]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
net: drop tcp_memcontrol.c
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
dd56b046
MG
76#include "internal.h"
77
caefba17 78#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
79#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
1da177e4
LT
81/* Pretend that each entry is of this size in directory's i_size */
82#define BOGO_DIRENT_SIZE 20
83
69f07ec9
HD
84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85#define SHORT_SYMLINK_LEN 128
86
1aac1400 87/*
f00cdc6d
HD
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
91 */
92struct shmem_falloc {
8e205f77 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98};
99
285b2c4f 100/* Flag allocation requirements to shmem_getpage */
1da177e4 101enum sgp_type {
1da177e4
LT
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b
AM
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
bde05d1c
HD
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176static inline int shmem_acct_block(unsigned long flags)
177{
0b0a0806 178 return (flags & VM_NORESERVE) ?
191c5424 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
180}
181
182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183{
0b0a0806 184 if (flags & VM_NORESERVE)
1da177e4
LT
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186}
187
759b9775 188static const struct super_operations shmem_ops;
f5e54d6e 189static const struct address_space_operations shmem_aops;
15ad7cdc 190static const struct file_operations shmem_file_operations;
92e1d5be
AV
191static const struct inode_operations shmem_inode_operations;
192static const struct inode_operations shmem_dir_inode_operations;
193static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 194static const struct vm_operations_struct shmem_vm_ops;
1da177e4 195
1da177e4 196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
6a15a370
VB
362/*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 364 * given offsets are swapped out.
6a15a370
VB
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
48131e03
VB
369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
6a15a370 371{
6a15a370
VB
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
48131e03 375 unsigned long swapped = 0;
6a15a370
VB
376
377 rcu_read_lock();
378
379restart:
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
382 break;
383
384 page = radix_tree_deref_slot(slot);
385
386 /*
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
389 * restarts.
390 */
391 if (radix_tree_deref_retry(page))
392 goto restart;
393
394 if (radix_tree_exceptional_entry(page))
395 swapped++;
396
397 if (need_resched()) {
398 cond_resched_rcu();
399 start = iter.index + 1;
400 goto restart;
401 }
402 }
403
404 rcu_read_unlock();
405
406 return swapped << PAGE_SHIFT;
407}
408
48131e03
VB
409/*
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
412 *
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
415 */
416unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417{
418 struct inode *inode = file_inode(vma->vm_file);
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 struct address_space *mapping = inode->i_mapping;
421 unsigned long swapped;
422
423 /* Be careful as we don't hold info->lock */
424 swapped = READ_ONCE(info->swapped);
425
426 /*
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
429 * already track.
430 */
431 if (!swapped)
432 return 0;
433
434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 return swapped << PAGE_SHIFT;
436
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping,
439 linear_page_index(vma, vma->vm_start),
440 linear_page_index(vma, vma->vm_end));
441}
442
24513264
HD
443/*
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445 */
446void shmem_unlock_mapping(struct address_space *mapping)
447{
448 struct pagevec pvec;
449 pgoff_t indices[PAGEVEC_SIZE];
450 pgoff_t index = 0;
451
452 pagevec_init(&pvec, 0);
453 /*
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455 */
456 while (!mapping_unevictable(mapping)) {
457 /*
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460 */
0cd6144a
JW
461 pvec.nr = find_get_entries(mapping, index,
462 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
463 if (!pvec.nr)
464 break;
465 index = indices[pvec.nr - 1] + 1;
0cd6144a 466 pagevec_remove_exceptionals(&pvec);
24513264
HD
467 check_move_unevictable_pages(pvec.pages, pvec.nr);
468 pagevec_release(&pvec);
469 cond_resched();
470 }
7a5d0fbb
HD
471}
472
473/*
474 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 476 */
1635f6a7
HD
477static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478 bool unfalloc)
1da177e4 479{
285b2c4f 480 struct address_space *mapping = inode->i_mapping;
1da177e4 481 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 486 struct pagevec pvec;
7a5d0fbb
HD
487 pgoff_t indices[PAGEVEC_SIZE];
488 long nr_swaps_freed = 0;
285b2c4f 489 pgoff_t index;
bda97eab
HD
490 int i;
491
83e4fa9c
HD
492 if (lend == -1)
493 end = -1; /* unsigned, so actually very big */
bda97eab
HD
494
495 pagevec_init(&pvec, 0);
496 index = start;
83e4fa9c 497 while (index < end) {
0cd6144a
JW
498 pvec.nr = find_get_entries(mapping, index,
499 min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 pvec.pages, indices);
7a5d0fbb
HD
501 if (!pvec.nr)
502 break;
bda97eab
HD
503 for (i = 0; i < pagevec_count(&pvec); i++) {
504 struct page *page = pvec.pages[i];
505
7a5d0fbb 506 index = indices[i];
83e4fa9c 507 if (index >= end)
bda97eab
HD
508 break;
509
7a5d0fbb 510 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
511 if (unfalloc)
512 continue;
7a5d0fbb
HD
513 nr_swaps_freed += !shmem_free_swap(mapping,
514 index, page);
bda97eab 515 continue;
7a5d0fbb
HD
516 }
517
518 if (!trylock_page(page))
bda97eab 519 continue;
1635f6a7
HD
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
309381fe 522 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
523 truncate_inode_page(mapping, page);
524 }
bda97eab 525 }
bda97eab
HD
526 unlock_page(page);
527 }
0cd6144a 528 pagevec_remove_exceptionals(&pvec);
24513264 529 pagevec_release(&pvec);
bda97eab
HD
530 cond_resched();
531 index++;
532 }
1da177e4 533
83e4fa9c 534 if (partial_start) {
bda97eab
HD
535 struct page *page = NULL;
536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537 if (page) {
83e4fa9c
HD
538 unsigned int top = PAGE_CACHE_SIZE;
539 if (start > end) {
540 top = partial_end;
541 partial_end = 0;
542 }
543 zero_user_segment(page, partial_start, top);
544 set_page_dirty(page);
545 unlock_page(page);
546 page_cache_release(page);
547 }
548 }
549 if (partial_end) {
550 struct page *page = NULL;
551 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552 if (page) {
553 zero_user_segment(page, 0, partial_end);
bda97eab
HD
554 set_page_dirty(page);
555 unlock_page(page);
556 page_cache_release(page);
557 }
558 }
83e4fa9c
HD
559 if (start >= end)
560 return;
bda97eab
HD
561
562 index = start;
b1a36650 563 while (index < end) {
bda97eab 564 cond_resched();
0cd6144a
JW
565
566 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 567 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 568 pvec.pages, indices);
7a5d0fbb 569 if (!pvec.nr) {
b1a36650
HD
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index == start || end != -1)
bda97eab 572 break;
b1a36650 573 /* But if truncating, restart to make sure all gone */
bda97eab
HD
574 index = start;
575 continue;
576 }
bda97eab
HD
577 for (i = 0; i < pagevec_count(&pvec); i++) {
578 struct page *page = pvec.pages[i];
579
7a5d0fbb 580 index = indices[i];
83e4fa9c 581 if (index >= end)
bda97eab
HD
582 break;
583
7a5d0fbb 584 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
585 if (unfalloc)
586 continue;
b1a36650
HD
587 if (shmem_free_swap(mapping, index, page)) {
588 /* Swap was replaced by page: retry */
589 index--;
590 break;
591 }
592 nr_swaps_freed++;
7a5d0fbb
HD
593 continue;
594 }
595
bda97eab 596 lock_page(page);
1635f6a7
HD
597 if (!unfalloc || !PageUptodate(page)) {
598 if (page->mapping == mapping) {
309381fe 599 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 600 truncate_inode_page(mapping, page);
b1a36650
HD
601 } else {
602 /* Page was replaced by swap: retry */
603 unlock_page(page);
604 index--;
605 break;
1635f6a7 606 }
7a5d0fbb 607 }
bda97eab
HD
608 unlock_page(page);
609 }
0cd6144a 610 pagevec_remove_exceptionals(&pvec);
