]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/shmem.c
drm/shmem-helper: Remove errant put in error path
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
86a2f3f2 41#include <linux/swapfile.h>
95cc09d6 42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
1da177e4 62#include <linux/blkdev.h>
bda97eab 63#include <linux/pagevec.h>
41ffe5d5 64#include <linux/percpu_counter.h>
83e4fa9c 65#include <linux/falloc.h>
708e3508 66#include <linux/splice.h>
1da177e4
LT
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
b00dc3ad 71#include <linux/ctype.h>
304dbdb7 72#include <linux/migrate.h>
c1f60a5a 73#include <linux/highmem.h>
680d794b 74#include <linux/seq_file.h>
92562927 75#include <linux/magic.h>
9183df25 76#include <linux/syscalls.h>
40e041a2 77#include <linux/fcntl.h>
9183df25 78#include <uapi/linux/memfd.h>
cfda0526 79#include <linux/userfaultfd_k.h>
4c27fe4c 80#include <linux/rmap.h>
2b4db796 81#include <linux/uuid.h>
304dbdb7 82
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4 84
dd56b046
MG
85#include "internal.h"
86
09cbfeaf
KS
87#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 89
1da177e4
LT
90/* Pretend that each entry is of this size in directory's i_size */
91#define BOGO_DIRENT_SIZE 20
92
69f07ec9
HD
93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94#define SHORT_SYMLINK_LEN 128
95
1aac1400 96/*
f00cdc6d 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 98 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 99 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
100 */
101struct shmem_falloc {
8e205f77 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107};
108
0b5071dd
AV
109struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
113 kuid_t uid;
114 kgid_t gid;
115 umode_t mode;
ea3271f7 116 bool full_inums;
0b5071dd
AV
117 int huge;
118 int seen;
119#define SHMEM_SEEN_BLOCKS 1
120#define SHMEM_SEEN_INODES 2
121#define SHMEM_SEEN_HUGE 4
ea3271f7 122#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
123};
124
b76db735 125#ifdef CONFIG_TMPFS
680d794b
AM
126static unsigned long shmem_default_max_blocks(void)
127{
ca79b0c2 128 return totalram_pages() / 2;
680d794b
AM
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
ca79b0c2
AK
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 136}
b76db735 137#endif
680d794b 138
c5bf121e
VRP
139static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140 struct page **pagep, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
68da9f05 143static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 144 struct page **pagep, enum sgp_type sgp,
cfda0526 145 gfp_t gfp, struct vm_area_struct *vma,
2b740303 146 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 147
f3f0e1d2 148int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 149 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
150{
151 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 152 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 153}
1da177e4 154
1da177e4
LT
155static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156{
157 return sb->s_fs_info;
158}
159
160/*
161 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162 * for shared memory and for shared anonymous (/dev/zero) mappings
163 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164 * consistent with the pre-accounting of private mappings ...
165 */
166static inline int shmem_acct_size(unsigned long flags, loff_t size)
167{
0b0a0806 168 return (flags & VM_NORESERVE) ?
191c5424 169 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
170}
171
172static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173{
0b0a0806 174 if (!(flags & VM_NORESERVE))
1da177e4
LT
175 vm_unacct_memory(VM_ACCT(size));
176}
177
77142517
KK
178static inline int shmem_reacct_size(unsigned long flags,
179 loff_t oldsize, loff_t newsize)
180{
181 if (!(flags & VM_NORESERVE)) {
182 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183 return security_vm_enough_memory_mm(current->mm,
184 VM_ACCT(newsize) - VM_ACCT(oldsize));
185 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187 }
188 return 0;
189}
190
1da177e4
LT
191/*
192 * ... whereas tmpfs objects are accounted incrementally as
75edd345 193 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
194 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196 */
800d8c63 197static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 198{
800d8c63
KS
199 if (!(flags & VM_NORESERVE))
200 return 0;
201
202 return security_vm_enough_memory_mm(current->mm,
203 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
204}
205
206static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207{
0b0a0806 208 if (flags & VM_NORESERVE)
09cbfeaf 209 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
210}
211
0f079694
MR
212static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213{
214 struct shmem_inode_info *info = SHMEM_I(inode);
215 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217 if (shmem_acct_block(info->flags, pages))
218 return false;
219
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224 percpu_counter_add(&sbinfo->used_blocks, pages);
225 }
226
227 return true;
228
229unacct:
230 shmem_unacct_blocks(info->flags, pages);
231 return false;
232}
233
234static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235{
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239 if (sbinfo->max_blocks)
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 shmem_unacct_blocks(info->flags, pages);
242}
243
759b9775 244static const struct super_operations shmem_ops;
30e6a51d 245const struct address_space_operations shmem_aops;
15ad7cdc 246static const struct file_operations shmem_file_operations;
92e1d5be
AV
247static const struct inode_operations shmem_inode_operations;
248static const struct inode_operations shmem_dir_inode_operations;
249static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 250static const struct vm_operations_struct shmem_vm_ops;
779750d2 251static struct file_system_type shmem_fs_type;
1da177e4 252
b0506e48
MR
253bool vma_is_shmem(struct vm_area_struct *vma)
254{
255 return vma->vm_ops == &shmem_vm_ops;
256}
257
1da177e4 258static LIST_HEAD(shmem_swaplist);
cb5f7b9a 259static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 260
e809d5f0
CD
261/*
262 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263 * produces a novel ino for the newly allocated inode.
264 *
265 * It may also be called when making a hard link to permit the space needed by
266 * each dentry. However, in that case, no new inode number is needed since that
267 * internally draws from another pool of inode numbers (currently global
268 * get_next_ino()). This case is indicated by passing NULL as inop.
269 */
270#define SHMEM_INO_BATCH 1024
271static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
272{
273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
274 ino_t ino;
275
276 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 277 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
278 if (sbinfo->max_inodes) {
279 if (!sbinfo->free_inodes) {
bf11b9a8 280 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
281 return -ENOSPC;
282 }
283 sbinfo->free_inodes--;
5b04c689 284 }
e809d5f0
CD
285 if (inop) {
286 ino = sbinfo->next_ino++;
287 if (unlikely(is_zero_ino(ino)))
288 ino = sbinfo->next_ino++;
ea3271f7
CD
289 if (unlikely(!sbinfo->full_inums &&
290 ino > UINT_MAX)) {
e809d5f0
CD
291 /*
292 * Emulate get_next_ino uint wraparound for
293 * compatibility
294 */
ea3271f7
CD
295 if (IS_ENABLED(CONFIG_64BIT))
296 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297 __func__, MINOR(sb->s_dev));
298 sbinfo->next_ino = 1;
299 ino = sbinfo->next_ino++;
e809d5f0
CD
300 }
301 *inop = ino;
302 }
bf11b9a8 303 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
304 } else if (inop) {
305 /*
306 * __shmem_file_setup, one of our callers, is lock-free: it
307 * doesn't hold stat_lock in shmem_reserve_inode since
308 * max_inodes is always 0, and is called from potentially
309 * unknown contexts. As such, use a per-cpu batched allocator
310 * which doesn't require the per-sb stat_lock unless we are at
311 * the batch boundary.
ea3271f7
CD
312 *
313 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314 * shmem mounts are not exposed to userspace, so we don't need
315 * to worry about things like glibc compatibility.
e809d5f0
CD
316 */
317 ino_t *next_ino;
bf11b9a8 318
e809d5f0
CD
319 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 ino = *next_ino;
321 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 322 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
323 ino = sbinfo->next_ino;
324 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 325 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
326 if (unlikely(is_zero_ino(ino)))
327 ino++;
328 }
329 *inop = ino;
330 *next_ino = ++ino;
331 put_cpu();
5b04c689 332 }
e809d5f0 333
5b04c689
PE
334 return 0;
335}
336
337static void shmem_free_inode(struct super_block *sb)
338{
339 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340 if (sbinfo->max_inodes) {
bf11b9a8 341 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 342 sbinfo->free_inodes++;
bf11b9a8 343 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
344 }
345}
346
46711810 347/**
41ffe5d5 348 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
349 * @inode: inode to recalc
350 *
351 * We have to calculate the free blocks since the mm can drop
352 * undirtied hole pages behind our back.
353 *
354 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
355 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356 *
357 * It has to be called with the spinlock held.
358 */
359static void shmem_recalc_inode(struct inode *inode)
360{
361 struct shmem_inode_info *info = SHMEM_I(inode);
362 long freed;
363
364 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 if (freed > 0) {
366 info->alloced -= freed;
54af6042 367 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 368 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
369 }
370}
371
800d8c63
KS
372bool shmem_charge(struct inode *inode, long pages)
373{
374 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 375 unsigned long flags;
800d8c63 376
0f079694 377 if (!shmem_inode_acct_block(inode, pages))
800d8c63 378 return false;
b1cc94ab 379
aaa52e34
HD
380 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381 inode->i_mapping->nrpages += pages;
382
4595ef88 383 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
384 info->alloced += pages;
385 inode->i_blocks += pages * BLOCKS_PER_PAGE;
386 shmem_recalc_inode(inode);
4595ef88 387 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 388
800d8c63
KS
389 return true;
390}
391
392void shmem_uncharge(struct inode *inode, long pages)
393{
394 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 395 unsigned long flags;
800d8c63 396
aaa52e34
HD
397 /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
4595ef88 399 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
400 info->alloced -= pages;
401 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402 shmem_recalc_inode(inode);
4595ef88 403 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 404
0f079694 405 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
406}
407
7a5d0fbb 408/*
62f945b6 409 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 410 */
62f945b6 411static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
412 pgoff_t index, void *expected, void *replacement)
413{
62f945b6 414 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 415 void *item;
7a5d0fbb
HD
416
417 VM_BUG_ON(!expected);
6dbaf22c 418 VM_BUG_ON(!replacement);
62f945b6 419 item = xas_load(&xas);
7a5d0fbb
HD
420 if (item != expected)
421 return -ENOENT;
62f945b6 422 xas_store(&xas, replacement);
7a5d0fbb
HD
423 return 0;
424}
425
d1899228
HD
426/*
427 * Sometimes, before we decide whether to proceed or to fail, we must check
428 * that an entry was not already brought back from swap by a racing thread.
429 *
430 * Checking page is not enough: by the time a SwapCache page is locked, it
431 * might be reused, and again be SwapCache, using the same swap as before.
432 */
433static bool shmem_confirm_swap(struct address_space *mapping,
434 pgoff_t index, swp_entry_t swap)
435{
a12831bf 436 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
437}
438
5a6e75f8
KS
439/*
440 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441 *
442 * SHMEM_HUGE_NEVER:
443 * disables huge pages for the mount;
444 * SHMEM_HUGE_ALWAYS:
445 * enables huge pages for the mount;
446 * SHMEM_HUGE_WITHIN_SIZE:
447 * only allocate huge pages if the page will be fully within i_size,
448 * also respect fadvise()/madvise() hints;
449 * SHMEM_HUGE_ADVISE:
450 * only allocate huge pages if requested with fadvise()/madvise();
451 */
452
453#define SHMEM_HUGE_NEVER 0
454#define SHMEM_HUGE_ALWAYS 1
455#define SHMEM_HUGE_WITHIN_SIZE 2
456#define SHMEM_HUGE_ADVISE 3
457
458/*
459 * Special values.
460 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461 *
462 * SHMEM_HUGE_DENY:
463 * disables huge on shm_mnt and all mounts, for emergency use;
464 * SHMEM_HUGE_FORCE:
465 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466 *
467 */
468#define SHMEM_HUGE_DENY (-1)
469#define SHMEM_HUGE_FORCE (-2)
470
396bcc52 471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
472/* ifdef here to avoid bloating shmem.o when not necessary */
473
5e6e5a12 474static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 475
5e6e5a12
HD
476bool shmem_is_huge(struct vm_area_struct *vma,
477 struct inode *inode, pgoff_t index)
c852023e 478{
c852023e 479 loff_t i_size;
c852023e 480
c852023e
HD
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
5e6e5a12
HD
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 485 return false;
5e6e5a12
HD
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 493 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 495 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
c852023e 502 default:
c852023e
HD
503 return false;
504 }
505}
5a6e75f8 506
e5f2249a 507#if defined(CONFIG_SYSFS)
5a6e75f8
KS
508static int shmem_parse_huge(const char *str)
509{
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523}
e5f2249a 524#endif
5a6e75f8 525
e5f2249a 526#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
527static const char *shmem_format_huge(int huge)
528{
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546}
f1f5929c 547#endif
5a6e75f8 548
779750d2
KS
549static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551{
552 LIST_HEAD(list), *pos, *next;
253fd0f0 553 LIST_HEAD(to_remove);
779750d2
KS
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct page *page;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
950c3043 558 int split = 0;
779750d2
KS
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
779750d2
KS
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 579 list_move(&info->shrinklist, &to_remove);
779750d2
KS
580 goto next;
581 }
582
583 list_move(&info->shrinklist, &list);
584next:
950c3043 585 sbinfo->shrinklist_len--;
779750d2
KS
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
253fd0f0
KS
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
779750d2
KS
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
b3cd54b2 604 if (nr_to_split && split >= nr_to_split)
950c3043 605 goto move_back;
779750d2 606
b3cd54b2 607 page = find_get_page(inode->i_mapping,
779750d2
KS
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
b3cd54b2 612 /* No huge page at the end of the file: nothing to split */
779750d2 613 if (!PageTransHuge(page)) {
779750d2
KS
614 put_page(page);
615 goto drop;
616 }
617
b3cd54b2 618 /*
950c3043
GL
619 * Move the inode on the list back to shrinklist if we failed
620 * to lock the page at this time.
b3cd54b2
KS
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
950c3043 627 goto move_back;
b3cd54b2
KS
628 }
629
779750d2
KS
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
950c3043 634 /* If split failed move the inode on the list back to shrinklist */
b3cd54b2 635 if (ret)
950c3043 636 goto move_back;
779750d2
KS
637
638 split++;
639drop:
640 list_del_init(&info->shrinklist);
950c3043
GL
641 goto put;
642move_back:
643 /*
644 * Make sure the inode is either on the global list or deleted
645 * from any local list before iput() since it could be deleted
646 * in another thread once we put the inode (then the local list
647 * is corrupted).
648 */
649 spin_lock(&sbinfo->shrinklist_lock);
650 list_move(&info->shrinklist, &sbinfo->shrinklist);
651 sbinfo->shrinklist_len++;
652 spin_unlock(&sbinfo->shrinklist_lock);
653put:
779750d2
KS
654 iput(inode);
655 }
656
779750d2
KS
657 return split;
658}
659
660static long shmem_unused_huge_scan(struct super_block *sb,
661 struct shrink_control *sc)
662{
663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return SHRINK_STOP;
667
668 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669}
670
671static long shmem_unused_huge_count(struct super_block *sb,
672 struct shrink_control *sc)
673{
674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 return READ_ONCE(sbinfo->shrinklist_len);
676}
396bcc52 677#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
678
679#define shmem_huge SHMEM_HUGE_DENY
680
5e6e5a12
HD
681bool shmem_is_huge(struct vm_area_struct *vma,
682 struct inode *inode, pgoff_t index)
683{
684 return false;
685}
686
779750d2
KS
687static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 struct shrink_control *sc, unsigned long nr_to_split)
689{
690 return 0;
691}
396bcc52 692#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 693
46f65ec1
HD
694/*
695 * Like add_to_page_cache_locked, but error if expected item has gone.
696 */
697static int shmem_add_to_page_cache(struct page *page,
698 struct address_space *mapping,
3fea5a49
JW
699 pgoff_t index, void *expected, gfp_t gfp,
700 struct mm_struct *charge_mm)
46f65ec1 701{
552446a4
MW
702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703 unsigned long i = 0;
d8c6546b 704 unsigned long nr = compound_nr(page);
3fea5a49 705 int error;
46f65ec1 706
800d8c63
KS
707 VM_BUG_ON_PAGE(PageTail(page), page);
708 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
709 VM_BUG_ON_PAGE(!PageLocked(page), page);
710 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 711 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 712
800d8c63 713 page_ref_add(page, nr);
b065b432
HD
714 page->mapping = mapping;
715 page->index = index;
716
4c6355b2 717 if (!PageSwapCache(page)) {
d9eb1ea2 718 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
719 if (error) {
720 if (PageTransHuge(page)) {
721 count_vm_event(THP_FILE_FALLBACK);
722 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 }
724 goto error;
3fea5a49 725 }
3fea5a49
JW
726 }
727 cgroup_throttle_swaprate(page, gfp);
728
552446a4
MW
729 do {
730 void *entry;
731 xas_lock_irq(&xas);
732 entry = xas_find_conflict(&xas);
733 if (entry != expected)
734 xas_set_err(&xas, -EEXIST);
735 xas_create_range(&xas);
736 if (xas_error(&xas))
737 goto unlock;
738next:
4101196b 739 xas_store(&xas, page);
552446a4
MW
740 if (++i < nr) {
741 xas_next(&xas);
742 goto next;
800d8c63 743 }
552446a4 744 if (PageTransHuge(page)) {
800d8c63 745 count_vm_event(THP_FILE_ALLOC);
57b2847d 746 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 747 }
800d8c63 748 mapping->nrpages += nr;
0d1c2072
JW
749 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
750 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
751unlock:
752 xas_unlock_irq(&xas);
753 } while (xas_nomem(&xas, gfp));
754
755 if (xas_error(&xas)) {
3fea5a49
JW
756 error = xas_error(&xas);
757 goto error;
46f65ec1 758 }
552446a4
MW
759
760 return 0;
3fea5a49
JW
761error:
762 page->mapping = NULL;
763 page_ref_sub(page, nr);
764 return error;
46f65ec1
HD
765}
766
6922c0c7
HD
767/*
768 * Like delete_from_page_cache, but substitutes swap for page.
