]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/rmap.c
ksm: let shared pages be swappable
[mirror_ubuntu-hirsute-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8
AB
64static struct kmem_cache *anon_vma_cachep;
65
66static inline struct anon_vma *anon_vma_alloc(void)
67{
68 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
69}
70
71static inline void anon_vma_free(struct anon_vma *anon_vma)
72{
73 kmem_cache_free(anon_vma_cachep, anon_vma);
74}
1da177e4 75
d9d332e0
LT
76/**
77 * anon_vma_prepare - attach an anon_vma to a memory region
78 * @vma: the memory region in question
79 *
80 * This makes sure the memory mapping described by 'vma' has
81 * an 'anon_vma' attached to it, so that we can associate the
82 * anonymous pages mapped into it with that anon_vma.
83 *
84 * The common case will be that we already have one, but if
85 * if not we either need to find an adjacent mapping that we
86 * can re-use the anon_vma from (very common when the only
87 * reason for splitting a vma has been mprotect()), or we
88 * allocate a new one.
89 *
90 * Anon-vma allocations are very subtle, because we may have
91 * optimistically looked up an anon_vma in page_lock_anon_vma()
92 * and that may actually touch the spinlock even in the newly
93 * allocated vma (it depends on RCU to make sure that the
94 * anon_vma isn't actually destroyed).
95 *
96 * As a result, we need to do proper anon_vma locking even
97 * for the new allocation. At the same time, we do not want
98 * to do any locking for the common case of already having
99 * an anon_vma.
100 *
101 * This must be called with the mmap_sem held for reading.
102 */
1da177e4
LT
103int anon_vma_prepare(struct vm_area_struct *vma)
104{
105 struct anon_vma *anon_vma = vma->anon_vma;
106
107 might_sleep();
108 if (unlikely(!anon_vma)) {
109 struct mm_struct *mm = vma->vm_mm;
d9d332e0 110 struct anon_vma *allocated;
1da177e4
LT
111
112 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
113 allocated = NULL;
114 if (!anon_vma) {
1da177e4
LT
115 anon_vma = anon_vma_alloc();
116 if (unlikely(!anon_vma))
117 return -ENOMEM;
118 allocated = anon_vma;
1da177e4 119 }
d9d332e0 120 spin_lock(&anon_vma->lock);
1da177e4
LT
121
122 /* page_table_lock to protect against threads */
123 spin_lock(&mm->page_table_lock);
124 if (likely(!vma->anon_vma)) {
125 vma->anon_vma = anon_vma;
0697212a 126 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
127 allocated = NULL;
128 }
129 spin_unlock(&mm->page_table_lock);
130
d9d332e0 131 spin_unlock(&anon_vma->lock);
1da177e4
LT
132 if (unlikely(allocated))
133 anon_vma_free(allocated);
134 }
135 return 0;
136}
137
138void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
139{
140 BUG_ON(vma->anon_vma != next->anon_vma);
141 list_del(&next->anon_vma_node);
142}
143
144void __anon_vma_link(struct vm_area_struct *vma)
145{
146 struct anon_vma *anon_vma = vma->anon_vma;
147
30acbaba 148 if (anon_vma)
0697212a 149 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
150}
151
152void anon_vma_link(struct vm_area_struct *vma)
153{
154 struct anon_vma *anon_vma = vma->anon_vma;
155
156 if (anon_vma) {
157 spin_lock(&anon_vma->lock);
0697212a 158 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
159 spin_unlock(&anon_vma->lock);
160 }
161}
162
163void anon_vma_unlink(struct vm_area_struct *vma)
164{
165 struct anon_vma *anon_vma = vma->anon_vma;
166 int empty;
167
168 if (!anon_vma)
169 return;
170
171 spin_lock(&anon_vma->lock);
1da177e4
LT
172 list_del(&vma->anon_vma_node);
173
174 /* We must garbage collect the anon_vma if it's empty */
175 empty = list_empty(&anon_vma->head);
176 spin_unlock(&anon_vma->lock);
177
178 if (empty)
179 anon_vma_free(anon_vma);
180}
181
51cc5068 182static void anon_vma_ctor(void *data)
1da177e4 183{
a35afb83 184 struct anon_vma *anon_vma = data;
1da177e4 185
a35afb83
CL
186 spin_lock_init(&anon_vma->lock);
187 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
188}
189
190void __init anon_vma_init(void)
191{
192 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 193 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
194}
195
196/*
197 * Getting a lock on a stable anon_vma from a page off the LRU is
198 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
199 */
10be22df 200struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 201{
34bbd704 202 struct anon_vma *anon_vma;
1da177e4
LT
203 unsigned long anon_mapping;
204
205 rcu_read_lock();
206 anon_mapping = (unsigned long) page->mapping;
3ca7b3c5 207 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
208 goto out;
209 if (!page_mapped(page))
210 goto out;
211
212 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
213 spin_lock(&anon_vma->lock);
34bbd704 214 return anon_vma;
1da177e4
LT
215out:
216 rcu_read_unlock();
34bbd704
ON
217 return NULL;
218}
219
10be22df 220void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
221{
222 spin_unlock(&anon_vma->lock);
223 rcu_read_unlock();
1da177e4
LT
224}
225
226/*
3ad33b24
LS
227 * At what user virtual address is page expected in @vma?
