]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/shmem.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4 85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
0b5071dd
AV
110struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
ea3271f7 117 bool full_inums;
0b5071dd
AV
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
ea3271f7 123#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
124};
125
b76db735 126#ifdef CONFIG_TMPFS
680d794b
AM
127static unsigned long shmem_default_max_blocks(void)
128{
ca79b0c2 129 return totalram_pages() / 2;
680d794b
AM
130}
131
132static unsigned long shmem_default_max_inodes(void)
133{
ca79b0c2
AK
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 137}
b76db735 138#endif
680d794b 139
bde05d1c
HD
140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
68da9f05 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp,
cfda0526 149 gfp_t gfp, struct vm_area_struct *vma,
2b740303 150 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 151
f3f0e1d2 152int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 153 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
154{
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 157}
1da177e4 158
1da177e4
LT
159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160{
161 return sb->s_fs_info;
162}
163
164/*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170static inline int shmem_acct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 return (flags & VM_NORESERVE) ?
191c5424 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
174}
175
176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177{
0b0a0806 178 if (!(flags & VM_NORESERVE))
1da177e4
LT
179 vm_unacct_memory(VM_ACCT(size));
180}
181
77142517
KK
182static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184{
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193}
194
1da177e4
LT
195/*
196 * ... whereas tmpfs objects are accounted incrementally as
75edd345 197 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
800d8c63 201static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 202{
800d8c63
KS
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
0b0a0806 212 if (flags & VM_NORESERVE)
09cbfeaf 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
214}
215
0f079694
MR
216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217{
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236}
237
238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239{
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246}
247
759b9775 248static const struct super_operations shmem_ops;
30e6a51d 249const struct address_space_operations shmem_aops;
15ad7cdc 250static const struct file_operations shmem_file_operations;
92e1d5be
AV
251static const struct inode_operations shmem_inode_operations;
252static const struct inode_operations shmem_dir_inode_operations;
253static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 254static const struct vm_operations_struct shmem_vm_ops;
779750d2 255static struct file_system_type shmem_fs_type;
1da177e4 256
b0506e48
MR
257bool vma_is_shmem(struct vm_area_struct *vma)
258{
259 return vma->vm_ops == &shmem_vm_ops;
260}
261
1da177e4 262static LIST_HEAD(shmem_swaplist);
cb5f7b9a 263static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 264
e809d5f0
CD
265/*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274#define SHMEM_INO_BATCH 1024
275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
276{
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
5b04c689 281 spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
5b04c689 288 }
e809d5f0
CD
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
ea3271f7
CD
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
e809d5f0
CD
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
ea3271f7
CD
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
e809d5f0
CD
304 }
305 *inop = ino;
306 }
5b04c689 307 spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
ea3271f7
CD
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
e809d5f0
CD
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
5b04c689 335 }
e809d5f0 336
5b04c689
PE
337 return 0;
338}
339
340static void shmem_free_inode(struct super_block *sb)
341{
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348}
349
46711810 350/**
41ffe5d5 351 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362static void shmem_recalc_inode(struct inode *inode)
363{
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
54af6042 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 371 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
372 }
373}
374
800d8c63
KS
375bool shmem_charge(struct inode *inode, long pages)
376{
377 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 378 unsigned long flags;
800d8c63 379
0f079694 380 if (!shmem_inode_acct_block(inode, pages))
800d8c63 381 return false;
b1cc94ab 382
aaa52e34
HD
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
4595ef88 386 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
4595ef88 390 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 391
800d8c63
KS
392 return true;
393}
394
395void shmem_uncharge(struct inode *inode, long pages)
396{
397 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 398 unsigned long flags;
800d8c63 399
aaa52e34
HD
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
4595ef88 402 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
4595ef88 406 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 407
0f079694 408 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
409}
410
7a5d0fbb 411/*
62f945b6 412 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 413 */
62f945b6 414static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
415 pgoff_t index, void *expected, void *replacement)
416{
62f945b6 417 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 418 void *item;
7a5d0fbb
HD
419
420 VM_BUG_ON(!expected);
6dbaf22c 421 VM_BUG_ON(!replacement);
62f945b6 422 item = xas_load(&xas);
7a5d0fbb
HD
423 if (item != expected)
424 return -ENOENT;
62f945b6 425 xas_store(&xas, replacement);
7a5d0fbb
HD
426 return 0;
427}
428
d1899228
HD
429/*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438{
a12831bf 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
440}
441
5a6e75f8
KS
442/*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456#define SHMEM_HUGE_NEVER 0
457#define SHMEM_HUGE_ALWAYS 1
458#define SHMEM_HUGE_WITHIN_SIZE 2
459#define SHMEM_HUGE_ADVISE 3
460
461/*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471#define SHMEM_HUGE_DENY (-1)
472#define SHMEM_HUGE_FORCE (-2)
473
396bcc52 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
475/* ifdef here to avoid bloating shmem.o when not necessary */
476
5b9c98f3 477static int shmem_huge __read_mostly;
5a6e75f8 478
e5f2249a 479#if defined(CONFIG_SYSFS)
5a6e75f8
KS
480static int shmem_parse_huge(const char *str)
481{
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495}
e5f2249a 496#endif
5a6e75f8 497
e5f2249a 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
499static const char *shmem_format_huge(int huge)
500{
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518}
f1f5929c 519#endif
5a6e75f8 520
779750d2
KS
521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523{
524 LIST_HEAD(list), *pos, *next;
253fd0f0 525 LIST_HEAD(to_remove);
779750d2
KS
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 552 list_move(&info->shrinklist, &to_remove);
779750d2 553 removed++;
779750d2
KS
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
253fd0f0
KS
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
779750d2
KS
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
b3cd54b2
KS
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
779750d2 579
b3cd54b2 580 page = find_get_page(inode->i_mapping,
779750d2
KS
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
b3cd54b2 585 /* No huge page at the end of the file: nothing to split */
779750d2 586 if (!PageTransHuge(page)) {
779750d2
KS
587 put_page(page);
588 goto drop;
589 }
590
b3cd54b2
KS
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
779750d2
KS
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
b3cd54b2
KS
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
779750d2
KS
610
611 split++;
612drop:
613 list_del_init(&info->shrinklist);
614 removed++;
b3cd54b2 615leave:
779750d2
KS
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625}
626
627static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629{
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636}
637
638static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640{
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643}
396bcc52 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
645
646#define shmem_huge SHMEM_HUGE_DENY
647
779750d2
KS
648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650{
651 return 0;
652}
396bcc52 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 654
89fdcd26
YS
655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656{
396bcc52 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662}
663
46f65ec1
HD
664/*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
3fea5a49
JW
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
46f65ec1 671{
552446a4
MW
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
d8c6546b 674 unsigned long nr = compound_nr(page);
3fea5a49 675 int error;
46f65ec1 676
800d8c63
KS
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 681 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 682
800d8c63 683 page_ref_add(page, nr);
b065b432
HD
684 page->mapping = mapping;
685 page->index = index;
686
4c6355b2 687 if (!PageSwapCache(page)) {
d9eb1ea2 688 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
3fea5a49 695 }
3fea5a49
JW
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
552446a4
MW
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708next:
4101196b 709 xas_store(&xas, page);
552446a4
MW
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
800d8c63 713 }
552446a4 714 if (PageTransHuge(page)) {
800d8c63 715 count_vm_event(THP_FILE_ALLOC);
57b2847d 716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 717 }
800d8c63 718 mapping->nrpages += nr;
0d1c2072
JW
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
721unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
3fea5a49
JW
726 error = xas_error(&xas);
727 goto error;
46f65ec1 728 }
552446a4
MW
729
730 return 0;
3fea5a49
JW
731error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
46f65ec1
HD
735}
736
6922c0c7
HD
737/*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741{
742 struct address_space *mapping = page->mapping;
743 int error;
744
800d8c63
KS
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
b93b0163 747 xa_lock_irq(&mapping->i_pages);
62f945b6 748 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
749 page->mapping = NULL;
750 mapping->nrpages--;
0d1c2072
JW
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 753 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 754 put_page(page);
6922c0c7
HD
755 BUG_ON(error);
756}
757
7a5d0fbb 758/*
c121d3bb 759 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
760 */
761static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763{
6dbaf22c 764 void *old;
7a5d0fbb 765
55f3f7ea 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
7a5d0fbb
HD
771}
772
6a15a370
VB
773/*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 775 * given offsets are swapped out.
6a15a370 776 *
b93b0163 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
48131e03
VB
780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
6a15a370 782{
7ae3424f 783 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 784 struct page *page;
48131e03 785 unsigned long swapped = 0;
6a15a370
VB
786
787 rcu_read_lock();
7ae3424f
MW
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
2cf938aa 790 continue;
3159f943 791 if (xa_is_value(page))
6a15a370
VB
792 swapped++;
793
794 if (need_resched()) {
7ae3424f 795 xas_pause(&xas);
6a15a370 796 cond_resched_rcu();
6a15a370
VB
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803}
804
48131e03
VB
805/*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
b93b0163 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813{
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837}
838
24513264
HD
839/*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842void shmem_unlock_mapping(struct address_space *mapping)
843{
844 struct pagevec pvec;
24513264
HD
845 pgoff_t index = 0;
846
86679820 847 pagevec_init(&pvec);
24513264
HD
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
96888e0a 852 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 853 break;
64e3d12f 854 check_move_unevictable_pages(&pvec);
24513264
HD
855 pagevec_release(&pvec);
856 cond_resched();
857 }
7a5d0fbb
HD
858}
859
71725ed1
HD
860/*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
872static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873{
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884}
885
7a5d0fbb 886/*
7f4446ee 887 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 889 */
1635f6a7
HD
890static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
1da177e4 892{
285b2c4f 893 struct address_space *mapping = inode->i_mapping;
1da177e4 894 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 899 struct pagevec pvec;
7a5d0fbb
HD
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
285b2c4f 902 pgoff_t index;
bda97eab
HD
903 int i;
904
83e4fa9c
HD
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
bda97eab 907
86679820 908 pagevec_init(&pvec);
bda97eab 909 index = start;
5c211ba2
MWO
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
bda97eab
HD
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
7a5d0fbb 915 index = indices[i];
bda97eab 916
3159f943 917 if (xa_is_value(page)) {
1635f6a7
HD
918 if (unfalloc)
919 continue;
7a5d0fbb
HD
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
bda97eab 922 continue;
7a5d0fbb 923 }
5c211ba2 924 index += thp_nr_pages(page) - 1;
7a5d0fbb 925
5c211ba2
MWO
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
bda97eab
HD
928 unlock_page(page);
929 }
0cd6144a 930 pagevec_remove_exceptionals(&pvec);
24513264 931 pagevec_release(&pvec);
bda97eab
HD
932 cond_resched();
933 index++;
934 }
1da177e4 935
83e4fa9c 936 if (partial_start) {
bda97eab 937 struct page *page = NULL;
9e18eb29 938 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 939 if (page) {
09cbfeaf 940 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
09cbfeaf 948 put_page(page);
83e4fa9c
HD
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
9e18eb29 953 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
bda97eab
HD
956 set_page_dirty(page);
957 unlock_page(page);
09cbfeaf 958 put_page(page);
bda97eab
HD
959 }
960 }
83e4fa9c
HD
961 if (start >= end)
962 return;
bda97eab
HD
963
964 index = start;
b1a36650 965 while (index < end) {
bda97eab 966 cond_resched();
0cd6144a 967
cf2039af
MWO
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
b1a36650
HD
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
bda97eab 972 break;
b1a36650 973 /* But if truncating, restart to make sure all gone */
bda97eab
HD
974 index = start;
975 continue;
976 }
bda97eab
HD
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
7a5d0fbb 980 index = indices[i];
3159f943 981 if (xa_is_value(page)) {
1635f6a7
HD
982 if (unfalloc)
983 continue;
b1a36650
HD
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
7a5d0fbb
HD
990 continue;
991 }
992
bda97eab 993 lock_page(page);
800d8c63 994
1635f6a7 995 if (!unfalloc || !PageUptodate(page)) {
71725ed1 996 if (page_mapping(page) != mapping) {
b1a36650
HD
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1635f6a7 1001 }
71725ed1
HD
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
0783ac95 1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
7a5d0fbb 1014 }
bda97eab
HD
1015 unlock_page(page);
1016 }
0cd6144a 1017 pagevec_remove_exceptionals(&pvec);
