]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/shmem.c
add f_flags to struct statfs(64)
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
0edd73b3
HD
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
853ac43a
MM
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
1da177e4
LT
20 * This file is released under the GPL.
21 */
22
853ac43a
MM
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
caefba17 27#include <linux/pagemap.h>
853ac43a
MM
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
1da177e4
LT
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
39f0247d 42#include <linux/xattr.h>
a5694255 43#include <linux/exportfs.h>
1c7c474c 44#include <linux/posix_acl.h>
39f0247d 45#include <linux/generic_acl.h>
1da177e4 46#include <linux/mman.h>
1da177e4
LT
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
1da177e4 51#include <linux/writeback.h>
1da177e4
LT
52#include <linux/blkdev.h>
53#include <linux/security.h>
54#include <linux/swapops.h>
55#include <linux/mempolicy.h>
56#include <linux/namei.h>
b00dc3ad 57#include <linux/ctype.h>
304dbdb7 58#include <linux/migrate.h>
c1f60a5a 59#include <linux/highmem.h>
680d794b 60#include <linux/seq_file.h>
92562927 61#include <linux/magic.h>
304dbdb7 62
1da177e4
LT
63#include <asm/uaccess.h>
64#include <asm/div64.h>
65#include <asm/pgtable.h>
66
caefba17
HD
67/*
68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70 *
71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75 *
76 * We use / and * instead of shifts in the definitions below, so that the swap
77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78 */
1da177e4 79#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61609d01 80#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
1da177e4 81
caefba17
HD
82#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
1da177e4 84
caefba17
HD
85#define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86#define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87
88#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
89#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90
91/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92#define SHMEM_PAGEIN VM_READ
93#define SHMEM_TRUNCATE VM_WRITE
94
95/* Definition to limit shmem_truncate's steps between cond_rescheds */
96#define LATENCY_LIMIT 64
97
98/* Pretend that each entry is of this size in directory's i_size */
99#define BOGO_DIRENT_SIZE 20
100
1da177e4
LT
101/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102enum sgp_type {
1da177e4
LT
103 SGP_READ, /* don't exceed i_size, don't allocate page */
104 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 105 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1da177e4
LT
106 SGP_WRITE, /* may exceed i_size, may allocate page */
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b
AM
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
1da177e4
LT
121static int shmem_getpage(struct inode *inode, unsigned long idx,
122 struct page **pagep, enum sgp_type sgp, int *type);
123
6daa0e28 124static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
1da177e4
LT
125{
126 /*
127 * The above definition of ENTRIES_PER_PAGE, and the use of
128 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129 * might be reconsidered if it ever diverges from PAGE_SIZE.
769848c0 130 *
e12ba74d 131 * Mobility flags are masked out as swap vectors cannot move
1da177e4 132 */
e12ba74d 133 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
769848c0 134 PAGE_CACHE_SHIFT-PAGE_SHIFT);
1da177e4
LT
135}
136
137static inline void shmem_dir_free(struct page *page)
138{
139 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140}
141
142static struct page **shmem_dir_map(struct page *page)
143{
144 return (struct page **)kmap_atomic(page, KM_USER0);
145}
146
147static inline void shmem_dir_unmap(struct page **dir)
148{
149 kunmap_atomic(dir, KM_USER0);
150}
151
152static swp_entry_t *shmem_swp_map(struct page *page)
153{
154 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155}
156
157static inline void shmem_swp_balance_unmap(void)
158{
159 /*
160 * When passing a pointer to an i_direct entry, to code which
161 * also handles indirect entries and so will shmem_swp_unmap,
162 * we must arrange for the preempt count to remain in balance.
163 * What kmap_atomic of a lowmem page does depends on config
164 * and architecture, so pretend to kmap_atomic some lowmem page.
165 */
166 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167}
168
169static inline void shmem_swp_unmap(swp_entry_t *entry)
170{
171 kunmap_atomic(entry, KM_USER1);
172}
173
174static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175{
176 return sb->s_fs_info;
177}
178
179/*
180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181 * for shared memory and for shared anonymous (/dev/zero) mappings
182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183 * consistent with the pre-accounting of private mappings ...
184 */
185static inline int shmem_acct_size(unsigned long flags, loff_t size)
186{
0b0a0806
HD
187 return (flags & VM_NORESERVE) ?
188 0 : security_vm_enough_memory_kern(VM_ACCT(size));
1da177e4
LT
189}
190
191static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192{
0b0a0806 193 if (!(flags & VM_NORESERVE))
1da177e4
LT
194 vm_unacct_memory(VM_ACCT(size));
195}
196
197/*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow huge sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203static inline int shmem_acct_block(unsigned long flags)
204{
0b0a0806
HD
205 return (flags & VM_NORESERVE) ?
206 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
0b0a0806 211 if (flags & VM_NORESERVE)
1da177e4
LT
212 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213}
214
759b9775 215static const struct super_operations shmem_ops;
f5e54d6e 216static const struct address_space_operations shmem_aops;
15ad7cdc 217static const struct file_operations shmem_file_operations;
92e1d5be
AV
218static const struct inode_operations shmem_inode_operations;
219static const struct inode_operations shmem_dir_inode_operations;
220static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 221static const struct vm_operations_struct shmem_vm_ops;
1da177e4 222
6c231b7b 223static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 224 .ra_pages = 0, /* No readahead */
4f98a2fe 225 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
226 .unplug_io_fn = default_unplug_io_fn,
227};
228
229static LIST_HEAD(shmem_swaplist);
cb5f7b9a 230static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4
LT
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 235 if (sbinfo->max_blocks) {
1da177e4
LT
236 spin_lock(&sbinfo->stat_lock);
237 sbinfo->free_blocks += pages;
238 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 spin_unlock(&sbinfo->stat_lock);
240 }
241}
242
5b04c689
PE
243static int shmem_reserve_inode(struct super_block *sb)
244{
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 if (!sbinfo->free_inodes) {
249 spin_unlock(&sbinfo->stat_lock);
250 return -ENOSPC;
251 }
252 sbinfo->free_inodes--;
253 spin_unlock(&sbinfo->stat_lock);
254 }
255 return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 if (sbinfo->max_inodes) {
262 spin_lock(&sbinfo->stat_lock);
263 sbinfo->free_inodes++;
264 spin_unlock(&sbinfo->stat_lock);
265 }
266}
267
46711810 268/**
1da177e4 269 * shmem_recalc_inode - recalculate the size of an inode
1da177e4
LT
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 long freed;
284
285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 if (freed > 0) {
287 info->alloced -= freed;
288 shmem_unacct_blocks(info->flags, freed);
289 shmem_free_blocks(inode, freed);
290 }
291}
292
46711810 293/**
1da177e4 294 * shmem_swp_entry - find the swap vector position in the info structure
1da177e4
LT
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
298 * all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * | +-> 20-23
319 * |
320 * +-->dir2 --> 24-27
321 * | +-> 28-31
322 * | +-> 32-35
323 * | +-> 36-39
324 * |
325 * +-->dir3 --> 40-43
326 * +-> 44-47
327 * +-> 48-51
328 * +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332 unsigned long offset;
333 struct page **dir;
334 struct page *subdir;
335
336 if (index < SHMEM_NR_DIRECT) {
337 shmem_swp_balance_unmap();
338 return info->i_direct+index;
339 }
340 if (!info->i_indirect) {
341 if (page) {
342 info->i_indirect = *page;
343 *page = NULL;
344 }
345 return NULL; /* need another page */
346 }
347
348 index -= SHMEM_NR_DIRECT;
349 offset = index % ENTRIES_PER_PAGE;
350 index /= ENTRIES_PER_PAGE;
351 dir = shmem_dir_map(info->i_indirect);
352
353 if (index >= ENTRIES_PER_PAGE/2) {
354 index -= ENTRIES_PER_PAGE/2;
355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 index %= ENTRIES_PER_PAGE;
357 subdir = *dir;
358 if (!subdir) {
359 if (page) {
360 *dir = *page;
361 *page = NULL;
362 }
363 shmem_dir_unmap(dir);
364 return NULL; /* need another page */
365 }
366 shmem_dir_unmap(dir);
367 dir = shmem_dir_map(subdir);
368 }
369
370 dir += index;
371 subdir = *dir;
372 if (!subdir) {
373 if (!page || !(subdir = *page)) {
374 shmem_dir_unmap(dir);
375 return NULL; /* need a page */
376 }
377 *dir = subdir;
378 *page = NULL;
379 }
380 shmem_dir_unmap(dir);
381 return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386 long incdec = value? 1: -1;
387
388 entry->val = value;
389 info->swapped += incdec;
4c21e2f2
HD
390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 struct page *page = kmap_atomic_to_page(entry);
392 set_page_private(page, page_private(page) + incdec);
393 }
1da177e4
LT
394}
395
46711810 396/**
1da177e4 397 * shmem_swp_alloc - get the position of the swap entry for the page.
1da177e4
LT
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
46711810
RD
401 *
402 * If the entry does not exist, allocate it.