228 * Returns virtual address or -EFAULT if page's index/offset is not
229 * within the range mapped the @vma.
1da177e4
LT
230 */
231static inline unsigned long
232vma_address(struct page *page, struct vm_area_struct *vma)
233{
234 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
235 unsigned long address;
236
237 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
238 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 239 /* page should be within @vma mapping range */
1da177e4
LT
240 return -EFAULT;
241 }
242 return address;
243}
244
245/*
bf89c8c8
HS
246 * At what user virtual address is page expected in vma?
247 * checking that the page matches the vma.
1da177e4
LT
248 */
249unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
250{
251 if (PageAnon(page)) {
3ca7b3c5 252 if (vma->anon_vma != page_anon_vma(page))
1da177e4
LT
253 return -EFAULT;
254 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
255 if (!vma->vm_file ||
256 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
257 return -EFAULT;
258 } else
259 return -EFAULT;
260 return vma_address(page, vma);
261}
262
81b4082d
ND
263/*
264 * Check that @page is mapped at @address into @mm.
265 *
479db0bf
NP
266 * If @sync is false, page_check_address may perform a racy check to avoid
267 * the page table lock when the pte is not present (helpful when reclaiming
268 * highly shared pages).
269 *
b8072f09 270 * On success returns with pte mapped and locked.
81b4082d 271 */
ceffc078 272pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 273 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
274{
275 pgd_t *pgd;
276 pud_t *pud;
277 pmd_t *pmd;
278 pte_t *pte;
c0718806 279 spinlock_t *ptl;
81b4082d 280
81b4082d 281 pgd = pgd_offset(mm, address);
c0718806
HD
282 if (!pgd_present(*pgd))
283 return NULL;
284
285 pud = pud_offset(pgd, address);
286 if (!pud_present(*pud))
287 return NULL;
288
289 pmd = pmd_offset(pud, address);
290 if (!pmd_present(*pmd))
291 return NULL;
292
293 pte = pte_offset_map(pmd, address);
294 /* Make a quick check before getting the lock */
479db0bf 295 if (!sync && !pte_present(*pte)) {
c0718806
HD
296 pte_unmap(pte);
297 return NULL;
298 }
299
4c21e2f2 300 ptl = pte_lockptr(mm, pmd);
c0718806
HD
301 spin_lock(ptl);
302 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
303 *ptlp = ptl;
304 return pte;
81b4082d 305 }
c0718806
HD
306 pte_unmap_unlock(pte, ptl);
307 return NULL;
81b4082d
ND
308}
309
b291f000
NP
310/**
311 * page_mapped_in_vma - check whether a page is really mapped in a VMA
312 * @page: the page to test
313 * @vma: the VMA to test
314 *
315 * Returns 1 if the page is mapped into the page tables of the VMA, 0
316 * if the page is not mapped into the page tables of this VMA. Only
317 * valid for normal file or anonymous VMAs.
318 */
6a46079c 319int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
320{
321 unsigned long address;
322 pte_t *pte;
323 spinlock_t *ptl;
324
325 address = vma_address(page, vma);
326 if (address == -EFAULT) /* out of vma range */
327 return 0;
328 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
329 if (!pte) /* the page is not in this mm */
330 return 0;
331 pte_unmap_unlock(pte, ptl);
332
333 return 1;
334}
335
1da177e4
LT
336/*
337 * Subfunctions of page_referenced: page_referenced_one called
338 * repeatedly from either page_referenced_anon or page_referenced_file.
339 */
5ad64688
HD
340int page_referenced_one(struct page *page, struct vm_area_struct *vma,
341 unsigned long address, unsigned int *mapcount,
342 unsigned long *vm_flags)
1da177e4
LT
343{
344 struct mm_struct *mm = vma->vm_mm;
1da177e4 345 pte_t *pte;
c0718806 346 spinlock_t *ptl;
1da177e4
LT
347 int referenced = 0;
348
479db0bf 349 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
350 if (!pte)
351 goto out;
1da177e4 352
b291f000
NP
353 /*
354 * Don't want to elevate referenced for mlocked page that gets this far,
355 * in order that it progresses to try_to_unmap and is moved to the
356 * unevictable list.