24513264 1018 pagevec_release(&pvec);
bda97eab
HD
1019 index++;
1020 }
94c1e62d 1021
4595ef88 1022 spin_lock_irq(&info->lock);
7a5d0fbb 1023 info->swapped -= nr_swaps_freed;
1da177e4 1024 shmem_recalc_inode(inode);
4595ef88 1025 spin_unlock_irq(&info->lock);
1635f6a7 1026}
1da177e4 1027
1635f6a7
HD
1028void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029{
1030 shmem_undo_range(inode, lstart, lend, false);
078cd827 1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1032}
94c1e62d 1033EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1034
549c7297
CB
1035static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
a528d35e 1037 u32 request_mask, unsigned int query_flags)
44a30220 1038{
a528d35e 1039 struct inode *inode = path->dentry->d_inode;
44a30220 1040 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1042
d0424c42 1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1044 spin_lock_irq(&info->lock);
d0424c42 1045 shmem_recalc_inode(inode);
4595ef88 1046 spin_unlock_irq(&info->lock);
d0424c42 1047 }
0d56a451 1048 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26
YS
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
44a30220
YZ
1053 return 0;
1054}
1055
549c7297
CB
1056static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1da177e4 1058{
75c3cfa8 1059 struct inode *inode = d_inode(dentry);
40e041a2 1060 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1062 int error;
1063
2f221d6f 1064 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1065 if (error)
1066 return error;
1067
94c1e62d
HD
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
3889e6e7 1071
40e041a2
DH
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
94c1e62d 1077 if (newsize != oldsize) {
77142517
KK
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
94c1e62d 1082 i_size_write(inode, newsize);
078cd827 1083 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1084 }
afa2db2f 1085 if (newsize <= oldsize) {
94c1e62d 1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
94c1e62d 1093 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
779750d2
KS
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
396bcc52 1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1103 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
94c1e62d 1115 }
1da177e4
LT
1116 }
1117
2f221d6f 1118 setattr_copy(&init_user_ns, inode, attr);
db78b877 1119 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1121 return error;
1122}
1123
1f895f75 1124static void shmem_evict_inode(struct inode *inode)
1da177e4 1125{
1da177e4 1126 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1128
30e6a51d 1129 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
3889e6e7 1132 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
af53d3e9
HD
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
cb5f7b9a 1145 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
cb5f7b9a 1149 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1150 }
3ed47db3 1151 }
b09e0fa4 1152
38f38657 1153 simple_xattrs_free(&info->xattrs);
0f3c42f5 1154 WARN_ON(inode->i_blocks);
5b04c689 1155 shmem_free_inode(inode->i_sb);
dbd5768f 1156 clear_inode(inode);
1da177e4
LT
1157}
1158
b56a2d8a
VRP
1159extern struct swap_info_struct *swap_info[];
1160
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
87039546 1164 unsigned int type, bool frontswap)
478922e2 1165{
b56a2d8a
VRP
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
87039546 1168 swp_entry_t entry;
b56a2d8a
VRP
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
478922e2
MW
1173
1174 rcu_read_lock();
b56a2d8a
VRP
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
5b9c98f3 1177 continue;
b56a2d8a
VRP
1178
1179 if (!xa_is_value(page))
478922e2 1180 continue;
b56a2d8a 1181
87039546
HD
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
b56a2d8a
VRP
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
478922e2 1198 }
478922e2 1199 rcu_read_unlock();
e21a2955 1200
b56a2d8a 1201 return ret;
478922e2
MW
1202}
1203
46f65ec1 1204/*
b56a2d8a
VRP
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
46f65ec1 1207 */
b56a2d8a
VRP
1208static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1da177e4 1210{
b56a2d8a
VRP
1211 int i = 0;
1212 int ret = 0;
bde05d1c 1213 int error = 0;
b56a2d8a 1214 struct address_space *mapping = inode->i_mapping;
1da177e4 1215
b56a2d8a
VRP
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
2e0e26c7 1218
b56a2d8a
VRP
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
bde05d1c 1233 }
b56a2d8a
VRP
1234 return error ? error : ret;
1235}
bde05d1c 1236
b56a2d8a
VRP
1237/*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242{
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
87039546 1259 type, frontswap);
b56a2d8a
VRP
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
46f65ec1 1263 }
b56a2d8a
VRP
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1da177e4
LT
1281}
1282
1283/*
b56a2d8a
VRP
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1da177e4 1287 */
b56a2d8a
VRP
1288int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1da177e4 1290{
b56a2d8a 1291 struct shmem_inode_info *info, *next;
bde05d1c
HD
1292 int error = 0;
1293
b56a2d8a
VRP
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
6922c0c7 1300 list_del_init(&info->swaplist);
b56a2d8a
VRP
1301 continue;
1302 }
af53d3e9
HD
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
b56a2d8a 1310 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1311
af53d3e9 1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1313 fs_pages_to_unuse);
cb5f7b9a 1314 cond_resched();
b56a2d8a
VRP
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
af53d3e9
HD
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
b56a2d8a 1322 if (error)
778dd893 1323 break;
1da177e4 1324 }
cb5f7b9a 1325 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1326
778dd893 1327 return error;
1da177e4
LT
1328}
1329
1330/*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334{
1335 struct shmem_inode_info *info;
1da177e4 1336 struct address_space *mapping;
1da177e4 1337 struct inode *inode;
6922c0c7
HD
1338 swp_entry_t swap;
1339 pgoff_t index;
1da177e4 1340
800d8c63 1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1342 BUG_ON(!PageLocked(page));
1da177e4
LT
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
d9fe526a 1349 if (!total_swap_pages)
1da177e4
LT
1350 goto redirty;
1351
d9fe526a 1352 /*
97b713ba
CH
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
d9fe526a 1358 */
48f170fb
HD
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1635f6a7
HD
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1374 */
1375 if (!PageUptodate(page)) {
1aac1400
HD
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
8e205f77 1381 !shmem_falloc->waitq &&
1aac1400
HD
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1635f6a7
HD
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
38d8b4e6 1396 swap = get_swap_page(page);
48f170fb
HD
1397 if (!swap.val)
1398 goto redirty;
d9fe526a 1399
b1dea800
HD
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
b1dea800 1404 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1407 */
48f170fb
HD
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
b56a2d8a 1410 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1411
4afab1cd 1412 if (add_to_swap_cache(page, swap,
3852f676
JK
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
4595ef88 1415 spin_lock_irq(&info->lock);
6922c0c7 1416 shmem_recalc_inode(inode);
267a4c76 1417 info->swapped++;
4595ef88 1418 spin_unlock_irq(&info->lock);
6922c0c7 1419
267a4c76
HD
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
6922c0c7 1423 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1424 BUG_ON(page_mapped(page));
9fab5619 1425 swap_writepage(page, wbc);
1da177e4
LT
1426 return 0;
1427 }
1428
6922c0c7 1429 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1430 put_swap_page(page, swap);
1da177e4
LT
1431redirty:
1432 set_page_dirty(page);
d9fe526a
HD
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1da177e4
LT
1437}
1438
75edd345 1439#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1440static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1441{
095f1fc4 1442 char buffer[64];
680d794b 1443
71fe804b 1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1445 return; /* show nothing */
680d794b 1446
a7a88b23 1447 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1450}
71fe804b
LS
1451
1452static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453{
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462}
75edd345
HD
1463#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465{
1466}
1467static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468{
1469 return NULL;
1470}
1471#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472#ifndef CONFIG_NUMA
1473#define vm_policy vm_private_data
1474#endif
680d794b 1475
800d8c63
KS
1476static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478{
1479 /* Create a pseudo vma that just contains the policy */
2c4541e2 1480 vma_init(vma, NULL);
800d8c63
KS
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484}
1485
1486static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487{
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490}
1491
41ffe5d5
HD
1492static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1494{
1da177e4 1495 struct vm_area_struct pvma;
18a2f371 1496 struct page *page;
8c63ca5b
WD
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
52cd3b07 1500
800d8c63 1501 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1502 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1503 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1504
800d8c63
KS
1505 return page;
1506}
1507
78cc8cdc
RR
1508/*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513{
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
78cc8cdc
RR
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530}
1531
800d8c63
KS
1532static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534{
1535 struct vm_area_struct pvma;
7b8d046f
MW
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
800d8c63
KS
1538 struct page *page;
1539
4620a06e 1540 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
800d8c63 1543 return NULL;
18a2f371 1544
800d8c63 1545 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
800d8c63
KS
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
dcdf11ee
DR
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1553 return page;
1da177e4
LT
1554}
1555
02098fea 1556static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1557 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1558{
1559 struct vm_area_struct pvma;
18a2f371 1560 struct page *page;
1da177e4 1561
800d8c63
KS
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567}
1568
1569static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1570 struct inode *inode,
800d8c63
KS
1571 pgoff_t index, bool huge)
1572{
0f079694 1573 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
52cd3b07 1577
396bcc52 1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
0f079694 1582 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1583 goto failed;
800d8c63
KS
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
800d8c63 1592 return page;
75edd345 1593 }
18a2f371 1594
800d8c63 1595 err = -ENOMEM;
0f079694 1596 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1597failed:
1598 return ERR_PTR(err);
1da177e4 1599}
71fe804b 1600
bde05d1c
HD
1601/*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614{
1615 return page_zonenum(page) > gfp_zone(gfp);
1616}
1617
1618static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620{
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
c1cb20d4 1623 swp_entry_t entry;
bde05d1c
HD
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
c1cb20d4
YZ
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
bde05d1c
HD
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
bde05d1c 1640
09cbfeaf 1641 get_page(newpage);
bde05d1c 1642 copy_highpage(newpage, oldpage);
0142ef6c 1643 flush_dcache_page(newpage);
bde05d1c 1644
9956edf3
HD
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
bde05d1c 1647 SetPageUptodate(newpage);
c1cb20d4 1648 set_page_private(newpage, entry.val);
bde05d1c
HD
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
b93b0163 1655 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1657 if (!error) {
0d1c2072
JW
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1661 }
b93b0163 1662 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1663
0142ef6c
HD
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
6058eaec 1672 lru_cache_add(newpage);
0142ef6c
HD
1673 *pagep = newpage;
1674 }
bde05d1c
HD
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
09cbfeaf
KS
1680 put_page(oldpage);
1681 put_page(oldpage);
0142ef6c 1682 return error;
bde05d1c
HD
1683}
1684
c5bf121e
VRP
1685/*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1689 * error code and NULL in *pagep.
c5bf121e
VRP
1690 */
1691static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695{
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
2efa33fc
ML
1699 struct swap_info_struct *si;
1700 struct page *page = NULL;
c5bf121e
VRP
1701 swp_entry_t swap;
1702 int error;
1703
1704 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 swap = radix_to_swp_entry(*pagep);
1706 *pagep = NULL;
1707
2efa33fc
ML
1708 /* Prevent swapoff from happening to us. */
1709 si = get_swap_device(swap);
1710 if (!si) {
1711 error = EINVAL;
1712 goto failed;
1713 }
c5bf121e
VRP
1714 /* Look it up and read it in.. */
1715 page = lookup_swap_cache(swap, NULL, 0);
1716 if (!page) {
1717 /* Or update major stats only when swapin succeeds?? */
1718 if (fault_type) {
1719 *fault_type |= VM_FAULT_MAJOR;
1720 count_vm_event(PGMAJFAULT);
1721 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 }
1723 /* Here we actually start the io */
1724 page = shmem_swapin(swap, gfp, info, index);
1725 if (!page) {
1726 error = -ENOMEM;
1727 goto failed;
1728 }
1729 }
1730
1731 /* We have to do this with page locked to prevent races */
1732 lock_page(page);
1733 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 !shmem_confirm_swap(mapping, index, swap)) {
1735 error = -EEXIST;
1736 goto unlock;
1737 }
1738 if (!PageUptodate(page)) {
1739 error = -EIO;
1740 goto failed;
1741 }
1742 wait_on_page_writeback(page);
1743
8a84802e
SP
1744 /*
1745 * Some architectures may have to restore extra metadata to the
1746 * physical page after reading from swap.
1747 */
1748 arch_swap_restore(swap, page);
1749
c5bf121e
VRP
1750 if (shmem_should_replace_page(page, gfp)) {
1751 error = shmem_replace_page(&page, gfp, info, index);
1752 if (error)
1753 goto failed;
1754 }
1755
14235ab3 1756 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1757 swp_to_radix_entry(swap), gfp,
1758 charge_mm);
1759 if (error)
14235ab3 1760 goto failed;
c5bf121e
VRP
1761
1762 spin_lock_irq(&info->lock);
1763 info->swapped--;
1764 shmem_recalc_inode(inode);
1765 spin_unlock_irq(&info->lock);
1766
1767 if (sgp == SGP_WRITE)
1768 mark_page_accessed(page);
1769
1770 delete_from_swap_cache(page);
1771 set_page_dirty(page);
1772 swap_free(swap);
1773
1774 *pagep = page;
2efa33fc
ML
1775 if (si)
1776 put_swap_device(si);
c5bf121e
VRP
1777 return 0;
1778failed:
1779 if (!shmem_confirm_swap(mapping, index, swap))
1780 error = -EEXIST;
1781unlock:
1782 if (page) {
1783 unlock_page(page);
1784 put_page(page);
1785 }
1786
2efa33fc
ML
1787 if (si)
1788 put_swap_device(si);
1789
c5bf121e
VRP
1790 return error;
1791}
1792
1da177e4 1793/*
68da9f05 1794 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1795 *
1796 * If we allocate a new one we do not mark it dirty. That's up to the
1797 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1798 * entry since a page cannot live in both the swap and page cache.
1799 *
c949b097 1800 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1801 * otherwise they are NULL.