1da177e4
LT
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406 struct inode *inode = &info->vfs_inode;
407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 struct page *page = NULL;
409 swp_entry_t *entry;
410
411 if (sgp != SGP_WRITE &&
412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 return ERR_PTR(-EINVAL);
414
415 while (!(entry = shmem_swp_entry(info, index, &page))) {
416 if (sgp == SGP_READ)
417 return shmem_swp_map(ZERO_PAGE(0));
418 /*
419 * Test free_blocks against 1 not 0, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
422 */
0edd73b3 423 if (sbinfo->max_blocks) {
1da177e4
LT
424 spin_lock(&sbinfo->stat_lock);
425 if (sbinfo->free_blocks <= 1) {
426 spin_unlock(&sbinfo->stat_lock);
427 return ERR_PTR(-ENOSPC);
428 }
429 sbinfo->free_blocks--;
430 inode->i_blocks += BLOCKS_PER_PAGE;
431 spin_unlock(&sbinfo->stat_lock);
432 }
433
434 spin_unlock(&info->lock);
769848c0 435 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
1da177e4
LT
436 spin_lock(&info->lock);
437
438 if (!page) {
439 shmem_free_blocks(inode, 1);
440 return ERR_PTR(-ENOMEM);
441 }
442 if (sgp != SGP_WRITE &&
443 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444 entry = ERR_PTR(-EINVAL);
445 break;
446 }
447 if (info->next_index <= index)
448 info->next_index = index + 1;
449 }
450 if (page) {
451 /* another task gave its page, or truncated the file */
452 shmem_free_blocks(inode, 1);
453 shmem_dir_free(page);
454 }
455 if (info->next_index <= index && !IS_ERR(entry))
456 info->next_index = index + 1;
457 return entry;
458}
459
46711810 460/**
1da177e4 461 * shmem_free_swp - free some swap entries in a directory
1ae70006
HD
462 * @dir: pointer to the directory
463 * @edir: pointer after last entry of the directory
464 * @punch_lock: pointer to spinlock when needed for the holepunch case
1da177e4 465 */
1ae70006
HD
466static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467 spinlock_t *punch_lock)
1da177e4 468{
1ae70006 469 spinlock_t *punch_unlock = NULL;
1da177e4
LT
470 swp_entry_t *ptr;
471 int freed = 0;
472
473 for (ptr = dir; ptr < edir; ptr++) {
474 if (ptr->val) {
1ae70006
HD
475 if (unlikely(punch_lock)) {
476 punch_unlock = punch_lock;
477 punch_lock = NULL;
478 spin_lock(punch_unlock);
479 if (!ptr->val)
480 continue;
481 }
1da177e4
LT
482 free_swap_and_cache(*ptr);
483 *ptr = (swp_entry_t){0};
484 freed++;
485 }
486 }
1ae70006
HD
487 if (punch_unlock)
488 spin_unlock(punch_unlock);
1da177e4
LT
489 return freed;
490}
491
1ae70006
HD
492static int shmem_map_and_free_swp(struct page *subdir, int offset,
493 int limit, struct page ***dir, spinlock_t *punch_lock)
1da177e4
LT
494{
495 swp_entry_t *ptr;
496 int freed = 0;
497
498 ptr = shmem_swp_map(subdir);
499 for (; offset < limit; offset += LATENCY_LIMIT) {
500 int size = limit - offset;
501 if (size > LATENCY_LIMIT)
502 size = LATENCY_LIMIT;
1ae70006
HD
503 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504 punch_lock);
1da177e4
LT
505 if (need_resched()) {
506 shmem_swp_unmap(ptr);
507 if (*dir) {
508 shmem_dir_unmap(*dir);
509 *dir = NULL;
510 }
511 cond_resched();
512 ptr = shmem_swp_map(subdir);
513 }
514 }
515 shmem_swp_unmap(ptr);
516 return freed;
517}
518
519static void shmem_free_pages(struct list_head *next)
520{
521 struct page *page;
522 int freed = 0;
523
524 do {
525 page = container_of(next, struct page, lru);
526 next = next->next;
527 shmem_dir_free(page);
528 freed++;
529 if (freed >= LATENCY_LIMIT) {
530 cond_resched();
531 freed = 0;
532 }
533 } while (next);
534}
535
f6b3ec23 536static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
1da177e4
LT
537{
538 struct shmem_inode_info *info = SHMEM_I(inode);
539 unsigned long idx;
540 unsigned long size;
541 unsigned long limit;
542 unsigned long stage;
543 unsigned long diroff;
544 struct page **dir;
545 struct page *topdir;
546 struct page *middir;
547 struct page *subdir;
548 swp_entry_t *ptr;
549 LIST_HEAD(pages_to_free);
550 long nr_pages_to_free = 0;
551 long nr_swaps_freed = 0;
552 int offset;
553 int freed;
a2646d1e 554 int punch_hole;
1ae70006
HD
555 spinlock_t *needs_lock;
556 spinlock_t *punch_lock;
a2646d1e 557 unsigned long upper_limit;
1da177e4
LT
558
559 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
f6b3ec23 560 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
561 if (idx >= info->next_index)
562 return;
563
564 spin_lock(&info->lock);
565 info->flags |= SHMEM_TRUNCATE;
f6b3ec23
BP
566 if (likely(end == (loff_t) -1)) {
567 limit = info->next_index;
a2646d1e 568 upper_limit = SHMEM_MAX_INDEX;
f6b3ec23 569 info->next_index = idx;
1ae70006 570 needs_lock = NULL;
a2646d1e 571 punch_hole = 0;
f6b3ec23 572 } else {
a2646d1e
HD
573 if (end + 1 >= inode->i_size) { /* we may free a little more */
574 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575 PAGE_CACHE_SHIFT;
576 upper_limit = SHMEM_MAX_INDEX;
577 } else {
578 limit = (end + 1) >> PAGE_CACHE_SHIFT;
579 upper_limit = limit;
580 }
1ae70006 581 needs_lock = &info->lock;
f6b3ec23
BP
582 punch_hole = 1;
583 }
584
1da177e4 585 topdir = info->i_indirect;
f6b3ec23 586 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
1da177e4
LT
587 info->i_indirect = NULL;
588 nr_pages_to_free++;
589 list_add(&topdir->lru, &pages_to_free);
590 }
591 spin_unlock(&info->lock);
592
593 if (info->swapped && idx < SHMEM_NR_DIRECT) {
594 ptr = info->i_direct;
595 size = limit;
596 if (size > SHMEM_NR_DIRECT)
597 size = SHMEM_NR_DIRECT;
1ae70006 598 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
1da177e4 599 }
92a3d03a
BP
600
601 /*
602 * If there are no indirect blocks or we are punching a hole
603 * below indirect blocks, nothing to be done.
604 */
a2646d1e 605 if (!topdir || limit <= SHMEM_NR_DIRECT)
1da177e4
LT
606 goto done2;
607
1ae70006
HD
608 /*
609 * The truncation case has already dropped info->lock, and we're safe
610 * because i_size and next_index have already been lowered, preventing
611 * access beyond. But in the punch_hole case, we still need to take
612 * the lock when updating the swap directory, because there might be
613 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614 * shmem_writepage. However, whenever we find we can remove a whole
615 * directory page (not at the misaligned start or end of the range),
616 * we first NULLify its pointer in the level above, and then have no
617 * need to take the lock when updating its contents: needs_lock and
618 * punch_lock (either pointing to info->lock or NULL) manage this.
619 */
620
a2646d1e 621 upper_limit -= SHMEM_NR_DIRECT;
1da177e4
LT
622 limit -= SHMEM_NR_DIRECT;
623 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624 offset = idx % ENTRIES_PER_PAGE;
625 idx -= offset;
626
627 dir = shmem_dir_map(topdir);
628 stage = ENTRIES_PER_PAGEPAGE/2;
629 if (idx < ENTRIES_PER_PAGEPAGE/2) {
630 middir = topdir;
631 diroff = idx/ENTRIES_PER_PAGE;
632 } else {
633 dir += ENTRIES_PER_PAGE/2;
634 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635 while (stage <= idx)
636 stage += ENTRIES_PER_PAGEPAGE;
637 middir = *dir;
638 if (*dir) {
639 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
a2646d1e 641 if (!diroff && !offset && upper_limit >= stage) {
1ae70006
HD
642 if (needs_lock) {
643 spin_lock(needs_lock);
644 *dir = NULL;
645 spin_unlock(needs_lock);
646 needs_lock = NULL;
647 } else
648 *dir = NULL;
1da177e4
LT
649 nr_pages_to_free++;
650 list_add(&middir->lru, &pages_to_free);
651 }
652 shmem_dir_unmap(dir);
653 dir = shmem_dir_map(middir);
654 } else {
655 diroff = 0;
656 offset = 0;
657 idx = stage;
658 }
659 }
660
661 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662 if (unlikely(idx == stage)) {
663 shmem_dir_unmap(dir);
664 dir = shmem_dir_map(topdir) +
665 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666 while (!*dir) {
667 dir++;
668 idx += ENTRIES_PER_PAGEPAGE;
669 if (idx >= limit)
670 goto done1;
671 }
672 stage = idx + ENTRIES_PER_PAGEPAGE;
673 middir = *dir;
1ae70006
HD
674 if (punch_hole)
675 needs_lock = &info->lock;
a2646d1e 676 if (upper_limit >= stage) {
1ae70006
HD
677 if (needs_lock) {
678 spin_lock(needs_lock);
679 *dir = NULL;
680 spin_unlock(needs_lock);
681 needs_lock = NULL;
682 } else
683 *dir = NULL;
a2646d1e
HD
684 nr_pages_to_free++;
685 list_add(&middir->lru, &pages_to_free);
686 }
1da177e4
LT
687 shmem_dir_unmap(dir);
688 cond_resched();
689 dir = shmem_dir_map(middir);
690 diroff = 0;
691 }
1ae70006 692 punch_lock = needs_lock;
1da177e4 693 subdir = dir[diroff];
1ae70006
HD
694 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695 if (needs_lock) {
696 spin_lock(needs_lock);
697 dir[diroff] = NULL;
698 spin_unlock(needs_lock);
699 punch_lock = NULL;
700 } else
701 dir[diroff] = NULL;
702 nr_pages_to_free++;
703 list_add(&subdir->lru, &pages_to_free);
704 }
705 if (subdir && page_private(subdir) /* has swap entries */) {
1da177e4
LT
706 size = limit - idx;
707 if (size > ENTRIES_PER_PAGE)
708 size = ENTRIES_PER_PAGE;
709 freed = shmem_map_and_free_swp(subdir,
1ae70006 710 offset, size, &dir, punch_lock);
1da177e4
LT
711 if (!dir)
712 dir = shmem_dir_map(middir);
713 nr_swaps_freed += freed;
1ae70006 714 if (offset || punch_lock) {
1da177e4 715 spin_lock(&info->lock);
1ae70006
HD
716 set_page_private(subdir,
717 page_private(subdir) - freed);
1da177e4 718 spin_unlock(&info->lock);
1ae70006
HD
719 } else
720 BUG_ON(page_private(subdir) != freed);
1da177e4 721 }
1ae70006 722 offset = 0;
1da177e4
LT
723 }
724done1:
725 shmem_dir_unmap(dir);
726done2:
727 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728 /*
729 * Call truncate_inode_pages again: racing shmem_unuse_inode
3889e6e7 730 * may have swizzled a page in from swap since
731 * truncate_pagecache or generic_delete_inode did it, before we
732 * lowered next_index. Also, though shmem_getpage checks
733 * i_size before adding to cache, no recheck after: so fix the
734 * narrow window there too.
16a10019
HD
735 *
736 * Recalling truncate_inode_pages_range and unmap_mapping_range
737 * every time for punch_hole (which never got a chance to clear
738 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
739 * yet hardly ever necessary: try to optimize them out later.
1da177e4 740 */
f6b3ec23 741 truncate_inode_pages_range(inode->i_mapping, start, end);
16a10019
HD
742 if (punch_hole)
743 unmap_mapping_range(inode->i_mapping, start,
744 end - start, 1);
1da177e4
LT
745 }
746
747 spin_lock(&info->lock);
748 info->flags &= ~SHMEM_TRUNCATE;
749 info->swapped -= nr_swaps_freed;
750 if (nr_pages_to_free)
751 shmem_free_blocks(inode, nr_pages_to_free);
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
754
755 /*
756 * Empty swap vector directory pages to be freed?
757 */
758 if (!list_empty(&pages_to_free)) {
759 pages_to_free.prev->next = NULL;
760 shmem_free_pages(pages_to_free.next);
761 }
762}
763
764static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
765{
766 struct inode *inode = dentry->d_inode;
af5a30d8 767 loff_t newsize = attr->ia_size;
1da177e4
LT
768 int error;
769
db78b877
CH
770 error = inode_change_ok(inode, attr);
771 if (error)
772 return error;
773
af5a30d8
NP
774 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
775 && newsize != inode->i_size) {
3889e6e7 776 struct page *page = NULL;
777
778 if (newsize < inode->i_size) {
1da177e4
LT
779 /*
780 * If truncating down to a partial page, then
781 * if that page is already allocated, hold it
782 * in memory until the truncation is over, so
783 * truncate_partial_page cannnot miss it were
784 * it assigned to swap.
785 */
3889e6e7 786 if (newsize & (PAGE_CACHE_SIZE-1)) {
1da177e4 787 (void) shmem_getpage(inode,
3889e6e7 788 newsize >> PAGE_CACHE_SHIFT,
1da177e4 789 &page, SGP_READ, NULL);
d3602444
HD
790 if (page)
791 unlock_page(page);
1da177e4
LT
792 }
793 /*
794 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
795 * detect if any pages might have been added to cache
796 * after truncate_inode_pages. But we needn't bother
797 * if it's being fully truncated to zero-length: the
798 * nrpages check is efficient enough in that case.