357 */
5a9bbdcd 358 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 359 *mapcount = 1; /* break early from loop */
03ef83af 360 *vm_flags |= VM_LOCKED;
b291f000
NP
361 goto out_unmap;
362 }
363
4917e5d0
JW
364 if (ptep_clear_flush_young_notify(vma, address, pte)) {
365 /*
366 * Don't treat a reference through a sequentially read
367 * mapping as such. If the page has been used in
368 * another mapping, we will catch it; if this other
369 * mapping is already gone, the unmap path will have
370 * set PG_referenced or activated the page.
371 */
372 if (likely(!VM_SequentialReadHint(vma)))
373 referenced++;
374 }
1da177e4 375
c0718806
HD
376 /* Pretend the page is referenced if the task has the
377 swap token and is in the middle of a page fault. */
f7b7fd8f 378 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
379 rwsem_is_locked(&mm->mmap_sem))
380 referenced++;
381
b291f000 382out_unmap:
c0718806
HD
383 (*mapcount)--;
384 pte_unmap_unlock(pte, ptl);
273f047e 385
6fe6b7e3
WF
386 if (referenced)
387 *vm_flags |= vma->vm_flags;
273f047e 388out:
1da177e4
LT
389 return referenced;
390}
391
bed7161a 392static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
393 struct mem_cgroup *mem_cont,
394 unsigned long *vm_flags)
1da177e4
LT
395{
396 unsigned int mapcount;
397 struct anon_vma *anon_vma;
398 struct vm_area_struct *vma;
399 int referenced = 0;
400
401 anon_vma = page_lock_anon_vma(page);
402 if (!anon_vma)
403 return referenced;
404
405 mapcount = page_mapcount(page);
406 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1cb1729b
HD
407 unsigned long address = vma_address(page, vma);
408 if (address == -EFAULT)
409 continue;
bed7161a
BS
410 /*
411 * If we are reclaiming on behalf of a cgroup, skip
412 * counting on behalf of references from different
413 * cgroups
414 */
bd845e38 415 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 416 continue;
1cb1729b 417 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 418 &mapcount, vm_flags);
1da177e4
LT
419 if (!mapcount)
420 break;
421 }
34bbd704
ON
422
423 page_unlock_anon_vma(anon_vma);
1da177e4
LT
424 return referenced;
425}
426
427/**
428 * page_referenced_file - referenced check for object-based rmap
429 * @page: the page we're checking references on.
43d8eac4 430 * @mem_cont: target memory controller
6fe6b7e3 431 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
432 *
433 * For an object-based mapped page, find all the places it is mapped and
434 * check/clear the referenced flag. This is done by following the page->mapping
435 * pointer, then walking the chain of vmas it holds. It returns the number
436 * of references it found.
437 *
438 * This function is only called from page_referenced for object-based pages.
439 */
bed7161a 440static int page_referenced_file(struct page *page,
6fe6b7e3
WF
441 struct mem_cgroup *mem_cont,
442 unsigned long *vm_flags)
1da177e4
LT
443{
444 unsigned int mapcount;
445 struct address_space *mapping = page->mapping;
446 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
447 struct vm_area_struct *vma;
448 struct prio_tree_iter iter;
449 int referenced = 0;
450
451 /*
452 * The caller's checks on page->mapping and !PageAnon have made
453 * sure that this is a file page: the check for page->mapping
454 * excludes the case just before it gets set on an anon page.
455 */
456 BUG_ON(PageAnon(page));
457
458 /*
459 * The page lock not only makes sure that page->mapping cannot
460 * suddenly be NULLified by truncation, it makes sure that the
461 * structure at mapping cannot be freed and reused yet,
462 * so we can safely take mapping->i_mmap_lock.
463 */
464 BUG_ON(!PageLocked(page));
465
466 spin_lock(&mapping->i_mmap_lock);
467
468 /*
469 * i_mmap_lock does not stabilize mapcount at all, but mapcount
470 * is more likely to be accurate if we note it after spinning.
471 */
472 mapcount = page_mapcount(page);
473
474 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
475 unsigned long address = vma_address(page, vma);
476 if (address == -EFAULT)
477 continue;
bed7161a
BS
478 /*
479 * If we are reclaiming on behalf of a cgroup, skip
480 * counting on behalf of references from different
481 * cgroups
482 */
bd845e38 483 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 484 continue;
1cb1729b 485 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 486 &mapcount, vm_flags);
1da177e4
LT
487 if (!mapcount)
488 break;
489 }
490
491 spin_unlock(&mapping->i_mmap_lock);
492 return referenced;
493}
494
495/**
496 * page_referenced - test if the page was referenced
497 * @page: the page to test
498 * @is_locked: caller holds lock on the page
43d8eac4 499 * @mem_cont: target memory controller
6fe6b7e3 500 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
501 *
502 * Quick test_and_clear_referenced for all mappings to a page,
503 * returns the number of ptes which referenced the page.