1da177e4 1802 */
41ffe5d5 1803static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1804 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1805 struct vm_area_struct *vma, struct vm_fault *vmf,
1806 vm_fault_t *fault_type)
1da177e4
LT
1807{
1808 struct address_space *mapping = inode->i_mapping;
23f919d4 1809 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1810 struct shmem_sb_info *sbinfo;
9e18eb29 1811 struct mm_struct *charge_mm;
27ab7006 1812 struct page *page;
657e3038 1813 enum sgp_type sgp_huge = sgp;
800d8c63 1814 pgoff_t hindex = index;
164cc4fe 1815 gfp_t huge_gfp;
1da177e4 1816 int error;
54af6042 1817 int once = 0;
1635f6a7 1818 int alloced = 0;
1da177e4 1819
09cbfeaf 1820 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1821 return -EFBIG;
657e3038
KS
1822 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 sgp = SGP_CACHE;
1da177e4 1824repeat:
c5bf121e
VRP
1825 if (sgp <= SGP_CACHE &&
1826 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 return -EINVAL;
1828 }
1829
1830 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1831 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1832
44835d20
MWO
1833 page = pagecache_get_page(mapping, index,
1834 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1835
1836 if (page && vma && userfaultfd_minor(vma)) {
1837 if (!xa_is_value(page)) {
1838 unlock_page(page);
1839 put_page(page);
1840 }
1841 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1842 return 0;
1843 }
1844
3159f943 1845 if (xa_is_value(page)) {
c5bf121e
VRP
1846 error = shmem_swapin_page(inode, index, &page,
1847 sgp, gfp, vma, fault_type);
1848 if (error == -EEXIST)
1849 goto repeat;
54af6042 1850
c5bf121e
VRP
1851 *pagep = page;
1852 return error;
54af6042
HD
1853 }
1854
63ec1973
MWO
1855 if (page)
1856 hindex = page->index;
66d2f4d2
HD
1857 if (page && sgp == SGP_WRITE)
1858 mark_page_accessed(page);
1859
1635f6a7
HD
1860 /* fallocated page? */
1861 if (page && !PageUptodate(page)) {
1862 if (sgp != SGP_READ)
1863 goto clear;
1864 unlock_page(page);
09cbfeaf 1865 put_page(page);
1635f6a7 1866 page = NULL;
63ec1973 1867 hindex = index;
1635f6a7 1868 }
63ec1973
MWO
1869 if (page || sgp == SGP_READ)
1870 goto out;
27ab7006
HD
1871
1872 /*
54af6042
HD
1873 * Fast cache lookup did not find it:
1874 * bring it back from swap or allocate.
27ab7006 1875 */
54af6042 1876
c5bf121e
VRP
1877 if (vma && userfaultfd_missing(vma)) {
1878 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1879 return 0;
1880 }
cfda0526 1881
c5bf121e 1882 /* shmem_symlink() */
30e6a51d 1883 if (!shmem_mapping(mapping))
c5bf121e
VRP
1884 goto alloc_nohuge;
1885 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1886 goto alloc_nohuge;
1887 if (shmem_huge == SHMEM_HUGE_FORCE)
1888 goto alloc_huge;
1889 switch (sbinfo->huge) {
c5bf121e
VRP
1890 case SHMEM_HUGE_NEVER:
1891 goto alloc_nohuge;
27d80fa2
KC
1892 case SHMEM_HUGE_WITHIN_SIZE: {
1893 loff_t i_size;
1894 pgoff_t off;
1895
c5bf121e
VRP
1896 off = round_up(index, HPAGE_PMD_NR);
1897 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1898 if (i_size >= HPAGE_PMD_SIZE &&
1899 i_size >> PAGE_SHIFT >= off)
800d8c63 1900 goto alloc_huge;
27d80fa2
KC
1901
1902 fallthrough;
1903 }
c5bf121e
VRP
1904 case SHMEM_HUGE_ADVISE:
1905 if (sgp_huge == SGP_HUGE)
1906 goto alloc_huge;
1907 /* TODO: implement fadvise() hints */
1908 goto alloc_nohuge;
1909 }
1da177e4 1910
800d8c63 1911alloc_huge:
164cc4fe 1912 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1913 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1914 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1915 if (IS_ERR(page)) {
1916alloc_nohuge:
1917 page = shmem_alloc_and_acct_page(gfp, inode,
1918 index, false);
1919 }
1920 if (IS_ERR(page)) {
1921 int retry = 5;
800d8c63 1922
c5bf121e
VRP
1923 error = PTR_ERR(page);
1924 page = NULL;
1925 if (error != -ENOSPC)
1926 goto unlock;
1927 /*
1928 * Try to reclaim some space by splitting a huge page
1929 * beyond i_size on the filesystem.
1930 */
1931 while (retry--) {
1932 int ret;
66d2f4d2 1933
c5bf121e
VRP
1934 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1935 if (ret == SHRINK_STOP)
1936 break;
1937 if (ret)
1938 goto alloc_nohuge;
b065b432 1939 }
c5bf121e
VRP
1940 goto unlock;
1941 }
54af6042 1942
c5bf121e
VRP
1943 if (PageTransHuge(page))
1944 hindex = round_down(index, HPAGE_PMD_NR);
1945 else
1946 hindex = index;
54af6042 1947
c5bf121e
VRP
1948 if (sgp == SGP_WRITE)
1949 __SetPageReferenced(page);
1950
c5bf121e 1951 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1952 NULL, gfp & GFP_RECLAIM_MASK,
1953 charge_mm);
1954 if (error)
c5bf121e 1955 goto unacct;
6058eaec 1956 lru_cache_add(page);
779750d2 1957
c5bf121e 1958 spin_lock_irq(&info->lock);
d8c6546b 1959 info->alloced += compound_nr(page);
c5bf121e
VRP
1960 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1961 shmem_recalc_inode(inode);
1962 spin_unlock_irq(&info->lock);
1963 alloced = true;
1964
1965 if (PageTransHuge(page) &&
1966 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1967 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1968 /*
c5bf121e
VRP
1969 * Part of the huge page is beyond i_size: subject
1970 * to shrink under memory pressure.
1635f6a7 1971 */
c5bf121e 1972 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1973 /*
c5bf121e
VRP
1974 * _careful to defend against unlocked access to
1975 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1976 */
c5bf121e
VRP
1977 if (list_empty_careful(&info->shrinklist)) {
1978 list_add_tail(&info->shrinklist,
1979 &sbinfo->shrinklist);
1980 sbinfo->shrinklist_len++;
1981 }
1982 spin_unlock(&sbinfo->shrinklist_lock);
1983 }
800d8c63 1984
c5bf121e
VRP
1985 /*
1986 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1987 */
1988 if (sgp == SGP_FALLOC)
1989 sgp = SGP_WRITE;
1990clear:
1991 /*
1992 * Let SGP_WRITE caller clear ends if write does not fill page;
1993 * but SGP_FALLOC on a page fallocated earlier must initialize
1994 * it now, lest undo on failure cancel our earlier guarantee.
1995 */
1996 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1997 int i;
1998
63ec1973
MWO
1999 for (i = 0; i < compound_nr(page); i++) {
2000 clear_highpage(page + i);
2001 flush_dcache_page(page + i);
ec9516fb 2002 }
63ec1973 2003 SetPageUptodate(page);
1da177e4 2004 }
bde05d1c 2005
54af6042 2006 /* Perhaps the file has been truncated since we checked */
75edd345 2007 if (sgp <= SGP_CACHE &&
09cbfeaf 2008 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
2009 if (alloced) {
2010 ClearPageDirty(page);
2011 delete_from_page_cache(page);
4595ef88 2012 spin_lock_irq(&info->lock);
267a4c76 2013 shmem_recalc_inode(inode);
4595ef88 2014 spin_unlock_irq(&info->lock);
267a4c76 2015 }
54af6042 2016 error = -EINVAL;
267a4c76 2017 goto unlock;
e83c32e8 2018 }
63ec1973 2019out:
800d8c63 2020 *pagep = page + index - hindex;
54af6042 2021 return 0;
1da177e4 2022
59a16ead 2023 /*
54af6042 2024 * Error recovery.
59a16ead 2025 */
54af6042 2026unacct:
d8c6546b 2027 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2028
2029 if (PageTransHuge(page)) {
2030 unlock_page(page);
2031 put_page(page);
2032 goto alloc_nohuge;
2033 }
d1899228 2034unlock:
27ab7006 2035 if (page) {
54af6042 2036 unlock_page(page);
09cbfeaf 2037 put_page(page);
54af6042
HD
2038 }
2039 if (error == -ENOSPC && !once++) {
4595ef88 2040 spin_lock_irq(&info->lock);
54af6042 2041 shmem_recalc_inode(inode);
4595ef88 2042 spin_unlock_irq(&info->lock);
27ab7006 2043 goto repeat;
ff36b801 2044 }
7f4446ee 2045 if (error == -EEXIST)
54af6042
HD
2046 goto repeat;
2047 return error;
1da177e4
LT
2048}
2049
10d20bd2
LT
2050/*
2051 * This is like autoremove_wake_function, but it removes the wait queue
2052 * entry unconditionally - even if something else had already woken the
2053 * target.
2054 */
ac6424b9 2055static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2056{
2057 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2058 list_del_init(&wait->entry);
10d20bd2
LT
2059 return ret;
2060}
2061
20acce67 2062static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2063{
11bac800 2064 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2065 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2066 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2067 enum sgp_type sgp;
20acce67
SJ
2068 int err;
2069 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2070
f00cdc6d
HD
2071 /*
2072 * Trinity finds that probing a hole which tmpfs is punching can
2073 * prevent the hole-punch from ever completing: which in turn
2074 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2075 * faulting pages into the hole while it's being punched. Although
2076 * shmem_undo_range() does remove the additions, it may be unable to
2077 * keep up, as each new page needs its own unmap_mapping_range() call,
2078 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2079 *
2080 * It does not matter if we sometimes reach this check just before the
2081 * hole-punch begins, so that one fault then races with the punch:
2082 * we just need to make racing faults a rare case.
2083 *
2084 * The implementation below would be much simpler if we just used a
2085 * standard mutex or completion: but we cannot take i_mutex in fault,
2086 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2087 */
2088 if (unlikely(inode->i_private)) {
2089 struct shmem_falloc *shmem_falloc;
2090
2091 spin_lock(&inode->i_lock);
2092 shmem_falloc = inode->i_private;
8e205f77
HD
2093 if (shmem_falloc &&
2094 shmem_falloc->waitq &&
2095 vmf->pgoff >= shmem_falloc->start &&
2096 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2097 struct file *fpin;
8e205f77 2098 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2099 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2100
2101 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2102 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2103 if (fpin)
8e205f77 2104 ret = VM_FAULT_RETRY;
8e205f77
HD
2105
2106 shmem_falloc_waitq = shmem_falloc->waitq;
2107 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2108 TASK_UNINTERRUPTIBLE);
2109 spin_unlock(&inode->i_lock);
2110 schedule();
2111
2112 /*
2113 * shmem_falloc_waitq points into the shmem_fallocate()
2114 * stack of the hole-punching task: shmem_falloc_waitq
2115 * is usually invalid by the time we reach here, but
2116 * finish_wait() does not dereference it in that case;
2117 * though i_lock needed lest racing with wake_up_all().
2118 */
2119 spin_lock(&inode->i_lock);
2120 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2121 spin_unlock(&inode->i_lock);
8897c1b1
KS
2122
2123 if (fpin)
2124 fput(fpin);
8e205f77 2125 return ret;
f00cdc6d 2126 }
8e205f77 2127 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2128 }
2129
657e3038 2130 sgp = SGP_CACHE;
18600332
MH
2131
2132 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2133 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2134 sgp = SGP_NOHUGE;
18600332
MH
2135 else if (vma->vm_flags & VM_HUGEPAGE)
2136 sgp = SGP_HUGE;
657e3038 2137
20acce67 2138 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2139 gfp, vma, vmf, &ret);
20acce67
SJ
2140 if (err)
2141 return vmf_error(err);
68da9f05 2142 return ret;
1da177e4
LT
2143}
2144
c01d5b30
HD
2145unsigned long shmem_get_unmapped_area(struct file *file,
2146 unsigned long uaddr, unsigned long len,
2147 unsigned long pgoff, unsigned long flags)
2148{
2149 unsigned long (*get_area)(struct file *,
2150 unsigned long, unsigned long, unsigned long, unsigned long);
2151 unsigned long addr;
2152 unsigned long offset;
2153 unsigned long inflated_len;
2154 unsigned long inflated_addr;
2155 unsigned long inflated_offset;
2156
2157 if (len > TASK_SIZE)
2158 return -ENOMEM;
2159
2160 get_area = current->mm->get_unmapped_area;
2161 addr = get_area(file, uaddr, len, pgoff, flags);
2162
396bcc52 2163 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2164 return addr;
2165 if (IS_ERR_VALUE(addr))
2166 return addr;
2167 if (addr & ~PAGE_MASK)
2168 return addr;
2169 if (addr > TASK_SIZE - len)
2170 return addr;
2171
2172 if (shmem_huge == SHMEM_HUGE_DENY)
2173 return addr;
2174 if (len < HPAGE_PMD_SIZE)
2175 return addr;
2176 if (flags & MAP_FIXED)
2177 return addr;
2178 /*
2179 * Our priority is to support MAP_SHARED mapped hugely;
2180 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2181 * But if caller specified an address hint and we allocated area there
2182 * successfully, respect that as before.
c01d5b30 2183 */
99158997 2184 if (uaddr == addr)
c01d5b30
HD
2185 return addr;
2186
2187 if (shmem_huge != SHMEM_HUGE_FORCE) {
2188 struct super_block *sb;
2189
2190 if (file) {
2191 VM_BUG_ON(file->f_op != &shmem_file_operations);
2192 sb = file_inode(file)->i_sb;
2193 } else {
2194 /*
2195 * Called directly from mm/mmap.c, or drivers/char/mem.c
2196 * for "/dev/zero", to create a shared anonymous object.
