]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/rmap.c
Merge tag 'fuse-update-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[mirror_ubuntu-hirsute-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
f4b7e272 30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
b93b0163 35 * i_pages lock (widely used)
88f306b6
KS
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 39 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
6e84f315 49#include <linux/sched/mm.h>
29930025 50#include <linux/sched/task.h>
1da177e4
LT
51#include <linux/pagemap.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/slab.h>
55#include <linux/init.h>
5ad64688 56#include <linux/ksm.h>
1da177e4
LT
57#include <linux/rmap.h>
58#include <linux/rcupdate.h>
b95f1b31 59#include <linux/export.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
64cdd548 62#include <linux/migrate.h>
0fe6e20b 63#include <linux/hugetlb.h>
444f84fd 64#include <linux/huge_mm.h>
ef5d437f 65#include <linux/backing-dev.h>
33c3fc71 66#include <linux/page_idle.h>
a5430dda 67#include <linux/memremap.h>
bce73e48 68#include <linux/userfaultfd_k.h>
1da177e4
LT
69
70#include <asm/tlbflush.h>
71
72b252ae
MG
72#include <trace/events/tlb.h>
73
b291f000
NP
74#include "internal.h"
75
fdd2e5f8 76static struct kmem_cache *anon_vma_cachep;
5beb4930 77static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
78
79static inline struct anon_vma *anon_vma_alloc(void)
80{
01d8b20d
PZ
81 struct anon_vma *anon_vma;
82
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
01d8b20d
PZ
88 /*
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
91 */
92 anon_vma->root = anon_vma;
93 }
94
95 return anon_vma;
fdd2e5f8
AB
96}
97
01d8b20d 98static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 99{
01d8b20d 100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
101
102 /*
4fc3f1d6 103 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
104 * we can safely hold the lock without the anon_vma getting
105 * freed.
106 *
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 110 *
4fc3f1d6
IM
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
88c22088 113 * LOCK MB
4fc3f1d6 114 * atomic_read() rwsem_is_locked()
88c22088
PZ
115 *
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
118 */
7f39dda9 119 might_sleep();
5a505085 120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 121 anon_vma_lock_write(anon_vma);
08b52706 122 anon_vma_unlock_write(anon_vma);
88c22088
PZ
123 }
124
fdd2e5f8
AB
125 kmem_cache_free(anon_vma_cachep, anon_vma);
126}
1da177e4 127
dd34739c 128static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 129{
dd34739c 130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
131}
132
e574b5fd 133static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
134{
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136}
137
6583a843
KC
138static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
141{
142 avc->vma = vma;
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
146}
147
d9d332e0 148/**
d5a187da 149 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
150 * @vma: the memory region in question
151 *
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
155 *
d5a187da
VB
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
23a0790a 158 * not we either need to find an adjacent mapping that we
d9d332e0
LT
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
162 *
163 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
168 *
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
172 * an anon_vma.
173 *
174 * This must be called with the mmap_sem held for reading.
175 */
d5a187da 176int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 177{
d5a187da
VB
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
5beb4930 180 struct anon_vma_chain *avc;
1da177e4
LT
181
182 might_sleep();
1da177e4 183
d5a187da
VB
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
185 if (!avc)
186 goto out_enomem;
187
188 anon_vma = find_mergeable_anon_vma(vma);
189 allocated = NULL;
190 if (!anon_vma) {
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
195 }
5beb4930 196
d5a187da
VB
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
204 anon_vma->degree++;
d9d332e0 205 allocated = NULL;
d5a187da
VB
206 avc = NULL;
207 }
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
1da177e4 210
d5a187da
VB
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
213 if (unlikely(avc))
214 anon_vma_chain_free(avc);
31f2b0eb 215
1da177e4 216 return 0;
5beb4930
RR
217
218 out_enomem_free_avc:
219 anon_vma_chain_free(avc);
220 out_enomem:
221 return -ENOMEM;
1da177e4
LT
222}
223
bb4aa396
LT
224/*
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * have the same vma.
228 *
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
231 */
232static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
233{
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
5a505085 237 up_write(&root->rwsem);
bb4aa396 238 root = new_root;
5a505085 239 down_write(&root->rwsem);
bb4aa396
LT
240 }
241 return root;
242}
243
244static inline void unlock_anon_vma_root(struct anon_vma *root)
245{
246 if (root)
5a505085 247 up_write(&root->rwsem);
bb4aa396
LT
248}
249
5beb4930
RR
250/*
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 253 *
47b390d2
WY
254 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
255 * anon_vma_fork(). The first three want an exact copy of src, while the last
256 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
257 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
258 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
259 *
260 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
261 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
262 * This prevents degradation of anon_vma hierarchy to endless linear chain in
263 * case of constantly forking task. On the other hand, an anon_vma with more
264 * than one child isn't reused even if there was no alive vma, thus rmap
265 * walker has a good chance of avoiding scanning the whole hierarchy when it
266 * searches where page is mapped.
5beb4930
RR
267 */
268int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 269{
5beb4930 270 struct anon_vma_chain *avc, *pavc;
bb4aa396 271 struct anon_vma *root = NULL;
4e4a9eb9
WY
272 struct vm_area_struct *prev = dst->vm_prev, *pprev = src->vm_prev;
273
274 /*
275 * If parent share anon_vma with its vm_prev, keep this sharing in in
276 * child.
277 *
278 * 1. Parent has vm_prev, which implies we have vm_prev.
279 * 2. Parent and its vm_prev have the same anon_vma.
280 */
281 if (!dst->anon_vma && src->anon_vma &&
282 pprev && pprev->anon_vma == src->anon_vma)
283 dst->anon_vma = prev->anon_vma;
284
5beb4930 285
646d87b4 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
287 struct anon_vma *anon_vma;
288
dd34739c
LT
289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 if (unlikely(!avc)) {
291 unlock_anon_vma_root(root);
292 root = NULL;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto enomem_failure;
296 }
bb4aa396
LT
297 anon_vma = pavc->anon_vma;
298 root = lock_anon_vma_root(root, anon_vma);
299 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
300
301 /*
302 * Reuse existing anon_vma if its degree lower than two,
303 * that means it has no vma and only one anon_vma child.
304 *
305 * Do not chose parent anon_vma, otherwise first child
306 * will always reuse it. Root anon_vma is never reused:
307 * it has self-parent reference and at least one child.
308 */
47b390d2
WY
309 if (!dst->anon_vma && src->anon_vma &&
310 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 311 dst->anon_vma = anon_vma;
5beb4930 312 }
7a3ef208
KK
313 if (dst->anon_vma)
314 dst->anon_vma->degree++;
bb4aa396 315 unlock_anon_vma_root(root);
5beb4930 316 return 0;
1da177e4 317
5beb4930 318 enomem_failure:
3fe89b3e
LY
319 /*
320 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
321 * decremented in unlink_anon_vmas().
322 * We can safely do this because callers of anon_vma_clone() don't care
323 * about dst->anon_vma if anon_vma_clone() failed.
324 */
325 dst->anon_vma = NULL;
5beb4930
RR
326 unlink_anon_vmas(dst);
327 return -ENOMEM;
1da177e4
LT
328}
329
5beb4930
RR
330/*
331 * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 * the corresponding VMA in the parent process is attached to.
333 * Returns 0 on success, non-zero on failure.