769 */
770static void shmem_delete_from_page_cache(struct page *page, void *radswap)
771{
772 struct address_space *mapping = page->mapping;
773 int error;
774
800d8c63
KS
775 VM_BUG_ON_PAGE(PageCompound(page), page);
776
b93b0163 777 xa_lock_irq(&mapping->i_pages);
62f945b6 778 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
779 page->mapping = NULL;
780 mapping->nrpages--;
0d1c2072
JW
781 __dec_lruvec_page_state(page, NR_FILE_PAGES);
782 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 783 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 784 put_page(page);
6922c0c7
HD
785 BUG_ON(error);
786}
787
7a5d0fbb 788/*
c121d3bb 789 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
790 */
791static int shmem_free_swap(struct address_space *mapping,
792 pgoff_t index, void *radswap)
793{
6dbaf22c 794 void *old;
7a5d0fbb 795
55f3f7ea 796 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
797 if (old != radswap)
798 return -ENOENT;
799 free_swap_and_cache(radix_to_swp_entry(radswap));
800 return 0;
7a5d0fbb
HD
801}
802
6a15a370
VB
803/*
804 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 805 * given offsets are swapped out.
6a15a370 806 *
9608703e 807 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
808 * as long as the inode doesn't go away and racy results are not a problem.
809 */
48131e03
VB
810unsigned long shmem_partial_swap_usage(struct address_space *mapping,
811 pgoff_t start, pgoff_t end)
6a15a370 812{
7ae3424f 813 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 814 struct page *page;
48131e03 815 unsigned long swapped = 0;
6a15a370
VB
816
817 rcu_read_lock();
7ae3424f
MW
818 xas_for_each(&xas, page, end - 1) {
819 if (xas_retry(&xas, page))
2cf938aa 820 continue;
3159f943 821 if (xa_is_value(page))
6a15a370
VB
822 swapped++;
823
824 if (need_resched()) {
7ae3424f 825 xas_pause(&xas);
6a15a370 826 cond_resched_rcu();
6a15a370
VB
827 }
828 }
829
830 rcu_read_unlock();
831
832 return swapped << PAGE_SHIFT;
833}
834
48131e03
VB
835/*
836 * Determine (in bytes) how many of the shmem object's pages mapped by the
837 * given vma is swapped out.
838 *
9608703e 839 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
840 * as long as the inode doesn't go away and racy results are not a problem.
841 */
842unsigned long shmem_swap_usage(struct vm_area_struct *vma)
843{
844 struct inode *inode = file_inode(vma->vm_file);
845 struct shmem_inode_info *info = SHMEM_I(inode);
846 struct address_space *mapping = inode->i_mapping;
847 unsigned long swapped;
848
849 /* Be careful as we don't hold info->lock */
850 swapped = READ_ONCE(info->swapped);
851
852 /*
853 * The easier cases are when the shmem object has nothing in swap, or
854 * the vma maps it whole. Then we can simply use the stats that we
855 * already track.
856 */
857 if (!swapped)
858 return 0;
859
860 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
861 return swapped << PAGE_SHIFT;
862
863 /* Here comes the more involved part */
864 return shmem_partial_swap_usage(mapping,
865 linear_page_index(vma, vma->vm_start),
866 linear_page_index(vma, vma->vm_end));
867}
868
24513264
HD
869/*
870 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
871 */
872void shmem_unlock_mapping(struct address_space *mapping)
873{
874 struct pagevec pvec;
24513264
HD
875 pgoff_t index = 0;
876
86679820 877 pagevec_init(&pvec);
24513264
HD
878 /*
879 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
880 */
881 while (!mapping_unevictable(mapping)) {
96888e0a 882 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 883 break;
64e3d12f 884 check_move_unevictable_pages(&pvec);
24513264
HD
885 pagevec_release(&pvec);
886 cond_resched();
887 }
7a5d0fbb
HD
888}
889
71725ed1
HD
890/*
891 * Check whether a hole-punch or truncation needs to split a huge page,
892 * returning true if no split was required, or the split has been successful.
893 *
894 * Eviction (or truncation to 0 size) should never need to split a huge page;
895 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
896 * head, and then succeeded to trylock on tail.
897 *
898 * A split can only succeed when there are no additional references on the
899 * huge page: so the split below relies upon find_get_entries() having stopped
900 * when it found a subpage of the huge page, without getting further references.
901 */
902static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
903{
904 if (!PageTransCompound(page))
905 return true;
906
907 /* Just proceed to delete a huge page wholly within the range punched */
908 if (PageHead(page) &&
909 page->index >= start && page->index + HPAGE_PMD_NR <= end)
910 return true;
911
912 /* Try to split huge page, so we can truly punch the hole or truncate */
913 return split_huge_page(page) >= 0;
914}
915
7a5d0fbb 916/*
7f4446ee 917 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 918 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 919 */
1635f6a7
HD
920static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
921 bool unfalloc)
1da177e4 922{
285b2c4f 923 struct address_space *mapping = inode->i_mapping;
1da177e4 924 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
925 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
926 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
927 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
928 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 929 struct pagevec pvec;
7a5d0fbb
HD
930 pgoff_t indices[PAGEVEC_SIZE];
931 long nr_swaps_freed = 0;
285b2c4f 932 pgoff_t index;
bda97eab
HD
933 int i;
934
83e4fa9c
HD
935 if (lend == -1)
936 end = -1; /* unsigned, so actually very big */
bda97eab 937
d144bf62
HD
938 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
939 info->fallocend = start;
940
86679820 941 pagevec_init(&pvec);
bda97eab 942 index = start;
5c211ba2
MWO
943 while (index < end && find_lock_entries(mapping, index, end - 1,
944 &pvec, indices)) {
bda97eab
HD
945 for (i = 0; i < pagevec_count(&pvec); i++) {
946 struct page *page = pvec.pages[i];
947
7a5d0fbb 948 index = indices[i];
bda97eab 949
3159f943 950 if (xa_is_value(page)) {
1635f6a7
HD
951 if (unfalloc)
952 continue;
7a5d0fbb
HD
953 nr_swaps_freed += !shmem_free_swap(mapping,
954 index, page);
bda97eab 955 continue;
7a5d0fbb 956 }
5c211ba2 957 index += thp_nr_pages(page) - 1;
7a5d0fbb 958
5c211ba2
MWO
959 if (!unfalloc || !PageUptodate(page))
960 truncate_inode_page(mapping, page);
bda97eab
HD
961 unlock_page(page);
962 }
0cd6144a 963 pagevec_remove_exceptionals(&pvec);
24513264 964 pagevec_release(&pvec);
bda97eab
HD
965 cond_resched();
966 index++;
967 }
1da177e4 968
83e4fa9c 969 if (partial_start) {
bda97eab 970 struct page *page = NULL;
9e18eb29 971 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 972 if (page) {
09cbfeaf 973 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
974 if (start > end) {
975 top = partial_end;
976 partial_end = 0;
977 }
978 zero_user_segment(page, partial_start, top);
979 set_page_dirty(page);
980 unlock_page(page);
09cbfeaf 981 put_page(page);
83e4fa9c
HD
982 }
983 }
984 if (partial_end) {
985 struct page *page = NULL;
9e18eb29 986 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
987 if (page) {
988 zero_user_segment(page, 0, partial_end);
bda97eab
HD
989 set_page_dirty(page);
990 unlock_page(page);
09cbfeaf 991 put_page(page);
bda97eab
HD
992 }
993 }
83e4fa9c
HD
994 if (start >= end)
995 return;
bda97eab
HD
996
997 index = start;
b1a36650 998 while (index < end) {
bda97eab 999 cond_resched();
0cd6144a 1000
cf2039af
MWO
1001 if (!find_get_entries(mapping, index, end - 1, &pvec,
1002 indices)) {
b1a36650
HD
1003 /* If all gone or hole-punch or unfalloc, we're done */
1004 if (index == start || end != -1)
bda97eab 1005 break;
b1a36650 1006 /* But if truncating, restart to make sure all gone */
bda97eab
HD
1007 index = start;
1008 continue;
1009 }
bda97eab
HD
1010 for (i = 0; i < pagevec_count(&pvec); i++) {
1011 struct page *page = pvec.pages[i];
1012
7a5d0fbb 1013 index = indices[i];
3159f943 1014 if (xa_is_value(page)) {
1635f6a7
HD
1015 if (unfalloc)
1016 continue;
b1a36650
HD
1017 if (shmem_free_swap(mapping, index, page)) {
1018 /* Swap was replaced by page: retry */
1019 index--;
1020 break;
1021 }
1022 nr_swaps_freed++;
7a5d0fbb
HD
1023 continue;
1024 }
1025
bda97eab 1026 lock_page(page);
800d8c63 1027
1635f6a7 1028 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1029 if (page_mapping(page) != mapping) {
b1a36650
HD
1030 /* Page was replaced by swap: retry */
1031 unlock_page(page);
1032 index--;
1033 break;
1635f6a7 1034 }
71725ed1
HD
1035 VM_BUG_ON_PAGE(PageWriteback(page), page);
1036 if (shmem_punch_compound(page, start, end))
1037 truncate_inode_page(mapping, page);
0783ac95 1038 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1039 /* Wipe the page and don't get stuck */
1040 clear_highpage(page);
1041 flush_dcache_page(page);
1042 set_page_dirty(page);
1043 if (index <
1044 round_up(start, HPAGE_PMD_NR))
1045 start = index + 1;
1046 }
7a5d0fbb 1047 }
bda97eab
HD
1048 unlock_page(page);
1049 }
0cd6144a 1050 pagevec_remove_exceptionals(&pvec);
24513264 1051 pagevec_release(&pvec);
bda97eab
HD
1052 index++;
1053 }
94c1e62d 1054
4595ef88 1055 spin_lock_irq(&info->lock);
7a5d0fbb 1056 info->swapped -= nr_swaps_freed;
1da177e4 1057 shmem_recalc_inode(inode);
4595ef88 1058 spin_unlock_irq(&info->lock);
1635f6a7 1059}
1da177e4 1060
1635f6a7
HD
1061void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1062{
1063 shmem_undo_range(inode, lstart, lend, false);
078cd827 1064 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1065}
94c1e62d 1066EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1067
549c7297
CB
1068static int shmem_getattr(struct user_namespace *mnt_userns,
1069 const struct path *path, struct kstat *stat,
a528d35e 1070 u32 request_mask, unsigned int query_flags)
44a30220 1071{
a528d35e 1072 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1073 struct shmem_inode_info *info = SHMEM_I(inode);
1074
d0424c42 1075 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1076 spin_lock_irq(&info->lock);
d0424c42 1077 shmem_recalc_inode(inode);
4595ef88 1078 spin_unlock_irq(&info->lock);
d0424c42 1079 }
0d56a451 1080 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1081
a7fddc36 1082 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1083 stat->blksize = HPAGE_PMD_SIZE;
1084
44a30220
YZ
1085 return 0;
1086}
1087
549c7297
CB
1088static int shmem_setattr(struct user_namespace *mnt_userns,
1089 struct dentry *dentry, struct iattr *attr)
1da177e4 1090{
75c3cfa8 1091 struct inode *inode = d_inode(dentry);
40e041a2 1092 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1093 int error;
1094
2f221d6f 1095 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1096 if (error)
1097 return error;
1098
94c1e62d
HD
1099 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1100 loff_t oldsize = inode->i_size;
1101 loff_t newsize = attr->ia_size;
3889e6e7 1102
9608703e 1103 /* protected by i_rwsem */
40e041a2
DH
1104 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1105 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1106 return -EPERM;
1107
94c1e62d 1108 if (newsize != oldsize) {
77142517
KK
1109 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1110 oldsize, newsize);
1111 if (error)
1112 return error;
94c1e62d 1113 i_size_write(inode, newsize);
078cd827 1114 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1115 }
afa2db2f 1116 if (newsize <= oldsize) {
94c1e62d 1117 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
1121 if (info->alloced)
1122 shmem_truncate_range(inode,
1123 newsize, (loff_t)-1);
94c1e62d 1124 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1125 if (oldsize > holebegin)
1126 unmap_mapping_range(inode->i_mapping,
1127 holebegin, 0, 1);
94c1e62d 1128 }
1da177e4
LT
1129 }
1130
2f221d6f 1131 setattr_copy(&init_user_ns, inode, attr);
db78b877 1132 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1133 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1134 return error;
1135}
1136
1f895f75 1137static void shmem_evict_inode(struct inode *inode)
1da177e4 1138{
1da177e4 1139 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1140 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1141
30e6a51d 1142 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1143 shmem_unacct_size(info->flags, inode->i_size);
1144 inode->i_size = 0;
3889e6e7 1145 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1146 if (!list_empty(&info->shrinklist)) {
1147 spin_lock(&sbinfo->shrinklist_lock);
1148 if (!list_empty(&info->shrinklist)) {
1149 list_del_init(&info->shrinklist);
1150 sbinfo->shrinklist_len--;
1151 }
1152 spin_unlock(&sbinfo->shrinklist_lock);
1153 }
af53d3e9
HD
1154 while (!list_empty(&info->swaplist)) {
1155 /* Wait while shmem_unuse() is scanning this inode... */
1156 wait_var_event(&info->stop_eviction,
1157 !atomic_read(&info->stop_eviction));
cb5f7b9a 1158 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1159 /* ...but beware of the race if we peeked too early */
1160 if (!atomic_read(&info->stop_eviction))
1161 list_del_init(&info->swaplist);
cb5f7b9a 1162 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1163 }
3ed47db3 1164 }
b09e0fa4 1165
38f38657 1166 simple_xattrs_free(&info->xattrs);
0f3c42f5 1167 WARN_ON(inode->i_blocks);
5b04c689 1168 shmem_free_inode(inode->i_sb);
dbd5768f 1169 clear_inode(inode);
1da177e4
LT
1170}
1171
b56a2d8a
VRP
1172static int shmem_find_swap_entries(struct address_space *mapping,
1173 pgoff_t start, unsigned int nr_entries,
1174 struct page **entries, pgoff_t *indices,
87039546 1175 unsigned int type, bool frontswap)
478922e2 1176{
b56a2d8a
VRP
1177 XA_STATE(xas, &mapping->i_pages, start);
1178 struct page *page;
87039546 1179 swp_entry_t entry;
b56a2d8a
VRP
1180 unsigned int ret = 0;
1181
1182 if (!nr_entries)
1183 return 0;
478922e2
MW
1184
1185 rcu_read_lock();
b56a2d8a
VRP
1186 xas_for_each(&xas, page, ULONG_MAX) {
1187 if (xas_retry(&xas, page))
5b9c98f3 1188 continue;
b56a2d8a
VRP
1189
1190 if (!xa_is_value(page))
478922e2 1191 continue;
b56a2d8a 1192
87039546
HD
1193 entry = radix_to_swp_entry(page);
1194 if (swp_type(entry) != type)
1195 continue;
1196 if (frontswap &&
1197 !frontswap_test(swap_info[type], swp_offset(entry)))
1198 continue;
b56a2d8a
VRP
1199
1200 indices[ret] = xas.xa_index;
1201 entries[ret] = page;
1202
1203 if (need_resched()) {
1204 xas_pause(&xas);
1205 cond_resched_rcu();
1206 }
1207 if (++ret == nr_entries)
1208 break;
478922e2 1209 }
478922e2 1210 rcu_read_unlock();
e21a2955 1211
b56a2d8a 1212 return ret;
478922e2
MW
1213}
1214
46f65ec1 1215/*
b56a2d8a
VRP
1216 * Move the swapped pages for an inode to page cache. Returns the count
1217 * of pages swapped in, or the error in case of failure.
