]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
oom: deprecate oom_adj tunable
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
5c341ee1
RR
135 /*
136 * This VMA had no anon_vma yet. This anon_vma is
137 * the root of any anon_vma tree that might form.
138 */
139 anon_vma->root = anon_vma;
1da177e4
LT
140 }
141
cba48b98 142 anon_vma_lock(anon_vma);
1da177e4
LT
143 /* page_table_lock to protect against threads */
144 spin_lock(&mm->page_table_lock);
145 if (likely(!vma->anon_vma)) {
146 vma->anon_vma = anon_vma;
5beb4930
RR
147 avc->anon_vma = anon_vma;
148 avc->vma = vma;
149 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 150 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 151 allocated = NULL;
31f2b0eb 152 avc = NULL;
1da177e4
LT
153 }
154 spin_unlock(&mm->page_table_lock);
cba48b98 155 anon_vma_unlock(anon_vma);
31f2b0eb
ON
156
157 if (unlikely(allocated))
1da177e4 158 anon_vma_free(allocated);
31f2b0eb 159 if (unlikely(avc))
5beb4930 160 anon_vma_chain_free(avc);
1da177e4
LT
161 }
162 return 0;
5beb4930
RR
163
164 out_enomem_free_avc:
165 anon_vma_chain_free(avc);
166 out_enomem:
167 return -ENOMEM;
1da177e4
LT
168}
169
5beb4930
RR
170static void anon_vma_chain_link(struct vm_area_struct *vma,
171 struct anon_vma_chain *avc,
172 struct anon_vma *anon_vma)
1da177e4 173{
5beb4930
RR
174 avc->vma = vma;
175 avc->anon_vma = anon_vma;
176 list_add(&avc->same_vma, &vma->anon_vma_chain);
177
cba48b98 178 anon_vma_lock(anon_vma);
5beb4930 179 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 180 anon_vma_unlock(anon_vma);
1da177e4
LT
181}
182
5beb4930
RR
183/*
184 * Attach the anon_vmas from src to dst.
185 * Returns 0 on success, -ENOMEM on failure.
186 */
187int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 188{
5beb4930
RR
189 struct anon_vma_chain *avc, *pavc;
190
646d87b4 191 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
192 avc = anon_vma_chain_alloc();
193 if (!avc)
194 goto enomem_failure;
195 anon_vma_chain_link(dst, avc, pavc->anon_vma);
196 }
197 return 0;
1da177e4 198
5beb4930
RR
199 enomem_failure:
200 unlink_anon_vmas(dst);
201 return -ENOMEM;
1da177e4
LT
202}
203
5beb4930
RR
204/*
205 * Attach vma to its own anon_vma, as well as to the anon_vmas that
206 * the corresponding VMA in the parent process is attached to.
207 * Returns 0 on success, non-zero on failure.
208 */
209int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 210{
5beb4930
RR
211 struct anon_vma_chain *avc;
212 struct anon_vma *anon_vma;
1da177e4 213
5beb4930
RR
214 /* Don't bother if the parent process has no anon_vma here. */
215 if (!pvma->anon_vma)
216 return 0;
217
218 /*
219 * First, attach the new VMA to the parent VMA's anon_vmas,
220 * so rmap can find non-COWed pages in child processes.
221 */
222 if (anon_vma_clone(vma, pvma))
223 return -ENOMEM;
224
225 /* Then add our own anon_vma. */
226 anon_vma = anon_vma_alloc();
227 if (!anon_vma)
228 goto out_error;
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto out_error_free_anon_vma;
5c341ee1
RR
232
233 /*
234 * The root anon_vma's spinlock is the lock actually used when we
235 * lock any of the anon_vmas in this anon_vma tree.
236 */
237 anon_vma->root = pvma->anon_vma->root;
76545066
RR
238 /*
239 * With KSM refcounts, an anon_vma can stay around longer than the
240 * process it belongs to. The root anon_vma needs to be pinned
241 * until this anon_vma is freed, because the lock lives in the root.
242 */
243 get_anon_vma(anon_vma->root);
5beb4930
RR
244 /* Mark this anon_vma as the one where our new (COWed) pages go. */
245 vma->anon_vma = anon_vma;
5c341ee1 246 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
247
248 return 0;
249
250 out_error_free_anon_vma:
251 anon_vma_free(anon_vma);
252 out_error:
4946d54c 253 unlink_anon_vmas(vma);
5beb4930 254 return -ENOMEM;
1da177e4
LT
255}
256
5beb4930 257static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 258{
5beb4930 259 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
260 int empty;
261
5beb4930 262 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
263 if (!anon_vma)
264 return;
265
cba48b98 266 anon_vma_lock(anon_vma);
5beb4930 267 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
268
269 /* We must garbage collect the anon_vma if it's empty */
7f60c214 270 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
cba48b98 271 anon_vma_unlock(anon_vma);
1da177e4 272
76545066
RR
273 if (empty) {
274 /* We no longer need the root anon_vma */
275 if (anon_vma->root != anon_vma)
276 drop_anon_vma(anon_vma->root);
1da177e4 277 anon_vma_free(anon_vma);
76545066 278 }
1da177e4
LT
279}
280
5beb4930
RR
281void unlink_anon_vmas(struct vm_area_struct *vma)
282{
283 struct anon_vma_chain *avc, *next;
284
5c341ee1
RR
285 /*
286 * Unlink each anon_vma chained to the VMA. This list is ordered
287 * from newest to oldest, ensuring the root anon_vma gets freed last.