2197 */
2198 if (IS_ERR(shm_mnt))
2199 return addr;
2200 sb = shm_mnt->mnt_sb;
2201 }
3089bf61 2202 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2203 return addr;
2204 }
2205
2206 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2207 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2208 return addr;
2209 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2210 return addr;
2211
2212 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2213 if (inflated_len > TASK_SIZE)
2214 return addr;
2215 if (inflated_len < len)
2216 return addr;
2217
99158997 2218 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2219 if (IS_ERR_VALUE(inflated_addr))
2220 return addr;
2221 if (inflated_addr & ~PAGE_MASK)
2222 return addr;
2223
2224 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2225 inflated_addr += offset - inflated_offset;
2226 if (inflated_offset > offset)
2227 inflated_addr += HPAGE_PMD_SIZE;
2228
2229 if (inflated_addr > TASK_SIZE - len)
2230 return addr;
2231 return inflated_addr;
2232}
2233
1da177e4 2234#ifdef CONFIG_NUMA
41ffe5d5 2235static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2236{
496ad9aa 2237 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2238 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2239}
2240
d8dc74f2
AB
2241static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2242 unsigned long addr)
1da177e4 2243{
496ad9aa 2244 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2245 pgoff_t index;
1da177e4 2246
41ffe5d5
HD
2247 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2248 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2249}
2250#endif
2251
d7c9e99a 2252int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2253{
496ad9aa 2254 struct inode *inode = file_inode(file);
1da177e4
LT
2255 struct shmem_inode_info *info = SHMEM_I(inode);
2256 int retval = -ENOMEM;
2257
ea0dfeb4
HD
2258 /*
2259 * What serializes the accesses to info->flags?
2260 * ipc_lock_object() when called from shmctl_do_lock(),
2261 * no serialization needed when called from shm_destroy().
2262 */
1da177e4 2263 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2264 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2265 goto out_nomem;
2266 info->flags |= VM_LOCKED;
89e004ea 2267 mapping_set_unevictable(file->f_mapping);
1da177e4 2268 }
d7c9e99a
AG
2269 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2270 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2271 info->flags &= ~VM_LOCKED;
89e004ea 2272 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2273 }
2274 retval = 0;
89e004ea 2275
1da177e4 2276out_nomem:
1da177e4
LT
2277 return retval;
2278}
2279
9b83a6a8 2280static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2281{
ab3948f5 2282 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2283 int ret;
ab3948f5 2284
22247efd
PX
2285 ret = seal_check_future_write(info->seals, vma);
2286 if (ret)
2287 return ret;
ab3948f5 2288
51b0bff2
CM
2289 /* arm64 - allow memory tagging on RAM-based files */
2290 vma->vm_flags |= VM_MTE_ALLOWED;
2291
1da177e4
LT
2292 file_accessed(file);
2293 vma->vm_ops = &shmem_vm_ops;
396bcc52 2294 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2295 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2296 (vma->vm_end & HPAGE_PMD_MASK)) {
2297 khugepaged_enter(vma, vma->vm_flags);
2298 }
1da177e4
LT
2299 return 0;
2300}
2301
454abafe 2302static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2303 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2304{
2305 struct inode *inode;
2306 struct shmem_inode_info *info;
2307 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2308 ino_t ino;
1da177e4 2309
e809d5f0 2310 if (shmem_reserve_inode(sb, &ino))
5b04c689 2311 return NULL;
1da177e4
LT
2312
2313 inode = new_inode(sb);
2314 if (inode) {
e809d5f0 2315 inode->i_ino = ino;
21cb47be 2316 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2317 inode->i_blocks = 0;
078cd827 2318 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2319 inode->i_generation = prandom_u32();
1da177e4
LT
2320 info = SHMEM_I(inode);
2321 memset(info, 0, (char *)inode - (char *)info);
2322 spin_lock_init(&info->lock);
af53d3e9 2323 atomic_set(&info->stop_eviction, 0);
40e041a2 2324 info->seals = F_SEAL_SEAL;
0b0a0806 2325 info->flags = flags & VM_NORESERVE;
779750d2 2326 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2327 INIT_LIST_HEAD(&info->swaplist);
38f38657 2328 simple_xattrs_init(&info->xattrs);
72c04902 2329 cache_no_acl(inode);
1da177e4
LT
2330
2331 switch (mode & S_IFMT) {
2332 default:
39f0247d 2333 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2334 init_special_inode(inode, mode, dev);
2335 break;
2336 case S_IFREG:
14fcc23f 2337 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2338 inode->i_op = &shmem_inode_operations;
2339 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2340 mpol_shared_policy_init(&info->policy,
2341 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2342 break;
2343 case S_IFDIR:
d8c76e6f 2344 inc_nlink(inode);
1da177e4
LT
2345 /* Some things misbehave if size == 0 on a directory */
2346 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2347 inode->i_op = &shmem_dir_inode_operations;
2348 inode->i_fop = &simple_dir_operations;
2349 break;
2350 case S_IFLNK:
2351 /*
2352 * Must not load anything in the rbtree,
2353 * mpol_free_shared_policy will not be called.
2354 */
71fe804b 2355 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2356 break;
2357 }
b45d71fb
JFG
2358
2359 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2360 } else
2361 shmem_free_inode(sb);
1da177e4
LT
2362 return inode;
2363}
2364
3460f6e5
AR
2365#ifdef CONFIG_USERFAULTFD
2366int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2367 pmd_t *dst_pmd,
2368 struct vm_area_struct *dst_vma,
2369 unsigned long dst_addr,
2370 unsigned long src_addr,
2371 bool zeropage,
2372 struct page **pagep)
4c27fe4c
MR
2373{
2374 struct inode *inode = file_inode(dst_vma->vm_file);
2375 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2376 struct address_space *mapping = inode->i_mapping;
2377 gfp_t gfp = mapping_gfp_mask(mapping);
2378 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2379 void *page_kaddr;
2380 struct page *page;
4c27fe4c 2381 int ret;
3460f6e5 2382 pgoff_t max_off;
4c27fe4c 2383
7ed9d238
AR
2384 if (!shmem_inode_acct_block(inode, 1)) {
2385 /*
2386 * We may have got a page, returned -ENOENT triggering a retry,
2387 * and now we find ourselves with -ENOMEM. Release the page, to
2388 * avoid a BUG_ON in our caller.
2389 */
2390 if (unlikely(*pagep)) {
2391 put_page(*pagep);
2392 *pagep = NULL;
2393 }
7d64ae3a 2394 return -ENOMEM;
7ed9d238 2395 }
4c27fe4c 2396
cb658a45 2397 if (!*pagep) {
7d64ae3a 2398 ret = -ENOMEM;
4c27fe4c
MR
2399 page = shmem_alloc_page(gfp, info, pgoff);
2400 if (!page)
0f079694 2401 goto out_unacct_blocks;
4c27fe4c 2402
3460f6e5 2403 if (!zeropage) { /* COPY */
8d103963
MR
2404 page_kaddr = kmap_atomic(page);
2405 ret = copy_from_user(page_kaddr,
2406 (const void __user *)src_addr,
2407 PAGE_SIZE);
2408 kunmap_atomic(page_kaddr);
2409
c1e8d7c6 2410 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2411 if (unlikely(ret)) {
2412 *pagep = page;
7d64ae3a 2413 ret = -ENOENT;
8d103963 2414 /* don't free the page */
7d64ae3a 2415 goto out_unacct_blocks;
8d103963 2416 }
3460f6e5 2417 } else { /* ZEROPAGE */
8d103963 2418 clear_highpage(page);
4c27fe4c
MR
2419 }
2420 } else {
2421 page = *pagep;
2422 *pagep = NULL;
2423 }
2424
3460f6e5
AR
2425 VM_BUG_ON(PageLocked(page));
2426 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2427 __SetPageLocked(page);
2428 __SetPageSwapBacked(page);
a425d358 2429 __SetPageUptodate(page);
9cc90c66 2430
e2a50c1f 2431 ret = -EFAULT;
e2a50c1f 2432 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2433 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2434 goto out_release;
2435
552446a4 2436 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2437 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2438 if (ret)
3fea5a49 2439 goto out_release;
4c27fe4c 2440
7d64ae3a
AR
2441 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2442 page, true, false);
2443 if (ret)
2444 goto out_delete_from_cache;
4c27fe4c 2445
94b7cc01 2446 spin_lock_irq(&info->lock);
4c27fe4c
MR
2447 info->alloced++;
2448 inode->i_blocks += BLOCKS_PER_PAGE;
2449 shmem_recalc_inode(inode);
94b7cc01 2450 spin_unlock_irq(&info->lock);
4c27fe4c 2451
7d64ae3a 2452 SetPageDirty(page);
e2a50c1f 2453 unlock_page(page);
7d64ae3a
AR
2454 return 0;
2455out_delete_from_cache:
e2a50c1f 2456 delete_from_page_cache(page);
4c27fe4c 2457out_release:
9cc90c66 2458 unlock_page(page);
4c27fe4c 2459 put_page(page);
4c27fe4c 2460out_unacct_blocks:
0f079694 2461 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2462 return ret;
8d103963 2463}
3460f6e5 2464#endif /* CONFIG_USERFAULTFD */
8d103963 2465
1da177e4 2466#ifdef CONFIG_TMPFS
92e1d5be 2467static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2468static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2469
6d9d88d0
JS
2470#ifdef CONFIG_TMPFS_XATTR
2471static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2472#else
2473#define shmem_initxattrs NULL
2474#endif
2475
1da177e4 2476static int
800d15a5
NP
2477shmem_write_begin(struct file *file, struct address_space *mapping,
2478 loff_t pos, unsigned len, unsigned flags,
2479 struct page **pagep, void **fsdata)
1da177e4 2480{
800d15a5 2481 struct inode *inode = mapping->host;
40e041a2 2482 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2483 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2484
2485 /* i_mutex is held by caller */
ab3948f5
JFG
2486 if (unlikely(info->seals & (F_SEAL_GROW |
2487 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2488 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2489 return -EPERM;
2490 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2491 return -EPERM;
2492 }
2493
9e18eb29 2494 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2495}
2496
2497static int
2498shmem_write_end(struct file *file, struct address_space *mapping,
2499 loff_t pos, unsigned len, unsigned copied,
2500 struct page *page, void *fsdata)
2501{
2502 struct inode *inode = mapping->host;
2503
d3602444
HD
2504 if (pos + copied > inode->i_size)
2505 i_size_write(inode, pos + copied);
2506
ec9516fb 2507 if (!PageUptodate(page)) {
800d8c63
KS
2508 struct page *head = compound_head(page);
2509 if (PageTransCompound(page)) {
2510 int i;
2511
2512 for (i = 0; i < HPAGE_PMD_NR; i++) {
2513 if (head + i == page)
2514 continue;
2515 clear_highpage(head + i);
2516 flush_dcache_page(head + i);
2517 }
2518 }
09cbfeaf
KS
2519 if (copied < PAGE_SIZE) {
2520 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2521 zero_user_segments(page, 0, from,
09cbfeaf 2522 from + copied, PAGE_SIZE);
ec9516fb 2523 }
800d8c63 2524 SetPageUptodate(head);
ec9516fb 2525 }
800d15a5 2526 set_page_dirty(page);
6746aff7 2527 unlock_page(page);
09cbfeaf 2528 put_page(page);
800d15a5 2529
800d15a5 2530 return copied;
1da177e4
LT
2531}
2532
2ba5bbed 2533static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2534{
6e58e79d
AV
2535 struct file *file = iocb->ki_filp;
2536 struct inode *inode = file_inode(file);
1da177e4 2537 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2538 pgoff_t index;
2539 unsigned long offset;
a0ee5ec5 2540 enum sgp_type sgp = SGP_READ;
f7c1d074 2541 int error = 0;
cb66a7a1 2542 ssize_t retval = 0;
6e58e79d 2543 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2544
2545 /*
2546 * Might this read be for a stacking filesystem? Then when reading
2547 * holes of a sparse file, we actually need to allocate those pages,
2548 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2549 */
777eda2c 2550 if (!iter_is_iovec(to))
75edd345 2551 sgp = SGP_CACHE;
1da177e4 2552
09cbfeaf
KS
2553 index = *ppos >> PAGE_SHIFT;
2554 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2555
2556 for (;;) {
2557 struct page *page = NULL;
41ffe5d5
HD
2558 pgoff_t end_index;
2559 unsigned long nr, ret;
1da177e4
LT
2560 loff_t i_size = i_size_read(inode);
2561
09cbfeaf 2562 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2563 if (index > end_index)
2564 break;
2565 if (index == end_index) {
09cbfeaf 2566 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2567 if (nr <= offset)
2568 break;
2569 }
2570
9e18eb29 2571 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2572 if (error) {
2573 if (error == -EINVAL)
2574 error = 0;
1da177e4
LT
2575 break;
2576 }
75edd345
HD
2577 if (page) {
2578 if (sgp == SGP_CACHE)
2579 set_page_dirty(page);
d3602444 2580 unlock_page(page);
75edd345 2581 }
1da177e4
LT
2582
2583 /*
2584 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2585 * are called without i_mutex protection against truncate
1da177e4 2586 */
09cbfeaf 2587 nr = PAGE_SIZE;
1da177e4 2588 i_size = i_size_read(inode);
09cbfeaf 2589 end_index = i_size >> PAGE_SHIFT;
1da177e4 2590 if (index == end_index) {
09cbfeaf 2591 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2592 if (nr <= offset) {
2593 if (page)
09cbfeaf 2594 put_page(page);
1da177e4
LT
2595 break;
2596 }
2597 }
2598 nr -= offset;
2599
2600 if (page) {
2601 /*
2602 * If users can be writing to this page using arbitrary
2603 * virtual addresses, take care about potential aliasing
2604 * before reading the page on the kernel side.