504 */
6fe6b7e3
WF
505int page_referenced(struct page *page,
506 int is_locked,
507 struct mem_cgroup *mem_cont,
508 unsigned long *vm_flags)
1da177e4
LT
509{
510 int referenced = 0;
5ad64688 511 int we_locked = 0;
1da177e4 512
1da177e4
LT
513 if (TestClearPageReferenced(page))
514 referenced++;
515
6fe6b7e3 516 *vm_flags = 0;
3ca7b3c5 517 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
518 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
519 we_locked = trylock_page(page);
520 if (!we_locked) {
521 referenced++;
522 goto out;
523 }
524 }
525 if (unlikely(PageKsm(page)))
526 referenced += page_referenced_ksm(page, mem_cont,
527 vm_flags);
528 else if (PageAnon(page))
6fe6b7e3
WF
529 referenced += page_referenced_anon(page, mem_cont,
530 vm_flags);
5ad64688 531 else if (page->mapping)
6fe6b7e3
WF
532 referenced += page_referenced_file(page, mem_cont,
533 vm_flags);
5ad64688 534 if (we_locked)
1da177e4 535 unlock_page(page);
1da177e4 536 }
5ad64688 537out:
5b7baf05
CB
538 if (page_test_and_clear_young(page))
539 referenced++;
540
1da177e4
LT
541 return referenced;
542}
543
1cb1729b
HD
544static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
545 unsigned long address)
d08b3851
PZ
546{
547 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 548 pte_t *pte;
d08b3851
PZ
549 spinlock_t *ptl;
550 int ret = 0;
551
479db0bf 552 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
553 if (!pte)
554 goto out;
555
c2fda5fe
PZ
556 if (pte_dirty(*pte) || pte_write(*pte)) {
557 pte_t entry;
d08b3851 558
c2fda5fe 559 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 560 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
561 entry = pte_wrprotect(entry);
562 entry = pte_mkclean(entry);
d6e88e67 563 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
564 ret = 1;
565 }
d08b3851 566
d08b3851
PZ
567 pte_unmap_unlock(pte, ptl);
568out:
569 return ret;
570}
571
572static int page_mkclean_file(struct address_space *mapping, struct page *page)
573{
574 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
575 struct vm_area_struct *vma;
576 struct prio_tree_iter iter;
577 int ret = 0;
578
579 BUG_ON(PageAnon(page));
580
581 spin_lock(&mapping->i_mmap_lock);
582 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
583 if (vma->vm_flags & VM_SHARED) {
584 unsigned long address = vma_address(page, vma);
585 if (address == -EFAULT)
586 continue;
587 ret += page_mkclean_one(page, vma, address);
588 }
d08b3851
PZ
589 }
590 spin_unlock(&mapping->i_mmap_lock);
591 return ret;
592}
593
594int page_mkclean(struct page *page)
595{
596 int ret = 0;
597
598 BUG_ON(!PageLocked(page));
599
600 if (page_mapped(page)) {
601 struct address_space *mapping = page_mapping(page);
ce7e9fae 602 if (mapping) {
d08b3851 603 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
604 if (page_test_dirty(page)) {
605 page_clear_dirty(page);
606 ret = 1;
607 }
6c210482 608 }
d08b3851
PZ
609 }
610
611 return ret;
612}
60b59bea 613EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 614
9617d95e 615/**
43d8eac4 616 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
617 * @page: the page to add the mapping to
618 * @vma: the vm area in which the mapping is added
619 * @address: the user virtual address mapped
620 */
621static void __page_set_anon_rmap(struct page *page,
622 struct vm_area_struct *vma, unsigned long address)
623{
624 struct anon_vma *anon_vma = vma->anon_vma;
625
626 BUG_ON(!anon_vma);
627 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
628 page->mapping = (struct address_space *) anon_vma;
9617d95e 629 page->index = linear_page_index(vma, address);
9617d95e
NP
630}
631
c97a9e10 632/**
43d8eac4 633 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
634 * @page: the page to add the mapping to
635 * @vma: the vm area in which the mapping is added
636 * @address: the user virtual address mapped
637 */
638static void __page_check_anon_rmap(struct page *page,
639 struct vm_area_struct *vma, unsigned long address)
640{
641#ifdef CONFIG_DEBUG_VM
642 /*
643 * The page's anon-rmap details (mapping and index) are guaranteed to
644 * be set up correctly at this point.
645 *
646 * We have exclusion against page_add_anon_rmap because the caller
647 * always holds the page locked, except if called from page_dup_rmap,
648 * in which case the page is already known to be setup.
649 *
650 * We have exclusion against page_add_new_anon_rmap because those pages
651 * are initially only visible via the pagetables, and the pte is locked
652 * over the call to page_add_new_anon_rmap.