24513264 611 pagevec_release(&pvec);
bda97eab
HD
612 index++;
613 }
94c1e62d 614
1da177e4 615 spin_lock(&info->lock);
7a5d0fbb 616 info->swapped -= nr_swaps_freed;
1da177e4
LT
617 shmem_recalc_inode(inode);
618 spin_unlock(&info->lock);
1635f6a7 619}
1da177e4 620
1635f6a7
HD
621void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622{
623 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 624 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 625}
94c1e62d 626EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 627
44a30220
YZ
628static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629 struct kstat *stat)
630{
631 struct inode *inode = dentry->d_inode;
632 struct shmem_inode_info *info = SHMEM_I(inode);
633
d0424c42
HD
634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 spin_lock(&info->lock);
636 shmem_recalc_inode(inode);
637 spin_unlock(&info->lock);
638 }
44a30220 639 generic_fillattr(inode, stat);
44a30220
YZ
640 return 0;
641}
642
94c1e62d 643static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 644{
75c3cfa8 645 struct inode *inode = d_inode(dentry);
40e041a2 646 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
647 int error;
648
db78b877
CH
649 error = inode_change_ok(inode, attr);
650 if (error)
651 return error;
652
94c1e62d
HD
653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 loff_t oldsize = inode->i_size;
655 loff_t newsize = attr->ia_size;
3889e6e7 656
40e041a2
DH
657 /* protected by i_mutex */
658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660 return -EPERM;
661
94c1e62d 662 if (newsize != oldsize) {
77142517
KK
663 error = shmem_reacct_size(SHMEM_I(inode)->flags,
664 oldsize, newsize);
665 if (error)
666 return error;
94c1e62d
HD
667 i_size_write(inode, newsize);
668 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669 }
afa2db2f 670 if (newsize <= oldsize) {
94c1e62d 671 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
672 if (oldsize > holebegin)
673 unmap_mapping_range(inode->i_mapping,
674 holebegin, 0, 1);
675 if (info->alloced)
676 shmem_truncate_range(inode,
677 newsize, (loff_t)-1);
94c1e62d 678 /* unmap again to remove racily COWed private pages */
d0424c42
HD
679 if (oldsize > holebegin)
680 unmap_mapping_range(inode->i_mapping,
681 holebegin, 0, 1);
94c1e62d 682 }
1da177e4
LT
683 }
684
db78b877 685 setattr_copy(inode, attr);
db78b877 686 if (attr->ia_valid & ATTR_MODE)
feda821e 687 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
688 return error;
689}
690
1f895f75 691static void shmem_evict_inode(struct inode *inode)
1da177e4 692{
1da177e4
LT
693 struct shmem_inode_info *info = SHMEM_I(inode);
694
3889e6e7 695 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
696 shmem_unacct_size(info->flags, inode->i_size);
697 inode->i_size = 0;
3889e6e7 698 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 699 if (!list_empty(&info->swaplist)) {
cb5f7b9a 700 mutex_lock(&shmem_swaplist_mutex);
1da177e4 701 list_del_init(&info->swaplist);
cb5f7b9a 702 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 703 }
69f07ec9
HD
704 } else
705 kfree(info->symlink);
b09e0fa4 706
38f38657 707 simple_xattrs_free(&info->xattrs);
0f3c42f5 708 WARN_ON(inode->i_blocks);
5b04c689 709 shmem_free_inode(inode->i_sb);
dbd5768f 710 clear_inode(inode);
1da177e4
LT
711}
712
46f65ec1
HD
713/*
714 * If swap found in inode, free it and move page from swapcache to filecache.
715 */
41ffe5d5 716static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 717 swp_entry_t swap, struct page **pagep)
1da177e4 718{
285b2c4f 719 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 720 void *radswap;
41ffe5d5 721 pgoff_t index;
bde05d1c
HD
722 gfp_t gfp;
723 int error = 0;
1da177e4 724
46f65ec1 725 radswap = swp_to_radix_entry(swap);
e504f3fd 726 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 727 if (index == -1)
00501b53 728 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 729
1b1b32f2
HD
730 /*
731 * Move _head_ to start search for next from here.
1f895f75 732 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 733 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 734 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
735 */
736 if (shmem_swaplist.next != &info->swaplist)
737 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 738
bde05d1c
HD
739 gfp = mapping_gfp_mask(mapping);
740 if (shmem_should_replace_page(*pagep, gfp)) {
741 mutex_unlock(&shmem_swaplist_mutex);
742 error = shmem_replace_page(pagep, gfp, info, index);
743 mutex_lock(&shmem_swaplist_mutex);
744 /*
745 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
746 * allocation, but the inode might have been freed while we
747 * dropped it: although a racing shmem_evict_inode() cannot
748 * complete without emptying the radix_tree, our page lock
749 * on this swapcache page is not enough to prevent that -
750 * free_swap_and_cache() of our swap entry will only
751 * trylock_page(), removing swap from radix_tree whatever.
752 *
753 * We must not proceed to shmem_add_to_page_cache() if the
754 * inode has been freed, but of course we cannot rely on
755 * inode or mapping or info to check that. However, we can
756 * safely check if our swap entry is still in use (and here
757 * it can't have got reused for another page): if it's still
758 * in use, then the inode cannot have been freed yet, and we
759 * can safely proceed (if it's no longer in use, that tells
760 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
761 */
762 if (!page_swapcount(*pagep))
763 error = -ENOENT;
764 }
765
d13d1443 766 /*
778dd893
HD
767 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768 * but also to hold up shmem_evict_inode(): so inode cannot be freed
769 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 770 */
bde05d1c
HD
771 if (!error)
772 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 773 radswap);
48f170fb 774 if (error != -ENOMEM) {
46f65ec1
HD
775 /*
776 * Truncation and eviction use free_swap_and_cache(), which
777 * only does trylock page: if we raced, best clean up here.
778 */
bde05d1c
HD
779 delete_from_swap_cache(*pagep);
780 set_page_dirty(*pagep);
46f65ec1
HD
781 if (!error) {
782 spin_lock(&info->lock);
783 info->swapped--;
784 spin_unlock(&info->lock);
785 swap_free(swap);
786 }
1da177e4 787 }
2e0e26c7 788 return error;
1da177e4
LT
789}
790
791/*
46f65ec1 792 * Search through swapped inodes to find and replace swap by page.
1da177e4 793 */
41ffe5d5 794int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 795{
41ffe5d5 796 struct list_head *this, *next;
1da177e4 797 struct shmem_inode_info *info;
00501b53 798 struct mem_cgroup *memcg;
bde05d1c
HD
799 int error = 0;
800
801 /*
802 * There's a faint possibility that swap page was replaced before
0142ef6c 803 * caller locked it: caller will come back later with the right page.
bde05d1c 804 */
0142ef6c 805 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 806 goto out;
778dd893
HD
807
808 /*
809 * Charge page using GFP_KERNEL while we can wait, before taking
810 * the shmem_swaplist_mutex which might hold up shmem_writepage().
811 * Charged back to the user (not to caller) when swap account is used.
778dd893 812 */
f627c2f5
KS
813 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
814 false);
778dd893
HD
815 if (error)
816 goto out;
46f65ec1 817 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 818 error = -EAGAIN;
1da177e4 819
cb5f7b9a 820 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
821 list_for_each_safe(this, next, &shmem_swaplist) {
822 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 823 if (info->swapped)
00501b53 824 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
825 else
826 list_del_init(&info->swaplist);
cb5f7b9a 827 cond_resched();
00501b53 828 if (error != -EAGAIN)
778dd893 829 break;
00501b53 830 /* found nothing in this: move on to search the next */
1da177e4 831 }
cb5f7b9a 832 mutex_unlock(&shmem_swaplist_mutex);
778dd893 833
00501b53
JW
834 if (error) {
835 if (error != -ENOMEM)
836 error = 0;
f627c2f5 837 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 838 } else
f627c2f5 839 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 840out:
aaa46865
HD
841 unlock_page(page);
842 page_cache_release(page);
778dd893 843 return error;
1da177e4
LT
844}
845
846/*
847 * Move the page from the page cache to the swap cache.