334 */
335int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 336{
5beb4930
RR
337 struct anon_vma_chain *avc;
338 struct anon_vma *anon_vma;
c4ea95d7 339 int error;
1da177e4 340
5beb4930
RR
341 /* Don't bother if the parent process has no anon_vma here. */
342 if (!pvma->anon_vma)
343 return 0;
344
7a3ef208
KK
345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 vma->anon_vma = NULL;
347
5beb4930
RR
348 /*
349 * First, attach the new VMA to the parent VMA's anon_vmas,
350 * so rmap can find non-COWed pages in child processes.
351 */
c4ea95d7
DF
352 error = anon_vma_clone(vma, pvma);
353 if (error)
354 return error;
5beb4930 355
7a3ef208
KK
356 /* An existing anon_vma has been reused, all done then. */
357 if (vma->anon_vma)
358 return 0;
359
5beb4930
RR
360 /* Then add our own anon_vma. */
361 anon_vma = anon_vma_alloc();
362 if (!anon_vma)
363 goto out_error;
dd34739c 364 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
365 if (!avc)
366 goto out_error_free_anon_vma;
5c341ee1
RR
367
368 /*
369 * The root anon_vma's spinlock is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
371 */
372 anon_vma->root = pvma->anon_vma->root;
7a3ef208 373 anon_vma->parent = pvma->anon_vma;
76545066 374 /*
01d8b20d
PZ
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
378 */
379 get_anon_vma(anon_vma->root);
5beb4930
RR
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
4fc3f1d6 382 anon_vma_lock_write(anon_vma);
5c341ee1 383 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 384 anon_vma->parent->degree++;
08b52706 385 anon_vma_unlock_write(anon_vma);
5beb4930
RR
386
387 return 0;
388
389 out_error_free_anon_vma:
01d8b20d 390 put_anon_vma(anon_vma);
5beb4930 391 out_error:
4946d54c 392 unlink_anon_vmas(vma);
5beb4930 393 return -ENOMEM;
1da177e4
LT
394}
395
5beb4930
RR
396void unlink_anon_vmas(struct vm_area_struct *vma)
397{
398 struct anon_vma_chain *avc, *next;
eee2acba 399 struct anon_vma *root = NULL;
5beb4930 400
5c341ee1
RR
401 /*
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 */
5beb4930 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
406 struct anon_vma *anon_vma = avc->anon_vma;
407
408 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
410
411 /*
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
414 */
f808c13f 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 416 anon_vma->parent->degree--;
eee2acba 417 continue;
7a3ef208 418 }
eee2acba
PZ
419
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
422 }
7a3ef208
KK
423 if (vma->anon_vma)
424 vma->anon_vma->degree--;
eee2acba
PZ
425 unlock_anon_vma_root(root);
426
427 /*
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 430 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
431 */
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
434
e4c5800a 435 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
436 put_anon_vma(anon_vma);
437
5beb4930
RR
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
440 }
441}
442
51cc5068 443static void anon_vma_ctor(void *data)
1da177e4 444{
a35afb83 445 struct anon_vma *anon_vma = data;
1da177e4 446
5a505085 447 init_rwsem(&anon_vma->rwsem);
83813267 448 atomic_set(&anon_vma->refcount, 0);
f808c13f 449 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
450}
451
452void __init anon_vma_init(void)
453{
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
459}
460
461/*
6111e4ca
PZ
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463 *
464 * Since there is no serialization what so ever against page_remove_rmap()
465 * the best this function can do is return a locked anon_vma that might
466 * have been relevant to this page.
467 *
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
470 *
bc658c96
PZ
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475 *
6111e4ca
PZ
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
479 *
091e4299
MC
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
1da177e4 484 */
746b18d4 485struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 486{
746b18d4 487 struct anon_vma *anon_vma = NULL;
1da177e4
LT
488 unsigned long anon_mapping;
489
490 rcu_read_lock();
4db0c3c2 491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
493 goto out;
494 if (!page_mapped(page))
495 goto out;
496
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
501 }
f1819427
HD
502
503 /*
504 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 508 * above cannot corrupt).
f1819427 509 */
746b18d4 510 if (!page_mapped(page)) {
7f39dda9 511 rcu_read_unlock();
746b18d4 512 put_anon_vma(anon_vma);
7f39dda9 513 return NULL;
746b18d4 514 }
1da177e4
LT
515out:
516 rcu_read_unlock();
746b18d4
PZ
517
518 return anon_vma;
519}
520
88c22088
PZ
521/*
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
523 *
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
527 */
4fc3f1d6 528struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 529{
88c22088 530 struct anon_vma *anon_vma = NULL;
eee0f252 531 struct anon_vma *root_anon_vma;
88c22088 532 unsigned long anon_mapping;
746b18d4 533
88c22088 534 rcu_read_lock();
4db0c3c2 535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
540
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 542 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 543 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 544 /*
eee0f252
HD
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
bc658c96 547 * not go away, see anon_vma_free().
88c22088 548 */
eee0f252 549 if (!page_mapped(page)) {
4fc3f1d6 550 up_read(&root_anon_vma->rwsem);
88c22088
PZ
551 anon_vma = NULL;
552 }
553 goto out;
554 }
746b18d4 555
88c22088
PZ
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
560 }
561
562 if (!page_mapped(page)) {
7f39dda9 563 rcu_read_unlock();
88c22088 564 put_anon_vma(anon_vma);
7f39dda9 565 return NULL;
88c22088
PZ
566 }
567
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
4fc3f1d6 570 anon_vma_lock_read(anon_vma);
88c22088
PZ
571
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
573 /*
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 576 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 577 */
4fc3f1d6 578 anon_vma_unlock_read(anon_vma);
88c22088
PZ
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
581 }
582
583 return anon_vma;
584
585out:
586 rcu_read_unlock();
746b18d4 587 return anon_vma;
34bbd704
ON
588}
589
4fc3f1d6 590void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 591{
4fc3f1d6 592 anon_vma_unlock_read(anon_vma);
1da177e4
LT
593}
594
72b252ae 595#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
596/*
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
601 */
602void try_to_unmap_flush(void)
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
605
606 if (!tlb_ubc->flush_required)
607 return;
608
e73ad5ff 609 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 610 tlb_ubc->flush_required = false;
d950c947 611 tlb_ubc->writable = false;
72b252ae
MG
612}
613
d950c947
MG
614/* Flush iff there are potentially writable TLB entries that can race with IO */
615void try_to_unmap_flush_dirty(void)
616{
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
621}
622
c7ab0d2f 623static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
624{
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626
e73ad5ff 627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 628 tlb_ubc->flush_required = true;
d950c947 629
3ea27719
MG
630 /*
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
633 */
634 barrier();
635 mm->tlb_flush_batched = true;
636
d950c947
MG
637 /*
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
641 */
642 if (writable)
643 tlb_ubc->writable = true;
72b252ae
MG
644}
645
646/*
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
649 */
650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651{
652 bool should_defer = false;
653
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
656
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
661
662 return should_defer;
663}
3ea27719
MG
664
665/*
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
675 *
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
679 */
680void flush_tlb_batched_pending(struct mm_struct *mm)
681{
682 if (mm->tlb_flush_batched) {
683 flush_tlb_mm(mm);
684
685 /*
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
688 */
689 barrier();
690 mm->tlb_flush_batched = false;
691 }
692}
72b252ae 693#else
c7ab0d2f 694static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
695{
696}
697
698static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699{
700 return false;
701}
702#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703
1da177e4 704/*
bf89c8c8 705 * At what user virtual address is page expected in vma?
ab941e0f 706 * Caller should check the page is actually part of the vma.
