNS:
855 * Percpu pointer to the allocated area on success, NULL on failure.
856 */
5835d96e
TH
857static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
858 gfp_t gfp)
fbf59bc9 859{
f2badb0c 860 static int warn_limit = 10;
fbf59bc9 861 struct pcpu_chunk *chunk;
f2badb0c 862 const char *err;
5835d96e 863 bool is_atomic = !(gfp & GFP_KERNEL);
b539b87f 864 int occ_pages = 0;
b38d08f3 865 int slot, off, new_alloc, cpu, ret;
403a91b1 866 unsigned long flags;
f528f0b8 867 void __percpu *ptr;
fbf59bc9 868
723ad1d9
AV
869 /*
870 * We want the lowest bit of offset available for in-use/free
2f69fa82 871 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
872 */
873 if (unlikely(align < 2))
874 align = 2;
875
fb009e3a 876 size = ALIGN(size, 2);
2f69fa82 877
8d408b4b 878 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
879 WARN(true, "illegal size (%zu) or align (%zu) for "
880 "percpu allocation\n", size, align);
881 return NULL;
882 }
883
403a91b1 884 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 885
edcb4639
TH
886 /* serve reserved allocations from the reserved chunk if available */
887 if (reserved && pcpu_reserved_chunk) {
888 chunk = pcpu_reserved_chunk;
833af842
TH
889
890 if (size > chunk->contig_hint) {
891 err = "alloc from reserved chunk failed";
ccea34b5 892 goto fail_unlock;
f2badb0c 893 }
833af842 894
9c824b6a 895 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 896 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
897 if (is_atomic ||
898 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 899 err = "failed to extend area map of reserved chunk";
b38d08f3 900 goto fail;
833af842
TH
901 }
902 spin_lock_irqsave(&pcpu_lock, flags);
903 }
904
b539b87f
TH
905 off = pcpu_alloc_area(chunk, size, align, is_atomic,
906 &occ_pages);
edcb4639
TH
907 if (off >= 0)
908 goto area_found;
833af842 909
f2badb0c 910 err = "alloc from reserved chunk failed";
ccea34b5 911 goto fail_unlock;
edcb4639
TH
912 }
913
ccea34b5 914restart:
edcb4639 915 /* search through normal chunks */
fbf59bc9
TH
916 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
917 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
918 if (size > chunk->contig_hint)
919 continue;
ccea34b5 920
9c824b6a 921 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 922 if (new_alloc) {
5835d96e
TH
923 if (is_atomic)
924 continue;
833af842
TH
925 spin_unlock_irqrestore(&pcpu_lock, flags);
926 if (pcpu_extend_area_map(chunk,
927 new_alloc) < 0) {
928 err = "failed to extend area map";
b38d08f3 929 goto fail;
833af842
TH
930 }
931 spin_lock_irqsave(&pcpu_lock, flags);
932 /*
933 * pcpu_lock has been dropped, need to
934 * restart cpu_slot list walking.
935 */
936 goto restart;
ccea34b5
TH
937 }
938
b539b87f
TH
939 off = pcpu_alloc_area(chunk, size, align, is_atomic,
940 &occ_pages);
fbf59bc9
TH
941 if (off >= 0)
942 goto area_found;
fbf59bc9
TH
943 }
944 }
945
403a91b1 946 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 947
b38d08f3
TH
948 /*
949 * No space left. Create a new chunk. We don't want multiple
950 * tasks to create chunks simultaneously. Serialize and create iff
951 * there's still no empty chunk after grabbing the mutex.
952 */
5835d96e
TH
953 if (is_atomic)
954 goto fail;
955
b38d08f3
TH
956 mutex_lock(&pcpu_alloc_mutex);
957
958 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
959 chunk = pcpu_create_chunk();
960 if (!chunk) {
961 err = "failed to allocate new chunk";
962 goto fail;
963 }
964
965 spin_lock_irqsave(&pcpu_lock, flags);
966 pcpu_chunk_relocate(chunk, -1);
967 } else {
968 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 969 }
ccea34b5 970
b38d08f3 971 mutex_unlock(&pcpu_alloc_mutex);
ccea34b5 972 goto restart;
fbf59bc9
TH
973
974area_found:
403a91b1 975 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 976
dca49645 977 /* populate if not all pages are already there */
5835d96e 978 if (!is_atomic) {
e04d3208 979 int page_start, page_end, rs, re;
dca49645 980
e04d3208 981 mutex_lock(&pcpu_alloc_mutex);
dca49645 982
e04d3208
TH
983 page_start = PFN_DOWN(off);
984 page_end = PFN_UP(off + size);
b38d08f3 985
e04d3208
TH
986 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
987 WARN_ON(chunk->immutable);
988
989 ret = pcpu_populate_chunk(chunk, rs, re);
990
991 spin_lock_irqsave(&pcpu_lock, flags);
992 if (ret) {
993 mutex_unlock(&pcpu_alloc_mutex);
b539b87f 994 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
995 err = "failed to populate";
996 goto fail_unlock;
997 }
b539b87f 998 pcpu_chunk_populated(chunk, rs, re);
e04d3208 999 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1000 }
fbf59bc9 1001
e04d3208
TH
1002 mutex_unlock(&pcpu_alloc_mutex);
1003 }
ccea34b5 1004
b539b87f
TH
1005 if (chunk != pcpu_reserved_chunk)
1006 pcpu_nr_empty_pop_pages -= occ_pages;
1007
dca49645
TH
1008 /* clear the areas and return address relative to base address */
1009 for_each_possible_cpu(cpu)
1010 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1011
f528f0b8
CM
1012 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1013 kmemleak_alloc_percpu(ptr, size);
1014 return ptr;
ccea34b5
TH
1015
1016fail_unlock:
403a91b1 1017 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1018fail:
5835d96e
TH
1019 if (!is_atomic && warn_limit) {
1020 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1021 size, align, is_atomic, err);
f2badb0c
TH
1022 dump_stack();
1023 if (!--warn_limit)
1024 pr_info("PERCPU: limit reached, disable warning\n");
1025 }
ccea34b5 1026 return NULL;
fbf59bc9 1027}
edcb4639
TH
1028
1029/**
5835d96e 1030 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1031 * @size: size of area to allocate in bytes
1032 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1033 * @gfp: allocation flags
edcb4639 1034 *
5835d96e
TH
1035 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1036 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1037 * be called from any context but is a lot more likely to fail.
ccea34b5 1038 *
edcb4639
TH
1039 * RETURNS:
1040 * Percpu pointer to the allocated area on success, NULL on failure.