653 */
654 struct anon_vma *anon_vma = vma->anon_vma;
655 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
656 BUG_ON(page->mapping != (struct address_space *)anon_vma);
657 BUG_ON(page->index != linear_page_index(vma, address));
658#endif
659}
660
1da177e4
LT
661/**
662 * page_add_anon_rmap - add pte mapping to an anonymous page
663 * @page: the page to add the mapping to
664 * @vma: the vm area in which the mapping is added
665 * @address: the user virtual address mapped
666 *
5ad64688
HD
667 * The caller needs to hold the pte lock, and the page must be locked in
668 * the anon_vma case: to serialize mapping,index checking after setting.
1da177e4
LT
669 */
670void page_add_anon_rmap(struct page *page,
671 struct vm_area_struct *vma, unsigned long address)
672{
5ad64688
HD
673 int first = atomic_inc_and_test(&page->_mapcount);
674 if (first)
675 __inc_zone_page_state(page, NR_ANON_PAGES);
676 if (unlikely(PageKsm(page)))
677 return;
678
c97a9e10
NP
679 VM_BUG_ON(!PageLocked(page));
680 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 681 if (first)
9617d95e 682 __page_set_anon_rmap(page, vma, address);
69029cd5 683 else
c97a9e10 684 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
685}
686
43d8eac4 687/**
9617d95e
NP
688 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
689 * @page: the page to add the mapping to
690 * @vma: the vm area in which the mapping is added
691 * @address: the user virtual address mapped
692 *
693 * Same as page_add_anon_rmap but must only be called on *new* pages.
694 * This means the inc-and-test can be bypassed.
c97a9e10 695 * Page does not have to be locked.
9617d95e
NP
696 */
697void page_add_new_anon_rmap(struct page *page,
698 struct vm_area_struct *vma, unsigned long address)
699{
b5934c53 700 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
701 SetPageSwapBacked(page);
702 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 703 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e 704 __page_set_anon_rmap(page, vma, address);
b5934c53 705 if (page_evictable(page, vma))
cbf84b7a 706 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
707 else
708 add_page_to_unevictable_list(page);
9617d95e
NP
709}
710
1da177e4
LT
711/**
712 * page_add_file_rmap - add pte mapping to a file page
713 * @page: the page to add the mapping to
714 *
b8072f09 715 * The caller needs to hold the pte lock.
1da177e4
LT
716 */
717void page_add_file_rmap(struct page *page)
718{
d69b042f 719 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 720 __inc_zone_page_state(page, NR_FILE_MAPPED);
d69b042f
BS
721 mem_cgroup_update_mapped_file_stat(page, 1);
722 }
1da177e4
LT
723}
724
725/**
726 * page_remove_rmap - take down pte mapping from a page
727 * @page: page to remove mapping from
728 *
b8072f09 729 * The caller needs to hold the pte lock.
1da177e4 730 */
edc315fd 731void page_remove_rmap(struct page *page)
1da177e4 732{
b904dcfe
KM
733 /* page still mapped by someone else? */
734 if (!atomic_add_negative(-1, &page->_mapcount))
735 return;
736
737 /*
738 * Now that the last pte has gone, s390 must transfer dirty
739 * flag from storage key to struct page. We can usually skip
740 * this if the page is anon, so about to be freed; but perhaps
741 * not if it's in swapcache - there might be another pte slot
742 * containing the swap entry, but page not yet written to swap.
743 */
744 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
745 page_clear_dirty(page);
746 set_page_dirty(page);
1da177e4 747 }
b904dcfe
KM
748 if (PageAnon(page)) {
749 mem_cgroup_uncharge_page(page);
750 __dec_zone_page_state(page, NR_ANON_PAGES);
751 } else {
752 __dec_zone_page_state(page, NR_FILE_MAPPED);
753 }
754 mem_cgroup_update_mapped_file_stat(page, -1);
755 /*
756 * It would be tidy to reset the PageAnon mapping here,
757 * but that might overwrite a racing page_add_anon_rmap
758 * which increments mapcount after us but sets mapping
759 * before us: so leave the reset to free_hot_cold_page,
760 * and remember that it's only reliable while mapped.
761 * Leaving it set also helps swapoff to reinstate ptes
762 * faster for those pages still in swapcache.
763 */
1da177e4
LT
764}
765
766/*
767 * Subfunctions of try_to_unmap: try_to_unmap_one called
768 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
769 */
5ad64688
HD
770int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
771 unsigned long address, enum ttu_flags flags)
1da177e4
LT
772{
773 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
774 pte_t *pte;
775 pte_t pteval;
c0718806 776 spinlock_t *ptl;
1da177e4
LT
777 int ret = SWAP_AGAIN;
778
479db0bf 779 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 780 if (!pte)
81b4082d 781 goto out;
1da177e4
LT
782
783 /*
784 * If the page is mlock()d, we cannot swap it out.