288 */
5beb4930
RR
289 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
290 anon_vma_unlink(avc);
291 list_del(&avc->same_vma);
292 anon_vma_chain_free(avc);
293 }
294}
295
51cc5068 296static void anon_vma_ctor(void *data)
1da177e4 297{
a35afb83 298 struct anon_vma *anon_vma = data;
1da177e4 299
a35afb83 300 spin_lock_init(&anon_vma->lock);
7f60c214 301 anonvma_external_refcount_init(anon_vma);
a35afb83 302 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
303}
304
305void __init anon_vma_init(void)
306{
307 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 308 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 309 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
310}
311
312/*
313 * Getting a lock on a stable anon_vma from a page off the LRU is
314 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
315 */
10be22df 316struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 317{
34bbd704 318 struct anon_vma *anon_vma;
1da177e4
LT
319 unsigned long anon_mapping;
320
321 rcu_read_lock();
80e14822 322 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 323 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
324 goto out;
325 if (!page_mapped(page))
326 goto out;
327
328 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
cba48b98 329 anon_vma_lock(anon_vma);
34bbd704 330 return anon_vma;
1da177e4
LT
331out:
332 rcu_read_unlock();
34bbd704
ON
333 return NULL;
334}
335
10be22df 336void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 337{
cba48b98 338 anon_vma_unlock(anon_vma);
34bbd704 339 rcu_read_unlock();
1da177e4
LT
340}
341
342/*
3ad33b24
LS
343 * At what user virtual address is page expected in @vma?
344 * Returns virtual address or -EFAULT if page's index/offset is not
345 * within the range mapped the @vma.
1da177e4
LT
346 */
347static inline unsigned long
348vma_address(struct page *page, struct vm_area_struct *vma)
349{
350 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
351 unsigned long address;
352
353 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
354 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 355 /* page should be within @vma mapping range */
1da177e4
LT
356 return -EFAULT;
357 }
358 return address;
359}
360
361/*
bf89c8c8 362 * At what user virtual address is page expected in vma?
ab941e0f 363 * Caller should check the page is actually part of the vma.
1da177e4
LT
364 */
365unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
366{
21d0d443
AA
367 if (PageAnon(page)) {
368 if (vma->anon_vma->root != page_anon_vma(page)->root)
369 return -EFAULT;
370 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
371 if (!vma->vm_file ||
372 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
373 return -EFAULT;
374 } else
375 return -EFAULT;
376 return vma_address(page, vma);
377}
378
81b4082d
ND
379/*
380 * Check that @page is mapped at @address into @mm.
381 *
479db0bf
NP
382 * If @sync is false, page_check_address may perform a racy check to avoid
383 * the page table lock when the pte is not present (helpful when reclaiming
384 * highly shared pages).
385 *
b8072f09 386 * On success returns with pte mapped and locked.
81b4082d 387 */
ceffc078 388pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 389 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
390{
391 pgd_t *pgd;
392 pud_t *pud;
393 pmd_t *pmd;
394 pte_t *pte;
c0718806 395 spinlock_t *ptl;
81b4082d 396
81b4082d 397 pgd = pgd_offset(mm, address);
c0718806
HD
398 if (!pgd_present(*pgd))
399 return NULL;
400
401 pud = pud_offset(pgd, address);
402 if (!pud_present(*pud))
403 return NULL;
404
405 pmd = pmd_offset(pud, address);
406 if (!pmd_present(*pmd))
407 return NULL;
408
409 pte = pte_offset_map(pmd, address);
410 /* Make a quick check before getting the lock */
479db0bf 411 if (!sync && !pte_present(*pte)) {
c0718806
HD
412 pte_unmap(pte);
413 return NULL;
414 }
415
4c21e2f2 416 ptl = pte_lockptr(mm, pmd);
c0718806
HD
417 spin_lock(ptl);
418 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
419 *ptlp = ptl;
420 return pte;
81b4082d 421 }
c0718806
HD
422 pte_unmap_unlock(pte, ptl);
423 return NULL;
81b4082d
ND
424}
425
b291f000
NP
426/**
427 * page_mapped_in_vma - check whether a page is really mapped in a VMA
428 * @page: the page to test
429 * @vma: the VMA to test
430 *
431 * Returns 1 if the page is mapped into the page tables of the VMA, 0
432 * if the page is not mapped into the page tables of this VMA. Only
433 * valid for normal file or anonymous VMAs.
434 */
6a46079c 435int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
436{
437 unsigned long address;
438 pte_t *pte;
439 spinlock_t *ptl;
440
441 address = vma_address(page, vma);
442 if (address == -EFAULT) /* out of vma range */
443 return 0;
444 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
445 if (!pte) /* the page is not in this mm */
446 return 0;
447 pte_unmap_unlock(pte, ptl);
448
449 return 1;
450}
451
1da177e4
LT
452/*
453 * Subfunctions of page_referenced: page_referenced_one called
454 * repeatedly from either page_referenced_anon or page_referenced_file.
455 */
5ad64688
HD
456int page_referenced_one(struct page *page, struct vm_area_struct *vma,
457 unsigned long address, unsigned int *mapcount,
458 unsigned long *vm_flags)
1da177e4
LT
459{
460 struct mm_struct *mm = vma->vm_mm;
1da177e4 461 pte_t *pte;
c0718806 462 spinlock_t *ptl;
1da177e4
LT
463 int referenced = 0;
464
479db0bf 465 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
466 if (!pte)
467 goto out;
1da177e4 468
b291f000
NP
469 /*
470 * Don't want to elevate referenced for mlocked page that gets this far,
471 * in order that it progresses to try_to_unmap and is moved to the
472 * unevictable list.
473 */
5a9bbdcd 474 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 475 *mapcount = 1; /* break early from loop */
03ef83af 476 *vm_flags |= VM_LOCKED;
b291f000
NP
477 goto out_unmap;
478 }
479
4917e5d0
JW
480 if (ptep_clear_flush_young_notify(vma, address, pte)) {
481 /*
482 * Don't treat a reference through a sequentially read
483 * mapping as such. If the page has been used in
484 * another mapping, we will catch it; if this other
485 * mapping is already gone, the unmap path will have
486 * set PG_referenced or activated the page.