1da177e4
LT
707 */
708unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709{
86c2ad19 710 unsigned long address;
21d0d443 711 if (PageAnon(page)) {
4829b906
HD
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
713 /*
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
716 */
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
21d0d443 719 return -EFAULT;
27ba0644
KS
720 } else if (page->mapping) {
721 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
722 return -EFAULT;
723 } else
724 return -EFAULT;
86c2ad19
ML
725 address = __vma_address(page, vma);
726 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 return -EFAULT;
728 return address;
1da177e4
LT
729}
730
6219049a
BL
731pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
732{
733 pgd_t *pgd;
c2febafc 734 p4d_t *p4d;
6219049a
BL
735 pud_t *pud;
736 pmd_t *pmd = NULL;
f72e7dcd 737 pmd_t pmde;
6219049a
BL
738
739 pgd = pgd_offset(mm, address);
740 if (!pgd_present(*pgd))
741 goto out;
742
c2febafc
KS
743 p4d = p4d_offset(pgd, address);
744 if (!p4d_present(*p4d))
745 goto out;
746
747 pud = pud_offset(p4d, address);
6219049a
BL
748 if (!pud_present(*pud))
749 goto out;
750
751 pmd = pmd_offset(pud, address);
f72e7dcd 752 /*
8809aa2d 753 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
754 * without holding anon_vma lock for write. So when looking for a
755 * genuine pmde (in which to find pte), test present and !THP together.
756 */
e37c6982
CB
757 pmde = *pmd;
758 barrier();
f72e7dcd 759 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
760 pmd = NULL;
761out:
762 return pmd;
763}
764
8749cfea
VD
765struct page_referenced_arg {
766 int mapcount;
767 int referenced;
768 unsigned long vm_flags;
769 struct mem_cgroup *memcg;
770};
771/*
772 * arg: page_referenced_arg will be passed
773 */
e4b82222 774static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
775 unsigned long address, void *arg)
776{
8749cfea 777 struct page_referenced_arg *pra = arg;
8eaedede
KS
778 struct page_vma_mapped_walk pvmw = {
779 .page = page,
780 .vma = vma,
781 .address = address,
782 };
8749cfea
VD
783 int referenced = 0;
784
8eaedede
KS
785 while (page_vma_mapped_walk(&pvmw)) {
786 address = pvmw.address;
b20ce5e0 787
8eaedede
KS
788 if (vma->vm_flags & VM_LOCKED) {
789 page_vma_mapped_walk_done(&pvmw);
790 pra->vm_flags |= VM_LOCKED;
e4b82222 791 return false; /* To break the loop */
8eaedede 792 }
71e3aac0 793
8eaedede
KS
794 if (pvmw.pte) {
795 if (ptep_clear_flush_young_notify(vma, address,
796 pvmw.pte)) {
797 /*
798 * Don't treat a reference through
799 * a sequentially read mapping as such.
800 * If the page has been used in another mapping,
801 * we will catch it; if this other mapping is
802 * already gone, the unmap path will have set
803 * PG_referenced or activated the page.
804 */
805 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 referenced++;
807 }
808 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 if (pmdp_clear_flush_young_notify(vma, address,
810 pvmw.pmd))
8749cfea 811 referenced++;
8eaedede
KS
812 } else {
813 /* unexpected pmd-mapped page? */
814 WARN_ON_ONCE(1);
8749cfea 815 }
8eaedede
KS
816
817 pra->mapcount--;
b20ce5e0 818 }
b20ce5e0 819
33c3fc71
VD
820 if (referenced)
821 clear_page_idle(page);
822 if (test_and_clear_page_young(page))
823 referenced++;
824
9f32624b
JK
825 if (referenced) {
826 pra->referenced++;
827 pra->vm_flags |= vma->vm_flags;
1da177e4 828 }
34bbd704 829
9f32624b 830 if (!pra->mapcount)
e4b82222 831 return false; /* To break the loop */
9f32624b 832
e4b82222 833 return true;
1da177e4
LT
834}
835
9f32624b 836static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 837{
9f32624b
JK
838 struct page_referenced_arg *pra = arg;
839 struct mem_cgroup *memcg = pra->memcg;
1da177e4 840
9f32624b
JK
841 if (!mm_match_cgroup(vma->vm_mm, memcg))
842 return true;
1da177e4 843
9f32624b 844 return false;
1da177e4
LT
845}
846
847/**
848 * page_referenced - test if the page was referenced
849 * @page: the page to test
850 * @is_locked: caller holds lock on the page
72835c86 851 * @memcg: target memory cgroup
6fe6b7e3 852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
853 *
854 * Quick test_and_clear_referenced for all mappings to a page,
855 * returns the number of ptes which referenced the page.
856 */
6fe6b7e3
WF
857int page_referenced(struct page *page,
858 int is_locked,
72835c86 859 struct mem_cgroup *memcg,
6fe6b7e3 860 unsigned long *vm_flags)
1da177e4 861{
5ad64688 862 int we_locked = 0;
9f32624b 863 struct page_referenced_arg pra = {
b20ce5e0 864 .mapcount = total_mapcount(page),
9f32624b
JK
865 .memcg = memcg,
866 };
867 struct rmap_walk_control rwc = {
868 .rmap_one = page_referenced_one,
869 .arg = (void *)&pra,
870 .anon_lock = page_lock_anon_vma_read,
871 };
1da177e4 872
6fe6b7e3 873 *vm_flags = 0;
059d8442 874 if (!pra.mapcount)
9f32624b
JK
875 return 0;
876
877 if (!page_rmapping(page))
878 return 0;
879
880 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 we_locked = trylock_page(page);
882 if (!we_locked)
883 return 1;
1da177e4 884 }
9f32624b
JK
885
886 /*
887 * If we are reclaiming on behalf of a cgroup, skip
888 * counting on behalf of references from different
889 * cgroups
890 */
891 if (memcg) {
892 rwc.invalid_vma = invalid_page_referenced_vma;
893 }
894
c24f386c 895 rmap_walk(page, &rwc);
9f32624b
JK
896 *vm_flags = pra.vm_flags;
897
898 if (we_locked)
899 unlock_page(page);
900
901 return pra.referenced;
1da177e4
LT
902}
903
e4b82222 904static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 905 unsigned long address, void *arg)
d08b3851 906{
f27176cf
KS
907 struct page_vma_mapped_walk pvmw = {
908 .page = page,
909 .vma = vma,
910 .address = address,
911 .flags = PVMW_SYNC,
912 };
ac46d4f3 913 struct mmu_notifier_range range;
9853a407 914 int *cleaned = arg;
d08b3851 915
369ea824
JG
916 /*
917 * We have to assume the worse case ie pmd for invalidation. Note that
918 * the page can not be free from this function.