785 * If it's recently referenced (perhaps page_referenced
786 * skipped over this mm) then we should reactivate it.
787 */
14fa31b8 788 if (!(flags & TTU_IGNORE_MLOCK)) {
b291f000
NP
789 if (vma->vm_flags & VM_LOCKED) {
790 ret = SWAP_MLOCK;
791 goto out_unmap;
792 }
af8e3354 793 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 794 goto out_unmap;
14fa31b8
AK
795 }
796 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
797 if (ptep_clear_flush_young_notify(vma, address, pte)) {
798 ret = SWAP_FAIL;
799 goto out_unmap;
800 }
801 }
1da177e4 802
1da177e4
LT
803 /* Nuke the page table entry. */
804 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 805 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
806
807 /* Move the dirty bit to the physical page now the pte is gone. */
808 if (pte_dirty(pteval))
809 set_page_dirty(page);
810
365e9c87
HD
811 /* Update high watermark before we lower rss */
812 update_hiwater_rss(mm);
813
888b9f7c
AK
814 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
815 if (PageAnon(page))
816 dec_mm_counter(mm, anon_rss);
817 else
818 dec_mm_counter(mm, file_rss);
819 set_pte_at(mm, address, pte,
820 swp_entry_to_pte(make_hwpoison_entry(page)));
821 } else if (PageAnon(page)) {
4c21e2f2 822 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
823
824 if (PageSwapCache(page)) {
825 /*
826 * Store the swap location in the pte.
827 * See handle_pte_fault() ...
828 */
570a335b
HD
829 if (swap_duplicate(entry) < 0) {
830 set_pte_at(mm, address, pte, pteval);
831 ret = SWAP_FAIL;
832 goto out_unmap;
833 }
0697212a
CL
834 if (list_empty(&mm->mmlist)) {
835 spin_lock(&mmlist_lock);
836 if (list_empty(&mm->mmlist))
837 list_add(&mm->mmlist, &init_mm.mmlist);
838 spin_unlock(&mmlist_lock);
839 }
442c9137 840 dec_mm_counter(mm, anon_rss);
64cdd548 841 } else if (PAGE_MIGRATION) {
0697212a
CL
842 /*
843 * Store the pfn of the page in a special migration
844 * pte. do_swap_page() will wait until the migration
845 * pte is removed and then restart fault handling.
846 */
14fa31b8 847 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 848 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
849 }
850 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
851 BUG_ON(pte_file(*pte));
14fa31b8 852 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
853 /* Establish migration entry for a file page */
854 swp_entry_t entry;
855 entry = make_migration_entry(page, pte_write(pteval));
856 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
857 } else
4294621f 858 dec_mm_counter(mm, file_rss);
1da177e4 859
edc315fd 860 page_remove_rmap(page);
1da177e4
LT
861 page_cache_release(page);
862
863out_unmap:
c0718806 864 pte_unmap_unlock(pte, ptl);
53f79acb 865
af8e3354 866 if (ret == SWAP_MLOCK) {
53f79acb
HD
867 ret = SWAP_AGAIN;
868 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
869 if (vma->vm_flags & VM_LOCKED) {
870 mlock_vma_page(page);
871 ret = SWAP_MLOCK;
872 }
873 up_read(&vma->vm_mm->mmap_sem);
874 }
875 }
1da177e4
LT
876out:
877 return ret;
878}
879
880/*
881 * objrmap doesn't work for nonlinear VMAs because the assumption that
882 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
883 * Consequently, given a particular page and its ->index, we cannot locate the
884 * ptes which are mapping that page without an exhaustive linear search.
885 *
886 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
887 * maps the file to which the target page belongs. The ->vm_private_data field
888 * holds the current cursor into that scan. Successive searches will circulate
889 * around the vma's virtual address space.
890 *
891 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
892 * more scanning pressure is placed against them as well. Eventually pages
893 * will become fully unmapped and are eligible for eviction.
894 *
895 * For very sparsely populated VMAs this is a little inefficient - chances are
896 * there there won't be many ptes located within the scan cluster. In this case
897 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
898 *
899 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
900 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
901 * rather than unmapping them. If we encounter the "check_page" that vmscan is
902 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
903 */
904#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
905#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
906
b291f000
NP
907static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
908 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
909{
910 struct mm_struct *mm = vma->vm_mm;
911 pgd_t *pgd;
912 pud_t *pud;
913 pmd_t *pmd;
c0718806 914 pte_t *pte;
1da177e4 915 pte_t pteval;
c0718806 916 spinlock_t *ptl;
1da177e4
LT
917 struct page *page;
918 unsigned long address;
919 unsigned long end;
b291f000
NP
920 int ret = SWAP_AGAIN;
921 int locked_vma = 0;
1da177e4 922
1da177e4
LT
923 address = (vma->vm_start + cursor) & CLUSTER_MASK;
924 end = address + CLUSTER_SIZE;
925 if (address < vma->vm_start)
926 address = vma->vm_start;
927 if (end > vma->vm_end)
928 end = vma->vm_end;
929
930 pgd = pgd_offset(mm, address);
931 if (!pgd_present(*pgd))
b291f000 932 return ret;
1da177e4
LT
933
934 pud = pud_offset(pgd, address);
935 if (!pud_present(*pud))
b291f000 936 return ret;
1da177e4
LT
937
938 pmd = pmd_offset(pud, address);
939 if (!pmd_present(*pmd))
b291f000
NP
940 return ret;
941
942 /*
af8e3354 943 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
944 * keep the sem while scanning the cluster for mlocking pages.