799 */
3889e6e7 800 if (newsize) {
1da177e4
LT
801 struct shmem_inode_info *info = SHMEM_I(inode);
802 spin_lock(&info->lock);
803 info->flags &= ~SHMEM_PAGEIN;
804 spin_unlock(&info->lock);
805 }
806 }
3889e6e7 807
2c27c65e
CH
808 /* XXX(truncate): truncate_setsize should be called last */
809 truncate_setsize(inode, newsize);
3889e6e7 810 if (page)
811 page_cache_release(page);
3889e6e7 812 shmem_truncate_range(inode, newsize, (loff_t)-1);
1da177e4
LT
813 }
814
db78b877 815 setattr_copy(inode, attr);
39f0247d 816#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 817 if (attr->ia_valid & ATTR_MODE)
1c7c474c 818 error = generic_acl_chmod(inode);
39f0247d 819#endif
1da177e4
LT
820 return error;
821}
822
1f895f75 823static void shmem_evict_inode(struct inode *inode)
1da177e4 824{
1da177e4
LT
825 struct shmem_inode_info *info = SHMEM_I(inode);
826
3889e6e7 827 if (inode->i_mapping->a_ops == &shmem_aops) {
fef26658 828 truncate_inode_pages(inode->i_mapping, 0);
1da177e4
LT
829 shmem_unacct_size(info->flags, inode->i_size);
830 inode->i_size = 0;
3889e6e7 831 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 832 if (!list_empty(&info->swaplist)) {
cb5f7b9a 833 mutex_lock(&shmem_swaplist_mutex);
1da177e4 834 list_del_init(&info->swaplist);
cb5f7b9a 835 mutex_unlock(&shmem_swaplist_mutex);
1da177e4
LT
836 }
837 }
0edd73b3 838 BUG_ON(inode->i_blocks);
5b04c689 839 shmem_free_inode(inode->i_sb);
1f895f75 840 end_writeback(inode);
1da177e4
LT
841}
842
843static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
844{
845 swp_entry_t *ptr;
846
847 for (ptr = dir; ptr < edir; ptr++) {
848 if (ptr->val == entry.val)
849 return ptr - dir;
850 }
851 return -1;
852}
853
854static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
855{
856 struct inode *inode;
857 unsigned long idx;
858 unsigned long size;
859 unsigned long limit;
860 unsigned long stage;
861 struct page **dir;
862 struct page *subdir;
863 swp_entry_t *ptr;
864 int offset;
d9fe526a 865 int error;
1da177e4
LT
866
867 idx = 0;
868 ptr = info->i_direct;
869 spin_lock(&info->lock);
1b1b32f2
HD
870 if (!info->swapped) {
871 list_del_init(&info->swaplist);
872 goto lost2;
873 }
1da177e4
LT
874 limit = info->next_index;
875 size = limit;
876 if (size > SHMEM_NR_DIRECT)
877 size = SHMEM_NR_DIRECT;
878 offset = shmem_find_swp(entry, ptr, ptr+size);
2e0e26c7 879 if (offset >= 0)
1da177e4 880 goto found;
1da177e4
LT
881 if (!info->i_indirect)
882 goto lost2;
883
884 dir = shmem_dir_map(info->i_indirect);
885 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
886
887 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
888 if (unlikely(idx == stage)) {
889 shmem_dir_unmap(dir-1);
cb5f7b9a
HD
890 if (cond_resched_lock(&info->lock)) {
891 /* check it has not been truncated */
892 if (limit > info->next_index) {
893 limit = info->next_index;
894 if (idx >= limit)
895 goto lost2;
896 }
897 }
1da177e4
LT
898 dir = shmem_dir_map(info->i_indirect) +
899 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
900 while (!*dir) {
901 dir++;
902 idx += ENTRIES_PER_PAGEPAGE;
903 if (idx >= limit)
904 goto lost1;
905 }
906 stage = idx + ENTRIES_PER_PAGEPAGE;
907 subdir = *dir;
908 shmem_dir_unmap(dir);
909 dir = shmem_dir_map(subdir);
910 }
911 subdir = *dir;
4c21e2f2 912 if (subdir && page_private(subdir)) {
1da177e4
LT
913 ptr = shmem_swp_map(subdir);
914 size = limit - idx;
915 if (size > ENTRIES_PER_PAGE)
916 size = ENTRIES_PER_PAGE;
917 offset = shmem_find_swp(entry, ptr, ptr+size);
2e0e26c7 918 shmem_swp_unmap(ptr);
1da177e4
LT
919 if (offset >= 0) {
920 shmem_dir_unmap(dir);
921 goto found;
922 }
1da177e4
LT
923 }
924 }
925lost1:
926 shmem_dir_unmap(dir-1);
927lost2:
928 spin_unlock(&info->lock);
929 return 0;
930found:
931 idx += offset;
2e0e26c7
HD
932 inode = igrab(&info->vfs_inode);
933 spin_unlock(&info->lock);
934
1b1b32f2
HD
935 /*
936 * Move _head_ to start search for next from here.
1f895f75 937 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2
HD
938 * mutex, and there's an instant in list_move_tail when info->swaplist
939 * would appear empty, if it were the only one on shmem_swaplist. We
940 * could avoid doing it if inode NULL; or use this minor optimization.
941 */
942 if (shmem_swaplist.next != &info->swaplist)
943 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7
HD
944 mutex_unlock(&shmem_swaplist_mutex);
945
946 error = 1;
947 if (!inode)
948 goto out;
d13d1443 949 /*
b5a84319
KH
950 * Charge page using GFP_KERNEL while we can wait.
951 * Charged back to the user(not to caller) when swap account is used.
952 * add_to_page_cache() will be called with GFP_NOWAIT.
d13d1443 953 */
82369553 954 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
b409f9fc
HD
955 if (error)
956 goto out;
82369553 957 error = radix_tree_preload(GFP_KERNEL);
69029cd5
KH
958 if (error) {
959 mem_cgroup_uncharge_cache_page(page);
960 goto out;
961 }
b409f9fc 962 error = 1;
2e0e26c7
HD
963
964 spin_lock(&info->lock);
965 ptr = shmem_swp_entry(info, idx, NULL);
69029cd5 966 if (ptr && ptr->val == entry.val) {
e286781d 967 error = add_to_page_cache_locked(page, inode->i_mapping,
b409f9fc 968 idx, GFP_NOWAIT);
69029cd5
KH
969 /* does mem_cgroup_uncharge_cache_page on error */
970 } else /* we must compensate for our precharge above */
971 mem_cgroup_uncharge_cache_page(page);
972
d9fe526a
HD
973 if (error == -EEXIST) {
974 struct page *filepage = find_get_page(inode->i_mapping, idx);
2e0e26c7 975 error = 1;
d9fe526a
HD
976 if (filepage) {
977 /*
978 * There might be a more uptodate page coming down
979 * from a stacked writepage: forget our swappage if so.
980 */
981 if (PageUptodate(filepage))
982 error = 0;
983 page_cache_release(filepage);
984 }
985 }
986 if (!error) {
73b1262f
HD
987 delete_from_swap_cache(page);
988 set_page_dirty(page);
1da177e4 989 info->flags |= SHMEM_PAGEIN;
2e0e26c7
HD
990 shmem_swp_set(info, ptr, 0);
991 swap_free(entry);
992 error = 1; /* not an error, but entry was found */
1da177e4 993 }
2e0e26c7
HD
994 if (ptr)
995 shmem_swp_unmap(ptr);
1da177e4 996 spin_unlock(&info->lock);
b409f9fc 997 radix_tree_preload_end();
2e0e26c7
HD
998out:
999 unlock_page(page);
1000 page_cache_release(page);
1001 iput(inode); /* allows for NULL */
1002 return error;
1da177e4
LT
1003}
1004
1005/*
1006 * shmem_unuse() search for an eventually swapped out shmem page.
1007 */
1008int shmem_unuse(swp_entry_t entry, struct page *page)
1009{
1010 struct list_head *p, *next;
1011 struct shmem_inode_info *info;
1012 int found = 0;
1013
cb5f7b9a 1014 mutex_lock(&shmem_swaplist_mutex);
1da177e4
LT
1015 list_for_each_safe(p, next, &shmem_swaplist) {
1016 info = list_entry(p, struct shmem_inode_info, swaplist);
1b1b32f2 1017 found = shmem_unuse_inode(info, entry, page);
cb5f7b9a 1018 cond_resched();
2e0e26c7
HD
1019 if (found)
1020 goto out;
1da177e4 1021 }
cb5f7b9a 1022 mutex_unlock(&shmem_swaplist_mutex);
aaa46865
HD
1023 /*
1024 * Can some race bring us here? We've been holding page lock,
1025 * so I think not; but would rather try again later than BUG()
1026 */
1027 unlock_page(page);
1028 page_cache_release(page);
1029out:
1030 return (found < 0) ? found : 0;
1da177e4
LT
1031}
1032
1033/*
1034 * Move the page from the page cache to the swap cache.
1035 */
1036static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1037{
1038 struct shmem_inode_info *info;
1039 swp_entry_t *entry, swap;
1040 struct address_space *mapping;
1041 unsigned long index;
1042 struct inode *inode;
1043
1044 BUG_ON(!PageLocked(page));
1da177e4
LT
1045 mapping = page->mapping;
1046 index = page->index;
1047 inode = mapping->host;
1048 info = SHMEM_I(inode);
1049 if (info->flags & VM_LOCKED)
1050 goto redirty;
d9fe526a 1051 if (!total_swap_pages)
1da177e4
LT
1052 goto redirty;
1053
d9fe526a
HD
1054 /*
1055 * shmem_backing_dev_info's capabilities prevent regular writeback or
1056 * sync from ever calling shmem_writepage; but a stacking filesystem
1057 * may use the ->writepage of its underlying filesystem, in which case
1058 * tmpfs should write out to swap only in response to memory pressure,
5b0830cb
JA
1059 * and not for the writeback threads or sync. However, in those cases,
1060 * we do still want to check if there's a redundant swappage to be
1061 * discarded.
d9fe526a
HD
1062 */
1063 if (wbc->for_reclaim)
1064 swap = get_swap_page();
1065 else
1066 swap.val = 0;
1067
1da177e4 1068 spin_lock(&info->lock);
1da177e4
LT
1069 if (index >= info->next_index) {
1070 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1071 goto unlock;
1072 }
1073 entry = shmem_swp_entry(info, index, NULL);
d9fe526a
HD
1074 if (entry->val) {
1075 /*
1076 * The more uptodate page coming down from a stacked
1077 * writepage should replace our old swappage.
1078 */
1079 free_swap_and_cache(*entry);
1080 shmem_swp_set(info, entry, 0);
1081 }
1082 shmem_recalc_inode(inode);
1da177e4 1083
d9fe526a 1084 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
73b1262f 1085 remove_from_page_cache(page);
1da177e4
LT
1086 shmem_swp_set(info, entry, swap.val);
1087 shmem_swp_unmap(entry);
1b1b32f2
HD
1088 if (list_empty(&info->swaplist))
1089 inode = igrab(inode);
1090 else
1091 inode = NULL;
1da177e4 1092 spin_unlock(&info->lock);
aaa46865 1093 swap_shmem_alloc(swap);
d9fe526a 1094 BUG_ON(page_mapped(page));
73b1262f 1095 page_cache_release(page); /* pagecache ref */
9fab5619 1096 swap_writepage(page, wbc);
1b1b32f2
HD
1097 if (inode) {
1098 mutex_lock(&shmem_swaplist_mutex);
1099 /* move instead of add in case we're racing */
1100 list_move_tail(&info->swaplist, &shmem_swaplist);
1101 mutex_unlock(&shmem_swaplist_mutex);
1102 iput(inode);
1103 }
1da177e4
LT
1104 return 0;
1105 }
1106
1107 shmem_swp_unmap(entry);
1108unlock:
1109 spin_unlock(&info->lock);
2ca4532a
DN
1110 /*
1111 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1112 * clear SWAP_HAS_CACHE flag.