487 */
488 if (likely(!VM_SequentialReadHint(vma)))
489 referenced++;
490 }
1da177e4 491
c0718806
HD
492 /* Pretend the page is referenced if the task has the
493 swap token and is in the middle of a page fault. */
f7b7fd8f 494 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
495 rwsem_is_locked(&mm->mmap_sem))
496 referenced++;
497
b291f000 498out_unmap:
c0718806
HD
499 (*mapcount)--;
500 pte_unmap_unlock(pte, ptl);
273f047e 501
6fe6b7e3
WF
502 if (referenced)
503 *vm_flags |= vma->vm_flags;
273f047e 504out:
1da177e4
LT
505 return referenced;
506}
507
bed7161a 508static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
509 struct mem_cgroup *mem_cont,
510 unsigned long *vm_flags)
1da177e4
LT
511{
512 unsigned int mapcount;
513 struct anon_vma *anon_vma;
5beb4930 514 struct anon_vma_chain *avc;
1da177e4
LT
515 int referenced = 0;
516
517 anon_vma = page_lock_anon_vma(page);
518 if (!anon_vma)
519 return referenced;
520
521 mapcount = page_mapcount(page);
5beb4930
RR
522 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
523 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
524 unsigned long address = vma_address(page, vma);
525 if (address == -EFAULT)
526 continue;
bed7161a
BS
527 /*
528 * If we are reclaiming on behalf of a cgroup, skip
529 * counting on behalf of references from different
530 * cgroups
531 */
bd845e38 532 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 533 continue;
1cb1729b 534 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 535 &mapcount, vm_flags);
1da177e4
LT
536 if (!mapcount)
537 break;
538 }
34bbd704
ON
539
540 page_unlock_anon_vma(anon_vma);
1da177e4
LT
541 return referenced;
542}
543
544/**
545 * page_referenced_file - referenced check for object-based rmap
546 * @page: the page we're checking references on.
43d8eac4 547 * @mem_cont: target memory controller
6fe6b7e3 548 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
549 *
550 * For an object-based mapped page, find all the places it is mapped and
551 * check/clear the referenced flag. This is done by following the page->mapping
552 * pointer, then walking the chain of vmas it holds. It returns the number
553 * of references it found.
554 *
555 * This function is only called from page_referenced for object-based pages.
556 */
bed7161a 557static int page_referenced_file(struct page *page,
6fe6b7e3
WF
558 struct mem_cgroup *mem_cont,
559 unsigned long *vm_flags)
1da177e4
LT
560{
561 unsigned int mapcount;
562 struct address_space *mapping = page->mapping;
563 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
564 struct vm_area_struct *vma;
565 struct prio_tree_iter iter;
566 int referenced = 0;
567
568 /*
569 * The caller's checks on page->mapping and !PageAnon have made
570 * sure that this is a file page: the check for page->mapping
571 * excludes the case just before it gets set on an anon page.
572 */
573 BUG_ON(PageAnon(page));
574
575 /*
576 * The page lock not only makes sure that page->mapping cannot
577 * suddenly be NULLified by truncation, it makes sure that the
578 * structure at mapping cannot be freed and reused yet,
579 * so we can safely take mapping->i_mmap_lock.
580 */
581 BUG_ON(!PageLocked(page));
582
583 spin_lock(&mapping->i_mmap_lock);
584
585 /*
586 * i_mmap_lock does not stabilize mapcount at all, but mapcount
587 * is more likely to be accurate if we note it after spinning.
588 */
589 mapcount = page_mapcount(page);
590
591 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
592 unsigned long address = vma_address(page, vma);
593 if (address == -EFAULT)
594 continue;
bed7161a
BS
595 /*
596 * If we are reclaiming on behalf of a cgroup, skip
597 * counting on behalf of references from different
598 * cgroups
599 */
bd845e38 600 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 601 continue;
1cb1729b 602 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 603 &mapcount, vm_flags);
1da177e4
LT
604 if (!mapcount)
605 break;
606 }
607
608 spin_unlock(&mapping->i_mmap_lock);
609 return referenced;
610}
611
612/**
613 * page_referenced - test if the page was referenced
614 * @page: the page to test
615 * @is_locked: caller holds lock on the page
43d8eac4 616 * @mem_cont: target memory controller
6fe6b7e3 617 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
618 *
619 * Quick test_and_clear_referenced for all mappings to a page,
620 * returns the number of ptes which referenced the page.