945 */
af8e3354 946 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
947 locked_vma = (vma->vm_flags & VM_LOCKED);
948 if (!locked_vma)
949 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
950 }
c0718806
HD
951
952 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 953
365e9c87
HD
954 /* Update high watermark before we lower rss */
955 update_hiwater_rss(mm);
956
c0718806 957 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
958 if (!pte_present(*pte))
959 continue;
6aab341e
LT
960 page = vm_normal_page(vma, address, *pte);
961 BUG_ON(!page || PageAnon(page));
1da177e4 962
b291f000
NP
963 if (locked_vma) {
964 mlock_vma_page(page); /* no-op if already mlocked */
965 if (page == check_page)
966 ret = SWAP_MLOCK;
967 continue; /* don't unmap */
968 }
969
cddb8a5c 970 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
971 continue;
972
973 /* Nuke the page table entry. */
eca35133 974 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 975 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
976
977 /* If nonlinear, store the file page offset in the pte. */
978 if (page->index != linear_page_index(vma, address))
979 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
980
981 /* Move the dirty bit to the physical page now the pte is gone. */
982 if (pte_dirty(pteval))
983 set_page_dirty(page);
984
edc315fd 985 page_remove_rmap(page);
1da177e4 986 page_cache_release(page);
4294621f 987 dec_mm_counter(mm, file_rss);
1da177e4
LT
988 (*mapcount)--;
989 }
c0718806 990 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
991 if (locked_vma)
992 up_read(&vma->vm_mm->mmap_sem);
993 return ret;
1da177e4
LT
994}
995
b291f000
NP
996/**
997 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
998 * rmap method
999 * @page: the page to unmap/unlock
8051be5e 1000 * @flags: action and flags
b291f000
NP
1001 *
1002 * Find all the mappings of a page using the mapping pointer and the vma chains
1003 * contained in the anon_vma struct it points to.
1004 *
1005 * This function is only called from try_to_unmap/try_to_munlock for
1006 * anonymous pages.
1007 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1008 * where the page was found will be held for write. So, we won't recheck
1009 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1010 * 'LOCKED.
1011 */
14fa31b8 1012static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1013{
1014 struct anon_vma *anon_vma;
1015 struct vm_area_struct *vma;
1016 int ret = SWAP_AGAIN;
b291f000 1017
1da177e4
LT
1018 anon_vma = page_lock_anon_vma(page);
1019 if (!anon_vma)
1020 return ret;
1021
1022 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1cb1729b
HD
1023 unsigned long address = vma_address(page, vma);
1024 if (address == -EFAULT)
1025 continue;
1026 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1027 if (ret != SWAP_AGAIN || !page_mapped(page))
1028 break;
1da177e4 1029 }
34bbd704
ON
1030
1031 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1032 return ret;
1033}
1034
1035/**
b291f000
NP
1036 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1037 * @page: the page to unmap/unlock
14fa31b8 1038 * @flags: action and flags
1da177e4
LT
1039 *
1040 * Find all the mappings of a page using the mapping pointer and the vma chains
1041 * contained in the address_space struct it points to.
1042 *
b291f000
NP
1043 * This function is only called from try_to_unmap/try_to_munlock for
1044 * object-based pages.
1045 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1046 * where the page was found will be held for write. So, we won't recheck
1047 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1048 * 'LOCKED.
1da177e4 1049 */
14fa31b8 1050static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1051{
1052 struct address_space *mapping = page->mapping;
1053 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1054 struct vm_area_struct *vma;
1055 struct prio_tree_iter iter;
1056 int ret = SWAP_AGAIN;
1057 unsigned long cursor;
1058 unsigned long max_nl_cursor = 0;
1059 unsigned long max_nl_size = 0;
1060 unsigned int mapcount;
1061
1062 spin_lock(&mapping->i_mmap_lock);
1063 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1064 unsigned long address = vma_address(page, vma);
1065 if (address == -EFAULT)
1066 continue;
1067 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1068 if (ret != SWAP_AGAIN || !page_mapped(page))
1069 goto out;
1da177e4
LT
1070 }
1071
1072 if (list_empty(&mapping->i_mmap_nonlinear))
1073 goto out;
1074
53f79acb
HD
1075 /*
1076 * We don't bother to try to find the munlocked page in nonlinears.