1041 */
5835d96e
TH
1042void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1043{
1044 return pcpu_alloc(size, align, false, gfp);
1045}
1046EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1047
1048/**
1049 * __alloc_percpu - allocate dynamic percpu area
1050 * @size: size of area to allocate in bytes
1051 * @align: alignment of area (max PAGE_SIZE)
1052 *
1053 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1054 */
43cf38eb 1055void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1056{
5835d96e 1057 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1058}
fbf59bc9
TH
1059EXPORT_SYMBOL_GPL(__alloc_percpu);
1060
edcb4639
TH
1061/**
1062 * __alloc_reserved_percpu - allocate reserved percpu area
1063 * @size: size of area to allocate in bytes
1064 * @align: alignment of area (max PAGE_SIZE)
1065 *
9329ba97
TH
1066 * Allocate zero-filled percpu area of @size bytes aligned at @align
1067 * from reserved percpu area if arch has set it up; otherwise,
1068 * allocation is served from the same dynamic area. Might sleep.
1069 * Might trigger writeouts.
edcb4639 1070 *
ccea34b5
TH
1071 * CONTEXT:
1072 * Does GFP_KERNEL allocation.
1073 *
edcb4639
TH
1074 * RETURNS:
1075 * Percpu pointer to the allocated area on success, NULL on failure.
1076 */
43cf38eb 1077void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1078{
5835d96e 1079 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1080}
1081
a56dbddf 1082/**
fe6bd8c3 1083 * pcpu_balance_workfn - reclaim fully free chunks, workqueue function
a56dbddf
TH
1084 * @work: unused
1085 *
1086 * Reclaim all fully free chunks except for the first one.
1087 */
fe6bd8c3 1088static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1089{
fe6bd8c3
TH
1090 LIST_HEAD(to_free);
1091 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf
TH
1092 struct pcpu_chunk *chunk, *next;
1093
ccea34b5
TH
1094 mutex_lock(&pcpu_alloc_mutex);
1095 spin_lock_irq(&pcpu_lock);
a56dbddf 1096
fe6bd8c3 1097 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1098 WARN_ON(chunk->immutable);
1099
1100 /* spare the first one */
fe6bd8c3 1101 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1102 continue;
1103
fe6bd8c3 1104 list_move(&chunk->list, &to_free);
a56dbddf
TH
1105 }
1106
ccea34b5 1107 spin_unlock_irq(&pcpu_lock);
a56dbddf 1108
fe6bd8c3 1109 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1110 int rs, re;
dca49645 1111
a93ace48
TH
1112 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1113 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1114 spin_lock_irq(&pcpu_lock);
1115 pcpu_chunk_depopulated(chunk, rs, re);
1116 spin_unlock_irq(&pcpu_lock);
a93ace48 1117 }
6081089f 1118 pcpu_destroy_chunk(chunk);
a56dbddf 1119 }
971f3918
TH
1120
1121 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1122}
1123
1124/**
1125 * free_percpu - free percpu area
1126 * @ptr: pointer to area to free
1127 *
ccea34b5
TH
1128 * Free percpu area @ptr.
1129 *
1130 * CONTEXT:
1131 * Can be called from atomic context.
fbf59bc9 1132 */
43cf38eb 1133void free_percpu(void __percpu *ptr)
fbf59bc9 1134{
129182e5 1135 void *addr;
fbf59bc9 1136 struct pcpu_chunk *chunk;
ccea34b5 1137 unsigned long flags;
b539b87f 1138 int off, occ_pages;
fbf59bc9
TH
1139
1140 if (!ptr)
1141 return;
1142
f528f0b8
CM
1143 kmemleak_free_percpu(ptr);
1144
129182e5
AM
1145 addr = __pcpu_ptr_to_addr(ptr);
1146
ccea34b5 1147 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1148
1149 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1150 off = addr - chunk->base_addr;
fbf59bc9 1151
b539b87f
TH
1152 pcpu_free_area(chunk, off, &occ_pages);
1153
1154 if (chunk != pcpu_reserved_chunk)
1155 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1156
a56dbddf 1157 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1158 if (chunk->free_size == pcpu_unit_size) {
1159 struct pcpu_chunk *pos;
1160
a56dbddf 1161 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1162 if (pos != chunk) {
fe6bd8c3 1163 schedule_work(&pcpu_balance_work);
fbf59bc9
TH
1164 break;
1165 }
1166 }
1167
ccea34b5 1168 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1169}
1170EXPORT_SYMBOL_GPL(free_percpu);
1171
10fad5e4
TH
1172/**
1173 * is_kernel_percpu_address - test whether address is from static percpu area
1174 * @addr: address to test
1175 *
1176 * Test whether @addr belongs to in-kernel static percpu area. Module
1177 * static percpu areas are not considered. For those, use
1178 * is_module_percpu_address().