621 */
6fe6b7e3
WF
622int page_referenced(struct page *page,
623 int is_locked,
624 struct mem_cgroup *mem_cont,
625 unsigned long *vm_flags)
1da177e4
LT
626{
627 int referenced = 0;
5ad64688 628 int we_locked = 0;
1da177e4 629
6fe6b7e3 630 *vm_flags = 0;
3ca7b3c5 631 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
632 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
633 we_locked = trylock_page(page);
634 if (!we_locked) {
635 referenced++;
636 goto out;
637 }
638 }
639 if (unlikely(PageKsm(page)))
640 referenced += page_referenced_ksm(page, mem_cont,
641 vm_flags);
642 else if (PageAnon(page))
6fe6b7e3
WF
643 referenced += page_referenced_anon(page, mem_cont,
644 vm_flags);
5ad64688 645 else if (page->mapping)
6fe6b7e3
WF
646 referenced += page_referenced_file(page, mem_cont,
647 vm_flags);
5ad64688 648 if (we_locked)
1da177e4 649 unlock_page(page);
1da177e4 650 }
5ad64688 651out:
5b7baf05
CB
652 if (page_test_and_clear_young(page))
653 referenced++;
654
1da177e4
LT
655 return referenced;
656}
657
1cb1729b
HD
658static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
659 unsigned long address)
d08b3851
PZ
660{
661 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 662 pte_t *pte;
d08b3851
PZ
663 spinlock_t *ptl;
664 int ret = 0;
665
479db0bf 666 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
667 if (!pte)
668 goto out;
669
c2fda5fe
PZ
670 if (pte_dirty(*pte) || pte_write(*pte)) {
671 pte_t entry;
d08b3851 672
c2fda5fe 673 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 674 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
675 entry = pte_wrprotect(entry);
676 entry = pte_mkclean(entry);
d6e88e67 677 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
678 ret = 1;
679 }
d08b3851 680
d08b3851
PZ
681 pte_unmap_unlock(pte, ptl);
682out:
683 return ret;
684}
685
686static int page_mkclean_file(struct address_space *mapping, struct page *page)
687{
688 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
689 struct vm_area_struct *vma;
690 struct prio_tree_iter iter;
691 int ret = 0;
692
693 BUG_ON(PageAnon(page));
694
695 spin_lock(&mapping->i_mmap_lock);
696 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
697 if (vma->vm_flags & VM_SHARED) {
698 unsigned long address = vma_address(page, vma);
699 if (address == -EFAULT)
700 continue;
701 ret += page_mkclean_one(page, vma, address);
702 }
d08b3851
PZ
703 }
704 spin_unlock(&mapping->i_mmap_lock);
705 return ret;
706}
707
708int page_mkclean(struct page *page)
709{
710 int ret = 0;
711
712 BUG_ON(!PageLocked(page));
713
714 if (page_mapped(page)) {
715 struct address_space *mapping = page_mapping(page);
ce7e9fae 716 if (mapping) {
d08b3851 717 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
718 if (page_test_dirty(page)) {
719 page_clear_dirty(page);
720 ret = 1;
721 }
6c210482 722 }
d08b3851
PZ
723 }
724
725 return ret;
726}
60b59bea 727EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 728
c44b6743
RR
729/**
730 * page_move_anon_rmap - move a page to our anon_vma
731 * @page: the page to move to our anon_vma
732 * @vma: the vma the page belongs to
733 * @address: the user virtual address mapped
734 *
735 * When a page belongs exclusively to one process after a COW event,
736 * that page can be moved into the anon_vma that belongs to just that
737 * process, so the rmap code will not search the parent or sibling
738 * processes.
739 */
740void page_move_anon_rmap(struct page *page,
741 struct vm_area_struct *vma, unsigned long address)
742{
743 struct anon_vma *anon_vma = vma->anon_vma;
744
745 VM_BUG_ON(!PageLocked(page));
746 VM_BUG_ON(!anon_vma);
747 VM_BUG_ON(page->index != linear_page_index(vma, address));
748
749 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
750 page->mapping = (struct address_space *) anon_vma;
751}
752
9617d95e 753/**
43d8eac4 754 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
755 * @page: the page to add the mapping to
756 * @vma: the vm area in which the mapping is added
757 * @address: the user virtual address mapped
e8a03feb 758 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
759 */
760static void __page_set_anon_rmap(struct page *page,
e8a03feb 761 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 762{
e8a03feb 763 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 764
e8a03feb 765 BUG_ON(!anon_vma);
ea90002b
LT
766
767 /*
e8a03feb
RR
768 * If the page isn't exclusively mapped into this vma,
769 * we must use the _oldest_ possible anon_vma for the
770 * page mapping!
ea90002b 771 */
e8a03feb 772 if (!exclusive) {
288468c3
AA
773 if (PageAnon(page))
774 return;
775 anon_vma = anon_vma->root;
776 } else {
777 /*
778 * In this case, swapped-out-but-not-discarded swap-cache
779 * is remapped. So, no need to update page->mapping here.
780 * We convice anon_vma poitned by page->mapping is not obsolete
781 * because vma->anon_vma is necessary to be a family of it.
782 */
783 if (PageAnon(page))
784 return;
e8a03feb 785 }
9617d95e 786
9617d95e
NP
787 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
788 page->mapping = (struct address_space *) anon_vma;
9617d95e 789 page->index = linear_page_index(vma, address);
9617d95e
NP
790}
791
c97a9e10 792/**
43d8eac4 793 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
794 * @page: the page to add the mapping to
795 * @vma: the vm area in which the mapping is added
796 * @address: the user virtual address mapped
797 */
798static void __page_check_anon_rmap(struct page *page,
799 struct vm_area_struct *vma, unsigned long address)
800{
801#ifdef CONFIG_DEBUG_VM
802 /*
803 * The page's anon-rmap details (mapping and index) are guaranteed to
804 * be set up correctly at this point.
805 *
806 * We have exclusion against page_add_anon_rmap because the caller
807 * always holds the page locked, except if called from page_dup_rmap,
808 * in which case the page is already known to be setup.
809 *
810 * We have exclusion against page_add_new_anon_rmap because those pages
811 * are initially only visible via the pagetables, and the pte is locked
812 * over the call to page_add_new_anon_rmap.