1077 * It's costly. Instead, later, page reclaim logic may call
1078 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1079 */
1080 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1081 goto out;
1082
1da177e4
LT
1083 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1084 shared.vm_set.list) {
1da177e4
LT
1085 cursor = (unsigned long) vma->vm_private_data;
1086 if (cursor > max_nl_cursor)
1087 max_nl_cursor = cursor;
1088 cursor = vma->vm_end - vma->vm_start;
1089 if (cursor > max_nl_size)
1090 max_nl_size = cursor;
1091 }
1092
b291f000 1093 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1094 ret = SWAP_FAIL;
1095 goto out;
1096 }
1097
1098 /*
1099 * We don't try to search for this page in the nonlinear vmas,
1100 * and page_referenced wouldn't have found it anyway. Instead
1101 * just walk the nonlinear vmas trying to age and unmap some.
1102 * The mapcount of the page we came in with is irrelevant,
1103 * but even so use it as a guide to how hard we should try?
1104 */
1105 mapcount = page_mapcount(page);
1106 if (!mapcount)
1107 goto out;
1108 cond_resched_lock(&mapping->i_mmap_lock);
1109
1110 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1111 if (max_nl_cursor == 0)
1112 max_nl_cursor = CLUSTER_SIZE;
1113
1114 do {
1115 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1116 shared.vm_set.list) {
1da177e4 1117 cursor = (unsigned long) vma->vm_private_data;
839b9685 1118 while ( cursor < max_nl_cursor &&
1da177e4 1119 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1120 if (try_to_unmap_cluster(cursor, &mapcount,
1121 vma, page) == SWAP_MLOCK)
1122 ret = SWAP_MLOCK;
1da177e4
LT
1123 cursor += CLUSTER_SIZE;
1124 vma->vm_private_data = (void *) cursor;
1125 if ((int)mapcount <= 0)
1126 goto out;
1127 }
1128 vma->vm_private_data = (void *) max_nl_cursor;
1129 }
1130 cond_resched_lock(&mapping->i_mmap_lock);
1131 max_nl_cursor += CLUSTER_SIZE;
1132 } while (max_nl_cursor <= max_nl_size);
1133
1134 /*
1135 * Don't loop forever (perhaps all the remaining pages are
1136 * in locked vmas). Reset cursor on all unreserved nonlinear
1137 * vmas, now forgetting on which ones it had fallen behind.
1138 */
101d2be7
HD
1139 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1140 vma->vm_private_data = NULL;
1da177e4
LT
1141out:
1142 spin_unlock(&mapping->i_mmap_lock);
1143 return ret;
1144}
1145
1146/**
1147 * try_to_unmap - try to remove all page table mappings to a page
1148 * @page: the page to get unmapped
14fa31b8 1149 * @flags: action and flags
1da177e4
LT
1150 *
1151 * Tries to remove all the page table entries which are mapping this
1152 * page, used in the pageout path. Caller must hold the page lock.
1153 * Return values are:
1154 *
1155 * SWAP_SUCCESS - we succeeded in removing all mappings
1156 * SWAP_AGAIN - we missed a mapping, try again later
1157 * SWAP_FAIL - the page is unswappable
b291f000 1158 * SWAP_MLOCK - page is mlocked.
1da177e4 1159 */
14fa31b8 1160int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1161{
1162 int ret;
1163
1da177e4
LT
1164 BUG_ON(!PageLocked(page));
1165
5ad64688
HD
1166 if (unlikely(PageKsm(page)))
1167 ret = try_to_unmap_ksm(page, flags);
1168 else if (PageAnon(page))
14fa31b8 1169 ret = try_to_unmap_anon(page, flags);
1da177e4 1170 else
14fa31b8 1171 ret = try_to_unmap_file(page, flags);
b291f000 1172 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1173 ret = SWAP_SUCCESS;
1174 return ret;
1175}
81b4082d 1176
b291f000
NP
1177/**
1178 * try_to_munlock - try to munlock a page
1179 * @page: the page to be munlocked
1180 *
1181 * Called from munlock code. Checks all of the VMAs mapping the page
1182 * to make sure nobody else has this page mlocked. The page will be
1183 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1184 *
1185 * Return values are:
1186 *
53f79acb 1187 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1188 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1189 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1190 * SWAP_MLOCK - page is now mlocked.
1191 */
1192int try_to_munlock(struct page *page)
1193{
1194 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1195
5ad64688
HD
1196 if (unlikely(PageKsm(page)))
1197 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1198 else if (PageAnon(page))
14fa31b8 1199 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1200 else
14fa31b8 1201 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1202}