1179 *
1180 * RETURNS:
1181 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1182 */
1183bool is_kernel_percpu_address(unsigned long addr)
1184{
bbddff05 1185#ifdef CONFIG_SMP
10fad5e4
TH
1186 const size_t static_size = __per_cpu_end - __per_cpu_start;
1187 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1188 unsigned int cpu;
1189
1190 for_each_possible_cpu(cpu) {
1191 void *start = per_cpu_ptr(base, cpu);
1192
1193 if ((void *)addr >= start && (void *)addr < start + static_size)
1194 return true;
1195 }
bbddff05
TH
1196#endif
1197 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1198 return false;
1199}
1200
3b034b0d
VG
1201/**
1202 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1203 * @addr: the address to be converted to physical address
1204 *
1205 * Given @addr which is dereferenceable address obtained via one of
1206 * percpu access macros, this function translates it into its physical
1207 * address. The caller is responsible for ensuring @addr stays valid
1208 * until this function finishes.
1209 *
67589c71
DY
1210 * percpu allocator has special setup for the first chunk, which currently
1211 * supports either embedding in linear address space or vmalloc mapping,
1212 * and, from the second one, the backing allocator (currently either vm or
1213 * km) provides translation.
1214 *
1215 * The addr can be tranlated simply without checking if it falls into the
1216 * first chunk. But the current code reflects better how percpu allocator
1217 * actually works, and the verification can discover both bugs in percpu
1218 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1219 * code.
1220 *
3b034b0d
VG
1221 * RETURNS:
1222 * The physical address for @addr.
1223 */
1224phys_addr_t per_cpu_ptr_to_phys(void *addr)
1225{
9983b6f0
TH
1226 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1227 bool in_first_chunk = false;
a855b84c 1228 unsigned long first_low, first_high;
9983b6f0
TH
1229 unsigned int cpu;
1230
1231 /*
a855b84c 1232 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1233 * necessary but will speed up lookups of addresses which
1234 * aren't in the first chunk.
1235 */
a855b84c
TH
1236 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1237 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1238 pcpu_unit_pages);
1239 if ((unsigned long)addr >= first_low &&
1240 (unsigned long)addr < first_high) {
9983b6f0
TH
1241 for_each_possible_cpu(cpu) {
1242 void *start = per_cpu_ptr(base, cpu);
1243
1244 if (addr >= start && addr < start + pcpu_unit_size) {
1245 in_first_chunk = true;
1246 break;
1247 }
1248 }
1249 }
1250
1251 if (in_first_chunk) {
eac522ef 1252 if (!is_vmalloc_addr(addr))
020ec653
TH
1253 return __pa(addr);
1254 else
9f57bd4d
ES
1255 return page_to_phys(vmalloc_to_page(addr)) +
1256 offset_in_page(addr);
020ec653 1257 } else
9f57bd4d
ES
1258 return page_to_phys(pcpu_addr_to_page(addr)) +
1259 offset_in_page(addr);
3b034b0d
VG
1260}
1261
fbf59bc9 1262/**
fd1e8a1f
TH
1263 * pcpu_alloc_alloc_info - allocate percpu allocation info
1264 * @nr_groups: the number of groups
1265 * @nr_units: the number of units
1266 *
1267 * Allocate ai which is large enough for @nr_groups groups containing
1268 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1269 * cpu_map array which is long enough for @nr_units and filled with
1270 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1271 * pointer of other groups.
1272 *
1273 * RETURNS:
1274 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1275 * failure.
1276 */
1277struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1278 int nr_units)
1279{
1280 struct pcpu_alloc_info *ai;
1281 size_t base_size, ai_size;
1282 void *ptr;
1283 int unit;
1284
1285 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1286 __alignof__(ai->groups[0].cpu_map[0]));
1287 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1288
999c17e3 1289 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1290 if (!ptr)
1291 return NULL;
1292 ai = ptr;
1293 ptr += base_size;
1294
1295 ai->groups[0].cpu_map = ptr;
1296
1297 for (unit = 0; unit < nr_units; unit++)
1298 ai->groups[0].cpu_map[unit] = NR_CPUS;
1299
1300 ai->nr_groups = nr_groups;
1301 ai->__ai_size = PFN_ALIGN(ai_size);
1302
1303 return ai;
1304}
1305
1306/**
1307 * pcpu_free_alloc_info - free percpu allocation info
1308 * @ai: pcpu_alloc_info to free
1309 *
1310 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1311 */
1312void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1313{
999c17e3 1314 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1315}
1316
fd1e8a1f
TH
1317/**
1318 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1319 * @lvl: loglevel
1320 * @ai: allocation info to dump
1321 *
1322 * Print out information about @ai using loglevel @lvl.
1323 */
1324static void pcpu_dump_alloc_info(const char *lvl,
1325 const struct pcpu_alloc_info *ai)
033e48fb 1326{
fd1e8a1f 1327 int group_width = 1, cpu_width = 1, width;
033e48fb 1328 char empty_str[] = "--------";
fd1e8a1f
TH
1329 int alloc = 0, alloc_end = 0;
1330 int group, v;
1331 int upa, apl; /* units per alloc, allocs per line */
1332
1333 v = ai->nr_groups;
1334 while (v /= 10)
1335 group_width++;
033e48fb 1336
fd1e8a1f 1337 v = num_possible_cpus();
033e48fb 1338 while (v /= 10)
fd1e8a1f
TH
1339 cpu_width++;
1340 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1341
fd1e8a1f
TH
1342 upa = ai->alloc_size / ai->unit_size;
1343 width = upa * (cpu_width + 1) + group_width + 3;
1344 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1345
fd1e8a1f
TH
1346 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1347 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1348 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1349
fd1e8a1f
TH
1350 for (group = 0; group < ai->nr_groups; group++) {
1351 const struct pcpu_group_info *gi = &ai->groups[group];
1352 int unit = 0, unit_end = 0;
1353
1354 BUG_ON(gi->nr_units % upa);
1355 for (alloc_end += gi->nr_units / upa;
1356 alloc < alloc_end; alloc++) {
1357 if (!(alloc % apl)) {
cb129820 1358 printk(KERN_CONT "\n");
fd1e8a1f
TH
1359 printk("%spcpu-alloc: ", lvl);
1360 }
cb129820 1361 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1362
1363 for (unit_end += upa; unit < unit_end; unit++)
1364 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1365 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1366 gi->cpu_map[unit]);
1367 else
cb129820 1368 printk(KERN_CONT "%s ", empty_str);
033e48fb 1369 }
033e48fb 1370 }
cb129820 1371 printk(KERN_CONT "\n");
033e48fb 1372}
033e48fb 1373
fbf59bc9 1374/**
8d408b4b 1375 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1376 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1377 * @base_addr: mapped address
8d408b4b
TH
1378 *
1379 * Initialize the first percpu chunk which contains the kernel static
1380 * perpcu area. This function is to be called from arch percpu area
38a6be52 1381 * setup path.
