]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/shmem.c
PCI: Reprogram bridge prefetch registers on resume
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b
AM
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
c088e31d 114static int shmem_default_max_inodes(void)
680d794b 115{
c088e31d
SF
116 unsigned long ul;
117
118 ul = INT_MAX;
119 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
120 return ul;
680d794b 121}
b76db735 122#endif
680d794b 123
bde05d1c
HD
124static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
68da9f05 127static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 128 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
129 gfp_t gfp, struct vm_area_struct *vma,
130 struct vm_fault *vmf, int *fault_type);
68da9f05 131
f3f0e1d2 132int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 133 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
134{
135 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 136 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 137}
1da177e4 138
1da177e4
LT
139static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140{
141 return sb->s_fs_info;
142}
143
144/*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150static inline int shmem_acct_size(unsigned long flags, loff_t size)
151{
0b0a0806 152 return (flags & VM_NORESERVE) ?
191c5424 153 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
154}
155
156static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157{
0b0a0806 158 if (!(flags & VM_NORESERVE))
1da177e4
LT
159 vm_unacct_memory(VM_ACCT(size));
160}
161
77142517
KK
162static inline int shmem_reacct_size(unsigned long flags,
163 loff_t oldsize, loff_t newsize)
164{
165 if (!(flags & VM_NORESERVE)) {
166 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
167 return security_vm_enough_memory_mm(current->mm,
168 VM_ACCT(newsize) - VM_ACCT(oldsize));
169 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
170 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 }
172 return 0;
173}
174
1da177e4
LT
175/*
176 * ... whereas tmpfs objects are accounted incrementally as
75edd345 177 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
800d8c63 181static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 182{
800d8c63
KS
183 if (!(flags & VM_NORESERVE))
184 return 0;
185
186 return security_vm_enough_memory_mm(current->mm,
187 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
188}
189
190static inline void shmem_unacct_blocks(unsigned long flags, long pages)
191{
0b0a0806 192 if (flags & VM_NORESERVE)
09cbfeaf 193 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
194}
195
0f079694
MR
196static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
197{
198 struct shmem_inode_info *info = SHMEM_I(inode);
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200
201 if (shmem_acct_block(info->flags, pages))
202 return false;
203
204 if (sbinfo->max_blocks) {
205 if (percpu_counter_compare(&sbinfo->used_blocks,
206 sbinfo->max_blocks - pages) > 0)
207 goto unacct;
208 percpu_counter_add(&sbinfo->used_blocks, pages);
209 }
210
211 return true;
212
213unacct:
214 shmem_unacct_blocks(info->flags, pages);
215 return false;
216}
217
218static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
219{
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (sbinfo->max_blocks)
224 percpu_counter_sub(&sbinfo->used_blocks, pages);
225 shmem_unacct_blocks(info->flags, pages);
226}
227
759b9775 228static const struct super_operations shmem_ops;
f5e54d6e 229static const struct address_space_operations shmem_aops;
15ad7cdc 230static const struct file_operations shmem_file_operations;
92e1d5be
AV
231static const struct inode_operations shmem_inode_operations;
232static const struct inode_operations shmem_dir_inode_operations;
233static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 234static const struct vm_operations_struct shmem_vm_ops;
779750d2 235static struct file_system_type shmem_fs_type;
1da177e4 236
b0506e48
MR
237bool vma_is_shmem(struct vm_area_struct *vma)
238{
239 return vma->vm_ops == &shmem_vm_ops;
240}
241
1da177e4 242static LIST_HEAD(shmem_swaplist);
cb5f7b9a 243static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 244
5b04c689
PE
245static int shmem_reserve_inode(struct super_block *sb)
246{
247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
248 if (sbinfo->max_inodes) {
249 spin_lock(&sbinfo->stat_lock);
250 if (!sbinfo->free_inodes) {
251 spin_unlock(&sbinfo->stat_lock);
252 return -ENOSPC;
253 }
254 sbinfo->free_inodes--;
255 spin_unlock(&sbinfo->stat_lock);
256 }
257 return 0;
258}
259
260static void shmem_free_inode(struct super_block *sb)
261{
262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 if (sbinfo->max_inodes) {
264 spin_lock(&sbinfo->stat_lock);
265 sbinfo->free_inodes++;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268}
269
46711810 270/**
41ffe5d5 271 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
272 * @inode: inode to recalc
273 *
274 * We have to calculate the free blocks since the mm can drop
275 * undirtied hole pages behind our back.
276 *
277 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
278 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 *
280 * It has to be called with the spinlock held.
281 */
282static void shmem_recalc_inode(struct inode *inode)
283{
284 struct shmem_inode_info *info = SHMEM_I(inode);
285 long freed;
286
287 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
288 if (freed > 0) {
289 info->alloced -= freed;
54af6042 290 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 291 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
292 }
293}
294
800d8c63
KS
295bool shmem_charge(struct inode *inode, long pages)
296{
297 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 298 unsigned long flags;
800d8c63 299
0f079694 300 if (!shmem_inode_acct_block(inode, pages))
800d8c63 301 return false;
b1cc94ab 302
4595ef88 303 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
4595ef88 307 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
308 inode->i_mapping->nrpages += pages;
309
800d8c63
KS
310 return true;
311}
312
313void shmem_uncharge(struct inode *inode, long pages)
314{
315 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 316 unsigned long flags;
800d8c63 317
4595ef88 318 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
4595ef88 322 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 323
0f079694 324 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
325}
326
7a5d0fbb
HD
327/*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332{
f7942430 333 struct radix_tree_node *node;
7a5d0fbb 334 void **pslot;
6dbaf22c 335 void *item;
7a5d0fbb
HD
336
337 VM_BUG_ON(!expected);
6dbaf22c 338 VM_BUG_ON(!replacement);
f7942430
JW
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
6dbaf22c 341 return -ENOENT;
7a5d0fbb
HD
342 if (item != expected)
343 return -ENOENT;
4d693d08 344 __radix_tree_replace(&mapping->page_tree, node, pslot,
c7df8ad2 345 replacement, NULL);
7a5d0fbb
HD
346 return 0;
347}
348
d1899228
HD
349/*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358{
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365}
366
5a6e75f8
KS
367/*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381#define SHMEM_HUGE_NEVER 0
382#define SHMEM_HUGE_ALWAYS 1
383#define SHMEM_HUGE_WITHIN_SIZE 2
384#define SHMEM_HUGE_ADVISE 3
385
386/*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396#define SHMEM_HUGE_DENY (-1)
397#define SHMEM_HUGE_FORCE (-2)
398
e496cf3d 399#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
400/* ifdef here to avoid bloating shmem.o when not necessary */
401
402int shmem_huge __read_mostly;
403
f1f5929c 404#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
405static int shmem_parse_huge(const char *str)
406{
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420}
421
422static const char *shmem_format_huge(int huge)
423{
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441}
f1f5929c 442#endif
5a6e75f8 443
779750d2
KS
444static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446{
447 LIST_HEAD(list), *pos, *next;
253fd0f0 448 LIST_HEAD(to_remove);
779750d2
KS
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 475 list_move(&info->shrinklist, &to_remove);
779750d2 476 removed++;
779750d2
KS
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
253fd0f0
KS
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
779750d2
KS
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
34649251
KS
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
779750d2 502
34649251 503 page = find_get_page(inode->i_mapping,
779750d2
KS
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
507
34649251 508 /* No huge page at the end of the file: nothing to split */
779750d2 509 if (!PageTransHuge(page)) {
779750d2
KS
510 put_page(page);
511 goto drop;
512 }
513
34649251
KS
514 /*
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
517 *
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
520 */
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
524 }
525
779750d2
KS
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
529
34649251
KS
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
779750d2
KS
533
534 split++;
535drop:
536 list_del_init(&info->shrinklist);
537 removed++;
34649251 538leave:
779750d2
KS
539 iput(inode);
540 }
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
546
547 return split;
548}
549
550static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
552{
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
557
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
559}
560
561static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
563{
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
566}
e496cf3d 567#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
568
569#define shmem_huge SHMEM_HUGE_DENY
570
779750d2
KS
571static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
573{
574 return 0;
575}
e496cf3d 576#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 577
46f65ec1
HD
578/*
579 * Like add_to_page_cache_locked, but error if expected item has gone.
580 */
581static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
fed400a1 583 pgoff_t index, void *expected)
46f65ec1 584{
800d8c63 585 int error, nr = hpage_nr_pages(page);
46f65ec1 586
800d8c63
KS
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 591 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 592
800d8c63 593 page_ref_add(page, nr);
b065b432
HD
594 page->mapping = mapping;
595 page->index = index;
596
597 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
602
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
608 }
609
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
615 }
616 count_vm_event(THP_FILE_ALLOC);
617 }
618 } else if (!expected) {
b065b432 619 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 620 } else {
b065b432
HD
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
800d8c63
KS
623 }
624
46f65ec1 625 if (!error) {
800d8c63
KS
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
11fb9989
MG
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
800d8c63 635 page_ref_sub(page, nr);
46f65ec1 636 }
46f65ec1
HD
637 return error;
638}
639
6922c0c7
HD
640/*
641 * Like delete_from_page_cache, but substitutes swap for page.
642 */
643static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644{
645 struct address_space *mapping = page->mapping;
646 int error;
647
800d8c63
KS
648 VM_BUG_ON_PAGE(PageCompound(page), page);
649
6922c0c7
HD
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
11fb9989
MG
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 656 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 657 put_page(page);
6922c0c7
HD
658 BUG_ON(error);
659}
660
7a5d0fbb
HD
661/*
662 * Remove swap entry from radix tree, free the swap and its page cache.
663 */
664static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
666{
6dbaf22c 667 void *old;
7a5d0fbb
HD
668
669 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 671 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
7a5d0fbb
HD
676}
677
6a15a370
VB
678/*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 680 * given offsets are swapped out.
6a15a370
VB
681 *
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
48131e03
VB
685unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
6a15a370 687{
6a15a370
VB
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
48131e03 691 unsigned long swapped = 0;
6a15a370
VB
692
693 rcu_read_lock();
694
6a15a370
VB
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
698
699 page = radix_tree_deref_slot(slot);
700
2cf938aa
MW
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
704 }
6a15a370
VB
705
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
708
709 if (need_resched()) {
148deab2 710 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 711 cond_resched_rcu();
6a15a370
VB
712 }
713 }
714
715 rcu_read_unlock();
716
717 return swapped << PAGE_SHIFT;
718}
719
48131e03
VB
720/*
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
723 *
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
726 */
727unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728{
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
733
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
736
737 /*
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
741 */
742 if (!swapped)
743 return 0;
744
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
747
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
752}
753
24513264
HD
754/*
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756 */
757void shmem_unlock_mapping(struct address_space *mapping)
758{
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
762
86679820 763 pagevec_init(&pvec);
24513264
HD
764 /*
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766 */
767 while (!mapping_unevictable(mapping)) {
768 /*
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771 */
0cd6144a
JW
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
0cd6144a 777 pagevec_remove_exceptionals(&pvec);
24513264
HD
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
781 }
7a5d0fbb
HD
782}
783
784/*
785 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 787 */
1635f6a7
HD
788static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
1da177e4 790{
285b2c4f 791 struct address_space *mapping = inode->i_mapping;
1da177e4 792 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 797 struct pagevec pvec;
7a5d0fbb
HD
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
285b2c4f 800 pgoff_t index;
bda97eab
HD
801 int i;
802
83e4fa9c
HD
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
bda97eab 805
86679820 806 pagevec_init(&pvec);
bda97eab 807 index = start;
83e4fa9c 808 while (index < end) {
0cd6144a
JW
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
7a5d0fbb
HD
812 if (!pvec.nr)
813 break;
bda97eab
HD
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
816
7a5d0fbb 817 index = indices[i];
83e4fa9c 818 if (index >= end)
bda97eab
HD
819 break;
820
7a5d0fbb 821 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
822 if (unfalloc)
823 continue;
7a5d0fbb
HD
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
bda97eab 826 continue;
7a5d0fbb
HD
827 }
828
800d8c63
KS
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
7a5d0fbb 831 if (!trylock_page(page))
bda97eab 832 continue;
800d8c63
KS
833
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
841 /*
842 * Range ends in the middle of THP:
843 * zero out the page
844 */
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
848 }
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
851 }
852
1635f6a7 853 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
309381fe 856 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
857 truncate_inode_page(mapping, page);
858 }
bda97eab 859 }
bda97eab
HD
860 unlock_page(page);
861 }
0cd6144a 862 pagevec_remove_exceptionals(&pvec);
24513264 863 pagevec_release(&pvec);
bda97eab
HD
864 cond_resched();
865 index++;
866 }
1da177e4 867
83e4fa9c 868 if (partial_start) {
bda97eab 869 struct page *page = NULL;
9e18eb29 870 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 871 if (page) {
09cbfeaf 872 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
876 }
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
09cbfeaf 880 put_page(page);
83e4fa9c
HD
881 }
882 }
883 if (partial_end) {
884 struct page *page = NULL;
9e18eb29 885 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
bda97eab
HD
888 set_page_dirty(page);
889 unlock_page(page);
09cbfeaf 890 put_page(page);
bda97eab
HD
891 }
892 }
83e4fa9c
HD
893 if (start >= end)
894 return;
bda97eab
HD
895
896 index = start;
b1a36650 897 while (index < end) {
bda97eab 898 cond_resched();
0cd6144a
JW
899
900 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 902 pvec.pages, indices);
7a5d0fbb 903 if (!pvec.nr) {
b1a36650
HD
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
bda97eab 906 break;
b1a36650 907 /* But if truncating, restart to make sure all gone */
bda97eab
HD
908 index = start;
909 continue;
910 }
bda97eab
HD
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
913
7a5d0fbb 914 index = indices[i];
83e4fa9c 915 if (index >= end)
bda97eab
HD
916 break;
917
7a5d0fbb 918 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
919 if (unfalloc)
920 continue;
b1a36650
HD
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
925 }
926 nr_swaps_freed++;
7a5d0fbb
HD
927 continue;
928 }
929
bda97eab 930 lock_page(page);
800d8c63
KS
931
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
936 /*
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
940 */
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
946 /*
947 * Range ends in the middle of THP:
948 * zero out the page
949 */
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
953 }
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
956 }
957
1635f6a7 958 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
309381fe 961 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 962 truncate_inode_page(mapping, page);
b1a36650
HD
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
1635f6a7 968 }
7a5d0fbb 969 }
bda97eab
HD
970 unlock_page(page);
971 }
0cd6144a 972 pagevec_remove_exceptionals(&pvec);
24513264 973 pagevec_release(&pvec);
bda97eab
HD
974 index++;
975 }
94c1e62d 976
4595ef88 977 spin_lock_irq(&info->lock);
7a5d0fbb 978 info->swapped -= nr_swaps_freed;
1da177e4 979 shmem_recalc_inode(inode);
4595ef88 980 spin_unlock_irq(&info->lock);
1635f6a7 981}
1da177e4 982
1635f6a7
HD
983void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984{
985 shmem_undo_range(inode, lstart, lend, false);
078cd827 986 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 987}
94c1e62d 988EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 989
a528d35e
DH
990static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
44a30220 992{
a528d35e 993 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
994 struct shmem_inode_info *info = SHMEM_I(inode);
995
d0424c42 996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 997 spin_lock_irq(&info->lock);
d0424c42 998 shmem_recalc_inode(inode);
4595ef88 999 spin_unlock_irq(&info->lock);
d0424c42 1000 }
44a30220 1001 generic_fillattr(inode, stat);
44a30220
YZ
1002 return 0;
1003}
1004
94c1e62d 1005static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1006{
75c3cfa8 1007 struct inode *inode = d_inode(dentry);
40e041a2 1008 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1010 int error;
1011
31051c85 1012 error = setattr_prepare(dentry, attr);
db78b877
CH
1013 if (error)
1014 return error;
1015
94c1e62d
HD
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
3889e6e7 1019
40e041a2
DH
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
94c1e62d 1025 if (newsize != oldsize) {
77142517
KK
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
94c1e62d 1030 i_size_write(inode, newsize);
078cd827 1031 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1032 }
afa2db2f 1033 if (newsize <= oldsize) {
94c1e62d 1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
94c1e62d 1041 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
779750d2
KS
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
94c1e62d 1063 }
1da177e4
LT
1064 }
1065
db78b877 1066 setattr_copy(inode, attr);
db78b877 1067 if (attr->ia_valid & ATTR_MODE)
feda821e 1068 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1069 return error;
1070}
1071
1f895f75 1072static void shmem_evict_inode(struct inode *inode)
1da177e4 1073{
1da177e4 1074 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1076
3889e6e7 1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
3889e6e7 1080 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1da177e4 1089 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1090 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1091 list_del_init(&info->swaplist);
cb5f7b9a 1092 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1093 }
3ed47db3 1094 }
b09e0fa4 1095
38f38657 1096 simple_xattrs_free(&info->xattrs);
0f3c42f5 1097 WARN_ON(inode->i_blocks);
c088e31d
SF
1098 if (!sbinfo->idr_nouse && inode->i_ino) {
1099 mutex_lock(&sbinfo->idr_lock);
1100 idr_remove(&sbinfo->idr, inode->i_ino);
1101 mutex_unlock(&sbinfo->idr_lock);
1102 }
5b04c689 1103 shmem_free_inode(inode->i_sb);
dbd5768f 1104 clear_inode(inode);
1da177e4
LT
1105}
1106
478922e2
MW
1107static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1108{
1109 struct radix_tree_iter iter;
1110 void **slot;
1111 unsigned long found = -1;
1112 unsigned int checked = 0;
1113
1114 rcu_read_lock();
1115 radix_tree_for_each_slot(slot, root, &iter, 0) {
1116 if (*slot == item) {
1117 found = iter.index;
1118 break;
1119 }
1120 checked++;
1121 if ((checked % 4096) != 0)
1122 continue;
1123 slot = radix_tree_iter_resume(slot, &iter);
1124 cond_resched_rcu();
1125 }
1126
1127 rcu_read_unlock();
1128 return found;
1129}
1130
46f65ec1
HD
1131/*
1132 * If swap found in inode, free it and move page from swapcache to filecache.