848 */
849static int shmem_writepage(struct page *page, struct writeback_control *wbc)
850{
851 struct shmem_inode_info *info;
1da177e4 852 struct address_space *mapping;
1da177e4 853 struct inode *inode;
6922c0c7
HD
854 swp_entry_t swap;
855 pgoff_t index;
1da177e4
LT
856
857 BUG_ON(!PageLocked(page));
1da177e4
LT
858 mapping = page->mapping;
859 index = page->index;
860 inode = mapping->host;
861 info = SHMEM_I(inode);
862 if (info->flags & VM_LOCKED)
863 goto redirty;
d9fe526a 864 if (!total_swap_pages)
1da177e4
LT
865 goto redirty;
866
d9fe526a 867 /*
97b713ba
CH
868 * Our capabilities prevent regular writeback or sync from ever calling
869 * shmem_writepage; but a stacking filesystem might use ->writepage of
870 * its underlying filesystem, in which case tmpfs should write out to
871 * swap only in response to memory pressure, and not for the writeback
872 * threads or sync.
d9fe526a 873 */
48f170fb
HD
874 if (!wbc->for_reclaim) {
875 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
876 goto redirty;
877 }
1635f6a7
HD
878
879 /*
880 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
881 * value into swapfile.c, the only way we can correctly account for a
882 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
883 *
884 * That's okay for a page already fallocated earlier, but if we have
885 * not yet completed the fallocation, then (a) we want to keep track
886 * of this page in case we have to undo it, and (b) it may not be a
887 * good idea to continue anyway, once we're pushing into swap. So
888 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
889 */
890 if (!PageUptodate(page)) {
1aac1400
HD
891 if (inode->i_private) {
892 struct shmem_falloc *shmem_falloc;
893 spin_lock(&inode->i_lock);
894 shmem_falloc = inode->i_private;
895 if (shmem_falloc &&
8e205f77 896 !shmem_falloc->waitq &&
1aac1400
HD
897 index >= shmem_falloc->start &&
898 index < shmem_falloc->next)
899 shmem_falloc->nr_unswapped++;
900 else
901 shmem_falloc = NULL;
902 spin_unlock(&inode->i_lock);
903 if (shmem_falloc)
904 goto redirty;
905 }
1635f6a7
HD
906 clear_highpage(page);
907 flush_dcache_page(page);
908 SetPageUptodate(page);
909 }
910
48f170fb
HD
911 swap = get_swap_page();
912 if (!swap.val)
913 goto redirty;
d9fe526a 914
b1dea800
HD
915 /*
916 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
917 * if it's not already there. Do it now before the page is
918 * moved to swap cache, when its pagelock no longer protects
b1dea800 919 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
920 * we've incremented swapped, because shmem_unuse_inode() will
921 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 922 */
48f170fb
HD
923 mutex_lock(&shmem_swaplist_mutex);
924 if (list_empty(&info->swaplist))
925 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 926
48f170fb 927 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
6922c0c7 928 spin_lock(&info->lock);
6922c0c7 929 shmem_recalc_inode(inode);
267a4c76 930 info->swapped++;
826267cf 931 spin_unlock(&info->lock);
6922c0c7 932
267a4c76
HD
933 swap_shmem_alloc(swap);
934 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
935
6922c0c7 936 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 937 BUG_ON(page_mapped(page));
9fab5619 938 swap_writepage(page, wbc);
1da177e4
LT
939 return 0;
940 }
941
6922c0c7 942 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 943 swapcache_free(swap);
1da177e4
LT
944redirty:
945 set_page_dirty(page);
d9fe526a
HD
946 if (wbc->for_reclaim)
947 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
948 unlock_page(page);
949 return 0;
1da177e4
LT
950}
951
952#ifdef CONFIG_NUMA
680d794b 953#ifdef CONFIG_TMPFS
71fe804b 954static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 955{
095f1fc4 956 char buffer[64];
680d794b 957
71fe804b 958 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 959 return; /* show nothing */
680d794b 960
a7a88b23 961 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
962
963 seq_printf(seq, ",mpol=%s", buffer);
680d794b 964}
71fe804b
LS
965
966static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967{
968 struct mempolicy *mpol = NULL;
969 if (sbinfo->mpol) {
970 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
971 mpol = sbinfo->mpol;
972 mpol_get(mpol);
973 spin_unlock(&sbinfo->stat_lock);
974 }
975 return mpol;
976}
680d794b
AM
977#endif /* CONFIG_TMPFS */
978
41ffe5d5
HD
979static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
980 struct shmem_inode_info *info, pgoff_t index)
1da177e4 981{
1da177e4 982 struct vm_area_struct pvma;
18a2f371 983 struct page *page;
52cd3b07 984
1da177e4 985 /* Create a pseudo vma that just contains the policy */
c4cc6d07 986 pvma.vm_start = 0;
09c231cb
NZ
987 /* Bias interleave by inode number to distribute better across nodes */
988 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 989 pvma.vm_ops = NULL;
18a2f371
MG
990 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
991
992 page = swapin_readahead(swap, gfp, &pvma, 0);
993
994 /* Drop reference taken by mpol_shared_policy_lookup() */
995 mpol_cond_put(pvma.vm_policy);
996
997 return page;
1da177e4
LT
998}
999
02098fea 1000static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1001 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1002{
1003 struct vm_area_struct pvma;
18a2f371 1004 struct page *page;
1da177e4 1005
c4cc6d07
HD
1006 /* Create a pseudo vma that just contains the policy */
1007 pvma.vm_start = 0;
09c231cb
NZ
1008 /* Bias interleave by inode number to distribute better across nodes */
1009 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 1010 pvma.vm_ops = NULL;
41ffe5d5 1011 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 1012
18a2f371
MG
1013 page = alloc_page_vma(gfp, &pvma, 0);
1014
1015 /* Drop reference taken by mpol_shared_policy_lookup() */
1016 mpol_cond_put(pvma.vm_policy);
1017
1018 return page;
1da177e4 1019}
680d794b
AM
1020#else /* !CONFIG_NUMA */
1021#ifdef CONFIG_TMPFS
41ffe5d5 1022static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
1023{
1024}
1025#endif /* CONFIG_TMPFS */
1026
41ffe5d5
HD
1027static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1028 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1029{
41ffe5d5 1030 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
1031}
1032
02098fea 1033static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1034 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1035{
e84e2e13 1036 return alloc_page(gfp);
1da177e4 1037}
680d794b 1038#endif /* CONFIG_NUMA */
1da177e4 1039
71fe804b
LS
1040#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1041static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1042{
1043 return NULL;
1044}
1045#endif
1046
bde05d1c
HD
1047/*
1048 * When a page is moved from swapcache to shmem filecache (either by the
1049 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1050 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1051 * ignorance of the mapping it belongs to. If that mapping has special
1052 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1053 * we may need to copy to a suitable page before moving to filecache.
1054 *
1055 * In a future release, this may well be extended to respect cpuset and
1056 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1057 * but for now it is a simple matter of zone.
1058 */
1059static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1060{
1061 return page_zonenum(page) > gfp_zone(gfp);
1062}
1063
1064static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1065 struct shmem_inode_info *info, pgoff_t index)
1066{
1067 struct page *oldpage, *newpage;
1068 struct address_space *swap_mapping;
1069 pgoff_t swap_index;
1070 int error;
1071
1072 oldpage = *pagep;
1073 swap_index = page_private(oldpage);
1074 swap_mapping = page_mapping(oldpage);
1075
1076 /*
1077 * We have arrived here because our zones are constrained, so don't
1078 * limit chance of success by further cpuset and node constraints.
1079 */
1080 gfp &= ~GFP_CONSTRAINT_MASK;
1081 newpage = shmem_alloc_page(gfp, info, index);
1082 if (!newpage)
1083 return -ENOMEM;
bde05d1c 1084
bde05d1c
HD
1085 page_cache_get(newpage);
1086 copy_highpage(newpage, oldpage);
0142ef6c 1087 flush_dcache_page(newpage);
bde05d1c 1088
48c935ad 1089 __SetPageLocked(newpage);
bde05d1c 1090 SetPageUptodate(newpage);
bde05d1c 1091 SetPageSwapBacked(newpage);
bde05d1c 1092 set_page_private(newpage, swap_index);
bde05d1c
HD
1093 SetPageSwapCache(newpage);
1094
1095 /*
1096 * Our caller will very soon move newpage out of swapcache, but it's
1097 * a nice clean interface for us to replace oldpage by newpage there.