8d408b4b 1382 *
fd1e8a1f
TH
1383 * @ai contains all information necessary to initialize the first
1384 * chunk and prime the dynamic percpu allocator.
1385 *
1386 * @ai->static_size is the size of static percpu area.
1387 *
1388 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1389 * reserve after the static area in the first chunk. This reserves
1390 * the first chunk such that it's available only through reserved
1391 * percpu allocation. This is primarily used to serve module percpu
1392 * static areas on architectures where the addressing model has
1393 * limited offset range for symbol relocations to guarantee module
1394 * percpu symbols fall inside the relocatable range.
1395 *
fd1e8a1f
TH
1396 * @ai->dyn_size determines the number of bytes available for dynamic
1397 * allocation in the first chunk. The area between @ai->static_size +
1398 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1399 *
fd1e8a1f
TH
1400 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1401 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1402 * @ai->dyn_size.
8d408b4b 1403 *
fd1e8a1f
TH
1404 * @ai->atom_size is the allocation atom size and used as alignment
1405 * for vm areas.
8d408b4b 1406 *
fd1e8a1f
TH
1407 * @ai->alloc_size is the allocation size and always multiple of
1408 * @ai->atom_size. This is larger than @ai->atom_size if
1409 * @ai->unit_size is larger than @ai->atom_size.
1410 *
1411 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1412 * percpu areas. Units which should be colocated are put into the
1413 * same group. Dynamic VM areas will be allocated according to these
1414 * groupings. If @ai->nr_groups is zero, a single group containing
1415 * all units is assumed.
8d408b4b 1416 *
38a6be52
TH
1417 * The caller should have mapped the first chunk at @base_addr and
1418 * copied static data to each unit.
fbf59bc9 1419 *
edcb4639
TH
1420 * If the first chunk ends up with both reserved and dynamic areas, it
1421 * is served by two chunks - one to serve the core static and reserved
1422 * areas and the other for the dynamic area. They share the same vm
1423 * and page map but uses different area allocation map to stay away
1424 * from each other. The latter chunk is circulated in the chunk slots
1425 * and available for dynamic allocation like any other chunks.
1426 *
fbf59bc9 1427 * RETURNS:
fb435d52 1428 * 0 on success, -errno on failure.
fbf59bc9 1429 */
fb435d52
TH
1430int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1431 void *base_addr)
fbf59bc9 1432{
635b75fc 1433 static char cpus_buf[4096] __initdata;
099a19d9
TH
1434 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1435 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1436 size_t dyn_size = ai->dyn_size;
1437 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1438 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1439 unsigned long *group_offsets;
1440 size_t *group_sizes;
fb435d52 1441 unsigned long *unit_off;
fbf59bc9 1442 unsigned int cpu;
fd1e8a1f
TH
1443 int *unit_map;
1444 int group, unit, i;
fbf59bc9 1445
635b75fc
TH
1446 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1447
1448#define PCPU_SETUP_BUG_ON(cond) do { \
1449 if (unlikely(cond)) { \
1450 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1451 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1452 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1453 BUG(); \
1454 } \
1455} while (0)
1456
2f39e637 1457 /* sanity checks */
635b75fc 1458 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1459#ifdef CONFIG_SMP
635b75fc 1460 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1461 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1462#endif
635b75fc 1463 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1464 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1465 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1466 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1467 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1468 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1469 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1470
6563297c 1471 /* process group information and build config tables accordingly */
999c17e3
SS
1472 group_offsets = memblock_virt_alloc(ai->nr_groups *
1473 sizeof(group_offsets[0]), 0);
1474 group_sizes = memblock_virt_alloc(ai->nr_groups *
1475 sizeof(group_sizes[0]), 0);
1476 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1477 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1478
fd1e8a1f 1479 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1480 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1481
1482 pcpu_low_unit_cpu = NR_CPUS;
1483 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1484
fd1e8a1f
TH
1485 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1486 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1487
6563297c
TH
1488 group_offsets[group] = gi->base_offset;
1489 group_sizes[group] = gi->nr_units * ai->unit_size;
1490
fd1e8a1f
TH
1491 for (i = 0; i < gi->nr_units; i++) {
1492 cpu = gi->cpu_map[i];
1493 if (cpu == NR_CPUS)
1494 continue;
8d408b4b 1495
635b75fc
TH
1496 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1497 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1498 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1499
fd1e8a1f 1500 unit_map[cpu] = unit + i;
fb435d52
TH
1501 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1502
a855b84c
TH
1503 /* determine low/high unit_cpu */
1504 if (pcpu_low_unit_cpu == NR_CPUS ||
1505 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1506 pcpu_low_unit_cpu = cpu;
1507 if (pcpu_high_unit_cpu == NR_CPUS ||
1508 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1509 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1510 }
2f39e637 1511 }
fd1e8a1f
TH
1512 pcpu_nr_units = unit;
1513
1514 for_each_possible_cpu(cpu)
635b75fc
TH
1515 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1516
1517 /* we're done parsing the input, undefine BUG macro and dump config */
1518#undef PCPU_SETUP_BUG_ON
bcbea798 1519 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1520
6563297c
TH
1521 pcpu_nr_groups = ai->nr_groups;
1522 pcpu_group_offsets = group_offsets;
1523 pcpu_group_sizes = group_sizes;
fd1e8a1f 1524 pcpu_unit_map = unit_map;
fb435d52 1525 pcpu_unit_offsets = unit_off;
2f39e637
TH
1526
1527 /* determine basic parameters */
fd1e8a1f 1528 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1529 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1530 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1531 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1532 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1533
d9b55eeb
TH
1534 /*
1535 * Allocate chunk slots. The additional last slot is for
1536 * empty chunks.