813 */
44ab57a0 814 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
815 BUG_ON(page->index != linear_page_index(vma, address));
816#endif
817}
818
1da177e4
LT
819/**
820 * page_add_anon_rmap - add pte mapping to an anonymous page
821 * @page: the page to add the mapping to
822 * @vma: the vm area in which the mapping is added
823 * @address: the user virtual address mapped
824 *
5ad64688 825 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
826 * the anon_vma case: to serialize mapping,index checking after setting,
827 * and to ensure that PageAnon is not being upgraded racily to PageKsm
828 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
829 */
830void page_add_anon_rmap(struct page *page,
831 struct vm_area_struct *vma, unsigned long address)
832{
5ad64688
HD
833 int first = atomic_inc_and_test(&page->_mapcount);
834 if (first)
835 __inc_zone_page_state(page, NR_ANON_PAGES);
836 if (unlikely(PageKsm(page)))
837 return;
838
c97a9e10
NP
839 VM_BUG_ON(!PageLocked(page));
840 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 841 if (first)
e8a03feb 842 __page_set_anon_rmap(page, vma, address, 0);
69029cd5 843 else
c97a9e10 844 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
845}
846
43d8eac4 847/**
9617d95e
NP
848 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
849 * @page: the page to add the mapping to
850 * @vma: the vm area in which the mapping is added
851 * @address: the user virtual address mapped
852 *
853 * Same as page_add_anon_rmap but must only be called on *new* pages.
854 * This means the inc-and-test can be bypassed.
c97a9e10 855 * Page does not have to be locked.
9617d95e
NP
856 */
857void page_add_new_anon_rmap(struct page *page,
858 struct vm_area_struct *vma, unsigned long address)
859{
b5934c53 860 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
861 SetPageSwapBacked(page);
862 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 863 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 864 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 865 if (page_evictable(page, vma))
cbf84b7a 866 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
867 else
868 add_page_to_unevictable_list(page);
9617d95e
NP
869}
870
1da177e4
LT
871/**
872 * page_add_file_rmap - add pte mapping to a file page
873 * @page: the page to add the mapping to
874 *
b8072f09 875 * The caller needs to hold the pte lock.
1da177e4
LT
876 */
877void page_add_file_rmap(struct page *page)
878{
d69b042f 879 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 880 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 881 mem_cgroup_update_file_mapped(page, 1);
d69b042f 882 }
1da177e4
LT
883}
884
885/**
886 * page_remove_rmap - take down pte mapping from a page
887 * @page: page to remove mapping from
888 *
b8072f09 889 * The caller needs to hold the pte lock.
1da177e4 890 */
edc315fd 891void page_remove_rmap(struct page *page)
1da177e4 892{
b904dcfe
KM
893 /* page still mapped by someone else? */
894 if (!atomic_add_negative(-1, &page->_mapcount))
895 return;
896
897 /*
898 * Now that the last pte has gone, s390 must transfer dirty
899 * flag from storage key to struct page. We can usually skip
900 * this if the page is anon, so about to be freed; but perhaps
901 * not if it's in swapcache - there might be another pte slot
902 * containing the swap entry, but page not yet written to swap.
903 */
904 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
905 page_clear_dirty(page);
906 set_page_dirty(page);
1da177e4 907 }
b904dcfe
KM
908 if (PageAnon(page)) {
909 mem_cgroup_uncharge_page(page);
910 __dec_zone_page_state(page, NR_ANON_PAGES);
911 } else {
912 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 913 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 914 }
b904dcfe
KM
915 /*
916 * It would be tidy to reset the PageAnon mapping here,
917 * but that might overwrite a racing page_add_anon_rmap
918 * which increments mapcount after us but sets mapping
919 * before us: so leave the reset to free_hot_cold_page,
920 * and remember that it's only reliable while mapped.
921 * Leaving it set also helps swapoff to reinstate ptes
922 * faster for those pages still in swapcache.
923 */
1da177e4
LT
924}
925
926/*
927 * Subfunctions of try_to_unmap: try_to_unmap_one called
928 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
929 */
5ad64688
HD
930int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
931 unsigned long address, enum ttu_flags flags)
1da177e4
LT
932{
933 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
934 pte_t *pte;
935 pte_t pteval;
c0718806 936 spinlock_t *ptl;
1da177e4
LT
937 int ret = SWAP_AGAIN;
938
479db0bf 939 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 940 if (!pte)
81b4082d 941 goto out;
1da177e4
LT
942
943 /*
944 * If the page is mlock()d, we cannot swap it out.
945 * If it's recently referenced (perhaps page_referenced
946 * skipped over this mm) then we should reactivate it.
947 */
14fa31b8 948 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
949 if (vma->vm_flags & VM_LOCKED)
950 goto out_mlock;
951
af8e3354 952 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 953 goto out_unmap;
14fa31b8
AK
954 }
955 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
956 if (ptep_clear_flush_young_notify(vma, address, pte)) {
957 ret = SWAP_FAIL;
958 goto out_unmap;
959 }
960 }
1da177e4 961
1da177e4
LT
962 /* Nuke the page table entry. */
963 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 964 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
965
966 /* Move the dirty bit to the physical page now the pte is gone. */
967 if (pte_dirty(pteval))
968 set_page_dirty(page);
969
365e9c87
HD
970 /* Update high watermark before we lower rss */
971 update_hiwater_rss(mm);
972
888b9f7c
AK
973 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
974 if (PageAnon(page))
d559db08 975 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 976 else
d559db08 977 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
978 set_pte_at(mm, address, pte,
979 swp_entry_to_pte(make_hwpoison_entry(page)));
980 } else if (PageAnon(page)) {
4c21e2f2 981 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
982
983 if (PageSwapCache(page)) {
984 /*
985 * Store the swap location in the pte.
986 * See handle_pte_fault() ...
987 */
570a335b
HD
988 if (swap_duplicate(entry) < 0) {
989 set_pte_at(mm, address, pte, pteval);
990 ret = SWAP_FAIL;
991 goto out_unmap;
992 }
0697212a
CL
993 if (list_empty(&mm->mmlist)) {
994 spin_lock(&mmlist_lock);
995 if (list_empty(&mm->mmlist))
996 list_add(&mm->mmlist, &init_mm.mmlist);
997 spin_unlock(&mmlist_lock);
998 }
d559db08 999 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1000 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1001 } else if (PAGE_MIGRATION) {
0697212a
CL
1002 /*
1003 * Store the pfn of the page in a special migration
1004 * pte. do_swap_page() will wait until the migration
1005 * pte is removed and then restart fault handling.
