]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/rmap.c
Merge tag 'thermal-v5.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/therma...
[mirror_ubuntu-jammy-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
c0d0381a 25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
c0d0381a 28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
88f306b6
KS
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
15b44736 34 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
b93b0163 35 * i_pages lock (widely used)
15b44736 36 * lruvec->lru_lock (in lock_page_lruvec_irq)
88f306b6
KS
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 40 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 43 *
5a505085 44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 45 * ->tasklist_lock
6a46079c 46 * pte map lock
c0d0381a
MK
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
1da177e4
LT
52 */
53
54#include <linux/mm.h>
6e84f315 55#include <linux/sched/mm.h>
29930025 56#include <linux/sched/task.h>
1da177e4
LT
57#include <linux/pagemap.h>
58#include <linux/swap.h>
59#include <linux/swapops.h>
60#include <linux/slab.h>
61#include <linux/init.h>
5ad64688 62#include <linux/ksm.h>
1da177e4
LT
63#include <linux/rmap.h>
64#include <linux/rcupdate.h>
b95f1b31 65#include <linux/export.h>
8a9f3ccd 66#include <linux/memcontrol.h>
cddb8a5c 67#include <linux/mmu_notifier.h>
64cdd548 68#include <linux/migrate.h>
0fe6e20b 69#include <linux/hugetlb.h>
444f84fd 70#include <linux/huge_mm.h>
ef5d437f 71#include <linux/backing-dev.h>
33c3fc71 72#include <linux/page_idle.h>
a5430dda 73#include <linux/memremap.h>
bce73e48 74#include <linux/userfaultfd_k.h>
1da177e4
LT
75
76#include <asm/tlbflush.h>
77
72b252ae
MG
78#include <trace/events/tlb.h>
79
b291f000
NP
80#include "internal.h"
81
fdd2e5f8 82static struct kmem_cache *anon_vma_cachep;
5beb4930 83static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
84
85static inline struct anon_vma *anon_vma_alloc(void)
86{
01d8b20d
PZ
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
01d8b20d
PZ
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
fdd2e5f8
AB
102}
103
01d8b20d 104static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 105{
01d8b20d 106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
107
108 /*
4fc3f1d6 109 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 116 *
4fc3f1d6
IM
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
88c22088 119 * LOCK MB
4fc3f1d6 120 * atomic_read() rwsem_is_locked()
88c22088
PZ
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
7f39dda9 125 might_sleep();
5a505085 126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 127 anon_vma_lock_write(anon_vma);
08b52706 128 anon_vma_unlock_write(anon_vma);
88c22088
PZ
129 }
130
fdd2e5f8
AB
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132}
1da177e4 133
dd34739c 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 135{
dd34739c 136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
137}
138
e574b5fd 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
140{
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142}
143
6583a843
KC
144static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147{
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
152}
153
d9d332e0 154/**
d5a187da 155 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
d5a187da
VB
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
23a0790a 164 * not we either need to find an adjacent mapping that we
d9d332e0
LT
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
aaf1f990 171 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
c1e8d7c6 180 * This must be called with the mmap_lock held for reading.
d9d332e0 181 */
d5a187da 182int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 183{
d5a187da
VB
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
5beb4930 186 struct anon_vma_chain *avc;
1da177e4
LT
187
188 might_sleep();
1da177e4 189
d5a187da
VB
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
5beb4930 202
d5a187da
VB
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
d9d332e0 211 allocated = NULL;
d5a187da
VB
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
1da177e4 216
d5a187da
VB
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
31f2b0eb 221
1da177e4 222 return 0;
5beb4930
RR
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
1da177e4
LT
228}
229
bb4aa396
LT
230/*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239{
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
5a505085 243 up_write(&root->rwsem);
bb4aa396 244 root = new_root;
5a505085 245 down_write(&root->rwsem);
bb4aa396
LT
246 }
247 return root;
248}
249
250static inline void unlock_anon_vma_root(struct anon_vma *root)
251{
252 if (root)
5a505085 253 up_write(&root->rwsem);
bb4aa396
LT
254}
255
5beb4930
RR
256/*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 259 *
cb152a1a 260 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
5beb4930
RR
273 */
274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 275{
5beb4930 276 struct anon_vma_chain *avc, *pavc;
bb4aa396 277 struct anon_vma *root = NULL;
5beb4930 278
646d87b4 279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
280 struct anon_vma *anon_vma;
281
dd34739c
LT
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
bb4aa396
LT
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
47b390d2
WY
302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 304 dst->anon_vma = anon_vma;
5beb4930 305 }
7a3ef208
KK
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
bb4aa396 308 unlock_anon_vma_root(root);
5beb4930 309 return 0;
1da177e4 310
5beb4930 311 enomem_failure:
3fe89b3e
LY
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
5beb4930
RR
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
1da177e4
LT
321}
322
5beb4930
RR
323/*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 329{
5beb4930
RR
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
c4ea95d7 332 int error;
1da177e4 333
5beb4930
RR
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
7a3ef208
KK
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
5beb4930
RR
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
c4ea95d7
DF
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
5beb4930 348
7a3ef208
KK
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
5beb4930
RR
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
dd34739c 357 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
358 if (!avc)
359 goto out_error_free_anon_vma;
5c341ee1
RR
360
361 /*
aaf1f990 362 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
7a3ef208 366 anon_vma->parent = pvma->anon_vma;
76545066 367 /*
01d8b20d
PZ
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
371 */
372 get_anon_vma(anon_vma->root);
5beb4930
RR
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
4fc3f1d6 375 anon_vma_lock_write(anon_vma);
5c341ee1 376 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 377 anon_vma->parent->degree++;
08b52706 378 anon_vma_unlock_write(anon_vma);
5beb4930
RR
379
380 return 0;
381
382 out_error_free_anon_vma:
01d8b20d 383 put_anon_vma(anon_vma);
5beb4930 384 out_error:
4946d54c 385 unlink_anon_vmas(vma);
5beb4930 386 return -ENOMEM;
1da177e4
LT
387}
388
5beb4930
RR
389void unlink_anon_vmas(struct vm_area_struct *vma)
390{
391 struct anon_vma_chain *avc, *next;
eee2acba 392 struct anon_vma *root = NULL;
5beb4930 393
5c341ee1
RR
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
5beb4930 398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
f808c13f 408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 409 anon_vma->parent->degree--;
eee2acba 410 continue;
7a3ef208 411 }
eee2acba
PZ
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
ee8ab190 416 if (vma->anon_vma) {
7a3ef208 417 vma->anon_vma->degree--;
ee8ab190
LX
418
419 /*
420 * vma would still be needed after unlink, and anon_vma will be prepared
421 * when handle fault.