1113 */
cb4b86ba 1114 swapcache_free(swap, NULL);
1da177e4
LT
1115redirty:
1116 set_page_dirty(page);
d9fe526a
HD
1117 if (wbc->for_reclaim)
1118 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1119 unlock_page(page);
1120 return 0;
1da177e4
LT
1121}
1122
1123#ifdef CONFIG_NUMA
680d794b 1124#ifdef CONFIG_TMPFS
71fe804b 1125static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1126{
095f1fc4 1127 char buffer[64];
680d794b 1128
71fe804b 1129 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1130 return; /* show nothing */
680d794b 1131
71fe804b 1132 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
1133
1134 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1135}
71fe804b
LS
1136
1137static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1138{
1139 struct mempolicy *mpol = NULL;
1140 if (sbinfo->mpol) {
1141 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1142 mpol = sbinfo->mpol;
1143 mpol_get(mpol);
1144 spin_unlock(&sbinfo->stat_lock);
1145 }
1146 return mpol;
1147}
680d794b
AM
1148#endif /* CONFIG_TMPFS */
1149
02098fea
HD
1150static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1151 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1152{
52cd3b07 1153 struct mempolicy mpol, *spol;
1da177e4 1154 struct vm_area_struct pvma;
c4cc6d07 1155 struct page *page;
1da177e4 1156
52cd3b07
LS
1157 spol = mpol_cond_copy(&mpol,
1158 mpol_shared_policy_lookup(&info->policy, idx));
1159
1da177e4 1160 /* Create a pseudo vma that just contains the policy */
c4cc6d07 1161 pvma.vm_start = 0;
1da177e4 1162 pvma.vm_pgoff = idx;
c4cc6d07 1163 pvma.vm_ops = NULL;
52cd3b07 1164 pvma.vm_policy = spol;
02098fea 1165 page = swapin_readahead(entry, gfp, &pvma, 0);
1da177e4
LT
1166 return page;
1167}
1168
02098fea
HD
1169static struct page *shmem_alloc_page(gfp_t gfp,
1170 struct shmem_inode_info *info, unsigned long idx)
1da177e4
LT
1171{
1172 struct vm_area_struct pvma;
1da177e4 1173
c4cc6d07
HD
1174 /* Create a pseudo vma that just contains the policy */
1175 pvma.vm_start = 0;
1da177e4 1176 pvma.vm_pgoff = idx;
c4cc6d07
HD
1177 pvma.vm_ops = NULL;
1178 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
52cd3b07
LS
1179
1180 /*
1181 * alloc_page_vma() will drop the shared policy reference
1182 */
1183 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 1184}
680d794b
AM
1185#else /* !CONFIG_NUMA */
1186#ifdef CONFIG_TMPFS
71fe804b 1187static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
680d794b
AM
1188{
1189}
1190#endif /* CONFIG_TMPFS */
1191
02098fea
HD
1192static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1193 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1194{
02098fea 1195 return swapin_readahead(entry, gfp, NULL, 0);
1da177e4
LT
1196}
1197
02098fea
HD
1198static inline struct page *shmem_alloc_page(gfp_t gfp,
1199 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1200{
e84e2e13 1201 return alloc_page(gfp);
1da177e4 1202}
680d794b 1203#endif /* CONFIG_NUMA */
1da177e4 1204
71fe804b
LS
1205#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1206static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1207{
1208 return NULL;
1209}
1210#endif
1211
1da177e4
LT
1212/*
1213 * shmem_getpage - either get the page from swap or allocate a new one
1214 *
1215 * If we allocate a new one we do not mark it dirty. That's up to the
1216 * vm. If we swap it in we mark it dirty since we also free the swap
1217 * entry since a page cannot live in both the swap and page cache
1218 */
1219static int shmem_getpage(struct inode *inode, unsigned long idx,
1220 struct page **pagep, enum sgp_type sgp, int *type)
1221{
1222 struct address_space *mapping = inode->i_mapping;
1223 struct shmem_inode_info *info = SHMEM_I(inode);
1224 struct shmem_sb_info *sbinfo;
1225 struct page *filepage = *pagep;
1226 struct page *swappage;
1227 swp_entry_t *entry;
1228 swp_entry_t swap;
02098fea 1229 gfp_t gfp;
1da177e4
LT
1230 int error;
1231
1232 if (idx >= SHMEM_MAX_INDEX)
1233 return -EFBIG;
54cb8821
NP
1234
1235 if (type)
83c54070 1236 *type = 0;
54cb8821 1237
1da177e4
LT
1238 /*
1239 * Normally, filepage is NULL on entry, and either found
1240 * uptodate immediately, or allocated and zeroed, or read
1241 * in under swappage, which is then assigned to filepage.
5402b976 1242 * But shmem_readpage (required for splice) passes in a locked
ae976416
HD
1243 * filepage, which may be found not uptodate by other callers
1244 * too, and may need to be copied from the swappage read in.
1da177e4
LT
1245 */
1246repeat:
1247 if (!filepage)
1248 filepage = find_lock_page(mapping, idx);
1249 if (filepage && PageUptodate(filepage))
1250 goto done;
1251 error = 0;
02098fea 1252 gfp = mapping_gfp_mask(mapping);
b409f9fc
HD
1253 if (!filepage) {
1254 /*
1255 * Try to preload while we can wait, to not make a habit of
1256 * draining atomic reserves; but don't latch on to this cpu.
1257 */
1258 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1259 if (error)
1260 goto failed;
1261 radix_tree_preload_end();
1262 }
1da177e4
LT
1263
1264 spin_lock(&info->lock);
1265 shmem_recalc_inode(inode);
1266 entry = shmem_swp_alloc(info, idx, sgp);
1267 if (IS_ERR(entry)) {
1268 spin_unlock(&info->lock);
1269 error = PTR_ERR(entry);
1270 goto failed;
1271 }
1272 swap = *entry;
1273
1274 if (swap.val) {
1275 /* Look it up and read it in.. */
1276 swappage = lookup_swap_cache(swap);
1277 if (!swappage) {
1278 shmem_swp_unmap(entry);
1da177e4 1279 /* here we actually do the io */
83c54070 1280 if (type && !(*type & VM_FAULT_MAJOR)) {
f8891e5e 1281 __count_vm_event(PGMAJFAULT);
83c54070 1282 *type |= VM_FAULT_MAJOR;
1da177e4 1283 }
f8891e5e 1284 spin_unlock(&info->lock);
02098fea 1285 swappage = shmem_swapin(swap, gfp, info, idx);
1da177e4
LT
1286 if (!swappage) {
1287 spin_lock(&info->lock);
1288 entry = shmem_swp_alloc(info, idx, sgp);
1289 if (IS_ERR(entry))
1290 error = PTR_ERR(entry);
1291 else {
1292 if (entry->val == swap.val)
1293 error = -ENOMEM;
1294 shmem_swp_unmap(entry);
1295 }
1296 spin_unlock(&info->lock);
1297 if (error)
1298 goto failed;
1299 goto repeat;
1300 }
1301 wait_on_page_locked(swappage);
1302 page_cache_release(swappage);
1303 goto repeat;
1304 }
1305
1306 /* We have to do this with page locked to prevent races */
529ae9aa 1307 if (!trylock_page(swappage)) {
1da177e4
LT
1308 shmem_swp_unmap(entry);
1309 spin_unlock(&info->lock);
1310 wait_on_page_locked(swappage);
1311 page_cache_release(swappage);
1312 goto repeat;
1313 }
1314 if (PageWriteback(swappage)) {
1315 shmem_swp_unmap(entry);
1316 spin_unlock(&info->lock);
1317 wait_on_page_writeback(swappage);
1318 unlock_page(swappage);
1319 page_cache_release(swappage);
1320 goto repeat;
1321 }
1322 if (!PageUptodate(swappage)) {
1323 shmem_swp_unmap(entry);
1324 spin_unlock(&info->lock);
1325 unlock_page(swappage);
1326 page_cache_release(swappage);
1327 error = -EIO;
1328 goto failed;
1329 }
1330
1331 if (filepage) {
1332 shmem_swp_set(info, entry, 0);
1333 shmem_swp_unmap(entry);
1334 delete_from_swap_cache(swappage);
1335 spin_unlock(&info->lock);
1336 copy_highpage(filepage, swappage);
1337 unlock_page(swappage);
1338 page_cache_release(swappage);
1339 flush_dcache_page(filepage);
1340 SetPageUptodate(filepage);
1341 set_page_dirty(filepage);
1342 swap_free(swap);
e286781d
NP
1343 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1344 idx, GFP_NOWAIT))) {
1da177e4
LT
1345 info->flags |= SHMEM_PAGEIN;
1346 shmem_swp_set(info, entry, 0);
1347 shmem_swp_unmap(entry);
73b1262f 1348 delete_from_swap_cache(swappage);
1da177e4
LT
1349 spin_unlock(&info->lock);
1350 filepage = swappage;
73b1262f 1351 set_page_dirty(filepage);
1da177e4
LT
1352 swap_free(swap);
1353 } else {
1354 shmem_swp_unmap(entry);
1355 spin_unlock(&info->lock);
82369553 1356 if (error == -ENOMEM) {
ae3abae6
DN
1357 /*
1358 * reclaim from proper memory cgroup and
1359 * call memcg's OOM if needed.