46f65ec1 1218 */
b56a2d8a
VRP
1219static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1220 pgoff_t *indices)
1da177e4 1221{
b56a2d8a
VRP
1222 int i = 0;
1223 int ret = 0;
bde05d1c 1224 int error = 0;
b56a2d8a 1225 struct address_space *mapping = inode->i_mapping;
1da177e4 1226
b56a2d8a
VRP
1227 for (i = 0; i < pvec.nr; i++) {
1228 struct page *page = pvec.pages[i];
2e0e26c7 1229
b56a2d8a
VRP
1230 if (!xa_is_value(page))
1231 continue;
1232 error = shmem_swapin_page(inode, indices[i],
1233 &page, SGP_CACHE,
1234 mapping_gfp_mask(mapping),
1235 NULL, NULL);
1236 if (error == 0) {
1237 unlock_page(page);
1238 put_page(page);
1239 ret++;
1240 }
1241 if (error == -ENOMEM)
1242 break;
1243 error = 0;
bde05d1c 1244 }
b56a2d8a
VRP
1245 return error ? error : ret;
1246}
bde05d1c 1247
b56a2d8a
VRP
1248/*
1249 * If swap found in inode, free it and move page from swapcache to filecache.
1250 */
1251static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1252 bool frontswap, unsigned long *fs_pages_to_unuse)
1253{
1254 struct address_space *mapping = inode->i_mapping;
1255 pgoff_t start = 0;
1256 struct pagevec pvec;
1257 pgoff_t indices[PAGEVEC_SIZE];
1258 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1259 int ret = 0;
1260
1261 pagevec_init(&pvec);
1262 do {
1263 unsigned int nr_entries = PAGEVEC_SIZE;
1264
1265 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1266 nr_entries = *fs_pages_to_unuse;
1267
1268 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1269 pvec.pages, indices,
87039546 1270 type, frontswap);
b56a2d8a
VRP
1271 if (pvec.nr == 0) {
1272 ret = 0;
1273 break;
46f65ec1 1274 }
b56a2d8a
VRP
1275
1276 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1277 if (ret < 0)
1278 break;
1279
1280 if (frontswap_partial) {
1281 *fs_pages_to_unuse -= ret;
1282 if (*fs_pages_to_unuse == 0) {
1283 ret = FRONTSWAP_PAGES_UNUSED;
1284 break;
1285 }
1286 }
1287
1288 start = indices[pvec.nr - 1];
1289 } while (true);
1290
1291 return ret;
1da177e4
LT
1292}
1293
1294/*
b56a2d8a
VRP
1295 * Read all the shared memory data that resides in the swap
1296 * device 'type' back into memory, so the swap device can be
1297 * unused.
1da177e4 1298 */
b56a2d8a
VRP
1299int shmem_unuse(unsigned int type, bool frontswap,
1300 unsigned long *fs_pages_to_unuse)
1da177e4 1301{
b56a2d8a 1302 struct shmem_inode_info *info, *next;
bde05d1c
HD
1303 int error = 0;
1304
b56a2d8a
VRP
1305 if (list_empty(&shmem_swaplist))
1306 return 0;
1307
1308 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1309 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1310 if (!info->swapped) {
6922c0c7 1311 list_del_init(&info->swaplist);
b56a2d8a
VRP
1312 continue;
1313 }
af53d3e9
HD
1314 /*
1315 * Drop the swaplist mutex while searching the inode for swap;
1316 * but before doing so, make sure shmem_evict_inode() will not
1317 * remove placeholder inode from swaplist, nor let it be freed
1318 * (igrab() would protect from unlink, but not from unmount).
1319 */
1320 atomic_inc(&info->stop_eviction);
b56a2d8a 1321 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1322
af53d3e9 1323 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1324 fs_pages_to_unuse);
cb5f7b9a 1325 cond_resched();
b56a2d8a
VRP
1326
1327 mutex_lock(&shmem_swaplist_mutex);
1328 next = list_next_entry(info, swaplist);
1329 if (!info->swapped)
1330 list_del_init(&info->swaplist);
af53d3e9
HD
1331 if (atomic_dec_and_test(&info->stop_eviction))
1332 wake_up_var(&info->stop_eviction);
b56a2d8a 1333 if (error)
778dd893 1334 break;
1da177e4 1335 }
cb5f7b9a 1336 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1337
778dd893 1338 return error;
1da177e4
LT
1339}
1340
1341/*
1342 * Move the page from the page cache to the swap cache.
1343 */
1344static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1345{
1346 struct shmem_inode_info *info;
1da177e4 1347 struct address_space *mapping;
1da177e4 1348 struct inode *inode;
6922c0c7
HD
1349 swp_entry_t swap;
1350 pgoff_t index;
1da177e4 1351
1e6decf3
HD
1352 /*
1353 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1354 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1355 * and its shmem_writeback() needs them to be split when swapping.
1356 */
1357 if (PageTransCompound(page)) {
1358 /* Ensure the subpages are still dirty */
1359 SetPageDirty(page);
1360 if (split_huge_page(page) < 0)
1361 goto redirty;
1362 ClearPageDirty(page);
1363 }
1364
1da177e4 1365 BUG_ON(!PageLocked(page));
1da177e4
LT
1366 mapping = page->mapping;
1367 index = page->index;
1368 inode = mapping->host;
1369 info = SHMEM_I(inode);
1370 if (info->flags & VM_LOCKED)
1371 goto redirty;
d9fe526a 1372 if (!total_swap_pages)
1da177e4
LT
1373 goto redirty;
1374
d9fe526a 1375 /*
97b713ba
CH
1376 * Our capabilities prevent regular writeback or sync from ever calling
1377 * shmem_writepage; but a stacking filesystem might use ->writepage of
1378 * its underlying filesystem, in which case tmpfs should write out to
1379 * swap only in response to memory pressure, and not for the writeback
1380 * threads or sync.
d9fe526a 1381 */
48f170fb
HD
1382 if (!wbc->for_reclaim) {
1383 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1384 goto redirty;
1385 }
1635f6a7
HD
1386
1387 /*
1388 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1389 * value into swapfile.c, the only way we can correctly account for a
1390 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1391 *
1392 * That's okay for a page already fallocated earlier, but if we have
1393 * not yet completed the fallocation, then (a) we want to keep track
1394 * of this page in case we have to undo it, and (b) it may not be a
1395 * good idea to continue anyway, once we're pushing into swap. So
1396 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1397 */
1398 if (!PageUptodate(page)) {
1aac1400
HD
1399 if (inode->i_private) {
1400 struct shmem_falloc *shmem_falloc;
1401 spin_lock(&inode->i_lock);
1402 shmem_falloc = inode->i_private;
1403 if (shmem_falloc &&
8e205f77 1404 !shmem_falloc->waitq &&
1aac1400
HD
1405 index >= shmem_falloc->start &&
1406 index < shmem_falloc->next)
1407 shmem_falloc->nr_unswapped++;
1408 else
1409 shmem_falloc = NULL;
1410 spin_unlock(&inode->i_lock);
1411 if (shmem_falloc)
1412 goto redirty;
1413 }
1635f6a7
HD
1414 clear_highpage(page);
1415 flush_dcache_page(page);
1416 SetPageUptodate(page);
1417 }
1418
38d8b4e6 1419 swap = get_swap_page(page);
48f170fb
HD
1420 if (!swap.val)
1421 goto redirty;
d9fe526a 1422
b1dea800
HD
1423 /*
1424 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1425 * if it's not already there. Do it now before the page is
1426 * moved to swap cache, when its pagelock no longer protects
b1dea800 1427 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1428 * we've incremented swapped, because shmem_unuse_inode() will
1429 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1430 */
48f170fb
HD
1431 mutex_lock(&shmem_swaplist_mutex);
1432 if (list_empty(&info->swaplist))
b56a2d8a 1433 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1434
4afab1cd 1435 if (add_to_swap_cache(page, swap,
3852f676
JK
1436 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1437 NULL) == 0) {
4595ef88 1438 spin_lock_irq(&info->lock);
6922c0c7 1439 shmem_recalc_inode(inode);
267a4c76 1440 info->swapped++;
4595ef88 1441 spin_unlock_irq(&info->lock);
6922c0c7 1442
267a4c76
HD
1443 swap_shmem_alloc(swap);
1444 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445
6922c0c7 1446 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1447 BUG_ON(page_mapped(page));
9fab5619 1448 swap_writepage(page, wbc);
1da177e4
LT
1449 return 0;
1450 }
1451
6922c0c7 1452 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1453 put_swap_page(page, swap);
1da177e4
LT
1454redirty:
1455 set_page_dirty(page);
d9fe526a
HD
1456 if (wbc->for_reclaim)
1457 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1458 unlock_page(page);
1459 return 0;
1da177e4
LT
1460}
1461
75edd345 1462#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1463static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1464{
095f1fc4 1465 char buffer[64];
680d794b 1466
71fe804b 1467 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1468 return; /* show nothing */
680d794b 1469
a7a88b23 1470 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1471
1472 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1473}
71fe804b
LS
1474
1475static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476{
1477 struct mempolicy *mpol = NULL;
1478 if (sbinfo->mpol) {
bf11b9a8 1479 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1480 mpol = sbinfo->mpol;
1481 mpol_get(mpol);
bf11b9a8 1482 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1483 }
1484 return mpol;
1485}
75edd345
HD
1486#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488{
1489}
1490static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491{
1492 return NULL;
1493}
1494#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495#ifndef CONFIG_NUMA
1496#define vm_policy vm_private_data
1497#endif
680d794b 1498
800d8c63
KS
1499static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500 struct shmem_inode_info *info, pgoff_t index)
1501{
1502 /* Create a pseudo vma that just contains the policy */
2c4541e2 1503 vma_init(vma, NULL);
800d8c63
KS
1504 /* Bias interleave by inode number to distribute better across nodes */
1505 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1506 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507}
1508
1509static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510{
1511 /* Drop reference taken by mpol_shared_policy_lookup() */
1512 mpol_cond_put(vma->vm_policy);
1513}
1514
41ffe5d5
HD
1515static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1517{
1da177e4 1518 struct vm_area_struct pvma;
18a2f371 1519 struct page *page;
8c63ca5b
WD
1520 struct vm_fault vmf = {
1521 .vma = &pvma,
1522 };
52cd3b07 1523
800d8c63 1524 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1525 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1526 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1527
800d8c63
KS
1528 return page;
1529}
1530
78cc8cdc
RR
1531/*
1532 * Make sure huge_gfp is always more limited than limit_gfp.
1533 * Some of the flags set permissions, while others set limitations.
1534 */
1535static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1536{
1537 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1538 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1539 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1540 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1541
1542 /* Allow allocations only from the originally specified zones. */
1543 result |= zoneflags;
78cc8cdc
RR
1544
1545 /*
1546 * Minimize the result gfp by taking the union with the deny flags,
1547 * and the intersection of the allow flags.
1548 */
1549 result |= (limit_gfp & denyflags);
1550 result |= (huge_gfp & limit_gfp) & allowflags;
1551
1552 return result;
1553}
1554
800d8c63
KS
1555static struct page *shmem_alloc_hugepage(gfp_t gfp,
1556 struct shmem_inode_info *info, pgoff_t index)
1557{
1558 struct vm_area_struct pvma;
7b8d046f
MW
1559 struct address_space *mapping = info->vfs_inode.i_mapping;
1560 pgoff_t hindex;
800d8c63
KS
1561 struct page *page;
1562
4620a06e 1563 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1564 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1565 XA_PRESENT))
800d8c63 1566 return NULL;
18a2f371 1567
800d8c63 1568 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1569 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1570 true);
800d8c63
KS
1571 shmem_pseudo_vma_destroy(&pvma);
1572 if (page)
1573 prep_transhuge_page(page);
dcdf11ee
DR
1574 else
1575 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1576 return page;
1da177e4
LT
1577}
1578
02098fea 1579static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1580 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1581{
1582 struct vm_area_struct pvma;
18a2f371 1583 struct page *page;
1da177e4 1584
800d8c63
KS
1585 shmem_pseudo_vma_init(&pvma, info, index);
1586 page = alloc_page_vma(gfp, &pvma, 0);
1587 shmem_pseudo_vma_destroy(&pvma);
1588
1589 return page;
1590}
1591
1592static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1593 struct inode *inode,
800d8c63
KS
1594 pgoff_t index, bool huge)
1595{
0f079694 1596 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1597 struct page *page;
1598 int nr;
1599 int err = -ENOSPC;
52cd3b07 1600
396bcc52 1601 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1602 huge = false;
1603 nr = huge ? HPAGE_PMD_NR : 1;
1604
0f079694 1605 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1606 goto failed;
800d8c63
KS
1607
1608 if (huge)
1609 page = shmem_alloc_hugepage(gfp, info, index);
1610 else
1611 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1612 if (page) {
1613 __SetPageLocked(page);
1614 __SetPageSwapBacked(page);
800d8c63 1615 return page;
75edd345 1616 }
18a2f371 1617
800d8c63 1618 err = -ENOMEM;
0f079694 1619 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1620failed:
1621 return ERR_PTR(err);
1da177e4 1622}
71fe804b 1623
bde05d1c
HD
1624/*
1625 * When a page is moved from swapcache to shmem filecache (either by the
1626 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1627 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1628 * ignorance of the mapping it belongs to. If that mapping has special
1629 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1630 * we may need to copy to a suitable page before moving to filecache.
1631 *
1632 * In a future release, this may well be extended to respect cpuset and
1633 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1634 * but for now it is a simple matter of zone.
1635 */
1636static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1637{
1638 return page_zonenum(page) > gfp_zone(gfp);
1639}
1640
1641static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1642 struct shmem_inode_info *info, pgoff_t index)
1643{
1644 struct page *oldpage, *newpage;
1645 struct address_space *swap_mapping;
c1cb20d4 1646 swp_entry_t entry;
bde05d1c
HD
1647 pgoff_t swap_index;
1648 int error;
1649
1650 oldpage = *pagep;
c1cb20d4
YZ
1651 entry.val = page_private(oldpage);
1652 swap_index = swp_offset(entry);
bde05d1c
HD
1653 swap_mapping = page_mapping(oldpage);
1654
1655 /*
1656 * We have arrived here because our zones are constrained, so don't
1657 * limit chance of success by further cpuset and node constraints.
1658 */
1659 gfp &= ~GFP_CONSTRAINT_MASK;
1660 newpage = shmem_alloc_page(gfp, info, index);
1661 if (!newpage)
1662 return -ENOMEM;
bde05d1c 1663
09cbfeaf 1664 get_page(newpage);
bde05d1c 1665 copy_highpage(newpage, oldpage);
0142ef6c 1666 flush_dcache_page(newpage);
bde05d1c 1667
9956edf3
HD
1668 __SetPageLocked(newpage);
1669 __SetPageSwapBacked(newpage);
bde05d1c 1670 SetPageUptodate(newpage);
c1cb20d4 1671 set_page_private(newpage, entry.val);
bde05d1c
HD
1672 SetPageSwapCache(newpage);
1673
1674 /*
1675 * Our caller will very soon move newpage out of swapcache, but it's
1676 * a nice clean interface for us to replace oldpage by newpage there.
1677 */
b93b0163 1678 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1679 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1680 if (!error) {
0d1c2072
JW
1681 mem_cgroup_migrate(oldpage, newpage);
1682 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1683 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1684 }
b93b0163 1685 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1686
0142ef6c
HD
1687 if (unlikely(error)) {
1688 /*
1689 * Is this possible? I think not, now that our callers check
1690 * both PageSwapCache and page_private after getting page lock;
1691 * but be defensive. Reverse old to newpage for clear and free.
1692 */
1693 oldpage = newpage;
1694 } else {
6058eaec 1695 lru_cache_add(newpage);
0142ef6c
HD
1696 *pagep = newpage;
1697 }
bde05d1c
HD
1698
1699 ClearPageSwapCache(oldpage);
1700 set_page_private(oldpage, 0);
1701
1702 unlock_page(oldpage);
09cbfeaf
KS
1703 put_page(oldpage);
1704 put_page(oldpage);
0142ef6c 1705 return error;
bde05d1c
HD
1706}
1707
c5bf121e
VRP
1708/*
1709 * Swap in the page pointed to by *pagep.
1710 * Caller has to make sure that *pagep contains a valid swapped page.