1098 */
1099 spin_lock_irq(&swap_mapping->tree_lock);
1100 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1101 newpage);
0142ef6c
HD
1102 if (!error) {
1103 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1104 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1105 }
bde05d1c 1106 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1107
0142ef6c
HD
1108 if (unlikely(error)) {
1109 /*
1110 * Is this possible? I think not, now that our callers check
1111 * both PageSwapCache and page_private after getting page lock;
1112 * but be defensive. Reverse old to newpage for clear and free.
1113 */
1114 oldpage = newpage;
1115 } else {
45637bab 1116 mem_cgroup_replace_page(oldpage, newpage);
0142ef6c
HD
1117 lru_cache_add_anon(newpage);
1118 *pagep = newpage;
1119 }
bde05d1c
HD
1120
1121 ClearPageSwapCache(oldpage);
1122 set_page_private(oldpage, 0);
1123
1124 unlock_page(oldpage);
1125 page_cache_release(oldpage);
1126 page_cache_release(oldpage);
0142ef6c 1127 return error;
bde05d1c
HD
1128}
1129
1da177e4 1130/*
68da9f05 1131 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1132 *
1133 * If we allocate a new one we do not mark it dirty. That's up to the
1134 * vm. If we swap it in we mark it dirty since we also free the swap
1135 * entry since a page cannot live in both the swap and page cache
1136 */
41ffe5d5 1137static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1138 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1139{
1140 struct address_space *mapping = inode->i_mapping;
54af6042 1141 struct shmem_inode_info *info;
1da177e4 1142 struct shmem_sb_info *sbinfo;
00501b53 1143 struct mem_cgroup *memcg;
27ab7006 1144 struct page *page;
1da177e4
LT
1145 swp_entry_t swap;
1146 int error;
54af6042 1147 int once = 0;
1635f6a7 1148 int alloced = 0;
1da177e4 1149
41ffe5d5 1150 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1151 return -EFBIG;
1da177e4 1152repeat:
54af6042 1153 swap.val = 0;
0cd6144a 1154 page = find_lock_entry(mapping, index);
54af6042
HD
1155 if (radix_tree_exceptional_entry(page)) {
1156 swap = radix_to_swp_entry(page);
1157 page = NULL;
1158 }
1159
1635f6a7 1160 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1161 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1162 error = -EINVAL;
267a4c76 1163 goto unlock;
54af6042
HD
1164 }
1165
66d2f4d2
HD
1166 if (page && sgp == SGP_WRITE)
1167 mark_page_accessed(page);
1168
1635f6a7
HD
1169 /* fallocated page? */
1170 if (page && !PageUptodate(page)) {
1171 if (sgp != SGP_READ)
1172 goto clear;
1173 unlock_page(page);
1174 page_cache_release(page);
1175 page = NULL;
1176 }
54af6042 1177 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1178 *pagep = page;
1179 return 0;
27ab7006
HD
1180 }
1181
1182 /*
54af6042
HD
1183 * Fast cache lookup did not find it:
1184 * bring it back from swap or allocate.
27ab7006 1185 */
54af6042
HD
1186 info = SHMEM_I(inode);
1187 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1188
1da177e4
LT
1189 if (swap.val) {
1190 /* Look it up and read it in.. */
27ab7006
HD
1191 page = lookup_swap_cache(swap);
1192 if (!page) {
1da177e4 1193 /* here we actually do the io */
68da9f05
HD
1194 if (fault_type)
1195 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1196 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1197 if (!page) {
54af6042
HD
1198 error = -ENOMEM;
1199 goto failed;
1da177e4 1200 }
1da177e4
LT
1201 }
1202
1203 /* We have to do this with page locked to prevent races */
54af6042 1204 lock_page(page);
0142ef6c 1205 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1206 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1207 error = -EEXIST; /* try again */
d1899228 1208 goto unlock;
bde05d1c 1209 }
27ab7006 1210 if (!PageUptodate(page)) {
1da177e4 1211 error = -EIO;
54af6042 1212 goto failed;
1da177e4 1213 }
54af6042
HD
1214 wait_on_page_writeback(page);
1215
bde05d1c
HD
1216 if (shmem_should_replace_page(page, gfp)) {
1217 error = shmem_replace_page(&page, gfp, info, index);
1218 if (error)
1219 goto failed;
1da177e4 1220 }
27ab7006 1221
f627c2f5
KS
1222 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1223 false);
d1899228 1224 if (!error) {
aa3b1895 1225 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1226 swp_to_radix_entry(swap));
215c02bc
HD
1227 /*
1228 * We already confirmed swap under page lock, and make
1229 * no memory allocation here, so usually no possibility
1230 * of error; but free_swap_and_cache() only trylocks a
1231 * page, so it is just possible that the entry has been
1232 * truncated or holepunched since swap was confirmed.
1233 * shmem_undo_range() will have done some of the
1234 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1235 * the rest.
215c02bc
HD
1236 * Reset swap.val? No, leave it so "failed" goes back to
1237 * "repeat": reading a hole and writing should succeed.
1238 */
00501b53 1239 if (error) {
f627c2f5 1240 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1241 delete_from_swap_cache(page);
00501b53 1242 }
d1899228 1243 }
54af6042
HD
1244 if (error)
1245 goto failed;
1246
f627c2f5 1247 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1248
54af6042 1249 spin_lock(&info->lock);
285b2c4f 1250 info->swapped--;
54af6042 1251 shmem_recalc_inode(inode);
27ab7006 1252 spin_unlock(&info->lock);
54af6042 1253
66d2f4d2
HD
1254 if (sgp == SGP_WRITE)
1255 mark_page_accessed(page);
1256
54af6042 1257 delete_from_swap_cache(page);
27ab7006
HD
1258 set_page_dirty(page);
1259 swap_free(swap);
1260
54af6042
HD
1261 } else {
1262 if (shmem_acct_block(info->flags)) {
1263 error = -ENOSPC;
1264 goto failed;
1da177e4 1265 }
0edd73b3 1266 if (sbinfo->max_blocks) {
fc5da22a 1267 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1268 sbinfo->max_blocks) >= 0) {
1269 error = -ENOSPC;
1270 goto unacct;
1271 }
7e496299 1272 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1273 }
1da177e4 1274
54af6042
HD
1275 page = shmem_alloc_page(gfp, info, index);
1276 if (!page) {
1277 error = -ENOMEM;
1278 goto decused;
1da177e4
LT
1279 }
1280
07a42788 1281 __SetPageSwapBacked(page);
48c935ad 1282 __SetPageLocked(page);
66d2f4d2 1283 if (sgp == SGP_WRITE)
eb39d618 1284 __SetPageReferenced(page);
66d2f4d2 1285
f627c2f5
KS
1286 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1287 false);
54af6042
HD
1288 if (error)
1289 goto decused;
5e4c0d97 1290 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1291 if (!error) {
1292 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1293 NULL);
b065b432
HD
1294 radix_tree_preload_end();
1295 }
1296 if (error) {
f627c2f5 1297 mem_cgroup_cancel_charge(page, memcg, false);
b065b432
HD
1298 goto decused;
1299 }
f627c2f5 1300 mem_cgroup_commit_charge(page, memcg, false, false);
54af6042
HD
1301 lru_cache_add_anon(page);
1302
1303 spin_lock(&info->lock);
1da177e4 1304 info->alloced++;
54af6042
HD
1305 inode->i_blocks += BLOCKS_PER_PAGE;
1306 shmem_recalc_inode(inode);
1da177e4 1307 spin_unlock(&info->lock);
1635f6a7 1308 alloced = true;
54af6042 1309
ec9516fb 1310 /*
1635f6a7
HD
1311 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1312 */
1313 if (sgp == SGP_FALLOC)
1314 sgp = SGP_WRITE;
1315clear:
1316 /*
1317 * Let SGP_WRITE caller clear ends if write does not fill page;
1318 * but SGP_FALLOC on a page fallocated earlier must initialize
1319 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1320 */
1321 if (sgp != SGP_WRITE) {
1322 clear_highpage(page);
1323 flush_dcache_page(page);
1324 SetPageUptodate(page);
1325 }
a0ee5ec5 1326 if (sgp == SGP_DIRTY)
27ab7006 1327 set_page_dirty(page);
1da177e4 1328 }
bde05d1c 1329
54af6042 1330 /* Perhaps the file has been truncated since we checked */
1635f6a7 1331 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042 1332 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1333 if (alloced) {
1334 ClearPageDirty(page);
1335 delete_from_page_cache(page);
1336 spin_lock(&info->lock);
1337 shmem_recalc_inode(inode);
1338 spin_unlock(&info->lock);
1339 }
54af6042 1340 error = -EINVAL;
267a4c76 1341 goto unlock;
e83c32e8 1342 }
54af6042
HD
1343 *pagep = page;
1344 return 0;
1da177e4 1345
59a16ead 1346 /*
54af6042 1347 * Error recovery.