2605 */
2606 if (mapping_writably_mapped(mapping))
2607 flush_dcache_page(page);
2608 /*
2609 * Mark the page accessed if we read the beginning.
2610 */
2611 if (!offset)
2612 mark_page_accessed(page);
b5810039 2613 } else {
1da177e4 2614 page = ZERO_PAGE(0);
09cbfeaf 2615 get_page(page);
b5810039 2616 }
1da177e4
LT
2617
2618 /*
2619 * Ok, we have the page, and it's up-to-date, so
2620 * now we can copy it to user space...
1da177e4 2621 */
2ba5bbed 2622 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2623 retval += ret;
1da177e4 2624 offset += ret;
09cbfeaf
KS
2625 index += offset >> PAGE_SHIFT;
2626 offset &= ~PAGE_MASK;
1da177e4 2627
09cbfeaf 2628 put_page(page);
2ba5bbed 2629 if (!iov_iter_count(to))
1da177e4 2630 break;
6e58e79d
AV
2631 if (ret < nr) {
2632 error = -EFAULT;
2633 break;
2634 }
1da177e4
LT
2635 cond_resched();
2636 }
2637
09cbfeaf 2638 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2639 file_accessed(file);
2640 return retval ? retval : error;
1da177e4
LT
2641}
2642
965c8e59 2643static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2644{
2645 struct address_space *mapping = file->f_mapping;
2646 struct inode *inode = mapping->host;
220f2ac9 2647
965c8e59
AM
2648 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2649 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2650 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2651 if (offset < 0)
2652 return -ENXIO;
2653
5955102c 2654 inode_lock(inode);
220f2ac9 2655 /* We're holding i_mutex so we can access i_size directly */
41139aa4 2656 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2657 if (offset >= 0)
2658 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2659 inode_unlock(inode);
220f2ac9
HD
2660 return offset;
2661}
2662
83e4fa9c
HD
2663static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2664 loff_t len)
2665{
496ad9aa 2666 struct inode *inode = file_inode(file);
e2d12e22 2667 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2668 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2669 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2670 pgoff_t start, index, end;
2671 int error;
83e4fa9c 2672
13ace4d0
HD
2673 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2674 return -EOPNOTSUPP;
2675
5955102c 2676 inode_lock(inode);
83e4fa9c
HD
2677
2678 if (mode & FALLOC_FL_PUNCH_HOLE) {
2679 struct address_space *mapping = file->f_mapping;
2680 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2681 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2682 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2683
40e041a2 2684 /* protected by i_mutex */
ab3948f5 2685 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2686 error = -EPERM;
2687 goto out;
2688 }
2689
8e205f77 2690 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2691 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2692 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2693 spin_lock(&inode->i_lock);
2694 inode->i_private = &shmem_falloc;
2695 spin_unlock(&inode->i_lock);
2696
83e4fa9c
HD
2697 if ((u64)unmap_end > (u64)unmap_start)
2698 unmap_mapping_range(mapping, unmap_start,
2699 1 + unmap_end - unmap_start, 0);
2700 shmem_truncate_range(inode, offset, offset + len - 1);
2701 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2702
2703 spin_lock(&inode->i_lock);
2704 inode->i_private = NULL;
2705 wake_up_all(&shmem_falloc_waitq);
2055da97 2706 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2707 spin_unlock(&inode->i_lock);
83e4fa9c 2708 error = 0;
8e205f77 2709 goto out;
e2d12e22
HD
2710 }
2711
2712 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2713 error = inode_newsize_ok(inode, offset + len);
2714 if (error)
2715 goto out;
2716
40e041a2
DH
2717 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2718 error = -EPERM;
2719 goto out;
2720 }
2721
09cbfeaf
KS
2722 start = offset >> PAGE_SHIFT;
2723 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2724 /* Try to avoid a swapstorm if len is impossible to satisfy */
2725 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2726 error = -ENOSPC;
2727 goto out;
83e4fa9c
HD
2728 }
2729
8e205f77 2730 shmem_falloc.waitq = NULL;
1aac1400
HD
2731 shmem_falloc.start = start;
2732 shmem_falloc.next = start;
2733 shmem_falloc.nr_falloced = 0;
2734 shmem_falloc.nr_unswapped = 0;
2735 spin_lock(&inode->i_lock);
2736 inode->i_private = &shmem_falloc;
2737 spin_unlock(&inode->i_lock);
2738
e2d12e22
HD
2739 for (index = start; index < end; index++) {
2740 struct page *page;
2741
2742 /*
2743 * Good, the fallocate(2) manpage permits EINTR: we may have
2744 * been interrupted because we are using up too much memory.
2745 */
2746 if (signal_pending(current))
2747 error = -EINTR;
1aac1400
HD
2748 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2749 error = -ENOMEM;
e2d12e22 2750 else
9e18eb29 2751 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2752 if (error) {
1635f6a7 2753 /* Remove the !PageUptodate pages we added */
7f556567
HD
2754 if (index > start) {
2755 shmem_undo_range(inode,
2756 (loff_t)start << PAGE_SHIFT,
2757 ((loff_t)index << PAGE_SHIFT) - 1, true);
2758 }
1aac1400 2759 goto undone;
e2d12e22
HD
2760 }
2761
1aac1400
HD
2762 /*
2763 * Inform shmem_writepage() how far we have reached.
2764 * No need for lock or barrier: we have the page lock.
2765 */
2766 shmem_falloc.next++;
2767 if (!PageUptodate(page))
2768 shmem_falloc.nr_falloced++;
2769
e2d12e22 2770 /*
1635f6a7
HD
2771 * If !PageUptodate, leave it that way so that freeable pages
2772 * can be recognized if we need to rollback on error later.
2773 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2774 * than free the pages we are allocating (and SGP_CACHE pages
2775 * might still be clean: we now need to mark those dirty too).
2776 */
2777 set_page_dirty(page);
2778 unlock_page(page);
09cbfeaf 2779 put_page(page);
e2d12e22
HD
2780 cond_resched();
2781 }
2782
2783 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784 i_size_write(inode, offset + len);
078cd827 2785 inode->i_ctime = current_time(inode);
1aac1400
HD
2786undone:
2787 spin_lock(&inode->i_lock);
2788 inode->i_private = NULL;
2789 spin_unlock(&inode->i_lock);
e2d12e22 2790out:
5955102c 2791 inode_unlock(inode);
83e4fa9c
HD
2792 return error;
2793}
2794
726c3342 2795static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2796{
726c3342 2797 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2798
2799 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2800 buf->f_bsize = PAGE_SIZE;
1da177e4 2801 buf->f_namelen = NAME_MAX;
0edd73b3 2802 if (sbinfo->max_blocks) {
1da177e4 2803 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2804 buf->f_bavail =
2805 buf->f_bfree = sbinfo->max_blocks -
2806 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2807 }
2808 if (sbinfo->max_inodes) {
1da177e4
LT
2809 buf->f_files = sbinfo->max_inodes;
2810 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2811 }
2812 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2813
2814 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815
1da177e4
LT
2816 return 0;
2817}
2818
2819/*
2820 * File creation. Allocate an inode, and we're done..
2821 */
2822static int
549c7297
CB
2823shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2825{
0b0a0806 2826 struct inode *inode;
1da177e4
LT
2827 int error = -ENOSPC;
2828
454abafe 2829 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2830 if (inode) {
feda821e
CH
2831 error = simple_acl_create(dir, inode);
2832 if (error)
2833 goto out_iput;
2a7dba39 2834 error = security_inode_init_security(inode, dir,
9d8f13ba 2835 &dentry->d_name,
6d9d88d0 2836 shmem_initxattrs, NULL);
feda821e
CH
2837 if (error && error != -EOPNOTSUPP)
2838 goto out_iput;
37ec43cd 2839
718deb6b 2840 error = 0;
1da177e4 2841 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2842 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2843 d_instantiate(dentry, inode);
2844 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2845 }
2846 return error;
feda821e
CH
2847out_iput:
2848 iput(inode);
2849 return error;
1da177e4
LT
2850}
2851
60545d0d 2852static int
549c7297
CB
2853shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854 struct dentry *dentry, umode_t mode)
60545d0d
AV
2855{
2856 struct inode *inode;
2857 int error = -ENOSPC;
2858
2859 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860 if (inode) {
2861 error = security_inode_init_security(inode, dir,
2862 NULL,
2863 shmem_initxattrs, NULL);
feda821e
CH
2864 if (error && error != -EOPNOTSUPP)
2865 goto out_iput;
2866 error = simple_acl_create(dir, inode);
2867 if (error)
2868 goto out_iput;
60545d0d
AV
2869 d_tmpfile(dentry, inode);
2870 }
2871 return error;
feda821e
CH
2872out_iput:
2873 iput(inode);
2874 return error;
60545d0d
AV
2875}
2876
549c7297
CB
2877static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878 struct dentry *dentry, umode_t mode)
1da177e4
LT
2879{
2880 int error;
2881
549c7297
CB
2882 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883 mode | S_IFDIR, 0)))
1da177e4 2884 return error;
d8c76e6f 2885 inc_nlink(dir);
1da177e4
LT
2886 return 0;
2887}
2888
549c7297
CB
2889static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2891{
549c7297 2892 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2893}
2894
2895/*
2896 * Link a file..
2897 */
2898static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899{
75c3cfa8 2900 struct inode *inode = d_inode(old_dentry);
29b00e60 2901 int ret = 0;
1da177e4
LT
2902
2903 /*
2904 * No ordinary (disk based) filesystem counts links as inodes;
2905 * but each new link needs a new dentry, pinning lowmem, and
2906 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2907 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 * first link must skip that, to get the accounting right.
1da177e4 2909 */
1062af92 2910 if (inode->i_nlink) {
e809d5f0 2911 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2912 if (ret)
2913 goto out;
2914 }
1da177e4
LT
2915
2916 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2917 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2918 inc_nlink(inode);
7de9c6ee 2919 ihold(inode); /* New dentry reference */
1da177e4
LT
2920 dget(dentry); /* Extra pinning count for the created dentry */
2921 d_instantiate(dentry, inode);
5b04c689
PE
2922out:
2923 return ret;
1da177e4
LT
2924}
2925
2926static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927{
75c3cfa8 2928 struct inode *inode = d_inode(dentry);
1da177e4 2929
5b04c689
PE
2930 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 shmem_free_inode(inode->i_sb);
1da177e4
LT
2932
2933 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2934 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2935 drop_nlink(inode);
1da177e4
LT
2936 dput(dentry); /* Undo the count from "create" - this does all the work */
2937 return 0;
2938}
2939
2940static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941{
2942 if (!simple_empty(dentry))
2943 return -ENOTEMPTY;
2944
75c3cfa8 2945 drop_nlink(d_inode(dentry));
9a53c3a7 2946 drop_nlink(dir);
1da177e4
LT
2947 return shmem_unlink(dir, dentry);
2948}
2949
37456771
MS
2950static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951{
e36cb0b8
DH
2952 bool old_is_dir = d_is_dir(old_dentry);
2953 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2954
2955 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 if (old_is_dir) {
2957 drop_nlink(old_dir);
2958 inc_nlink(new_dir);
2959 } else {
2960 drop_nlink(new_dir);
2961 inc_nlink(old_dir);
2962 }
2963 }
2964 old_dir->i_ctime = old_dir->i_mtime =
2965 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2966 d_inode(old_dentry)->i_ctime =
078cd827 2967 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2968
2969 return 0;
2970}
2971
549c7297
CB
2972static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2974{
2975 struct dentry *whiteout;
2976 int error;
2977
2978 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 if (!whiteout)
2980 return -ENOMEM;
2981
549c7297 2982 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2983 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 dput(whiteout);
2985 if (error)
2986 return error;
2987
2988 /*
2989 * Cheat and hash the whiteout while the old dentry is still in
2990 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 *
2992 * d_lookup() will consistently find one of them at this point,
2993 * not sure which one, but that isn't even important.
2994 */
2995 d_rehash(whiteout);
2996 return 0;
2997}
2998
1da177e4
LT
2999/*
3000 * The VFS layer already does all the dentry stuff for rename,
3001 * we just have to decrement the usage count for the target if
3002 * it exists so that the VFS layer correctly free's it when it
3003 * gets overwritten.
