]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/rmap.c
powerpc/mm: use generic version of pmdp_clear_flush()
[mirror_ubuntu-zesty-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
01d8b20d
PZ
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
fdd2e5f8
AB
85}
86
01d8b20d 87static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 88{
01d8b20d 89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
90
91 /*
4fc3f1d6 92 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 99 *
4fc3f1d6
IM
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
88c22088 102 * LOCK MB
4fc3f1d6 103 * atomic_read() rwsem_is_locked()
88c22088
PZ
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
7f39dda9 108 might_sleep();
5a505085 109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 110 anon_vma_lock_write(anon_vma);
08b52706 111 anon_vma_unlock_write(anon_vma);
88c22088
PZ
112 }
113
fdd2e5f8
AB
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115}
1da177e4 116
dd34739c 117static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 118{
dd34739c 119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
120}
121
e574b5fd 122static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
123{
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125}
126
6583a843
KC
127static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130{
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
135}
136
d9d332e0
LT
137/**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
23a0790a 146 * not we either need to find an adjacent mapping that we
d9d332e0
LT
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
1da177e4
LT
164int anon_vma_prepare(struct vm_area_struct *vma)
165{
166 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 167 struct anon_vma_chain *avc;
1da177e4
LT
168
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
d9d332e0 172 struct anon_vma *allocated;
1da177e4 173
dd34739c 174 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
175 if (!avc)
176 goto out_enomem;
177
1da177e4 178 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
179 allocated = NULL;
180 if (!anon_vma) {
1da177e4
LT
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
5beb4930 183 goto out_enomem_free_avc;
1da177e4 184 allocated = anon_vma;
1da177e4
LT
185 }
186
4fc3f1d6 187 anon_vma_lock_write(anon_vma);
1da177e4
LT
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
6583a843 192 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
1da177e4 195 allocated = NULL;
31f2b0eb 196 avc = NULL;
1da177e4
LT
197 }
198 spin_unlock(&mm->page_table_lock);
08b52706 199 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
200
201 if (unlikely(allocated))
01d8b20d 202 put_anon_vma(allocated);
31f2b0eb 203 if (unlikely(avc))
5beb4930 204 anon_vma_chain_free(avc);
1da177e4
LT
205 }
206 return 0;
5beb4930
RR
207
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
1da177e4
LT
212}
213
bb4aa396
LT
214/*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
222static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223{
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
5a505085 227 up_write(&root->rwsem);
bb4aa396 228 root = new_root;
5a505085 229 down_write(&root->rwsem);
bb4aa396
LT
230 }
231 return root;
232}
233
234static inline void unlock_anon_vma_root(struct anon_vma *root)
235{
236 if (root)
5a505085 237 up_write(&root->rwsem);
bb4aa396
LT
238}
239
5beb4930
RR
240/*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
5beb4930
RR
251 */
252int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 253{
5beb4930 254 struct anon_vma_chain *avc, *pavc;
bb4aa396 255 struct anon_vma *root = NULL;
5beb4930 256
646d87b4 257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
258 struct anon_vma *anon_vma;
259
dd34739c
LT
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
267 }
bb4aa396
LT
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
271
272 /*
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
275 *
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
279 */
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
5beb4930 283 }
7a3ef208
KK
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
bb4aa396 286 unlock_anon_vma_root(root);
5beb4930 287 return 0;
1da177e4 288
5beb4930 289 enomem_failure:
3fe89b3e
LY
290 /*
291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 * decremented in unlink_anon_vmas().
293 * We can safely do this because callers of anon_vma_clone() don't care
294 * about dst->anon_vma if anon_vma_clone() failed.
295 */
296 dst->anon_vma = NULL;
5beb4930
RR
297 unlink_anon_vmas(dst);
298 return -ENOMEM;
1da177e4
LT
299}
300
5beb4930
RR
301/*
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
305 */
306int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 307{
5beb4930
RR
308 struct anon_vma_chain *avc;
309 struct anon_vma *anon_vma;
c4ea95d7 310 int error;
1da177e4 311
5beb4930
RR
312 /* Don't bother if the parent process has no anon_vma here. */
313 if (!pvma->anon_vma)
314 return 0;
315
7a3ef208
KK
316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 vma->anon_vma = NULL;
318
5beb4930
RR
319 /*
320 * First, attach the new VMA to the parent VMA's anon_vmas,
321 * so rmap can find non-COWed pages in child processes.
322 */
c4ea95d7
DF
323 error = anon_vma_clone(vma, pvma);
324 if (error)
325 return error;
5beb4930 326
7a3ef208
KK
327 /* An existing anon_vma has been reused, all done then. */
328 if (vma->anon_vma)
329 return 0;
330
5beb4930
RR
331 /* Then add our own anon_vma. */
332 anon_vma = anon_vma_alloc();
333 if (!anon_vma)
334 goto out_error;
dd34739c 335 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
336 if (!avc)
337 goto out_error_free_anon_vma;
5c341ee1
RR
338
339 /*
340 * The root anon_vma's spinlock is the lock actually used when we
341 * lock any of the anon_vmas in this anon_vma tree.