1133 */
41ffe5d5 1134static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1135 swp_entry_t swap, struct page **pagep)
1da177e4 1136{
285b2c4f 1137 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1138 void *radswap;
41ffe5d5 1139 pgoff_t index;
bde05d1c
HD
1140 gfp_t gfp;
1141 int error = 0;
1da177e4 1142
46f65ec1 1143 radswap = swp_to_radix_entry(swap);
478922e2 1144 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1145 if (index == -1)
00501b53 1146 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1147
1b1b32f2
HD
1148 /*
1149 * Move _head_ to start search for next from here.
1f895f75 1150 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1151 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1152 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1153 */
1154 if (shmem_swaplist.next != &info->swaplist)
1155 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1156
bde05d1c
HD
1157 gfp = mapping_gfp_mask(mapping);
1158 if (shmem_should_replace_page(*pagep, gfp)) {
1159 mutex_unlock(&shmem_swaplist_mutex);
1160 error = shmem_replace_page(pagep, gfp, info, index);
1161 mutex_lock(&shmem_swaplist_mutex);
1162 /*
1163 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1164 * allocation, but the inode might have been freed while we
1165 * dropped it: although a racing shmem_evict_inode() cannot
1166 * complete without emptying the radix_tree, our page lock
1167 * on this swapcache page is not enough to prevent that -
1168 * free_swap_and_cache() of our swap entry will only
1169 * trylock_page(), removing swap from radix_tree whatever.
1170 *
1171 * We must not proceed to shmem_add_to_page_cache() if the
1172 * inode has been freed, but of course we cannot rely on
1173 * inode or mapping or info to check that. However, we can
1174 * safely check if our swap entry is still in use (and here
1175 * it can't have got reused for another page): if it's still
1176 * in use, then the inode cannot have been freed yet, and we
1177 * can safely proceed (if it's no longer in use, that tells
1178 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1179 */
1180 if (!page_swapcount(*pagep))
1181 error = -ENOENT;
1182 }
1183
d13d1443 1184 /*
778dd893
HD
1185 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1186 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1187 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1188 */
bde05d1c
HD
1189 if (!error)
1190 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1191 radswap);
48f170fb 1192 if (error != -ENOMEM) {
46f65ec1
HD
1193 /*
1194 * Truncation and eviction use free_swap_and_cache(), which
1195 * only does trylock page: if we raced, best clean up here.
1196 */
bde05d1c
HD
1197 delete_from_swap_cache(*pagep);
1198 set_page_dirty(*pagep);
46f65ec1 1199 if (!error) {
4595ef88 1200 spin_lock_irq(&info->lock);
46f65ec1 1201 info->swapped--;
4595ef88 1202 spin_unlock_irq(&info->lock);
46f65ec1
HD
1203 swap_free(swap);
1204 }
1da177e4 1205 }
2e0e26c7 1206 return error;
1da177e4
LT
1207}
1208
1209/*
46f65ec1 1210 * Search through swapped inodes to find and replace swap by page.
1da177e4 1211 */
41ffe5d5 1212int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1213{
41ffe5d5 1214 struct list_head *this, *next;
1da177e4 1215 struct shmem_inode_info *info;
00501b53 1216 struct mem_cgroup *memcg;
bde05d1c
HD
1217 int error = 0;
1218
1219 /*
1220 * There's a faint possibility that swap page was replaced before
0142ef6c 1221 * caller locked it: caller will come back later with the right page.
bde05d1c 1222 */
0142ef6c 1223 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1224 goto out;
778dd893
HD
1225
1226 /*
1227 * Charge page using GFP_KERNEL while we can wait, before taking
1228 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1229 * Charged back to the user (not to caller) when swap account is used.
778dd893 1230 */
f627c2f5
KS
1231 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1232 false);
778dd893
HD
1233 if (error)
1234 goto out;
46f65ec1 1235 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1236 error = -EAGAIN;
1da177e4 1237
cb5f7b9a 1238 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1239 list_for_each_safe(this, next, &shmem_swaplist) {
1240 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1241 if (info->swapped)
00501b53 1242 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1243 else
1244 list_del_init(&info->swaplist);
cb5f7b9a 1245 cond_resched();
00501b53 1246 if (error != -EAGAIN)
778dd893 1247 break;
00501b53 1248 /* found nothing in this: move on to search the next */
1da177e4 1249 }
cb5f7b9a 1250 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1251
00501b53
JW
1252 if (error) {
1253 if (error != -ENOMEM)
1254 error = 0;
f627c2f5 1255 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1256 } else
f627c2f5 1257 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1258out:
aaa46865 1259 unlock_page(page);
09cbfeaf 1260 put_page(page);
778dd893 1261 return error;
1da177e4
LT
1262}
1263
1264/*
1265 * Move the page from the page cache to the swap cache.
1266 */
1267static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1268{
1269 struct shmem_inode_info *info;
1da177e4 1270 struct address_space *mapping;
1da177e4 1271 struct inode *inode;
6922c0c7
HD
1272 swp_entry_t swap;
1273 pgoff_t index;
1da177e4 1274
800d8c63 1275 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1276 BUG_ON(!PageLocked(page));
1da177e4
LT
1277 mapping = page->mapping;
1278 index = page->index;
1279 inode = mapping->host;
1280 info = SHMEM_I(inode);
1281 if (info->flags & VM_LOCKED)
1282 goto redirty;
d9fe526a 1283 if (!total_swap_pages)
1da177e4
LT
1284 goto redirty;
1285
d9fe526a 1286 /*
97b713ba
CH
1287 * Our capabilities prevent regular writeback or sync from ever calling
1288 * shmem_writepage; but a stacking filesystem might use ->writepage of
1289 * its underlying filesystem, in which case tmpfs should write out to
1290 * swap only in response to memory pressure, and not for the writeback
1291 * threads or sync.
d9fe526a 1292 */
48f170fb
HD
1293 if (!wbc->for_reclaim) {
1294 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1295 goto redirty;
1296 }
1635f6a7
HD
1297
1298 /*
1299 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1300 * value into swapfile.c, the only way we can correctly account for a
1301 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1302 *
1303 * That's okay for a page already fallocated earlier, but if we have
1304 * not yet completed the fallocation, then (a) we want to keep track
1305 * of this page in case we have to undo it, and (b) it may not be a
1306 * good idea to continue anyway, once we're pushing into swap. So
1307 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1308 */
1309 if (!PageUptodate(page)) {
1aac1400
HD
1310 if (inode->i_private) {
1311 struct shmem_falloc *shmem_falloc;
1312 spin_lock(&inode->i_lock);
1313 shmem_falloc = inode->i_private;
1314 if (shmem_falloc &&
8e205f77 1315 !shmem_falloc->waitq &&
1aac1400
HD
1316 index >= shmem_falloc->start &&
1317 index < shmem_falloc->next)
1318 shmem_falloc->nr_unswapped++;
1319 else
1320 shmem_falloc = NULL;
1321 spin_unlock(&inode->i_lock);
1322 if (shmem_falloc)
1323 goto redirty;
1324 }
1635f6a7
HD
1325 clear_highpage(page);
1326 flush_dcache_page(page);
1327 SetPageUptodate(page);
1328 }
1329
38d8b4e6 1330 swap = get_swap_page(page);
48f170fb
HD
1331 if (!swap.val)
1332 goto redirty;
d9fe526a 1333
37e84351
VD
1334 if (mem_cgroup_try_charge_swap(page, swap))
1335 goto free_swap;
1336
b1dea800
HD
1337 /*
1338 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1339 * if it's not already there. Do it now before the page is
1340 * moved to swap cache, when its pagelock no longer protects
b1dea800 1341 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1342 * we've incremented swapped, because shmem_unuse_inode() will
1343 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1344 */
48f170fb
HD
1345 mutex_lock(&shmem_swaplist_mutex);
1346 if (list_empty(&info->swaplist))
1347 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1348
48f170fb 1349 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1350 spin_lock_irq(&info->lock);
6922c0c7 1351 shmem_recalc_inode(inode);
267a4c76 1352 info->swapped++;
4595ef88 1353 spin_unlock_irq(&info->lock);
6922c0c7 1354
267a4c76
HD
1355 swap_shmem_alloc(swap);
1356 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1357
6922c0c7 1358 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1359 BUG_ON(page_mapped(page));
9fab5619 1360 swap_writepage(page, wbc);
1da177e4
LT
1361 return 0;
1362 }
1363
6922c0c7 1364 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1365free_swap:
75f6d6d2 1366 put_swap_page(page, swap);
1da177e4
LT
1367redirty:
1368 set_page_dirty(page);
d9fe526a
HD
1369 if (wbc->for_reclaim)
1370 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1371 unlock_page(page);
1372 return 0;
1da177e4
LT
1373}
1374
75edd345 1375#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1376static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1377{
095f1fc4 1378 char buffer[64];
680d794b 1379
71fe804b 1380 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1381 return; /* show nothing */
680d794b 1382
a7a88b23 1383 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1384
1385 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1386}
71fe804b
LS
1387
1388static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1389{
1390 struct mempolicy *mpol = NULL;
1391 if (sbinfo->mpol) {
1392 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1393 mpol = sbinfo->mpol;
1394 mpol_get(mpol);
1395 spin_unlock(&sbinfo->stat_lock);
1396 }
1397 return mpol;
1398}
75edd345
HD
1399#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1400static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1401{
1402}
1403static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1404{
1405 return NULL;
1406}
1407#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1408#ifndef CONFIG_NUMA
1409#define vm_policy vm_private_data
1410#endif
680d794b 1411
800d8c63
KS
1412static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1413 struct shmem_inode_info *info, pgoff_t index)
1414{
1415 /* Create a pseudo vma that just contains the policy */
1416 vma->vm_start = 0;
1417 /* Bias interleave by inode number to distribute better across nodes */
1418 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1419 vma->vm_ops = NULL;
1420 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1421}
1422
1423static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1424{
1425 /* Drop reference taken by mpol_shared_policy_lookup() */
1426 mpol_cond_put(vma->vm_policy);
1427}
1428
41ffe5d5
HD
1429static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1430 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1431{
1da177e4 1432 struct vm_area_struct pvma;
18a2f371 1433 struct page *page;
52cd3b07 1434
800d8c63 1435 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1436 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1437 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1438
800d8c63
KS
1439 return page;
1440}
1441
1442static struct page *shmem_alloc_hugepage(gfp_t gfp,
1443 struct shmem_inode_info *info, pgoff_t index)
1444{
1445 struct vm_area_struct pvma;
1446 struct inode *inode = &info->vfs_inode;
1447 struct address_space *mapping = inode->i_mapping;
4620a06e 1448 pgoff_t idx, hindex;
800d8c63
KS
1449 void __rcu **results;
1450 struct page *page;
1451
e496cf3d 1452 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1453 return NULL;
1454
4620a06e 1455 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1456 rcu_read_lock();
1457 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1458 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1459 rcu_read_unlock();
1460 return NULL;
1461 }
1462 rcu_read_unlock();
18a2f371 1463
800d8c63
KS
1464 shmem_pseudo_vma_init(&pvma, info, hindex);
1465 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1466 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1467 shmem_pseudo_vma_destroy(&pvma);
1468 if (page)
1469 prep_transhuge_page(page);
18a2f371 1470 return page;
1da177e4
LT
1471}
1472
02098fea 1473static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1474 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1475{
1476 struct vm_area_struct pvma;
18a2f371 1477 struct page *page;
1da177e4 1478
800d8c63
KS
1479 shmem_pseudo_vma_init(&pvma, info, index);
1480 page = alloc_page_vma(gfp, &pvma, 0);
1481 shmem_pseudo_vma_destroy(&pvma);
1482
1483 return page;
1484}
1485
1486static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1487 struct inode *inode,
800d8c63
KS
1488 pgoff_t index, bool huge)
1489{
0f079694 1490 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1491 struct page *page;
1492 int nr;
1493 int err = -ENOSPC;
52cd3b07 1494
e496cf3d 1495 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1496 huge = false;
1497 nr = huge ? HPAGE_PMD_NR : 1;
1498
0f079694 1499 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1500 goto failed;
800d8c63
KS
1501
1502 if (huge)
1503 page = shmem_alloc_hugepage(gfp, info, index);
1504 else
1505 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1506 if (page) {
1507 __SetPageLocked(page);
1508 __SetPageSwapBacked(page);
800d8c63 1509 return page;
75edd345 1510 }
18a2f371 1511
800d8c63 1512 err = -ENOMEM;
0f079694 1513 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1514failed:
1515 return ERR_PTR(err);
1da177e4 1516}
71fe804b 1517
bde05d1c
HD
1518/*
1519 * When a page is moved from swapcache to shmem filecache (either by the
1520 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1521 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1522 * ignorance of the mapping it belongs to. If that mapping has special
1523 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1524 * we may need to copy to a suitable page before moving to filecache.
1525 *
1526 * In a future release, this may well be extended to respect cpuset and
1527 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1528 * but for now it is a simple matter of zone.