1711 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1712 * error code and NULL in *pagep.
c5bf121e
VRP
1713 */
1714static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1715 struct page **pagep, enum sgp_type sgp,
1716 gfp_t gfp, struct vm_area_struct *vma,
1717 vm_fault_t *fault_type)
1718{
1719 struct address_space *mapping = inode->i_mapping;
1720 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1721 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1722 struct page *page;
c5bf121e
VRP
1723 swp_entry_t swap;
1724 int error;
1725
1726 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1727 swap = radix_to_swp_entry(*pagep);
1728 *pagep = NULL;
1729
1730 /* Look it up and read it in.. */
1731 page = lookup_swap_cache(swap, NULL, 0);
1732 if (!page) {
1733 /* Or update major stats only when swapin succeeds?? */
1734 if (fault_type) {
1735 *fault_type |= VM_FAULT_MAJOR;
1736 count_vm_event(PGMAJFAULT);
1737 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1738 }
1739 /* Here we actually start the io */
1740 page = shmem_swapin(swap, gfp, info, index);
1741 if (!page) {
1742 error = -ENOMEM;
1743 goto failed;
1744 }
1745 }
1746
1747 /* We have to do this with page locked to prevent races */
1748 lock_page(page);
1749 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1750 !shmem_confirm_swap(mapping, index, swap)) {
1751 error = -EEXIST;
1752 goto unlock;
1753 }
1754 if (!PageUptodate(page)) {
1755 error = -EIO;
1756 goto failed;
1757 }
1758 wait_on_page_writeback(page);
1759
8a84802e
SP
1760 /*
1761 * Some architectures may have to restore extra metadata to the
1762 * physical page after reading from swap.
1763 */
1764 arch_swap_restore(swap, page);
1765
c5bf121e
VRP
1766 if (shmem_should_replace_page(page, gfp)) {
1767 error = shmem_replace_page(&page, gfp, info, index);
1768 if (error)
1769 goto failed;
1770 }
1771
14235ab3 1772 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1773 swp_to_radix_entry(swap), gfp,
1774 charge_mm);
1775 if (error)
14235ab3 1776 goto failed;
c5bf121e
VRP
1777
1778 spin_lock_irq(&info->lock);
1779 info->swapped--;
1780 shmem_recalc_inode(inode);
1781 spin_unlock_irq(&info->lock);
1782
1783 if (sgp == SGP_WRITE)
1784 mark_page_accessed(page);
1785
1786 delete_from_swap_cache(page);
1787 set_page_dirty(page);
1788 swap_free(swap);
1789
1790 *pagep = page;
1791 return 0;
1792failed:
1793 if (!shmem_confirm_swap(mapping, index, swap))
1794 error = -EEXIST;
1795unlock:
1796 if (page) {
1797 unlock_page(page);
1798 put_page(page);
1799 }
1800
1801 return error;
1802}
1803
1da177e4 1804/*
68da9f05 1805 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1806 *
1807 * If we allocate a new one we do not mark it dirty. That's up to the
1808 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1809 * entry since a page cannot live in both the swap and page cache.
1810 *
c949b097 1811 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1812 * otherwise they are NULL.
1da177e4 1813 */
41ffe5d5 1814static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1815 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1816 struct vm_area_struct *vma, struct vm_fault *vmf,
1817 vm_fault_t *fault_type)
1da177e4
LT
1818{
1819 struct address_space *mapping = inode->i_mapping;
23f919d4 1820 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1821 struct shmem_sb_info *sbinfo;
9e18eb29 1822 struct mm_struct *charge_mm;
27ab7006 1823 struct page *page;
800d8c63 1824 pgoff_t hindex = index;
164cc4fe 1825 gfp_t huge_gfp;
1da177e4 1826 int error;
54af6042 1827 int once = 0;
1635f6a7 1828 int alloced = 0;
1da177e4 1829
09cbfeaf 1830 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1831 return -EFBIG;
1da177e4 1832repeat:
c5bf121e
VRP
1833 if (sgp <= SGP_CACHE &&
1834 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1835 return -EINVAL;
1836 }
1837
1838 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1839 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1840
44835d20
MWO
1841 page = pagecache_get_page(mapping, index,
1842 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1843
1844 if (page && vma && userfaultfd_minor(vma)) {
1845 if (!xa_is_value(page)) {
1846 unlock_page(page);
1847 put_page(page);
1848 }
1849 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1850 return 0;
1851 }
1852
3159f943 1853 if (xa_is_value(page)) {
c5bf121e
VRP
1854 error = shmem_swapin_page(inode, index, &page,
1855 sgp, gfp, vma, fault_type);
1856 if (error == -EEXIST)
1857 goto repeat;
54af6042 1858
c5bf121e
VRP
1859 *pagep = page;
1860 return error;
54af6042
HD
1861 }
1862
acdd9f8e 1863 if (page) {
63ec1973 1864 hindex = page->index;
acdd9f8e
HD
1865 if (sgp == SGP_WRITE)
1866 mark_page_accessed(page);
1867 if (PageUptodate(page))
1868 goto out;
1869 /* fallocated page */
1635f6a7
HD
1870 if (sgp != SGP_READ)
1871 goto clear;
1872 unlock_page(page);
09cbfeaf 1873 put_page(page);
1635f6a7 1874 }
27ab7006
HD
1875
1876 /*
acdd9f8e
HD
1877 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1878 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1879 */
1880 *pagep = NULL;
1881 if (sgp == SGP_READ)
1882 return 0;
1883 if (sgp == SGP_NOALLOC)
1884 return -ENOENT;
1885
1886 /*
1887 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1888 */
54af6042 1889
c5bf121e
VRP
1890 if (vma && userfaultfd_missing(vma)) {
1891 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1892 return 0;
1893 }
cfda0526 1894
5e6e5a12
HD
1895 /* Never use a huge page for shmem_symlink() */
1896 if (S_ISLNK(inode->i_mode))
c5bf121e 1897 goto alloc_nohuge;
5e6e5a12 1898 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1899 goto alloc_nohuge;
1da177e4 1900
164cc4fe 1901 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1902 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1903 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1904 if (IS_ERR(page)) {
1905alloc_nohuge:
1906 page = shmem_alloc_and_acct_page(gfp, inode,
1907 index, false);
1908 }
1909 if (IS_ERR(page)) {
1910 int retry = 5;
800d8c63 1911
c5bf121e
VRP
1912 error = PTR_ERR(page);
1913 page = NULL;
1914 if (error != -ENOSPC)
1915 goto unlock;
1916 /*
1917 * Try to reclaim some space by splitting a huge page
1918 * beyond i_size on the filesystem.
1919 */
1920 while (retry--) {
1921 int ret;
66d2f4d2 1922
c5bf121e
VRP
1923 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1924 if (ret == SHRINK_STOP)
1925 break;
1926 if (ret)
1927 goto alloc_nohuge;
b065b432 1928 }
c5bf121e
VRP
1929 goto unlock;
1930 }
54af6042 1931
c5bf121e
VRP
1932 if (PageTransHuge(page))
1933 hindex = round_down(index, HPAGE_PMD_NR);
1934 else
1935 hindex = index;
54af6042 1936
c5bf121e
VRP
1937 if (sgp == SGP_WRITE)
1938 __SetPageReferenced(page);
1939
c5bf121e 1940 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1941 NULL, gfp & GFP_RECLAIM_MASK,
1942 charge_mm);
1943 if (error)
c5bf121e 1944 goto unacct;
6058eaec 1945 lru_cache_add(page);
779750d2 1946
c5bf121e 1947 spin_lock_irq(&info->lock);
d8c6546b 1948 info->alloced += compound_nr(page);
c5bf121e
VRP
1949 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1950 shmem_recalc_inode(inode);
1951 spin_unlock_irq(&info->lock);
1952 alloced = true;
1953
1954 if (PageTransHuge(page) &&
1955 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1957 /*
c5bf121e
VRP
1958 * Part of the huge page is beyond i_size: subject
1959 * to shrink under memory pressure.
1635f6a7 1960 */
c5bf121e 1961 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1962 /*
c5bf121e
VRP
1963 * _careful to defend against unlocked access to
1964 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1965 */
c5bf121e
VRP
1966 if (list_empty_careful(&info->shrinklist)) {
1967 list_add_tail(&info->shrinklist,
1968 &sbinfo->shrinklist);
1969 sbinfo->shrinklist_len++;
1970 }
1971 spin_unlock(&sbinfo->shrinklist_lock);
1972 }
800d8c63 1973
c5bf121e
VRP
1974 /*
1975 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 */
1977 if (sgp == SGP_FALLOC)
1978 sgp = SGP_WRITE;
1979clear:
1980 /*
1981 * Let SGP_WRITE caller clear ends if write does not fill page;
1982 * but SGP_FALLOC on a page fallocated earlier must initialize
1983 * it now, lest undo on failure cancel our earlier guarantee.
1984 */
1985 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1986 int i;
1987
63ec1973
MWO
1988 for (i = 0; i < compound_nr(page); i++) {
1989 clear_highpage(page + i);
1990 flush_dcache_page(page + i);
ec9516fb 1991 }
63ec1973 1992 SetPageUptodate(page);
1da177e4 1993 }
bde05d1c 1994
54af6042 1995 /* Perhaps the file has been truncated since we checked */
75edd345 1996 if (sgp <= SGP_CACHE &&
09cbfeaf 1997 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1998 if (alloced) {
1999 ClearPageDirty(page);
2000 delete_from_page_cache(page);
4595ef88 2001 spin_lock_irq(&info->lock);
267a4c76 2002 shmem_recalc_inode(inode);
4595ef88 2003 spin_unlock_irq(&info->lock);
267a4c76 2004 }
54af6042 2005 error = -EINVAL;
267a4c76 2006 goto unlock;
e83c32e8 2007 }
63ec1973 2008out:
800d8c63 2009 *pagep = page + index - hindex;
54af6042 2010 return 0;
1da177e4 2011
59a16ead 2012 /*
54af6042 2013 * Error recovery.
59a16ead 2014 */
54af6042 2015unacct:
d8c6546b 2016 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2017
2018 if (PageTransHuge(page)) {
2019 unlock_page(page);
2020 put_page(page);
2021 goto alloc_nohuge;
2022 }
d1899228 2023unlock:
27ab7006 2024 if (page) {
54af6042 2025 unlock_page(page);
09cbfeaf 2026 put_page(page);
54af6042
HD
2027 }
2028 if (error == -ENOSPC && !once++) {
4595ef88 2029 spin_lock_irq(&info->lock);
54af6042 2030 shmem_recalc_inode(inode);
4595ef88 2031 spin_unlock_irq(&info->lock);
27ab7006 2032 goto repeat;
ff36b801 2033 }
7f4446ee 2034 if (error == -EEXIST)
54af6042
HD
2035 goto repeat;
2036 return error;
1da177e4
LT
2037}
2038
10d20bd2
LT
2039/*
2040 * This is like autoremove_wake_function, but it removes the wait queue
2041 * entry unconditionally - even if something else had already woken the
2042 * target.
2043 */
ac6424b9 2044static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2045{
2046 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2047 list_del_init(&wait->entry);
10d20bd2
LT
2048 return ret;
2049}
2050
20acce67 2051static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2052{
11bac800 2053 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2054 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2055 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2056 int err;
2057 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2058
f00cdc6d
HD
2059 /*
2060 * Trinity finds that probing a hole which tmpfs is punching can
2061 * prevent the hole-punch from ever completing: which in turn
9608703e 2062 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2063 * faulting pages into the hole while it's being punched. Although
2064 * shmem_undo_range() does remove the additions, it may be unable to
2065 * keep up, as each new page needs its own unmap_mapping_range() call,
2066 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067 *
2068 * It does not matter if we sometimes reach this check just before the
2069 * hole-punch begins, so that one fault then races with the punch:
2070 * we just need to make racing faults a rare case.
2071 *
2072 * The implementation below would be much simpler if we just used a
9608703e 2073 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2074 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2075 */
2076 if (unlikely(inode->i_private)) {
2077 struct shmem_falloc *shmem_falloc;
2078
2079 spin_lock(&inode->i_lock);
2080 shmem_falloc = inode->i_private;
8e205f77
HD
2081 if (shmem_falloc &&
2082 shmem_falloc->waitq &&
2083 vmf->pgoff >= shmem_falloc->start &&
2084 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2085 struct file *fpin;
8e205f77 2086 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2087 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2088
2089 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2090 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091 if (fpin)
8e205f77 2092 ret = VM_FAULT_RETRY;
8e205f77
HD
2093
2094 shmem_falloc_waitq = shmem_falloc->waitq;
2095 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096 TASK_UNINTERRUPTIBLE);
2097 spin_unlock(&inode->i_lock);
2098 schedule();
2099
2100 /*
2101 * shmem_falloc_waitq points into the shmem_fallocate()
2102 * stack of the hole-punching task: shmem_falloc_waitq
2103 * is usually invalid by the time we reach here, but
2104 * finish_wait() does not dereference it in that case;
2105 * though i_lock needed lest racing with wake_up_all().
2106 */
2107 spin_lock(&inode->i_lock);
2108 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109 spin_unlock(&inode->i_lock);
8897c1b1
KS
2110
2111 if (fpin)
2112 fput(fpin);
8e205f77 2113 return ret;
f00cdc6d 2114 }
8e205f77 2115 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2116 }
2117
5e6e5a12 2118 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2119 gfp, vma, vmf, &ret);
20acce67
SJ
2120 if (err)
2121 return vmf_error(err);
68da9f05 2122 return ret;
1da177e4
LT
2123}
2124
c01d5b30
HD
2125unsigned long shmem_get_unmapped_area(struct file *file,
2126 unsigned long uaddr, unsigned long len,
2127 unsigned long pgoff, unsigned long flags)
2128{
2129 unsigned long (*get_area)(struct file *,
2130 unsigned long, unsigned long, unsigned long, unsigned long);
2131 unsigned long addr;
2132 unsigned long offset;
2133 unsigned long inflated_len;
2134 unsigned long inflated_addr;
2135 unsigned long inflated_offset;
2136
2137 if (len > TASK_SIZE)
2138 return -ENOMEM;
2139
2140 get_area = current->mm->get_unmapped_area;
2141 addr = get_area(file, uaddr, len, pgoff, flags);
2142
396bcc52 2143 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2144 return addr;
2145 if (IS_ERR_VALUE(addr))
2146 return addr;
2147 if (addr & ~PAGE_MASK)
2148 return addr;
2149 if (addr > TASK_SIZE - len)
2150 return addr;
2151
2152 if (shmem_huge == SHMEM_HUGE_DENY)
2153 return addr;
2154 if (len < HPAGE_PMD_SIZE)
2155 return addr;
2156 if (flags & MAP_FIXED)
2157 return addr;
2158 /*
2159 * Our priority is to support MAP_SHARED mapped hugely;
2160 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2161 * But if caller specified an address hint and we allocated area there
2162 * successfully, respect that as before.
c01d5b30 2163 */
99158997 2164 if (uaddr == addr)
c01d5b30
HD
2165 return addr;
2166
2167 if (shmem_huge != SHMEM_HUGE_FORCE) {
2168 struct super_block *sb;
2169
2170 if (file) {
2171 VM_BUG_ON(file->f_op != &shmem_file_operations);
2172 sb = file_inode(file)->i_sb;
2173 } else {
2174 /*
2175 * Called directly from mm/mmap.c, or drivers/char/mem.c
2176 * for "/dev/zero", to create a shared anonymous object.
2177 */
2178 if (IS_ERR(shm_mnt))
2179 return addr;
2180 sb = shm_mnt->mnt_sb;
2181 }
3089bf61 2182 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2183 return addr;
2184 }
2185
2186 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2187 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2188 return addr;
2189 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2190 return addr;
2191
2192 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2193 if (inflated_len > TASK_SIZE)
2194 return addr;
2195 if (inflated_len < len)
2196 return addr;
2197
99158997 2198 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2199 if (IS_ERR_VALUE(inflated_addr))
2200 return addr;
2201 if (inflated_addr & ~PAGE_MASK)
2202 return addr;
2203
2204 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2205 inflated_addr += offset - inflated_offset;
2206 if (inflated_offset > offset)
2207 inflated_addr += HPAGE_PMD_SIZE;
2208
2209 if (inflated_addr > TASK_SIZE - len)
2210 return addr;
2211 return inflated_addr;
2212}
2213
1da177e4 2214#ifdef CONFIG_NUMA
41ffe5d5 2215static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2216{
496ad9aa 2217 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2218 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2219}
2220
d8dc74f2
AB
2221static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2222 unsigned long addr)
1da177e4 2223{
496ad9aa 2224 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2225 pgoff_t index;
1da177e4 2226
41ffe5d5
HD
2227 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2228 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2229}
2230#endif
2231
d7c9e99a 2232int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2233{
496ad9aa 2234 struct inode *inode = file_inode(file);
1da177e4
LT
2235 struct shmem_inode_info *info = SHMEM_I(inode);
2236 int retval = -ENOMEM;
2237
ea0dfeb4
HD
2238 /*
2239 * What serializes the accesses to info->flags?
2240 * ipc_lock_object() when called from shmctl_do_lock(),
2241 * no serialization needed when called from shm_destroy().