3004 */
549c7297
CB
3005static int shmem_rename2(struct user_namespace *mnt_userns,
3006 struct inode *old_dir, struct dentry *old_dentry,
3007 struct inode *new_dir, struct dentry *new_dentry,
3008 unsigned int flags)
1da177e4 3009{
75c3cfa8 3010 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3011 int they_are_dirs = S_ISDIR(inode->i_mode);
3012
46fdb794 3013 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3014 return -EINVAL;
3015
37456771
MS
3016 if (flags & RENAME_EXCHANGE)
3017 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
1da177e4
LT
3019 if (!simple_empty(new_dentry))
3020 return -ENOTEMPTY;
3021
46fdb794
MS
3022 if (flags & RENAME_WHITEOUT) {
3023 int error;
3024
549c7297 3025 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3026 if (error)
3027 return error;
3028 }
3029
75c3cfa8 3030 if (d_really_is_positive(new_dentry)) {
1da177e4 3031 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3032 if (they_are_dirs) {
75c3cfa8 3033 drop_nlink(d_inode(new_dentry));
9a53c3a7 3034 drop_nlink(old_dir);
b928095b 3035 }
1da177e4 3036 } else if (they_are_dirs) {
9a53c3a7 3037 drop_nlink(old_dir);
d8c76e6f 3038 inc_nlink(new_dir);
1da177e4
LT
3039 }
3040
3041 old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 new_dir->i_size += BOGO_DIRENT_SIZE;
3043 old_dir->i_ctime = old_dir->i_mtime =
3044 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3045 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3046 return 0;
3047}
3048
549c7297
CB
3049static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 struct dentry *dentry, const char *symname)
1da177e4
LT
3051{
3052 int error;
3053 int len;
3054 struct inode *inode;
9276aad6 3055 struct page *page;
1da177e4
LT
3056
3057 len = strlen(symname) + 1;
09cbfeaf 3058 if (len > PAGE_SIZE)
1da177e4
LT
3059 return -ENAMETOOLONG;
3060
0825a6f9
JP
3061 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 VM_NORESERVE);
1da177e4
LT
3063 if (!inode)
3064 return -ENOSPC;
3065
9d8f13ba 3066 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3067 shmem_initxattrs, NULL);
343c3d7f
MN
3068 if (error && error != -EOPNOTSUPP) {
3069 iput(inode);
3070 return error;
570bc1c2
SS
3071 }
3072
1da177e4 3073 inode->i_size = len-1;
69f07ec9 3074 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3075 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 if (!inode->i_link) {
69f07ec9
HD
3077 iput(inode);
3078 return -ENOMEM;
3079 }
3080 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3081 } else {
e8ecde25 3082 inode_nohighmem(inode);
9e18eb29 3083 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3084 if (error) {
3085 iput(inode);
3086 return error;
3087 }
14fcc23f 3088 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3089 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3090 memcpy(page_address(page), symname, len);
ec9516fb 3091 SetPageUptodate(page);
1da177e4 3092 set_page_dirty(page);
6746aff7 3093 unlock_page(page);
09cbfeaf 3094 put_page(page);
1da177e4 3095 }
1da177e4 3096 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3097 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3098 d_instantiate(dentry, inode);
3099 dget(dentry);
3100 return 0;
3101}
3102
fceef393 3103static void shmem_put_link(void *arg)
1da177e4 3104{
fceef393
AV
3105 mark_page_accessed(arg);
3106 put_page(arg);
1da177e4
LT
3107}
3108
6b255391 3109static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3110 struct inode *inode,
3111 struct delayed_call *done)
1da177e4 3112{
1da177e4 3113 struct page *page = NULL;
6b255391 3114 int error;
6a6c9904
AV
3115 if (!dentry) {
3116 page = find_get_page(inode->i_mapping, 0);
3117 if (!page)
3118 return ERR_PTR(-ECHILD);
3119 if (!PageUptodate(page)) {
3120 put_page(page);
3121 return ERR_PTR(-ECHILD);
3122 }
3123 } else {
9e18eb29 3124 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3125 if (error)
3126 return ERR_PTR(error);
3127 unlock_page(page);
3128 }
fceef393 3129 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3130 return page_address(page);
1da177e4
LT
3131}
3132
b09e0fa4 3133#ifdef CONFIG_TMPFS_XATTR
46711810 3134/*
b09e0fa4
EP
3135 * Superblocks without xattr inode operations may get some security.* xattr
3136 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3137 * like ACLs, we also need to implement the security.* handlers at
3138 * filesystem level, though.
3139 */
3140
6d9d88d0
JS
3141/*
3142 * Callback for security_inode_init_security() for acquiring xattrs.
3143 */
3144static int shmem_initxattrs(struct inode *inode,
3145 const struct xattr *xattr_array,
3146 void *fs_info)
3147{
3148 struct shmem_inode_info *info = SHMEM_I(inode);
3149 const struct xattr *xattr;
38f38657 3150 struct simple_xattr *new_xattr;
6d9d88d0
JS
3151 size_t len;
3152
3153 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3154 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3155 if (!new_xattr)
3156 return -ENOMEM;
3157
3158 len = strlen(xattr->name) + 1;
3159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160 GFP_KERNEL);
3161 if (!new_xattr->name) {
3bef735a 3162 kvfree(new_xattr);
6d9d88d0
JS
3163 return -ENOMEM;
3164 }
3165
3166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167 XATTR_SECURITY_PREFIX_LEN);
3168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169 xattr->name, len);
3170
38f38657 3171 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3172 }
3173
3174 return 0;
3175}
3176
aa7c5241 3177static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3178 struct dentry *unused, struct inode *inode,
3179 const char *name, void *buffer, size_t size)
b09e0fa4 3180{
b296821a 3181 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3182
aa7c5241 3183 name = xattr_full_name(handler, name);
38f38657 3184 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3185}
3186
aa7c5241 3187static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3188 struct user_namespace *mnt_userns,
59301226
AV
3189 struct dentry *unused, struct inode *inode,
3190 const char *name, const void *value,
3191 size_t size, int flags)
b09e0fa4 3192{
59301226 3193 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3194
aa7c5241 3195 name = xattr_full_name(handler, name);
a46a2295 3196 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3197}
3198
aa7c5241
AG
3199static const struct xattr_handler shmem_security_xattr_handler = {
3200 .prefix = XATTR_SECURITY_PREFIX,
3201 .get = shmem_xattr_handler_get,
3202 .set = shmem_xattr_handler_set,
3203};
b09e0fa4 3204
aa7c5241
AG
3205static const struct xattr_handler shmem_trusted_xattr_handler = {
3206 .prefix = XATTR_TRUSTED_PREFIX,
3207 .get = shmem_xattr_handler_get,
3208 .set = shmem_xattr_handler_set,
3209};
b09e0fa4 3210
aa7c5241
AG
3211static const struct xattr_handler *shmem_xattr_handlers[] = {
3212#ifdef CONFIG_TMPFS_POSIX_ACL
3213 &posix_acl_access_xattr_handler,
3214 &posix_acl_default_xattr_handler,
3215#endif
3216 &shmem_security_xattr_handler,
3217 &shmem_trusted_xattr_handler,
3218 NULL
3219};
b09e0fa4
EP
3220
3221static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222{
75c3cfa8 3223 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3224 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3225}
3226#endif /* CONFIG_TMPFS_XATTR */
3227
69f07ec9 3228static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3229 .get_link = simple_get_link,
b09e0fa4 3230#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3231 .listxattr = shmem_listxattr,
b09e0fa4
EP
3232#endif
3233};
3234
3235static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3236 .get_link = shmem_get_link,
b09e0fa4 3237#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3238 .listxattr = shmem_listxattr,
39f0247d 3239#endif
b09e0fa4 3240};
39f0247d 3241
91828a40
DG
3242static struct dentry *shmem_get_parent(struct dentry *child)
3243{
3244 return ERR_PTR(-ESTALE);
3245}
3246
3247static int shmem_match(struct inode *ino, void *vfh)
3248{
3249 __u32 *fh = vfh;
3250 __u64 inum = fh[2];
3251 inum = (inum << 32) | fh[1];
3252 return ino->i_ino == inum && fh[0] == ino->i_generation;
3253}
3254
12ba780d
AG
3255/* Find any alias of inode, but prefer a hashed alias */
3256static struct dentry *shmem_find_alias(struct inode *inode)
3257{
3258 struct dentry *alias = d_find_alias(inode);
3259
3260 return alias ?: d_find_any_alias(inode);
3261}
3262
3263
480b116c
CH
3264static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265 struct fid *fid, int fh_len, int fh_type)
91828a40 3266{
91828a40 3267 struct inode *inode;
480b116c 3268 struct dentry *dentry = NULL;
35c2a7f4 3269 u64 inum;
480b116c
CH
3270
3271 if (fh_len < 3)
3272 return NULL;
91828a40 3273
35c2a7f4
HD
3274 inum = fid->raw[2];
3275 inum = (inum << 32) | fid->raw[1];
3276
480b116c
CH
3277 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278 shmem_match, fid->raw);
91828a40 3279 if (inode) {
12ba780d 3280 dentry = shmem_find_alias(inode);
91828a40
DG
3281 iput(inode);
3282 }
3283
480b116c 3284 return dentry;
91828a40
DG
3285}
3286
b0b0382b
AV
3287static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288 struct inode *parent)
91828a40 3289{
5fe0c237
AK
3290 if (*len < 3) {
3291 *len = 3;
94e07a75 3292 return FILEID_INVALID;
5fe0c237 3293 }
91828a40 3294
1d3382cb 3295 if (inode_unhashed(inode)) {
91828a40
DG
3296 /* Unfortunately insert_inode_hash is not idempotent,
3297 * so as we hash inodes here rather than at creation
3298 * time, we need a lock to ensure we only try
3299 * to do it once
3300 */
3301 static DEFINE_SPINLOCK(lock);
3302 spin_lock(&lock);
1d3382cb 3303 if (inode_unhashed(inode))
91828a40
DG
3304 __insert_inode_hash(inode,
3305 inode->i_ino + inode->i_generation);
3306 spin_unlock(&lock);
3307 }
3308
3309 fh[0] = inode->i_generation;
3310 fh[1] = inode->i_ino;
3311 fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313 *len = 3;
3314 return 1;
3315}
3316
39655164 3317static const struct export_operations shmem_export_ops = {
91828a40 3318 .get_parent = shmem_get_parent,
91828a40 3319 .encode_fh = shmem_encode_fh,
480b116c 3320 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3321};
3322
626c3920
AV
3323enum shmem_param {
3324 Opt_gid,
3325 Opt_huge,
3326 Opt_mode,
3327 Opt_mpol,
3328 Opt_nr_blocks,
3329 Opt_nr_inodes,
3330 Opt_size,
3331 Opt_uid,
ea3271f7
CD
3332 Opt_inode32,
3333 Opt_inode64,
626c3920
AV
3334};
3335
5eede625 3336static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3337 {"never", SHMEM_HUGE_NEVER },
3338 {"always", SHMEM_HUGE_ALWAYS },
3339 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3340 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3341 {}
3342};
3343
d7167b14 3344const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3345 fsparam_u32 ("gid", Opt_gid),
2710c957 3346 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3347 fsparam_u32oct("mode", Opt_mode),
3348 fsparam_string("mpol", Opt_mpol),
3349 fsparam_string("nr_blocks", Opt_nr_blocks),
3350 fsparam_string("nr_inodes", Opt_nr_inodes),
3351 fsparam_string("size", Opt_size),
3352 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3353 fsparam_flag ("inode32", Opt_inode32),
3354 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3355 {}
3356};
3357
f3235626 3358static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3359{
f3235626 3360 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3361 struct fs_parse_result result;
3362 unsigned long long size;
e04dc423 3363 char *rest;
626c3920
AV
3364 int opt;
3365
d7167b14 3366 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3367 if (opt < 0)
626c3920 3368 return opt;
1da177e4 3369
626c3920
AV
3370 switch (opt) {
3371 case Opt_size:
3372 size = memparse(param->string, &rest);
e04dc423
AV
3373 if (*rest == '%') {
3374 size <<= PAGE_SHIFT;
3375 size *= totalram_pages();
3376 do_div(size, 100);
3377 rest++;
3378 }
3379 if (*rest)
626c3920 3380 goto bad_value;
e04dc423
AV
3381 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3383 break;
3384 case Opt_nr_blocks:
3385 ctx->blocks = memparse(param->string, &rest);
e04dc423 3386 if (*rest)
626c3920 3387 goto bad_value;
e04dc423 3388 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3389 break;
3390 case Opt_nr_inodes:
3391 ctx->inodes = memparse(param->string, &rest);
e04dc423 3392 if (*rest)
626c3920 3393 goto bad_value;
e04dc423 3394 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3395 break;
3396 case Opt_mode:
3397 ctx->mode = result.uint_32 & 07777;
3398 break;
3399 case Opt_uid:
3400 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3401 if (!uid_valid(ctx->uid))
626c3920
AV
3402 goto bad_value;
3403 break;
3404 case Opt_gid:
3405 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3406 if (!gid_valid(ctx->gid))
626c3920
AV
3407 goto bad_value;
3408 break;
3409 case Opt_huge:
3410 ctx->huge = result.uint_32;
3411 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3412 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3413 has_transparent_hugepage()))
3414 goto unsupported_parameter;
e04dc423 3415 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3416 break;
3417 case Opt_mpol:
3418 if (IS_ENABLED(CONFIG_NUMA)) {
3419 mpol_put(ctx->mpol);
3420 ctx->mpol = NULL;
3421 if (mpol_parse_str(param->string, &ctx->mpol))
3422 goto bad_value;
3423 break;
3424 }
3425 goto unsupported_parameter;
ea3271f7
CD
3426 case Opt_inode32:
3427 ctx->full_inums = false;
3428 ctx->seen |= SHMEM_SEEN_INUMS;
3429 break;
3430 case Opt_inode64:
3431 if (sizeof(ino_t) < 8) {
3432 return invalfc(fc,
3433 "Cannot use inode64 with <64bit inums in kernel\n");
3434 }
3435 ctx->full_inums = true;
3436 ctx->seen |= SHMEM_SEEN_INUMS;
3437 break;
e04dc423
AV
3438 }
3439 return 0;
3440
626c3920 3441unsupported_parameter:
f35aa2bc 3442 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3443bad_value:
f35aa2bc 3444 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3445}
3446
f3235626 3447static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3448{
f3235626
DH
3449 char *options = data;
3450
33f37c64
AV
3451 if (options) {
3452 int err = security_sb_eat_lsm_opts(options, &fc->security);
3453 if (err)
3454 return err;
3455 }
3456
b00dc3ad 3457 while (options != NULL) {
626c3920 3458 char *this_char = options;
b00dc3ad
HD
3459 for (;;) {
3460 /*
3461 * NUL-terminate this option: unfortunately,
3462 * mount options form a comma-separated list,
3463 * but mpol's nodelist may also contain commas.