1529 */
1530static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1531{
1532 return page_zonenum(page) > gfp_zone(gfp);
1533}
1534
1535static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1536 struct shmem_inode_info *info, pgoff_t index)
1537{
1538 struct page *oldpage, *newpage;
1539 struct address_space *swap_mapping;
1540 pgoff_t swap_index;
1541 int error;
1542
1543 oldpage = *pagep;
1544 swap_index = page_private(oldpage);
1545 swap_mapping = page_mapping(oldpage);
1546
1547 /*
1548 * We have arrived here because our zones are constrained, so don't
1549 * limit chance of success by further cpuset and node constraints.
1550 */
1551 gfp &= ~GFP_CONSTRAINT_MASK;
1552 newpage = shmem_alloc_page(gfp, info, index);
1553 if (!newpage)
1554 return -ENOMEM;
bde05d1c 1555
09cbfeaf 1556 get_page(newpage);
bde05d1c 1557 copy_highpage(newpage, oldpage);
0142ef6c 1558 flush_dcache_page(newpage);
bde05d1c 1559
9956edf3
HD
1560 __SetPageLocked(newpage);
1561 __SetPageSwapBacked(newpage);
bde05d1c 1562 SetPageUptodate(newpage);
bde05d1c 1563 set_page_private(newpage, swap_index);
bde05d1c
HD
1564 SetPageSwapCache(newpage);
1565
1566 /*
1567 * Our caller will very soon move newpage out of swapcache, but it's
1568 * a nice clean interface for us to replace oldpage by newpage there.
1569 */
1570 spin_lock_irq(&swap_mapping->tree_lock);
1571 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1572 newpage);
0142ef6c 1573 if (!error) {
11fb9989
MG
1574 __inc_node_page_state(newpage, NR_FILE_PAGES);
1575 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1576 }
bde05d1c 1577 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1578
0142ef6c
HD
1579 if (unlikely(error)) {
1580 /*
1581 * Is this possible? I think not, now that our callers check
1582 * both PageSwapCache and page_private after getting page lock;
1583 * but be defensive. Reverse old to newpage for clear and free.
1584 */
1585 oldpage = newpage;
1586 } else {
6a93ca8f 1587 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1588 lru_cache_add_anon(newpage);
1589 *pagep = newpage;
1590 }
bde05d1c
HD
1591
1592 ClearPageSwapCache(oldpage);
1593 set_page_private(oldpage, 0);
1594
1595 unlock_page(oldpage);
09cbfeaf
KS
1596 put_page(oldpage);
1597 put_page(oldpage);
0142ef6c 1598 return error;
bde05d1c
HD
1599}
1600
1da177e4 1601/*
68da9f05 1602 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1603 *
1604 * If we allocate a new one we do not mark it dirty. That's up to the
1605 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1606 * entry since a page cannot live in both the swap and page cache.
1607 *
1608 * fault_mm and fault_type are only supplied by shmem_fault:
1609 * otherwise they are NULL.
1da177e4 1610 */
41ffe5d5 1611static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1612 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1613 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1614{
1615 struct address_space *mapping = inode->i_mapping;
23f919d4 1616 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1617 struct shmem_sb_info *sbinfo;
9e18eb29 1618 struct mm_struct *charge_mm;
00501b53 1619 struct mem_cgroup *memcg;
27ab7006 1620 struct page *page;
1da177e4 1621 swp_entry_t swap;
657e3038 1622 enum sgp_type sgp_huge = sgp;
800d8c63 1623 pgoff_t hindex = index;
1da177e4 1624 int error;
54af6042 1625 int once = 0;
1635f6a7 1626 int alloced = 0;
1da177e4 1627
09cbfeaf 1628 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1629 return -EFBIG;
657e3038
KS
1630 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1631 sgp = SGP_CACHE;
1da177e4 1632repeat:
54af6042 1633 swap.val = 0;
0cd6144a 1634 page = find_lock_entry(mapping, index);
54af6042
HD
1635 if (radix_tree_exceptional_entry(page)) {
1636 swap = radix_to_swp_entry(page);
1637 page = NULL;
1638 }
1639
75edd345 1640 if (sgp <= SGP_CACHE &&
09cbfeaf 1641 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1642 error = -EINVAL;
267a4c76 1643 goto unlock;
54af6042
HD
1644 }
1645
66d2f4d2
HD
1646 if (page && sgp == SGP_WRITE)
1647 mark_page_accessed(page);
1648
1635f6a7
HD
1649 /* fallocated page? */
1650 if (page && !PageUptodate(page)) {
1651 if (sgp != SGP_READ)
1652 goto clear;
1653 unlock_page(page);
09cbfeaf 1654 put_page(page);
1635f6a7
HD
1655 page = NULL;
1656 }
54af6042 1657 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1658 *pagep = page;
1659 return 0;
27ab7006
HD
1660 }
1661
1662 /*
54af6042
HD
1663 * Fast cache lookup did not find it:
1664 * bring it back from swap or allocate.
27ab7006 1665 */
54af6042 1666 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1667 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1668
1da177e4
LT
1669 if (swap.val) {
1670 /* Look it up and read it in.. */
ec560175 1671 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1672 if (!page) {
9e18eb29
ALC
1673 /* Or update major stats only when swapin succeeds?? */
1674 if (fault_type) {
68da9f05 1675 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1676 count_vm_event(PGMAJFAULT);
2262185c 1677 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1678 }
1679 /* Here we actually start the io */
41ffe5d5 1680 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1681 if (!page) {
54af6042
HD
1682 error = -ENOMEM;
1683 goto failed;
1da177e4 1684 }
1da177e4
LT
1685 }
1686
1687 /* We have to do this with page locked to prevent races */
54af6042 1688 lock_page(page);
0142ef6c 1689 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1690 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1691 error = -EEXIST; /* try again */
d1899228 1692 goto unlock;
bde05d1c 1693 }
27ab7006 1694 if (!PageUptodate(page)) {
1da177e4 1695 error = -EIO;
54af6042 1696 goto failed;
1da177e4 1697 }
54af6042
HD
1698 wait_on_page_writeback(page);
1699
bde05d1c
HD
1700 if (shmem_should_replace_page(page, gfp)) {
1701 error = shmem_replace_page(&page, gfp, info, index);
1702 if (error)
1703 goto failed;
1da177e4 1704 }
27ab7006 1705
9e18eb29 1706 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1707 false);
d1899228 1708 if (!error) {
aa3b1895 1709 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1710 swp_to_radix_entry(swap));
215c02bc
HD
1711 /*
1712 * We already confirmed swap under page lock, and make
1713 * no memory allocation here, so usually no possibility
1714 * of error; but free_swap_and_cache() only trylocks a
1715 * page, so it is just possible that the entry has been
1716 * truncated or holepunched since swap was confirmed.
1717 * shmem_undo_range() will have done some of the
1718 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1719 * the rest.
215c02bc
HD
1720 * Reset swap.val? No, leave it so "failed" goes back to
1721 * "repeat": reading a hole and writing should succeed.
1722 */
00501b53 1723 if (error) {
f627c2f5 1724 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1725 delete_from_swap_cache(page);
00501b53 1726 }
d1899228 1727 }
54af6042
HD
1728 if (error)
1729 goto failed;
1730
f627c2f5 1731 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1732
4595ef88 1733 spin_lock_irq(&info->lock);
285b2c4f 1734 info->swapped--;
54af6042 1735 shmem_recalc_inode(inode);
4595ef88 1736 spin_unlock_irq(&info->lock);
54af6042 1737
66d2f4d2
HD
1738 if (sgp == SGP_WRITE)
1739 mark_page_accessed(page);
1740
54af6042 1741 delete_from_swap_cache(page);
27ab7006
HD
1742 set_page_dirty(page);
1743 swap_free(swap);
1744
54af6042 1745 } else {
cfda0526
MR
1746 if (vma && userfaultfd_missing(vma)) {
1747 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1748 return 0;
1749 }
1750
800d8c63
KS
1751 /* shmem_symlink() */
1752 if (mapping->a_ops != &shmem_aops)
1753 goto alloc_nohuge;
657e3038 1754 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1755 goto alloc_nohuge;
1756 if (shmem_huge == SHMEM_HUGE_FORCE)
1757 goto alloc_huge;
1758 switch (sbinfo->huge) {
1759 loff_t i_size;
1760 pgoff_t off;
1761 case SHMEM_HUGE_NEVER:
1762 goto alloc_nohuge;
1763 case SHMEM_HUGE_WITHIN_SIZE:
1764 off = round_up(index, HPAGE_PMD_NR);
1765 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1766 if (i_size >= HPAGE_PMD_SIZE &&
1767 i_size >> PAGE_SHIFT >= off)
1768 goto alloc_huge;
1769 /* fallthrough */
1770 case SHMEM_HUGE_ADVISE:
657e3038
KS
1771 if (sgp_huge == SGP_HUGE)
1772 goto alloc_huge;
1773 /* TODO: implement fadvise() hints */
800d8c63 1774 goto alloc_nohuge;
54af6042 1775 }
1da177e4 1776
800d8c63 1777alloc_huge:
0f079694 1778 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1779 if (IS_ERR(page)) {
0f079694 1780alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1781 index, false);
1da177e4 1782 }
800d8c63 1783 if (IS_ERR(page)) {
779750d2 1784 int retry = 5;
800d8c63
KS
1785 error = PTR_ERR(page);
1786 page = NULL;
779750d2
KS
1787 if (error != -ENOSPC)
1788 goto failed;
1789 /*
1790 * Try to reclaim some spece by splitting a huge page
1791 * beyond i_size on the filesystem.
1792 */
1793 while (retry--) {
1794 int ret;
1795 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1796 if (ret == SHRINK_STOP)
1797 break;
1798 if (ret)
1799 goto alloc_nohuge;
1800 }
800d8c63
KS
1801 goto failed;
1802 }
1803
1804 if (PageTransHuge(page))
1805 hindex = round_down(index, HPAGE_PMD_NR);
1806 else
1807 hindex = index;
1808
66d2f4d2 1809 if (sgp == SGP_WRITE)
eb39d618 1810 __SetPageReferenced(page);
66d2f4d2 1811
9e18eb29 1812 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1813 PageTransHuge(page));
54af6042 1814 if (error)
800d8c63
KS
1815 goto unacct;
1816 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1817 compound_order(page));
b065b432 1818 if (!error) {
800d8c63 1819 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1820 NULL);
b065b432
HD
1821 radix_tree_preload_end();
1822 }
1823 if (error) {
800d8c63
KS
1824 mem_cgroup_cancel_charge(page, memcg,
1825 PageTransHuge(page));
1826 goto unacct;
b065b432 1827 }
800d8c63
KS
1828 mem_cgroup_commit_charge(page, memcg, false,
1829 PageTransHuge(page));
54af6042
HD
1830 lru_cache_add_anon(page);
1831
4595ef88 1832 spin_lock_irq(&info->lock);
800d8c63
KS
1833 info->alloced += 1 << compound_order(page);
1834 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1835 shmem_recalc_inode(inode);
4595ef88 1836 spin_unlock_irq(&info->lock);
1635f6a7 1837 alloced = true;
54af6042 1838
779750d2
KS
1839 if (PageTransHuge(page) &&
1840 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1841 hindex + HPAGE_PMD_NR - 1) {
1842 /*
1843 * Part of the huge page is beyond i_size: subject
1844 * to shrink under memory pressure.
1845 */
1846 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1847 /*
1848 * _careful to defend against unlocked access to
1849 * ->shrink_list in shmem_unused_huge_shrink()
1850 */
1851 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1852 list_add_tail(&info->shrinklist,
1853 &sbinfo->shrinklist);
1854 sbinfo->shrinklist_len++;
1855 }
1856 spin_unlock(&sbinfo->shrinklist_lock);
1857 }
1858
ec9516fb 1859 /*
1635f6a7
HD
1860 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1861 */
1862 if (sgp == SGP_FALLOC)
1863 sgp = SGP_WRITE;
1864clear:
1865 /*
1866 * Let SGP_WRITE caller clear ends if write does not fill page;
1867 * but SGP_FALLOC on a page fallocated earlier must initialize
1868 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1869 */
800d8c63
KS
1870 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1871 struct page *head = compound_head(page);
1872 int i;
1873
1874 for (i = 0; i < (1 << compound_order(head)); i++) {
1875 clear_highpage(head + i);
1876 flush_dcache_page(head + i);
1877 }
1878 SetPageUptodate(head);
ec9516fb 1879 }
1da177e4 1880 }
bde05d1c 1881
54af6042 1882 /* Perhaps the file has been truncated since we checked */
75edd345 1883 if (sgp <= SGP_CACHE &&
09cbfeaf 1884 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1885 if (alloced) {
1886 ClearPageDirty(page);
1887 delete_from_page_cache(page);
4595ef88 1888 spin_lock_irq(&info->lock);
267a4c76 1889 shmem_recalc_inode(inode);
4595ef88 1890 spin_unlock_irq(&info->lock);
267a4c76 1891 }
54af6042 1892 error = -EINVAL;
267a4c76 1893 goto unlock;
e83c32e8 1894 }
800d8c63 1895 *pagep = page + index - hindex;
54af6042 1896 return 0;
1da177e4 1897
59a16ead 1898 /*
54af6042 1899 * Error recovery.
59a16ead 1900 */
54af6042 1901unacct:
0f079694 1902 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1903
1904 if (PageTransHuge(page)) {
1905 unlock_page(page);
1906 put_page(page);
1907 goto alloc_nohuge;
1908 }
54af6042 1909failed:
267a4c76 1910 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1911 error = -EEXIST;
1912unlock:
27ab7006 1913 if (page) {
54af6042 1914 unlock_page(page);
09cbfeaf 1915 put_page(page);
54af6042
HD
1916 }
1917 if (error == -ENOSPC && !once++) {
4595ef88 1918 spin_lock_irq(&info->lock);
54af6042 1919 shmem_recalc_inode(inode);
4595ef88 1920 spin_unlock_irq(&info->lock);
27ab7006 1921 goto repeat;
ff36b801 1922 }
d1899228 1923 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1924 goto repeat;
1925 return error;
1da177e4
LT
1926}
1927
10d20bd2
LT
1928/*
1929 * This is like autoremove_wake_function, but it removes the wait queue
1930 * entry unconditionally - even if something else had already woken the
1931 * target.
1932 */
ac6424b9 1933static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1934{
1935 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1936 list_del_init(&wait->entry);
10d20bd2
LT
1937 return ret;
1938}
1939
11bac800 1940static int shmem_fault(struct vm_fault *vmf)
1da177e4 1941{
11bac800 1942 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1943 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1944 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1945 enum sgp_type sgp;
1da177e4 1946 int error;
68da9f05 1947 int ret = VM_FAULT_LOCKED;
1da177e4 1948
f00cdc6d
HD
1949 /*
1950 * Trinity finds that probing a hole which tmpfs is punching can
1951 * prevent the hole-punch from ever completing: which in turn
1952 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1953 * faulting pages into the hole while it's being punched. Although
1954 * shmem_undo_range() does remove the additions, it may be unable to
1955 * keep up, as each new page needs its own unmap_mapping_range() call,
1956 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1957 *
1958 * It does not matter if we sometimes reach this check just before the
1959 * hole-punch begins, so that one fault then races with the punch:
1960 * we just need to make racing faults a rare case.