59a16ead 1348 */
54af6042
HD
1349decused:
1350 if (sbinfo->max_blocks)
1351 percpu_counter_add(&sbinfo->used_blocks, -1);
1352unacct:
1353 shmem_unacct_blocks(info->flags, 1);
1354failed:
267a4c76 1355 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1356 error = -EEXIST;
1357unlock:
27ab7006 1358 if (page) {
54af6042 1359 unlock_page(page);
27ab7006 1360 page_cache_release(page);
54af6042
HD
1361 }
1362 if (error == -ENOSPC && !once++) {
1363 info = SHMEM_I(inode);
1364 spin_lock(&info->lock);
1365 shmem_recalc_inode(inode);
1366 spin_unlock(&info->lock);
27ab7006 1367 goto repeat;
ff36b801 1368 }
d1899228 1369 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1370 goto repeat;
1371 return error;
1da177e4
LT
1372}
1373
d0217ac0 1374static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1375{
496ad9aa 1376 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1377 int error;
68da9f05 1378 int ret = VM_FAULT_LOCKED;
1da177e4 1379
f00cdc6d
HD
1380 /*
1381 * Trinity finds that probing a hole which tmpfs is punching can
1382 * prevent the hole-punch from ever completing: which in turn
1383 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1384 * faulting pages into the hole while it's being punched. Although
1385 * shmem_undo_range() does remove the additions, it may be unable to
1386 * keep up, as each new page needs its own unmap_mapping_range() call,
1387 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1388 *
1389 * It does not matter if we sometimes reach this check just before the
1390 * hole-punch begins, so that one fault then races with the punch:
1391 * we just need to make racing faults a rare case.
1392 *
1393 * The implementation below would be much simpler if we just used a
1394 * standard mutex or completion: but we cannot take i_mutex in fault,
1395 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1396 */
1397 if (unlikely(inode->i_private)) {
1398 struct shmem_falloc *shmem_falloc;
1399
1400 spin_lock(&inode->i_lock);
1401 shmem_falloc = inode->i_private;
8e205f77
HD
1402 if (shmem_falloc &&
1403 shmem_falloc->waitq &&
1404 vmf->pgoff >= shmem_falloc->start &&
1405 vmf->pgoff < shmem_falloc->next) {
1406 wait_queue_head_t *shmem_falloc_waitq;
1407 DEFINE_WAIT(shmem_fault_wait);
1408
1409 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1410 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1411 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1412 /* It's polite to up mmap_sem if we can */
f00cdc6d 1413 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1414 ret = VM_FAULT_RETRY;
f00cdc6d 1415 }
8e205f77
HD
1416
1417 shmem_falloc_waitq = shmem_falloc->waitq;
1418 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1419 TASK_UNINTERRUPTIBLE);
1420 spin_unlock(&inode->i_lock);
1421 schedule();
1422
1423 /*
1424 * shmem_falloc_waitq points into the shmem_fallocate()
1425 * stack of the hole-punching task: shmem_falloc_waitq
1426 * is usually invalid by the time we reach here, but
1427 * finish_wait() does not dereference it in that case;
1428 * though i_lock needed lest racing with wake_up_all().
1429 */
1430 spin_lock(&inode->i_lock);
1431 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1432 spin_unlock(&inode->i_lock);
1433 return ret;
f00cdc6d 1434 }
8e205f77 1435 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1436 }
1437
27d54b39 1438 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1439 if (error)
1440 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1441
456f998e
YH
1442 if (ret & VM_FAULT_MAJOR) {
1443 count_vm_event(PGMAJFAULT);
1444 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1445 }
68da9f05 1446 return ret;
1da177e4
LT
1447}
1448
1da177e4 1449#ifdef CONFIG_NUMA
41ffe5d5 1450static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1451{
496ad9aa 1452 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1453 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1454}
1455
d8dc74f2
AB
1456static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1457 unsigned long addr)
1da177e4 1458{
496ad9aa 1459 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1460 pgoff_t index;
1da177e4 1461
41ffe5d5
HD
1462 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1463 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1464}
1465#endif
1466
1467int shmem_lock(struct file *file, int lock, struct user_struct *user)
1468{
496ad9aa 1469 struct inode *inode = file_inode(file);
1da177e4
LT
1470 struct shmem_inode_info *info = SHMEM_I(inode);
1471 int retval = -ENOMEM;
1472
1473 spin_lock(&info->lock);
1474 if (lock && !(info->flags & VM_LOCKED)) {
1475 if (!user_shm_lock(inode->i_size, user))
1476 goto out_nomem;
1477 info->flags |= VM_LOCKED;
89e004ea 1478 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1479 }
1480 if (!lock && (info->flags & VM_LOCKED) && user) {
1481 user_shm_unlock(inode->i_size, user);
1482 info->flags &= ~VM_LOCKED;
89e004ea 1483 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1484 }
1485 retval = 0;
89e004ea 1486
1da177e4
LT
1487out_nomem:
1488 spin_unlock(&info->lock);
1489 return retval;
1490}
1491
9b83a6a8 1492static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1493{
1494 file_accessed(file);
1495 vma->vm_ops = &shmem_vm_ops;
1496 return 0;
1497}
1498
454abafe 1499static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1500 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1501{
1502 struct inode *inode;
1503 struct shmem_inode_info *info;
1504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1505
5b04c689
PE
1506 if (shmem_reserve_inode(sb))
1507 return NULL;
1da177e4
LT
1508
1509 inode = new_inode(sb);
1510 if (inode) {
85fe4025 1511 inode->i_ino = get_next_ino();
454abafe 1512 inode_init_owner(inode, dir, mode);
1da177e4 1513 inode->i_blocks = 0;
1da177e4 1514 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1515 inode->i_generation = get_seconds();
1da177e4
LT
1516 info = SHMEM_I(inode);
1517 memset(info, 0, (char *)inode - (char *)info);
1518 spin_lock_init(&info->lock);
40e041a2 1519 info->seals = F_SEAL_SEAL;
0b0a0806 1520 info->flags = flags & VM_NORESERVE;
1da177e4 1521 INIT_LIST_HEAD(&info->swaplist);
38f38657 1522 simple_xattrs_init(&info->xattrs);
72c04902 1523 cache_no_acl(inode);
1da177e4
LT
1524
1525 switch (mode & S_IFMT) {
1526 default:
39f0247d 1527 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1528 init_special_inode(inode, mode, dev);
1529 break;
1530 case S_IFREG:
14fcc23f 1531 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1532 inode->i_op = &shmem_inode_operations;
1533 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1534 mpol_shared_policy_init(&info->policy,
1535 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1536 break;
1537 case S_IFDIR:
d8c76e6f 1538 inc_nlink(inode);
1da177e4
LT
1539 /* Some things misbehave if size == 0 on a directory */
1540 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1541 inode->i_op = &shmem_dir_inode_operations;
1542 inode->i_fop = &simple_dir_operations;
1543 break;
1544 case S_IFLNK:
1545 /*
1546 * Must not load anything in the rbtree,
1547 * mpol_free_shared_policy will not be called.