1360 */
1361 error = mem_cgroup_shmem_charge_fallback(
1362 swappage,
b5a84319 1363 current->mm,
c9b0ed51 1364 gfp);
b5a84319
KH
1365 if (error) {
1366 unlock_page(swappage);
1367 page_cache_release(swappage);
82369553 1368 goto failed;
b5a84319 1369 }
82369553 1370 }
b5a84319
KH
1371 unlock_page(swappage);
1372 page_cache_release(swappage);
1da177e4
LT
1373 goto repeat;
1374 }
1375 } else if (sgp == SGP_READ && !filepage) {
1376 shmem_swp_unmap(entry);
1377 filepage = find_get_page(mapping, idx);
1378 if (filepage &&
529ae9aa 1379 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1da177e4
LT
1380 spin_unlock(&info->lock);
1381 wait_on_page_locked(filepage);
1382 page_cache_release(filepage);
1383 filepage = NULL;
1384 goto repeat;
1385 }
1386 spin_unlock(&info->lock);
1387 } else {
1388 shmem_swp_unmap(entry);
1389 sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 1390 if (sbinfo->max_blocks) {
1da177e4
LT
1391 spin_lock(&sbinfo->stat_lock);
1392 if (sbinfo->free_blocks == 0 ||
1393 shmem_acct_block(info->flags)) {
1394 spin_unlock(&sbinfo->stat_lock);
1395 spin_unlock(&info->lock);
1396 error = -ENOSPC;
1397 goto failed;
1398 }
1399 sbinfo->free_blocks--;
1400 inode->i_blocks += BLOCKS_PER_PAGE;
1401 spin_unlock(&sbinfo->stat_lock);
1402 } else if (shmem_acct_block(info->flags)) {
1403 spin_unlock(&info->lock);
1404 error = -ENOSPC;
1405 goto failed;
1406 }
1407
1408 if (!filepage) {
69029cd5
KH
1409 int ret;
1410
1da177e4 1411 spin_unlock(&info->lock);
02098fea 1412 filepage = shmem_alloc_page(gfp, info, idx);
1da177e4
LT
1413 if (!filepage) {
1414 shmem_unacct_blocks(info->flags, 1);
1415 shmem_free_blocks(inode, 1);
1416 error = -ENOMEM;
1417 goto failed;
1418 }
b2e18538 1419 SetPageSwapBacked(filepage);
1da177e4 1420
82369553
HD
1421 /* Precharge page while we can wait, compensate after */
1422 error = mem_cgroup_cache_charge(filepage, current->mm,
2c26fdd7 1423 GFP_KERNEL);
82369553
HD
1424 if (error) {
1425 page_cache_release(filepage);
1426 shmem_unacct_blocks(info->flags, 1);
1427 shmem_free_blocks(inode, 1);
1428 filepage = NULL;
1429 goto failed;
1430 }
1431
1da177e4
LT
1432 spin_lock(&info->lock);
1433 entry = shmem_swp_alloc(info, idx, sgp);
1434 if (IS_ERR(entry))
1435 error = PTR_ERR(entry);
1436 else {
1437 swap = *entry;
1438 shmem_swp_unmap(entry);
1439 }
69029cd5
KH
1440 ret = error || swap.val;
1441 if (ret)
1442 mem_cgroup_uncharge_cache_page(filepage);
1443 else
1444 ret = add_to_page_cache_lru(filepage, mapping,
1445 idx, GFP_NOWAIT);
1446 /*
1447 * At add_to_page_cache_lru() failure, uncharge will
1448 * be done automatically.
1449 */
1450 if (ret) {
1da177e4
LT
1451 spin_unlock(&info->lock);
1452 page_cache_release(filepage);
1453 shmem_unacct_blocks(info->flags, 1);
1454 shmem_free_blocks(inode, 1);
1455 filepage = NULL;
1456 if (error)
1457 goto failed;
1458 goto repeat;
1459 }
1460 info->flags |= SHMEM_PAGEIN;
1461 }
1462
1463 info->alloced++;
1464 spin_unlock(&info->lock);
e84e2e13 1465 clear_highpage(filepage);
1da177e4
LT
1466 flush_dcache_page(filepage);
1467 SetPageUptodate(filepage);
a0ee5ec5
HD
1468 if (sgp == SGP_DIRTY)
1469 set_page_dirty(filepage);
1da177e4
LT
1470 }
1471done:
d3602444 1472 *pagep = filepage;
1da177e4
LT
1473 return 0;
1474
1475failed:
1476 if (*pagep != filepage) {
1477 unlock_page(filepage);
1478 page_cache_release(filepage);
1479 }
1480 return error;
1481}
1482
d0217ac0 1483static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1484{
d3ac7f89 1485 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1486 int error;
d0217ac0 1487 int ret;
1da177e4 1488
d0217ac0
NP
1489 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1490 return VM_FAULT_SIGBUS;
d00806b1 1491
27d54b39 1492 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1493 if (error)
1494 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1da177e4 1495
83c54070 1496 return ret | VM_FAULT_LOCKED;
1da177e4
LT
1497}
1498
1da177e4 1499#ifdef CONFIG_NUMA
d8dc74f2 1500static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1da177e4 1501{
d3ac7f89 1502 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1503 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1504}
1505
d8dc74f2
AB
1506static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1507 unsigned long addr)
1da177e4 1508{
d3ac7f89 1509 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1510 unsigned long idx;
1511
1512 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1513 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1514}
1515#endif
1516
1517int shmem_lock(struct file *file, int lock, struct user_struct *user)
1518{
d3ac7f89 1519 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1520 struct shmem_inode_info *info = SHMEM_I(inode);
1521 int retval = -ENOMEM;
1522
1523 spin_lock(&info->lock);
1524 if (lock && !(info->flags & VM_LOCKED)) {
1525 if (!user_shm_lock(inode->i_size, user))
1526 goto out_nomem;
1527 info->flags |= VM_LOCKED;
89e004ea 1528 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1529 }
1530 if (!lock && (info->flags & VM_LOCKED) && user) {
1531 user_shm_unlock(inode->i_size, user);
1532 info->flags &= ~VM_LOCKED;
89e004ea
LS
1533 mapping_clear_unevictable(file->f_mapping);
1534 scan_mapping_unevictable_pages(file->f_mapping);
1da177e4
LT
1535 }
1536 retval = 0;
89e004ea 1537
1da177e4
LT
1538out_nomem:
1539 spin_unlock(&info->lock);
1540 return retval;
1541}
1542
9b83a6a8 1543static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1544{
1545 file_accessed(file);
1546 vma->vm_ops = &shmem_vm_ops;
d0217ac0 1547 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1548 return 0;
1549}
1550
454abafe
DM
1551static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1552 int mode, dev_t dev, unsigned long flags)
1da177e4
LT
1553{
1554 struct inode *inode;
1555 struct shmem_inode_info *info;
1556 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1557
5b04c689
PE
1558 if (shmem_reserve_inode(sb))
1559 return NULL;
1da177e4
LT
1560
1561 inode = new_inode(sb);
1562 if (inode) {
454abafe 1563 inode_init_owner(inode, dir, mode);
1da177e4 1564 inode->i_blocks = 0;
1da177e4
LT
1565 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1566 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1567 inode->i_generation = get_seconds();
1da177e4
LT
1568 info = SHMEM_I(inode);
1569 memset(info, 0, (char *)inode - (char *)info);
1570 spin_lock_init(&info->lock);
0b0a0806 1571 info->flags = flags & VM_NORESERVE;
1da177e4 1572 INIT_LIST_HEAD(&info->swaplist);
72c04902 1573 cache_no_acl(inode);
1da177e4
LT
1574
1575 switch (mode & S_IFMT) {
1576 default:
39f0247d 1577 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1578 init_special_inode(inode, mode, dev);
1579 break;
1580 case S_IFREG:
14fcc23f 1581 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1582 inode->i_op = &shmem_inode_operations;
1583 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1584 mpol_shared_policy_init(&info->policy,
1585 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1586 break;
1587 case S_IFDIR:
d8c76e6f 1588 inc_nlink(inode);
1da177e4
LT
1589 /* Some things misbehave if size == 0 on a directory */
1590 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1591 inode->i_op = &shmem_dir_inode_operations;
1592 inode->i_fop = &simple_dir_operations;
1593 break;
1594 case S_IFLNK:
1595 /*
1596 * Must not load anything in the rbtree,
1597 * mpol_free_shared_policy will not be called.
1598 */
71fe804b 1599 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1600 break;
1601 }
5b04c689
PE
1602 } else
1603 shmem_free_inode(sb);
1da177e4
LT
1604 return inode;
1605}
1606
1607#ifdef CONFIG_TMPFS
92e1d5be
AV
1608static const struct inode_operations shmem_symlink_inode_operations;
1609static const struct inode_operations shmem_symlink_inline_operations;
1da177e4
LT
1610
1611/*
800d15a5 1612 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
ae976416
HD
1613 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1614 * below the loop driver, in the generic fashion that many filesystems support.
1da177e4 1615 */
ae976416
HD
1616static int shmem_readpage(struct file *file, struct page *page)
1617{
1618 struct inode *inode = page->mapping->host;
1619 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1620 unlock_page(page);
1621 return error;
1622}
1623
1da177e4 1624static int
800d15a5
NP
1625shmem_write_begin(struct file *file, struct address_space *mapping,
1626 loff_t pos, unsigned len, unsigned flags,
1627 struct page **pagep, void **fsdata)
1da177e4 1628{
800d15a5
NP
1629 struct inode *inode = mapping->host;
1630 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1631 *pagep = NULL;
1632 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1633}
1634
1635static int
1636shmem_write_end(struct file *file, struct address_space *mapping,
1637 loff_t pos, unsigned len, unsigned copied,
1638 struct page *page, void *fsdata)
1639{
1640 struct inode *inode = mapping->host;
1641
d3602444
HD
1642 if (pos + copied > inode->i_size)
1643 i_size_write(inode, pos + copied);
1644
800d15a5 1645 set_page_dirty(page);
6746aff7 1646 unlock_page(page);
800d15a5
NP
1647 page_cache_release(page);
1648
800d15a5 1649 return copied;
1da177e4
LT
1650}
1651
1da177e4
LT
1652static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1653{
d3ac7f89 1654 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4
LT
1655 struct address_space *mapping = inode->i_mapping;
1656 unsigned long index, offset;
a0ee5ec5
HD
1657 enum sgp_type sgp = SGP_READ;
1658
1659 /*
1660 * Might this read be for a stacking filesystem? Then when reading
1661 * holes of a sparse file, we actually need to allocate those pages,
1662 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1663 */
1664 if (segment_eq(get_fs(), KERNEL_DS))
1665 sgp = SGP_DIRTY;
1da177e4
LT
1666
1667 index = *ppos >> PAGE_CACHE_SHIFT;
1668 offset = *ppos & ~PAGE_CACHE_MASK;
1669
1670 for (;;) {
1671 struct page *page = NULL;
1672 unsigned long end_index, nr, ret;
1673 loff_t i_size = i_size_read(inode);
1674
1675 end_index = i_size >> PAGE_CACHE_SHIFT;
1676 if (index > end_index)
1677 break;
1678 if (index == end_index) {
1679 nr = i_size & ~PAGE_CACHE_MASK;
1680 if (nr <= offset)
1681 break;
1682 }
1683
a0ee5ec5 1684 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1685 if (desc->error) {
1686 if (desc->error == -EINVAL)
1687 desc->error = 0;
1688 break;
1689 }
d3602444
HD
1690 if (page)
1691 unlock_page(page);
1da177e4
LT
1692
1693 /*
1694 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1695 * are called without i_mutex protection against truncate
1da177e4
LT
1696 */
1697 nr = PAGE_CACHE_SIZE;
1698 i_size = i_size_read(inode);
1699 end_index = i_size >> PAGE_CACHE_SHIFT;
1700 if (index == end_index) {
1701 nr = i_size & ~PAGE_CACHE_MASK;
1702 if (nr <= offset) {
1703 if (page)
1704 page_cache_release(page);
1705 break;
1706 }
1707 }
1708 nr -= offset;
1709
1710 if (page) {
1711 /*
1712 * If users can be writing to this page using arbitrary
1713 * virtual addresses, take care about potential aliasing
1714 * before reading the page on the kernel side.
1715 */
1716 if (mapping_writably_mapped(mapping))
1717 flush_dcache_page(page);
1718 /*
1719 * Mark the page accessed if we read the beginning.
1720 */
1721 if (!offset)
1722 mark_page_accessed(page);
b5810039 1723 } else {
1da177e4 1724 page = ZERO_PAGE(0);
b5810039
NP
1725 page_cache_get(page);
1726 }
1da177e4
LT
1727
1728 /*
1729 * Ok, we have the page, and it's up-to-date, so
1730 * now we can copy it to user space...
1731 *
1732 * The actor routine returns how many bytes were actually used..