3464 */
3465 options = strchr(options, ',');
3466 if (options == NULL)
3467 break;
3468 options++;
3469 if (!isdigit(*options)) {
3470 options[-1] = '\0';
3471 break;
3472 }
3473 }
626c3920 3474 if (*this_char) {
68d68ff6 3475 char *value = strchr(this_char, '=');
f3235626 3476 size_t len = 0;
626c3920
AV
3477 int err;
3478
3479 if (value) {
3480 *value++ = '\0';
f3235626 3481 len = strlen(value);
626c3920 3482 }
f3235626
DH
3483 err = vfs_parse_fs_string(fc, this_char, value, len);
3484 if (err < 0)
3485 return err;
1da177e4 3486 }
1da177e4
LT
3487 }
3488 return 0;
1da177e4
LT
3489}
3490
f3235626
DH
3491/*
3492 * Reconfigure a shmem filesystem.
3493 *
3494 * Note that we disallow change from limited->unlimited blocks/inodes while any
3495 * are in use; but we must separately disallow unlimited->limited, because in
3496 * that case we have no record of how much is already in use.
3497 */
3498static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3499{
f3235626
DH
3500 struct shmem_options *ctx = fc->fs_private;
3501 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3502 unsigned long inodes;
f3235626 3503 const char *err;
1da177e4 3504
0edd73b3 3505 spin_lock(&sbinfo->stat_lock);
0edd73b3 3506 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3507 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3508 if (!sbinfo->max_blocks) {
3509 err = "Cannot retroactively limit size";
0b5071dd 3510 goto out;
f3235626 3511 }
0b5071dd 3512 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3513 ctx->blocks) > 0) {
3514 err = "Too small a size for current use";
0b5071dd 3515 goto out;
f3235626 3516 }
0b5071dd 3517 }
f3235626
DH
3518 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3519 if (!sbinfo->max_inodes) {
3520 err = "Cannot retroactively limit inodes";
0b5071dd 3521 goto out;
f3235626
DH
3522 }
3523 if (ctx->inodes < inodes) {
3524 err = "Too few inodes for current use";
0b5071dd 3525 goto out;
f3235626 3526 }
0b5071dd 3527 }
0edd73b3 3528
ea3271f7
CD
3529 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3530 sbinfo->next_ino > UINT_MAX) {
3531 err = "Current inum too high to switch to 32-bit inums";
3532 goto out;
3533 }
3534
f3235626
DH
3535 if (ctx->seen & SHMEM_SEEN_HUGE)
3536 sbinfo->huge = ctx->huge;
ea3271f7
CD
3537 if (ctx->seen & SHMEM_SEEN_INUMS)
3538 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3539 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3540 sbinfo->max_blocks = ctx->blocks;
3541 if (ctx->seen & SHMEM_SEEN_INODES) {
3542 sbinfo->max_inodes = ctx->inodes;
3543 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3544 }
71fe804b 3545
5f00110f
GT
3546 /*
3547 * Preserve previous mempolicy unless mpol remount option was specified.
3548 */
f3235626 3549 if (ctx->mpol) {
5f00110f 3550 mpol_put(sbinfo->mpol);
f3235626
DH
3551 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3552 ctx->mpol = NULL;
5f00110f 3553 }
f3235626
DH
3554 spin_unlock(&sbinfo->stat_lock);
3555 return 0;
0edd73b3
HD
3556out:
3557 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3558 return invalfc(fc, "%s", err);
1da177e4 3559}
680d794b 3560
34c80b1d 3561static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3562{
34c80b1d 3563 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3564
3565 if (sbinfo->max_blocks != shmem_default_max_blocks())
3566 seq_printf(seq, ",size=%luk",
09cbfeaf 3567 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3568 if (sbinfo->max_inodes != shmem_default_max_inodes())
3569 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3570 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3571 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3572 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3573 seq_printf(seq, ",uid=%u",
3574 from_kuid_munged(&init_user_ns, sbinfo->uid));
3575 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3576 seq_printf(seq, ",gid=%u",
3577 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3578
3579 /*
3580 * Showing inode{64,32} might be useful even if it's the system default,
3581 * since then people don't have to resort to checking both here and
3582 * /proc/config.gz to confirm 64-bit inums were successfully applied
3583 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3584 *
3585 * We hide it when inode64 isn't the default and we are using 32-bit
3586 * inodes, since that probably just means the feature isn't even under
3587 * consideration.
3588 *
3589 * As such:
3590 *
3591 * +-----------------+-----------------+
3592 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3593 * +------------------+-----------------+-----------------+
3594 * | full_inums=true | show | show |
3595 * | full_inums=false | show | hide |
3596 * +------------------+-----------------+-----------------+
3597 *
3598 */
3599 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3600 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3602 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3603 if (sbinfo->huge)
3604 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3605#endif
71fe804b 3606 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3607 return 0;
3608}
9183df25 3609
680d794b 3610#endif /* CONFIG_TMPFS */
1da177e4
LT
3611
3612static void shmem_put_super(struct super_block *sb)
3613{
602586a8
HD
3614 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3615
e809d5f0 3616 free_percpu(sbinfo->ino_batch);
602586a8 3617 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3618 mpol_put(sbinfo->mpol);
602586a8 3619 kfree(sbinfo);
1da177e4
LT
3620 sb->s_fs_info = NULL;
3621}
3622
f3235626 3623static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3624{
f3235626 3625 struct shmem_options *ctx = fc->fs_private;
1da177e4 3626 struct inode *inode;
0edd73b3 3627 struct shmem_sb_info *sbinfo;
680d794b
AM
3628 int err = -ENOMEM;
3629
3630 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3631 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3632 L1_CACHE_BYTES), GFP_KERNEL);
3633 if (!sbinfo)
3634 return -ENOMEM;
3635
680d794b 3636 sb->s_fs_info = sbinfo;
1da177e4 3637
0edd73b3 3638#ifdef CONFIG_TMPFS
1da177e4
LT
3639 /*
3640 * Per default we only allow half of the physical ram per
3641 * tmpfs instance, limiting inodes to one per page of lowmem;
3642 * but the internal instance is left unlimited.
3643 */
1751e8a6 3644 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3645 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3646 ctx->blocks = shmem_default_max_blocks();
3647 if (!(ctx->seen & SHMEM_SEEN_INODES))
3648 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3649 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3650 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3651 } else {
1751e8a6 3652 sb->s_flags |= SB_NOUSER;
1da177e4 3653 }
91828a40 3654 sb->s_export_op = &shmem_export_ops;
1751e8a6 3655 sb->s_flags |= SB_NOSEC;
1da177e4 3656#else
1751e8a6 3657 sb->s_flags |= SB_NOUSER;
1da177e4 3658#endif
f3235626
DH
3659 sbinfo->max_blocks = ctx->blocks;
3660 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3661 if (sb->s_flags & SB_KERNMOUNT) {
3662 sbinfo->ino_batch = alloc_percpu(ino_t);
3663 if (!sbinfo->ino_batch)
3664 goto failed;
3665 }
f3235626
DH
3666 sbinfo->uid = ctx->uid;
3667 sbinfo->gid = ctx->gid;
ea3271f7 3668 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3669 sbinfo->mode = ctx->mode;
3670 sbinfo->huge = ctx->huge;
3671 sbinfo->mpol = ctx->mpol;
3672 ctx->mpol = NULL;
1da177e4 3673
0edd73b3 3674 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3675 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3676 goto failed;
779750d2
KS
3677 spin_lock_init(&sbinfo->shrinklist_lock);
3678 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3679
285b2c4f 3680 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3681 sb->s_blocksize = PAGE_SIZE;
3682 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3683 sb->s_magic = TMPFS_MAGIC;
3684 sb->s_op = &shmem_ops;
cfd95a9c 3685 sb->s_time_gran = 1;
b09e0fa4 3686#ifdef CONFIG_TMPFS_XATTR
39f0247d 3687 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3688#endif
3689#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3690 sb->s_flags |= SB_POSIXACL;
39f0247d 3691#endif
2b4db796 3692 uuid_gen(&sb->s_uuid);
0edd73b3 3693
454abafe 3694 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3695 if (!inode)
3696 goto failed;
680d794b
AM
3697 inode->i_uid = sbinfo->uid;
3698 inode->i_gid = sbinfo->gid;
318ceed0
AV
3699 sb->s_root = d_make_root(inode);
3700 if (!sb->s_root)
48fde701 3701 goto failed;
1da177e4
LT
3702 return 0;
3703
1da177e4
LT
3704failed:
3705 shmem_put_super(sb);
3706 return err;
3707}
3708
f3235626
DH
3709static int shmem_get_tree(struct fs_context *fc)
3710{
3711 return get_tree_nodev(fc, shmem_fill_super);
3712}
3713
3714static void shmem_free_fc(struct fs_context *fc)
3715{
3716 struct shmem_options *ctx = fc->fs_private;
3717
3718 if (ctx) {
3719 mpol_put(ctx->mpol);
3720 kfree(ctx);
3721 }
3722}
3723
3724static const struct fs_context_operations shmem_fs_context_ops = {
3725 .free = shmem_free_fc,
3726 .get_tree = shmem_get_tree,
3727#ifdef CONFIG_TMPFS
3728 .parse_monolithic = shmem_parse_options,
3729 .parse_param = shmem_parse_one,
3730 .reconfigure = shmem_reconfigure,
3731#endif
3732};
3733
fcc234f8 3734static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3735
3736static struct inode *shmem_alloc_inode(struct super_block *sb)
3737{
41ffe5d5
HD
3738 struct shmem_inode_info *info;
3739 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3740 if (!info)
1da177e4 3741 return NULL;
41ffe5d5 3742 return &info->vfs_inode;
1da177e4
LT
3743}
3744
74b1da56 3745static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3746{
84e710da
AV
3747 if (S_ISLNK(inode->i_mode))
3748 kfree(inode->i_link);
fa0d7e3d
NP
3749 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3750}
3751
1da177e4
LT
3752static void shmem_destroy_inode(struct inode *inode)
3753{
09208d15 3754 if (S_ISREG(inode->i_mode))
1da177e4 3755 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3756}
3757
41ffe5d5 3758static void shmem_init_inode(void *foo)
1da177e4 3759{
41ffe5d5
HD
3760 struct shmem_inode_info *info = foo;
3761 inode_init_once(&info->vfs_inode);
1da177e4
LT
3762}
3763
9a8ec03e 3764static void shmem_init_inodecache(void)
1da177e4
LT
3765{
3766 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3767 sizeof(struct shmem_inode_info),
5d097056 3768 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3769}
3770
41ffe5d5 3771static void shmem_destroy_inodecache(void)
1da177e4 3772{
1a1d92c1 3773 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3774}
3775
30e6a51d 3776const struct address_space_operations shmem_aops = {
1da177e4 3777 .writepage = shmem_writepage,
76719325 3778 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3779#ifdef CONFIG_TMPFS
800d15a5
NP
3780 .write_begin = shmem_write_begin,
3781 .write_end = shmem_write_end,
1da177e4 3782#endif
1c93923c 3783#ifdef CONFIG_MIGRATION
304dbdb7 3784 .migratepage = migrate_page,
1c93923c 3785#endif
aa261f54 3786 .error_remove_page = generic_error_remove_page,
1da177e4 3787};
30e6a51d 3788EXPORT_SYMBOL(shmem_aops);
1da177e4 3789
15ad7cdc 3790static const struct file_operations shmem_file_operations = {
1da177e4 3791 .mmap = shmem_mmap,
c01d5b30 3792 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3793#ifdef CONFIG_TMPFS
220f2ac9 3794 .llseek = shmem_file_llseek,
2ba5bbed 3795 .read_iter = shmem_file_read_iter,
8174202b 3796 .write_iter = generic_file_write_iter,
1b061d92 3797 .fsync = noop_fsync,
82c156f8 3798 .splice_read = generic_file_splice_read,
f6cb85d0 3799 .splice_write = iter_file_splice_write,
83e4fa9c 3800 .fallocate = shmem_fallocate,
1da177e4
LT
3801#endif
3802};
3803
92e1d5be 3804static const struct inode_operations shmem_inode_operations = {
44a30220 3805 .getattr = shmem_getattr,
94c1e62d 3806 .setattr = shmem_setattr,
b09e0fa4 3807#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3808 .listxattr = shmem_listxattr,
feda821e 3809 .set_acl = simple_set_acl,
b09e0fa4 3810#endif
1da177e4
LT
3811};
3812
92e1d5be 3813static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3814#ifdef CONFIG_TMPFS
3815 .create = shmem_create,
3816 .lookup = simple_lookup,
3817 .link = shmem_link,
3818 .unlink = shmem_unlink,
3819 .symlink = shmem_symlink,
3820 .mkdir = shmem_mkdir,
3821 .rmdir = shmem_rmdir,
3822 .mknod = shmem_mknod,
2773bf00 3823 .rename = shmem_rename2,
60545d0d 3824 .tmpfile = shmem_tmpfile,
1da177e4 3825#endif
b09e0fa4 3826#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3827 .listxattr = shmem_listxattr,
b09e0fa4 3828#endif
39f0247d 3829#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3830 .setattr = shmem_setattr,
feda821e 3831 .set_acl = simple_set_acl,
39f0247d
AG
3832#endif
3833};
3834
92e1d5be 3835static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3836#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3837 .listxattr = shmem_listxattr,
b09e0fa4 3838#endif
39f0247d 3839#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3840 .setattr = shmem_setattr,
feda821e 3841 .set_acl = simple_set_acl,
39f0247d 3842#endif