1548 */
71fe804b 1549 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1550 break;
1551 }
5b04c689
PE
1552 } else
1553 shmem_free_inode(sb);
1da177e4
LT
1554 return inode;
1555}
1556
0cd6144a
JW
1557bool shmem_mapping(struct address_space *mapping)
1558{
f0774d88
SL
1559 if (!mapping->host)
1560 return false;
1561
97b713ba 1562 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1563}
1564
1da177e4 1565#ifdef CONFIG_TMPFS
92e1d5be 1566static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1567static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1568
6d9d88d0
JS
1569#ifdef CONFIG_TMPFS_XATTR
1570static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1571#else
1572#define shmem_initxattrs NULL
1573#endif
1574
1da177e4 1575static int
800d15a5
NP
1576shmem_write_begin(struct file *file, struct address_space *mapping,
1577 loff_t pos, unsigned len, unsigned flags,
1578 struct page **pagep, void **fsdata)
1da177e4 1579{
800d15a5 1580 struct inode *inode = mapping->host;
40e041a2 1581 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1582 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DH
1583
1584 /* i_mutex is held by caller */
1585 if (unlikely(info->seals)) {
1586 if (info->seals & F_SEAL_WRITE)
1587 return -EPERM;
1588 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1589 return -EPERM;
1590 }
1591
66d2f4d2 1592 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1593}
1594
1595static int
1596shmem_write_end(struct file *file, struct address_space *mapping,
1597 loff_t pos, unsigned len, unsigned copied,
1598 struct page *page, void *fsdata)
1599{
1600 struct inode *inode = mapping->host;
1601
d3602444
HD
1602 if (pos + copied > inode->i_size)
1603 i_size_write(inode, pos + copied);
1604
ec9516fb
HD
1605 if (!PageUptodate(page)) {
1606 if (copied < PAGE_CACHE_SIZE) {
1607 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1608 zero_user_segments(page, 0, from,
1609 from + copied, PAGE_CACHE_SIZE);
1610 }
1611 SetPageUptodate(page);
1612 }
800d15a5 1613 set_page_dirty(page);
6746aff7 1614 unlock_page(page);
800d15a5
NP
1615 page_cache_release(page);
1616
800d15a5 1617 return copied;
1da177e4
LT
1618}
1619
2ba5bbed 1620static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1621{
6e58e79d
AV
1622 struct file *file = iocb->ki_filp;
1623 struct inode *inode = file_inode(file);
1da177e4 1624 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1625 pgoff_t index;
1626 unsigned long offset;
a0ee5ec5 1627 enum sgp_type sgp = SGP_READ;
f7c1d074 1628 int error = 0;
cb66a7a1 1629 ssize_t retval = 0;
6e58e79d 1630 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1631
1632 /*
1633 * Might this read be for a stacking filesystem? Then when reading
1634 * holes of a sparse file, we actually need to allocate those pages,
1635 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1636 */
777eda2c 1637 if (!iter_is_iovec(to))
a0ee5ec5 1638 sgp = SGP_DIRTY;
1da177e4
LT
1639
1640 index = *ppos >> PAGE_CACHE_SHIFT;
1641 offset = *ppos & ~PAGE_CACHE_MASK;
1642
1643 for (;;) {
1644 struct page *page = NULL;
41ffe5d5
HD
1645 pgoff_t end_index;
1646 unsigned long nr, ret;
1da177e4
LT
1647 loff_t i_size = i_size_read(inode);
1648
1649 end_index = i_size >> PAGE_CACHE_SHIFT;
1650 if (index > end_index)
1651 break;
1652 if (index == end_index) {
1653 nr = i_size & ~PAGE_CACHE_MASK;
1654 if (nr <= offset)
1655 break;
1656 }
1657
6e58e79d
AV
1658 error = shmem_getpage(inode, index, &page, sgp, NULL);
1659 if (error) {
1660 if (error == -EINVAL)
1661 error = 0;
1da177e4
LT
1662 break;
1663 }
d3602444
HD
1664 if (page)
1665 unlock_page(page);
1da177e4
LT
1666
1667 /*
1668 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1669 * are called without i_mutex protection against truncate
1da177e4
LT
1670 */
1671 nr = PAGE_CACHE_SIZE;
1672 i_size = i_size_read(inode);
1673 end_index = i_size >> PAGE_CACHE_SHIFT;
1674 if (index == end_index) {
1675 nr = i_size & ~PAGE_CACHE_MASK;
1676 if (nr <= offset) {
1677 if (page)
1678 page_cache_release(page);
1679 break;
1680 }
1681 }
1682 nr -= offset;
1683
1684 if (page) {
1685 /*
1686 * If users can be writing to this page using arbitrary
1687 * virtual addresses, take care about potential aliasing
1688 * before reading the page on the kernel side.
1689 */
1690 if (mapping_writably_mapped(mapping))
1691 flush_dcache_page(page);
1692 /*
1693 * Mark the page accessed if we read the beginning.
1694 */
1695 if (!offset)
1696 mark_page_accessed(page);
b5810039 1697 } else {
1da177e4 1698 page = ZERO_PAGE(0);
b5810039
NP
1699 page_cache_get(page);
1700 }
1da177e4
LT
1701
1702 /*
1703 * Ok, we have the page, and it's up-to-date, so
1704 * now we can copy it to user space...
1da177e4 1705 */
2ba5bbed 1706 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1707 retval += ret;
1da177e4
LT
1708 offset += ret;
1709 index += offset >> PAGE_CACHE_SHIFT;
1710 offset &= ~PAGE_CACHE_MASK;
1711
1712 page_cache_release(page);
2ba5bbed 1713 if (!iov_iter_count(to))
1da177e4 1714 break;
6e58e79d
AV
1715 if (ret < nr) {
1716 error = -EFAULT;
1717 break;
1718 }
1da177e4
LT
1719 cond_resched();
1720 }
1721
1722 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1723 file_accessed(file);
1724 return retval ? retval : error;
1da177e4
LT
1725}
1726
708e3508
HD
1727static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1728 struct pipe_inode_info *pipe, size_t len,
1729 unsigned int flags)
1730{
1731 struct address_space *mapping = in->f_mapping;
71f0e07a 1732 struct inode *inode = mapping->host;
708e3508
HD
1733 unsigned int loff, nr_pages, req_pages;
1734 struct page *pages[PIPE_DEF_BUFFERS];
1735 struct partial_page partial[PIPE_DEF_BUFFERS];
1736 struct page *page;
1737 pgoff_t index, end_index;
1738 loff_t isize, left;
1739 int error, page_nr;
1740 struct splice_pipe_desc spd = {
1741 .pages = pages,
1742 .partial = partial,
047fe360 1743 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1744 .flags = flags,
1745 .ops = &page_cache_pipe_buf_ops,
1746 .spd_release = spd_release_page,
1747 };
1748
71f0e07a 1749 isize = i_size_read(inode);
708e3508
HD
1750 if (unlikely(*ppos >= isize))
1751 return 0;
1752
1753 left = isize - *ppos;
1754 if (unlikely(left < len))
1755 len = left;
1756
1757 if (splice_grow_spd(pipe, &spd))
1758 return -ENOMEM;
1759
1760 index = *ppos >> PAGE_CACHE_SHIFT;
1761 loff = *ppos & ~PAGE_CACHE_MASK;
1762 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1763 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1764
708e3508
HD
1765 spd.nr_pages = find_get_pages_contig(mapping, index,
1766 nr_pages, spd.pages);
1767 index += spd.nr_pages;
708e3508 1768 error = 0;
708e3508 1769
71f0e07a 1770 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1771 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1772 if (error)
1773 break;
1774 unlock_page(page);
708e3508
HD
1775 spd.pages[spd.nr_pages++] = page;
1776 index++;
1777 }
1778
708e3508
HD
1779 index = *ppos >> PAGE_CACHE_SHIFT;
1780 nr_pages = spd.nr_pages;
1781 spd.nr_pages = 0;
71f0e07a 1782
708e3508
HD
1783 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1784 unsigned int this_len;
1785
1786 if (!len)
1787 break;
1788
708e3508
HD
1789 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1790 page = spd.pages[page_nr];
1791
71f0e07a 1792 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1793 error = shmem_getpage(inode, index, &page,
1794 SGP_CACHE, NULL);