422 */
423 vma->anon_vma = NULL;
424 }
eee2acba
PZ
425 unlock_anon_vma_root(root);
426
427 /*
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 430 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
431 */
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
434
e4c5800a 435 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
436 put_anon_vma(anon_vma);
437
5beb4930
RR
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
440 }
441}
442
51cc5068 443static void anon_vma_ctor(void *data)
1da177e4 444{
a35afb83 445 struct anon_vma *anon_vma = data;
1da177e4 446
5a505085 447 init_rwsem(&anon_vma->rwsem);
83813267 448 atomic_set(&anon_vma->refcount, 0);
f808c13f 449 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
450}
451
452void __init anon_vma_init(void)
453{
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
459}
460
461/*
6111e4ca
PZ
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463 *
464 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
465 * the best this function can do is return a refcount increased anon_vma
466 * that might have been relevant to this page.
6111e4ca
PZ
467 *
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
470 *
bc658c96
PZ
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475 *
6111e4ca
PZ
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
479 *
091e4299
MC
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
1da177e4 484 */
746b18d4 485struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 486{
746b18d4 487 struct anon_vma *anon_vma = NULL;
1da177e4
LT
488 unsigned long anon_mapping;
489
490 rcu_read_lock();
4db0c3c2 491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
493 goto out;
494 if (!page_mapped(page))
495 goto out;
496
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
501 }
f1819427
HD
502
503 /*
504 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 508 * above cannot corrupt).
f1819427 509 */
746b18d4 510 if (!page_mapped(page)) {
7f39dda9 511 rcu_read_unlock();
746b18d4 512 put_anon_vma(anon_vma);
7f39dda9 513 return NULL;
746b18d4 514 }
1da177e4
LT
515out:
516 rcu_read_unlock();
746b18d4
PZ
517
518 return anon_vma;
519}
520
88c22088
PZ
521/*
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
523 *
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
527 */
4fc3f1d6 528struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 529{
88c22088 530 struct anon_vma *anon_vma = NULL;
eee0f252 531 struct anon_vma *root_anon_vma;
88c22088 532 unsigned long anon_mapping;
746b18d4 533
88c22088 534 rcu_read_lock();
4db0c3c2 535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
540
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 542 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 543 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 544 /*
eee0f252
HD
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
bc658c96 547 * not go away, see anon_vma_free().
88c22088 548 */
eee0f252 549 if (!page_mapped(page)) {
4fc3f1d6 550 up_read(&root_anon_vma->rwsem);
88c22088
PZ
551 anon_vma = NULL;
552 }
553 goto out;
554 }
746b18d4 555
88c22088
PZ
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
560 }
561
562 if (!page_mapped(page)) {
7f39dda9 563 rcu_read_unlock();
88c22088 564 put_anon_vma(anon_vma);
7f39dda9 565 return NULL;
88c22088
PZ
566 }
567
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
4fc3f1d6 570 anon_vma_lock_read(anon_vma);
88c22088
PZ
571
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
573 /*
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 576 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 577 */
4fc3f1d6 578 anon_vma_unlock_read(anon_vma);
88c22088
PZ
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
581 }
582
583 return anon_vma;
584
585out:
586 rcu_read_unlock();
746b18d4 587 return anon_vma;
34bbd704
ON
588}
589
4fc3f1d6 590void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 591{
4fc3f1d6 592 anon_vma_unlock_read(anon_vma);
1da177e4
LT
593}
594
72b252ae 595#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
596/*
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
601 */
602void try_to_unmap_flush(void)
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
605
606 if (!tlb_ubc->flush_required)
607 return;
608
e73ad5ff 609 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 610 tlb_ubc->flush_required = false;
d950c947 611 tlb_ubc->writable = false;
72b252ae
MG
612}
613
d950c947
MG
614/* Flush iff there are potentially writable TLB entries that can race with IO */
615void try_to_unmap_flush_dirty(void)
616{
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
621}
622
c7ab0d2f 623static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
624{
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626
e73ad5ff 627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 628 tlb_ubc->flush_required = true;
d950c947 629
3ea27719
MG
630 /*
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
633 */
634 barrier();
635 mm->tlb_flush_batched = true;
636
d950c947
MG
637 /*
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
641 */
642 if (writable)
643 tlb_ubc->writable = true;
72b252ae
MG
644}
645
646/*
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
649 */
650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651{
652 bool should_defer = false;
653
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
656
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
661
662 return should_defer;
663}
3ea27719
MG
664
665/*
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
675 *
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
679 */
680void flush_tlb_batched_pending(struct mm_struct *mm)
681{
9c1177b6 682 if (data_race(mm->tlb_flush_batched)) {
3ea27719
MG
683 flush_tlb_mm(mm);
684
685 /*
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
688 */
689 barrier();
690 mm->tlb_flush_batched = false;
691 }
692}
72b252ae 693#else
c7ab0d2f 694static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
695{
696}
697
698static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699{
700 return false;
701}
702#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703
1da177e4 704/*
bf89c8c8 705 * At what user virtual address is page expected in vma?
ab941e0f 706 * Caller should check the page is actually part of the vma.
1da177e4
LT
707 */
708unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709{
86c2ad19 710 unsigned long address;
21d0d443 711 if (PageAnon(page)) {
4829b906
HD
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
713 /*
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
716 */
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
21d0d443 719 return -EFAULT;
27ba0644
KS
720 } else if (page->mapping) {
721 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
722 return -EFAULT;
723 } else
724 return -EFAULT;
86c2ad19
ML
725 address = __vma_address(page, vma);
726 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 return -EFAULT;
728 return address;
1da177e4
LT
729}
730
6219049a
BL
731pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
732{
733 pgd_t *pgd;
c2febafc 734 p4d_t *p4d;
6219049a
BL
735 pud_t *pud;
736 pmd_t *pmd = NULL;
f72e7dcd 737 pmd_t pmde;
6219049a
BL
738
739 pgd = pgd_offset(mm, address);
740 if (!pgd_present(*pgd))
741 goto out;
742
c2febafc
KS
743 p4d = p4d_offset(pgd, address);
744 if (!p4d_present(*p4d))
745 goto out;
746
747 pud = pud_offset(p4d, address);
6219049a
BL
748 if (!pud_present(*pud))
749 goto out;
750
751 pmd = pmd_offset(pud, address);
f72e7dcd 752 /*
8809aa2d 753 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
754 * without holding anon_vma lock for write. So when looking for a
755 * genuine pmde (in which to find pte), test present and !THP together.
756 */
e37c6982
CB
757 pmde = *pmd;
758 barrier();
f72e7dcd 759 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
760 pmd = NULL;
761out:
762 return pmd;
763}
764
8749cfea
VD
765struct page_referenced_arg {
766 int mapcount;
767 int referenced;
768 unsigned long vm_flags;
769 struct mem_cgroup *memcg;
770};
771/*
772 * arg: page_referenced_arg will be passed
773 */
e4b82222 774static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
775 unsigned long address, void *arg)
776{
8749cfea 777 struct page_referenced_arg *pra = arg;
8eaedede
KS
778 struct page_vma_mapped_walk pvmw = {
779 .page = page,
780 .vma = vma,
781 .address = address,
782 };
8749cfea
VD
783 int referenced = 0;
784
8eaedede
KS
785 while (page_vma_mapped_walk(&pvmw)) {
786 address = pvmw.address;
b20ce5e0 787
8eaedede
KS
788 if (vma->vm_flags & VM_LOCKED) {
789 page_vma_mapped_walk_done(&pvmw);
790 pra->vm_flags |= VM_LOCKED;
e4b82222 791 return false; /* To break the loop */
8eaedede 792 }
71e3aac0 793
8eaedede
KS
794 if (pvmw.pte) {
795 if (ptep_clear_flush_young_notify(vma, address,
796 pvmw.pte)) {
797 /*
798 * Don't treat a reference through
799 * a sequentially read mapping as such.