2242 */
1da177e4 2243 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2244 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2245 goto out_nomem;
2246 info->flags |= VM_LOCKED;
89e004ea 2247 mapping_set_unevictable(file->f_mapping);
1da177e4 2248 }
d7c9e99a
AG
2249 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2250 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2251 info->flags &= ~VM_LOCKED;
89e004ea 2252 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2253 }
2254 retval = 0;
89e004ea 2255
1da177e4 2256out_nomem:
1da177e4
LT
2257 return retval;
2258}
2259
9b83a6a8 2260static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2261{
ab3948f5 2262 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2263 int ret;
ab3948f5 2264
22247efd
PX
2265 ret = seal_check_future_write(info->seals, vma);
2266 if (ret)
2267 return ret;
ab3948f5 2268
51b0bff2
CM
2269 /* arm64 - allow memory tagging on RAM-based files */
2270 vma->vm_flags |= VM_MTE_ALLOWED;
2271
1da177e4
LT
2272 file_accessed(file);
2273 vma->vm_ops = &shmem_vm_ops;
396bcc52 2274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2275 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276 (vma->vm_end & HPAGE_PMD_MASK)) {
2277 khugepaged_enter(vma, vma->vm_flags);
2278 }
1da177e4
LT
2279 return 0;
2280}
2281
454abafe 2282static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2283 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2284{
2285 struct inode *inode;
2286 struct shmem_inode_info *info;
2287 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2288 ino_t ino;
1da177e4 2289
e809d5f0 2290 if (shmem_reserve_inode(sb, &ino))
5b04c689 2291 return NULL;
1da177e4
LT
2292
2293 inode = new_inode(sb);
2294 if (inode) {
e809d5f0 2295 inode->i_ino = ino;
21cb47be 2296 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2297 inode->i_blocks = 0;
078cd827 2298 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2299 inode->i_generation = prandom_u32();
1da177e4
LT
2300 info = SHMEM_I(inode);
2301 memset(info, 0, (char *)inode - (char *)info);
2302 spin_lock_init(&info->lock);
af53d3e9 2303 atomic_set(&info->stop_eviction, 0);
40e041a2 2304 info->seals = F_SEAL_SEAL;
0b0a0806 2305 info->flags = flags & VM_NORESERVE;
779750d2 2306 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2307 INIT_LIST_HEAD(&info->swaplist);
38f38657 2308 simple_xattrs_init(&info->xattrs);
72c04902 2309 cache_no_acl(inode);
1da177e4
LT
2310
2311 switch (mode & S_IFMT) {
2312 default:
39f0247d 2313 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2314 init_special_inode(inode, mode, dev);
2315 break;
2316 case S_IFREG:
14fcc23f 2317 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2318 inode->i_op = &shmem_inode_operations;
2319 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2320 mpol_shared_policy_init(&info->policy,
2321 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2322 break;
2323 case S_IFDIR:
d8c76e6f 2324 inc_nlink(inode);
1da177e4
LT
2325 /* Some things misbehave if size == 0 on a directory */
2326 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327 inode->i_op = &shmem_dir_inode_operations;
2328 inode->i_fop = &simple_dir_operations;
2329 break;
2330 case S_IFLNK:
2331 /*
2332 * Must not load anything in the rbtree,
2333 * mpol_free_shared_policy will not be called.
2334 */
71fe804b 2335 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2336 break;
2337 }
b45d71fb
JFG
2338
2339 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2340 } else
2341 shmem_free_inode(sb);
1da177e4
LT
2342 return inode;
2343}
2344
3460f6e5
AR
2345#ifdef CONFIG_USERFAULTFD
2346int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2347 pmd_t *dst_pmd,
2348 struct vm_area_struct *dst_vma,
2349 unsigned long dst_addr,
2350 unsigned long src_addr,
2351 bool zeropage,
2352 struct page **pagep)
4c27fe4c
MR
2353{
2354 struct inode *inode = file_inode(dst_vma->vm_file);
2355 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2356 struct address_space *mapping = inode->i_mapping;
2357 gfp_t gfp = mapping_gfp_mask(mapping);
2358 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2359 void *page_kaddr;
2360 struct page *page;
4c27fe4c 2361 int ret;
3460f6e5 2362 pgoff_t max_off;
4c27fe4c 2363
7ed9d238
AR
2364 if (!shmem_inode_acct_block(inode, 1)) {
2365 /*
2366 * We may have got a page, returned -ENOENT triggering a retry,
2367 * and now we find ourselves with -ENOMEM. Release the page, to
2368 * avoid a BUG_ON in our caller.
2369 */
2370 if (unlikely(*pagep)) {
2371 put_page(*pagep);
2372 *pagep = NULL;
2373 }
7d64ae3a 2374 return -ENOMEM;
7ed9d238 2375 }
4c27fe4c 2376
cb658a45 2377 if (!*pagep) {
7d64ae3a 2378 ret = -ENOMEM;
4c27fe4c
MR
2379 page = shmem_alloc_page(gfp, info, pgoff);
2380 if (!page)
0f079694 2381 goto out_unacct_blocks;
4c27fe4c 2382
3460f6e5 2383 if (!zeropage) { /* COPY */
8d103963
MR
2384 page_kaddr = kmap_atomic(page);
2385 ret = copy_from_user(page_kaddr,
2386 (const void __user *)src_addr,
2387 PAGE_SIZE);
2388 kunmap_atomic(page_kaddr);
2389
c1e8d7c6 2390 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2391 if (unlikely(ret)) {
2392 *pagep = page;
7d64ae3a 2393 ret = -ENOENT;
8d103963 2394 /* don't free the page */
7d64ae3a 2395 goto out_unacct_blocks;
8d103963 2396 }
4840dd22
MS
2397
2398 flush_dcache_page(page);
3460f6e5 2399 } else { /* ZEROPAGE */
4840dd22 2400 clear_user_highpage(page, dst_addr);
4c27fe4c
MR
2401 }
2402 } else {
2403 page = *pagep;
2404 *pagep = NULL;
2405 }
2406
3460f6e5
AR
2407 VM_BUG_ON(PageLocked(page));
2408 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2409 __SetPageLocked(page);
2410 __SetPageSwapBacked(page);
a425d358 2411 __SetPageUptodate(page);
9cc90c66 2412
e2a50c1f 2413 ret = -EFAULT;
e2a50c1f 2414 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2415 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2416 goto out_release;
2417
552446a4 2418 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2419 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2420 if (ret)
3fea5a49 2421 goto out_release;
4c27fe4c 2422
7d64ae3a
AR
2423 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2424 page, true, false);
2425 if (ret)
2426 goto out_delete_from_cache;
4c27fe4c 2427
94b7cc01 2428 spin_lock_irq(&info->lock);
4c27fe4c
MR
2429 info->alloced++;
2430 inode->i_blocks += BLOCKS_PER_PAGE;
2431 shmem_recalc_inode(inode);
94b7cc01 2432 spin_unlock_irq(&info->lock);
4c27fe4c 2433
7d64ae3a 2434 SetPageDirty(page);
e2a50c1f 2435 unlock_page(page);
7d64ae3a
AR
2436 return 0;
2437out_delete_from_cache:
e2a50c1f 2438 delete_from_page_cache(page);
4c27fe4c 2439out_release:
9cc90c66 2440 unlock_page(page);
4c27fe4c 2441 put_page(page);
4c27fe4c 2442out_unacct_blocks:
0f079694 2443 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2444 return ret;
8d103963 2445}
3460f6e5 2446#endif /* CONFIG_USERFAULTFD */
8d103963 2447
1da177e4 2448#ifdef CONFIG_TMPFS
92e1d5be 2449static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2450static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2451
6d9d88d0
JS
2452#ifdef CONFIG_TMPFS_XATTR
2453static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2454#else
2455#define shmem_initxattrs NULL
2456#endif
2457
1da177e4 2458static int
800d15a5
NP
2459shmem_write_begin(struct file *file, struct address_space *mapping,
2460 loff_t pos, unsigned len, unsigned flags,
2461 struct page **pagep, void **fsdata)
1da177e4 2462{
800d15a5 2463 struct inode *inode = mapping->host;
40e041a2 2464 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2465 pgoff_t index = pos >> PAGE_SHIFT;
cd2ab9d5 2466 int ret = 0;
40e041a2 2467
9608703e 2468 /* i_rwsem is held by caller */
ab3948f5
JFG
2469 if (unlikely(info->seals & (F_SEAL_GROW |
2470 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2471 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2472 return -EPERM;
2473 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2474 return -EPERM;
2475 }
2476
cd2ab9d5
YS
2477 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2478
2479 if (ret)
2480 return ret;
2481
2482 if (PageHWPoison(*pagep)) {
2483 unlock_page(*pagep);
2484 put_page(*pagep);
2485 *pagep = NULL;
2486 return -EIO;
2487 }
2488
2489 return 0;
800d15a5
NP
2490}
2491
2492static int
2493shmem_write_end(struct file *file, struct address_space *mapping,
2494 loff_t pos, unsigned len, unsigned copied,
2495 struct page *page, void *fsdata)
2496{
2497 struct inode *inode = mapping->host;
2498
d3602444
HD
2499 if (pos + copied > inode->i_size)
2500 i_size_write(inode, pos + copied);
2501
ec9516fb 2502 if (!PageUptodate(page)) {
800d8c63
KS
2503 struct page *head = compound_head(page);
2504 if (PageTransCompound(page)) {
2505 int i;
2506
2507 for (i = 0; i < HPAGE_PMD_NR; i++) {
2508 if (head + i == page)
2509 continue;
2510 clear_highpage(head + i);
2511 flush_dcache_page(head + i);
2512 }
2513 }
09cbfeaf
KS
2514 if (copied < PAGE_SIZE) {
2515 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2516 zero_user_segments(page, 0, from,
09cbfeaf 2517 from + copied, PAGE_SIZE);
ec9516fb 2518 }
800d8c63 2519 SetPageUptodate(head);
ec9516fb 2520 }
800d15a5 2521 set_page_dirty(page);
6746aff7 2522 unlock_page(page);
09cbfeaf 2523 put_page(page);
800d15a5 2524
800d15a5 2525 return copied;
1da177e4
LT
2526}
2527
2ba5bbed 2528static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2529{
6e58e79d
AV
2530 struct file *file = iocb->ki_filp;
2531 struct inode *inode = file_inode(file);
1da177e4 2532 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2533 pgoff_t index;
2534 unsigned long offset;
a0ee5ec5 2535 enum sgp_type sgp = SGP_READ;
f7c1d074 2536 int error = 0;
cb66a7a1 2537 ssize_t retval = 0;
6e58e79d 2538 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2539
2540 /*
2541 * Might this read be for a stacking filesystem? Then when reading
2542 * holes of a sparse file, we actually need to allocate those pages,
2543 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2544 */
777eda2c 2545 if (!iter_is_iovec(to))
75edd345 2546 sgp = SGP_CACHE;
1da177e4 2547
09cbfeaf
KS
2548 index = *ppos >> PAGE_SHIFT;
2549 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2550
2551 for (;;) {
2552 struct page *page = NULL;
41ffe5d5
HD
2553 pgoff_t end_index;
2554 unsigned long nr, ret;
1da177e4
LT
2555 loff_t i_size = i_size_read(inode);
2556
09cbfeaf 2557 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2558 if (index > end_index)
2559 break;
2560 if (index == end_index) {
09cbfeaf 2561 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2562 if (nr <= offset)
2563 break;
2564 }
2565
9e18eb29 2566 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2567 if (error) {
2568 if (error == -EINVAL)
2569 error = 0;
1da177e4
LT
2570 break;
2571 }
75edd345
HD
2572 if (page) {
2573 if (sgp == SGP_CACHE)
2574 set_page_dirty(page);
d3602444 2575 unlock_page(page);
cd2ab9d5
YS
2576
2577 if (PageHWPoison(page)) {
2578 put_page(page);
2579 error = -EIO;
2580 break;
2581 }
75edd345 2582 }
1da177e4
LT
2583
2584 /*
2585 * We must evaluate after, since reads (unlike writes)
9608703e 2586 * are called without i_rwsem protection against truncate
1da177e4 2587 */
09cbfeaf 2588 nr = PAGE_SIZE;
1da177e4 2589 i_size = i_size_read(inode);
09cbfeaf 2590 end_index = i_size >> PAGE_SHIFT;
1da177e4 2591 if (index == end_index) {
09cbfeaf 2592 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2593 if (nr <= offset) {
2594 if (page)
09cbfeaf 2595 put_page(page);
1da177e4
LT
2596 break;
2597 }
2598 }
2599 nr -= offset;
2600
2601 if (page) {
2602 /*
2603 * If users can be writing to this page using arbitrary
2604 * virtual addresses, take care about potential aliasing
2605 * before reading the page on the kernel side.
2606 */
2607 if (mapping_writably_mapped(mapping))
2608 flush_dcache_page(page);
2609 /*
2610 * Mark the page accessed if we read the beginning.
2611 */
2612 if (!offset)
2613 mark_page_accessed(page);
b5810039 2614 } else {
1da177e4 2615 page = ZERO_PAGE(0);
09cbfeaf 2616 get_page(page);
b5810039 2617 }
1da177e4
LT
2618
2619 /*
2620 * Ok, we have the page, and it's up-to-date, so
2621 * now we can copy it to user space...
1da177e4 2622 */
2ba5bbed 2623 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2624 retval += ret;
1da177e4 2625 offset += ret;
09cbfeaf
KS
2626 index += offset >> PAGE_SHIFT;
2627 offset &= ~PAGE_MASK;
1da177e4 2628
09cbfeaf 2629 put_page(page);
2ba5bbed 2630 if (!iov_iter_count(to))
1da177e4 2631 break;
6e58e79d
AV
2632 if (ret < nr) {
2633 error = -EFAULT;
2634 break;
2635 }
1da177e4
LT
2636 cond_resched();
2637 }
2638
09cbfeaf 2639 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2640 file_accessed(file);
2641 return retval ? retval : error;
1da177e4
LT
2642}
2643
965c8e59 2644static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2645{
2646 struct address_space *mapping = file->f_mapping;
2647 struct inode *inode = mapping->host;
220f2ac9 2648
965c8e59
AM
2649 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2650 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2651 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2652 if (offset < 0)
2653 return -ENXIO;
2654
5955102c 2655 inode_lock(inode);
9608703e 2656 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2657 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2658 if (offset >= 0)
2659 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2660 inode_unlock(inode);
220f2ac9
HD
2661 return offset;
2662}
2663
83e4fa9c
HD
2664static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2665 loff_t len)
2666{
496ad9aa 2667 struct inode *inode = file_inode(file);
e2d12e22 2668 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2669 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2670 struct shmem_falloc shmem_falloc;
d144bf62 2671 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2672 int error;
83e4fa9c 2673
13ace4d0
HD
2674 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2675 return -EOPNOTSUPP;
2676
5955102c 2677 inode_lock(inode);
83e4fa9c
HD
2678
2679 if (mode & FALLOC_FL_PUNCH_HOLE) {
2680 struct address_space *mapping = file->f_mapping;
2681 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2682 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2683 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2684
9608703e 2685 /* protected by i_rwsem */
ab3948f5 2686 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2687 error = -EPERM;
2688 goto out;
2689 }
2690
8e205f77 2691 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2692 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2693 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2694 spin_lock(&inode->i_lock);
2695 inode->i_private = &shmem_falloc;
2696 spin_unlock(&inode->i_lock);
2697
83e4fa9c
HD
2698 if ((u64)unmap_end > (u64)unmap_start)
2699 unmap_mapping_range(mapping, unmap_start,
2700 1 + unmap_end - unmap_start, 0);
2701 shmem_truncate_range(inode, offset, offset + len - 1);
2702 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2703
2704 spin_lock(&inode->i_lock);
2705 inode->i_private = NULL;
2706 wake_up_all(&shmem_falloc_waitq);
2055da97 2707 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2708 spin_unlock(&inode->i_lock);
83e4fa9c 2709 error = 0;
8e205f77 2710 goto out;
e2d12e22
HD
2711 }
2712
2713 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2714 error = inode_newsize_ok(inode, offset + len);
2715 if (error)
2716 goto out;
2717
40e041a2
DH
2718 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2719 error = -EPERM;
2720 goto out;
2721 }
2722
09cbfeaf
KS
2723 start = offset >> PAGE_SHIFT;
2724 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2725 /* Try to avoid a swapstorm if len is impossible to satisfy */
2726 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2727 error = -ENOSPC;
2728 goto out;
83e4fa9c
HD
2729 }
2730
8e205f77 2731 shmem_falloc.waitq = NULL;
1aac1400
HD
2732 shmem_falloc.start = start;
2733 shmem_falloc.next = start;
2734 shmem_falloc.nr_falloced = 0;
2735 shmem_falloc.nr_unswapped = 0;
2736 spin_lock(&inode->i_lock);
2737 inode->i_private = &shmem_falloc;
2738 spin_unlock(&inode->i_lock);
2739
d144bf62
HD
2740 /*
2741 * info->fallocend is only relevant when huge pages might be
2742 * involved: to prevent split_huge_page() freeing fallocated
2743 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2744 */
2745 undo_fallocend = info->fallocend;
2746 if (info->fallocend < end)
2747 info->fallocend = end;
2748
050dcb5c 2749 for (index = start; index < end; ) {
e2d12e22
HD
2750 struct page *page;
2751
2752 /*
2753 * Good, the fallocate(2) manpage permits EINTR: we may have
2754 * been interrupted because we are using up too much memory.