1733 * NOTE! This may not be the same as how much of a user buffer
1734 * we filled up (we may be padding etc), so we can only update
1735 * "pos" here (the actor routine has to update the user buffer
1736 * pointers and the remaining count).
1737 */
1738 ret = actor(desc, page, offset, nr);
1739 offset += ret;
1740 index += offset >> PAGE_CACHE_SHIFT;
1741 offset &= ~PAGE_CACHE_MASK;
1742
1743 page_cache_release(page);
1744 if (ret != nr || !desc->count)
1745 break;
1746
1747 cond_resched();
1748 }
1749
1750 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1751 file_accessed(filp);
1752}
1753
bcd78e49
HD
1754static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1755 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1756{
1757 struct file *filp = iocb->ki_filp;
1758 ssize_t retval;
1759 unsigned long seg;
1760 size_t count;
1761 loff_t *ppos = &iocb->ki_pos;
1762
1763 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1764 if (retval)
1765 return retval;
1766
1767 for (seg = 0; seg < nr_segs; seg++) {
1768 read_descriptor_t desc;
1769
1770 desc.written = 0;
1771 desc.arg.buf = iov[seg].iov_base;
1772 desc.count = iov[seg].iov_len;
1773 if (desc.count == 0)
1774 continue;
1775 desc.error = 0;
1776 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1777 retval += desc.written;
1778 if (desc.error) {
1779 retval = retval ?: desc.error;
1780 break;
1781 }
1782 if (desc.count > 0)
1783 break;
1784 }
1785 return retval;
1da177e4
LT
1786}
1787
726c3342 1788static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1789{
726c3342 1790 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1791
1792 buf->f_type = TMPFS_MAGIC;
1793 buf->f_bsize = PAGE_CACHE_SIZE;
1794 buf->f_namelen = NAME_MAX;
0edd73b3
HD
1795 spin_lock(&sbinfo->stat_lock);
1796 if (sbinfo->max_blocks) {
1da177e4
LT
1797 buf->f_blocks = sbinfo->max_blocks;
1798 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
0edd73b3
HD
1799 }
1800 if (sbinfo->max_inodes) {
1da177e4
LT
1801 buf->f_files = sbinfo->max_inodes;
1802 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1803 }
1804 /* else leave those fields 0 like simple_statfs */
0edd73b3 1805 spin_unlock(&sbinfo->stat_lock);
1da177e4
LT
1806 return 0;
1807}
1808
1809/*
1810 * File creation. Allocate an inode, and we're done..
1811 */
1812static int
1813shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1814{
0b0a0806 1815 struct inode *inode;
1da177e4
LT
1816 int error = -ENOSPC;
1817
454abafe 1818 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1819 if (inode) {
570bc1c2
SS
1820 error = security_inode_init_security(inode, dir, NULL, NULL,
1821 NULL);
1822 if (error) {
1823 if (error != -EOPNOTSUPP) {
1824 iput(inode);
1825 return error;
1826 }
39f0247d 1827 }
1c7c474c
CH
1828#ifdef CONFIG_TMPFS_POSIX_ACL
1829 error = generic_acl_init(inode, dir);
39f0247d
AG
1830 if (error) {
1831 iput(inode);
1832 return error;
570bc1c2 1833 }
718deb6b
AV
1834#else
1835 error = 0;
1c7c474c 1836#endif
1da177e4
LT
1837 dir->i_size += BOGO_DIRENT_SIZE;
1838 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1839 d_instantiate(dentry, inode);
1840 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1841 }
1842 return error;
1843}
1844
1845static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1846{
1847 int error;
1848
1849 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1850 return error;
d8c76e6f 1851 inc_nlink(dir);
1da177e4
LT
1852 return 0;
1853}
1854
1855static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1856 struct nameidata *nd)
1857{
1858 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1859}
1860
1861/*
1862 * Link a file..
1863 */
1864static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1865{
1866 struct inode *inode = old_dentry->d_inode;
5b04c689 1867 int ret;
1da177e4
LT
1868
1869 /*
1870 * No ordinary (disk based) filesystem counts links as inodes;
1871 * but each new link needs a new dentry, pinning lowmem, and
1872 * tmpfs dentries cannot be pruned until they are unlinked.
1873 */
5b04c689
PE
1874 ret = shmem_reserve_inode(inode->i_sb);
1875 if (ret)
1876 goto out;
1da177e4
LT
1877
1878 dir->i_size += BOGO_DIRENT_SIZE;
1879 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1880 inc_nlink(inode);
1da177e4
LT
1881 atomic_inc(&inode->i_count); /* New dentry reference */
1882 dget(dentry); /* Extra pinning count for the created dentry */
1883 d_instantiate(dentry, inode);
5b04c689
PE
1884out:
1885 return ret;
1da177e4
LT
1886}
1887
1888static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1889{
1890 struct inode *inode = dentry->d_inode;
1891
5b04c689
PE
1892 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1893 shmem_free_inode(inode->i_sb);
1da177e4
LT
1894
1895 dir->i_size -= BOGO_DIRENT_SIZE;
1896 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1897 drop_nlink(inode);
1da177e4
LT
1898 dput(dentry); /* Undo the count from "create" - this does all the work */
1899 return 0;
1900}
1901
1902static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1903{
1904 if (!simple_empty(dentry))
1905 return -ENOTEMPTY;
1906
9a53c3a7
DH
1907 drop_nlink(dentry->d_inode);
1908 drop_nlink(dir);
1da177e4
LT
1909 return shmem_unlink(dir, dentry);
1910}
1911
1912/*
1913 * The VFS layer already does all the dentry stuff for rename,
1914 * we just have to decrement the usage count for the target if
1915 * it exists so that the VFS layer correctly free's it when it
1916 * gets overwritten.
1917 */
1918static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1919{
1920 struct inode *inode = old_dentry->d_inode;
1921 int they_are_dirs = S_ISDIR(inode->i_mode);
1922
1923 if (!simple_empty(new_dentry))
1924 return -ENOTEMPTY;
1925
1926 if (new_dentry->d_inode) {
1927 (void) shmem_unlink(new_dir, new_dentry);
1928 if (they_are_dirs)
9a53c3a7 1929 drop_nlink(old_dir);
1da177e4 1930 } else if (they_are_dirs) {
9a53c3a7 1931 drop_nlink(old_dir);
d8c76e6f 1932 inc_nlink(new_dir);
1da177e4
LT
1933 }
1934
1935 old_dir->i_size -= BOGO_DIRENT_SIZE;
1936 new_dir->i_size += BOGO_DIRENT_SIZE;
1937 old_dir->i_ctime = old_dir->i_mtime =
1938 new_dir->i_ctime = new_dir->i_mtime =
1939 inode->i_ctime = CURRENT_TIME;
1940 return 0;
1941}
1942
1943static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1944{
1945 int error;
1946 int len;
1947 struct inode *inode;
1948 struct page *page = NULL;
1949 char *kaddr;
1950 struct shmem_inode_info *info;
1951
1952 len = strlen(symname) + 1;
1953 if (len > PAGE_CACHE_SIZE)
1954 return -ENAMETOOLONG;
1955
454abafe 1956 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
1957 if (!inode)
1958 return -ENOSPC;
1959
570bc1c2
SS
1960 error = security_inode_init_security(inode, dir, NULL, NULL,
1961 NULL);
1962 if (error) {
1963 if (error != -EOPNOTSUPP) {
1964 iput(inode);
1965 return error;
1966 }
1967 error = 0;
1968 }
1969
1da177e4
LT
1970 info = SHMEM_I(inode);
1971 inode->i_size = len-1;
1972 if (len <= (char *)inode - (char *)info) {
1973 /* do it inline */
1974 memcpy(info, symname, len);
1975 inode->i_op = &shmem_symlink_inline_operations;
1976 } else {
1977 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1978 if (error) {
1979 iput(inode);
1980 return error;
1981 }
14fcc23f 1982 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1983 inode->i_op = &shmem_symlink_inode_operations;
1984 kaddr = kmap_atomic(page, KM_USER0);
1985 memcpy(kaddr, symname, len);
1986 kunmap_atomic(kaddr, KM_USER0);
1987 set_page_dirty(page);
6746aff7 1988 unlock_page(page);
1da177e4
LT
1989 page_cache_release(page);
1990 }
1da177e4
LT
1991 dir->i_size += BOGO_DIRENT_SIZE;
1992 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1993 d_instantiate(dentry, inode);
1994 dget(dentry);
1995 return 0;
1996}
1997
cc314eef 1998static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
1999{
2000 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
cc314eef 2001 return NULL;
1da177e4
LT
2002}
2003
cc314eef 2004static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2005{
2006 struct page *page = NULL;
2007 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2008 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
d3602444
HD
2009 if (page)
2010 unlock_page(page);
cc314eef 2011 return page;
1da177e4
LT
2012}
2013
cc314eef 2014static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2015{
2016 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2017 struct page *page = cookie;
1da177e4
LT
2018 kunmap(page);
2019 mark_page_accessed(page);
2020 page_cache_release(page);
1da177e4
LT
2021 }
2022}
2023
92e1d5be 2024static const struct inode_operations shmem_symlink_inline_operations = {
1da177e4
LT
2025 .readlink = generic_readlink,
2026 .follow_link = shmem_follow_link_inline,
1da177e4
LT
2027};
2028
92e1d5be 2029static const struct inode_operations shmem_symlink_inode_operations = {
1da177e4
LT
2030 .readlink = generic_readlink,
2031 .follow_link = shmem_follow_link,
2032 .put_link = shmem_put_link,
1da177e4
LT
2033};
2034
39f0247d 2035#ifdef CONFIG_TMPFS_POSIX_ACL
46711810 2036/*
39f0247d
AG
2037 * Superblocks without xattr inode operations will get security.* xattr
2038 * support from the VFS "for free". As soon as we have any other xattrs
2039 * like ACLs, we also need to implement the security.* handlers at
2040 * filesystem level, though.