800 * If the page has been used in another mapping,
801 * we will catch it; if this other mapping is
802 * already gone, the unmap path will have set
803 * PG_referenced or activated the page.
804 */
805 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 referenced++;
807 }
808 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 if (pmdp_clear_flush_young_notify(vma, address,
810 pvmw.pmd))
8749cfea 811 referenced++;
8eaedede
KS
812 } else {
813 /* unexpected pmd-mapped page? */
814 WARN_ON_ONCE(1);
8749cfea 815 }
8eaedede
KS
816
817 pra->mapcount--;
b20ce5e0 818 }
b20ce5e0 819
33c3fc71
VD
820 if (referenced)
821 clear_page_idle(page);
822 if (test_and_clear_page_young(page))
823 referenced++;
824
9f32624b
JK
825 if (referenced) {
826 pra->referenced++;
827 pra->vm_flags |= vma->vm_flags;
1da177e4 828 }
34bbd704 829
9f32624b 830 if (!pra->mapcount)
e4b82222 831 return false; /* To break the loop */
9f32624b 832
e4b82222 833 return true;
1da177e4
LT
834}
835
9f32624b 836static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 837{
9f32624b
JK
838 struct page_referenced_arg *pra = arg;
839 struct mem_cgroup *memcg = pra->memcg;
1da177e4 840
9f32624b
JK
841 if (!mm_match_cgroup(vma->vm_mm, memcg))
842 return true;
1da177e4 843
9f32624b 844 return false;
1da177e4
LT
845}
846
847/**
848 * page_referenced - test if the page was referenced
849 * @page: the page to test
850 * @is_locked: caller holds lock on the page
72835c86 851 * @memcg: target memory cgroup
6fe6b7e3 852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
853 *
854 * Quick test_and_clear_referenced for all mappings to a page,
855 * returns the number of ptes which referenced the page.
856 */
6fe6b7e3
WF
857int page_referenced(struct page *page,
858 int is_locked,
72835c86 859 struct mem_cgroup *memcg,
6fe6b7e3 860 unsigned long *vm_flags)
1da177e4 861{
5ad64688 862 int we_locked = 0;
9f32624b 863 struct page_referenced_arg pra = {
b20ce5e0 864 .mapcount = total_mapcount(page),
9f32624b
JK
865 .memcg = memcg,
866 };
867 struct rmap_walk_control rwc = {
868 .rmap_one = page_referenced_one,
869 .arg = (void *)&pra,
870 .anon_lock = page_lock_anon_vma_read,
871 };
1da177e4 872
6fe6b7e3 873 *vm_flags = 0;
059d8442 874 if (!pra.mapcount)
9f32624b
JK
875 return 0;
876
877 if (!page_rmapping(page))
878 return 0;
879
880 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 we_locked = trylock_page(page);
882 if (!we_locked)
883 return 1;
1da177e4 884 }
9f32624b
JK
885
886 /*
887 * If we are reclaiming on behalf of a cgroup, skip
888 * counting on behalf of references from different
889 * cgroups
890 */
891 if (memcg) {
892 rwc.invalid_vma = invalid_page_referenced_vma;
893 }
894
c24f386c 895 rmap_walk(page, &rwc);
9f32624b
JK
896 *vm_flags = pra.vm_flags;
897
898 if (we_locked)
899 unlock_page(page);
900
901 return pra.referenced;
1da177e4
LT
902}
903
e4b82222 904static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 905 unsigned long address, void *arg)
d08b3851 906{
f27176cf
KS
907 struct page_vma_mapped_walk pvmw = {
908 .page = page,
909 .vma = vma,
910 .address = address,
911 .flags = PVMW_SYNC,
912 };
ac46d4f3 913 struct mmu_notifier_range range;
9853a407 914 int *cleaned = arg;
d08b3851 915
369ea824
JG
916 /*
917 * We have to assume the worse case ie pmd for invalidation. Note that
918 * the page can not be free from this function.
919 */
7269f999
JG
920 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 0, vma, vma->vm_mm, address,
a50b854e 922 min(vma->vm_end, address + page_size(page)));
ac46d4f3 923 mmu_notifier_invalidate_range_start(&range);
369ea824 924
f27176cf
KS
925 while (page_vma_mapped_walk(&pvmw)) {
926 int ret = 0;
369ea824 927
1f18b296 928 address = pvmw.address;
f27176cf
KS
929 if (pvmw.pte) {
930 pte_t entry;
931 pte_t *pte = pvmw.pte;
932
933 if (!pte_dirty(*pte) && !pte_write(*pte))
934 continue;
935
785373b4
LT
936 flush_cache_page(vma, address, pte_pfn(*pte));
937 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
938 entry = pte_wrprotect(entry);
939 entry = pte_mkclean(entry);
785373b4 940 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
941 ret = 1;
942 } else {
396bcc52 943#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
944 pmd_t *pmd = pvmw.pmd;
945 pmd_t entry;
946
947 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 continue;
949
785373b4 950 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 951 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
952 entry = pmd_wrprotect(entry);
953 entry = pmd_mkclean(entry);
785373b4 954 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
955 ret = 1;
956#else
957 /* unexpected pmd-mapped page? */
958 WARN_ON_ONCE(1);
959#endif
960 }
d08b3851 961
0f10851e
JG
962 /*
963 * No need to call mmu_notifier_invalidate_range() as we are
964 * downgrading page table protection not changing it to point
965 * to a new page.
966 *
ad56b738 967 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
968 */
969 if (ret)
f27176cf 970 (*cleaned)++;
c2fda5fe 971 }
d08b3851 972
ac46d4f3 973 mmu_notifier_invalidate_range_end(&range);
369ea824 974
e4b82222 975 return true;
d08b3851
PZ
976}
977
9853a407 978static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 979{
9853a407 980 if (vma->vm_flags & VM_SHARED)
871beb8c 981 return false;
d08b3851 982
871beb8c 983 return true;
d08b3851
PZ
984}
985
986int page_mkclean(struct page *page)
987{
9853a407
JK
988 int cleaned = 0;
989 struct address_space *mapping;
990 struct rmap_walk_control rwc = {
991 .arg = (void *)&cleaned,
992 .rmap_one = page_mkclean_one,
993 .invalid_vma = invalid_mkclean_vma,
994 };
d08b3851
PZ
995
996 BUG_ON(!PageLocked(page));
997
9853a407
JK
998 if (!page_mapped(page))
999 return 0;
1000
1001 mapping = page_mapping(page);
1002 if (!mapping)
1003 return 0;
1004
1005 rmap_walk(page, &rwc);
d08b3851 1006
9853a407 1007 return cleaned;
d08b3851 1008}
60b59bea 1009EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1010
c44b6743
RR
1011/**
1012 * page_move_anon_rmap - move a page to our anon_vma
1013 * @page: the page to move to our anon_vma
1014 * @vma: the vma the page belongs to
c44b6743
RR
1015 *
1016 * When a page belongs exclusively to one process after a COW event,
1017 * that page can be moved into the anon_vma that belongs to just that
1018 * process, so the rmap code will not search the parent or sibling
1019 * processes.