919 */
7269f999
JG
920 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 0, vma, vma->vm_mm, address,
a50b854e 922 min(vma->vm_end, address + page_size(page)));
ac46d4f3 923 mmu_notifier_invalidate_range_start(&range);
369ea824 924
f27176cf
KS
925 while (page_vma_mapped_walk(&pvmw)) {
926 int ret = 0;
369ea824 927
1f18b296 928 address = pvmw.address;
f27176cf
KS
929 if (pvmw.pte) {
930 pte_t entry;
931 pte_t *pte = pvmw.pte;
932
933 if (!pte_dirty(*pte) && !pte_write(*pte))
934 continue;
935
785373b4
LT
936 flush_cache_page(vma, address, pte_pfn(*pte));
937 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
938 entry = pte_wrprotect(entry);
939 entry = pte_mkclean(entry);
785373b4 940 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
941 ret = 1;
942 } else {
943#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
944 pmd_t *pmd = pvmw.pmd;
945 pmd_t entry;
946
947 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 continue;
949
785373b4 950 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 951 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
952 entry = pmd_wrprotect(entry);
953 entry = pmd_mkclean(entry);
785373b4 954 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
955 ret = 1;
956#else
957 /* unexpected pmd-mapped page? */
958 WARN_ON_ONCE(1);
959#endif
960 }
d08b3851 961
0f10851e
JG
962 /*
963 * No need to call mmu_notifier_invalidate_range() as we are
964 * downgrading page table protection not changing it to point
965 * to a new page.
966 *
ad56b738 967 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
968 */
969 if (ret)
f27176cf 970 (*cleaned)++;
c2fda5fe 971 }
d08b3851 972
ac46d4f3 973 mmu_notifier_invalidate_range_end(&range);
369ea824 974
e4b82222 975 return true;
d08b3851
PZ
976}
977
9853a407 978static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 979{
9853a407 980 if (vma->vm_flags & VM_SHARED)
871beb8c 981 return false;
d08b3851 982
871beb8c 983 return true;
d08b3851
PZ
984}
985
986int page_mkclean(struct page *page)
987{
9853a407
JK
988 int cleaned = 0;
989 struct address_space *mapping;
990 struct rmap_walk_control rwc = {
991 .arg = (void *)&cleaned,
992 .rmap_one = page_mkclean_one,
993 .invalid_vma = invalid_mkclean_vma,
994 };
d08b3851
PZ
995
996 BUG_ON(!PageLocked(page));
997
9853a407
JK
998 if (!page_mapped(page))
999 return 0;
1000
1001 mapping = page_mapping(page);
1002 if (!mapping)
1003 return 0;
1004
1005 rmap_walk(page, &rwc);
d08b3851 1006
9853a407 1007 return cleaned;
d08b3851 1008}
60b59bea 1009EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1010
c44b6743
RR
1011/**
1012 * page_move_anon_rmap - move a page to our anon_vma
1013 * @page: the page to move to our anon_vma
1014 * @vma: the vma the page belongs to
c44b6743
RR
1015 *
1016 * When a page belongs exclusively to one process after a COW event,
1017 * that page can be moved into the anon_vma that belongs to just that
1018 * process, so the rmap code will not search the parent or sibling
1019 * processes.
1020 */
5a49973d 1021void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1022{
1023 struct anon_vma *anon_vma = vma->anon_vma;
1024
5a49973d
HD
1025 page = compound_head(page);
1026
309381fe 1027 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1028 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1029
1030 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1031 /*
1032 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 * PageAnon()) will not see one without the other.
1035 */
1036 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1037}
1038
9617d95e 1039/**
4e1c1975 1040 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1041 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1042 * @vma: VM area to add page to.
1043 * @address: User virtual address of the mapping
e8a03feb 1044 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1045 */
1046static void __page_set_anon_rmap(struct page *page,
e8a03feb 1047 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1048{
e8a03feb 1049 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1050
e8a03feb 1051 BUG_ON(!anon_vma);
ea90002b 1052
4e1c1975
AK
1053 if (PageAnon(page))
1054 return;
1055
ea90002b 1056 /*
e8a03feb
RR
1057 * If the page isn't exclusively mapped into this vma,
1058 * we must use the _oldest_ possible anon_vma for the
1059 * page mapping!
ea90002b 1060 */
4e1c1975 1061 if (!exclusive)
288468c3 1062 anon_vma = anon_vma->root;
9617d95e 1063
9617d95e
NP
1064 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1065 page->mapping = (struct address_space *) anon_vma;
9617d95e 1066 page->index = linear_page_index(vma, address);
9617d95e
NP
1067}
1068
c97a9e10 1069/**
43d8eac4 1070 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1071 * @page: the page to add the mapping to
1072 * @vma: the vm area in which the mapping is added
1073 * @address: the user virtual address mapped
1074 */
1075static void __page_check_anon_rmap(struct page *page,
1076 struct vm_area_struct *vma, unsigned long address)
1077{
c97a9e10
NP
1078 /*
1079 * The page's anon-rmap details (mapping and index) are guaranteed to
1080 * be set up correctly at this point.
1081 *
1082 * We have exclusion against page_add_anon_rmap because the caller
1083 * always holds the page locked, except if called from page_dup_rmap,
1084 * in which case the page is already known to be setup.
1085 *
1086 * We have exclusion against page_add_new_anon_rmap because those pages
1087 * are initially only visible via the pagetables, and the pte is locked
1088 * over the call to page_add_new_anon_rmap.
1089 */
30c46382
YS
1090 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1091 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1092 page);
c97a9e10
NP
1093}
1094
1da177e4
LT
1095/**
1096 * page_add_anon_rmap - add pte mapping to an anonymous page
1097 * @page: the page to add the mapping to
1098 * @vma: the vm area in which the mapping is added
1099 * @address: the user virtual address mapped
d281ee61 1100 * @compound: charge the page as compound or small page
1da177e4 1101 *
5ad64688 1102 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1103 * the anon_vma case: to serialize mapping,index checking after setting,
1104 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1105 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1106 */
1107void page_add_anon_rmap(struct page *page,
d281ee61 1108 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1109{
d281ee61 1110 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1111}
1112
1113/*
1114 * Special version of the above for do_swap_page, which often runs
1115 * into pages that are exclusively owned by the current process.
1116 * Everybody else should continue to use page_add_anon_rmap above.
1117 */
1118void do_page_add_anon_rmap(struct page *page,
d281ee61 1119 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1120{
53f9263b
KS
1121 bool compound = flags & RMAP_COMPOUND;
1122 bool first;
1123
e9b61f19
KS
1124 if (compound) {
1125 atomic_t *mapcount;
53f9263b 1126 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1127 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1128 mapcount = compound_mapcount_ptr(page);
1129 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1130 } else {
1131 first = atomic_inc_and_test(&page->_mapcount);
1132 }
1133
79134171 1134 if (first) {
d281ee61 1135 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1136 /*
1137 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1138 * these counters are not modified in interrupt context, and
1139 * pte lock(a spinlock) is held, which implies preemption
1140 * disabled.