1537 */
1538 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1539 pcpu_slot = memblock_virt_alloc(
1540 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1541 for (i = 0; i < pcpu_nr_slots; i++)
1542 INIT_LIST_HEAD(&pcpu_slot[i]);
1543
edcb4639
TH
1544 /*
1545 * Initialize static chunk. If reserved_size is zero, the
1546 * static chunk covers static area + dynamic allocation area
1547 * in the first chunk. If reserved_size is not zero, it
1548 * covers static area + reserved area (mostly used for module
1549 * static percpu allocation).
1550 */
999c17e3 1551 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1552 INIT_LIST_HEAD(&schunk->list);
9c824b6a 1553 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
bba174f5 1554 schunk->base_addr = base_addr;
61ace7fa
TH
1555 schunk->map = smap;
1556 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1557 schunk->immutable = true;
ce3141a2 1558 bitmap_fill(schunk->populated, pcpu_unit_pages);
b539b87f 1559 schunk->nr_populated = pcpu_unit_pages;
edcb4639 1560
fd1e8a1f
TH
1561 if (ai->reserved_size) {
1562 schunk->free_size = ai->reserved_size;
ae9e6bc9 1563 pcpu_reserved_chunk = schunk;
fd1e8a1f 1564 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1565 } else {
1566 schunk->free_size = dyn_size;
1567 dyn_size = 0; /* dynamic area covered */
1568 }
2441d15c 1569 schunk->contig_hint = schunk->free_size;
fbf59bc9 1570
723ad1d9
AV
1571 schunk->map[0] = 1;
1572 schunk->map[1] = ai->static_size;
1573 schunk->map_used = 1;
61ace7fa 1574 if (schunk->free_size)
723ad1d9
AV
1575 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1576 else
1577 schunk->map[1] |= 1;
61ace7fa 1578
edcb4639
TH
1579 /* init dynamic chunk if necessary */
1580 if (dyn_size) {
999c17e3 1581 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1582 INIT_LIST_HEAD(&dchunk->list);
9c824b6a 1583 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
bba174f5 1584 dchunk->base_addr = base_addr;
edcb4639
TH
1585 dchunk->map = dmap;
1586 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1587 dchunk->immutable = true;
ce3141a2 1588 bitmap_fill(dchunk->populated, pcpu_unit_pages);
b539b87f 1589 dchunk->nr_populated = pcpu_unit_pages;
edcb4639
TH
1590
1591 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1592 dchunk->map[0] = 1;
1593 dchunk->map[1] = pcpu_reserved_chunk_limit;
1594 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1595 dchunk->map_used = 2;
edcb4639
TH
1596 }
1597
2441d15c 1598 /* link the first chunk in */
ae9e6bc9 1599 pcpu_first_chunk = dchunk ?: schunk;
b539b87f
TH
1600 pcpu_nr_empty_pop_pages +=
1601 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
ae9e6bc9 1602 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1603
1604 /* we're done */
bba174f5 1605 pcpu_base_addr = base_addr;
fb435d52 1606 return 0;
fbf59bc9 1607}
66c3a757 1608
bbddff05
TH
1609#ifdef CONFIG_SMP
1610
17f3609c 1611const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1612 [PCPU_FC_AUTO] = "auto",
1613 [PCPU_FC_EMBED] = "embed",
1614 [PCPU_FC_PAGE] = "page",
f58dc01b 1615};
66c3a757 1616
f58dc01b 1617enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1618
f58dc01b
TH
1619static int __init percpu_alloc_setup(char *str)
1620{
5479c78a
CG
1621 if (!str)
1622 return -EINVAL;
1623
f58dc01b
TH
1624 if (0)
1625 /* nada */;
1626#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1627 else if (!strcmp(str, "embed"))
1628 pcpu_chosen_fc = PCPU_FC_EMBED;
1629#endif
1630#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1631 else if (!strcmp(str, "page"))
1632 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1633#endif
1634 else
1635 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1636
f58dc01b 1637 return 0;
66c3a757 1638}
f58dc01b 1639early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1640
3c9a024f
TH
1641/*
1642 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1643 * Build it if needed by the arch config or the generic setup is going
1644 * to be used.
1645 */
08fc4580
TH
1646#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1647 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1648#define BUILD_EMBED_FIRST_CHUNK
1649#endif
1650
1651/* build pcpu_page_first_chunk() iff needed by the arch config */
1652#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1653#define BUILD_PAGE_FIRST_CHUNK
1654#endif
1655
1656/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1657#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1658/**
1659 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1660 * @reserved_size: the size of reserved percpu area in bytes
1661 * @dyn_size: minimum free size for dynamic allocation in bytes
1662 * @atom_size: allocation atom size
1663 * @cpu_distance_fn: callback to determine distance between cpus, optional
1664 *
1665 * This function determines grouping of units, their mappings to cpus
1666 * and other parameters considering needed percpu size, allocation
1667 * atom size and distances between CPUs.
1668 *
1669 * Groups are always mutliples of atom size and CPUs which are of
1670 * LOCAL_DISTANCE both ways are grouped together and share space for
1671 * units in the same group. The returned configuration is guaranteed
1672 * to have CPUs on different nodes on different groups and >=75% usage
1673 * of allocated virtual address space.