1020 */
5a49973d 1021void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1022{
1023 struct anon_vma *anon_vma = vma->anon_vma;
1024
5a49973d
HD
1025 page = compound_head(page);
1026
309381fe 1027 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1028 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1029
1030 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1031 /*
1032 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 * PageAnon()) will not see one without the other.
1035 */
1036 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1037}
1038
9617d95e 1039/**
4e1c1975 1040 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1041 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1042 * @vma: VM area to add page to.
1043 * @address: User virtual address of the mapping
e8a03feb 1044 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1045 */
1046static void __page_set_anon_rmap(struct page *page,
e8a03feb 1047 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1048{
e8a03feb 1049 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1050
e8a03feb 1051 BUG_ON(!anon_vma);
ea90002b 1052
4e1c1975
AK
1053 if (PageAnon(page))
1054 return;
1055
ea90002b 1056 /*
e8a03feb
RR
1057 * If the page isn't exclusively mapped into this vma,
1058 * we must use the _oldest_ possible anon_vma for the
1059 * page mapping!
ea90002b 1060 */
4e1c1975 1061 if (!exclusive)
288468c3 1062 anon_vma = anon_vma->root;
9617d95e 1063
16f5e707
AS
1064 /*
1065 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1066 * Make sure the compiler doesn't split the stores of anon_vma and
1067 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1068 * could mistake the mapping for a struct address_space and crash.
1069 */
9617d95e 1070 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1071 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1072 page->index = linear_page_index(vma, address);
9617d95e
NP
1073}
1074
c97a9e10 1075/**
43d8eac4 1076 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
1080 */
1081static void __page_check_anon_rmap(struct page *page,
1082 struct vm_area_struct *vma, unsigned long address)
1083{
c97a9e10
NP
1084 /*
1085 * The page's anon-rmap details (mapping and index) are guaranteed to
1086 * be set up correctly at this point.
1087 *
1088 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1089 * always holds the page locked.
c97a9e10
NP
1090 *
1091 * We have exclusion against page_add_new_anon_rmap because those pages
1092 * are initially only visible via the pagetables, and the pte is locked
1093 * over the call to page_add_new_anon_rmap.
1094 */
30c46382
YS
1095 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1096 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1097 page);
c97a9e10
NP
1098}
1099
1da177e4
LT
1100/**
1101 * page_add_anon_rmap - add pte mapping to an anonymous page
1102 * @page: the page to add the mapping to
1103 * @vma: the vm area in which the mapping is added
1104 * @address: the user virtual address mapped
d281ee61 1105 * @compound: charge the page as compound or small page
1da177e4 1106 *
5ad64688 1107 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1108 * the anon_vma case: to serialize mapping,index checking after setting,
1109 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1110 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1111 */
1112void page_add_anon_rmap(struct page *page,
d281ee61 1113 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1114{
d281ee61 1115 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1116}
1117
1118/*
1119 * Special version of the above for do_swap_page, which often runs
1120 * into pages that are exclusively owned by the current process.
1121 * Everybody else should continue to use page_add_anon_rmap above.
1122 */
1123void do_page_add_anon_rmap(struct page *page,
d281ee61 1124 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1125{
53f9263b
KS
1126 bool compound = flags & RMAP_COMPOUND;
1127 bool first;
1128
be5d0a74
JW
1129 if (unlikely(PageKsm(page)))
1130 lock_page_memcg(page);
1131 else
1132 VM_BUG_ON_PAGE(!PageLocked(page), page);
1133
e9b61f19
KS
1134 if (compound) {
1135 atomic_t *mapcount;
53f9263b 1136 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1137 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1138 mapcount = compound_mapcount_ptr(page);
1139 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1140 } else {
1141 first = atomic_inc_and_test(&page->_mapcount);
1142 }
1143
79134171 1144 if (first) {
6c357848 1145 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1146 /*
1147 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148 * these counters are not modified in interrupt context, and
1149 * pte lock(a spinlock) is held, which implies preemption
1150 * disabled.
1151 */
65c45377 1152 if (compound)
69473e5d 1153 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1154 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1155 }
5ad64688 1156
be5d0a74
JW
1157 if (unlikely(PageKsm(page))) {
1158 unlock_page_memcg(page);
1159 return;
1160 }
53f9263b 1161
5dbe0af4 1162 /* address might be in next vma when migration races vma_adjust */
5ad64688 1163 if (first)
d281ee61
KS
1164 __page_set_anon_rmap(page, vma, address,
1165 flags & RMAP_EXCLUSIVE);
69029cd5 1166 else
c97a9e10 1167 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1168}
1169
43d8eac4 1170/**
9617d95e
NP
1171 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1172 * @page: the page to add the mapping to
1173 * @vma: the vm area in which the mapping is added
1174 * @address: the user virtual address mapped
d281ee61 1175 * @compound: charge the page as compound or small page
9617d95e
NP
1176 *
1177 * Same as page_add_anon_rmap but must only be called on *new* pages.
1178 * This means the inc-and-test can be bypassed.
c97a9e10 1179 * Page does not have to be locked.
9617d95e
NP
1180 */
1181void page_add_new_anon_rmap(struct page *page,
d281ee61 1182 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1183{
6c357848 1184 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1185
81d1b09c 1186 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1187 __SetPageSwapBacked(page);
d281ee61
KS
1188 if (compound) {
1189 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1190 /* increment count (starts at -1) */
1191 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1192 if (hpage_pincount_available(page))
1193 atomic_set(compound_pincount_ptr(page), 0);
1194
69473e5d 1195 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1196 } else {
1197 /* Anon THP always mapped first with PMD */
1198 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1199 /* increment count (starts at -1) */
1200 atomic_set(&page->_mapcount, 0);
d281ee61 1201 }
be5d0a74 1202 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1203 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1204}
1205
1da177e4
LT
1206/**
1207 * page_add_file_rmap - add pte mapping to a file page
1208 * @page: the page to add the mapping to
e8b098fc 1209 * @compound: charge the page as compound or small page
1da177e4 1210 *
b8072f09 1211 * The caller needs to hold the pte lock.