342 */
343 anon_vma->root = pvma->anon_vma->root;
7a3ef208 344 anon_vma->parent = pvma->anon_vma;
76545066 345 /*
01d8b20d
PZ
346 * With refcounts, an anon_vma can stay around longer than the
347 * process it belongs to. The root anon_vma needs to be pinned until
348 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
349 */
350 get_anon_vma(anon_vma->root);
5beb4930
RR
351 /* Mark this anon_vma as the one where our new (COWed) pages go. */
352 vma->anon_vma = anon_vma;
4fc3f1d6 353 anon_vma_lock_write(anon_vma);
5c341ee1 354 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 355 anon_vma->parent->degree++;
08b52706 356 anon_vma_unlock_write(anon_vma);
5beb4930
RR
357
358 return 0;
359
360 out_error_free_anon_vma:
01d8b20d 361 put_anon_vma(anon_vma);
5beb4930 362 out_error:
4946d54c 363 unlink_anon_vmas(vma);
5beb4930 364 return -ENOMEM;
1da177e4
LT
365}
366
5beb4930
RR
367void unlink_anon_vmas(struct vm_area_struct *vma)
368{
369 struct anon_vma_chain *avc, *next;
eee2acba 370 struct anon_vma *root = NULL;
5beb4930 371
5c341ee1
RR
372 /*
373 * Unlink each anon_vma chained to the VMA. This list is ordered
374 * from newest to oldest, ensuring the root anon_vma gets freed last.
375 */
5beb4930 376 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
377 struct anon_vma *anon_vma = avc->anon_vma;
378
379 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 380 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
381
382 /*
383 * Leave empty anon_vmas on the list - we'll need
384 * to free them outside the lock.
385 */
7a3ef208
KK
386 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
387 anon_vma->parent->degree--;
eee2acba 388 continue;
7a3ef208 389 }
eee2acba
PZ
390
391 list_del(&avc->same_vma);
392 anon_vma_chain_free(avc);
393 }
7a3ef208
KK
394 if (vma->anon_vma)
395 vma->anon_vma->degree--;
eee2acba
PZ
396 unlock_anon_vma_root(root);
397
398 /*
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 401 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
402 */
403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 struct anon_vma *anon_vma = avc->anon_vma;
405
7a3ef208 406 BUG_ON(anon_vma->degree);
eee2acba
PZ
407 put_anon_vma(anon_vma);
408
5beb4930
RR
409 list_del(&avc->same_vma);
410 anon_vma_chain_free(avc);
411 }
412}
413
51cc5068 414static void anon_vma_ctor(void *data)
1da177e4 415{
a35afb83 416 struct anon_vma *anon_vma = data;
1da177e4 417
5a505085 418 init_rwsem(&anon_vma->rwsem);
83813267 419 atomic_set(&anon_vma->refcount, 0);
bf181b9f 420 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
421}
422
423void __init anon_vma_init(void)
424{
425 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 426 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 427 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
428}
429
430/*
6111e4ca
PZ
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
432 *
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
436 *
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
439 *
bc658c96
PZ
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
444 *
6111e4ca
PZ
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
448 *
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 452 */
746b18d4 453struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 454{
746b18d4 455 struct anon_vma *anon_vma = NULL;
1da177e4
LT
456 unsigned long anon_mapping;
457
458 rcu_read_lock();
4db0c3c2 459 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
461 goto out;
462 if (!page_mapped(page))
463 goto out;
464
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
466 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
467 anon_vma = NULL;
468 goto out;
469 }
f1819427
HD
470
471 /*
472 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
473 * freed. But if it has been unmapped, we have no security against the
474 * anon_vma structure being freed and reused (for another anon_vma:
475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 * above cannot corrupt).
f1819427 477 */
746b18d4 478 if (!page_mapped(page)) {
7f39dda9 479 rcu_read_unlock();
746b18d4 480 put_anon_vma(anon_vma);
7f39dda9 481 return NULL;
746b18d4 482 }
1da177e4
LT
483out:
484 rcu_read_unlock();
746b18d4
PZ
485
486 return anon_vma;
487}
488
88c22088
PZ
489/*
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
491 *
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
495 */
4fc3f1d6 496struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 497{
88c22088 498 struct anon_vma *anon_vma = NULL;
eee0f252 499 struct anon_vma *root_anon_vma;
88c22088 500 unsigned long anon_mapping;
746b18d4 501
88c22088 502 rcu_read_lock();
4db0c3c2 503 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
504 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
505 goto out;
506 if (!page_mapped(page))
507 goto out;
508
509 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 510 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 511 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 512 /*
eee0f252
HD
513 * If the page is still mapped, then this anon_vma is still
514 * its anon_vma, and holding the mutex ensures that it will
bc658c96 515 * not go away, see anon_vma_free().
88c22088 516 */
eee0f252 517 if (!page_mapped(page)) {
4fc3f1d6 518 up_read(&root_anon_vma->rwsem);
88c22088
PZ
519 anon_vma = NULL;
520 }
521 goto out;
522 }
746b18d4 523
88c22088
PZ
524 /* trylock failed, we got to sleep */
525 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
526 anon_vma = NULL;
527 goto out;
528 }
529
530 if (!page_mapped(page)) {
7f39dda9 531 rcu_read_unlock();
88c22088 532 put_anon_vma(anon_vma);
7f39dda9 533 return NULL;
88c22088
PZ
534 }
535
536 /* we pinned the anon_vma, its safe to sleep */
537 rcu_read_unlock();
4fc3f1d6 538 anon_vma_lock_read(anon_vma);
88c22088
PZ
539
540 if (atomic_dec_and_test(&anon_vma->refcount)) {
541 /*
542 * Oops, we held the last refcount, release the lock
543 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 544 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 545 */
4fc3f1d6 546 anon_vma_unlock_read(anon_vma);
88c22088
PZ
547 __put_anon_vma(anon_vma);
548 anon_vma = NULL;
549 }
550
551 return anon_vma;
552
553out:
554 rcu_read_unlock();
746b18d4 555 return anon_vma;
34bbd704
ON
556}
557
4fc3f1d6 558void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 559{
4fc3f1d6 560 anon_vma_unlock_read(anon_vma);
1da177e4
LT
561}
562
563/*
3ad33b24 564 * At what user virtual address is page expected in @vma?