1141 */
65c45377 1142 if (compound)
11fb9989 1143 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1144 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1145 }
5ad64688
HD
1146 if (unlikely(PageKsm(page)))
1147 return;
1148
309381fe 1149 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1150
5dbe0af4 1151 /* address might be in next vma when migration races vma_adjust */
5ad64688 1152 if (first)
d281ee61
KS
1153 __page_set_anon_rmap(page, vma, address,
1154 flags & RMAP_EXCLUSIVE);
69029cd5 1155 else
c97a9e10 1156 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1157}
1158
43d8eac4 1159/**
9617d95e
NP
1160 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1161 * @page: the page to add the mapping to
1162 * @vma: the vm area in which the mapping is added
1163 * @address: the user virtual address mapped
d281ee61 1164 * @compound: charge the page as compound or small page
9617d95e
NP
1165 *
1166 * Same as page_add_anon_rmap but must only be called on *new* pages.
1167 * This means the inc-and-test can be bypassed.
c97a9e10 1168 * Page does not have to be locked.
9617d95e
NP
1169 */
1170void page_add_new_anon_rmap(struct page *page,
d281ee61 1171 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1172{
d281ee61
KS
1173 int nr = compound ? hpage_nr_pages(page) : 1;
1174
81d1b09c 1175 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1176 __SetPageSwapBacked(page);
d281ee61
KS
1177 if (compound) {
1178 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1179 /* increment count (starts at -1) */
1180 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1181 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1182 } else {
1183 /* Anon THP always mapped first with PMD */
1184 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1185 /* increment count (starts at -1) */
1186 atomic_set(&page->_mapcount, 0);
d281ee61 1187 }
4b9d0fab 1188 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1189 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1190}
1191
1da177e4
LT
1192/**
1193 * page_add_file_rmap - add pte mapping to a file page
1194 * @page: the page to add the mapping to
e8b098fc 1195 * @compound: charge the page as compound or small page
1da177e4 1196 *
b8072f09 1197 * The caller needs to hold the pte lock.
1da177e4 1198 */
dd78fedd 1199void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1200{
dd78fedd
KS
1201 int i, nr = 1;
1202
1203 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1204 lock_page_memcg(page);
dd78fedd
KS
1205 if (compound && PageTransHuge(page)) {
1206 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1207 if (atomic_inc_and_test(&page[i]._mapcount))
1208 nr++;
1209 }
1210 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1211 goto out;
99cb0dbd
SL
1212 if (PageSwapBacked(page))
1213 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1214 else
1215 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
dd78fedd 1216 } else {
c8efc390
KS
1217 if (PageTransCompound(page) && page_mapping(page)) {
1218 VM_WARN_ON_ONCE(!PageLocked(page));
1219
9a73f61b
KS
1220 SetPageDoubleMap(compound_head(page));
1221 if (PageMlocked(page))
1222 clear_page_mlock(compound_head(page));
1223 }
dd78fedd
KS
1224 if (!atomic_inc_and_test(&page->_mapcount))
1225 goto out;
d69b042f 1226 }
00f3ca2c 1227 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1228out:
62cccb8c 1229 unlock_page_memcg(page);
1da177e4
LT
1230}
1231
dd78fedd 1232static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1233{
dd78fedd
KS
1234 int i, nr = 1;
1235
57dea93a 1236 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1237 lock_page_memcg(page);
8186eb6a 1238
53f9263b
KS
1239 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1240 if (unlikely(PageHuge(page))) {
1241 /* hugetlb pages are always mapped with pmds */
1242 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1243 goto out;
53f9263b 1244 }
8186eb6a 1245
53f9263b 1246 /* page still mapped by someone else? */
dd78fedd
KS
1247 if (compound && PageTransHuge(page)) {
1248 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1249 if (atomic_add_negative(-1, &page[i]._mapcount))
1250 nr++;
1251 }
1252 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1253 goto out;
99cb0dbd
SL
1254 if (PageSwapBacked(page))
1255 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1256 else
1257 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
dd78fedd
KS
1258 } else {
1259 if (!atomic_add_negative(-1, &page->_mapcount))
1260 goto out;
1261 }
8186eb6a
JW
1262
1263 /*
00f3ca2c 1264 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1265 * these counters are not modified in interrupt context, and
1266 * pte lock(a spinlock) is held, which implies preemption disabled.
1267 */
00f3ca2c 1268 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1269
1270 if (unlikely(PageMlocked(page)))
1271 clear_page_mlock(page);
1272out:
62cccb8c 1273 unlock_page_memcg(page);
8186eb6a
JW
1274}
1275
53f9263b
KS
1276static void page_remove_anon_compound_rmap(struct page *page)
1277{
1278 int i, nr;
1279
1280 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1281 return;
1282
1283 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1284 if (unlikely(PageHuge(page)))
1285 return;
1286
1287 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1288 return;
1289
11fb9989 1290 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1291
1292 if (TestClearPageDoubleMap(page)) {
1293 /*
1294 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1295 * them are still mapped.
53f9263b
KS
1296 */
1297 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1298 if (atomic_add_negative(-1, &page[i]._mapcount))
1299 nr++;
1300 }
f1fe80d4
KS
1301
1302 /*
1303 * Queue the page for deferred split if at least one small
1304 * page of the compound page is unmapped, but at least one
1305 * small page is still mapped.
1306 */
1307 if (nr && nr < HPAGE_PMD_NR)
1308 deferred_split_huge_page(page);
53f9263b
KS
1309 } else {
1310 nr = HPAGE_PMD_NR;
1311 }
1312
e90309c9
KS
1313 if (unlikely(PageMlocked(page)))
1314 clear_page_mlock(page);
1315
f1fe80d4 1316 if (nr)
4b9d0fab 1317 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
53f9263b
KS
1318}
1319
1da177e4
LT
1320/**
1321 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1322 * @page: page to remove mapping from
1323 * @compound: uncharge the page as compound or small page
1da177e4 1324 *
b8072f09 1325 * The caller needs to hold the pte lock.
1da177e4 1326 */
d281ee61 1327void page_remove_rmap(struct page *page, bool compound)
1da177e4 1328{
dd78fedd
KS
1329 if (!PageAnon(page))
1330 return page_remove_file_rmap(page, compound);
89c06bd5 1331
53f9263b
KS
1332 if (compound)
1333 return page_remove_anon_compound_rmap(page);
1334
b904dcfe
KM
1335 /* page still mapped by someone else? */
1336 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1337 return;
1338
0fe6e20b 1339 /*
bea04b07
JZ
1340 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1341 * these counters are not modified in interrupt context, and
bea04b07 1342 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1343 */
4b9d0fab 1344 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1345
e6c509f8
HD
1346 if (unlikely(PageMlocked(page)))
1347 clear_page_mlock(page);
8186eb6a 1348
9a982250
KS
1349 if (PageTransCompound(page))
1350 deferred_split_huge_page(compound_head(page));
1351
b904dcfe
KM
1352 /*
1353 * It would be tidy to reset the PageAnon mapping here,
1354 * but that might overwrite a racing page_add_anon_rmap
1355 * which increments mapcount after us but sets mapping
2d4894b5 1356 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1357 * and remember that it's only reliable while mapped.
1358 * Leaving it set also helps swapoff to reinstate ptes
1359 * faster for those pages still in swapcache.