1006 */
14fa31b8 1007 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1008 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1009 }
1010 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1011 BUG_ON(pte_file(*pte));
14fa31b8 1012 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1013 /* Establish migration entry for a file page */
1014 swp_entry_t entry;
1015 entry = make_migration_entry(page, pte_write(pteval));
1016 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1017 } else
d559db08 1018 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1019
edc315fd 1020 page_remove_rmap(page);
1da177e4
LT
1021 page_cache_release(page);
1022
1023out_unmap:
c0718806 1024 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1025out:
1026 return ret;
53f79acb 1027
caed0f48
KM
1028out_mlock:
1029 pte_unmap_unlock(pte, ptl);
1030
1031
1032 /*
1033 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1034 * unstable result and race. Plus, We can't wait here because
1035 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1036 * if trylock failed, the page remain in evictable lru and later
1037 * vmscan could retry to move the page to unevictable lru if the
1038 * page is actually mlocked.
1039 */
1040 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1041 if (vma->vm_flags & VM_LOCKED) {
1042 mlock_vma_page(page);
1043 ret = SWAP_MLOCK;
53f79acb 1044 }
caed0f48 1045 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1046 }
1da177e4
LT
1047 return ret;
1048}
1049
1050/*
1051 * objrmap doesn't work for nonlinear VMAs because the assumption that
1052 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1053 * Consequently, given a particular page and its ->index, we cannot locate the
1054 * ptes which are mapping that page without an exhaustive linear search.
1055 *
1056 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1057 * maps the file to which the target page belongs. The ->vm_private_data field
1058 * holds the current cursor into that scan. Successive searches will circulate
1059 * around the vma's virtual address space.
1060 *
1061 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1062 * more scanning pressure is placed against them as well. Eventually pages
1063 * will become fully unmapped and are eligible for eviction.
1064 *
1065 * For very sparsely populated VMAs this is a little inefficient - chances are
1066 * there there won't be many ptes located within the scan cluster. In this case
1067 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1068 *
1069 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1070 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1071 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1072 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1073 */
1074#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1075#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1076
b291f000
NP
1077static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1078 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1079{
1080 struct mm_struct *mm = vma->vm_mm;
1081 pgd_t *pgd;
1082 pud_t *pud;
1083 pmd_t *pmd;
c0718806 1084 pte_t *pte;
1da177e4 1085 pte_t pteval;
c0718806 1086 spinlock_t *ptl;
1da177e4
LT
1087 struct page *page;
1088 unsigned long address;
1089 unsigned long end;
b291f000
NP
1090 int ret = SWAP_AGAIN;
1091 int locked_vma = 0;
1da177e4 1092
1da177e4
LT
1093 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1094 end = address + CLUSTER_SIZE;
1095 if (address < vma->vm_start)
1096 address = vma->vm_start;
1097 if (end > vma->vm_end)
1098 end = vma->vm_end;
1099
1100 pgd = pgd_offset(mm, address);
1101 if (!pgd_present(*pgd))
b291f000 1102 return ret;
1da177e4
LT
1103
1104 pud = pud_offset(pgd, address);
1105 if (!pud_present(*pud))
b291f000 1106 return ret;
1da177e4
LT
1107
1108 pmd = pmd_offset(pud, address);
1109 if (!pmd_present(*pmd))
b291f000
NP
1110 return ret;
1111
1112 /*
af8e3354 1113 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1114 * keep the sem while scanning the cluster for mlocking pages.
1115 */
af8e3354 1116 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1117 locked_vma = (vma->vm_flags & VM_LOCKED);
1118 if (!locked_vma)
1119 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1120 }
c0718806
HD
1121
1122 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1123
365e9c87
HD
1124 /* Update high watermark before we lower rss */
1125 update_hiwater_rss(mm);
1126
c0718806 1127 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1128 if (!pte_present(*pte))
1129 continue;
6aab341e
LT
1130 page = vm_normal_page(vma, address, *pte);
1131 BUG_ON(!page || PageAnon(page));
1da177e4 1132
b291f000
NP
1133 if (locked_vma) {
1134 mlock_vma_page(page); /* no-op if already mlocked */
1135 if (page == check_page)
1136 ret = SWAP_MLOCK;
1137 continue; /* don't unmap */
1138 }
1139
cddb8a5c 1140 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1141 continue;
1142
1143 /* Nuke the page table entry. */
eca35133 1144 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1145 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1146
1147 /* If nonlinear, store the file page offset in the pte. */
1148 if (page->index != linear_page_index(vma, address))
1149 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1150
1151 /* Move the dirty bit to the physical page now the pte is gone. */
1152 if (pte_dirty(pteval))
1153 set_page_dirty(page);
1154
edc315fd 1155 page_remove_rmap(page);
1da177e4 1156 page_cache_release(page);
d559db08 1157 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1158 (*mapcount)--;
1159 }
c0718806 1160 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1161 if (locked_vma)
1162 up_read(&vma->vm_mm->mmap_sem);
1163 return ret;
1da177e4
LT
1164}
1165
a8bef8ff
MG
1166static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1167{
1168 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1169
1170 if (!maybe_stack)
1171 return false;
1172
1173 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1174 VM_STACK_INCOMPLETE_SETUP)
1175 return true;
1176
1177 return false;
1178}
1179
b291f000
NP
1180/**
1181 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1182 * rmap method
1183 * @page: the page to unmap/unlock
8051be5e 1184 * @flags: action and flags
b291f000
NP
1185 *
1186 * Find all the mappings of a page using the mapping pointer and the vma chains
1187 * contained in the anon_vma struct it points to.