1da177e4 1212 */
dd78fedd 1213void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1214{
dd78fedd
KS
1215 int i, nr = 1;
1216
1217 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1218 lock_page_memcg(page);
dd78fedd 1219 if (compound && PageTransHuge(page)) {
a1528e21
MS
1220 int nr_pages = thp_nr_pages(page);
1221
1222 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1223 if (atomic_inc_and_test(&page[i]._mapcount))
1224 nr++;
1225 }
1226 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1227 goto out;
99cb0dbd 1228 if (PageSwapBacked(page))
a1528e21
MS
1229 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1230 nr_pages);
99cb0dbd 1231 else
380780e7
MS
1232 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1233 nr_pages);
dd78fedd 1234 } else {
c8efc390
KS
1235 if (PageTransCompound(page) && page_mapping(page)) {
1236 VM_WARN_ON_ONCE(!PageLocked(page));
1237
9a73f61b
KS
1238 SetPageDoubleMap(compound_head(page));
1239 if (PageMlocked(page))
1240 clear_page_mlock(compound_head(page));
1241 }
dd78fedd
KS
1242 if (!atomic_inc_and_test(&page->_mapcount))
1243 goto out;
d69b042f 1244 }
00f3ca2c 1245 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1246out:
62cccb8c 1247 unlock_page_memcg(page);
1da177e4
LT
1248}
1249
dd78fedd 1250static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1251{
dd78fedd
KS
1252 int i, nr = 1;
1253
57dea93a 1254 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1255
53f9263b
KS
1256 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257 if (unlikely(PageHuge(page))) {
1258 /* hugetlb pages are always mapped with pmds */
1259 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1260 return;
53f9263b 1261 }
8186eb6a 1262
53f9263b 1263 /* page still mapped by someone else? */
dd78fedd 1264 if (compound && PageTransHuge(page)) {
a1528e21
MS
1265 int nr_pages = thp_nr_pages(page);
1266
1267 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1268 if (atomic_add_negative(-1, &page[i]._mapcount))
1269 nr++;
1270 }
1271 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1272 return;
99cb0dbd 1273 if (PageSwapBacked(page))
a1528e21
MS
1274 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1275 -nr_pages);
99cb0dbd 1276 else
380780e7
MS
1277 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1278 -nr_pages);
dd78fedd
KS
1279 } else {
1280 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1281 return;
dd78fedd 1282 }
8186eb6a
JW
1283
1284 /*
00f3ca2c 1285 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1286 * these counters are not modified in interrupt context, and
1287 * pte lock(a spinlock) is held, which implies preemption disabled.
1288 */
00f3ca2c 1289 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1290
1291 if (unlikely(PageMlocked(page)))
1292 clear_page_mlock(page);
8186eb6a
JW
1293}
1294
53f9263b
KS
1295static void page_remove_anon_compound_rmap(struct page *page)
1296{
1297 int i, nr;
1298
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300 return;
1301
1302 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1303 if (unlikely(PageHuge(page)))
1304 return;
1305
1306 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1307 return;
1308
69473e5d 1309 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1310
1311 if (TestClearPageDoubleMap(page)) {
1312 /*
1313 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1314 * them are still mapped.
53f9263b 1315 */
5eaf35ab 1316 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1317 if (atomic_add_negative(-1, &page[i]._mapcount))
1318 nr++;
1319 }
f1fe80d4
KS
1320
1321 /*
1322 * Queue the page for deferred split if at least one small
1323 * page of the compound page is unmapped, but at least one
1324 * small page is still mapped.
1325 */
5eaf35ab 1326 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1327 deferred_split_huge_page(page);
53f9263b 1328 } else {
5eaf35ab 1329 nr = thp_nr_pages(page);
53f9263b
KS
1330 }
1331
e90309c9
KS
1332 if (unlikely(PageMlocked(page)))
1333 clear_page_mlock(page);
1334
f1fe80d4 1335 if (nr)
be5d0a74 1336 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1337}
1338
1da177e4
LT
1339/**
1340 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1341 * @page: page to remove mapping from
1342 * @compound: uncharge the page as compound or small page
1da177e4 1343 *
b8072f09 1344 * The caller needs to hold the pte lock.
1da177e4 1345 */
d281ee61 1346void page_remove_rmap(struct page *page, bool compound)
1da177e4 1347{
be5d0a74 1348 lock_page_memcg(page);
89c06bd5 1349
be5d0a74
JW
1350 if (!PageAnon(page)) {
1351 page_remove_file_rmap(page, compound);
1352 goto out;
1353 }
1354
1355 if (compound) {
1356 page_remove_anon_compound_rmap(page);
1357 goto out;
1358 }
53f9263b 1359
b904dcfe
KM
1360 /* page still mapped by someone else? */
1361 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1362 goto out;
8186eb6a 1363
0fe6e20b 1364 /*
bea04b07
JZ
1365 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366 * these counters are not modified in interrupt context, and
bea04b07 1367 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1368 */
be5d0a74 1369 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1370
e6c509f8
HD
1371 if (unlikely(PageMlocked(page)))
1372 clear_page_mlock(page);
8186eb6a 1373
9a982250
KS
1374 if (PageTransCompound(page))
1375 deferred_split_huge_page(compound_head(page));
1376
b904dcfe
KM
1377 /*
1378 * It would be tidy to reset the PageAnon mapping here,
1379 * but that might overwrite a racing page_add_anon_rmap
1380 * which increments mapcount after us but sets mapping
2d4894b5 1381 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1382 * and remember that it's only reliable while mapped.
1383 * Leaving it set also helps swapoff to reinstate ptes
1384 * faster for those pages still in swapcache.
1385 */
be5d0a74
JW
1386out:
1387 unlock_page_memcg(page);
1da177e4
LT
1388}
1389
1390/*
52629506 1391 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1392 */
e4b82222 1393static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1394 unsigned long address, void *arg)
1da177e4
LT
1395{
1396 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1397 struct page_vma_mapped_walk pvmw = {
1398 .page = page,
1399 .vma = vma,
1400 .address = address,
1401 };
1da177e4 1402 pte_t pteval;
c7ab0d2f 1403 struct page *subpage;
785373b4 1404 bool ret = true;
ac46d4f3 1405 struct mmu_notifier_range range;
4708f318 1406 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1407
b87537d9
HD
1408 /* munlock has nothing to gain from examining un-locked vmas */
1409 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1410 return true;
b87537d9 1411
a5430dda
JG
1412 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1413 is_zone_device_page(page) && !is_device_private_page(page))
1414 return true;
1415
fec89c10
KS
1416 if (flags & TTU_SPLIT_HUGE_PMD) {
1417 split_huge_pmd_address(vma, address,
b5ff8161 1418 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1419 }
1420
369ea824 1421 /*
017b1660
MK
1422 * For THP, we have to assume the worse case ie pmd for invalidation.
1423 * For hugetlb, it could be much worse if we need to do pud
1424 * invalidation in the case of pmd sharing.
1425 *
1426 * Note that the page can not be free in this function as call of
1427 * try_to_unmap() must hold a reference on the page.