1961 *
1962 * The implementation below would be much simpler if we just used a
1963 * standard mutex or completion: but we cannot take i_mutex in fault,
1964 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1965 */
1966 if (unlikely(inode->i_private)) {
1967 struct shmem_falloc *shmem_falloc;
1968
1969 spin_lock(&inode->i_lock);
1970 shmem_falloc = inode->i_private;
8e205f77
HD
1971 if (shmem_falloc &&
1972 shmem_falloc->waitq &&
1973 vmf->pgoff >= shmem_falloc->start &&
1974 vmf->pgoff < shmem_falloc->next) {
1975 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1976 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1977
1978 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1979 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1980 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1981 /* It's polite to up mmap_sem if we can */
f00cdc6d 1982 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1983 ret = VM_FAULT_RETRY;
f00cdc6d 1984 }
8e205f77
HD
1985
1986 shmem_falloc_waitq = shmem_falloc->waitq;
1987 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1988 TASK_UNINTERRUPTIBLE);
1989 spin_unlock(&inode->i_lock);
1990 schedule();
1991
1992 /*
1993 * shmem_falloc_waitq points into the shmem_fallocate()
1994 * stack of the hole-punching task: shmem_falloc_waitq
1995 * is usually invalid by the time we reach here, but
1996 * finish_wait() does not dereference it in that case;
1997 * though i_lock needed lest racing with wake_up_all().
1998 */
1999 spin_lock(&inode->i_lock);
2000 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2001 spin_unlock(&inode->i_lock);
2002 return ret;
f00cdc6d 2003 }
8e205f77 2004 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2005 }
2006
657e3038 2007 sgp = SGP_CACHE;
18600332
MH
2008
2009 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2010 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2011 sgp = SGP_NOHUGE;
18600332
MH
2012 else if (vma->vm_flags & VM_HUGEPAGE)
2013 sgp = SGP_HUGE;
657e3038
KS
2014
2015 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2016 gfp, vma, vmf, &ret);
d0217ac0
NP
2017 if (error)
2018 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2019 return ret;
1da177e4
LT
2020}
2021
c01d5b30
HD
2022unsigned long shmem_get_unmapped_area(struct file *file,
2023 unsigned long uaddr, unsigned long len,
2024 unsigned long pgoff, unsigned long flags)
2025{
2026 unsigned long (*get_area)(struct file *,
2027 unsigned long, unsigned long, unsigned long, unsigned long);
2028 unsigned long addr;
2029 unsigned long offset;
2030 unsigned long inflated_len;
2031 unsigned long inflated_addr;
2032 unsigned long inflated_offset;
2033
2034 if (len > TASK_SIZE)
2035 return -ENOMEM;
2036
2037 get_area = current->mm->get_unmapped_area;
2038 addr = get_area(file, uaddr, len, pgoff, flags);
2039
e496cf3d 2040 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2041 return addr;
2042 if (IS_ERR_VALUE(addr))
2043 return addr;
2044 if (addr & ~PAGE_MASK)
2045 return addr;
2046 if (addr > TASK_SIZE - len)
2047 return addr;
2048
2049 if (shmem_huge == SHMEM_HUGE_DENY)
2050 return addr;
2051 if (len < HPAGE_PMD_SIZE)
2052 return addr;
2053 if (flags & MAP_FIXED)
2054 return addr;
2055 /*
2056 * Our priority is to support MAP_SHARED mapped hugely;
2057 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2058 * But if caller specified an address hint, respect that as before.
2059 */
2060 if (uaddr)
2061 return addr;
2062
2063 if (shmem_huge != SHMEM_HUGE_FORCE) {
2064 struct super_block *sb;
2065
2066 if (file) {
2067 VM_BUG_ON(file->f_op != &shmem_file_operations);
2068 sb = file_inode(file)->i_sb;
2069 } else {
2070 /*
2071 * Called directly from mm/mmap.c, or drivers/char/mem.c
2072 * for "/dev/zero", to create a shared anonymous object.
2073 */
2074 if (IS_ERR(shm_mnt))
2075 return addr;
2076 sb = shm_mnt->mnt_sb;
2077 }
3089bf61 2078 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2079 return addr;
2080 }
2081
2082 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2083 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2084 return addr;
2085 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2086 return addr;
2087
2088 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2089 if (inflated_len > TASK_SIZE)
2090 return addr;
2091 if (inflated_len < len)
2092 return addr;
2093
2094 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2095 if (IS_ERR_VALUE(inflated_addr))
2096 return addr;
2097 if (inflated_addr & ~PAGE_MASK)
2098 return addr;
2099
2100 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2101 inflated_addr += offset - inflated_offset;
2102 if (inflated_offset > offset)
2103 inflated_addr += HPAGE_PMD_SIZE;
2104
2105 if (inflated_addr > TASK_SIZE - len)
2106 return addr;
2107 return inflated_addr;
2108}
2109
1da177e4 2110#ifdef CONFIG_NUMA
41ffe5d5 2111static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2112{
496ad9aa 2113 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2114 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2115}
2116
d8dc74f2
AB
2117static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2118 unsigned long addr)
1da177e4 2119{
496ad9aa 2120 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2121 pgoff_t index;
1da177e4 2122
41ffe5d5
HD
2123 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2124 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2125}
2126#endif
2127
2128int shmem_lock(struct file *file, int lock, struct user_struct *user)
2129{
496ad9aa 2130 struct inode *inode = file_inode(file);
1da177e4
LT
2131 struct shmem_inode_info *info = SHMEM_I(inode);
2132 int retval = -ENOMEM;
2133
4595ef88 2134 spin_lock_irq(&info->lock);
1da177e4
LT
2135 if (lock && !(info->flags & VM_LOCKED)) {
2136 if (!user_shm_lock(inode->i_size, user))
2137 goto out_nomem;
2138 info->flags |= VM_LOCKED;
89e004ea 2139 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2140 }
2141 if (!lock && (info->flags & VM_LOCKED) && user) {
2142 user_shm_unlock(inode->i_size, user);
2143 info->flags &= ~VM_LOCKED;
89e004ea 2144 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2145 }
2146 retval = 0;
89e004ea 2147
1da177e4 2148out_nomem:
4595ef88 2149 spin_unlock_irq(&info->lock);
1da177e4
LT
2150 return retval;
2151}
2152
9b83a6a8 2153static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2154{
2155 file_accessed(file);
2156 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2157 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2158 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2159 (vma->vm_end & HPAGE_PMD_MASK)) {
2160 khugepaged_enter(vma, vma->vm_flags);
2161 }
1da177e4
LT
2162 return 0;
2163}
2164
454abafe 2165static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2166 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2167{
2168 struct inode *inode;
2169 struct shmem_inode_info *info;
2170 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
c088e31d 2171 int ino;
1da177e4 2172
5b04c689
PE
2173 if (shmem_reserve_inode(sb))
2174 return NULL;
1da177e4
LT
2175
2176 inode = new_inode(sb);
2177 if (inode) {
454abafe 2178 inode_init_owner(inode, dir, mode);
1da177e4 2179 inode->i_blocks = 0;
078cd827 2180 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2181 inode->i_generation = get_seconds();
1da177e4
LT
2182 info = SHMEM_I(inode);
2183 memset(info, 0, (char *)inode - (char *)info);
2184 spin_lock_init(&info->lock);
40e041a2 2185 info->seals = F_SEAL_SEAL;
0b0a0806 2186 info->flags = flags & VM_NORESERVE;
779750d2 2187 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2188 INIT_LIST_HEAD(&info->swaplist);
38f38657 2189 simple_xattrs_init(&info->xattrs);
72c04902 2190 cache_no_acl(inode);
1da177e4
LT
2191
2192 switch (mode & S_IFMT) {
2193 default:
39f0247d 2194 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2195 init_special_inode(inode, mode, dev);
2196 break;
2197 case S_IFREG:
14fcc23f 2198 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2199 inode->i_op = &shmem_inode_operations;
2200 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2201 mpol_shared_policy_init(&info->policy,
2202 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2203 break;
2204 case S_IFDIR:
d8c76e6f 2205 inc_nlink(inode);
1da177e4
LT
2206 /* Some things misbehave if size == 0 on a directory */
2207 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2208 inode->i_op = &shmem_dir_inode_operations;
2209 inode->i_fop = &simple_dir_operations;
2210 break;
2211 case S_IFLNK:
2212 /*
2213 * Must not load anything in the rbtree,
2214 * mpol_free_shared_policy will not be called.
2215 */
71fe804b 2216 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2217 break;
2218 }
c088e31d
SF
2219
2220 if (!sbinfo->idr_nouse) {
2221 /* inum 0 and 1 are unused */
2222 mutex_lock(&sbinfo->idr_lock);
2223 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2224 GFP_NOFS);
2225 if (ino > 0) {
2226 inode->i_ino = ino;
2227 mutex_unlock(&sbinfo->idr_lock);
2228 __insert_inode_hash(inode, inode->i_ino);
2229 } else {
2230 inode->i_ino = 0;
2231 mutex_unlock(&sbinfo->idr_lock);
2232 iput(inode);
2233 /* shmem_free_inode() will be called */
2234 inode = NULL;
2235 }
2236 } else
2237 inode->i_ino = get_next_ino();
5b04c689
PE
2238 } else
2239 shmem_free_inode(sb);
1da177e4
LT
2240 return inode;
2241}
2242
0cd6144a
JW
2243bool shmem_mapping(struct address_space *mapping)
2244{
f8005451 2245 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2246}
2247
8d103963
MR
2248static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2249 pmd_t *dst_pmd,
2250 struct vm_area_struct *dst_vma,
2251 unsigned long dst_addr,
2252 unsigned long src_addr,
2253 bool zeropage,
2254 struct page **pagep)
4c27fe4c
MR
2255{
2256 struct inode *inode = file_inode(dst_vma->vm_file);
2257 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2258 struct address_space *mapping = inode->i_mapping;
2259 gfp_t gfp = mapping_gfp_mask(mapping);
2260 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2261 struct mem_cgroup *memcg;
2262 spinlock_t *ptl;
2263 void *page_kaddr;
2264 struct page *page;
2265 pte_t _dst_pte, *dst_pte;
2266 int ret;
2267
cb658a45 2268 ret = -ENOMEM;
0f079694 2269 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2270 goto out;
4c27fe4c 2271
cb658a45 2272 if (!*pagep) {
4c27fe4c
MR
2273 page = shmem_alloc_page(gfp, info, pgoff);
2274 if (!page)
0f079694 2275 goto out_unacct_blocks;
4c27fe4c 2276
8d103963
MR
2277 if (!zeropage) { /* mcopy_atomic */
2278 page_kaddr = kmap_atomic(page);
2279 ret = copy_from_user(page_kaddr,
2280 (const void __user *)src_addr,
2281 PAGE_SIZE);
2282 kunmap_atomic(page_kaddr);
2283
2284 /* fallback to copy_from_user outside mmap_sem */
2285 if (unlikely(ret)) {
2286 *pagep = page;
2287 shmem_inode_unacct_blocks(inode, 1);
2288 /* don't free the page */
2289 return -EFAULT;
2290 }
2291 } else { /* mfill_zeropage_atomic */
2292 clear_highpage(page);
4c27fe4c
MR
2293 }
2294 } else {
2295 page = *pagep;
2296 *pagep = NULL;
2297 }
2298
9cc90c66
AA
2299 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2300 __SetPageLocked(page);
2301 __SetPageSwapBacked(page);
a425d358 2302 __SetPageUptodate(page);
9cc90c66 2303
4c27fe4c
MR
2304 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2305 if (ret)
2306 goto out_release;
2307
2308 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2309 if (!ret) {
2310 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2311 radix_tree_preload_end();
2312 }
2313 if (ret)
2314 goto out_release_uncharge;
2315
2316 mem_cgroup_commit_charge(page, memcg, false, false);
2317
2318 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2319 if (dst_vma->vm_flags & VM_WRITE)
2320 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2321
2322 ret = -EEXIST;
2323 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2324 if (!pte_none(*dst_pte))
2325 goto out_release_uncharge_unlock;
2326
4c27fe4c
MR
2327 lru_cache_add_anon(page);
2328
2329 spin_lock(&info->lock);
2330 info->alloced++;
2331 inode->i_blocks += BLOCKS_PER_PAGE;
2332 shmem_recalc_inode(inode);
2333 spin_unlock(&info->lock);
2334
2335 inc_mm_counter(dst_mm, mm_counter_file(page));
2336 page_add_file_rmap(page, false);
2337 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2338
2339 /* No need to invalidate - it was non-present before */
2340 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2341 unlock_page(page);
2342 pte_unmap_unlock(dst_pte, ptl);
2343 ret = 0;
2344out:
2345 return ret;
2346out_release_uncharge_unlock:
2347 pte_unmap_unlock(dst_pte, ptl);
2348out_release_uncharge:
2349 mem_cgroup_cancel_charge(page, memcg, false);
2350out_release:
9cc90c66 2351 unlock_page(page);
4c27fe4c 2352 put_page(page);
4c27fe4c 2353out_unacct_blocks:
0f079694 2354 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2355 goto out;
2356}
2357
8d103963
MR
2358int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2359 pmd_t *dst_pmd,
2360 struct vm_area_struct *dst_vma,
2361 unsigned long dst_addr,
2362 unsigned long src_addr,
2363 struct page **pagep)
2364{
2365 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2366 dst_addr, src_addr, false, pagep);
2367}
2368
2369int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2370 pmd_t *dst_pmd,
2371 struct vm_area_struct *dst_vma,
2372 unsigned long dst_addr)
2373{
2374 struct page *page = NULL;
2375
2376 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2377 dst_addr, 0, true, &page);
2378}
2379
1da177e4 2380#ifdef CONFIG_TMPFS
92e1d5be 2381static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2382static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2383
6d9d88d0
JS
2384#ifdef CONFIG_TMPFS_XATTR
2385static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2386#else
2387#define shmem_initxattrs NULL
2388#endif
2389
1da177e4 2390static int
800d15a5
NP
2391shmem_write_begin(struct file *file, struct address_space *mapping,
2392 loff_t pos, unsigned len, unsigned flags,
2393 struct page **pagep, void **fsdata)
1da177e4 2394{
800d15a5 2395 struct inode *inode = mapping->host;
40e041a2 2396 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2397 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2398
2399 /* i_mutex is held by caller */
3f472cc9 2400 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2401 if (info->seals & F_SEAL_WRITE)
2402 return -EPERM;
2403 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2404 return -EPERM;
2405 }
2406
9e18eb29 2407 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2408}
2409
2410static int
2411shmem_write_end(struct file *file, struct address_space *mapping,
2412 loff_t pos, unsigned len, unsigned copied,
2413 struct page *page, void *fsdata)
2414{
2415 struct inode *inode = mapping->host;
2416
d3602444
HD
2417 if (pos + copied > inode->i_size)
2418 i_size_write(inode, pos + copied);
2419
ec9516fb 2420 if (!PageUptodate(page)) {
800d8c63
KS
2421 struct page *head = compound_head(page);
2422 if (PageTransCompound(page)) {
2423 int i;
2424
2425 for (i = 0; i < HPAGE_PMD_NR; i++) {
2426 if (head + i == page)
2427 continue;
2428 clear_highpage(head + i);
2429 flush_dcache_page(head + i);
2430 }
2431 }
09cbfeaf
KS
2432 if (copied < PAGE_SIZE) {
2433 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2434 zero_user_segments(page, 0, from,
09cbfeaf 2435 from + copied, PAGE_SIZE);
ec9516fb 2436 }
800d8c63 2437 SetPageUptodate(head);
ec9516fb 2438 }
800d15a5 2439 set_page_dirty(page);
6746aff7 2440 unlock_page(page);
09cbfeaf 2441 put_page(page);
800d15a5 2442
800d15a5 2443 return copied;
1da177e4
LT
2444}
2445
2ba5bbed 2446static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2447{
6e58e79d
AV
2448 struct file *file = iocb->ki_filp;
2449 struct inode *inode = file_inode(file);
1da177e4 2450 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2451 pgoff_t index;
2452 unsigned long offset;
a0ee5ec5 2453 enum sgp_type sgp = SGP_READ;
f7c1d074 2454 int error = 0;
cb66a7a1 2455 ssize_t retval = 0;
6e58e79d 2456 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2457
2458 /*
2459 * Might this read be for a stacking filesystem? Then when reading
2460 * holes of a sparse file, we actually need to allocate those pages,
2461 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2462 */
777eda2c 2463 if (!iter_is_iovec(to))
75edd345 2464 sgp = SGP_CACHE;
1da177e4 2465
09cbfeaf
KS
2466 index = *ppos >> PAGE_SHIFT;
2467 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2468
2469 for (;;) {
2470 struct page *page = NULL;
41ffe5d5
HD
2471 pgoff_t end_index;
2472 unsigned long nr, ret;
1da177e4
LT
2473 loff_t i_size = i_size_read(inode);
2474
09cbfeaf 2475 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2476 if (index > end_index)
2477 break;
2478 if (index == end_index) {
09cbfeaf 2479 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2480 if (nr <= offset)
2481 break;
2482 }
2483
9e18eb29 2484 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2485 if (error) {
2486 if (error == -EINVAL)
2487 error = 0;
1da177e4
LT
2488 break;
2489 }
75edd345
HD
2490 if (page) {
2491 if (sgp == SGP_CACHE)
2492 set_page_dirty(page);
d3602444 2493 unlock_page(page);
75edd345 2494 }
1da177e4
LT
2495
2496 /*
2497 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2498 * are called without i_mutex protection against truncate
1da177e4 2499 */
09cbfeaf 2500 nr = PAGE_SIZE;
1da177e4 2501 i_size = i_size_read(inode);
09cbfeaf 2502 end_index = i_size >> PAGE_SHIFT;
1da177e4 2503 if (index == end_index) {
09cbfeaf 2504 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2505 if (nr <= offset) {
2506 if (page)
09cbfeaf 2507 put_page(page);
1da177e4
LT
2508 break;
2509 }
2510 }
2511 nr -= offset;
2512
2513 if (page) {
2514 /*
2515 * If users can be writing to this page using arbitrary
2516 * virtual addresses, take care about potential aliasing
2517 * before reading the page on the kernel side.