1da177e4 565 */
86c2ad19
ML
566static inline unsigned long
567__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 568{
a0f7a756 569 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
570 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
571}
572
573inline unsigned long
574vma_address(struct page *page, struct vm_area_struct *vma)
575{
576 unsigned long address = __vma_address(page, vma);
577
578 /* page should be within @vma mapping range */
81d1b09c 579 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 580
1da177e4
LT
581 return address;
582}
583
584/*
bf89c8c8 585 * At what user virtual address is page expected in vma?
ab941e0f 586 * Caller should check the page is actually part of the vma.
1da177e4
LT
587 */
588unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
589{
86c2ad19 590 unsigned long address;
21d0d443 591 if (PageAnon(page)) {
4829b906
HD
592 struct anon_vma *page__anon_vma = page_anon_vma(page);
593 /*
594 * Note: swapoff's unuse_vma() is more efficient with this
595 * check, and needs it to match anon_vma when KSM is active.
596 */
597 if (!vma->anon_vma || !page__anon_vma ||
598 vma->anon_vma->root != page__anon_vma->root)
21d0d443 599 return -EFAULT;
27ba0644
KS
600 } else if (page->mapping) {
601 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
602 return -EFAULT;
603 } else
604 return -EFAULT;
86c2ad19
ML
605 address = __vma_address(page, vma);
606 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
607 return -EFAULT;
608 return address;
1da177e4
LT
609}
610
6219049a
BL
611pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
612{
613 pgd_t *pgd;
614 pud_t *pud;
615 pmd_t *pmd = NULL;
f72e7dcd 616 pmd_t pmde;
6219049a
BL
617
618 pgd = pgd_offset(mm, address);
619 if (!pgd_present(*pgd))
620 goto out;
621
622 pud = pud_offset(pgd, address);
623 if (!pud_present(*pud))
624 goto out;
625
626 pmd = pmd_offset(pud, address);
f72e7dcd
HD
627 /*
628 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
629 * without holding anon_vma lock for write. So when looking for a
630 * genuine pmde (in which to find pte), test present and !THP together.
631 */
e37c6982
CB
632 pmde = *pmd;
633 barrier();
f72e7dcd 634 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
635 pmd = NULL;
636out:
637 return pmd;
638}
639
81b4082d
ND
640/*
641 * Check that @page is mapped at @address into @mm.
642 *
479db0bf
NP
643 * If @sync is false, page_check_address may perform a racy check to avoid
644 * the page table lock when the pte is not present (helpful when reclaiming
645 * highly shared pages).
646 *
b8072f09 647 * On success returns with pte mapped and locked.
81b4082d 648 */
e9a81a82 649pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 650 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 651{
81b4082d
ND
652 pmd_t *pmd;
653 pte_t *pte;
c0718806 654 spinlock_t *ptl;
81b4082d 655
0fe6e20b 656 if (unlikely(PageHuge(page))) {
98398c32 657 /* when pud is not present, pte will be NULL */
0fe6e20b 658 pte = huge_pte_offset(mm, address);
98398c32
JW
659 if (!pte)
660 return NULL;
661
cb900f41 662 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
663 goto check;
664 }
665
6219049a
BL
666 pmd = mm_find_pmd(mm, address);
667 if (!pmd)
c0718806
HD
668 return NULL;
669
c0718806
HD
670 pte = pte_offset_map(pmd, address);
671 /* Make a quick check before getting the lock */
479db0bf 672 if (!sync && !pte_present(*pte)) {
c0718806
HD
673 pte_unmap(pte);
674 return NULL;
675 }
676
4c21e2f2 677 ptl = pte_lockptr(mm, pmd);
0fe6e20b 678check:
c0718806
HD
679 spin_lock(ptl);
680 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
681 *ptlp = ptl;
682 return pte;
81b4082d 683 }
c0718806
HD
684 pte_unmap_unlock(pte, ptl);
685 return NULL;
81b4082d
ND
686}
687
b291f000
NP
688/**
689 * page_mapped_in_vma - check whether a page is really mapped in a VMA
690 * @page: the page to test
691 * @vma: the VMA to test
692 *
693 * Returns 1 if the page is mapped into the page tables of the VMA, 0
694 * if the page is not mapped into the page tables of this VMA. Only
695 * valid for normal file or anonymous VMAs.
696 */
6a46079c 697int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
698{
699 unsigned long address;
700 pte_t *pte;
701 spinlock_t *ptl;
702
86c2ad19
ML
703 address = __vma_address(page, vma);
704 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
705 return 0;
706 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
707 if (!pte) /* the page is not in this mm */
708 return 0;
709 pte_unmap_unlock(pte, ptl);
710
711 return 1;
712}
713
9f32624b
JK
714struct page_referenced_arg {
715 int mapcount;
716 int referenced;
717 unsigned long vm_flags;
718 struct mem_cgroup *memcg;
719};
1da177e4 720/*
9f32624b 721 * arg: page_referenced_arg will be passed
1da177e4 722 */
ac769501 723static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 724 unsigned long address, void *arg)
1da177e4
LT
725{
726 struct mm_struct *mm = vma->vm_mm;
117b0791 727 spinlock_t *ptl;
1da177e4 728 int referenced = 0;
9f32624b 729 struct page_referenced_arg *pra = arg;
1da177e4 730
71e3aac0
AA
731 if (unlikely(PageTransHuge(page))) {
732 pmd_t *pmd;
733
2da28bfd
AA
734 /*
735 * rmap might return false positives; we must filter
736 * these out using page_check_address_pmd().