2755 */
2756 if (signal_pending(current))
2757 error = -EINTR;
1aac1400
HD
2758 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2759 error = -ENOMEM;
e2d12e22 2760 else
9e18eb29 2761 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2762 if (error) {
d144bf62 2763 info->fallocend = undo_fallocend;
1635f6a7 2764 /* Remove the !PageUptodate pages we added */
7f556567
HD
2765 if (index > start) {
2766 shmem_undo_range(inode,
2767 (loff_t)start << PAGE_SHIFT,
2768 ((loff_t)index << PAGE_SHIFT) - 1, true);
2769 }
1aac1400 2770 goto undone;
e2d12e22
HD
2771 }
2772
050dcb5c
HD
2773 index++;
2774 /*
2775 * Here is a more important optimization than it appears:
2776 * a second SGP_FALLOC on the same huge page will clear it,
2777 * making it PageUptodate and un-undoable if we fail later.
2778 */
2779 if (PageTransCompound(page)) {
2780 index = round_up(index, HPAGE_PMD_NR);
2781 /* Beware 32-bit wraparound */
2782 if (!index)
2783 index--;
2784 }
2785
1aac1400
HD
2786 /*
2787 * Inform shmem_writepage() how far we have reached.
2788 * No need for lock or barrier: we have the page lock.
2789 */
1aac1400 2790 if (!PageUptodate(page))
050dcb5c
HD
2791 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2792 shmem_falloc.next = index;
1aac1400 2793
e2d12e22 2794 /*
1635f6a7
HD
2795 * If !PageUptodate, leave it that way so that freeable pages
2796 * can be recognized if we need to rollback on error later.
2797 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2798 * than free the pages we are allocating (and SGP_CACHE pages
2799 * might still be clean: we now need to mark those dirty too).
2800 */
2801 set_page_dirty(page);
2802 unlock_page(page);
09cbfeaf 2803 put_page(page);
e2d12e22
HD
2804 cond_resched();
2805 }
2806
2807 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2808 i_size_write(inode, offset + len);
078cd827 2809 inode->i_ctime = current_time(inode);
1aac1400
HD
2810undone:
2811 spin_lock(&inode->i_lock);
2812 inode->i_private = NULL;
2813 spin_unlock(&inode->i_lock);
e2d12e22 2814out:
5955102c 2815 inode_unlock(inode);
83e4fa9c
HD
2816 return error;
2817}
2818
726c3342 2819static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2820{
726c3342 2821 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2822
2823 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2824 buf->f_bsize = PAGE_SIZE;
1da177e4 2825 buf->f_namelen = NAME_MAX;
0edd73b3 2826 if (sbinfo->max_blocks) {
1da177e4 2827 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2828 buf->f_bavail =
2829 buf->f_bfree = sbinfo->max_blocks -
2830 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2831 }
2832 if (sbinfo->max_inodes) {
1da177e4
LT
2833 buf->f_files = sbinfo->max_inodes;
2834 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2835 }
2836 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2837
2838 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2839
1da177e4
LT
2840 return 0;
2841}
2842
2843/*
2844 * File creation. Allocate an inode, and we're done..
2845 */
2846static int
549c7297
CB
2847shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2848 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2849{
0b0a0806 2850 struct inode *inode;
1da177e4
LT
2851 int error = -ENOSPC;
2852
454abafe 2853 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2854 if (inode) {
feda821e
CH
2855 error = simple_acl_create(dir, inode);
2856 if (error)
2857 goto out_iput;
2a7dba39 2858 error = security_inode_init_security(inode, dir,
9d8f13ba 2859 &dentry->d_name,
6d9d88d0 2860 shmem_initxattrs, NULL);
feda821e
CH
2861 if (error && error != -EOPNOTSUPP)
2862 goto out_iput;
37ec43cd 2863
718deb6b 2864 error = 0;
1da177e4 2865 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2866 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2867 d_instantiate(dentry, inode);
2868 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2869 }
2870 return error;
feda821e
CH
2871out_iput:
2872 iput(inode);
2873 return error;
1da177e4
LT
2874}
2875
60545d0d 2876static int
549c7297
CB
2877shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2878 struct dentry *dentry, umode_t mode)
60545d0d
AV
2879{
2880 struct inode *inode;
2881 int error = -ENOSPC;
2882
2883 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2884 if (inode) {
2885 error = security_inode_init_security(inode, dir,
2886 NULL,
2887 shmem_initxattrs, NULL);
feda821e
CH
2888 if (error && error != -EOPNOTSUPP)
2889 goto out_iput;
2890 error = simple_acl_create(dir, inode);
2891 if (error)
2892 goto out_iput;
60545d0d
AV
2893 d_tmpfile(dentry, inode);
2894 }
2895 return error;
feda821e
CH
2896out_iput:
2897 iput(inode);
2898 return error;
60545d0d
AV
2899}
2900
549c7297
CB
2901static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2902 struct dentry *dentry, umode_t mode)
1da177e4
LT
2903{
2904 int error;
2905
549c7297
CB
2906 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2907 mode | S_IFDIR, 0)))
1da177e4 2908 return error;
d8c76e6f 2909 inc_nlink(dir);
1da177e4
LT
2910 return 0;
2911}
2912
549c7297
CB
2913static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2914 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2915{
549c7297 2916 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2917}
2918
2919/*
2920 * Link a file..
2921 */
2922static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2923{
75c3cfa8 2924 struct inode *inode = d_inode(old_dentry);
29b00e60 2925 int ret = 0;
1da177e4
LT
2926
2927 /*
2928 * No ordinary (disk based) filesystem counts links as inodes;
2929 * but each new link needs a new dentry, pinning lowmem, and
2930 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2931 * But if an O_TMPFILE file is linked into the tmpfs, the
2932 * first link must skip that, to get the accounting right.
1da177e4 2933 */
1062af92 2934 if (inode->i_nlink) {
e809d5f0 2935 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2936 if (ret)
2937 goto out;
2938 }
1da177e4
LT
2939
2940 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2941 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2942 inc_nlink(inode);
7de9c6ee 2943 ihold(inode); /* New dentry reference */
1da177e4
LT
2944 dget(dentry); /* Extra pinning count for the created dentry */
2945 d_instantiate(dentry, inode);
5b04c689
PE
2946out:
2947 return ret;
1da177e4
LT
2948}
2949
2950static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2951{
75c3cfa8 2952 struct inode *inode = d_inode(dentry);
1da177e4 2953
5b04c689
PE
2954 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2955 shmem_free_inode(inode->i_sb);
1da177e4
LT
2956
2957 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2958 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2959 drop_nlink(inode);
1da177e4
LT
2960 dput(dentry); /* Undo the count from "create" - this does all the work */
2961 return 0;
2962}
2963
2964static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2965{
2966 if (!simple_empty(dentry))
2967 return -ENOTEMPTY;
2968
75c3cfa8 2969 drop_nlink(d_inode(dentry));
9a53c3a7 2970 drop_nlink(dir);
1da177e4
LT
2971 return shmem_unlink(dir, dentry);
2972}
2973
37456771
MS
2974static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2975{
e36cb0b8
DH
2976 bool old_is_dir = d_is_dir(old_dentry);
2977 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2978
2979 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2980 if (old_is_dir) {
2981 drop_nlink(old_dir);
2982 inc_nlink(new_dir);
2983 } else {
2984 drop_nlink(new_dir);
2985 inc_nlink(old_dir);
2986 }
2987 }
2988 old_dir->i_ctime = old_dir->i_mtime =
2989 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2990 d_inode(old_dentry)->i_ctime =
078cd827 2991 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2992
2993 return 0;
2994}
2995
549c7297
CB
2996static int shmem_whiteout(struct user_namespace *mnt_userns,
2997 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2998{
2999 struct dentry *whiteout;
3000 int error;
3001
3002 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003 if (!whiteout)
3004 return -ENOMEM;
3005
549c7297 3006 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
3007 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008 dput(whiteout);
3009 if (error)
3010 return error;
3011
3012 /*
3013 * Cheat and hash the whiteout while the old dentry is still in
3014 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015 *
3016 * d_lookup() will consistently find one of them at this point,
3017 * not sure which one, but that isn't even important.
3018 */
3019 d_rehash(whiteout);
3020 return 0;
3021}
3022
1da177e4
LT
3023/*
3024 * The VFS layer already does all the dentry stuff for rename,
3025 * we just have to decrement the usage count for the target if
3026 * it exists so that the VFS layer correctly free's it when it
3027 * gets overwritten.
3028 */
549c7297
CB
3029static int shmem_rename2(struct user_namespace *mnt_userns,
3030 struct inode *old_dir, struct dentry *old_dentry,
3031 struct inode *new_dir, struct dentry *new_dentry,
3032 unsigned int flags)
1da177e4 3033{
75c3cfa8 3034 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3035 int they_are_dirs = S_ISDIR(inode->i_mode);
3036
46fdb794 3037 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3038 return -EINVAL;
3039
37456771
MS
3040 if (flags & RENAME_EXCHANGE)
3041 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3042
1da177e4
LT
3043 if (!simple_empty(new_dentry))
3044 return -ENOTEMPTY;
3045
46fdb794
MS
3046 if (flags & RENAME_WHITEOUT) {
3047 int error;
3048
549c7297 3049 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3050 if (error)
3051 return error;
3052 }
3053
75c3cfa8 3054 if (d_really_is_positive(new_dentry)) {
1da177e4 3055 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3056 if (they_are_dirs) {
75c3cfa8 3057 drop_nlink(d_inode(new_dentry));
9a53c3a7 3058 drop_nlink(old_dir);
b928095b 3059 }
1da177e4 3060 } else if (they_are_dirs) {
9a53c3a7 3061 drop_nlink(old_dir);
d8c76e6f 3062 inc_nlink(new_dir);
1da177e4
LT
3063 }
3064
3065 old_dir->i_size -= BOGO_DIRENT_SIZE;
3066 new_dir->i_size += BOGO_DIRENT_SIZE;
3067 old_dir->i_ctime = old_dir->i_mtime =
3068 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3069 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3070 return 0;
3071}
3072
549c7297
CB
3073static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3074 struct dentry *dentry, const char *symname)
1da177e4
LT
3075{
3076 int error;
3077 int len;
3078 struct inode *inode;
9276aad6 3079 struct page *page;
1da177e4
LT
3080
3081 len = strlen(symname) + 1;
09cbfeaf 3082 if (len > PAGE_SIZE)
1da177e4
LT
3083 return -ENAMETOOLONG;
3084
0825a6f9
JP
3085 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3086 VM_NORESERVE);
1da177e4
LT
3087 if (!inode)
3088 return -ENOSPC;
3089
9d8f13ba 3090 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3091 shmem_initxattrs, NULL);
343c3d7f
MN
3092 if (error && error != -EOPNOTSUPP) {
3093 iput(inode);
3094 return error;
570bc1c2
SS
3095 }
3096
1da177e4 3097 inode->i_size = len-1;
69f07ec9 3098 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3099 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3100 if (!inode->i_link) {
69f07ec9
HD
3101 iput(inode);
3102 return -ENOMEM;
3103 }
3104 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3105 } else {
e8ecde25 3106 inode_nohighmem(inode);
9e18eb29 3107 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3108 if (error) {
3109 iput(inode);
3110 return error;
3111 }
14fcc23f 3112 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3113 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3114 memcpy(page_address(page), symname, len);
ec9516fb 3115 SetPageUptodate(page);
1da177e4 3116 set_page_dirty(page);
6746aff7 3117 unlock_page(page);
09cbfeaf 3118 put_page(page);
1da177e4 3119 }
1da177e4 3120 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3121 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3122 d_instantiate(dentry, inode);
3123 dget(dentry);
3124 return 0;
3125}
3126
fceef393 3127static void shmem_put_link(void *arg)
1da177e4 3128{
fceef393
AV
3129 mark_page_accessed(arg);
3130 put_page(arg);
1da177e4
LT
3131}
3132
6b255391 3133static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3134 struct inode *inode,
3135 struct delayed_call *done)
1da177e4 3136{
1da177e4 3137 struct page *page = NULL;
6b255391 3138 int error;
6a6c9904
AV
3139 if (!dentry) {
3140 page = find_get_page(inode->i_mapping, 0);
3141 if (!page)
3142 return ERR_PTR(-ECHILD);
cd2ab9d5
YS
3143 if (PageHWPoison(page) ||
3144 !PageUptodate(page)) {
6a6c9904
AV
3145 put_page(page);
3146 return ERR_PTR(-ECHILD);
3147 }
3148 } else {
9e18eb29 3149 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3150 if (error)
3151 return ERR_PTR(error);
cd2ab9d5
YS
3152 if (!page)
3153 return ERR_PTR(-ECHILD);
3154 if (PageHWPoison(page)) {
3155 unlock_page(page);
3156 put_page(page);
3157 return ERR_PTR(-ECHILD);
3158 }
6a6c9904
AV
3159 unlock_page(page);
3160 }
fceef393 3161 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3162 return page_address(page);
1da177e4
LT
3163}
3164
b09e0fa4 3165#ifdef CONFIG_TMPFS_XATTR
46711810 3166/*
b09e0fa4
EP
3167 * Superblocks without xattr inode operations may get some security.* xattr
3168 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3169 * like ACLs, we also need to implement the security.* handlers at
3170 * filesystem level, though.
3171 */
3172
6d9d88d0
JS
3173/*
3174 * Callback for security_inode_init_security() for acquiring xattrs.