2518 */
2519 if (mapping_writably_mapped(mapping))
2520 flush_dcache_page(page);
2521 /*
2522 * Mark the page accessed if we read the beginning.
2523 */
2524 if (!offset)
2525 mark_page_accessed(page);
b5810039 2526 } else {
1da177e4 2527 page = ZERO_PAGE(0);
09cbfeaf 2528 get_page(page);
b5810039 2529 }
1da177e4
LT
2530
2531 /*
2532 * Ok, we have the page, and it's up-to-date, so
2533 * now we can copy it to user space...
1da177e4 2534 */
2ba5bbed 2535 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2536 retval += ret;
1da177e4 2537 offset += ret;
09cbfeaf
KS
2538 index += offset >> PAGE_SHIFT;
2539 offset &= ~PAGE_MASK;
1da177e4 2540
09cbfeaf 2541 put_page(page);
2ba5bbed 2542 if (!iov_iter_count(to))
1da177e4 2543 break;
6e58e79d
AV
2544 if (ret < nr) {
2545 error = -EFAULT;
2546 break;
2547 }
1da177e4
LT
2548 cond_resched();
2549 }
2550
09cbfeaf 2551 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2552 file_accessed(file);
2553 return retval ? retval : error;
1da177e4
LT
2554}
2555
220f2ac9
HD
2556/*
2557 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2558 */
2559static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2560 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2561{
2562 struct page *page;
2563 struct pagevec pvec;
2564 pgoff_t indices[PAGEVEC_SIZE];
2565 bool done = false;
2566 int i;
2567
86679820 2568 pagevec_init(&pvec);
220f2ac9
HD
2569 pvec.nr = 1; /* start small: we may be there already */
2570 while (!done) {
0cd6144a 2571 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2572 pvec.nr, pvec.pages, indices);
2573 if (!pvec.nr) {
965c8e59 2574 if (whence == SEEK_DATA)
220f2ac9
HD
2575 index = end;
2576 break;
2577 }
2578 for (i = 0; i < pvec.nr; i++, index++) {
2579 if (index < indices[i]) {
965c8e59 2580 if (whence == SEEK_HOLE) {
220f2ac9
HD
2581 done = true;
2582 break;
2583 }
2584 index = indices[i];
2585 }
2586 page = pvec.pages[i];
2587 if (page && !radix_tree_exceptional_entry(page)) {
2588 if (!PageUptodate(page))
2589 page = NULL;
2590 }
2591 if (index >= end ||
965c8e59
AM
2592 (page && whence == SEEK_DATA) ||
2593 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2594 done = true;
2595 break;
2596 }
2597 }
0cd6144a 2598 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2599 pagevec_release(&pvec);
2600 pvec.nr = PAGEVEC_SIZE;
2601 cond_resched();
2602 }
2603 return index;
2604}
2605
965c8e59 2606static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2607{
2608 struct address_space *mapping = file->f_mapping;
2609 struct inode *inode = mapping->host;
2610 pgoff_t start, end;
2611 loff_t new_offset;
2612
965c8e59
AM
2613 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2614 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2615 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2616 inode_lock(inode);
220f2ac9
HD
2617 /* We're holding i_mutex so we can access i_size directly */
2618
2619 if (offset < 0)
2620 offset = -EINVAL;
2621 else if (offset >= inode->i_size)
2622 offset = -ENXIO;
2623 else {
09cbfeaf
KS
2624 start = offset >> PAGE_SHIFT;
2625 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2626 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2627 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2628 if (new_offset > offset) {
2629 if (new_offset < inode->i_size)
2630 offset = new_offset;
965c8e59 2631 else if (whence == SEEK_DATA)
220f2ac9
HD
2632 offset = -ENXIO;
2633 else
2634 offset = inode->i_size;
2635 }
2636 }
2637
387aae6f
HD
2638 if (offset >= 0)
2639 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2640 inode_unlock(inode);
220f2ac9
HD
2641 return offset;
2642}
2643
05f65b5c
DH
2644/*
2645 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2646 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2647 */
2648#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2649#define LAST_SCAN 4 /* about 150ms max */
2650
2651static void shmem_tag_pins(struct address_space *mapping)
2652{
2653 struct radix_tree_iter iter;
2654 void **slot;
2655 pgoff_t start;
2656 struct page *page;
2657
2658 lru_add_drain();
2659 start = 0;
2660 rcu_read_lock();
2661
05f65b5c
DH
2662 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2663 page = radix_tree_deref_slot(slot);
2664 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2665 if (radix_tree_deref_retry(page)) {
2666 slot = radix_tree_iter_retry(&iter);
2667 continue;
2668 }
05f65b5c
DH
2669 } else if (page_count(page) - page_mapcount(page) > 1) {
2670 spin_lock_irq(&mapping->tree_lock);
2671 radix_tree_tag_set(&mapping->page_tree, iter.index,
2672 SHMEM_TAG_PINNED);
2673 spin_unlock_irq(&mapping->tree_lock);
2674 }
2675
2676 if (need_resched()) {
148deab2 2677 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2678 cond_resched_rcu();
05f65b5c
DH
2679 }
2680 }
2681 rcu_read_unlock();
2682}
2683
2684/*
2685 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2686 * via get_user_pages(), drivers might have some pending I/O without any active
2687 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2688 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2689 * them to be dropped.
2690 * The caller must guarantee that no new user will acquire writable references
2691 * to those pages to avoid races.
2692 */
40e041a2
DH
2693static int shmem_wait_for_pins(struct address_space *mapping)
2694{
05f65b5c
DH
2695 struct radix_tree_iter iter;
2696 void **slot;
2697 pgoff_t start;
2698 struct page *page;
2699 int error, scan;
2700
2701 shmem_tag_pins(mapping);
2702
2703 error = 0;
2704 for (scan = 0; scan <= LAST_SCAN; scan++) {
2705 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2706 break;
2707
2708 if (!scan)
2709 lru_add_drain_all();
2710 else if (schedule_timeout_killable((HZ << scan) / 200))
2711 scan = LAST_SCAN;
2712
2713 start = 0;
2714 rcu_read_lock();
05f65b5c
DH
2715 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2716 start, SHMEM_TAG_PINNED) {
2717
2718 page = radix_tree_deref_slot(slot);
2719 if (radix_tree_exception(page)) {
2cf938aa
MW
2720 if (radix_tree_deref_retry(page)) {
2721 slot = radix_tree_iter_retry(&iter);
2722 continue;
2723 }
05f65b5c
DH
2724
2725 page = NULL;
2726 }
2727
2728 if (page &&
2729 page_count(page) - page_mapcount(page) != 1) {
2730 if (scan < LAST_SCAN)
2731 goto continue_resched;
2732
2733 /*
2734 * On the last scan, we clean up all those tags
2735 * we inserted; but make a note that we still
2736 * found pages pinned.
2737 */
2738 error = -EBUSY;
2739 }
2740
2741 spin_lock_irq(&mapping->tree_lock);
2742 radix_tree_tag_clear(&mapping->page_tree,
2743 iter.index, SHMEM_TAG_PINNED);
2744 spin_unlock_irq(&mapping->tree_lock);
2745continue_resched:
2746 if (need_resched()) {
148deab2 2747 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2748 cond_resched_rcu();
05f65b5c
DH
2749 }
2750 }
2751 rcu_read_unlock();
2752 }
2753
2754 return error;
40e041a2
DH
2755}
2756
2757#define F_ALL_SEALS (F_SEAL_SEAL | \
2758 F_SEAL_SHRINK | \
2759 F_SEAL_GROW | \
2760 F_SEAL_WRITE)
2761
2762int shmem_add_seals(struct file *file, unsigned int seals)
2763{
2764 struct inode *inode = file_inode(file);
2765 struct shmem_inode_info *info = SHMEM_I(inode);
2766 int error;
2767
2768 /*
2769 * SEALING
2770 * Sealing allows multiple parties to share a shmem-file but restrict
2771 * access to a specific subset of file operations. Seals can only be
2772 * added, but never removed. This way, mutually untrusted parties can
2773 * share common memory regions with a well-defined policy. A malicious
2774 * peer can thus never perform unwanted operations on a shared object.
2775 *
2776 * Seals are only supported on special shmem-files and always affect
2777 * the whole underlying inode. Once a seal is set, it may prevent some
2778 * kinds of access to the file. Currently, the following seals are
2779 * defined:
2780 * SEAL_SEAL: Prevent further seals from being set on this file
2781 * SEAL_SHRINK: Prevent the file from shrinking
2782 * SEAL_GROW: Prevent the file from growing
2783 * SEAL_WRITE: Prevent write access to the file
2784 *
2785 * As we don't require any trust relationship between two parties, we
2786 * must prevent seals from being removed. Therefore, sealing a file
2787 * only adds a given set of seals to the file, it never touches
2788 * existing seals. Furthermore, the "setting seals"-operation can be
2789 * sealed itself, which basically prevents any further seal from being
2790 * added.
2791 *
2792 * Semantics of sealing are only defined on volatile files. Only
2793 * anonymous shmem files support sealing. More importantly, seals are
2794 * never written to disk. Therefore, there's no plan to support it on
2795 * other file types.
2796 */
2797
2798 if (file->f_op != &shmem_file_operations)
2799 return -EINVAL;
2800 if (!(file->f_mode & FMODE_WRITE))
2801 return -EPERM;
2802 if (seals & ~(unsigned int)F_ALL_SEALS)
2803 return -EINVAL;
2804
5955102c 2805 inode_lock(inode);
40e041a2
DH
2806
2807 if (info->seals & F_SEAL_SEAL) {
2808 error = -EPERM;
2809 goto unlock;
2810 }
2811
2812 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2813 error = mapping_deny_writable(file->f_mapping);
2814 if (error)
2815 goto unlock;
2816
2817 error = shmem_wait_for_pins(file->f_mapping);
2818 if (error) {
2819 mapping_allow_writable(file->f_mapping);
2820 goto unlock;
2821 }
2822 }
2823
2824 info->seals |= seals;
2825 error = 0;
2826
2827unlock:
5955102c 2828 inode_unlock(inode);
40e041a2
DH
2829 return error;
2830}
2831EXPORT_SYMBOL_GPL(shmem_add_seals);
2832
2833int shmem_get_seals(struct file *file)
2834{
2835 if (file->f_op != &shmem_file_operations)
2836 return -EINVAL;
2837
2838 return SHMEM_I(file_inode(file))->seals;
2839}
2840EXPORT_SYMBOL_GPL(shmem_get_seals);
2841
2842long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2843{
2844 long error;
2845
2846 switch (cmd) {
2847 case F_ADD_SEALS:
2848 /* disallow upper 32bit */
2849 if (arg > UINT_MAX)
2850 return -EINVAL;
2851
2852 error = shmem_add_seals(file, arg);
2853 break;
2854 case F_GET_SEALS:
2855 error = shmem_get_seals(file);
2856 break;
2857 default:
2858 error = -EINVAL;
2859 break;
2860 }
2861
2862 return error;
2863}
2864
83e4fa9c
HD
2865static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2866 loff_t len)
2867{
496ad9aa 2868 struct inode *inode = file_inode(file);
e2d12e22 2869 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2870 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2871 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2872 pgoff_t start, index, end;
2873 int error;
83e4fa9c 2874
13ace4d0
HD
2875 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2876 return -EOPNOTSUPP;
2877
5955102c 2878 inode_lock(inode);
83e4fa9c
HD
2879
2880 if (mode & FALLOC_FL_PUNCH_HOLE) {
2881 struct address_space *mapping = file->f_mapping;
2882 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2883 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2884 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2885
40e041a2
DH
2886 /* protected by i_mutex */
2887 if (info->seals & F_SEAL_WRITE) {
2888 error = -EPERM;
2889 goto out;
2890 }
2891
8e205f77 2892 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2893 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2894 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2895 spin_lock(&inode->i_lock);
2896 inode->i_private = &shmem_falloc;
2897 spin_unlock(&inode->i_lock);
2898
83e4fa9c
HD
2899 if ((u64)unmap_end > (u64)unmap_start)
2900 unmap_mapping_range(mapping, unmap_start,
2901 1 + unmap_end - unmap_start, 0);
2902 shmem_truncate_range(inode, offset, offset + len - 1);
2903 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2904
2905 spin_lock(&inode->i_lock);
2906 inode->i_private = NULL;
2907 wake_up_all(&shmem_falloc_waitq);
2055da97 2908 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2909 spin_unlock(&inode->i_lock);
83e4fa9c 2910 error = 0;
8e205f77 2911 goto out;
e2d12e22
HD
2912 }
2913
2914 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2915 error = inode_newsize_ok(inode, offset + len);
2916 if (error)
2917 goto out;
2918
40e041a2
DH
2919 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2920 error = -EPERM;
2921 goto out;
2922 }
2923
09cbfeaf
KS
2924 start = offset >> PAGE_SHIFT;
2925 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2926 /* Try to avoid a swapstorm if len is impossible to satisfy */
2927 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2928 error = -ENOSPC;
2929 goto out;
83e4fa9c
HD
2930 }
2931
8e205f77 2932 shmem_falloc.waitq = NULL;
1aac1400
HD
2933 shmem_falloc.start = start;
2934 shmem_falloc.next = start;
2935 shmem_falloc.nr_falloced = 0;
2936 shmem_falloc.nr_unswapped = 0;
2937 spin_lock(&inode->i_lock);
2938 inode->i_private = &shmem_falloc;
2939 spin_unlock(&inode->i_lock);
2940
e2d12e22
HD
2941 for (index = start; index < end; index++) {
2942 struct page *page;
2943
2944 /*
2945 * Good, the fallocate(2) manpage permits EINTR: we may have
2946 * been interrupted because we are using up too much memory.