1360 */
1da177e4
LT
1361}
1362
1363/*
52629506 1364 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1365 */
e4b82222 1366static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1367 unsigned long address, void *arg)
1da177e4
LT
1368{
1369 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1370 struct page_vma_mapped_walk pvmw = {
1371 .page = page,
1372 .vma = vma,
1373 .address = address,
1374 };
1da177e4 1375 pte_t pteval;
c7ab0d2f 1376 struct page *subpage;
785373b4 1377 bool ret = true;
ac46d4f3 1378 struct mmu_notifier_range range;
802a3a92 1379 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1380
b87537d9
HD
1381 /* munlock has nothing to gain from examining un-locked vmas */
1382 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1383 return true;
b87537d9 1384
a5430dda
JG
1385 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1386 is_zone_device_page(page) && !is_device_private_page(page))
1387 return true;
1388
fec89c10
KS
1389 if (flags & TTU_SPLIT_HUGE_PMD) {
1390 split_huge_pmd_address(vma, address,
b5ff8161 1391 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1392 }
1393
369ea824 1394 /*
017b1660
MK
1395 * For THP, we have to assume the worse case ie pmd for invalidation.
1396 * For hugetlb, it could be much worse if we need to do pud
1397 * invalidation in the case of pmd sharing.
1398 *
1399 * Note that the page can not be free in this function as call of
1400 * try_to_unmap() must hold a reference on the page.
369ea824 1401 */
7269f999 1402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1403 address,
a50b854e 1404 min(vma->vm_end, address + page_size(page)));
017b1660
MK
1405 if (PageHuge(page)) {
1406 /*
1407 * If sharing is possible, start and end will be adjusted
1408 * accordingly.
1409 */
ac46d4f3
JG
1410 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1411 &range.end);
017b1660 1412 }
ac46d4f3 1413 mmu_notifier_invalidate_range_start(&range);
369ea824 1414
c7ab0d2f 1415 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1416#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1417 /* PMD-mapped THP migration entry */
1418 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1419 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1420
616b8371
ZY
1421 set_pmd_migration_entry(&pvmw, page);
1422 continue;
1423 }
1424#endif
1425
c7ab0d2f
KS
1426 /*
1427 * If the page is mlock()d, we cannot swap it out.
1428 * If it's recently referenced (perhaps page_referenced
1429 * skipped over this mm) then we should reactivate it.
1430 */
1431 if (!(flags & TTU_IGNORE_MLOCK)) {
1432 if (vma->vm_flags & VM_LOCKED) {
1433 /* PTE-mapped THP are never mlocked */
1434 if (!PageTransCompound(page)) {
1435 /*
1436 * Holding pte lock, we do *not* need
1437 * mmap_sem here
1438 */
1439 mlock_vma_page(page);
1440 }
e4b82222 1441 ret = false;
c7ab0d2f
KS
1442 page_vma_mapped_walk_done(&pvmw);
1443 break;
9a73f61b 1444 }
c7ab0d2f
KS
1445 if (flags & TTU_MUNLOCK)
1446 continue;
b87537d9 1447 }
c7ab0d2f 1448
8346242a
KS
1449 /* Unexpected PMD-mapped THP? */
1450 VM_BUG_ON_PAGE(!pvmw.pte, page);
1451
1452 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1453 address = pvmw.address;
1454
017b1660
MK
1455 if (PageHuge(page)) {
1456 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1457 /*
1458 * huge_pmd_unshare unmapped an entire PMD
1459 * page. There is no way of knowing exactly
1460 * which PMDs may be cached for this mm, so
1461 * we must flush them all. start/end were
1462 * already adjusted above to cover this range.
1463 */
ac46d4f3
JG
1464 flush_cache_range(vma, range.start, range.end);
1465 flush_tlb_range(vma, range.start, range.end);
1466 mmu_notifier_invalidate_range(mm, range.start,
1467 range.end);
017b1660
MK
1468
1469 /*
1470 * The ref count of the PMD page was dropped
1471 * which is part of the way map counting
1472 * is done for shared PMDs. Return 'true'
1473 * here. When there is no other sharing,
1474 * huge_pmd_unshare returns false and we will
1475 * unmap the actual page and drop map count
1476 * to zero.
1477 */
1478 page_vma_mapped_walk_done(&pvmw);
1479 break;
1480 }
1481 }
8346242a 1482
a5430dda
JG
1483 if (IS_ENABLED(CONFIG_MIGRATION) &&
1484 (flags & TTU_MIGRATION) &&
1485 is_zone_device_page(page)) {
1486 swp_entry_t entry;
1487 pte_t swp_pte;
1488
1489 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1490
1491 /*
1492 * Store the pfn of the page in a special migration
1493 * pte. do_swap_page() will wait until the migration
1494 * pte is removed and then restart fault handling.
1495 */
1496 entry = make_migration_entry(page, 0);
1497 swp_pte = swp_entry_to_pte(entry);
1498 if (pte_soft_dirty(pteval))
1499 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1500 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1501 /*
1502 * No need to invalidate here it will synchronize on
1503 * against the special swap migration pte.
1de13ee5
RC
1504 *
1505 * The assignment to subpage above was computed from a
1506 * swap PTE which results in an invalid pointer.
1507 * Since only PAGE_SIZE pages can currently be
1508 * migrated, just set it to page. This will need to be
1509 * changed when hugepage migrations to device private
1510 * memory are supported.
0f10851e 1511 */
1de13ee5 1512 subpage = page;
a5430dda
JG
1513 goto discard;
1514 }
1515
c7ab0d2f 1516 if (!(flags & TTU_IGNORE_ACCESS)) {
785373b4 1517 if (ptep_clear_flush_young_notify(vma, address,
c7ab0d2f 1518 pvmw.pte)) {
e4b82222 1519 ret = false;
c7ab0d2f
KS
1520 page_vma_mapped_walk_done(&pvmw);
1521 break;
1522 }
b291f000 1523 }
1da177e4 1524
c7ab0d2f 1525 /* Nuke the page table entry. */
785373b4 1526 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1527 if (should_defer_flush(mm, flags)) {
1528 /*
1529 * We clear the PTE but do not flush so potentially
1530 * a remote CPU could still be writing to the page.
1531 * If the entry was previously clean then the
1532 * architecture must guarantee that a clear->dirty
1533 * transition on a cached TLB entry is written through
1534 * and traps if the PTE is unmapped.
1535 */
785373b4 1536 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1537
1538 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1539 } else {
785373b4 1540 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1541 }
72b252ae 1542
c7ab0d2f
KS
1543 /* Move the dirty bit to the page. Now the pte is gone. */
1544 if (pte_dirty(pteval))
1545 set_page_dirty(page);
1da177e4 1546
c7ab0d2f
KS
1547 /* Update high watermark before we lower rss */
1548 update_hiwater_rss(mm);
1da177e4 1549
c7ab0d2f 1550 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1551 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1552 if (PageHuge(page)) {
d8c6546b 1553 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1554 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1555 pvmw.pte, pteval,
1556 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1557 } else {
1558 dec_mm_counter(mm, mm_counter(page));
785373b4 1559 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1560 }
365e9c87 1561
bce73e48 1562 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1563 /*
1564 * The guest indicated that the page content is of no
1565 * interest anymore. Simply discard the pte, vmscan
1566 * will take care of the rest.
bce73e48
CB
1567 * A future reference will then fault in a new zero
1568 * page. When userfaultfd is active, we must not drop
1569 * this page though, as its main user (postcopy
1570 * migration) will not expect userfaults on already
1571 * copied pages.
c7ab0d2f 1572 */
eca56ff9 1573 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1574 /* We have to invalidate as we cleared the pte */
1575 mmu_notifier_invalidate_range(mm, address,
1576 address + PAGE_SIZE);
c7ab0d2f 1577 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1578 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1579 swp_entry_t entry;
1580 pte_t swp_pte;
ca827d55
KA
1581
1582 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1583 set_pte_at(mm, address, pvmw.pte, pteval);
1584 ret = false;
1585 page_vma_mapped_walk_done(&pvmw);
1586 break;
1587 }
1588
c7ab0d2f
KS
1589 /*
1590 * Store the pfn of the page in a special migration
1591 * pte. do_swap_page() will wait until the migration
1592 * pte is removed and then restart fault handling.