1795 if (error)
708e3508 1796 break;
71f0e07a
HD
1797 unlock_page(page);
1798 page_cache_release(spd.pages[page_nr]);
1799 spd.pages[page_nr] = page;
708e3508 1800 }
71f0e07a
HD
1801
1802 isize = i_size_read(inode);
708e3508
HD
1803 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1804 if (unlikely(!isize || index > end_index))
1805 break;
1806
708e3508
HD
1807 if (end_index == index) {
1808 unsigned int plen;
1809
708e3508
HD
1810 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1811 if (plen <= loff)
1812 break;
1813
708e3508
HD
1814 this_len = min(this_len, plen - loff);
1815 len = this_len;
1816 }
1817
1818 spd.partial[page_nr].offset = loff;
1819 spd.partial[page_nr].len = this_len;
1820 len -= this_len;
1821 loff = 0;
1822 spd.nr_pages++;
1823 index++;
1824 }
1825
708e3508
HD
1826 while (page_nr < nr_pages)
1827 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1828
1829 if (spd.nr_pages)
1830 error = splice_to_pipe(pipe, &spd);
1831
047fe360 1832 splice_shrink_spd(&spd);
708e3508
HD
1833
1834 if (error > 0) {
1835 *ppos += error;
1836 file_accessed(in);
1837 }
1838 return error;
1839}
1840
220f2ac9
HD
1841/*
1842 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1843 */
1844static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1845 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1846{
1847 struct page *page;
1848 struct pagevec pvec;
1849 pgoff_t indices[PAGEVEC_SIZE];
1850 bool done = false;
1851 int i;
1852
1853 pagevec_init(&pvec, 0);
1854 pvec.nr = 1; /* start small: we may be there already */
1855 while (!done) {
0cd6144a 1856 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1857 pvec.nr, pvec.pages, indices);
1858 if (!pvec.nr) {
965c8e59 1859 if (whence == SEEK_DATA)
220f2ac9
HD
1860 index = end;
1861 break;
1862 }
1863 for (i = 0; i < pvec.nr; i++, index++) {
1864 if (index < indices[i]) {
965c8e59 1865 if (whence == SEEK_HOLE) {
220f2ac9
HD
1866 done = true;
1867 break;
1868 }
1869 index = indices[i];
1870 }
1871 page = pvec.pages[i];
1872 if (page && !radix_tree_exceptional_entry(page)) {
1873 if (!PageUptodate(page))
1874 page = NULL;
1875 }
1876 if (index >= end ||
965c8e59
AM
1877 (page && whence == SEEK_DATA) ||
1878 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1879 done = true;
1880 break;
1881 }
1882 }
0cd6144a 1883 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1884 pagevec_release(&pvec);
1885 pvec.nr = PAGEVEC_SIZE;
1886 cond_resched();
1887 }
1888 return index;
1889}
1890
965c8e59 1891static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1892{
1893 struct address_space *mapping = file->f_mapping;
1894 struct inode *inode = mapping->host;
1895 pgoff_t start, end;
1896 loff_t new_offset;
1897
965c8e59
AM
1898 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1899 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1900 MAX_LFS_FILESIZE, i_size_read(inode));
1901 mutex_lock(&inode->i_mutex);
1902 /* We're holding i_mutex so we can access i_size directly */
1903
1904 if (offset < 0)
1905 offset = -EINVAL;
1906 else if (offset >= inode->i_size)
1907 offset = -ENXIO;
1908 else {
1909 start = offset >> PAGE_CACHE_SHIFT;
1910 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1911 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1912 new_offset <<= PAGE_CACHE_SHIFT;
1913 if (new_offset > offset) {
1914 if (new_offset < inode->i_size)
1915 offset = new_offset;
965c8e59 1916 else if (whence == SEEK_DATA)
220f2ac9
HD
1917 offset = -ENXIO;
1918 else
1919 offset = inode->i_size;
1920 }
1921 }
1922
387aae6f
HD
1923 if (offset >= 0)
1924 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1925 mutex_unlock(&inode->i_mutex);
1926 return offset;
1927}
1928
05f65b5c
DH
1929/*
1930 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1931 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1932 */
1933#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1934#define LAST_SCAN 4 /* about 150ms max */
1935
1936static void shmem_tag_pins(struct address_space *mapping)
1937{
1938 struct radix_tree_iter iter;
1939 void **slot;
1940 pgoff_t start;
1941 struct page *page;
1942
1943 lru_add_drain();
1944 start = 0;
1945 rcu_read_lock();
1946
1947restart:
1948 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1949 page = radix_tree_deref_slot(slot);
1950 if (!page || radix_tree_exception(page)) {
1951 if (radix_tree_deref_retry(page))
1952 goto restart;
1953 } else if (page_count(page) - page_mapcount(page) > 1) {
1954 spin_lock_irq(&mapping->tree_lock);
1955 radix_tree_tag_set(&mapping->page_tree, iter.index,
1956 SHMEM_TAG_PINNED);
1957 spin_unlock_irq(&mapping->tree_lock);
1958 }
1959
1960 if (need_resched()) {
1961 cond_resched_rcu();
1962 start = iter.index + 1;
1963 goto restart;
1964 }
1965 }
1966 rcu_read_unlock();
1967}
1968
1969/*
1970 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1971 * via get_user_pages(), drivers might have some pending I/O without any active
1972 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1973 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1974 * them to be dropped.
1975 * The caller must guarantee that no new user will acquire writable references
1976 * to those pages to avoid races.
1977 */
40e041a2
DH
1978static int shmem_wait_for_pins(struct address_space *mapping)
1979{
05f65b5c
DH
1980 struct radix_tree_iter iter;
1981 void **slot;
1982 pgoff_t start;
1983 struct page *page;
1984 int error, scan;
1985
1986 shmem_tag_pins(mapping);
1987
1988 error = 0;
1989 for (scan = 0; scan <= LAST_SCAN; scan++) {
1990 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1991 break;
1992
1993 if (!scan)
1994 lru_add_drain_all();
1995 else if (schedule_timeout_killable((HZ << scan) / 200))
1996 scan = LAST_SCAN;
1997
1998 start = 0;
1999 rcu_read_lock();
2000restart:
2001 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2002 start, SHMEM_TAG_PINNED) {
2003
2004 page = radix_tree_deref_slot(slot);
2005 if (radix_tree_exception(page)) {
2006 if (radix_tree_deref_retry(page))
2007 goto restart;
2008
2009 page = NULL;
2010 }
2011
2012 if (page &&
2013 page_count(page) - page_mapcount(page) != 1) {
2014 if (scan < LAST_SCAN)
2015 goto continue_resched;
2016
2017 /*
2018 * On the last scan, we clean up all those tags
2019 * we inserted; but make a note that we still
2020 * found pages pinned.
2021 */
2022 error = -EBUSY;
2023 }
2024
2025 spin_lock_irq(&mapping->tree_lock);
2026 radix_tree_tag_clear(&mapping->page_tree,
2027 iter.index, SHMEM_TAG_PINNED);
2028 spin_unlock_irq(&mapping->tree_lock);
2029continue_resched:
2030 if (need_resched()) {
2031 cond_resched_rcu();
2032 start = iter.index + 1;
2033 goto restart;
2034 }
2035 }
2036 rcu_read_unlock();
2037 }
2038
2039 return error;
40e041a2
DH
2040}
2041
2042#define F_ALL_SEALS (F_SEAL_SEAL | \
2043 F_SEAL_SHRINK | \
2044 F_SEAL_GROW | \
2045 F_SEAL_WRITE)
2046
2047int shmem_add_seals(struct file *file, unsigned int seals)
2048{
2049 struct inode *inode = file_inode(file);
2050 struct shmem_inode_info *info = SHMEM_I(inode);
2051 int error;
2052
2053 /*
2054 * SEALING
2055 * Sealing allows multiple parties to share a shmem-file but restrict
2056 * access to a specific subset of file operations. Seals can only be
2057 * added, but never removed. This way, mutually untrusted parties can
2058 * share common memory regions with a well-defined policy. A malicious
2059 * peer can thus never perform unwanted operations on a shared object.