737 */
71e3aac0 738 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
739 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
740 if (!pmd)
9f32624b 741 return SWAP_AGAIN;
2da28bfd
AA
742
743 if (vma->vm_flags & VM_LOCKED) {
117b0791 744 spin_unlock(ptl);
9f32624b
JK
745 pra->vm_flags |= VM_LOCKED;
746 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
747 }
748
749 /* go ahead even if the pmd is pmd_trans_splitting() */
750 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 751 referenced++;
117b0791 752 spin_unlock(ptl);
71e3aac0
AA
753 } else {
754 pte_t *pte;
71e3aac0 755
2da28bfd
AA
756 /*
757 * rmap might return false positives; we must filter
758 * these out using page_check_address().
759 */
71e3aac0
AA
760 pte = page_check_address(page, mm, address, &ptl, 0);
761 if (!pte)
9f32624b 762 return SWAP_AGAIN;
71e3aac0 763
2da28bfd
AA
764 if (vma->vm_flags & VM_LOCKED) {
765 pte_unmap_unlock(pte, ptl);
9f32624b
JK
766 pra->vm_flags |= VM_LOCKED;
767 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
768 }
769
71e3aac0
AA
770 if (ptep_clear_flush_young_notify(vma, address, pte)) {
771 /*
772 * Don't treat a reference through a sequentially read
773 * mapping as such. If the page has been used in
774 * another mapping, we will catch it; if this other
775 * mapping is already gone, the unmap path will have
776 * set PG_referenced or activated the page.
777 */
64363aad 778 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
779 referenced++;
780 }
781 pte_unmap_unlock(pte, ptl);
782 }
783
9f32624b
JK
784 if (referenced) {
785 pra->referenced++;
786 pra->vm_flags |= vma->vm_flags;
1da177e4 787 }
34bbd704 788
9f32624b
JK
789 pra->mapcount--;
790 if (!pra->mapcount)
791 return SWAP_SUCCESS; /* To break the loop */
792
793 return SWAP_AGAIN;
1da177e4
LT
794}
795
9f32624b 796static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 797{
9f32624b
JK
798 struct page_referenced_arg *pra = arg;
799 struct mem_cgroup *memcg = pra->memcg;
1da177e4 800
9f32624b
JK
801 if (!mm_match_cgroup(vma->vm_mm, memcg))
802 return true;
1da177e4 803
9f32624b 804 return false;
1da177e4
LT
805}
806
807/**
808 * page_referenced - test if the page was referenced
809 * @page: the page to test
810 * @is_locked: caller holds lock on the page
72835c86 811 * @memcg: target memory cgroup
6fe6b7e3 812 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
813 *
814 * Quick test_and_clear_referenced for all mappings to a page,
815 * returns the number of ptes which referenced the page.
816 */
6fe6b7e3
WF
817int page_referenced(struct page *page,
818 int is_locked,
72835c86 819 struct mem_cgroup *memcg,
6fe6b7e3 820 unsigned long *vm_flags)
1da177e4 821{
9f32624b 822 int ret;
5ad64688 823 int we_locked = 0;
9f32624b
JK
824 struct page_referenced_arg pra = {
825 .mapcount = page_mapcount(page),
826 .memcg = memcg,
827 };
828 struct rmap_walk_control rwc = {
829 .rmap_one = page_referenced_one,
830 .arg = (void *)&pra,
831 .anon_lock = page_lock_anon_vma_read,
832 };
1da177e4 833
6fe6b7e3 834 *vm_flags = 0;
9f32624b
JK
835 if (!page_mapped(page))
836 return 0;
837
838 if (!page_rmapping(page))
839 return 0;
840
841 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
842 we_locked = trylock_page(page);
843 if (!we_locked)
844 return 1;
1da177e4 845 }
9f32624b
JK
846
847 /*
848 * If we are reclaiming on behalf of a cgroup, skip
849 * counting on behalf of references from different
850 * cgroups
851 */
852 if (memcg) {
853 rwc.invalid_vma = invalid_page_referenced_vma;
854 }
855
856 ret = rmap_walk(page, &rwc);
857 *vm_flags = pra.vm_flags;
858
859 if (we_locked)
860 unlock_page(page);
861
862 return pra.referenced;
1da177e4
LT
863}
864
1cb1729b 865static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 866 unsigned long address, void *arg)
d08b3851
PZ
867{
868 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 869 pte_t *pte;
d08b3851
PZ
870 spinlock_t *ptl;
871 int ret = 0;
9853a407 872 int *cleaned = arg;
d08b3851 873
479db0bf 874 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
875 if (!pte)
876 goto out;
877
c2fda5fe
PZ
878 if (pte_dirty(*pte) || pte_write(*pte)) {
879 pte_t entry;
d08b3851 880
c2fda5fe 881 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 882 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
883 entry = pte_wrprotect(entry);
884 entry = pte_mkclean(entry);
d6e88e67 885 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
886 ret = 1;
887 }
d08b3851 888
d08b3851 889 pte_unmap_unlock(pte, ptl);
2ec74c3e 890
9853a407 891 if (ret) {
2ec74c3e 892 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
893 (*cleaned)++;
894 }
d08b3851 895out:
9853a407 896 return SWAP_AGAIN;
d08b3851
PZ
897}
898
9853a407 899static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 900{
9853a407 901 if (vma->vm_flags & VM_SHARED)
871beb8c 902 return false;
d08b3851 903
871beb8c 904 return true;
d08b3851
PZ
905}
906
907int page_mkclean(struct page *page)
908{
9853a407
JK
909 int cleaned = 0;
910 struct address_space *mapping;
911 struct rmap_walk_control rwc = {
912 .arg = (void *)&cleaned,
913 .rmap_one = page_mkclean_one,
914 .invalid_vma = invalid_mkclean_vma,
915 };
d08b3851
PZ
916
917 BUG_ON(!PageLocked(page));
918
9853a407
JK
919 if (!page_mapped(page))
920 return 0;
921
922 mapping = page_mapping(page);
923 if (!mapping)
924 return 0;
925
926 rmap_walk(page, &rwc);
d08b3851 927
9853a407 928 return cleaned;
d08b3851 929}
60b59bea 930EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 931
c44b6743
RR
932/**
933 * page_move_anon_rmap - move a page to our anon_vma
934 * @page: the page to move to our anon_vma
935 * @vma: the vma the page belongs to
936 * @address: the user virtual address mapped
937 *
938 * When a page belongs exclusively to one process after a COW event,
939 * that page can be moved into the anon_vma that belongs to just that
940 * process, so the rmap code will not search the parent or sibling
941 * processes.