1593 */
1594 entry = make_migration_entry(subpage,
1595 pte_write(pteval));
1596 swp_pte = swp_entry_to_pte(entry);
1597 if (pte_soft_dirty(pteval))
1598 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1599 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1600 /*
1601 * No need to invalidate here it will synchronize on
1602 * against the special swap migration pte.
1603 */
c7ab0d2f
KS
1604 } else if (PageAnon(page)) {
1605 swp_entry_t entry = { .val = page_private(subpage) };
1606 pte_t swp_pte;
1607 /*
1608 * Store the swap location in the pte.
1609 * See handle_pte_fault() ...
1610 */
eb94a878
MK
1611 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1612 WARN_ON_ONCE(1);
83612a94 1613 ret = false;
369ea824 1614 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1615 mmu_notifier_invalidate_range(mm, address,
1616 address + PAGE_SIZE);
eb94a878
MK
1617 page_vma_mapped_walk_done(&pvmw);
1618 break;
1619 }
c7ab0d2f 1620
802a3a92
SL
1621 /* MADV_FREE page check */
1622 if (!PageSwapBacked(page)) {
1623 if (!PageDirty(page)) {
0f10851e
JG
1624 /* Invalidate as we cleared the pte */
1625 mmu_notifier_invalidate_range(mm,
1626 address, address + PAGE_SIZE);
802a3a92
SL
1627 dec_mm_counter(mm, MM_ANONPAGES);
1628 goto discard;
1629 }
1630
1631 /*
1632 * If the page was redirtied, it cannot be
1633 * discarded. Remap the page to page table.
1634 */
785373b4 1635 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1636 SetPageSwapBacked(page);
e4b82222 1637 ret = false;
802a3a92
SL
1638 page_vma_mapped_walk_done(&pvmw);
1639 break;
c7ab0d2f 1640 }
854e9ed0 1641
c7ab0d2f 1642 if (swap_duplicate(entry) < 0) {
785373b4 1643 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1644 ret = false;
c7ab0d2f
KS
1645 page_vma_mapped_walk_done(&pvmw);
1646 break;
1647 }
ca827d55
KA
1648 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1649 set_pte_at(mm, address, pvmw.pte, pteval);
1650 ret = false;
1651 page_vma_mapped_walk_done(&pvmw);
1652 break;
1653 }
c7ab0d2f
KS
1654 if (list_empty(&mm->mmlist)) {
1655 spin_lock(&mmlist_lock);
1656 if (list_empty(&mm->mmlist))
1657 list_add(&mm->mmlist, &init_mm.mmlist);
1658 spin_unlock(&mmlist_lock);
1659 }
854e9ed0 1660 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1661 inc_mm_counter(mm, MM_SWAPENTS);
1662 swp_pte = swp_entry_to_pte(entry);
1663 if (pte_soft_dirty(pteval))
1664 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1665 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1666 /* Invalidate as we cleared the pte */
1667 mmu_notifier_invalidate_range(mm, address,
1668 address + PAGE_SIZE);
1669 } else {
1670 /*
906f9cdf
HD
1671 * This is a locked file-backed page, thus it cannot
1672 * be removed from the page cache and replaced by a new
1673 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1674 * concurrent thread might update its page table to
1675 * point at new page while a device still is using this
1676 * page.
1677 *
ad56b738 1678 * See Documentation/vm/mmu_notifier.rst
0f10851e 1679 */
c7ab0d2f 1680 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1681 }
854e9ed0 1682discard:
0f10851e
JG
1683 /*
1684 * No need to call mmu_notifier_invalidate_range() it has be
1685 * done above for all cases requiring it to happen under page
1686 * table lock before mmu_notifier_invalidate_range_end()
1687 *
ad56b738 1688 * See Documentation/vm/mmu_notifier.rst
0f10851e 1689 */
c7ab0d2f
KS
1690 page_remove_rmap(subpage, PageHuge(page));
1691 put_page(page);
c7ab0d2f 1692 }
369ea824 1693
ac46d4f3 1694 mmu_notifier_invalidate_range_end(&range);
369ea824 1695
caed0f48 1696 return ret;
1da177e4
LT
1697}
1698
71e3aac0 1699bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1700{
1701 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1702
1703 if (!maybe_stack)
1704 return false;
1705
1706 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1707 VM_STACK_INCOMPLETE_SETUP)
1708 return true;
1709
1710 return false;
1711}
1712
52629506
JK
1713static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1714{
1715 return is_vma_temporary_stack(vma);
1716}
1717
2a52bcbc 1718static int page_mapcount_is_zero(struct page *page)
52629506 1719{
c7ab0d2f 1720 return !total_mapcount(page);
2a52bcbc 1721}
52629506 1722
1da177e4
LT
1723/**
1724 * try_to_unmap - try to remove all page table mappings to a page
1725 * @page: the page to get unmapped
14fa31b8 1726 * @flags: action and flags
1da177e4
LT
1727 *
1728 * Tries to remove all the page table entries which are mapping this
1729 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1730 *
666e5a40 1731 * If unmap is successful, return true. Otherwise, false.
1da177e4 1732 */
666e5a40 1733bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1734{
52629506
JK
1735 struct rmap_walk_control rwc = {
1736 .rmap_one = try_to_unmap_one,
802a3a92 1737 .arg = (void *)flags,
2a52bcbc 1738 .done = page_mapcount_is_zero,
52629506
JK
1739 .anon_lock = page_lock_anon_vma_read,
1740 };
1da177e4 1741
52629506
JK
1742 /*
1743 * During exec, a temporary VMA is setup and later moved.
1744 * The VMA is moved under the anon_vma lock but not the
1745 * page tables leading to a race where migration cannot
1746 * find the migration ptes. Rather than increasing the
1747 * locking requirements of exec(), migration skips
1748 * temporary VMAs until after exec() completes.