2947 */
2948 if (signal_pending(current))
2949 error = -EINTR;
1aac1400
HD
2950 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2951 error = -ENOMEM;
e2d12e22 2952 else
9e18eb29 2953 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2954 if (error) {
1635f6a7 2955 /* Remove the !PageUptodate pages we added */
7f556567
HD
2956 if (index > start) {
2957 shmem_undo_range(inode,
2958 (loff_t)start << PAGE_SHIFT,
2959 ((loff_t)index << PAGE_SHIFT) - 1, true);
2960 }
1aac1400 2961 goto undone;
e2d12e22
HD
2962 }
2963
1aac1400
HD
2964 /*
2965 * Inform shmem_writepage() how far we have reached.
2966 * No need for lock or barrier: we have the page lock.
2967 */
2968 shmem_falloc.next++;
2969 if (!PageUptodate(page))
2970 shmem_falloc.nr_falloced++;
2971
e2d12e22 2972 /*
1635f6a7
HD
2973 * If !PageUptodate, leave it that way so that freeable pages
2974 * can be recognized if we need to rollback on error later.
2975 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2976 * than free the pages we are allocating (and SGP_CACHE pages
2977 * might still be clean: we now need to mark those dirty too).
2978 */
2979 set_page_dirty(page);
2980 unlock_page(page);
09cbfeaf 2981 put_page(page);
e2d12e22
HD
2982 cond_resched();
2983 }
2984
2985 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2986 i_size_write(inode, offset + len);
078cd827 2987 inode->i_ctime = current_time(inode);
1aac1400
HD
2988undone:
2989 spin_lock(&inode->i_lock);
2990 inode->i_private = NULL;
2991 spin_unlock(&inode->i_lock);
e2d12e22 2992out:
5955102c 2993 inode_unlock(inode);
83e4fa9c
HD
2994 return error;
2995}
2996
726c3342 2997static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2998{
726c3342 2999 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
3000
3001 buf->f_type = TMPFS_MAGIC;
09cbfeaf 3002 buf->f_bsize = PAGE_SIZE;
1da177e4 3003 buf->f_namelen = NAME_MAX;
0edd73b3 3004 if (sbinfo->max_blocks) {
1da177e4 3005 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
3006 buf->f_bavail =
3007 buf->f_bfree = sbinfo->max_blocks -
3008 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
3009 }
3010 if (sbinfo->max_inodes) {
1da177e4
LT
3011 buf->f_files = sbinfo->max_inodes;
3012 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
3013 }
3014 /* else leave those fields 0 like simple_statfs */
3015 return 0;
3016}
3017
3018/*
3019 * File creation. Allocate an inode, and we're done..
3020 */
3021static int
1a67aafb 3022shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 3023{
0b0a0806 3024 struct inode *inode;
1da177e4
LT
3025 int error = -ENOSPC;
3026
454abafe 3027 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 3028 if (inode) {
feda821e
CH
3029 error = simple_acl_create(dir, inode);
3030 if (error)
3031 goto out_iput;
2a7dba39 3032 error = security_inode_init_security(inode, dir,
9d8f13ba 3033 &dentry->d_name,
6d9d88d0 3034 shmem_initxattrs, NULL);
feda821e
CH
3035 if (error && error != -EOPNOTSUPP)
3036 goto out_iput;
37ec43cd 3037
718deb6b 3038 error = 0;
1da177e4 3039 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3040 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3041 d_instantiate(dentry, inode);
3042 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3043 }
3044 return error;
feda821e
CH
3045out_iput:
3046 iput(inode);
3047 return error;
1da177e4
LT
3048}
3049
60545d0d
AV
3050static int
3051shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3052{
3053 struct inode *inode;
3054 int error = -ENOSPC;
3055
3056 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3057 if (inode) {
3058 error = security_inode_init_security(inode, dir,
3059 NULL,
3060 shmem_initxattrs, NULL);
feda821e
CH
3061 if (error && error != -EOPNOTSUPP)
3062 goto out_iput;
3063 error = simple_acl_create(dir, inode);
3064 if (error)
3065 goto out_iput;
60545d0d
AV
3066 d_tmpfile(dentry, inode);
3067 }
3068 return error;
feda821e
CH
3069out_iput:
3070 iput(inode);
3071 return error;
60545d0d
AV
3072}
3073
18bb1db3 3074static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3075{
3076 int error;
3077
3078 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3079 return error;
d8c76e6f 3080 inc_nlink(dir);
1da177e4
LT
3081 return 0;
3082}
3083
4acdaf27 3084static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3085 bool excl)
1da177e4
LT
3086{
3087 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3088}
3089
3090/*
3091 * Link a file..
3092 */
3093static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3094{
75c3cfa8 3095 struct inode *inode = d_inode(old_dentry);
5b04c689 3096 int ret;
1da177e4
LT
3097
3098 /*
3099 * No ordinary (disk based) filesystem counts links as inodes;
3100 * but each new link needs a new dentry, pinning lowmem, and
3101 * tmpfs dentries cannot be pruned until they are unlinked.
3102 */
5b04c689
PE
3103 ret = shmem_reserve_inode(inode->i_sb);
3104 if (ret)
3105 goto out;
1da177e4
LT
3106
3107 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3108 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3109 inc_nlink(inode);
7de9c6ee 3110 ihold(inode); /* New dentry reference */
1da177e4
LT
3111 dget(dentry); /* Extra pinning count for the created dentry */
3112 d_instantiate(dentry, inode);
5b04c689
PE
3113out:
3114 return ret;
1da177e4
LT
3115}
3116
3117static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3118{
75c3cfa8 3119 struct inode *inode = d_inode(dentry);
1da177e4 3120
5b04c689
PE
3121 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3122 shmem_free_inode(inode->i_sb);
1da177e4
LT
3123
3124 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3125 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3126 drop_nlink(inode);
1da177e4
LT
3127 dput(dentry); /* Undo the count from "create" - this does all the work */
3128 return 0;
3129}
3130
3131static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3132{
3133 if (!simple_empty(dentry))
3134 return -ENOTEMPTY;
3135
75c3cfa8 3136 drop_nlink(d_inode(dentry));
9a53c3a7 3137 drop_nlink(dir);
1da177e4
LT
3138 return shmem_unlink(dir, dentry);
3139}
3140
37456771
MS
3141static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3142{
e36cb0b8
DH
3143 bool old_is_dir = d_is_dir(old_dentry);
3144 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3145
3146 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3147 if (old_is_dir) {
3148 drop_nlink(old_dir);
3149 inc_nlink(new_dir);
3150 } else {
3151 drop_nlink(new_dir);
3152 inc_nlink(old_dir);
3153 }
3154 }
3155 old_dir->i_ctime = old_dir->i_mtime =
3156 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3157 d_inode(old_dentry)->i_ctime =
078cd827 3158 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3159
3160 return 0;
3161}
3162
46fdb794
MS
3163static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3164{
3165 struct dentry *whiteout;
3166 int error;
3167
3168 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3169 if (!whiteout)
3170 return -ENOMEM;
3171
3172 error = shmem_mknod(old_dir, whiteout,
3173 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3174 dput(whiteout);
3175 if (error)
3176 return error;
3177
3178 /*
3179 * Cheat and hash the whiteout while the old dentry is still in
3180 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3181 *
3182 * d_lookup() will consistently find one of them at this point,
3183 * not sure which one, but that isn't even important.
3184 */
3185 d_rehash(whiteout);
3186 return 0;
3187}
3188
1da177e4
LT
3189/*
3190 * The VFS layer already does all the dentry stuff for rename,
3191 * we just have to decrement the usage count for the target if
3192 * it exists so that the VFS layer correctly free's it when it
3193 * gets overwritten.
3194 */
3b69ff51 3195static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3196{
75c3cfa8 3197 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3198 int they_are_dirs = S_ISDIR(inode->i_mode);
3199
46fdb794 3200 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3201 return -EINVAL;
3202
37456771
MS
3203 if (flags & RENAME_EXCHANGE)
3204 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3205
1da177e4
LT
3206 if (!simple_empty(new_dentry))
3207 return -ENOTEMPTY;
3208
46fdb794
MS
3209 if (flags & RENAME_WHITEOUT) {
3210 int error;
3211
3212 error = shmem_whiteout(old_dir, old_dentry);
3213 if (error)
3214 return error;
3215 }
3216
75c3cfa8 3217 if (d_really_is_positive(new_dentry)) {
1da177e4 3218 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3219 if (they_are_dirs) {
75c3cfa8 3220 drop_nlink(d_inode(new_dentry));
9a53c3a7 3221 drop_nlink(old_dir);
b928095b 3222 }
1da177e4 3223 } else if (they_are_dirs) {
9a53c3a7 3224 drop_nlink(old_dir);
d8c76e6f 3225 inc_nlink(new_dir);
1da177e4
LT
3226 }
3227
3228 old_dir->i_size -= BOGO_DIRENT_SIZE;
3229 new_dir->i_size += BOGO_DIRENT_SIZE;
3230 old_dir->i_ctime = old_dir->i_mtime =
3231 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3232 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3233 return 0;
3234}
3235
3236static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3237{
3238 int error;
3239 int len;
3240 struct inode *inode;
9276aad6 3241 struct page *page;
1da177e4
LT
3242
3243 len = strlen(symname) + 1;
09cbfeaf 3244 if (len > PAGE_SIZE)
1da177e4
LT
3245 return -ENAMETOOLONG;
3246
454abafe 3247 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3248 if (!inode)
3249 return -ENOSPC;
3250
9d8f13ba 3251 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3252 shmem_initxattrs, NULL);
570bc1c2
SS
3253 if (error) {
3254 if (error != -EOPNOTSUPP) {
3255 iput(inode);
3256 return error;
3257 }
3258 error = 0;
3259 }
3260
1da177e4 3261 inode->i_size = len-1;
69f07ec9 3262 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3263 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3264 if (!inode->i_link) {
69f07ec9
HD
3265 iput(inode);
3266 return -ENOMEM;
3267 }
3268 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3269 } else {
e8ecde25 3270 inode_nohighmem(inode);
9e18eb29 3271 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3272 if (error) {
3273 iput(inode);
3274 return error;
3275 }
14fcc23f 3276 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3277 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3278 memcpy(page_address(page), symname, len);
ec9516fb 3279 SetPageUptodate(page);
1da177e4 3280 set_page_dirty(page);
6746aff7 3281 unlock_page(page);
09cbfeaf 3282 put_page(page);
1da177e4 3283 }
1da177e4 3284 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3285 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3286 d_instantiate(dentry, inode);
3287 dget(dentry);
3288 return 0;
3289}
3290
fceef393 3291static void shmem_put_link(void *arg)
1da177e4 3292{
fceef393
AV
3293 mark_page_accessed(arg);
3294 put_page(arg);
1da177e4
LT
3295}
3296
6b255391 3297static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3298 struct inode *inode,
3299 struct delayed_call *done)
1da177e4 3300{
1da177e4 3301 struct page *page = NULL;
6b255391 3302 int error;
6a6c9904
AV
3303 if (!dentry) {
3304 page = find_get_page(inode->i_mapping, 0);
3305 if (!page)
3306 return ERR_PTR(-ECHILD);
3307 if (!PageUptodate(page)) {
3308 put_page(page);
3309 return ERR_PTR(-ECHILD);
3310 }
3311 } else {
9e18eb29 3312 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3313 if (error)
3314 return ERR_PTR(error);
3315 unlock_page(page);
3316 }
fceef393 3317 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3318 return page_address(page);
1da177e4
LT
3319}
3320
b09e0fa4 3321#ifdef CONFIG_TMPFS_XATTR
46711810 3322/*
b09e0fa4
EP
3323 * Superblocks without xattr inode operations may get some security.* xattr
3324 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3325 * like ACLs, we also need to implement the security.* handlers at
3326 * filesystem level, though.
3327 */
3328
6d9d88d0
JS
3329/*
3330 * Callback for security_inode_init_security() for acquiring xattrs.
3331 */
3332static int shmem_initxattrs(struct inode *inode,
3333 const struct xattr *xattr_array,
3334 void *fs_info)
3335{
3336 struct shmem_inode_info *info = SHMEM_I(inode);
3337 const struct xattr *xattr;
38f38657 3338 struct simple_xattr *new_xattr;
6d9d88d0
JS
3339 size_t len;
3340
3341 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3342 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3343 if (!new_xattr)
3344 return -ENOMEM;
3345
3346 len = strlen(xattr->name) + 1;
3347 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3348 GFP_KERNEL);
3349 if (!new_xattr->name) {
3350 kfree(new_xattr);
3351 return -ENOMEM;
3352 }
3353
3354 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3355 XATTR_SECURITY_PREFIX_LEN);
3356 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3357 xattr->name, len);
3358
38f38657 3359 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3360 }
3361
3362 return 0;
3363}
3364
aa7c5241 3365static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3366 struct dentry *unused, struct inode *inode,
3367 const char *name, void *buffer, size_t size)
b09e0fa4 3368{
b296821a 3369 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3370
aa7c5241 3371 name = xattr_full_name(handler, name);
38f38657 3372 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3373}
3374
aa7c5241 3375static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3376 struct dentry *unused, struct inode *inode,
3377 const char *name, const void *value,
3378 size_t size, int flags)
b09e0fa4 3379{
59301226 3380 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3381
aa7c5241 3382 name = xattr_full_name(handler, name);
38f38657 3383 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3384}
3385
aa7c5241
AG
3386static const struct xattr_handler shmem_security_xattr_handler = {
3387 .prefix = XATTR_SECURITY_PREFIX,
3388 .get = shmem_xattr_handler_get,
3389 .set = shmem_xattr_handler_set,
3390};
b09e0fa4 3391
aa7c5241
AG
3392static const struct xattr_handler shmem_trusted_xattr_handler = {
3393 .prefix = XATTR_TRUSTED_PREFIX,
3394 .get = shmem_xattr_handler_get,
3395 .set = shmem_xattr_handler_set,
3396};
b09e0fa4 3397
aa7c5241
AG
3398static const struct xattr_handler *shmem_xattr_handlers[] = {
3399#ifdef CONFIG_TMPFS_POSIX_ACL
3400 &posix_acl_access_xattr_handler,
3401 &posix_acl_default_xattr_handler,
3402#endif
3403 &shmem_security_xattr_handler,
3404 &shmem_trusted_xattr_handler,
3405 NULL
3406};
b09e0fa4
EP
3407
3408static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3409{
75c3cfa8 3410 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3411 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3412}
3413#endif /* CONFIG_TMPFS_XATTR */
3414
69f07ec9 3415static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3416 .get_link = simple_get_link,
b09e0fa4 3417#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3418 .listxattr = shmem_listxattr,
b09e0fa4
EP
3419#endif
3420};
3421
3422static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3423 .get_link = shmem_get_link,
b09e0fa4 3424#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3425 .listxattr = shmem_listxattr,
39f0247d 3426#endif
b09e0fa4 3427};
39f0247d 3428
91828a40
DG
3429static struct dentry *shmem_get_parent(struct dentry *child)
3430{
3431 return ERR_PTR(-ESTALE);
3432}
3433
3434static int shmem_match(struct inode *ino, void *vfh)
3435{
3436 __u32 *fh = vfh;
c088e31d 3437 __u64 inum = fh[1];
91828a40
DG
3438 return ino->i_ino == inum && fh[0] == ino->i_generation;
3439}
3440
480b116c
CH
3441static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3442 struct fid *fid, int fh_len, int fh_type)
91828a40 3443{
91828a40 3444 struct inode *inode;
480b116c 3445 struct dentry *dentry = NULL;
35c2a7f4 3446 u64 inum;
480b116c 3447
c088e31d 3448 if (fh_len < 2)
480b116c 3449 return NULL;
91828a40 3450
c088e31d
SF
3451 inum = fid->raw[1];
3452 inode = ilookup5(sb, inum, shmem_match, fid->raw);
91828a40 3453 if (inode) {
480b116c 3454 dentry = d_find_alias(inode);
91828a40
DG
3455 iput(inode);
3456 }
3457
480b116c 3458 return dentry;
91828a40
DG
3459}
3460
b0b0382b
AV
3461static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3462 struct inode *parent)
91828a40 3463{
c088e31d
SF
3464 if (*len < 2) {
3465 *len = 2;
94e07a75 3466 return FILEID_INVALID;
5fe0c237 3467 }
91828a40 3468
91828a40
DG
3469 fh[0] = inode->i_generation;
3470 fh[1] = inode->i_ino;
91828a40 3471
c088e31d 3472 *len = 2;
91828a40
DG
3473 return 1;
3474}
3475
39655164 3476static const struct export_operations shmem_export_ops = {
91828a40 3477 .get_parent = shmem_get_parent,
91828a40 3478 .encode_fh = shmem_encode_fh,
480b116c 3479 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3480};
3481
680d794b
AM
3482static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3483 bool remount)
1da177e4
LT
3484{
3485 char *this_char, *value, *rest;
49cd0a5c 3486 struct mempolicy *mpol = NULL;
8751e039
EB
3487 uid_t uid;
3488 gid_t gid;
1da177e4 3489
b00dc3ad
HD
3490 while (options != NULL) {
3491 this_char = options;
3492 for (;;) {
3493 /*
3494 * NUL-terminate this option: unfortunately,
3495 * mount options form a comma-separated list,
3496 * but mpol's nodelist may also contain commas.