3175 */
3176static int shmem_initxattrs(struct inode *inode,
3177 const struct xattr *xattr_array,
3178 void *fs_info)
3179{
3180 struct shmem_inode_info *info = SHMEM_I(inode);
3181 const struct xattr *xattr;
38f38657 3182 struct simple_xattr *new_xattr;
6d9d88d0
JS
3183 size_t len;
3184
3185 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3186 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3187 if (!new_xattr)
3188 return -ENOMEM;
3189
3190 len = strlen(xattr->name) + 1;
3191 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3192 GFP_KERNEL);
3193 if (!new_xattr->name) {
3bef735a 3194 kvfree(new_xattr);
6d9d88d0
JS
3195 return -ENOMEM;
3196 }
3197
3198 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3199 XATTR_SECURITY_PREFIX_LEN);
3200 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3201 xattr->name, len);
3202
38f38657 3203 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3204 }
3205
3206 return 0;
3207}
3208
aa7c5241 3209static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3210 struct dentry *unused, struct inode *inode,
3211 const char *name, void *buffer, size_t size)
b09e0fa4 3212{
b296821a 3213 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3214
aa7c5241 3215 name = xattr_full_name(handler, name);
38f38657 3216 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3217}
3218
aa7c5241 3219static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3220 struct user_namespace *mnt_userns,
59301226
AV
3221 struct dentry *unused, struct inode *inode,
3222 const char *name, const void *value,
3223 size_t size, int flags)
b09e0fa4 3224{
59301226 3225 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3226
aa7c5241 3227 name = xattr_full_name(handler, name);
a46a2295 3228 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3229}
3230
aa7c5241
AG
3231static const struct xattr_handler shmem_security_xattr_handler = {
3232 .prefix = XATTR_SECURITY_PREFIX,
3233 .get = shmem_xattr_handler_get,
3234 .set = shmem_xattr_handler_set,
3235};
b09e0fa4 3236
aa7c5241
AG
3237static const struct xattr_handler shmem_trusted_xattr_handler = {
3238 .prefix = XATTR_TRUSTED_PREFIX,
3239 .get = shmem_xattr_handler_get,
3240 .set = shmem_xattr_handler_set,
3241};
b09e0fa4 3242
aa7c5241
AG
3243static const struct xattr_handler *shmem_xattr_handlers[] = {
3244#ifdef CONFIG_TMPFS_POSIX_ACL
3245 &posix_acl_access_xattr_handler,
3246 &posix_acl_default_xattr_handler,
3247#endif
3248 &shmem_security_xattr_handler,
3249 &shmem_trusted_xattr_handler,
3250 NULL
3251};
b09e0fa4
EP
3252
3253static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3254{
75c3cfa8 3255 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3256 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3257}
3258#endif /* CONFIG_TMPFS_XATTR */
3259
69f07ec9 3260static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3261 .get_link = simple_get_link,
b09e0fa4 3262#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3263 .listxattr = shmem_listxattr,
b09e0fa4
EP
3264#endif
3265};
3266
3267static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3268 .get_link = shmem_get_link,
b09e0fa4 3269#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3270 .listxattr = shmem_listxattr,
39f0247d 3271#endif
b09e0fa4 3272};
39f0247d 3273
91828a40
DG
3274static struct dentry *shmem_get_parent(struct dentry *child)
3275{
3276 return ERR_PTR(-ESTALE);
3277}
3278
3279static int shmem_match(struct inode *ino, void *vfh)
3280{
3281 __u32 *fh = vfh;
3282 __u64 inum = fh[2];
3283 inum = (inum << 32) | fh[1];
3284 return ino->i_ino == inum && fh[0] == ino->i_generation;
3285}
3286
12ba780d
AG
3287/* Find any alias of inode, but prefer a hashed alias */
3288static struct dentry *shmem_find_alias(struct inode *inode)
3289{
3290 struct dentry *alias = d_find_alias(inode);
3291
3292 return alias ?: d_find_any_alias(inode);
3293}
3294
3295
480b116c
CH
3296static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3297 struct fid *fid, int fh_len, int fh_type)
91828a40 3298{
91828a40 3299 struct inode *inode;
480b116c 3300 struct dentry *dentry = NULL;
35c2a7f4 3301 u64 inum;
480b116c
CH
3302
3303 if (fh_len < 3)
3304 return NULL;
91828a40 3305
35c2a7f4
HD
3306 inum = fid->raw[2];
3307 inum = (inum << 32) | fid->raw[1];
3308
480b116c
CH
3309 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3310 shmem_match, fid->raw);
91828a40 3311 if (inode) {
12ba780d 3312 dentry = shmem_find_alias(inode);
91828a40
DG
3313 iput(inode);
3314 }
3315
480b116c 3316 return dentry;
91828a40
DG
3317}
3318
b0b0382b
AV
3319static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3320 struct inode *parent)
91828a40 3321{
5fe0c237
AK
3322 if (*len < 3) {
3323 *len = 3;
94e07a75 3324 return FILEID_INVALID;
5fe0c237 3325 }
91828a40 3326
1d3382cb 3327 if (inode_unhashed(inode)) {
91828a40
DG
3328 /* Unfortunately insert_inode_hash is not idempotent,
3329 * so as we hash inodes here rather than at creation
3330 * time, we need a lock to ensure we only try
3331 * to do it once
3332 */
3333 static DEFINE_SPINLOCK(lock);
3334 spin_lock(&lock);
1d3382cb 3335 if (inode_unhashed(inode))
91828a40
DG
3336 __insert_inode_hash(inode,
3337 inode->i_ino + inode->i_generation);
3338 spin_unlock(&lock);
3339 }
3340
3341 fh[0] = inode->i_generation;
3342 fh[1] = inode->i_ino;
3343 fh[2] = ((__u64)inode->i_ino) >> 32;
3344
3345 *len = 3;
3346 return 1;
3347}
3348
39655164 3349static const struct export_operations shmem_export_ops = {
91828a40 3350 .get_parent = shmem_get_parent,
91828a40 3351 .encode_fh = shmem_encode_fh,
480b116c 3352 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3353};
3354
626c3920
AV
3355enum shmem_param {
3356 Opt_gid,
3357 Opt_huge,
3358 Opt_mode,
3359 Opt_mpol,
3360 Opt_nr_blocks,
3361 Opt_nr_inodes,
3362 Opt_size,
3363 Opt_uid,
ea3271f7
CD
3364 Opt_inode32,
3365 Opt_inode64,
626c3920
AV
3366};
3367
5eede625 3368static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3369 {"never", SHMEM_HUGE_NEVER },
3370 {"always", SHMEM_HUGE_ALWAYS },
3371 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3372 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3373 {}
3374};
3375
d7167b14 3376const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3377 fsparam_u32 ("gid", Opt_gid),
2710c957 3378 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3379 fsparam_u32oct("mode", Opt_mode),
3380 fsparam_string("mpol", Opt_mpol),
3381 fsparam_string("nr_blocks", Opt_nr_blocks),
3382 fsparam_string("nr_inodes", Opt_nr_inodes),
3383 fsparam_string("size", Opt_size),
3384 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3385 fsparam_flag ("inode32", Opt_inode32),
3386 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3387 {}
3388};
3389
f3235626 3390static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3391{
f3235626 3392 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3393 struct fs_parse_result result;
3394 unsigned long long size;
e04dc423 3395 char *rest;
626c3920
AV
3396 int opt;
3397
d7167b14 3398 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3399 if (opt < 0)
626c3920 3400 return opt;
1da177e4 3401
626c3920
AV
3402 switch (opt) {
3403 case Opt_size:
3404 size = memparse(param->string, &rest);
e04dc423
AV
3405 if (*rest == '%') {
3406 size <<= PAGE_SHIFT;
3407 size *= totalram_pages();
3408 do_div(size, 100);
3409 rest++;
3410 }
3411 if (*rest)
626c3920 3412 goto bad_value;
e04dc423
AV
3413 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3414 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3415 break;
3416 case Opt_nr_blocks:
3417 ctx->blocks = memparse(param->string, &rest);
e04dc423 3418 if (*rest)
626c3920 3419 goto bad_value;
e04dc423 3420 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3421 break;
3422 case Opt_nr_inodes:
3423 ctx->inodes = memparse(param->string, &rest);
e04dc423 3424 if (*rest)
626c3920 3425 goto bad_value;
e04dc423 3426 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3427 break;
3428 case Opt_mode:
3429 ctx->mode = result.uint_32 & 07777;
3430 break;
3431 case Opt_uid:
3432 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3433 if (!uid_valid(ctx->uid))
626c3920
AV
3434 goto bad_value;
3435 break;
3436 case Opt_gid:
3437 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3438 if (!gid_valid(ctx->gid))
626c3920
AV
3439 goto bad_value;
3440 break;
3441 case Opt_huge:
3442 ctx->huge = result.uint_32;
3443 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3444 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3445 has_transparent_hugepage()))
3446 goto unsupported_parameter;
e04dc423 3447 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3448 break;
3449 case Opt_mpol:
3450 if (IS_ENABLED(CONFIG_NUMA)) {
3451 mpol_put(ctx->mpol);
3452 ctx->mpol = NULL;
3453 if (mpol_parse_str(param->string, &ctx->mpol))
3454 goto bad_value;
3455 break;
3456 }
3457 goto unsupported_parameter;
ea3271f7
CD
3458 case Opt_inode32:
3459 ctx->full_inums = false;
3460 ctx->seen |= SHMEM_SEEN_INUMS;
3461 break;
3462 case Opt_inode64:
3463 if (sizeof(ino_t) < 8) {
3464 return invalfc(fc,
3465 "Cannot use inode64 with <64bit inums in kernel\n");
3466 }
3467 ctx->full_inums = true;
3468 ctx->seen |= SHMEM_SEEN_INUMS;
3469 break;
e04dc423
AV
3470 }
3471 return 0;
3472
626c3920 3473unsupported_parameter:
f35aa2bc 3474 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3475bad_value:
f35aa2bc 3476 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3477}
3478
f3235626 3479static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3480{
f3235626
DH
3481 char *options = data;
3482
33f37c64
AV
3483 if (options) {
3484 int err = security_sb_eat_lsm_opts(options, &fc->security);
3485 if (err)
3486 return err;
3487 }
3488
b00dc3ad 3489 while (options != NULL) {
626c3920 3490 char *this_char = options;
b00dc3ad
HD
3491 for (;;) {
3492 /*
3493 * NUL-terminate this option: unfortunately,
3494 * mount options form a comma-separated list,
3495 * but mpol's nodelist may also contain commas.
3496 */
3497 options = strchr(options, ',');
3498 if (options == NULL)
3499 break;
3500 options++;
3501 if (!isdigit(*options)) {
3502 options[-1] = '\0';
3503 break;
3504 }
3505 }
626c3920 3506 if (*this_char) {
68d68ff6 3507 char *value = strchr(this_char, '=');
f3235626 3508 size_t len = 0;
626c3920
AV
3509 int err;
3510
3511 if (value) {
3512 *value++ = '\0';
f3235626 3513 len = strlen(value);
626c3920 3514 }
f3235626
DH
3515 err = vfs_parse_fs_string(fc, this_char, value, len);
3516 if (err < 0)
3517 return err;
1da177e4 3518 }
1da177e4
LT
3519 }
3520 return 0;
1da177e4
LT
3521}
3522
f3235626
DH
3523/*
3524 * Reconfigure a shmem filesystem.
3525 *
3526 * Note that we disallow change from limited->unlimited blocks/inodes while any
3527 * are in use; but we must separately disallow unlimited->limited, because in
3528 * that case we have no record of how much is already in use.
3529 */
3530static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3531{
f3235626
DH
3532 struct shmem_options *ctx = fc->fs_private;
3533 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3534 unsigned long inodes;
bf11b9a8 3535 struct mempolicy *mpol = NULL;
f3235626 3536 const char *err;
1da177e4 3537
bf11b9a8 3538 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3539 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3540 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3541 if (!sbinfo->max_blocks) {
3542 err = "Cannot retroactively limit size";
0b5071dd 3543 goto out;
f3235626 3544 }
0b5071dd 3545 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3546 ctx->blocks) > 0) {
3547 err = "Too small a size for current use";
0b5071dd 3548 goto out;
f3235626 3549 }
0b5071dd 3550 }
f3235626
DH
3551 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3552 if (!sbinfo->max_inodes) {
3553 err = "Cannot retroactively limit inodes";
0b5071dd 3554 goto out;
f3235626
DH
3555 }
3556 if (ctx->inodes < inodes) {
3557 err = "Too few inodes for current use";
0b5071dd 3558 goto out;
f3235626 3559 }
0b5071dd 3560 }
0edd73b3 3561
ea3271f7
CD
3562 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3563 sbinfo->next_ino > UINT_MAX) {
3564 err = "Current inum too high to switch to 32-bit inums";
3565 goto out;
3566 }
3567
f3235626
DH
3568 if (ctx->seen & SHMEM_SEEN_HUGE)
3569 sbinfo->huge = ctx->huge;
ea3271f7
CD
3570 if (ctx->seen & SHMEM_SEEN_INUMS)
3571 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3572 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3573 sbinfo->max_blocks = ctx->blocks;
3574 if (ctx->seen & SHMEM_SEEN_INODES) {
3575 sbinfo->max_inodes = ctx->inodes;
3576 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3577 }
71fe804b 3578
5f00110f
GT
3579 /*
3580 * Preserve previous mempolicy unless mpol remount option was specified.
3581 */
f3235626 3582 if (ctx->mpol) {
bf11b9a8 3583 mpol = sbinfo->mpol;
f3235626
DH
3584 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3585 ctx->mpol = NULL;
5f00110f 3586 }
bf11b9a8
SAS
3587 raw_spin_unlock(&sbinfo->stat_lock);
3588 mpol_put(mpol);
f3235626 3589 return 0;
0edd73b3 3590out:
bf11b9a8 3591 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3592 return invalfc(fc, "%s", err);
1da177e4 3593}
680d794b 3594
34c80b1d 3595static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3596{
34c80b1d 3597 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3598
3599 if (sbinfo->max_blocks != shmem_default_max_blocks())
3600 seq_printf(seq, ",size=%luk",
09cbfeaf 3601 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3602 if (sbinfo->max_inodes != shmem_default_max_inodes())
3603 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3604 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3605 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3606 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3607 seq_printf(seq, ",uid=%u",
3608 from_kuid_munged(&init_user_ns, sbinfo->uid));
3609 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3610 seq_printf(seq, ",gid=%u",
3611 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3612
3613 /*
3614 * Showing inode{64,32} might be useful even if it's the system default,
3615 * since then people don't have to resort to checking both here and
3616 * /proc/config.gz to confirm 64-bit inums were successfully applied
3617 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3618 *
3619 * We hide it when inode64 isn't the default and we are using 32-bit
3620 * inodes, since that probably just means the feature isn't even under
3621 * consideration.
3622 *
3623 * As such:
3624 *
3625 * +-----------------+-----------------+
3626 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3627 * +------------------+-----------------+-----------------+
3628 * | full_inums=true | show | show |
3629 * | full_inums=false | show | hide |
3630 * +------------------+-----------------+-----------------+
3631 *
3632 */
3633 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3634 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3635#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3636 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3637 if (sbinfo->huge)
3638 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3639#endif
71fe804b 3640 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3641 return 0;
3642}
9183df25 3643
680d794b 3644#endif /* CONFIG_TMPFS */
1da177e4
LT
3645
3646static void shmem_put_super(struct super_block *sb)
3647{
602586a8
HD
3648 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3649
e809d5f0 3650 free_percpu(sbinfo->ino_batch);
602586a8 3651 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3652 mpol_put(sbinfo->mpol);
602586a8 3653 kfree(sbinfo);
1da177e4
LT
3654 sb->s_fs_info = NULL;
3655}
3656
f3235626 3657static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3658{
f3235626 3659 struct shmem_options *ctx = fc->fs_private;
1da177e4 3660 struct inode *inode;
0edd73b3 3661 struct shmem_sb_info *sbinfo;
680d794b
AM
3662
3663 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3664 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3665 L1_CACHE_BYTES), GFP_KERNEL);
3666 if (!sbinfo)
3667 return -ENOMEM;
3668
680d794b 3669 sb->s_fs_info = sbinfo;
1da177e4 3670
0edd73b3 3671#ifdef CONFIG_TMPFS
1da177e4
LT
3672 /*
3673 * Per default we only allow half of the physical ram per
3674 * tmpfs instance, limiting inodes to one per page of lowmem;
3675 * but the internal instance is left unlimited.