942 */
943void page_move_anon_rmap(struct page *page,
944 struct vm_area_struct *vma, unsigned long address)
945{
946 struct anon_vma *anon_vma = vma->anon_vma;
947
309381fe 948 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 949 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 950 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
951
952 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
953 /*
954 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
955 * simultaneously, so a concurrent reader (eg page_referenced()'s
956 * PageAnon()) will not see one without the other.
957 */
958 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
959}
960
9617d95e 961/**
4e1c1975
AK
962 * __page_set_anon_rmap - set up new anonymous rmap
963 * @page: Page to add to rmap
964 * @vma: VM area to add page to.
965 * @address: User virtual address of the mapping
e8a03feb 966 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
967 */
968static void __page_set_anon_rmap(struct page *page,
e8a03feb 969 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 970{
e8a03feb 971 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 972
e8a03feb 973 BUG_ON(!anon_vma);
ea90002b 974
4e1c1975
AK
975 if (PageAnon(page))
976 return;
977
ea90002b 978 /*
e8a03feb
RR
979 * If the page isn't exclusively mapped into this vma,
980 * we must use the _oldest_ possible anon_vma for the
981 * page mapping!
ea90002b 982 */
4e1c1975 983 if (!exclusive)
288468c3 984 anon_vma = anon_vma->root;
9617d95e 985
9617d95e
NP
986 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
987 page->mapping = (struct address_space *) anon_vma;
9617d95e 988 page->index = linear_page_index(vma, address);
9617d95e
NP
989}
990
c97a9e10 991/**
43d8eac4 992 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
993 * @page: the page to add the mapping to
994 * @vma: the vm area in which the mapping is added
995 * @address: the user virtual address mapped
996 */
997static void __page_check_anon_rmap(struct page *page,
998 struct vm_area_struct *vma, unsigned long address)
999{
1000#ifdef CONFIG_DEBUG_VM
1001 /*
1002 * The page's anon-rmap details (mapping and index) are guaranteed to
1003 * be set up correctly at this point.
1004 *
1005 * We have exclusion against page_add_anon_rmap because the caller
1006 * always holds the page locked, except if called from page_dup_rmap,
1007 * in which case the page is already known to be setup.
1008 *
1009 * We have exclusion against page_add_new_anon_rmap because those pages
1010 * are initially only visible via the pagetables, and the pte is locked
1011 * over the call to page_add_new_anon_rmap.
1012 */
44ab57a0 1013 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1014 BUG_ON(page->index != linear_page_index(vma, address));
1015#endif
1016}
1017
1da177e4
LT
1018/**
1019 * page_add_anon_rmap - add pte mapping to an anonymous page
1020 * @page: the page to add the mapping to
1021 * @vma: the vm area in which the mapping is added
1022 * @address: the user virtual address mapped
1023 *
5ad64688 1024 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1025 * the anon_vma case: to serialize mapping,index checking after setting,
1026 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1027 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1028 */
1029void page_add_anon_rmap(struct page *page,
1030 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1031{
1032 do_page_add_anon_rmap(page, vma, address, 0);
1033}
1034
1035/*
1036 * Special version of the above for do_swap_page, which often runs
1037 * into pages that are exclusively owned by the current process.
1038 * Everybody else should continue to use page_add_anon_rmap above.
1039 */
1040void do_page_add_anon_rmap(struct page *page,
1041 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1042{
5ad64688 1043 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1044 if (first) {
bea04b07
JZ
1045 /*
1046 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1047 * these counters are not modified in interrupt context, and
1048 * pte lock(a spinlock) is held, which implies preemption
1049 * disabled.
1050 */
3cd14fcd 1051 if (PageTransHuge(page))
79134171
AA
1052 __inc_zone_page_state(page,
1053 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1054 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1055 hpage_nr_pages(page));
79134171 1056 }
5ad64688
HD
1057 if (unlikely(PageKsm(page)))
1058 return;
1059
309381fe 1060 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1061 /* address might be in next vma when migration races vma_adjust */
5ad64688 1062 if (first)
ad8c2ee8 1063 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1064 else
c97a9e10 1065 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1066}
1067
43d8eac4 1068/**
9617d95e
NP
1069 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1070 * @page: the page to add the mapping to
1071 * @vma: the vm area in which the mapping is added
1072 * @address: the user virtual address mapped
1073 *
1074 * Same as page_add_anon_rmap but must only be called on *new* pages.
1075 * This means the inc-and-test can be bypassed.
c97a9e10 1076 * Page does not have to be locked.
9617d95e
NP
1077 */
1078void page_add_new_anon_rmap(struct page *page,
1079 struct vm_area_struct *vma, unsigned long address)
1080{
81d1b09c 1081 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1082 SetPageSwapBacked(page);
1083 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1084 if (PageTransHuge(page))
79134171 1085 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1086 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1087 hpage_nr_pages(page));
e8a03feb 1088 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1089}
1090
1da177e4
LT
1091/**
1092 * page_add_file_rmap - add pte mapping to a file page
1093 * @page: the page to add the mapping to
1094 *
b8072f09 1095 * The caller needs to hold the pte lock.