1749 */
b5ff8161
NH
1750 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1751 && !PageKsm(page) && PageAnon(page))
52629506
JK
1752 rwc.invalid_vma = invalid_migration_vma;
1753
2a52bcbc 1754 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1755 rmap_walk_locked(page, &rwc);
2a52bcbc 1756 else
33fc80e2 1757 rmap_walk(page, &rwc);
52629506 1758
666e5a40 1759 return !page_mapcount(page) ? true : false;
1da177e4 1760}
81b4082d 1761
2a52bcbc
KS
1762static int page_not_mapped(struct page *page)
1763{
1764 return !page_mapped(page);
1765};
1766
b291f000
NP
1767/**
1768 * try_to_munlock - try to munlock a page
1769 * @page: the page to be munlocked
1770 *
1771 * Called from munlock code. Checks all of the VMAs mapping the page
1772 * to make sure nobody else has this page mlocked. The page will be
1773 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1774 */
854e9ed0 1775
192d7232
MK
1776void try_to_munlock(struct page *page)
1777{
e8351ac9
JK
1778 struct rmap_walk_control rwc = {
1779 .rmap_one = try_to_unmap_one,
802a3a92 1780 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1781 .done = page_not_mapped,
e8351ac9
JK
1782 .anon_lock = page_lock_anon_vma_read,
1783
1784 };
1785
309381fe 1786 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1787 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1788
192d7232 1789 rmap_walk(page, &rwc);
b291f000 1790}
e9995ef9 1791
01d8b20d 1792void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1793{
01d8b20d 1794 struct anon_vma *root = anon_vma->root;
76545066 1795
624483f3 1796 anon_vma_free(anon_vma);
01d8b20d
PZ
1797 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1798 anon_vma_free(root);
76545066 1799}
76545066 1800
0dd1c7bb
JK
1801static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1802 struct rmap_walk_control *rwc)
faecd8dd
JK
1803{
1804 struct anon_vma *anon_vma;
1805
0dd1c7bb
JK
1806 if (rwc->anon_lock)
1807 return rwc->anon_lock(page);
1808
faecd8dd
JK
1809 /*
1810 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1811 * because that depends on page_mapped(); but not all its usages
1812 * are holding mmap_sem. Users without mmap_sem are required to
1813 * take a reference count to prevent the anon_vma disappearing
1814 */
1815 anon_vma = page_anon_vma(page);
1816 if (!anon_vma)
1817 return NULL;
1818
1819 anon_vma_lock_read(anon_vma);
1820 return anon_vma;
1821}
1822
e9995ef9 1823/*
e8351ac9
JK
1824 * rmap_walk_anon - do something to anonymous page using the object-based
1825 * rmap method
1826 * @page: the page to be handled
1827 * @rwc: control variable according to each walk type
1828 *
1829 * Find all the mappings of a page using the mapping pointer and the vma chains
1830 * contained in the anon_vma struct it points to.
1831 *
1832 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1833 * where the page was found will be held for write. So, we won't recheck
1834 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1835 * LOCKED.
e9995ef9 1836 */
1df631ae 1837static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1838 bool locked)
e9995ef9
HD
1839{
1840 struct anon_vma *anon_vma;
a8fa41ad 1841 pgoff_t pgoff_start, pgoff_end;
5beb4930 1842 struct anon_vma_chain *avc;
e9995ef9 1843
b9773199
KS
1844 if (locked) {
1845 anon_vma = page_anon_vma(page);
1846 /* anon_vma disappear under us? */
1847 VM_BUG_ON_PAGE(!anon_vma, page);
1848 } else {
1849 anon_vma = rmap_walk_anon_lock(page, rwc);
1850 }
e9995ef9 1851 if (!anon_vma)
1df631ae 1852 return;
faecd8dd 1853
a8fa41ad
KS
1854 pgoff_start = page_to_pgoff(page);
1855 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1856 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1857 pgoff_start, pgoff_end) {
5beb4930 1858 struct vm_area_struct *vma = avc->vma;
e9995ef9 1859 unsigned long address = vma_address(page, vma);
0dd1c7bb 1860
ad12695f
AA
1861 cond_resched();
1862
0dd1c7bb
JK
1863 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1864 continue;
1865
e4b82222 1866 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1867 break;
0dd1c7bb
JK
1868 if (rwc->done && rwc->done(page))
1869 break;
e9995ef9 1870 }
b9773199
KS
1871
1872 if (!locked)
1873 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1874}
1875
e8351ac9
JK
1876/*
1877 * rmap_walk_file - do something to file page using the object-based rmap method
1878 * @page: the page to be handled
1879 * @rwc: control variable according to each walk type
1880 *
1881 * Find all the mappings of a page using the mapping pointer and the vma chains
1882 * contained in the address_space struct it points to.
1883 *
1884 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1885 * where the page was found will be held for write. So, we won't recheck
1886 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1887 * LOCKED.
1888 */
1df631ae 1889static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1890 bool locked)
e9995ef9 1891{
b9773199 1892 struct address_space *mapping = page_mapping(page);
a8fa41ad 1893 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1894 struct vm_area_struct *vma;
e9995ef9 1895
9f32624b
JK
1896 /*
1897 * The page lock not only makes sure that page->mapping cannot
1898 * suddenly be NULLified by truncation, it makes sure that the
1899 * structure at mapping cannot be freed and reused yet,
c8c06efa 1900 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1901 */
81d1b09c 1902 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1903
e9995ef9 1904 if (!mapping)
1df631ae 1905 return;
3dec0ba0 1906
a8fa41ad
KS
1907 pgoff_start = page_to_pgoff(page);
1908 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1909 if (!locked)
1910 i_mmap_lock_read(mapping);
a8fa41ad
KS
1911 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1912 pgoff_start, pgoff_end) {
e9995ef9 1913 unsigned long address = vma_address(page, vma);
0dd1c7bb 1914
ad12695f
AA
1915 cond_resched();
1916
0dd1c7bb
JK
1917 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1918 continue;
1919
e4b82222 1920 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1921 goto done;
1922 if (rwc->done && rwc->done(page))
1923 goto done;
e9995ef9 1924 }
0dd1c7bb 1925
0dd1c7bb 1926done:
b9773199
KS
1927 if (!locked)
1928 i_mmap_unlock_read(mapping);
e9995ef9
HD
1929}
1930
1df631ae 1931void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1932{
e9995ef9 1933 if (unlikely(PageKsm(page)))
1df631ae 1934 rmap_walk_ksm(page, rwc);
e9995ef9 1935 else if (PageAnon(page))
1df631ae 1936 rmap_walk_anon(page, rwc, false);
b9773199 1937 else
1df631ae 1938 rmap_walk_file(page, rwc, false);
b9773199
KS
1939}
1940
1941/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1942void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1943{
1944 /* no ksm support for now */
1945 VM_BUG_ON_PAGE(PageKsm(page), page);
1946 if (PageAnon(page))
1df631ae 1947 rmap_walk_anon(page, rwc, true);
e9995ef9 1948 else
1df631ae 1949 rmap_walk_file(page, rwc, true);
e9995ef9 1950}
0fe6e20b 1951
e3390f67 1952#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 1953/*
451b9514 1954 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
1955 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1956 * and no lru code, because we handle hugepages differently from common pages.
1957 */
0fe6e20b
NH
1958void hugepage_add_anon_rmap(struct page *page,
1959 struct vm_area_struct *vma, unsigned long address)
1960{
1961 struct anon_vma *anon_vma = vma->anon_vma;
1962 int first;
a850ea30
NH
1963
1964 BUG_ON(!PageLocked(page));
0fe6e20b 1965 BUG_ON(!anon_vma);
5dbe0af4 1966 /* address might be in next vma when migration races vma_adjust */
53f9263b 1967 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 1968 if (first)
451b9514 1969 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
1970}
1971
1972void hugepage_add_new_anon_rmap(struct page *page,
1973 struct vm_area_struct *vma, unsigned long address)
1974{
1975 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1976 atomic_set(compound_mapcount_ptr(page), 0);
451b9514 1977 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 1978}
e3390f67 1979#endif /* CONFIG_HUGETLB_PAGE */