369ea824 1428 */
7269f999 1429 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1430 address,
a50b854e 1431 min(vma->vm_end, address + page_size(page)));
017b1660
MK
1432 if (PageHuge(page)) {
1433 /*
1434 * If sharing is possible, start and end will be adjusted
1435 * accordingly.
1436 */
ac46d4f3
JG
1437 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1438 &range.end);
017b1660 1439 }
ac46d4f3 1440 mmu_notifier_invalidate_range_start(&range);
369ea824 1441
c7ab0d2f 1442 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1443#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1444 /* PMD-mapped THP migration entry */
1445 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1446 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1447
616b8371
ZY
1448 set_pmd_migration_entry(&pvmw, page);
1449 continue;
1450 }
1451#endif
1452
c7ab0d2f
KS
1453 /*
1454 * If the page is mlock()d, we cannot swap it out.
1455 * If it's recently referenced (perhaps page_referenced
1456 * skipped over this mm) then we should reactivate it.
1457 */
1458 if (!(flags & TTU_IGNORE_MLOCK)) {
1459 if (vma->vm_flags & VM_LOCKED) {
1460 /* PTE-mapped THP are never mlocked */
1461 if (!PageTransCompound(page)) {
1462 /*
1463 * Holding pte lock, we do *not* need
c1e8d7c6 1464 * mmap_lock here
c7ab0d2f
KS
1465 */
1466 mlock_vma_page(page);
1467 }
e4b82222 1468 ret = false;
c7ab0d2f
KS
1469 page_vma_mapped_walk_done(&pvmw);
1470 break;
9a73f61b 1471 }
c7ab0d2f
KS
1472 if (flags & TTU_MUNLOCK)
1473 continue;
b87537d9 1474 }
c7ab0d2f 1475
8346242a
KS
1476 /* Unexpected PMD-mapped THP? */
1477 VM_BUG_ON_PAGE(!pvmw.pte, page);
1478
1479 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1480 address = pvmw.address;
1481
336bf30e 1482 if (PageHuge(page) && !PageAnon(page)) {
c0d0381a
MK
1483 /*
1484 * To call huge_pmd_unshare, i_mmap_rwsem must be
1485 * held in write mode. Caller needs to explicitly
1486 * do this outside rmap routines.
1487 */
1488 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1489 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1490 /*
1491 * huge_pmd_unshare unmapped an entire PMD
1492 * page. There is no way of knowing exactly
1493 * which PMDs may be cached for this mm, so
1494 * we must flush them all. start/end were
1495 * already adjusted above to cover this range.
1496 */
ac46d4f3
JG
1497 flush_cache_range(vma, range.start, range.end);
1498 flush_tlb_range(vma, range.start, range.end);
1499 mmu_notifier_invalidate_range(mm, range.start,
1500 range.end);
017b1660
MK
1501
1502 /*
1503 * The ref count of the PMD page was dropped
1504 * which is part of the way map counting
1505 * is done for shared PMDs. Return 'true'
1506 * here. When there is no other sharing,
1507 * huge_pmd_unshare returns false and we will
1508 * unmap the actual page and drop map count
1509 * to zero.
1510 */
1511 page_vma_mapped_walk_done(&pvmw);
1512 break;
1513 }
1514 }
8346242a 1515
a5430dda
JG
1516 if (IS_ENABLED(CONFIG_MIGRATION) &&
1517 (flags & TTU_MIGRATION) &&
1518 is_zone_device_page(page)) {
1519 swp_entry_t entry;
1520 pte_t swp_pte;
1521
1522 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1523
1524 /*
1525 * Store the pfn of the page in a special migration
1526 * pte. do_swap_page() will wait until the migration
1527 * pte is removed and then restart fault handling.
1528 */
1529 entry = make_migration_entry(page, 0);
1530 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
1531
1532 /*
1533 * pteval maps a zone device page and is therefore
1534 * a swap pte.
1535 */
1536 if (pte_swp_soft_dirty(pteval))
a5430dda 1537 swp_pte = pte_swp_mksoft_dirty(swp_pte);
ad7df764 1538 if (pte_swp_uffd_wp(pteval))
f45ec5ff 1539 swp_pte = pte_swp_mkuffd_wp(swp_pte);
a5430dda 1540 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1541 /*
1542 * No need to invalidate here it will synchronize on
1543 * against the special swap migration pte.
1de13ee5
RC
1544 *
1545 * The assignment to subpage above was computed from a
1546 * swap PTE which results in an invalid pointer.
1547 * Since only PAGE_SIZE pages can currently be
1548 * migrated, just set it to page. This will need to be
1549 * changed when hugepage migrations to device private
1550 * memory are supported.
0f10851e 1551 */
1de13ee5 1552 subpage = page;
a5430dda
JG
1553 goto discard;
1554 }
1555
c7ab0d2f 1556 /* Nuke the page table entry. */
785373b4 1557 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1558 if (should_defer_flush(mm, flags)) {
1559 /*
1560 * We clear the PTE but do not flush so potentially
1561 * a remote CPU could still be writing to the page.
1562 * If the entry was previously clean then the
1563 * architecture must guarantee that a clear->dirty
1564 * transition on a cached TLB entry is written through
1565 * and traps if the PTE is unmapped.
1566 */
785373b4 1567 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1568
1569 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1570 } else {
785373b4 1571 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1572 }
72b252ae 1573
c7ab0d2f
KS
1574 /* Move the dirty bit to the page. Now the pte is gone. */
1575 if (pte_dirty(pteval))
1576 set_page_dirty(page);
1da177e4 1577
c7ab0d2f
KS
1578 /* Update high watermark before we lower rss */
1579 update_hiwater_rss(mm);
1da177e4 1580
c7ab0d2f 1581 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1582 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1583 if (PageHuge(page)) {
d8c6546b 1584 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1585 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1586 pvmw.pte, pteval,
1587 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1588 } else {
1589 dec_mm_counter(mm, mm_counter(page));
785373b4 1590 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1591 }
365e9c87 1592
bce73e48 1593 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1594 /*
1595 * The guest indicated that the page content is of no
1596 * interest anymore. Simply discard the pte, vmscan
1597 * will take care of the rest.
bce73e48
CB
1598 * A future reference will then fault in a new zero
1599 * page. When userfaultfd is active, we must not drop
1600 * this page though, as its main user (postcopy
1601 * migration) will not expect userfaults on already
1602 * copied pages.
c7ab0d2f 1603 */
eca56ff9 1604 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1605 /* We have to invalidate as we cleared the pte */
1606 mmu_notifier_invalidate_range(mm, address,
1607 address + PAGE_SIZE);
c7ab0d2f 1608 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1609 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1610 swp_entry_t entry;
1611 pte_t swp_pte;
ca827d55
KA
1612
1613 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1614 set_pte_at(mm, address, pvmw.pte, pteval);
1615 ret = false;
1616 page_vma_mapped_walk_done(&pvmw);
1617 break;
1618 }
1619
c7ab0d2f
KS
1620 /*
1621 * Store the pfn of the page in a special migration
1622 * pte. do_swap_page() will wait until the migration
1623 * pte is removed and then restart fault handling.