1da177e4
LT
1096 */
1097void page_add_file_rmap(struct page *page)
1098{
d7365e78 1099 struct mem_cgroup *memcg;
89c06bd5 1100
6de22619 1101 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1102 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1103 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1104 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1105 }
6de22619 1106 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1107}
1108
8186eb6a
JW
1109static void page_remove_file_rmap(struct page *page)
1110{
1111 struct mem_cgroup *memcg;
8186eb6a 1112
6de22619 1113 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1114
1115 /* page still mapped by someone else? */
1116 if (!atomic_add_negative(-1, &page->_mapcount))
1117 goto out;
1118
1119 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1120 if (unlikely(PageHuge(page)))
1121 goto out;
1122
1123 /*
1124 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1125 * these counters are not modified in interrupt context, and
1126 * pte lock(a spinlock) is held, which implies preemption disabled.
1127 */
1128 __dec_zone_page_state(page, NR_FILE_MAPPED);
1129 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1130
1131 if (unlikely(PageMlocked(page)))
1132 clear_page_mlock(page);
1133out:
6de22619 1134 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1135}
1136
1da177e4
LT
1137/**
1138 * page_remove_rmap - take down pte mapping from a page
1139 * @page: page to remove mapping from
1140 *
b8072f09 1141 * The caller needs to hold the pte lock.
1da177e4 1142 */
edc315fd 1143void page_remove_rmap(struct page *page)
1da177e4 1144{
8186eb6a
JW
1145 if (!PageAnon(page)) {
1146 page_remove_file_rmap(page);
1147 return;
1148 }
89c06bd5 1149
b904dcfe
KM
1150 /* page still mapped by someone else? */
1151 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1152 return;
1153
1154 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1155 if (unlikely(PageHuge(page)))
1156 return;
b904dcfe 1157
0fe6e20b 1158 /*
bea04b07
JZ
1159 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1160 * these counters are not modified in interrupt context, and
bea04b07 1161 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1162 */
8186eb6a
JW
1163 if (PageTransHuge(page))
1164 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1165
1166 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1167 -hpage_nr_pages(page));
1168
e6c509f8
HD
1169 if (unlikely(PageMlocked(page)))
1170 clear_page_mlock(page);
8186eb6a 1171
b904dcfe
KM
1172 /*
1173 * It would be tidy to reset the PageAnon mapping here,
1174 * but that might overwrite a racing page_add_anon_rmap
1175 * which increments mapcount after us but sets mapping
1176 * before us: so leave the reset to free_hot_cold_page,
1177 * and remember that it's only reliable while mapped.
1178 * Leaving it set also helps swapoff to reinstate ptes
1179 * faster for those pages still in swapcache.
1180 */
1da177e4
LT
1181}
1182
1183/*
52629506 1184 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1185 */
ac769501 1186static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1187 unsigned long address, void *arg)
1da177e4
LT
1188{
1189 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1190 pte_t *pte;
1191 pte_t pteval;
c0718806 1192 spinlock_t *ptl;
1da177e4 1193 int ret = SWAP_AGAIN;
52629506 1194 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1195
479db0bf 1196 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1197 if (!pte)
81b4082d 1198 goto out;
1da177e4
LT
1199
1200 /*
1201 * If the page is mlock()d, we cannot swap it out.
1202 * If it's recently referenced (perhaps page_referenced
1203 * skipped over this mm) then we should reactivate it.
1204 */
14fa31b8 1205 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1206 if (vma->vm_flags & VM_LOCKED)
1207 goto out_mlock;
1208
daa5ba76 1209 if (flags & TTU_MUNLOCK)
53f79acb 1210 goto out_unmap;
14fa31b8
AK
1211 }
1212 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1213 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1214 ret = SWAP_FAIL;
1215 goto out_unmap;
1216 }
1217 }
1da177e4 1218
1da177e4
LT
1219 /* Nuke the page table entry. */
1220 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1221 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1222
1223 /* Move the dirty bit to the physical page now the pte is gone. */
1224 if (pte_dirty(pteval))
1225 set_page_dirty(page);
1226
365e9c87
HD
1227 /* Update high watermark before we lower rss */
1228 update_hiwater_rss(mm);
1229
888b9f7c 1230 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1231 if (!PageHuge(page)) {
1232 if (PageAnon(page))
1233 dec_mm_counter(mm, MM_ANONPAGES);
1234 else
1235 dec_mm_counter(mm, MM_FILEPAGES);
1236 }
888b9f7c 1237 set_pte_at(mm, address, pte,
5f24ae58 1238 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1239 } else if (pte_unused(pteval)) {
1240 /*
1241 * The guest indicated that the page content is of no
1242 * interest anymore. Simply discard the pte, vmscan
1243 * will take care of the rest.
1244 */
1245 if (PageAnon(page))
1246 dec_mm_counter(mm, MM_ANONPAGES);
1247 else
1248 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1249 } else if (PageAnon(page)) {
4c21e2f2 1250 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1251 pte_t swp_pte;
0697212a
CL
1252
1253 if (PageSwapCache(page)) {
1254 /*
1255 * Store the swap location in the pte.
1256 * See handle_pte_fault() ...
1257 */
570a335b
HD
1258 if (swap_duplicate(entry) < 0) {
1259 set_pte_at(mm, address, pte, pteval);
1260 ret = SWAP_FAIL;
1261 goto out_unmap;
1262 }
0697212a
CL
1263 if (list_empty(&mm->mmlist)) {
1264 spin_lock(&mmlist_lock);
1265 if (list_empty(&mm->mmlist))
1266 list_add(&mm->mmlist, &init_mm.mmlist);
1267 spin_unlock(&mmlist_lock);
1268 }
d559db08 1269 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1270 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1271 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1272 /*
1273 * Store the pfn of the page in a special migration
1274 * pte. do_swap_page() will wait until the migration
1275 * pte is removed and then restart fault handling.