3676 */
1751e8a6 3677 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3678 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3679 ctx->blocks = shmem_default_max_blocks();
3680 if (!(ctx->seen & SHMEM_SEEN_INODES))
3681 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3682 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3683 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3684 } else {
1751e8a6 3685 sb->s_flags |= SB_NOUSER;
1da177e4 3686 }
91828a40 3687 sb->s_export_op = &shmem_export_ops;
1751e8a6 3688 sb->s_flags |= SB_NOSEC;
1da177e4 3689#else
1751e8a6 3690 sb->s_flags |= SB_NOUSER;
1da177e4 3691#endif
f3235626
DH
3692 sbinfo->max_blocks = ctx->blocks;
3693 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3694 if (sb->s_flags & SB_KERNMOUNT) {
3695 sbinfo->ino_batch = alloc_percpu(ino_t);
3696 if (!sbinfo->ino_batch)
3697 goto failed;
3698 }
f3235626
DH
3699 sbinfo->uid = ctx->uid;
3700 sbinfo->gid = ctx->gid;
ea3271f7 3701 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3702 sbinfo->mode = ctx->mode;
3703 sbinfo->huge = ctx->huge;
3704 sbinfo->mpol = ctx->mpol;
3705 ctx->mpol = NULL;
1da177e4 3706
bf11b9a8 3707 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3708 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3709 goto failed;
779750d2
KS
3710 spin_lock_init(&sbinfo->shrinklist_lock);
3711 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3712
285b2c4f 3713 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3714 sb->s_blocksize = PAGE_SIZE;
3715 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3716 sb->s_magic = TMPFS_MAGIC;
3717 sb->s_op = &shmem_ops;
cfd95a9c 3718 sb->s_time_gran = 1;
b09e0fa4 3719#ifdef CONFIG_TMPFS_XATTR
39f0247d 3720 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3721#endif
3722#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3723 sb->s_flags |= SB_POSIXACL;
39f0247d 3724#endif
2b4db796 3725 uuid_gen(&sb->s_uuid);
0edd73b3 3726
454abafe 3727 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3728 if (!inode)
3729 goto failed;
680d794b
AM
3730 inode->i_uid = sbinfo->uid;
3731 inode->i_gid = sbinfo->gid;
318ceed0
AV
3732 sb->s_root = d_make_root(inode);
3733 if (!sb->s_root)
48fde701 3734 goto failed;
1da177e4
LT
3735 return 0;
3736
1da177e4
LT
3737failed:
3738 shmem_put_super(sb);
f2b346e4 3739 return -ENOMEM;
1da177e4
LT
3740}
3741
f3235626
DH
3742static int shmem_get_tree(struct fs_context *fc)
3743{
3744 return get_tree_nodev(fc, shmem_fill_super);
3745}
3746
3747static void shmem_free_fc(struct fs_context *fc)
3748{
3749 struct shmem_options *ctx = fc->fs_private;
3750
3751 if (ctx) {
3752 mpol_put(ctx->mpol);
3753 kfree(ctx);
3754 }
3755}
3756
3757static const struct fs_context_operations shmem_fs_context_ops = {
3758 .free = shmem_free_fc,
3759 .get_tree = shmem_get_tree,
3760#ifdef CONFIG_TMPFS
3761 .parse_monolithic = shmem_parse_options,
3762 .parse_param = shmem_parse_one,
3763 .reconfigure = shmem_reconfigure,
3764#endif
3765};
3766
fcc234f8 3767static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3768
3769static struct inode *shmem_alloc_inode(struct super_block *sb)
3770{
41ffe5d5
HD
3771 struct shmem_inode_info *info;
3772 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3773 if (!info)
1da177e4 3774 return NULL;
41ffe5d5 3775 return &info->vfs_inode;
1da177e4
LT
3776}
3777
74b1da56 3778static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3779{
84e710da
AV
3780 if (S_ISLNK(inode->i_mode))
3781 kfree(inode->i_link);
fa0d7e3d
NP
3782 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3783}
3784
1da177e4
LT
3785static void shmem_destroy_inode(struct inode *inode)
3786{
09208d15 3787 if (S_ISREG(inode->i_mode))
1da177e4 3788 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3789}
3790
41ffe5d5 3791static void shmem_init_inode(void *foo)
1da177e4 3792{
41ffe5d5
HD
3793 struct shmem_inode_info *info = foo;
3794 inode_init_once(&info->vfs_inode);
1da177e4
LT
3795}
3796
9a8ec03e 3797static void shmem_init_inodecache(void)
1da177e4
LT
3798{
3799 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3800 sizeof(struct shmem_inode_info),
5d097056 3801 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3802}
3803
41ffe5d5 3804static void shmem_destroy_inodecache(void)
1da177e4 3805{
1a1d92c1 3806 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3807}
3808
cd2ab9d5
YS
3809/* Keep the page in page cache instead of truncating it */
3810static int shmem_error_remove_page(struct address_space *mapping,
3811 struct page *page)
3812{
3813 return 0;
3814}
3815
30e6a51d 3816const struct address_space_operations shmem_aops = {
1da177e4 3817 .writepage = shmem_writepage,
76719325 3818 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3819#ifdef CONFIG_TMPFS
800d15a5
NP
3820 .write_begin = shmem_write_begin,
3821 .write_end = shmem_write_end,
1da177e4 3822#endif
1c93923c 3823#ifdef CONFIG_MIGRATION
304dbdb7 3824 .migratepage = migrate_page,
1c93923c 3825#endif
cd2ab9d5 3826 .error_remove_page = shmem_error_remove_page,
1da177e4 3827};
30e6a51d 3828EXPORT_SYMBOL(shmem_aops);
1da177e4 3829
15ad7cdc 3830static const struct file_operations shmem_file_operations = {
1da177e4 3831 .mmap = shmem_mmap,
c01d5b30 3832 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3833#ifdef CONFIG_TMPFS
220f2ac9 3834 .llseek = shmem_file_llseek,
2ba5bbed 3835 .read_iter = shmem_file_read_iter,
8174202b 3836 .write_iter = generic_file_write_iter,
1b061d92 3837 .fsync = noop_fsync,
82c156f8 3838 .splice_read = generic_file_splice_read,
f6cb85d0 3839 .splice_write = iter_file_splice_write,
83e4fa9c 3840 .fallocate = shmem_fallocate,
1da177e4
LT
3841#endif
3842};
3843
92e1d5be 3844static const struct inode_operations shmem_inode_operations = {
44a30220 3845 .getattr = shmem_getattr,
94c1e62d 3846 .setattr = shmem_setattr,
b09e0fa4 3847#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3848 .listxattr = shmem_listxattr,
feda821e 3849 .set_acl = simple_set_acl,
b09e0fa4 3850#endif
1da177e4
LT
3851};
3852
92e1d5be 3853static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3854#ifdef CONFIG_TMPFS
3855 .create = shmem_create,
3856 .lookup = simple_lookup,
3857 .link = shmem_link,
3858 .unlink = shmem_unlink,
3859 .symlink = shmem_symlink,
3860 .mkdir = shmem_mkdir,
3861 .rmdir = shmem_rmdir,
3862 .mknod = shmem_mknod,
2773bf00 3863 .rename = shmem_rename2,
60545d0d 3864 .tmpfile = shmem_tmpfile,
1da177e4 3865#endif
b09e0fa4 3866#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3867 .listxattr = shmem_listxattr,
b09e0fa4 3868#endif
39f0247d 3869#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3870 .setattr = shmem_setattr,
feda821e 3871 .set_acl = simple_set_acl,
39f0247d
AG
3872#endif
3873};
3874
92e1d5be 3875static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3876#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3877 .listxattr = shmem_listxattr,
b09e0fa4 3878#endif
39f0247d 3879#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3880 .setattr = shmem_setattr,
feda821e 3881 .set_acl = simple_set_acl,
39f0247d 3882#endif
1da177e4
LT
3883};
3884
759b9775 3885static const struct super_operations shmem_ops = {
1da177e4 3886 .alloc_inode = shmem_alloc_inode,
74b1da56 3887 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3888 .destroy_inode = shmem_destroy_inode,
3889#ifdef CONFIG_TMPFS
3890 .statfs = shmem_statfs,
680d794b 3891 .show_options = shmem_show_options,
1da177e4 3892#endif
1f895f75 3893 .evict_inode = shmem_evict_inode,
1da177e4
LT
3894 .drop_inode = generic_delete_inode,
3895 .put_super = shmem_put_super,
396bcc52 3896#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3897 .nr_cached_objects = shmem_unused_huge_count,
3898 .free_cached_objects = shmem_unused_huge_scan,
3899#endif
1da177e4
LT
3900};
3901
f0f37e2f 3902static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3903 .fault = shmem_fault,
d7c17551 3904 .map_pages = filemap_map_pages,
1da177e4
LT
3905#ifdef CONFIG_NUMA
3906 .set_policy = shmem_set_policy,
3907 .get_policy = shmem_get_policy,
3908#endif
3909};
3910
f3235626 3911int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3912{
f3235626
DH
3913 struct shmem_options *ctx;
3914
3915 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3916 if (!ctx)
3917 return -ENOMEM;
3918
3919 ctx->mode = 0777 | S_ISVTX;
3920 ctx->uid = current_fsuid();
3921 ctx->gid = current_fsgid();
3922
3923 fc->fs_private = ctx;
3924 fc->ops = &shmem_fs_context_ops;
3925 return 0;
1da177e4
LT
3926}
3927
41ffe5d5 3928static struct file_system_type shmem_fs_type = {
1da177e4
LT
3929 .owner = THIS_MODULE,
3930 .name = "tmpfs",
f3235626
DH
3931 .init_fs_context = shmem_init_fs_context,
3932#ifdef CONFIG_TMPFS
d7167b14 3933 .parameters = shmem_fs_parameters,
f3235626 3934#endif
1da177e4 3935 .kill_sb = kill_litter_super,
01c70267 3936 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3937};
1da177e4 3938
41ffe5d5 3939int __init shmem_init(void)
1da177e4
LT
3940{
3941 int error;
3942
9a8ec03e 3943 shmem_init_inodecache();
1da177e4 3944
41ffe5d5 3945 error = register_filesystem(&shmem_fs_type);
1da177e4 3946 if (error) {
1170532b 3947 pr_err("Could not register tmpfs\n");
1da177e4
LT
3948 goto out2;
3949 }
95dc112a 3950
ca4e0519 3951 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3952 if (IS_ERR(shm_mnt)) {
3953 error = PTR_ERR(shm_mnt);
1170532b 3954 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3955 goto out1;
3956 }
5a6e75f8 3957
396bcc52 3958#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3959 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3960 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3961 else
5e6e5a12 3962 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3963#endif
1da177e4
LT
3964 return 0;
3965
3966out1:
41ffe5d5 3967 unregister_filesystem(&shmem_fs_type);
1da177e4 3968out2:
41ffe5d5 3969 shmem_destroy_inodecache();
1da177e4
LT
3970 shm_mnt = ERR_PTR(error);
3971 return error;
3972}
853ac43a 3973
396bcc52 3974#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3975static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3976 struct kobj_attribute *attr, char *buf)
5a6e75f8 3977{
26083eb6 3978 static const int values[] = {
5a6e75f8
KS
3979 SHMEM_HUGE_ALWAYS,
3980 SHMEM_HUGE_WITHIN_SIZE,
3981 SHMEM_HUGE_ADVISE,
3982 SHMEM_HUGE_NEVER,
3983 SHMEM_HUGE_DENY,
3984 SHMEM_HUGE_FORCE,
3985 };
79d4d38a
JP
3986 int len = 0;
3987 int i;
5a6e75f8 3988
79d4d38a
JP
3989 for (i = 0; i < ARRAY_SIZE(values); i++) {
3990 len += sysfs_emit_at(buf, len,
3991 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3992 i ? " " : "",
3993 shmem_format_huge(values[i]));
5a6e75f8 3994 }
79d4d38a
JP
3995
3996 len += sysfs_emit_at(buf, len, "\n");
3997
3998 return len;
5a6e75f8
KS
3999}
4000
4001static ssize_t shmem_enabled_store(struct kobject *kobj,
4002 struct kobj_attribute *attr, const char *buf, size_t count)
4003{
4004 char tmp[16];
4005 int huge;
4006
4007 if (count + 1 > sizeof(tmp))
4008 return -EINVAL;
4009 memcpy(tmp, buf, count);
4010 tmp[count] = '\0';
4011 if (count && tmp[count - 1] == '\n')
4012 tmp[count - 1] = '\0';
4013
4014 huge = shmem_parse_huge(tmp);
4015 if (huge == -EINVAL)
4016 return -EINVAL;
4017 if (!has_transparent_hugepage() &&
4018 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4019 return -EINVAL;
4020
4021 shmem_huge = huge;
435c0b87 4022 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4023 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4024 return count;
4025}
4026
4027struct kobj_attribute shmem_enabled_attr =
4028 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4029#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4030
853ac43a
MM
4031#else /* !CONFIG_SHMEM */
4032
4033/*
4034 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4035 *
4036 * This is intended for small system where the benefits of the full
4037 * shmem code (swap-backed and resource-limited) are outweighed by
4038 * their complexity. On systems without swap this code should be
4039 * effectively equivalent, but much lighter weight.
4040 */
4041
41ffe5d5 4042static struct file_system_type shmem_fs_type = {
853ac43a 4043 .name = "tmpfs",
f3235626 4044 .init_fs_context = ramfs_init_fs_context,
d7167b14 4045 .parameters = ramfs_fs_parameters,
853ac43a 4046 .kill_sb = kill_litter_super,
2b8576cb 4047 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4048};
4049
41ffe5d5 4050int __init shmem_init(void)
853ac43a 4051{
41ffe5d5 4052 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4053
41ffe5d5 4054 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4055 BUG_ON(IS_ERR(shm_mnt));
4056
4057 return 0;
4058}
4059
b56a2d8a
VRP
4060int shmem_unuse(unsigned int type, bool frontswap,
4061 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4062{
4063 return 0;
4064}
4065
d7c9e99a 4066int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4067{
4068 return 0;
4069}
4070
24513264
HD
4071void shmem_unlock_mapping(struct address_space *mapping)
4072{
4073}
4074
c01d5b30
HD
4075#ifdef CONFIG_MMU
4076unsigned long shmem_get_unmapped_area(struct file *file,
4077 unsigned long addr, unsigned long len,
4078 unsigned long pgoff, unsigned long flags)
4079{
4080 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4081}
4082#endif
4083
41ffe5d5 4084void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4085{
41ffe5d5 4086 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4087}
4088EXPORT_SYMBOL_GPL(shmem_truncate_range);
4089
0b0a0806
HD
4090#define shmem_vm_ops generic_file_vm_ops
4091#define shmem_file_operations ramfs_file_operations
454abafe 4092#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4093#define shmem_acct_size(flags, size) 0
4094#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4095
4096#endif /* CONFIG_SHMEM */
4097
4098/* common code */
1da177e4 4099
703321b6 4100static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4101 unsigned long flags, unsigned int i_flags)
1da177e4 4102{
1da177e4 4103 struct inode *inode;
93dec2da 4104 struct file *res;
1da177e4 4105
703321b6
MA
4106 if (IS_ERR(mnt))
4107 return ERR_CAST(mnt);
1da177e4 4108
285b2c4f 4109 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4110 return ERR_PTR(-EINVAL);
4111
4112 if (shmem_acct_size(flags, size))
4113 return ERR_PTR(-ENOMEM);
4114
93dec2da
AV
4115 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4116 flags);
dac2d1f6
AV
4117 if (unlikely(!inode)) {
4118 shmem_unacct_size(flags, size);
4119 return ERR_PTR(-ENOSPC);
4120 }
c7277090 4121 inode->i_flags |= i_flags;
1da177e4 4122 inode->i_size = size;
6d6b77f1 4123 clear_nlink(inode); /* It is unlinked */
26567cdb 4124 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4125 if (!IS_ERR(res))
4126 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4127 &shmem_file_operations);
26567cdb 4128 if (IS_ERR(res))
93dec2da 4129 iput(inode);
6b4d0b27 4130 return res;
1da177e4 4131}
c7277090
EP
4132
4133/**
4134 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4135 * kernel internal. There will be NO LSM permission checks against the
4136 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4137 * higher layer. The users are the big_key and shm implementations. LSM
4138 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4139 * @name: name for dentry (to be seen in /proc/<pid>/maps
4140 * @size: size to be set for the file
4141 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4142 */
4143struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4144{
703321b6 4145 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4146}
4147
4148/**
4149 * shmem_file_setup - get an unlinked file living in tmpfs
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153 */
4154struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4155{
703321b6 4156 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4157}
395e0ddc 4158EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4159
703321b6
MA
4160/**
4161 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4162 * @mnt: the tmpfs mount where the file will be created
4163 * @name: name for dentry (to be seen in /proc/<pid>/maps
4164 * @size: size to be set for the file
4165 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4166 */
4167struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4168 loff_t size, unsigned long flags)
4169{
4170 return __shmem_file_setup(mnt, name, size, flags, 0);
4171}
4172EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4173
46711810 4174/**
1da177e4 4175 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4176 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4177 */
4178int shmem_zero_setup(struct vm_area_struct *vma)
4179{
4180 struct file *file;
4181 loff_t size = vma->vm_end - vma->vm_start;
4182
66fc1303 4183 /*
c1e8d7c6 4184 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4185 * between XFS directory reading and selinux: since this file is only
4186 * accessible to the user through its mapping, use S_PRIVATE flag to
4187 * bypass file security, in the same way as shmem_kernel_file_setup().
4188 */
703321b6 4189 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4190 if (IS_ERR(file))
4191 return PTR_ERR(file);
4192
4193 if (vma->vm_file)
4194 fput(vma->vm_file);
4195 vma->vm_file = file;
4196 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4197
396bcc52 4198 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4199 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4200 (vma->vm_end & HPAGE_PMD_MASK)) {
4201 khugepaged_enter(vma, vma->vm_flags);
4202 }
4203
1da177e4
LT
4204 return 0;
4205}
420a9fe5 4206EXPORT_SYMBOL_GPL(shmem_zero_setup);
d9d90e5e
HD
4207
4208/**
4209 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4210 * @mapping: the page's address_space
4211 * @index: the page index
4212 * @gfp: the page allocator flags to use if allocating
4213 *
4214 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4215 * with any new page allocations done using the specified allocation flags.
4216 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4217 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4218 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4219 *
68da9f05
HD
4220 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4221 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4222 */
4223struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4224 pgoff_t index, gfp_t gfp)
4225{
68da9f05
HD
4226#ifdef CONFIG_SHMEM
4227 struct inode *inode = mapping->host;
9276aad6 4228 struct page *page;
68da9f05
HD
4229 int error;
4230
30e6a51d 4231 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4232 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4233 gfp, NULL, NULL, NULL);
68da9f05 4234 if (error)
cd2ab9d5
YS
4235 return ERR_PTR(error);
4236
4237 unlock_page(page);
4238 if (PageHWPoison(page)) {
4239 put_page(page);
4240 return ERR_PTR(-EIO);
4241 }
4242
68da9f05
HD
4243 return page;
4244#else
4245 /*
4246 * The tiny !SHMEM case uses ramfs without swap
4247 */
d9d90e5e 4248 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4249#endif
d9d90e5e
HD
4250}
4251EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);