1624 */
1625 entry = make_migration_entry(subpage,
1626 pte_write(pteval));
1627 swp_pte = swp_entry_to_pte(entry);
1628 if (pte_soft_dirty(pteval))
1629 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1630 if (pte_uffd_wp(pteval))
1631 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1632 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1633 /*
1634 * No need to invalidate here it will synchronize on
1635 * against the special swap migration pte.
1636 */
c7ab0d2f
KS
1637 } else if (PageAnon(page)) {
1638 swp_entry_t entry = { .val = page_private(subpage) };
1639 pte_t swp_pte;
1640 /*
1641 * Store the swap location in the pte.
1642 * See handle_pte_fault() ...
1643 */
eb94a878
MK
1644 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1645 WARN_ON_ONCE(1);
83612a94 1646 ret = false;
369ea824 1647 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1648 mmu_notifier_invalidate_range(mm, address,
1649 address + PAGE_SIZE);
eb94a878
MK
1650 page_vma_mapped_walk_done(&pvmw);
1651 break;
1652 }
c7ab0d2f 1653
802a3a92
SL
1654 /* MADV_FREE page check */
1655 if (!PageSwapBacked(page)) {
1656 if (!PageDirty(page)) {
0f10851e
JG
1657 /* Invalidate as we cleared the pte */
1658 mmu_notifier_invalidate_range(mm,
1659 address, address + PAGE_SIZE);
802a3a92
SL
1660 dec_mm_counter(mm, MM_ANONPAGES);
1661 goto discard;
1662 }
1663
1664 /*
1665 * If the page was redirtied, it cannot be
1666 * discarded. Remap the page to page table.
1667 */
785373b4 1668 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1669 SetPageSwapBacked(page);
e4b82222 1670 ret = false;
802a3a92
SL
1671 page_vma_mapped_walk_done(&pvmw);
1672 break;
c7ab0d2f 1673 }
854e9ed0 1674
c7ab0d2f 1675 if (swap_duplicate(entry) < 0) {
785373b4 1676 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1677 ret = false;
c7ab0d2f
KS
1678 page_vma_mapped_walk_done(&pvmw);
1679 break;
1680 }
ca827d55
KA
1681 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1682 set_pte_at(mm, address, pvmw.pte, pteval);
1683 ret = false;
1684 page_vma_mapped_walk_done(&pvmw);
1685 break;
1686 }
c7ab0d2f
KS
1687 if (list_empty(&mm->mmlist)) {
1688 spin_lock(&mmlist_lock);
1689 if (list_empty(&mm->mmlist))
1690 list_add(&mm->mmlist, &init_mm.mmlist);
1691 spin_unlock(&mmlist_lock);
1692 }
854e9ed0 1693 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1694 inc_mm_counter(mm, MM_SWAPENTS);
1695 swp_pte = swp_entry_to_pte(entry);
1696 if (pte_soft_dirty(pteval))
1697 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1698 if (pte_uffd_wp(pteval))
1699 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1700 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1701 /* Invalidate as we cleared the pte */
1702 mmu_notifier_invalidate_range(mm, address,
1703 address + PAGE_SIZE);
1704 } else {
1705 /*
906f9cdf
HD
1706 * This is a locked file-backed page, thus it cannot
1707 * be removed from the page cache and replaced by a new
1708 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1709 * concurrent thread might update its page table to
1710 * point at new page while a device still is using this
1711 * page.
1712 *
ad56b738 1713 * See Documentation/vm/mmu_notifier.rst
0f10851e 1714 */
c7ab0d2f 1715 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1716 }
854e9ed0 1717discard:
0f10851e
JG
1718 /*
1719 * No need to call mmu_notifier_invalidate_range() it has be
1720 * done above for all cases requiring it to happen under page
1721 * table lock before mmu_notifier_invalidate_range_end()
1722 *
ad56b738 1723 * See Documentation/vm/mmu_notifier.rst
0f10851e 1724 */
c7ab0d2f
KS
1725 page_remove_rmap(subpage, PageHuge(page));
1726 put_page(page);
c7ab0d2f 1727 }
369ea824 1728
ac46d4f3 1729 mmu_notifier_invalidate_range_end(&range);
369ea824 1730
caed0f48 1731 return ret;
1da177e4
LT
1732}
1733
52629506
JK
1734static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1735{
222100ee 1736 return vma_is_temporary_stack(vma);
52629506
JK
1737}
1738
b7e188ec 1739static int page_not_mapped(struct page *page)
52629506 1740{
b7e188ec 1741 return !page_mapped(page);
2a52bcbc 1742}
52629506 1743
1da177e4
LT
1744/**
1745 * try_to_unmap - try to remove all page table mappings to a page
1746 * @page: the page to get unmapped
14fa31b8 1747 * @flags: action and flags
1da177e4
LT
1748 *
1749 * Tries to remove all the page table entries which are mapping this
1750 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1751 *
666e5a40 1752 * If unmap is successful, return true. Otherwise, false.
1da177e4 1753 */
666e5a40 1754bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1755{
52629506
JK
1756 struct rmap_walk_control rwc = {
1757 .rmap_one = try_to_unmap_one,
802a3a92 1758 .arg = (void *)flags,
b7e188ec 1759 .done = page_not_mapped,
52629506
JK
1760 .anon_lock = page_lock_anon_vma_read,
1761 };
1da177e4 1762
52629506
JK
1763 /*
1764 * During exec, a temporary VMA is setup and later moved.
1765 * The VMA is moved under the anon_vma lock but not the
1766 * page tables leading to a race where migration cannot
1767 * find the migration ptes. Rather than increasing the
1768 * locking requirements of exec(), migration skips
1769 * temporary VMAs until after exec() completes.