1276 */
daa5ba76 1277 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1278 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1279 }
179ef71c
CG
1280 swp_pte = swp_entry_to_pte(entry);
1281 if (pte_soft_dirty(pteval))
1282 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1283 set_pte_at(mm, address, pte, swp_pte);
ce1744f4 1284 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1285 (flags & TTU_MIGRATION)) {
04e62a29
CL
1286 /* Establish migration entry for a file page */
1287 swp_entry_t entry;
1288 entry = make_migration_entry(page, pte_write(pteval));
1289 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1290 } else
d559db08 1291 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1292
edc315fd 1293 page_remove_rmap(page);
1da177e4
LT
1294 page_cache_release(page);
1295
1296out_unmap:
c0718806 1297 pte_unmap_unlock(pte, ptl);
daa5ba76 1298 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1299 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1300out:
1301 return ret;
53f79acb 1302
caed0f48
KM
1303out_mlock:
1304 pte_unmap_unlock(pte, ptl);
1305
1306
1307 /*
1308 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1309 * unstable result and race. Plus, We can't wait here because
c8c06efa 1310 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1311 * if trylock failed, the page remain in evictable lru and later
1312 * vmscan could retry to move the page to unevictable lru if the
1313 * page is actually mlocked.
1314 */
1315 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1316 if (vma->vm_flags & VM_LOCKED) {
1317 mlock_vma_page(page);
1318 ret = SWAP_MLOCK;
53f79acb 1319 }
caed0f48 1320 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1321 }
1da177e4
LT
1322 return ret;
1323}
1324
71e3aac0 1325bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1326{
1327 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1328
1329 if (!maybe_stack)
1330 return false;
1331
1332 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1333 VM_STACK_INCOMPLETE_SETUP)
1334 return true;
1335
1336 return false;
1337}
1338
52629506
JK
1339static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1340{
1341 return is_vma_temporary_stack(vma);
1342}
1343
52629506
JK
1344static int page_not_mapped(struct page *page)
1345{
1346 return !page_mapped(page);
1347};
1348
1da177e4
LT
1349/**
1350 * try_to_unmap - try to remove all page table mappings to a page
1351 * @page: the page to get unmapped
14fa31b8 1352 * @flags: action and flags
1da177e4
LT
1353 *
1354 * Tries to remove all the page table entries which are mapping this
1355 * page, used in the pageout path. Caller must hold the page lock.
1356 * Return values are:
1357 *
1358 * SWAP_SUCCESS - we succeeded in removing all mappings
1359 * SWAP_AGAIN - we missed a mapping, try again later
1360 * SWAP_FAIL - the page is unswappable
b291f000 1361 * SWAP_MLOCK - page is mlocked.
1da177e4 1362 */
14fa31b8 1363int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1364{
1365 int ret;
52629506
JK
1366 struct rmap_walk_control rwc = {
1367 .rmap_one = try_to_unmap_one,
1368 .arg = (void *)flags,
1369 .done = page_not_mapped,
52629506
JK
1370 .anon_lock = page_lock_anon_vma_read,
1371 };
1da177e4 1372
309381fe 1373 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1374
52629506
JK
1375 /*
1376 * During exec, a temporary VMA is setup and later moved.
1377 * The VMA is moved under the anon_vma lock but not the
1378 * page tables leading to a race where migration cannot
1379 * find the migration ptes. Rather than increasing the
1380 * locking requirements of exec(), migration skips
1381 * temporary VMAs until after exec() completes.
1382 */
daa5ba76 1383 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1384 rwc.invalid_vma = invalid_migration_vma;
1385
1386 ret = rmap_walk(page, &rwc);
1387
b291f000 1388 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1389 ret = SWAP_SUCCESS;
1390 return ret;
1391}
81b4082d 1392
b291f000
NP
1393/**
1394 * try_to_munlock - try to munlock a page
1395 * @page: the page to be munlocked
1396 *
1397 * Called from munlock code. Checks all of the VMAs mapping the page
1398 * to make sure nobody else has this page mlocked. The page will be
1399 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1400 *
1401 * Return values are:
1402 *
53f79acb 1403 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1404 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1405 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1406 * SWAP_MLOCK - page is now mlocked.
1407 */
1408int try_to_munlock(struct page *page)
1409{
e8351ac9
JK
1410 int ret;
1411 struct rmap_walk_control rwc = {
1412 .rmap_one = try_to_unmap_one,
1413 .arg = (void *)TTU_MUNLOCK,
1414 .done = page_not_mapped,
e8351ac9
JK
1415 .anon_lock = page_lock_anon_vma_read,
1416
1417 };
1418
309381fe 1419 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1420
e8351ac9
JK
1421 ret = rmap_walk(page, &rwc);
1422 return ret;
b291f000 1423}
e9995ef9 1424
01d8b20d 1425void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1426{
01d8b20d 1427 struct anon_vma *root = anon_vma->root;
76545066 1428
624483f3 1429 anon_vma_free(anon_vma);
01d8b20d
PZ
1430 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1431 anon_vma_free(root);
76545066 1432}
76545066 1433
0dd1c7bb
JK
1434static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1435 struct rmap_walk_control *rwc)
faecd8dd
JK
1436{
1437 struct anon_vma *anon_vma;
1438
0dd1c7bb
JK
1439 if (rwc->anon_lock)
1440 return rwc->anon_lock(page);
1441
faecd8dd
JK
1442 /*
1443 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1444 * because that depends on page_mapped(); but not all its usages
1445 * are holding mmap_sem. Users without mmap_sem are required to
1446 * take a reference count to prevent the anon_vma disappearing
1447 */
1448 anon_vma = page_anon_vma(page);
1449 if (!anon_vma)
1450 return NULL;
1451
1452 anon_vma_lock_read(anon_vma);
1453 return anon_vma;
1454}
1455
e9995ef9 1456/*
e8351ac9
JK
1457 * rmap_walk_anon - do something to anonymous page using the object-based
1458 * rmap method
1459 * @page: the page to be handled
1460 * @rwc: control variable according to each walk type
1461 *
1462 * Find all the mappings of a page using the mapping pointer and the vma chains
1463 * contained in the anon_vma struct it points to.