3497 */
3498 options = strchr(options, ',');
3499 if (options == NULL)
3500 break;
3501 options++;
3502 if (!isdigit(*options)) {
3503 options[-1] = '\0';
3504 break;
3505 }
3506 }
1da177e4
LT
3507 if (!*this_char)
3508 continue;
3509 if ((value = strchr(this_char,'=')) != NULL) {
3510 *value++ = 0;
3511 } else {
1170532b
JP
3512 pr_err("tmpfs: No value for mount option '%s'\n",
3513 this_char);
49cd0a5c 3514 goto error;
1da177e4
LT
3515 }
3516
3517 if (!strcmp(this_char,"size")) {
3518 unsigned long long size;
3519 size = memparse(value,&rest);
3520 if (*rest == '%') {
3521 size <<= PAGE_SHIFT;
3522 size *= totalram_pages;
3523 do_div(size, 100);
3524 rest++;
3525 }
3526 if (*rest)
3527 goto bad_val;
680d794b 3528 sbinfo->max_blocks =
09cbfeaf 3529 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3530 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3531 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3532 if (*rest)
3533 goto bad_val;
3534 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3535 sbinfo->max_inodes = memparse(value, &rest);
c088e31d 3536 if (*rest || sbinfo->max_inodes < 2)
1da177e4
LT
3537 goto bad_val;
3538 } else if (!strcmp(this_char,"mode")) {
680d794b 3539 if (remount)
1da177e4 3540 continue;
680d794b 3541 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3542 if (*rest)
3543 goto bad_val;
3544 } else if (!strcmp(this_char,"uid")) {
680d794b 3545 if (remount)
1da177e4 3546 continue;
8751e039 3547 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3548 if (*rest)
3549 goto bad_val;
8751e039
EB
3550 sbinfo->uid = make_kuid(current_user_ns(), uid);
3551 if (!uid_valid(sbinfo->uid))
3552 goto bad_val;
1da177e4 3553 } else if (!strcmp(this_char,"gid")) {
680d794b 3554 if (remount)
1da177e4 3555 continue;
8751e039 3556 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3557 if (*rest)
3558 goto bad_val;
8751e039
EB
3559 sbinfo->gid = make_kgid(current_user_ns(), gid);
3560 if (!gid_valid(sbinfo->gid))
3561 goto bad_val;
e496cf3d 3562#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3563 } else if (!strcmp(this_char, "huge")) {
3564 int huge;
3565 huge = shmem_parse_huge(value);
3566 if (huge < 0)
3567 goto bad_val;
3568 if (!has_transparent_hugepage() &&
3569 huge != SHMEM_HUGE_NEVER)
3570 goto bad_val;
3571 sbinfo->huge = huge;
3572#endif
3573#ifdef CONFIG_NUMA
7339ff83 3574 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3575 mpol_put(mpol);
3576 mpol = NULL;
3577 if (mpol_parse_str(value, &mpol))
7339ff83 3578 goto bad_val;
5a6e75f8 3579#endif
1da177e4 3580 } else {
1170532b 3581 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3582 goto error;
1da177e4
LT
3583 }
3584 }
49cd0a5c 3585 sbinfo->mpol = mpol;
1da177e4
LT
3586 return 0;
3587
3588bad_val:
1170532b 3589 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3590 value, this_char);
49cd0a5c
GT
3591error:
3592 mpol_put(mpol);
1da177e4
LT
3593 return 1;
3594
3595}
3596
3597static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3598{
3599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3600 struct shmem_sb_info config = *sbinfo;
c088e31d 3601 int inodes;
0edd73b3
HD
3602 int error = -EINVAL;
3603
5f00110f 3604 config.mpol = NULL;
680d794b 3605 if (shmem_parse_options(data, &config, true))
0edd73b3 3606 return error;
1da177e4 3607
0edd73b3 3608 spin_lock(&sbinfo->stat_lock);
0edd73b3 3609 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3610 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3611 goto out;
680d794b 3612 if (config.max_inodes < inodes)
0edd73b3
HD
3613 goto out;
3614 /*
54af6042 3615 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3616 * but we must separately disallow unlimited->limited, because
3617 * in that case we have no record of how much is already in use.
3618 */
680d794b 3619 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3620 goto out;
680d794b 3621 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3622 goto out;
3623
3624 error = 0;
5a6e75f8 3625 sbinfo->huge = config.huge;
680d794b 3626 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3627 sbinfo->max_inodes = config.max_inodes;
3628 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3629
5f00110f
GT
3630 /*
3631 * Preserve previous mempolicy unless mpol remount option was specified.
3632 */
3633 if (config.mpol) {
3634 mpol_put(sbinfo->mpol);
3635 sbinfo->mpol = config.mpol; /* transfers initial ref */
3636 }
0edd73b3
HD
3637out:
3638 spin_unlock(&sbinfo->stat_lock);
3639 return error;
1da177e4 3640}
680d794b 3641
34c80b1d 3642static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3643{
34c80b1d 3644 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3645
3646 if (sbinfo->max_blocks != shmem_default_max_blocks())
3647 seq_printf(seq, ",size=%luk",
09cbfeaf 3648 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3649 if (sbinfo->max_inodes != shmem_default_max_inodes())
c088e31d 3650 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
680d794b 3651 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3652 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3653 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3654 seq_printf(seq, ",uid=%u",
3655 from_kuid_munged(&init_user_ns, sbinfo->uid));
3656 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3657 seq_printf(seq, ",gid=%u",
3658 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3659#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3660 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3661 if (sbinfo->huge)
3662 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3663#endif
71fe804b 3664 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3665 return 0;
3666}
9183df25
DH
3667
3668#define MFD_NAME_PREFIX "memfd:"
3669#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3670#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3671
749df87b 3672#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DH
3673
3674SYSCALL_DEFINE2(memfd_create,
3675 const char __user *, uname,
3676 unsigned int, flags)
3677{
3678 struct shmem_inode_info *info;
3679 struct file *file;
3680 int fd, error;
3681 char *name;
3682 long len;
3683
749df87b
MK
3684 if (!(flags & MFD_HUGETLB)) {
3685 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3686 return -EINVAL;
3687 } else {
3688 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3689 if (flags & MFD_ALLOW_SEALING)
3690 return -EINVAL;
3691 /* Allow huge page size encoding in flags. */
3692 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3693 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3694 return -EINVAL;
3695 }
9183df25
DH
3696
3697 /* length includes terminating zero */
3698 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3699 if (len <= 0)
3700 return -EFAULT;
3701 if (len > MFD_NAME_MAX_LEN + 1)
3702 return -EINVAL;
3703
0ee931c4 3704 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DH
3705 if (!name)
3706 return -ENOMEM;
3707
3708 strcpy(name, MFD_NAME_PREFIX);
3709 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3710 error = -EFAULT;
3711 goto err_name;
3712 }
3713
3714 /* terminating-zero may have changed after strnlen_user() returned */
3715 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3716 error = -EFAULT;
3717 goto err_name;
3718 }
3719
3720 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3721 if (fd < 0) {
3722 error = fd;
3723 goto err_name;
3724 }
3725
749df87b
MK
3726 if (flags & MFD_HUGETLB) {
3727 struct user_struct *user = NULL;
3728
3729 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3730 HUGETLB_ANONHUGE_INODE,
3731 (flags >> MFD_HUGE_SHIFT) &
3732 MFD_HUGE_MASK);
3733 } else
3734 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DH
3735 if (IS_ERR(file)) {
3736 error = PTR_ERR(file);
3737 goto err_fd;
3738 }
9183df25
DH
3739 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3740 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3741
3742 if (flags & MFD_ALLOW_SEALING) {
3743 /*
3744 * flags check at beginning of function ensures
3745 * this is not a hugetlbfs (MFD_HUGETLB) file.
3746 */
3747 info = SHMEM_I(file_inode(file));
9183df25 3748 info->seals &= ~F_SEAL_SEAL;
749df87b 3749 }
9183df25
DH
3750
3751 fd_install(fd, file);
3752 kfree(name);
3753 return fd;
3754
3755err_fd:
3756 put_unused_fd(fd);
3757err_name:
3758 kfree(name);
3759 return error;
3760}
3761
680d794b 3762#endif /* CONFIG_TMPFS */
1da177e4
LT
3763
3764static void shmem_put_super(struct super_block *sb)
3765{
602586a8
HD
3766 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3767
c088e31d
SF
3768 if (!sbinfo->idr_nouse)
3769 idr_destroy(&sbinfo->idr);
602586a8 3770 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3771 mpol_put(sbinfo->mpol);
602586a8 3772 kfree(sbinfo);
1da177e4
LT
3773 sb->s_fs_info = NULL;
3774}
3775
2b2af54a 3776int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3777{
3778 struct inode *inode;
0edd73b3 3779 struct shmem_sb_info *sbinfo;
680d794b
AM
3780 int err = -ENOMEM;
3781
3782 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3783 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3784 L1_CACHE_BYTES), GFP_KERNEL);
3785 if (!sbinfo)
3786 return -ENOMEM;
3787
c088e31d
SF
3788 mutex_init(&sbinfo->idr_lock);
3789 idr_init(&sbinfo->idr);
680d794b 3790 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3791 sbinfo->uid = current_fsuid();
3792 sbinfo->gid = current_fsgid();
680d794b 3793 sb->s_fs_info = sbinfo;
1da177e4 3794
0edd73b3 3795#ifdef CONFIG_TMPFS
1da177e4
LT
3796 /*
3797 * Per default we only allow half of the physical ram per
3798 * tmpfs instance, limiting inodes to one per page of lowmem;
3799 * but the internal instance is left unlimited.