2041 */
2042
431547b3 2043static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
39f0247d 2044 size_t list_len, const char *name,
431547b3 2045 size_t name_len, int handler_flags)
39f0247d 2046{
431547b3 2047 return security_inode_listsecurity(dentry->d_inode, list, list_len);
39f0247d
AG
2048}
2049
431547b3
CH
2050static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2051 void *buffer, size_t size, int handler_flags)
39f0247d
AG
2052{
2053 if (strcmp(name, "") == 0)
2054 return -EINVAL;
431547b3 2055 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
39f0247d
AG
2056}
2057
431547b3
CH
2058static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2059 const void *value, size_t size, int flags, int handler_flags)
39f0247d
AG
2060{
2061 if (strcmp(name, "") == 0)
2062 return -EINVAL;
431547b3
CH
2063 return security_inode_setsecurity(dentry->d_inode, name, value,
2064 size, flags);
39f0247d
AG
2065}
2066
bb435453 2067static const struct xattr_handler shmem_xattr_security_handler = {
39f0247d
AG
2068 .prefix = XATTR_SECURITY_PREFIX,
2069 .list = shmem_xattr_security_list,
2070 .get = shmem_xattr_security_get,
2071 .set = shmem_xattr_security_set,
2072};
2073
bb435453 2074static const struct xattr_handler *shmem_xattr_handlers[] = {
1c7c474c
CH
2075 &generic_acl_access_handler,
2076 &generic_acl_default_handler,
39f0247d
AG
2077 &shmem_xattr_security_handler,
2078 NULL
2079};
2080#endif
2081
91828a40
DG
2082static struct dentry *shmem_get_parent(struct dentry *child)
2083{
2084 return ERR_PTR(-ESTALE);
2085}
2086
2087static int shmem_match(struct inode *ino, void *vfh)
2088{
2089 __u32 *fh = vfh;
2090 __u64 inum = fh[2];
2091 inum = (inum << 32) | fh[1];
2092 return ino->i_ino == inum && fh[0] == ino->i_generation;
2093}
2094
480b116c
CH
2095static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2096 struct fid *fid, int fh_len, int fh_type)
91828a40 2097{
91828a40 2098 struct inode *inode;
480b116c
CH
2099 struct dentry *dentry = NULL;
2100 u64 inum = fid->raw[2];
2101 inum = (inum << 32) | fid->raw[1];
2102
2103 if (fh_len < 3)
2104 return NULL;
91828a40 2105
480b116c
CH
2106 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2107 shmem_match, fid->raw);
91828a40 2108 if (inode) {
480b116c 2109 dentry = d_find_alias(inode);
91828a40
DG
2110 iput(inode);
2111 }
2112
480b116c 2113 return dentry;
91828a40
DG
2114}
2115
2116static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2117 int connectable)
2118{
2119 struct inode *inode = dentry->d_inode;
2120
2121 if (*len < 3)
2122 return 255;
2123
2124 if (hlist_unhashed(&inode->i_hash)) {
2125 /* Unfortunately insert_inode_hash is not idempotent,
2126 * so as we hash inodes here rather than at creation
2127 * time, we need a lock to ensure we only try
2128 * to do it once
2129 */
2130 static DEFINE_SPINLOCK(lock);
2131 spin_lock(&lock);
2132 if (hlist_unhashed(&inode->i_hash))
2133 __insert_inode_hash(inode,
2134 inode->i_ino + inode->i_generation);
2135 spin_unlock(&lock);
2136 }
2137
2138 fh[0] = inode->i_generation;
2139 fh[1] = inode->i_ino;
2140 fh[2] = ((__u64)inode->i_ino) >> 32;
2141
2142 *len = 3;
2143 return 1;
2144}
2145
39655164 2146static const struct export_operations shmem_export_ops = {
91828a40 2147 .get_parent = shmem_get_parent,
91828a40 2148 .encode_fh = shmem_encode_fh,
480b116c 2149 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2150};
2151
680d794b
AM
2152static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2153 bool remount)
1da177e4
LT
2154{
2155 char *this_char, *value, *rest;
2156
b00dc3ad
HD
2157 while (options != NULL) {
2158 this_char = options;
2159 for (;;) {
2160 /*
2161 * NUL-terminate this option: unfortunately,
2162 * mount options form a comma-separated list,
2163 * but mpol's nodelist may also contain commas.
2164 */
2165 options = strchr(options, ',');
2166 if (options == NULL)
2167 break;
2168 options++;
2169 if (!isdigit(*options)) {
2170 options[-1] = '\0';
2171 break;
2172 }
2173 }
1da177e4
LT
2174 if (!*this_char)
2175 continue;
2176 if ((value = strchr(this_char,'=')) != NULL) {
2177 *value++ = 0;
2178 } else {
2179 printk(KERN_ERR
2180 "tmpfs: No value for mount option '%s'\n",
2181 this_char);
2182 return 1;
2183 }
2184
2185 if (!strcmp(this_char,"size")) {
2186 unsigned long long size;
2187 size = memparse(value,&rest);
2188 if (*rest == '%') {
2189 size <<= PAGE_SHIFT;
2190 size *= totalram_pages;
2191 do_div(size, 100);
2192 rest++;
2193 }
2194 if (*rest)
2195 goto bad_val;
680d794b
AM
2196 sbinfo->max_blocks =
2197 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2198 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2199 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2200 if (*rest)
2201 goto bad_val;
2202 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2203 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2204 if (*rest)
2205 goto bad_val;
2206 } else if (!strcmp(this_char,"mode")) {
680d794b 2207 if (remount)
1da177e4 2208 continue;
680d794b 2209 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2210 if (*rest)
2211 goto bad_val;
2212 } else if (!strcmp(this_char,"uid")) {
680d794b 2213 if (remount)
1da177e4 2214 continue;
680d794b 2215 sbinfo->uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2216 if (*rest)
2217 goto bad_val;
2218 } else if (!strcmp(this_char,"gid")) {
680d794b 2219 if (remount)
1da177e4 2220 continue;
680d794b 2221 sbinfo->gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2222 if (*rest)
2223 goto bad_val;
7339ff83 2224 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2225 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2226 goto bad_val;
1da177e4
LT
2227 } else {
2228 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2229 this_char);
2230 return 1;
2231 }
2232 }
2233 return 0;
2234
2235bad_val:
2236 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2237 value, this_char);
2238 return 1;
2239
2240}
2241
2242static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2243{
2244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2245 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2246 unsigned long blocks;
2247 unsigned long inodes;
2248 int error = -EINVAL;
2249
680d794b 2250 if (shmem_parse_options(data, &config, true))
0edd73b3 2251 return error;
1da177e4 2252
0edd73b3
HD
2253 spin_lock(&sbinfo->stat_lock);
2254 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2255 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
680d794b 2256 if (config.max_blocks < blocks)
0edd73b3 2257 goto out;
680d794b 2258 if (config.max_inodes < inodes)
0edd73b3
HD
2259 goto out;
2260 /*
2261 * Those tests also disallow limited->unlimited while any are in
2262 * use, so i_blocks will always be zero when max_blocks is zero;
2263 * but we must separately disallow unlimited->limited, because
2264 * in that case we have no record of how much is already in use.
2265 */
680d794b 2266 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2267 goto out;
680d794b 2268 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2269 goto out;
2270
2271 error = 0;
680d794b
AM
2272 sbinfo->max_blocks = config.max_blocks;
2273 sbinfo->free_blocks = config.max_blocks - blocks;
2274 sbinfo->max_inodes = config.max_inodes;
2275 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2276
2277 mpol_put(sbinfo->mpol);
2278 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2279out:
2280 spin_unlock(&sbinfo->stat_lock);
2281 return error;
1da177e4 2282}
680d794b
AM
2283
2284static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2285{
2286 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2287
2288 if (sbinfo->max_blocks != shmem_default_max_blocks())
2289 seq_printf(seq, ",size=%luk",
2290 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2291 if (sbinfo->max_inodes != shmem_default_max_inodes())
2292 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2293 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2294 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2295 if (sbinfo->uid != 0)
2296 seq_printf(seq, ",uid=%u", sbinfo->uid);
2297 if (sbinfo->gid != 0)
2298 seq_printf(seq, ",gid=%u", sbinfo->gid);
71fe804b 2299 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2300 return 0;
2301}
2302#endif /* CONFIG_TMPFS */
1da177e4
LT
2303
2304static void shmem_put_super(struct super_block *sb)
2305{
2306 kfree(sb->s_fs_info);
2307 sb->s_fs_info = NULL;
2308}
2309
2b2af54a 2310int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2311{
2312 struct inode *inode;
2313 struct dentry *root;
0edd73b3 2314 struct shmem_sb_info *sbinfo;
680d794b
AM
2315 int err = -ENOMEM;
2316
2317 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2318 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2319 L1_CACHE_BYTES), GFP_KERNEL);
2320 if (!sbinfo)
2321 return -ENOMEM;
2322
680d794b 2323 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2324 sbinfo->uid = current_fsuid();
2325 sbinfo->gid = current_fsgid();
680d794b 2326 sb->s_fs_info = sbinfo;
1da177e4 2327
0edd73b3 2328#ifdef CONFIG_TMPFS
1da177e4
LT
2329 /*
2330 * Per default we only allow half of the physical ram per
2331 * tmpfs instance, limiting inodes to one per page of lowmem;
2332 * but the internal instance is left unlimited.
2333 */
2334 if (!(sb->s_flags & MS_NOUSER)) {
680d794b
AM
2335 sbinfo->max_blocks = shmem_default_max_blocks();
2336 sbinfo->max_inodes = shmem_default_max_inodes();
2337 if (shmem_parse_options(data, sbinfo, false)) {
2338 err = -EINVAL;
2339 goto failed;
2340 }
1da177e4 2341 }
91828a40 2342 sb->s_export_op = &shmem_export_ops;
1da177e4
LT
2343#else
2344 sb->s_flags |= MS_NOUSER;
2345#endif
2346
0edd73b3 2347 spin_lock_init(&sbinfo->stat_lock);
680d794b
AM
2348 sbinfo->free_blocks = sbinfo->max_blocks;
2349 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2350
1da177e4
LT
2351 sb->s_maxbytes = SHMEM_MAX_BYTES;
2352 sb->s_blocksize = PAGE_CACHE_SIZE;
2353 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2354 sb->s_magic = TMPFS_MAGIC;
2355 sb->s_op = &shmem_ops;
cfd95a9c 2356 sb->s_time_gran = 1;
39f0247d
AG
2357#ifdef CONFIG_TMPFS_POSIX_ACL
2358 sb->s_xattr = shmem_xattr_handlers;
2359 sb->s_flags |= MS_POSIXACL;
2360#endif
0edd73b3 2361
454abafe 2362 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2363 if (!inode)
2364 goto failed;
680d794b
AM
2365 inode->i_uid = sbinfo->uid;
2366 inode->i_gid = sbinfo->gid;
1da177e4
LT
2367 root = d_alloc_root(inode);
2368 if (!root)
2369 goto failed_iput;
2370 sb->s_root = root;
2371 return 0;
2372
2373failed_iput:
2374 iput(inode);
2375failed:
2376 shmem_put_super(sb);
2377 return err;
2378}
2379
fcc234f8 2380static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2381
2382static struct inode *shmem_alloc_inode(struct super_block *sb)
2383{
2384 struct shmem_inode_info *p;
e94b1766 2385 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
1da177e4
LT
2386 if (!p)
2387 return NULL;
2388 return &p->vfs_inode;
2389}
2390
2391static void shmem_destroy_inode(struct inode *inode)
2392{
2393 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2394 /* only struct inode is valid if it's an inline symlink */
2395 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2396 }