1674 *
1675 * RETURNS:
1676 * On success, pointer to the new allocation_info is returned. On
1677 * failure, ERR_PTR value is returned.
1678 */
1679static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1680 size_t reserved_size, size_t dyn_size,
1681 size_t atom_size,
1682 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1683{
1684 static int group_map[NR_CPUS] __initdata;
1685 static int group_cnt[NR_CPUS] __initdata;
1686 const size_t static_size = __per_cpu_end - __per_cpu_start;
1687 int nr_groups = 1, nr_units = 0;
1688 size_t size_sum, min_unit_size, alloc_size;
1689 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1690 int last_allocs, group, unit;
1691 unsigned int cpu, tcpu;
1692 struct pcpu_alloc_info *ai;
1693 unsigned int *cpu_map;
1694
1695 /* this function may be called multiple times */
1696 memset(group_map, 0, sizeof(group_map));
1697 memset(group_cnt, 0, sizeof(group_cnt));
1698
1699 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1700 size_sum = PFN_ALIGN(static_size + reserved_size +
1701 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1702 dyn_size = size_sum - static_size - reserved_size;
1703
1704 /*
1705 * Determine min_unit_size, alloc_size and max_upa such that
1706 * alloc_size is multiple of atom_size and is the smallest
25985edc 1707 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1708 * or larger than min_unit_size.
1709 */
1710 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1711
1712 alloc_size = roundup(min_unit_size, atom_size);
1713 upa = alloc_size / min_unit_size;
1714 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1715 upa--;
1716 max_upa = upa;
1717
1718 /* group cpus according to their proximity */
1719 for_each_possible_cpu(cpu) {
1720 group = 0;
1721 next_group:
1722 for_each_possible_cpu(tcpu) {
1723 if (cpu == tcpu)
1724 break;
1725 if (group_map[tcpu] == group && cpu_distance_fn &&
1726 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1727 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1728 group++;
1729 nr_groups = max(nr_groups, group + 1);
1730 goto next_group;
1731 }
1732 }
1733 group_map[cpu] = group;
1734 group_cnt[group]++;
1735 }
1736
1737 /*
1738 * Expand unit size until address space usage goes over 75%
1739 * and then as much as possible without using more address
1740 * space.
1741 */
1742 last_allocs = INT_MAX;
1743 for (upa = max_upa; upa; upa--) {
1744 int allocs = 0, wasted = 0;
1745
1746 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1747 continue;
1748
1749 for (group = 0; group < nr_groups; group++) {
1750 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1751 allocs += this_allocs;
1752 wasted += this_allocs * upa - group_cnt[group];
1753 }
1754
1755 /*
1756 * Don't accept if wastage is over 1/3. The
1757 * greater-than comparison ensures upa==1 always
1758 * passes the following check.
1759 */
1760 if (wasted > num_possible_cpus() / 3)
1761 continue;
1762
1763 /* and then don't consume more memory */
1764 if (allocs > last_allocs)
1765 break;
1766 last_allocs = allocs;
1767 best_upa = upa;
1768 }
1769 upa = best_upa;
1770
1771 /* allocate and fill alloc_info */
1772 for (group = 0; group < nr_groups; group++)
1773 nr_units += roundup(group_cnt[group], upa);
1774
1775 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1776 if (!ai)
1777 return ERR_PTR(-ENOMEM);
1778 cpu_map = ai->groups[0].cpu_map;
1779
1780 for (group = 0; group < nr_groups; group++) {
1781 ai->groups[group].cpu_map = cpu_map;
1782 cpu_map += roundup(group_cnt[group], upa);
1783 }
1784
1785 ai->static_size = static_size;
1786 ai->reserved_size = reserved_size;
1787 ai->dyn_size = dyn_size;
1788 ai->unit_size = alloc_size / upa;
1789 ai->atom_size = atom_size;
1790 ai->alloc_size = alloc_size;
1791
1792 for (group = 0, unit = 0; group_cnt[group]; group++) {
1793 struct pcpu_group_info *gi = &ai->groups[group];
1794
1795 /*
1796 * Initialize base_offset as if all groups are located
1797 * back-to-back. The caller should update this to
1798 * reflect actual allocation.
1799 */
1800 gi->base_offset = unit * ai->unit_size;
1801
1802 for_each_possible_cpu(cpu)
1803 if (group_map[cpu] == group)
1804 gi->cpu_map[gi->nr_units++] = cpu;
1805 gi->nr_units = roundup(gi->nr_units, upa);
1806 unit += gi->nr_units;
1807 }
1808 BUG_ON(unit != nr_units);
1809
1810 return ai;
1811}
1812#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1813
1814#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1815/**
1816 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1817 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1818 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1819 * @atom_size: allocation atom size
1820 * @cpu_distance_fn: callback to determine distance between cpus, optional
1821 * @alloc_fn: function to allocate percpu page
25985edc 1822 * @free_fn: function to free percpu page
66c3a757
TH
1823 *
1824 * This is a helper to ease setting up embedded first percpu chunk and
1825 * can be called where pcpu_setup_first_chunk() is expected.
1826 *
1827 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1828 * by calling @alloc_fn and used as-is without being mapped into
1829 * vmalloc area. Allocations are always whole multiples of @atom_size
1830 * aligned to @atom_size.
1831 *
1832 * This enables the first chunk to piggy back on the linear physical
1833 * mapping which often uses larger page size. Please note that this
1834 * can result in very sparse cpu->unit mapping on NUMA machines thus
1835 * requiring large vmalloc address space. Don't use this allocator if
1836 * vmalloc space is not orders of magnitude larger than distances
1837 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1838 *
4ba6ce25 1839 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1840 *
1841 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1842 * size, the leftover is returned using @free_fn.