1188 *
1189 * This function is only called from try_to_unmap/try_to_munlock for
1190 * anonymous pages.
1191 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1192 * where the page was found will be held for write. So, we won't recheck
1193 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1194 * 'LOCKED.
1195 */
14fa31b8 1196static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1197{
1198 struct anon_vma *anon_vma;
5beb4930 1199 struct anon_vma_chain *avc;
1da177e4 1200 int ret = SWAP_AGAIN;
b291f000 1201
1da177e4
LT
1202 anon_vma = page_lock_anon_vma(page);
1203 if (!anon_vma)
1204 return ret;
1205
5beb4930
RR
1206 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1207 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1208 unsigned long address;
1209
1210 /*
1211 * During exec, a temporary VMA is setup and later moved.
1212 * The VMA is moved under the anon_vma lock but not the
1213 * page tables leading to a race where migration cannot
1214 * find the migration ptes. Rather than increasing the
1215 * locking requirements of exec(), migration skips
1216 * temporary VMAs until after exec() completes.
1217 */
1218 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1219 is_vma_temporary_stack(vma))
1220 continue;
1221
1222 address = vma_address(page, vma);
1cb1729b
HD
1223 if (address == -EFAULT)
1224 continue;
1225 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1226 if (ret != SWAP_AGAIN || !page_mapped(page))
1227 break;
1da177e4 1228 }
34bbd704
ON
1229
1230 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1231 return ret;
1232}
1233
1234/**
b291f000
NP
1235 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1236 * @page: the page to unmap/unlock
14fa31b8 1237 * @flags: action and flags
1da177e4
LT
1238 *
1239 * Find all the mappings of a page using the mapping pointer and the vma chains
1240 * contained in the address_space struct it points to.
1241 *
b291f000
NP
1242 * This function is only called from try_to_unmap/try_to_munlock for
1243 * object-based pages.
1244 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1245 * where the page was found will be held for write. So, we won't recheck
1246 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1247 * 'LOCKED.
1da177e4 1248 */
14fa31b8 1249static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1250{
1251 struct address_space *mapping = page->mapping;
1252 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1253 struct vm_area_struct *vma;
1254 struct prio_tree_iter iter;
1255 int ret = SWAP_AGAIN;
1256 unsigned long cursor;
1257 unsigned long max_nl_cursor = 0;
1258 unsigned long max_nl_size = 0;
1259 unsigned int mapcount;
1260
1261 spin_lock(&mapping->i_mmap_lock);
1262 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1263 unsigned long address = vma_address(page, vma);
1264 if (address == -EFAULT)
1265 continue;
1266 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1267 if (ret != SWAP_AGAIN || !page_mapped(page))
1268 goto out;
1da177e4
LT
1269 }
1270
1271 if (list_empty(&mapping->i_mmap_nonlinear))
1272 goto out;
1273
53f79acb
HD
1274 /*
1275 * We don't bother to try to find the munlocked page in nonlinears.
1276 * It's costly. Instead, later, page reclaim logic may call
1277 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1278 */
1279 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1280 goto out;
1281
1da177e4
LT
1282 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1283 shared.vm_set.list) {
1da177e4
LT
1284 cursor = (unsigned long) vma->vm_private_data;
1285 if (cursor > max_nl_cursor)
1286 max_nl_cursor = cursor;
1287 cursor = vma->vm_end - vma->vm_start;
1288 if (cursor > max_nl_size)
1289 max_nl_size = cursor;
1290 }
1291
b291f000 1292 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1293 ret = SWAP_FAIL;
1294 goto out;
1295 }
1296
1297 /*
1298 * We don't try to search for this page in the nonlinear vmas,
1299 * and page_referenced wouldn't have found it anyway. Instead
1300 * just walk the nonlinear vmas trying to age and unmap some.
1301 * The mapcount of the page we came in with is irrelevant,
1302 * but even so use it as a guide to how hard we should try?
1303 */
1304 mapcount = page_mapcount(page);
1305 if (!mapcount)
1306 goto out;
1307 cond_resched_lock(&mapping->i_mmap_lock);
1308
1309 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1310 if (max_nl_cursor == 0)
1311 max_nl_cursor = CLUSTER_SIZE;
1312
1313 do {
1314 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1315 shared.vm_set.list) {
1da177e4 1316 cursor = (unsigned long) vma->vm_private_data;
839b9685 1317 while ( cursor < max_nl_cursor &&
1da177e4 1318 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1319 if (try_to_unmap_cluster(cursor, &mapcount,
1320 vma, page) == SWAP_MLOCK)
1321 ret = SWAP_MLOCK;
1da177e4
LT
1322 cursor += CLUSTER_SIZE;
1323 vma->vm_private_data = (void *) cursor;
1324 if ((int)mapcount <= 0)
1325 goto out;
1326 }
1327 vma->vm_private_data = (void *) max_nl_cursor;
1328 }
1329 cond_resched_lock(&mapping->i_mmap_lock);
1330 max_nl_cursor += CLUSTER_SIZE;
1331 } while (max_nl_cursor <= max_nl_size);
1332
1333 /*
1334 * Don't loop forever (perhaps all the remaining pages are
1335 * in locked vmas). Reset cursor on all unreserved nonlinear
1336 * vmas, now forgetting on which ones it had fallen behind.
1337 */
101d2be7
HD
1338 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1339 vma->vm_private_data = NULL;
1da177e4
LT
1340out:
1341 spin_unlock(&mapping->i_mmap_lock);
1342 return ret;
1343}
1344
1345/**
1346 * try_to_unmap - try to remove all page table mappings to a page
1347 * @page: the page to get unmapped
14fa31b8 1348 * @flags: action and flags
1da177e4
LT
1349 *
1350 * Tries to remove all the page table entries which are mapping this
1351 * page, used in the pageout path. Caller must hold the page lock.