1770 */
b5ff8161
NH
1771 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1772 && !PageKsm(page) && PageAnon(page))
52629506
JK
1773 rwc.invalid_vma = invalid_migration_vma;
1774
2a52bcbc 1775 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1776 rmap_walk_locked(page, &rwc);
2a52bcbc 1777 else
33fc80e2 1778 rmap_walk(page, &rwc);
52629506 1779
666e5a40 1780 return !page_mapcount(page) ? true : false;
1da177e4 1781}
81b4082d 1782
b291f000
NP
1783/**
1784 * try_to_munlock - try to munlock a page
1785 * @page: the page to be munlocked
1786 *
1787 * Called from munlock code. Checks all of the VMAs mapping the page
1788 * to make sure nobody else has this page mlocked. The page will be
1789 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1790 */
854e9ed0 1791
192d7232
MK
1792void try_to_munlock(struct page *page)
1793{
e8351ac9
JK
1794 struct rmap_walk_control rwc = {
1795 .rmap_one = try_to_unmap_one,
802a3a92 1796 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1797 .done = page_not_mapped,
e8351ac9
JK
1798 .anon_lock = page_lock_anon_vma_read,
1799
1800 };
1801
309381fe 1802 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1803 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1804
192d7232 1805 rmap_walk(page, &rwc);
b291f000 1806}
e9995ef9 1807
01d8b20d 1808void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1809{
01d8b20d 1810 struct anon_vma *root = anon_vma->root;
76545066 1811
624483f3 1812 anon_vma_free(anon_vma);
01d8b20d
PZ
1813 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1814 anon_vma_free(root);
76545066 1815}
76545066 1816
0dd1c7bb
JK
1817static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1818 struct rmap_walk_control *rwc)
faecd8dd
JK
1819{
1820 struct anon_vma *anon_vma;
1821
0dd1c7bb
JK
1822 if (rwc->anon_lock)
1823 return rwc->anon_lock(page);
1824
faecd8dd
JK
1825 /*
1826 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1827 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 1828 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
1829 * take a reference count to prevent the anon_vma disappearing
1830 */
1831 anon_vma = page_anon_vma(page);
1832 if (!anon_vma)
1833 return NULL;
1834
1835 anon_vma_lock_read(anon_vma);
1836 return anon_vma;
1837}
1838
e9995ef9 1839/*
e8351ac9
JK
1840 * rmap_walk_anon - do something to anonymous page using the object-based
1841 * rmap method
1842 * @page: the page to be handled
1843 * @rwc: control variable according to each walk type
1844 *
1845 * Find all the mappings of a page using the mapping pointer and the vma chains
1846 * contained in the anon_vma struct it points to.
1847 *
c1e8d7c6 1848 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
1849 * where the page was found will be held for write. So, we won't recheck
1850 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1851 * LOCKED.
e9995ef9 1852 */
1df631ae 1853static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1854 bool locked)
e9995ef9
HD
1855{
1856 struct anon_vma *anon_vma;
a8fa41ad 1857 pgoff_t pgoff_start, pgoff_end;
5beb4930 1858 struct anon_vma_chain *avc;
e9995ef9 1859
b9773199
KS
1860 if (locked) {
1861 anon_vma = page_anon_vma(page);
1862 /* anon_vma disappear under us? */
1863 VM_BUG_ON_PAGE(!anon_vma, page);
1864 } else {
1865 anon_vma = rmap_walk_anon_lock(page, rwc);
1866 }
e9995ef9 1867 if (!anon_vma)
1df631ae 1868 return;
faecd8dd 1869
a8fa41ad 1870 pgoff_start = page_to_pgoff(page);
6c357848 1871 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
a8fa41ad
KS
1872 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1873 pgoff_start, pgoff_end) {
5beb4930 1874 struct vm_area_struct *vma = avc->vma;
e9995ef9 1875 unsigned long address = vma_address(page, vma);
0dd1c7bb 1876
ad12695f
AA
1877 cond_resched();
1878
0dd1c7bb
JK
1879 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1880 continue;
1881
e4b82222 1882 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1883 break;
0dd1c7bb
JK
1884 if (rwc->done && rwc->done(page))
1885 break;
e9995ef9 1886 }
b9773199
KS
1887
1888 if (!locked)
1889 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1890}
1891
e8351ac9
JK
1892/*
1893 * rmap_walk_file - do something to file page using the object-based rmap method
1894 * @page: the page to be handled
1895 * @rwc: control variable according to each walk type
1896 *
1897 * Find all the mappings of a page using the mapping pointer and the vma chains
1898 * contained in the address_space struct it points to.
1899 *
c1e8d7c6 1900 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
1901 * where the page was found will be held for write. So, we won't recheck
1902 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1903 * LOCKED.
1904 */
1df631ae 1905static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1906 bool locked)
e9995ef9 1907{
b9773199 1908 struct address_space *mapping = page_mapping(page);
a8fa41ad 1909 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1910 struct vm_area_struct *vma;
e9995ef9 1911
9f32624b
JK
1912 /*
1913 * The page lock not only makes sure that page->mapping cannot
1914 * suddenly be NULLified by truncation, it makes sure that the
1915 * structure at mapping cannot be freed and reused yet,
c8c06efa 1916 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1917 */
81d1b09c 1918 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1919
e9995ef9 1920 if (!mapping)
1df631ae 1921 return;
3dec0ba0 1922
a8fa41ad 1923 pgoff_start = page_to_pgoff(page);
6c357848 1924 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
b9773199
KS
1925 if (!locked)
1926 i_mmap_lock_read(mapping);
a8fa41ad
KS
1927 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1928 pgoff_start, pgoff_end) {
e9995ef9 1929 unsigned long address = vma_address(page, vma);
0dd1c7bb 1930
ad12695f
AA
1931 cond_resched();
1932
0dd1c7bb
JK
1933 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1934 continue;
1935
e4b82222 1936 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1937 goto done;
1938 if (rwc->done && rwc->done(page))
1939 goto done;
e9995ef9 1940 }
0dd1c7bb 1941
0dd1c7bb 1942done:
b9773199
KS
1943 if (!locked)
1944 i_mmap_unlock_read(mapping);
e9995ef9
HD
1945}
1946
1df631ae 1947void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1948{
e9995ef9 1949 if (unlikely(PageKsm(page)))
1df631ae 1950 rmap_walk_ksm(page, rwc);
e9995ef9 1951 else if (PageAnon(page))
1df631ae 1952 rmap_walk_anon(page, rwc, false);
b9773199 1953 else
1df631ae 1954 rmap_walk_file(page, rwc, false);
b9773199
KS
1955}
1956
1957/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1958void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1959{
1960 /* no ksm support for now */
1961 VM_BUG_ON_PAGE(PageKsm(page), page);
1962 if (PageAnon(page))
1df631ae 1963 rmap_walk_anon(page, rwc, true);
e9995ef9 1964 else
1df631ae 1965 rmap_walk_file(page, rwc, true);
e9995ef9 1966}
0fe6e20b 1967
e3390f67 1968#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 1969/*
451b9514 1970 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
1971 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1972 * and no lru code, because we handle hugepages differently from common pages.
1973 */
0fe6e20b
NH
1974void hugepage_add_anon_rmap(struct page *page,
1975 struct vm_area_struct *vma, unsigned long address)
1976{
1977 struct anon_vma *anon_vma = vma->anon_vma;
1978 int first;
a850ea30
NH
1979
1980 BUG_ON(!PageLocked(page));
0fe6e20b 1981 BUG_ON(!anon_vma);
5dbe0af4 1982 /* address might be in next vma when migration races vma_adjust */
53f9263b 1983 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 1984 if (first)
451b9514 1985 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
1986}
1987
1988void hugepage_add_new_anon_rmap(struct page *page,
1989 struct vm_area_struct *vma, unsigned long address)
1990{
1991 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1992 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1993 if (hpage_pincount_available(page))
1994 atomic_set(compound_pincount_ptr(page), 0);
1995
451b9514 1996 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 1997}
e3390f67 1998#endif /* CONFIG_HUGETLB_PAGE */