66c3a757
TH
1843 *
1844 * RETURNS:
fb435d52 1845 * 0 on success, -errno on failure.
66c3a757 1846 */
4ba6ce25 1847int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1848 size_t atom_size,
1849 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1850 pcpu_fc_alloc_fn_t alloc_fn,
1851 pcpu_fc_free_fn_t free_fn)
66c3a757 1852{
c8826dd5
TH
1853 void *base = (void *)ULONG_MAX;
1854 void **areas = NULL;
fd1e8a1f 1855 struct pcpu_alloc_info *ai;
6ea529a2 1856 size_t size_sum, areas_size, max_distance;
c8826dd5 1857 int group, i, rc;
66c3a757 1858
c8826dd5
TH
1859 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1860 cpu_distance_fn);
fd1e8a1f
TH
1861 if (IS_ERR(ai))
1862 return PTR_ERR(ai);
66c3a757 1863
fd1e8a1f 1864 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1865 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1866
999c17e3 1867 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1868 if (!areas) {
fb435d52 1869 rc = -ENOMEM;
c8826dd5 1870 goto out_free;
fa8a7094 1871 }
66c3a757 1872
c8826dd5
TH
1873 /* allocate, copy and determine base address */
1874 for (group = 0; group < ai->nr_groups; group++) {
1875 struct pcpu_group_info *gi = &ai->groups[group];
1876 unsigned int cpu = NR_CPUS;
1877 void *ptr;
1878
1879 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1880 cpu = gi->cpu_map[i];
1881 BUG_ON(cpu == NR_CPUS);
1882
1883 /* allocate space for the whole group */
1884 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1885 if (!ptr) {
1886 rc = -ENOMEM;
1887 goto out_free_areas;
1888 }
f528f0b8
CM
1889 /* kmemleak tracks the percpu allocations separately */
1890 kmemleak_free(ptr);
c8826dd5 1891 areas[group] = ptr;
fd1e8a1f 1892
c8826dd5 1893 base = min(ptr, base);
42b64281
TH
1894 }
1895
1896 /*
1897 * Copy data and free unused parts. This should happen after all
1898 * allocations are complete; otherwise, we may end up with
1899 * overlapping groups.
1900 */
1901 for (group = 0; group < ai->nr_groups; group++) {
1902 struct pcpu_group_info *gi = &ai->groups[group];
1903 void *ptr = areas[group];
c8826dd5
TH
1904
1905 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1906 if (gi->cpu_map[i] == NR_CPUS) {
1907 /* unused unit, free whole */
1908 free_fn(ptr, ai->unit_size);
1909 continue;
1910 }
1911 /* copy and return the unused part */
1912 memcpy(ptr, __per_cpu_load, ai->static_size);
1913 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1914 }
fa8a7094 1915 }
66c3a757 1916
c8826dd5 1917 /* base address is now known, determine group base offsets */
6ea529a2
TH
1918 max_distance = 0;
1919 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1920 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1921 max_distance = max_t(size_t, max_distance,
1922 ai->groups[group].base_offset);
6ea529a2
TH
1923 }
1924 max_distance += ai->unit_size;
1925
1926 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 1927 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 1928 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 1929 "space 0x%lx\n", max_distance,
8a092171 1930 VMALLOC_TOTAL);
6ea529a2
TH
1931#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1932 /* and fail if we have fallback */
1933 rc = -EINVAL;
1934 goto out_free;
1935#endif
1936 }
c8826dd5 1937
004018e2 1938 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1939 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1940 ai->dyn_size, ai->unit_size);
d4b95f80 1941
fb435d52 1942 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1943 goto out_free;
1944
1945out_free_areas:
1946 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
1947 if (areas[group])
1948 free_fn(areas[group],
1949 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 1950out_free:
fd1e8a1f 1951 pcpu_free_alloc_info(ai);
c8826dd5 1952 if (areas)
999c17e3 1953 memblock_free_early(__pa(areas), areas_size);
fb435d52 1954 return rc;
d4b95f80 1955}
3c9a024f 1956#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1957
3c9a024f 1958#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1959/**
00ae4064 1960 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1961 * @reserved_size: the size of reserved percpu area in bytes
1962 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 1963 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
1964 * @populate_pte_fn: function to populate pte
1965 *
00ae4064
TH
1966 * This is a helper to ease setting up page-remapped first percpu
1967 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1968 *
1969 * This is the basic allocator. Static percpu area is allocated
1970 * page-by-page into vmalloc area.
1971 *
1972 * RETURNS:
fb435d52 1973 * 0 on success, -errno on failure.
d4b95f80 1974 */
fb435d52
TH
1975int __init pcpu_page_first_chunk(size_t reserved_size,
1976 pcpu_fc_alloc_fn_t alloc_fn,
1977 pcpu_fc_free_fn_t free_fn,
1978 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1979{
8f05a6a6 1980 static struct vm_struct vm;
fd1e8a1f 1981 struct pcpu_alloc_info *ai;
00ae4064 1982 char psize_str[16];
ce3141a2 1983 int unit_pages;
d4b95f80 1984 size_t pages_size;
ce3141a2 1985 struct page **pages;
fb435d52 1986 int unit, i, j, rc;
d4b95f80 1987
00ae4064
TH
1988 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1989
4ba6ce25 1990 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1991 if (IS_ERR(ai))
1992 return PTR_ERR(ai);
1993 BUG_ON(ai->nr_groups != 1);
1994 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1995
1996 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1997
1998 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1999 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2000 sizeof(pages[0]));
999c17e3 2001 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2002
8f05a6a6 2003 /* allocate pages */
d4b95f80 2004 j = 0;
fd1e8a1f 2005 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 2006 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 2007 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
2008 void *ptr;
2009
3cbc8565 2010 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2011 if (!ptr) {
00ae4064
TH
2012 pr_warning("PERCPU: failed to allocate %s page "
2013 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
2014 goto enomem;
2015 }
f528f0b8
CM
2016 /* kmemleak tracks the percpu allocations separately */
2017 kmemleak_free(ptr);
ce3141a2 2018 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
2019 }
2020
8f05a6a6
TH
2021 /* allocate vm area, map the pages and copy static data */
2022 vm.flags = VM_ALLOC;
fd1e8a1f 2023 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2024 vm_area_register_early(&vm, PAGE_SIZE);
2025
fd1e8a1f 2026 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2027 unsigned long unit_addr =
fd1e8a1f 2028 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2029
ce3141a2 2030 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2031 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2032
2033 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2034 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2035 unit_pages);
2036 if (rc < 0)
2037 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2038
8f05a6a6
TH
2039 /*
2040 * FIXME: Archs with virtual cache should flush local
2041 * cache for the linear mapping here - something
2042 * equivalent to flush_cache_vmap() on the local cpu.