1da177e4
LT
3843};
3844
759b9775 3845static const struct super_operations shmem_ops = {
1da177e4 3846 .alloc_inode = shmem_alloc_inode,
74b1da56 3847 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3848 .destroy_inode = shmem_destroy_inode,
3849#ifdef CONFIG_TMPFS
3850 .statfs = shmem_statfs,
680d794b 3851 .show_options = shmem_show_options,
1da177e4 3852#endif
1f895f75 3853 .evict_inode = shmem_evict_inode,
1da177e4
LT
3854 .drop_inode = generic_delete_inode,
3855 .put_super = shmem_put_super,
396bcc52 3856#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3857 .nr_cached_objects = shmem_unused_huge_count,
3858 .free_cached_objects = shmem_unused_huge_scan,
3859#endif
1da177e4
LT
3860};
3861
f0f37e2f 3862static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3863 .fault = shmem_fault,
d7c17551 3864 .map_pages = filemap_map_pages,
1da177e4
LT
3865#ifdef CONFIG_NUMA
3866 .set_policy = shmem_set_policy,
3867 .get_policy = shmem_get_policy,
3868#endif
3869};
3870
f3235626 3871int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3872{
f3235626
DH
3873 struct shmem_options *ctx;
3874
3875 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3876 if (!ctx)
3877 return -ENOMEM;
3878
3879 ctx->mode = 0777 | S_ISVTX;
3880 ctx->uid = current_fsuid();
3881 ctx->gid = current_fsgid();
3882
3883 fc->fs_private = ctx;
3884 fc->ops = &shmem_fs_context_ops;
3885 return 0;
1da177e4
LT
3886}
3887
41ffe5d5 3888static struct file_system_type shmem_fs_type = {
1da177e4
LT
3889 .owner = THIS_MODULE,
3890 .name = "tmpfs",
f3235626
DH
3891 .init_fs_context = shmem_init_fs_context,
3892#ifdef CONFIG_TMPFS
d7167b14 3893 .parameters = shmem_fs_parameters,
f3235626 3894#endif
1da177e4 3895 .kill_sb = kill_litter_super,
01c70267 3896 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3897};
1da177e4 3898
41ffe5d5 3899int __init shmem_init(void)
1da177e4
LT
3900{
3901 int error;
3902
9a8ec03e 3903 shmem_init_inodecache();
1da177e4 3904
41ffe5d5 3905 error = register_filesystem(&shmem_fs_type);
1da177e4 3906 if (error) {
1170532b 3907 pr_err("Could not register tmpfs\n");
1da177e4
LT
3908 goto out2;
3909 }
95dc112a 3910
ca4e0519 3911 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3912 if (IS_ERR(shm_mnt)) {
3913 error = PTR_ERR(shm_mnt);
1170532b 3914 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3915 goto out1;
3916 }
5a6e75f8 3917
396bcc52 3918#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3919 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3920 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3921 else
3922 shmem_huge = 0; /* just in case it was patched */
3923#endif
1da177e4
LT
3924 return 0;
3925
3926out1:
41ffe5d5 3927 unregister_filesystem(&shmem_fs_type);
1da177e4 3928out2:
41ffe5d5 3929 shmem_destroy_inodecache();
1da177e4
LT
3930 shm_mnt = ERR_PTR(error);
3931 return error;
3932}
853ac43a 3933
396bcc52 3934#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3935static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3936 struct kobj_attribute *attr, char *buf)
5a6e75f8 3937{
26083eb6 3938 static const int values[] = {
5a6e75f8
KS
3939 SHMEM_HUGE_ALWAYS,
3940 SHMEM_HUGE_WITHIN_SIZE,
3941 SHMEM_HUGE_ADVISE,
3942 SHMEM_HUGE_NEVER,
3943 SHMEM_HUGE_DENY,
3944 SHMEM_HUGE_FORCE,
3945 };
79d4d38a
JP
3946 int len = 0;
3947 int i;
5a6e75f8 3948
79d4d38a
JP
3949 for (i = 0; i < ARRAY_SIZE(values); i++) {
3950 len += sysfs_emit_at(buf, len,
3951 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3952 i ? " " : "",
3953 shmem_format_huge(values[i]));
5a6e75f8 3954 }
79d4d38a
JP
3955
3956 len += sysfs_emit_at(buf, len, "\n");
3957
3958 return len;
5a6e75f8
KS
3959}
3960
3961static ssize_t shmem_enabled_store(struct kobject *kobj,
3962 struct kobj_attribute *attr, const char *buf, size_t count)
3963{
3964 char tmp[16];
3965 int huge;
3966
3967 if (count + 1 > sizeof(tmp))
3968 return -EINVAL;
3969 memcpy(tmp, buf, count);
3970 tmp[count] = '\0';
3971 if (count && tmp[count - 1] == '\n')
3972 tmp[count - 1] = '\0';
3973
3974 huge = shmem_parse_huge(tmp);
3975 if (huge == -EINVAL)
3976 return -EINVAL;
3977 if (!has_transparent_hugepage() &&
3978 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3979 return -EINVAL;
3980
3981 shmem_huge = huge;
435c0b87 3982 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3983 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3984 return count;
3985}
3986
3987struct kobj_attribute shmem_enabled_attr =
3988 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3989#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3990
396bcc52 3991#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
3992bool shmem_huge_enabled(struct vm_area_struct *vma)
3993{
3994 struct inode *inode = file_inode(vma->vm_file);
3995 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3996 loff_t i_size;
3997 pgoff_t off;
3998
e6be37b2 3999 if (!transhuge_vma_enabled(vma, vma->vm_flags))
c0630669 4000 return false;
f3f0e1d2
KS
4001 if (shmem_huge == SHMEM_HUGE_FORCE)
4002 return true;
4003 if (shmem_huge == SHMEM_HUGE_DENY)
4004 return false;
4005 switch (sbinfo->huge) {
4006 case SHMEM_HUGE_NEVER:
4007 return false;
4008 case SHMEM_HUGE_ALWAYS:
4009 return true;
4010 case SHMEM_HUGE_WITHIN_SIZE:
4011 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4012 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4013 if (i_size >= HPAGE_PMD_SIZE &&
4014 i_size >> PAGE_SHIFT >= off)
4015 return true;
e4a9bc58 4016 fallthrough;
f3f0e1d2
KS
4017 case SHMEM_HUGE_ADVISE:
4018 /* TODO: implement fadvise() hints */
4019 return (vma->vm_flags & VM_HUGEPAGE);
4020 default:
4021 VM_BUG_ON(1);
4022 return false;
4023 }
4024}
396bcc52 4025#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4026
853ac43a
MM
4027#else /* !CONFIG_SHMEM */
4028
4029/*
4030 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4031 *
4032 * This is intended for small system where the benefits of the full
4033 * shmem code (swap-backed and resource-limited) are outweighed by
4034 * their complexity. On systems without swap this code should be
4035 * effectively equivalent, but much lighter weight.
4036 */
4037
41ffe5d5 4038static struct file_system_type shmem_fs_type = {
853ac43a 4039 .name = "tmpfs",
f3235626 4040 .init_fs_context = ramfs_init_fs_context,
d7167b14 4041 .parameters = ramfs_fs_parameters,
853ac43a 4042 .kill_sb = kill_litter_super,
2b8576cb 4043 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4044};
4045
41ffe5d5 4046int __init shmem_init(void)
853ac43a 4047{
41ffe5d5 4048 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4049
41ffe5d5 4050 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4051 BUG_ON(IS_ERR(shm_mnt));
4052
4053 return 0;
4054}
4055
b56a2d8a
VRP
4056int shmem_unuse(unsigned int type, bool frontswap,
4057 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4058{
4059 return 0;
4060}
4061
d7c9e99a 4062int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4063{
4064 return 0;
4065}
4066
24513264
HD
4067void shmem_unlock_mapping(struct address_space *mapping)
4068{
4069}
4070
c01d5b30
HD
4071#ifdef CONFIG_MMU
4072unsigned long shmem_get_unmapped_area(struct file *file,
4073 unsigned long addr, unsigned long len,
4074 unsigned long pgoff, unsigned long flags)
4075{
4076 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4077}
4078#endif
4079
41ffe5d5 4080void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4081{
41ffe5d5 4082 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4083}
4084EXPORT_SYMBOL_GPL(shmem_truncate_range);
4085
0b0a0806
HD
4086#define shmem_vm_ops generic_file_vm_ops
4087#define shmem_file_operations ramfs_file_operations
454abafe 4088#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4089#define shmem_acct_size(flags, size) 0
4090#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4091
4092#endif /* CONFIG_SHMEM */
4093
4094/* common code */
1da177e4 4095
703321b6 4096static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4097 unsigned long flags, unsigned int i_flags)
1da177e4 4098{
1da177e4 4099 struct inode *inode;
93dec2da 4100 struct file *res;
1da177e4 4101
703321b6
MA
4102 if (IS_ERR(mnt))
4103 return ERR_CAST(mnt);
1da177e4 4104
285b2c4f 4105 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4106 return ERR_PTR(-EINVAL);
4107
4108 if (shmem_acct_size(flags, size))
4109 return ERR_PTR(-ENOMEM);
4110
93dec2da
AV
4111 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4112 flags);
dac2d1f6
AV
4113 if (unlikely(!inode)) {
4114 shmem_unacct_size(flags, size);
4115 return ERR_PTR(-ENOSPC);
4116 }
c7277090 4117 inode->i_flags |= i_flags;
1da177e4 4118 inode->i_size = size;
6d6b77f1 4119 clear_nlink(inode); /* It is unlinked */
26567cdb 4120 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4121 if (!IS_ERR(res))
4122 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4123 &shmem_file_operations);
26567cdb 4124 if (IS_ERR(res))
93dec2da 4125 iput(inode);
6b4d0b27 4126 return res;
1da177e4 4127}
c7277090
EP
4128
4129/**
4130 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4131 * kernel internal. There will be NO LSM permission checks against the
4132 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4133 * higher layer. The users are the big_key and shm implementations. LSM
4134 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4135 * @name: name for dentry (to be seen in /proc/<pid>/maps
4136 * @size: size to be set for the file
4137 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4138 */
4139struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4140{
703321b6 4141 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4142}
4143
4144/**
4145 * shmem_file_setup - get an unlinked file living in tmpfs
4146 * @name: name for dentry (to be seen in /proc/<pid>/maps
4147 * @size: size to be set for the file
4148 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4149 */
4150struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4151{
703321b6 4152 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4153}
395e0ddc 4154EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4155
703321b6
MA
4156/**
4157 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4158 * @mnt: the tmpfs mount where the file will be created
4159 * @name: name for dentry (to be seen in /proc/<pid>/maps
4160 * @size: size to be set for the file
4161 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4162 */
4163struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4164 loff_t size, unsigned long flags)
4165{
4166 return __shmem_file_setup(mnt, name, size, flags, 0);
4167}
4168EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4169
46711810 4170/**
1da177e4 4171 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4172 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4173 */
4174int shmem_zero_setup(struct vm_area_struct *vma)
4175{
4176 struct file *file;
4177 loff_t size = vma->vm_end - vma->vm_start;
4178
66fc1303 4179 /*
c1e8d7c6 4180 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4181 * between XFS directory reading and selinux: since this file is only
4182 * accessible to the user through its mapping, use S_PRIVATE flag to
4183 * bypass file security, in the same way as shmem_kernel_file_setup().
4184 */
703321b6 4185 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4186 if (IS_ERR(file))
4187 return PTR_ERR(file);
4188
4189 if (vma->vm_file)
4190 fput(vma->vm_file);
4191 vma->vm_file = file;
4192 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4193
396bcc52 4194 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4195 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4196 (vma->vm_end & HPAGE_PMD_MASK)) {
4197 khugepaged_enter(vma, vma->vm_flags);
4198 }
4199
1da177e4
LT
4200 return 0;
4201}
d9d90e5e
HD
4202
4203/**
4204 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4205 * @mapping: the page's address_space
4206 * @index: the page index
4207 * @gfp: the page allocator flags to use if allocating
4208 *
4209 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4210 * with any new page allocations done using the specified allocation flags.
4211 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4212 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4213 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4214 *
68da9f05
HD
4215 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4216 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4217 */
4218struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4219 pgoff_t index, gfp_t gfp)
4220{
68da9f05
HD
4221#ifdef CONFIG_SHMEM
4222 struct inode *inode = mapping->host;
9276aad6 4223 struct page *page;
68da9f05
HD
4224 int error;
4225
30e6a51d 4226 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4227 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4228 gfp, NULL, NULL, NULL);
68da9f05
HD
4229 if (error)
4230 page = ERR_PTR(error);
4231 else
4232 unlock_page(page);
4233 return page;
4234#else
4235 /*
4236 * The tiny !SHMEM case uses ramfs without swap
4237 */
d9d90e5e 4238 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4239#endif
d9d90e5e
HD
4240}
4241EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);