3800 */
1751e8a6 3801 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b
AM
3802 sbinfo->max_blocks = shmem_default_max_blocks();
3803 sbinfo->max_inodes = shmem_default_max_inodes();
3804 if (shmem_parse_options(data, sbinfo, false)) {
3805 err = -EINVAL;
3806 goto failed;
3807 }
ca4e0519 3808 } else {
1751e8a6 3809 sb->s_flags |= SB_NOUSER;
1da177e4 3810 }
91828a40 3811 sb->s_export_op = &shmem_export_ops;
1751e8a6 3812 sb->s_flags |= SB_NOSEC;
1da177e4 3813#else
1751e8a6 3814 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3815#endif
3816
0edd73b3 3817 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3818 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3819 goto failed;
680d794b 3820 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3821 spin_lock_init(&sbinfo->shrinklist_lock);
3822 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3823
285b2c4f 3824 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3825 sb->s_blocksize = PAGE_SIZE;
3826 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3827 sb->s_magic = TMPFS_MAGIC;
3828 sb->s_op = &shmem_ops;
cfd95a9c 3829 sb->s_time_gran = 1;
b09e0fa4 3830#ifdef CONFIG_TMPFS_XATTR
39f0247d 3831 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3832#endif
3833#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3834 sb->s_flags |= SB_POSIXACL;
39f0247d 3835#endif
2b4db796 3836 uuid_gen(&sb->s_uuid);
0edd73b3 3837
454abafe 3838 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3839 if (!inode)
3840 goto failed;
680d794b
AM
3841 inode->i_uid = sbinfo->uid;
3842 inode->i_gid = sbinfo->gid;
318ceed0
AV
3843 sb->s_root = d_make_root(inode);
3844 if (!sb->s_root)
48fde701 3845 goto failed;
1da177e4
LT
3846 return 0;
3847
1da177e4
LT
3848failed:
3849 shmem_put_super(sb);
3850 return err;
3851}
3852
fcc234f8 3853static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3854
3855static struct inode *shmem_alloc_inode(struct super_block *sb)
3856{
41ffe5d5
HD
3857 struct shmem_inode_info *info;
3858 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3859 if (!info)
1da177e4 3860 return NULL;
41ffe5d5 3861 return &info->vfs_inode;
1da177e4
LT
3862}
3863
41ffe5d5 3864static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3865{
3866 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3867 if (S_ISLNK(inode->i_mode))
3868 kfree(inode->i_link);
fa0d7e3d
NP
3869 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3870}
3871
1da177e4
LT
3872static void shmem_destroy_inode(struct inode *inode)
3873{
09208d15 3874 if (S_ISREG(inode->i_mode))
1da177e4 3875 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3876 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3877}
3878
41ffe5d5 3879static void shmem_init_inode(void *foo)
1da177e4 3880{
41ffe5d5
HD
3881 struct shmem_inode_info *info = foo;
3882 inode_init_once(&info->vfs_inode);
1da177e4
LT
3883}
3884
9a8ec03e 3885static void shmem_init_inodecache(void)
1da177e4
LT
3886{
3887 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3888 sizeof(struct shmem_inode_info),
5d097056 3889 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3890}
3891
41ffe5d5 3892static void shmem_destroy_inodecache(void)
1da177e4 3893{
1a1d92c1 3894 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3895}
3896
c088e31d
SF
3897static __init void shmem_no_idr(struct super_block *sb)
3898{
3899 struct shmem_sb_info *sbinfo;
3900
3901 sbinfo = SHMEM_SB(sb);
3902 sbinfo->idr_nouse = true;
3903 idr_destroy(&sbinfo->idr);
3904}
3905
f5e54d6e 3906static const struct address_space_operations shmem_aops = {
1da177e4 3907 .writepage = shmem_writepage,
76719325 3908 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3909#ifdef CONFIG_TMPFS
800d15a5
NP
3910 .write_begin = shmem_write_begin,
3911 .write_end = shmem_write_end,
1da177e4 3912#endif
1c93923c 3913#ifdef CONFIG_MIGRATION
304dbdb7 3914 .migratepage = migrate_page,
1c93923c 3915#endif
aa261f54 3916 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3917};
3918
15ad7cdc 3919static const struct file_operations shmem_file_operations = {
1da177e4 3920 .mmap = shmem_mmap,
c01d5b30 3921 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3922#ifdef CONFIG_TMPFS
220f2ac9 3923 .llseek = shmem_file_llseek,
2ba5bbed 3924 .read_iter = shmem_file_read_iter,
8174202b 3925 .write_iter = generic_file_write_iter,
1b061d92 3926 .fsync = noop_fsync,
82c156f8 3927 .splice_read = generic_file_splice_read,
f6cb85d0 3928 .splice_write = iter_file_splice_write,
83e4fa9c 3929 .fallocate = shmem_fallocate,
1da177e4
LT
3930#endif
3931};
3932
92e1d5be 3933static const struct inode_operations shmem_inode_operations = {
44a30220 3934 .getattr = shmem_getattr,
94c1e62d 3935 .setattr = shmem_setattr,
b09e0fa4 3936#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3937 .listxattr = shmem_listxattr,
feda821e 3938 .set_acl = simple_set_acl,
b09e0fa4 3939#endif
1da177e4
LT
3940};
3941
92e1d5be 3942static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3943#ifdef CONFIG_TMPFS
3944 .create = shmem_create,
3945 .lookup = simple_lookup,
3946 .link = shmem_link,
3947 .unlink = shmem_unlink,
3948 .symlink = shmem_symlink,
3949 .mkdir = shmem_mkdir,
3950 .rmdir = shmem_rmdir,
3951 .mknod = shmem_mknod,
2773bf00 3952 .rename = shmem_rename2,
60545d0d 3953 .tmpfile = shmem_tmpfile,
1da177e4 3954#endif
b09e0fa4 3955#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3956 .listxattr = shmem_listxattr,
b09e0fa4 3957#endif
39f0247d 3958#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3959 .setattr = shmem_setattr,
feda821e 3960 .set_acl = simple_set_acl,
39f0247d
AG
3961#endif
3962};
3963
92e1d5be 3964static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3965#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3966 .listxattr = shmem_listxattr,
b09e0fa4 3967#endif
39f0247d 3968#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3969 .setattr = shmem_setattr,
feda821e 3970 .set_acl = simple_set_acl,
39f0247d 3971#endif
1da177e4
LT
3972};
3973
759b9775 3974static const struct super_operations shmem_ops = {
1da177e4
LT
3975 .alloc_inode = shmem_alloc_inode,
3976 .destroy_inode = shmem_destroy_inode,
3977#ifdef CONFIG_TMPFS
3978 .statfs = shmem_statfs,
3979 .remount_fs = shmem_remount_fs,
680d794b 3980 .show_options = shmem_show_options,
1da177e4 3981#endif
1f895f75 3982 .evict_inode = shmem_evict_inode,
1da177e4
LT
3983 .drop_inode = generic_delete_inode,
3984 .put_super = shmem_put_super,
779750d2
KS
3985#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3986 .nr_cached_objects = shmem_unused_huge_count,
3987 .free_cached_objects = shmem_unused_huge_scan,
3988#endif
1da177e4
LT
3989};
3990
f0f37e2f 3991static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3992 .fault = shmem_fault,
d7c17551 3993 .map_pages = filemap_map_pages,
1da177e4
LT
3994#ifdef CONFIG_NUMA
3995 .set_policy = shmem_set_policy,
3996 .get_policy = shmem_get_policy,
3997#endif
3998};
3999
3c26ff6e
AV
4000static struct dentry *shmem_mount(struct file_system_type *fs_type,
4001 int flags, const char *dev_name, void *data)
1da177e4 4002{
3c26ff6e 4003 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
4004}
4005
41ffe5d5 4006static struct file_system_type shmem_fs_type = {
1da177e4
LT
4007 .owner = THIS_MODULE,
4008 .name = "tmpfs",
3c26ff6e 4009 .mount = shmem_mount,
1da177e4 4010 .kill_sb = kill_litter_super,
2b8576cb 4011 .fs_flags = FS_USERNS_MOUNT,
1da177e4 4012};
1da177e4 4013
41ffe5d5 4014int __init shmem_init(void)
1da177e4
LT
4015{
4016 int error;
4017
16203a7a
RL
4018 /* If rootfs called this, don't re-init */
4019 if (shmem_inode_cachep)
4020 return 0;
4021
9a8ec03e 4022 shmem_init_inodecache();
1da177e4 4023
41ffe5d5 4024 error = register_filesystem(&shmem_fs_type);
1da177e4 4025 if (error) {
1170532b 4026 pr_err("Could not register tmpfs\n");
1da177e4
LT
4027 goto out2;
4028 }
95dc112a 4029
ca4e0519 4030 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4031 if (IS_ERR(shm_mnt)) {
4032 error = PTR_ERR(shm_mnt);
1170532b 4033 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4034 goto out1;
4035 }
c088e31d 4036 shmem_no_idr(shm_mnt->mnt_sb);
5a6e75f8 4037
e496cf3d 4038#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4039 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4040 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4041 else
4042 shmem_huge = 0; /* just in case it was patched */
4043#endif
1da177e4
LT
4044 return 0;
4045
4046out1:
41ffe5d5 4047 unregister_filesystem(&shmem_fs_type);
1da177e4 4048out2:
41ffe5d5 4049 shmem_destroy_inodecache();
1da177e4
LT
4050 shm_mnt = ERR_PTR(error);
4051 return error;
4052}
853ac43a 4053
e496cf3d 4054#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4055static ssize_t shmem_enabled_show(struct kobject *kobj,
4056 struct kobj_attribute *attr, char *buf)
4057{
4058 int values[] = {
4059 SHMEM_HUGE_ALWAYS,
4060 SHMEM_HUGE_WITHIN_SIZE,
4061 SHMEM_HUGE_ADVISE,
4062 SHMEM_HUGE_NEVER,
4063 SHMEM_HUGE_DENY,
4064 SHMEM_HUGE_FORCE,
4065 };
4066 int i, count;
4067
4068 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4069 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4070
4071 count += sprintf(buf + count, fmt,
4072 shmem_format_huge(values[i]));
4073 }
4074 buf[count - 1] = '\n';
4075 return count;
4076}
4077
4078static ssize_t shmem_enabled_store(struct kobject *kobj,
4079 struct kobj_attribute *attr, const char *buf, size_t count)
4080{
4081 char tmp[16];
4082 int huge;
4083
4084 if (count + 1 > sizeof(tmp))
4085 return -EINVAL;
4086 memcpy(tmp, buf, count);
4087 tmp[count] = '\0';
4088 if (count && tmp[count - 1] == '\n')
4089 tmp[count - 1] = '\0';
4090
4091 huge = shmem_parse_huge(tmp);
4092 if (huge == -EINVAL)
4093 return -EINVAL;
4094 if (!has_transparent_hugepage() &&
4095 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4096 return -EINVAL;
4097
4098 shmem_huge = huge;
435c0b87 4099 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4100 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4101 return count;
4102}
4103
4104struct kobj_attribute shmem_enabled_attr =
4105 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4106#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4107
3b33719c 4108#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4109bool shmem_huge_enabled(struct vm_area_struct *vma)
4110{
4111 struct inode *inode = file_inode(vma->vm_file);
4112 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4113 loff_t i_size;
4114 pgoff_t off;
4115
4116 if (shmem_huge == SHMEM_HUGE_FORCE)
4117 return true;
4118 if (shmem_huge == SHMEM_HUGE_DENY)
4119 return false;
4120 switch (sbinfo->huge) {
4121 case SHMEM_HUGE_NEVER:
4122 return false;
4123 case SHMEM_HUGE_ALWAYS:
4124 return true;
4125 case SHMEM_HUGE_WITHIN_SIZE:
4126 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4127 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4128 if (i_size >= HPAGE_PMD_SIZE &&
4129 i_size >> PAGE_SHIFT >= off)
4130 return true;
c8402871 4131 /* fall through */
f3f0e1d2
KS
4132 case SHMEM_HUGE_ADVISE:
4133 /* TODO: implement fadvise() hints */
4134 return (vma->vm_flags & VM_HUGEPAGE);
4135 default:
4136 VM_BUG_ON(1);
4137 return false;
4138 }
4139}
3b33719c 4140#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4141
853ac43a
MM
4142#else /* !CONFIG_SHMEM */
4143
4144/*
4145 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4146 *
4147 * This is intended for small system where the benefits of the full
4148 * shmem code (swap-backed and resource-limited) are outweighed by
4149 * their complexity. On systems without swap this code should be
4150 * effectively equivalent, but much lighter weight.
4151 */
4152
41ffe5d5 4153static struct file_system_type shmem_fs_type = {
853ac43a 4154 .name = "tmpfs",
3c26ff6e 4155 .mount = ramfs_mount,
853ac43a 4156 .kill_sb = kill_litter_super,
2b8576cb 4157 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4158};
4159
41ffe5d5 4160int __init shmem_init(void)
853ac43a 4161{
41ffe5d5 4162 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4163
41ffe5d5 4164 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4165 BUG_ON(IS_ERR(shm_mnt));
4166
4167 return 0;
4168}
4169
41ffe5d5 4170int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4171{
4172 return 0;
4173}
4174
3f96b79a
HD
4175int shmem_lock(struct file *file, int lock, struct user_struct *user)
4176{
4177 return 0;
4178}
4179
24513264
HD
4180void shmem_unlock_mapping(struct address_space *mapping)
4181{
4182}
4183
c01d5b30
HD
4184#ifdef CONFIG_MMU
4185unsigned long shmem_get_unmapped_area(struct file *file,
4186 unsigned long addr, unsigned long len,
4187 unsigned long pgoff, unsigned long flags)
4188{
4189 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4190}
4191#endif
4192
41ffe5d5 4193void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4194{
41ffe5d5 4195 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4196}
4197EXPORT_SYMBOL_GPL(shmem_truncate_range);
4198
0b0a0806
HD
4199#define shmem_vm_ops generic_file_vm_ops
4200#define shmem_file_operations ramfs_file_operations
454abafe 4201#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4202#define shmem_acct_size(flags, size) 0
4203#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4204
4205#endif /* CONFIG_SHMEM */
4206
4207/* common code */
1da177e4 4208
19938e35 4209static const struct dentry_operations anon_ops = {
118b2302 4210 .d_dname = simple_dname
3451538a
AV
4211};
4212
703321b6 4213static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4214 unsigned long flags, unsigned int i_flags)
1da177e4 4215{
6b4d0b27 4216 struct file *res;
1da177e4 4217 struct inode *inode;
2c48b9c4 4218 struct path path;
3451538a 4219 struct super_block *sb;
1da177e4
LT
4220 struct qstr this;
4221
703321b6
MA
4222 if (IS_ERR(mnt))
4223 return ERR_CAST(mnt);
1da177e4 4224
285b2c4f 4225 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4226 return ERR_PTR(-EINVAL);
4227
4228 if (shmem_acct_size(flags, size))
4229 return ERR_PTR(-ENOMEM);
4230
6b4d0b27 4231 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4232 this.name = name;
4233 this.len = strlen(name);
4234 this.hash = 0; /* will go */
703321b6
MA
4235 sb = mnt->mnt_sb;
4236 path.mnt = mntget(mnt);
3451538a 4237 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4238 if (!path.dentry)
1da177e4 4239 goto put_memory;
3451538a 4240 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4241
6b4d0b27 4242 res = ERR_PTR(-ENOSPC);
3451538a 4243 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4244 if (!inode)
66ee4b88 4245 goto put_memory;
1da177e4 4246
c7277090 4247 inode->i_flags |= i_flags;
2c48b9c4 4248 d_instantiate(path.dentry, inode);
1da177e4 4249 inode->i_size = size;
6d6b77f1 4250 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4251 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4252 if (IS_ERR(res))
66ee4b88 4253 goto put_path;
4b42af81 4254
6b4d0b27 4255 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4256 &shmem_file_operations);
6b4d0b27 4257 if (IS_ERR(res))
66ee4b88 4258 goto put_path;
4b42af81 4259
6b4d0b27 4260 return res;
1da177e4 4261
1da177e4
LT
4262put_memory:
4263 shmem_unacct_size(flags, size);
66ee4b88
KK
4264put_path:
4265 path_put(&path);
6b4d0b27 4266 return res;
1da177e4 4267}
c7277090
EP
4268
4269/**
4270 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4271 * kernel internal. There will be NO LSM permission checks against the
4272 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4273 * higher layer. The users are the big_key and shm implementations. LSM
4274 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4275 * @name: name for dentry (to be seen in /proc/<pid>/maps
4276 * @size: size to be set for the file
4277 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4278 */
4279struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4280{
703321b6 4281 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4282}
4283
4284/**
4285 * shmem_file_setup - get an unlinked file living in tmpfs
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289 */
4290struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4291{
703321b6 4292 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4293}
395e0ddc 4294EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4295
703321b6
MA
4296/**
4297 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4298 * @mnt: the tmpfs mount where the file will be created
4299 * @name: name for dentry (to be seen in /proc/<pid>/maps
4300 * @size: size to be set for the file
4301 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4302 */
4303struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4304 loff_t size, unsigned long flags)
4305{
4306 return __shmem_file_setup(mnt, name, size, flags, 0);
4307}
4308EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4309
46711810 4310/**
1da177e4 4311 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4312 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4313 */
4314int shmem_zero_setup(struct vm_area_struct *vma)
4315{
4316 struct file *file;
4317 loff_t size = vma->vm_end - vma->vm_start;
4318
66fc1303
HD
4319 /*
4320 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4321 * between XFS directory reading and selinux: since this file is only
4322 * accessible to the user through its mapping, use S_PRIVATE flag to
4323 * bypass file security, in the same way as shmem_kernel_file_setup().
4324 */
703321b6 4325 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4326 if (IS_ERR(file))
4327 return PTR_ERR(file);
4328
4329 if (vma->vm_file)
4330 fput(vma->vm_file);
4331 vma->vm_file = file;
4332 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4333
e496cf3d 4334 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4335 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4336 (vma->vm_end & HPAGE_PMD_MASK)) {
4337 khugepaged_enter(vma, vma->vm_flags);
4338 }
4339
1da177e4
LT
4340 return 0;
4341}
d9d90e5e
HD
4342
4343/**
4344 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4345 * @mapping: the page's address_space
4346 * @index: the page index
4347 * @gfp: the page allocator flags to use if allocating
4348 *
4349 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4350 * with any new page allocations done using the specified allocation flags.
4351 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4352 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4353 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4354 *
68da9f05
HD
4355 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4356 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4357 */
4358struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4359 pgoff_t index, gfp_t gfp)
4360{
68da9f05
HD
4361#ifdef CONFIG_SHMEM
4362 struct inode *inode = mapping->host;
9276aad6 4363 struct page *page;
68da9f05
HD
4364 int error;
4365
4366 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4367 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4368 gfp, NULL, NULL, NULL);
68da9f05
HD
4369 if (error)
4370 page = ERR_PTR(error);
4371 else
4372 unlock_page(page);
4373 return page;
4374#else
4375 /*
4376 * The tiny !SHMEM case uses ramfs without swap
4377 */
d9d90e5e 4378 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4379#endif
d9d90e5e
HD
4380}
4381EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);