2043 * flush_cache_vmap() can't be used as most supporting
2044 * data structures are not set up yet.
2045 */
2046
2047 /* copy static data */
fd1e8a1f 2048 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2049 }
2050
2051 /* we're ready, commit */
1d9d3257 2052 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2053 unit_pages, psize_str, vm.addr, ai->static_size,
2054 ai->reserved_size, ai->dyn_size);
d4b95f80 2055
fb435d52 2056 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2057 goto out_free_ar;
2058
2059enomem:
2060 while (--j >= 0)
ce3141a2 2061 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2062 rc = -ENOMEM;
d4b95f80 2063out_free_ar:
999c17e3 2064 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2065 pcpu_free_alloc_info(ai);
fb435d52 2066 return rc;
d4b95f80 2067}
3c9a024f 2068#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2069
bbddff05 2070#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2071/*
bbddff05 2072 * Generic SMP percpu area setup.
e74e3962
TH
2073 *
2074 * The embedding helper is used because its behavior closely resembles
2075 * the original non-dynamic generic percpu area setup. This is
2076 * important because many archs have addressing restrictions and might
2077 * fail if the percpu area is located far away from the previous
2078 * location. As an added bonus, in non-NUMA cases, embedding is
2079 * generally a good idea TLB-wise because percpu area can piggy back
2080 * on the physical linear memory mapping which uses large page
2081 * mappings on applicable archs.
2082 */
e74e3962
TH
2083unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2084EXPORT_SYMBOL(__per_cpu_offset);
2085
c8826dd5
TH
2086static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2087 size_t align)
2088{
999c17e3
SS
2089 return memblock_virt_alloc_from_nopanic(
2090 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2091}
66c3a757 2092
c8826dd5
TH
2093static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2094{
999c17e3 2095 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2096}
2097
e74e3962
TH
2098void __init setup_per_cpu_areas(void)
2099{
e74e3962
TH
2100 unsigned long delta;
2101 unsigned int cpu;
fb435d52 2102 int rc;
e74e3962
TH
2103
2104 /*
2105 * Always reserve area for module percpu variables. That's
2106 * what the legacy allocator did.
2107 */
fb435d52 2108 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2109 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2110 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2111 if (rc < 0)
bbddff05 2112 panic("Failed to initialize percpu areas.");
e74e3962
TH
2113
2114 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2115 for_each_possible_cpu(cpu)
fb435d52 2116 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2117}
bbddff05
TH
2118#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2119
2120#else /* CONFIG_SMP */
2121
2122/*
2123 * UP percpu area setup.
2124 *
2125 * UP always uses km-based percpu allocator with identity mapping.
2126 * Static percpu variables are indistinguishable from the usual static
2127 * variables and don't require any special preparation.
2128 */
2129void __init setup_per_cpu_areas(void)
2130{
2131 const size_t unit_size =
2132 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2133 PERCPU_DYNAMIC_RESERVE));
2134 struct pcpu_alloc_info *ai;
2135 void *fc;
2136
2137 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2138 fc = memblock_virt_alloc_from_nopanic(unit_size,
2139 PAGE_SIZE,
2140 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2141 if (!ai || !fc)
2142 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2143 /* kmemleak tracks the percpu allocations separately */
2144 kmemleak_free(fc);
bbddff05
TH
2145
2146 ai->dyn_size = unit_size;
2147 ai->unit_size = unit_size;
2148 ai->atom_size = unit_size;
2149 ai->alloc_size = unit_size;
2150 ai->groups[0].nr_units = 1;
2151 ai->groups[0].cpu_map[0] = 0;
2152
2153 if (pcpu_setup_first_chunk(ai, fc) < 0)
2154 panic("Failed to initialize percpu areas.");
3189eddb
HL
2155
2156 pcpu_free_alloc_info(ai);
bbddff05
TH
2157}
2158
2159#endif /* CONFIG_SMP */
099a19d9
TH
2160
2161/*
2162 * First and reserved chunks are initialized with temporary allocation
2163 * map in initdata so that they can be used before slab is online.
2164 * This function is called after slab is brought up and replaces those
2165 * with properly allocated maps.
2166 */
2167void __init percpu_init_late(void)
2168{
2169 struct pcpu_chunk *target_chunks[] =
2170 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2171 struct pcpu_chunk *chunk;
2172 unsigned long flags;
2173 int i;
2174
2175 for (i = 0; (chunk = target_chunks[i]); i++) {
2176 int *map;
2177 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2178
2179 BUILD_BUG_ON(size > PAGE_SIZE);
2180
90459ce0 2181 map = pcpu_mem_zalloc(size);
099a19d9
TH
2182 BUG_ON(!map);
2183
2184 spin_lock_irqsave(&pcpu_lock, flags);
2185 memcpy(map, chunk->map, size);
2186 chunk->map = map;
2187 spin_unlock_irqrestore(&pcpu_lock, flags);
2188 }
2189}