1464 *
1465 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1466 * where the page was found will be held for write. So, we won't recheck
1467 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1468 * LOCKED.
e9995ef9 1469 */
051ac83a 1470static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1471{
1472 struct anon_vma *anon_vma;
b258d860 1473 pgoff_t pgoff;
5beb4930 1474 struct anon_vma_chain *avc;
e9995ef9
HD
1475 int ret = SWAP_AGAIN;
1476
0dd1c7bb 1477 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1478 if (!anon_vma)
1479 return ret;
faecd8dd 1480
b258d860 1481 pgoff = page_to_pgoff(page);
bf181b9f 1482 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1483 struct vm_area_struct *vma = avc->vma;
e9995ef9 1484 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1485
1486 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1487 continue;
1488
051ac83a 1489 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1490 if (ret != SWAP_AGAIN)
1491 break;
0dd1c7bb
JK
1492 if (rwc->done && rwc->done(page))
1493 break;
e9995ef9 1494 }
4fc3f1d6 1495 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1496 return ret;
1497}
1498
e8351ac9
JK
1499/*
1500 * rmap_walk_file - do something to file page using the object-based rmap method
1501 * @page: the page to be handled
1502 * @rwc: control variable according to each walk type
1503 *
1504 * Find all the mappings of a page using the mapping pointer and the vma chains
1505 * contained in the address_space struct it points to.
1506 *
1507 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1508 * where the page was found will be held for write. So, we won't recheck
1509 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1510 * LOCKED.
1511 */
051ac83a 1512static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1513{
1514 struct address_space *mapping = page->mapping;
b258d860 1515 pgoff_t pgoff;
e9995ef9 1516 struct vm_area_struct *vma;
e9995ef9
HD
1517 int ret = SWAP_AGAIN;
1518
9f32624b
JK
1519 /*
1520 * The page lock not only makes sure that page->mapping cannot
1521 * suddenly be NULLified by truncation, it makes sure that the
1522 * structure at mapping cannot be freed and reused yet,
c8c06efa 1523 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1524 */
81d1b09c 1525 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1526
e9995ef9
HD
1527 if (!mapping)
1528 return ret;
3dec0ba0 1529
b258d860 1530 pgoff = page_to_pgoff(page);
3dec0ba0 1531 i_mmap_lock_read(mapping);
6b2dbba8 1532 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1533 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1534
1535 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1536 continue;
1537
051ac83a 1538 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1539 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1540 goto done;
1541 if (rwc->done && rwc->done(page))
1542 goto done;
e9995ef9 1543 }
0dd1c7bb 1544
0dd1c7bb 1545done:
3dec0ba0 1546 i_mmap_unlock_read(mapping);
e9995ef9
HD
1547 return ret;
1548}
1549
051ac83a 1550int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1551{
e9995ef9 1552 if (unlikely(PageKsm(page)))
051ac83a 1553 return rmap_walk_ksm(page, rwc);
e9995ef9 1554 else if (PageAnon(page))
051ac83a 1555 return rmap_walk_anon(page, rwc);
e9995ef9 1556 else
051ac83a 1557 return rmap_walk_file(page, rwc);
e9995ef9 1558}
0fe6e20b 1559
e3390f67 1560#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1561/*
1562 * The following three functions are for anonymous (private mapped) hugepages.
1563 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1564 * and no lru code, because we handle hugepages differently from common pages.
1565 */
1566static void __hugepage_set_anon_rmap(struct page *page,
1567 struct vm_area_struct *vma, unsigned long address, int exclusive)
1568{
1569 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1570
0fe6e20b 1571 BUG_ON(!anon_vma);
433abed6
NH
1572
1573 if (PageAnon(page))
1574 return;
1575 if (!exclusive)
1576 anon_vma = anon_vma->root;
1577
0fe6e20b
NH
1578 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1579 page->mapping = (struct address_space *) anon_vma;
1580 page->index = linear_page_index(vma, address);
1581}
1582
1583void hugepage_add_anon_rmap(struct page *page,
1584 struct vm_area_struct *vma, unsigned long address)
1585{
1586 struct anon_vma *anon_vma = vma->anon_vma;
1587 int first;
a850ea30
NH
1588
1589 BUG_ON(!PageLocked(page));
0fe6e20b 1590 BUG_ON(!anon_vma);
5dbe0af4 1591 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1592 first = atomic_inc_and_test(&page->_mapcount);
1593 if (first)
1594 __hugepage_set_anon_rmap(page, vma, address, 0);
1595}
1596
1597void hugepage_add_new_anon_rmap(struct page *page,
1598 struct vm_area_struct *vma, unsigned long address)
1599{
1600 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1601 atomic_set(&page->_mapcount, 0);
1602 __hugepage_set_anon_rmap(page, vma, address, 1);
1603}
e3390f67 1604#endif /* CONFIG_HUGETLB_PAGE */