2397 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2398}
2399
51cc5068 2400static void init_once(void *foo)
1da177e4
LT
2401{
2402 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2403
a35afb83 2404 inode_init_once(&p->vfs_inode);
1da177e4
LT
2405}
2406
2407static int init_inodecache(void)
2408{
2409 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2410 sizeof(struct shmem_inode_info),
040b5c6f 2411 0, SLAB_PANIC, init_once);
1da177e4
LT
2412 return 0;
2413}
2414
2415static void destroy_inodecache(void)
2416{
1a1d92c1 2417 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2418}
2419
f5e54d6e 2420static const struct address_space_operations shmem_aops = {
1da177e4 2421 .writepage = shmem_writepage,
76719325 2422 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2423#ifdef CONFIG_TMPFS
ae976416 2424 .readpage = shmem_readpage,
800d15a5
NP
2425 .write_begin = shmem_write_begin,
2426 .write_end = shmem_write_end,
1da177e4 2427#endif
304dbdb7 2428 .migratepage = migrate_page,
aa261f54 2429 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2430};
2431
15ad7cdc 2432static const struct file_operations shmem_file_operations = {
1da177e4
LT
2433 .mmap = shmem_mmap,
2434#ifdef CONFIG_TMPFS
2435 .llseek = generic_file_llseek,
bcd78e49 2436 .read = do_sync_read,
5402b976 2437 .write = do_sync_write,
bcd78e49 2438 .aio_read = shmem_file_aio_read,
5402b976 2439 .aio_write = generic_file_aio_write,
1b061d92 2440 .fsync = noop_fsync,
ae976416
HD
2441 .splice_read = generic_file_splice_read,
2442 .splice_write = generic_file_splice_write,
1da177e4
LT
2443#endif
2444};
2445
92e1d5be 2446static const struct inode_operations shmem_inode_operations = {
1da177e4 2447 .setattr = shmem_notify_change,
f6b3ec23 2448 .truncate_range = shmem_truncate_range,
39f0247d
AG
2449#ifdef CONFIG_TMPFS_POSIX_ACL
2450 .setxattr = generic_setxattr,
2451 .getxattr = generic_getxattr,
2452 .listxattr = generic_listxattr,
2453 .removexattr = generic_removexattr,
1c7c474c 2454 .check_acl = generic_check_acl,
39f0247d
AG
2455#endif
2456
1da177e4
LT
2457};
2458
92e1d5be 2459static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2460#ifdef CONFIG_TMPFS
2461 .create = shmem_create,
2462 .lookup = simple_lookup,
2463 .link = shmem_link,
2464 .unlink = shmem_unlink,
2465 .symlink = shmem_symlink,
2466 .mkdir = shmem_mkdir,
2467 .rmdir = shmem_rmdir,
2468 .mknod = shmem_mknod,
2469 .rename = shmem_rename,
1da177e4 2470#endif
39f0247d
AG
2471#ifdef CONFIG_TMPFS_POSIX_ACL
2472 .setattr = shmem_notify_change,
2473 .setxattr = generic_setxattr,
2474 .getxattr = generic_getxattr,
2475 .listxattr = generic_listxattr,
2476 .removexattr = generic_removexattr,
1c7c474c 2477 .check_acl = generic_check_acl,
39f0247d
AG
2478#endif
2479};
2480
92e1d5be 2481static const struct inode_operations shmem_special_inode_operations = {
39f0247d
AG
2482#ifdef CONFIG_TMPFS_POSIX_ACL
2483 .setattr = shmem_notify_change,
2484 .setxattr = generic_setxattr,
2485 .getxattr = generic_getxattr,
2486 .listxattr = generic_listxattr,
2487 .removexattr = generic_removexattr,
1c7c474c 2488 .check_acl = generic_check_acl,
39f0247d 2489#endif
1da177e4
LT
2490};
2491
759b9775 2492static const struct super_operations shmem_ops = {
1da177e4
LT
2493 .alloc_inode = shmem_alloc_inode,
2494 .destroy_inode = shmem_destroy_inode,
2495#ifdef CONFIG_TMPFS
2496 .statfs = shmem_statfs,
2497 .remount_fs = shmem_remount_fs,
680d794b 2498 .show_options = shmem_show_options,
1da177e4 2499#endif
1f895f75 2500 .evict_inode = shmem_evict_inode,
1da177e4
LT
2501 .drop_inode = generic_delete_inode,
2502 .put_super = shmem_put_super,
2503};
2504
f0f37e2f 2505static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2506 .fault = shmem_fault,
1da177e4
LT
2507#ifdef CONFIG_NUMA
2508 .set_policy = shmem_set_policy,
2509 .get_policy = shmem_get_policy,
2510#endif
2511};
2512
2513
454e2398
DH
2514static int shmem_get_sb(struct file_system_type *fs_type,
2515 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
1da177e4 2516{
454e2398 2517 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
1da177e4
LT
2518}
2519
2520static struct file_system_type tmpfs_fs_type = {
2521 .owner = THIS_MODULE,
2522 .name = "tmpfs",
2523 .get_sb = shmem_get_sb,
2524 .kill_sb = kill_litter_super,
2525};
1da177e4 2526
2b2af54a 2527int __init init_tmpfs(void)
1da177e4
LT
2528{
2529 int error;
2530
e0bf68dd
PZ
2531 error = bdi_init(&shmem_backing_dev_info);
2532 if (error)
2533 goto out4;
2534
1da177e4
LT
2535 error = init_inodecache();
2536 if (error)
2537 goto out3;
2538
2539 error = register_filesystem(&tmpfs_fs_type);
2540 if (error) {
2541 printk(KERN_ERR "Could not register tmpfs\n");
2542 goto out2;
2543 }
95dc112a 2544
1f5ce9e9 2545 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
1da177e4
LT
2546 tmpfs_fs_type.name, NULL);
2547 if (IS_ERR(shm_mnt)) {
2548 error = PTR_ERR(shm_mnt);
2549 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2550 goto out1;
2551 }
2552 return 0;
2553
2554out1:
2555 unregister_filesystem(&tmpfs_fs_type);
2556out2:
2557 destroy_inodecache();
2558out3:
e0bf68dd
PZ
2559 bdi_destroy(&shmem_backing_dev_info);
2560out4:
1da177e4
LT
2561 shm_mnt = ERR_PTR(error);
2562 return error;
2563}
853ac43a 2564
87946a72
DN
2565#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2566/**
2567 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2568 * @inode: the inode to be searched
2569 * @pgoff: the offset to be searched
2570 * @pagep: the pointer for the found page to be stored
2571 * @ent: the pointer for the found swap entry to be stored
2572 *
2573 * If a page is found, refcount of it is incremented. Callers should handle
2574 * these refcount.
2575 */
2576void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2577 struct page **pagep, swp_entry_t *ent)
2578{
2579 swp_entry_t entry = { .val = 0 }, *ptr;
2580 struct page *page = NULL;
2581 struct shmem_inode_info *info = SHMEM_I(inode);
2582
2583 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2584 goto out;
2585
2586 spin_lock(&info->lock);
2587 ptr = shmem_swp_entry(info, pgoff, NULL);
2588#ifdef CONFIG_SWAP
2589 if (ptr && ptr->val) {
2590 entry.val = ptr->val;
2591 page = find_get_page(&swapper_space, entry.val);
2592 } else
2593#endif
2594 page = find_get_page(inode->i_mapping, pgoff);
2595 if (ptr)
2596 shmem_swp_unmap(ptr);
2597 spin_unlock(&info->lock);
2598out:
2599 *pagep = page;
2600 *ent = entry;
2601}
2602#endif
2603
853ac43a
MM
2604#else /* !CONFIG_SHMEM */
2605
2606/*
2607 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2608 *
2609 * This is intended for small system where the benefits of the full
2610 * shmem code (swap-backed and resource-limited) are outweighed by
2611 * their complexity. On systems without swap this code should be
2612 * effectively equivalent, but much lighter weight.
2613 */
2614
2615#include <linux/ramfs.h>
2616
2617static struct file_system_type tmpfs_fs_type = {
2618 .name = "tmpfs",
2619 .get_sb = ramfs_get_sb,
2620 .kill_sb = kill_litter_super,
2621};
2622
2b2af54a 2623int __init init_tmpfs(void)
853ac43a
MM
2624{
2625 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2626
2627 shm_mnt = kern_mount(&tmpfs_fs_type);
2628 BUG_ON(IS_ERR(shm_mnt));
2629
2630 return 0;
2631}
2632
2633int shmem_unuse(swp_entry_t entry, struct page *page)
2634{
2635 return 0;
2636}
2637
3f96b79a
HD
2638int shmem_lock(struct file *file, int lock, struct user_struct *user)
2639{
2640 return 0;
2641}
2642
87946a72
DN
2643#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2644/**
2645 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2646 * @inode: the inode to be searched
2647 * @pgoff: the offset to be searched
2648 * @pagep: the pointer for the found page to be stored
2649 * @ent: the pointer for the found swap entry to be stored
2650 *
2651 * If a page is found, refcount of it is incremented. Callers should handle
2652 * these refcount.
2653 */
2654void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2655 struct page **pagep, swp_entry_t *ent)
2656{
2657 struct page *page = NULL;
2658
2659 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2660 goto out;
2661 page = find_get_page(inode->i_mapping, pgoff);
2662out:
2663 *pagep = page;
2664 *ent = (swp_entry_t){ .val = 0 };
2665}
2666#endif
2667
0b0a0806
HD
2668#define shmem_vm_ops generic_file_vm_ops
2669#define shmem_file_operations ramfs_file_operations
454abafe 2670#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2671#define shmem_acct_size(flags, size) 0
2672#define shmem_unacct_size(flags, size) do {} while (0)
caefba17 2673#define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
853ac43a
MM
2674
2675#endif /* CONFIG_SHMEM */
2676
2677/* common code */
1da177e4 2678
46711810 2679/**
1da177e4 2680 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2681 * @name: name for dentry (to be seen in /proc/<pid>/maps
2682 * @size: size to be set for the file
0b0a0806 2683 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2684 */
168f5ac6 2685struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
2686{
2687 int error;
2688 struct file *file;
2689 struct inode *inode;
2c48b9c4
AV
2690 struct path path;
2691 struct dentry *root;
1da177e4
LT
2692 struct qstr this;
2693
2694 if (IS_ERR(shm_mnt))
2695 return (void *)shm_mnt;
2696
2697 if (size < 0 || size > SHMEM_MAX_BYTES)
2698 return ERR_PTR(-EINVAL);
2699
2700 if (shmem_acct_size(flags, size))
2701 return ERR_PTR(-ENOMEM);
2702
2703 error = -ENOMEM;
2704 this.name = name;
2705 this.len = strlen(name);
2706 this.hash = 0; /* will go */
2707 root = shm_mnt->mnt_root;
2c48b9c4
AV
2708 path.dentry = d_alloc(root, &this);
2709 if (!path.dentry)
1da177e4 2710 goto put_memory;
2c48b9c4 2711 path.mnt = mntget(shm_mnt);
1da177e4 2712
1da177e4 2713 error = -ENOSPC;
454abafe 2714 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2715 if (!inode)
4b42af81 2716 goto put_dentry;
1da177e4 2717
2c48b9c4 2718 d_instantiate(path.dentry, inode);
1da177e4
LT
2719 inode->i_size = size;
2720 inode->i_nlink = 0; /* It is unlinked */
853ac43a
MM
2721#ifndef CONFIG_MMU
2722 error = ramfs_nommu_expand_for_mapping(inode, size);
2723 if (error)
4b42af81 2724 goto put_dentry;
853ac43a 2725#endif
4b42af81
AV
2726
2727 error = -ENFILE;
2c48b9c4 2728 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
2729 &shmem_file_operations);
2730 if (!file)
2731 goto put_dentry;
2732
1da177e4
LT
2733 return file;
2734
1da177e4 2735put_dentry:
2c48b9c4 2736 path_put(&path);
1da177e4
LT
2737put_memory:
2738 shmem_unacct_size(flags, size);
2739 return ERR_PTR(error);
2740}
395e0ddc 2741EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2742
46711810 2743/**
1da177e4 2744 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2745 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2746 */
2747int shmem_zero_setup(struct vm_area_struct *vma)
2748{
2749 struct file *file;
2750 loff_t size = vma->vm_end - vma->vm_start;
2751
2752 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2753 if (IS_ERR(file))
2754 return PTR_ERR(file);
2755
2756 if (vma->vm_file)
2757 fput(vma->vm_file);
2758 vma->vm_file = file;
2759 vma->vm_ops = &shmem_vm_ops;
2760 return 0;
2761}