1352 * Return values are:
1353 *
1354 * SWAP_SUCCESS - we succeeded in removing all mappings
1355 * SWAP_AGAIN - we missed a mapping, try again later
1356 * SWAP_FAIL - the page is unswappable
b291f000 1357 * SWAP_MLOCK - page is mlocked.
1da177e4 1358 */
14fa31b8 1359int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1360{
1361 int ret;
1362
1da177e4
LT
1363 BUG_ON(!PageLocked(page));
1364
5ad64688
HD
1365 if (unlikely(PageKsm(page)))
1366 ret = try_to_unmap_ksm(page, flags);
1367 else if (PageAnon(page))
14fa31b8 1368 ret = try_to_unmap_anon(page, flags);
1da177e4 1369 else
14fa31b8 1370 ret = try_to_unmap_file(page, flags);
b291f000 1371 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1372 ret = SWAP_SUCCESS;
1373 return ret;
1374}
81b4082d 1375
b291f000
NP
1376/**
1377 * try_to_munlock - try to munlock a page
1378 * @page: the page to be munlocked
1379 *
1380 * Called from munlock code. Checks all of the VMAs mapping the page
1381 * to make sure nobody else has this page mlocked. The page will be
1382 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1383 *
1384 * Return values are:
1385 *
53f79acb 1386 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1387 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1388 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1389 * SWAP_MLOCK - page is now mlocked.
1390 */
1391int try_to_munlock(struct page *page)
1392{
1393 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1394
5ad64688
HD
1395 if (unlikely(PageKsm(page)))
1396 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1397 else if (PageAnon(page))
14fa31b8 1398 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1399 else
14fa31b8 1400 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1401}
e9995ef9 1402
76545066
RR
1403#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1404/*
1405 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1406 * if necessary. Be careful to do all the tests under the lock. Once
1407 * we know we are the last user, nobody else can get a reference and we
1408 * can do the freeing without the lock.
1409 */
1410void drop_anon_vma(struct anon_vma *anon_vma)
1411{
44ab57a0 1412 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
76545066
RR
1413 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1414 struct anon_vma *root = anon_vma->root;
1415 int empty = list_empty(&anon_vma->head);
1416 int last_root_user = 0;
1417 int root_empty = 0;
1418
1419 /*
1420 * The refcount on a non-root anon_vma got dropped. Drop
1421 * the refcount on the root and check if we need to free it.
1422 */
1423 if (empty && anon_vma != root) {
44ab57a0 1424 BUG_ON(atomic_read(&root->external_refcount) <= 0);
76545066
RR
1425 last_root_user = atomic_dec_and_test(&root->external_refcount);
1426 root_empty = list_empty(&root->head);
1427 }
1428 anon_vma_unlock(anon_vma);
1429
1430 if (empty) {
1431 anon_vma_free(anon_vma);
1432 if (root_empty && last_root_user)
1433 anon_vma_free(root);
1434 }
1435 }
1436}
1437#endif
1438
e9995ef9
HD
1439#ifdef CONFIG_MIGRATION
1440/*
1441 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1442 * Called by migrate.c to remove migration ptes, but might be used more later.
1443 */
1444static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1445 struct vm_area_struct *, unsigned long, void *), void *arg)
1446{
1447 struct anon_vma *anon_vma;
5beb4930 1448 struct anon_vma_chain *avc;
e9995ef9
HD
1449 int ret = SWAP_AGAIN;
1450
1451 /*
1452 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1453 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1454 * are holding mmap_sem. Users without mmap_sem are required to
1455 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1456 */
1457 anon_vma = page_anon_vma(page);
1458 if (!anon_vma)
1459 return ret;
cba48b98 1460 anon_vma_lock(anon_vma);
5beb4930
RR
1461 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1462 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1463 unsigned long address = vma_address(page, vma);
1464 if (address == -EFAULT)
1465 continue;
1466 ret = rmap_one(page, vma, address, arg);
1467 if (ret != SWAP_AGAIN)
1468 break;
1469 }
cba48b98 1470 anon_vma_unlock(anon_vma);
e9995ef9
HD
1471 return ret;
1472}
1473
1474static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1475 struct vm_area_struct *, unsigned long, void *), void *arg)
1476{
1477 struct address_space *mapping = page->mapping;
1478 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1479 struct vm_area_struct *vma;
1480 struct prio_tree_iter iter;
1481 int ret = SWAP_AGAIN;
1482
1483 if (!mapping)
1484 return ret;
1485 spin_lock(&mapping->i_mmap_lock);
1486 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1487 unsigned long address = vma_address(page, vma);
1488 if (address == -EFAULT)
1489 continue;
1490 ret = rmap_one(page, vma, address, arg);
1491 if (ret != SWAP_AGAIN)
1492 break;
1493 }
1494 /*
1495 * No nonlinear handling: being always shared, nonlinear vmas
1496 * never contain migration ptes. Decide what to do about this
1497 * limitation to linear when we need rmap_walk() on nonlinear.
1498 */
1499 spin_unlock(&mapping->i_mmap_lock);
1500 return ret;
1501}
1502
1503int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1504 struct vm_area_struct *, unsigned long, void *), void *arg)
1505{
1506 VM_BUG_ON(!PageLocked(page));
1507
1508 if (unlikely(PageKsm(page)))
1509 return rmap_walk_ksm(page, rmap_one, arg);
1510 else if (PageAnon(page))
1511 return rmap_walk_anon(page, rmap_one, arg);
1512 else
1513 return rmap_walk_file(page, rmap_one, arg);
1514}
1515#endif /* CONFIG_MIGRATION */