2060 *
2061 * Seals are only supported on special shmem-files and always affect
2062 * the whole underlying inode. Once a seal is set, it may prevent some
2063 * kinds of access to the file. Currently, the following seals are
2064 * defined:
2065 * SEAL_SEAL: Prevent further seals from being set on this file
2066 * SEAL_SHRINK: Prevent the file from shrinking
2067 * SEAL_GROW: Prevent the file from growing
2068 * SEAL_WRITE: Prevent write access to the file
2069 *
2070 * As we don't require any trust relationship between two parties, we
2071 * must prevent seals from being removed. Therefore, sealing a file
2072 * only adds a given set of seals to the file, it never touches
2073 * existing seals. Furthermore, the "setting seals"-operation can be
2074 * sealed itself, which basically prevents any further seal from being
2075 * added.
2076 *
2077 * Semantics of sealing are only defined on volatile files. Only
2078 * anonymous shmem files support sealing. More importantly, seals are
2079 * never written to disk. Therefore, there's no plan to support it on
2080 * other file types.
2081 */
2082
2083 if (file->f_op != &shmem_file_operations)
2084 return -EINVAL;
2085 if (!(file->f_mode & FMODE_WRITE))
2086 return -EPERM;
2087 if (seals & ~(unsigned int)F_ALL_SEALS)
2088 return -EINVAL;
2089
2090 mutex_lock(&inode->i_mutex);
2091
2092 if (info->seals & F_SEAL_SEAL) {
2093 error = -EPERM;
2094 goto unlock;
2095 }
2096
2097 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2098 error = mapping_deny_writable(file->f_mapping);
2099 if (error)
2100 goto unlock;
2101
2102 error = shmem_wait_for_pins(file->f_mapping);
2103 if (error) {
2104 mapping_allow_writable(file->f_mapping);
2105 goto unlock;
2106 }
2107 }
2108
2109 info->seals |= seals;
2110 error = 0;
2111
2112unlock:
2113 mutex_unlock(&inode->i_mutex);
2114 return error;
2115}
2116EXPORT_SYMBOL_GPL(shmem_add_seals);
2117
2118int shmem_get_seals(struct file *file)
2119{
2120 if (file->f_op != &shmem_file_operations)
2121 return -EINVAL;
2122
2123 return SHMEM_I(file_inode(file))->seals;
2124}
2125EXPORT_SYMBOL_GPL(shmem_get_seals);
2126
2127long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2128{
2129 long error;
2130
2131 switch (cmd) {
2132 case F_ADD_SEALS:
2133 /* disallow upper 32bit */
2134 if (arg > UINT_MAX)
2135 return -EINVAL;
2136
2137 error = shmem_add_seals(file, arg);
2138 break;
2139 case F_GET_SEALS:
2140 error = shmem_get_seals(file);
2141 break;
2142 default:
2143 error = -EINVAL;
2144 break;
2145 }
2146
2147 return error;
2148}
2149
83e4fa9c
HD
2150static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2151 loff_t len)
2152{
496ad9aa 2153 struct inode *inode = file_inode(file);
e2d12e22 2154 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2155 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2156 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2157 pgoff_t start, index, end;
2158 int error;
83e4fa9c 2159
13ace4d0
HD
2160 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2161 return -EOPNOTSUPP;
2162
83e4fa9c
HD
2163 mutex_lock(&inode->i_mutex);
2164
2165 if (mode & FALLOC_FL_PUNCH_HOLE) {
2166 struct address_space *mapping = file->f_mapping;
2167 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2168 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2169 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2170
40e041a2
DH
2171 /* protected by i_mutex */
2172 if (info->seals & F_SEAL_WRITE) {
2173 error = -EPERM;
2174 goto out;
2175 }
2176
8e205f77 2177 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2178 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2179 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2180 spin_lock(&inode->i_lock);
2181 inode->i_private = &shmem_falloc;
2182 spin_unlock(&inode->i_lock);
2183
83e4fa9c
HD
2184 if ((u64)unmap_end > (u64)unmap_start)
2185 unmap_mapping_range(mapping, unmap_start,
2186 1 + unmap_end - unmap_start, 0);
2187 shmem_truncate_range(inode, offset, offset + len - 1);
2188 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2189
2190 spin_lock(&inode->i_lock);
2191 inode->i_private = NULL;
2192 wake_up_all(&shmem_falloc_waitq);
2193 spin_unlock(&inode->i_lock);
83e4fa9c 2194 error = 0;
8e205f77 2195 goto out;
e2d12e22
HD
2196 }
2197
2198 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2199 error = inode_newsize_ok(inode, offset + len);
2200 if (error)
2201 goto out;
2202
40e041a2
DH
2203 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2204 error = -EPERM;
2205 goto out;
2206 }
2207
e2d12e22
HD
2208 start = offset >> PAGE_CACHE_SHIFT;
2209 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2210 /* Try to avoid a swapstorm if len is impossible to satisfy */
2211 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2212 error = -ENOSPC;
2213 goto out;
83e4fa9c
HD
2214 }
2215
8e205f77 2216 shmem_falloc.waitq = NULL;
1aac1400
HD
2217 shmem_falloc.start = start;
2218 shmem_falloc.next = start;
2219 shmem_falloc.nr_falloced = 0;
2220 shmem_falloc.nr_unswapped = 0;
2221 spin_lock(&inode->i_lock);
2222 inode->i_private = &shmem_falloc;
2223 spin_unlock(&inode->i_lock);
2224
e2d12e22
HD
2225 for (index = start; index < end; index++) {
2226 struct page *page;
2227
2228 /*
2229 * Good, the fallocate(2) manpage permits EINTR: we may have
2230 * been interrupted because we are using up too much memory.
2231 */
2232 if (signal_pending(current))
2233 error = -EINTR;
1aac1400
HD
2234 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2235 error = -ENOMEM;
e2d12e22 2236 else
1635f6a7 2237 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2238 NULL);
2239 if (error) {
1635f6a7
HD
2240 /* Remove the !PageUptodate pages we added */
2241 shmem_undo_range(inode,
2242 (loff_t)start << PAGE_CACHE_SHIFT,
2243 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2244 goto undone;
e2d12e22
HD
2245 }
2246
1aac1400
HD
2247 /*
2248 * Inform shmem_writepage() how far we have reached.
2249 * No need for lock or barrier: we have the page lock.
2250 */
2251 shmem_falloc.next++;
2252 if (!PageUptodate(page))
2253 shmem_falloc.nr_falloced++;
2254
e2d12e22 2255 /*
1635f6a7
HD
2256 * If !PageUptodate, leave it that way so that freeable pages
2257 * can be recognized if we need to rollback on error later.
2258 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2259 * than free the pages we are allocating (and SGP_CACHE pages
2260 * might still be clean: we now need to mark those dirty too).
2261 */
2262 set_page_dirty(page);
2263 unlock_page(page);
2264 page_cache_release(page);
2265 cond_resched();
2266 }
2267
2268 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2269 i_size_write(inode, offset + len);
e2d12e22 2270 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2271undone:
2272 spin_lock(&inode->i_lock);
2273 inode->i_private = NULL;
2274 spin_unlock(&inode->i_lock);
e2d12e22 2275out:
83e4fa9c
HD
2276 mutex_unlock(&inode->i_mutex);
2277 return error;
2278}
2279
726c3342 2280static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2281{
726c3342 2282 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2283
2284 buf->f_type = TMPFS_MAGIC;
2285 buf->f_bsize = PAGE_CACHE_SIZE;
2286 buf->f_namelen = NAME_MAX;
0edd73b3 2287 if (sbinfo->max_blocks) {
1da177e4 2288 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2289 buf->f_bavail =
2290 buf->f_bfree = sbinfo->max_blocks -
2291 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2292 }
2293 if (sbinfo->max_inodes) {
1da177e4
LT
2294 buf->f_files = sbinfo->max_inodes;
2295 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2296 }
2297 /* else leave those fields 0 like simple_statfs */
2298 return 0;
2299}
2300
2301/*
2302 * File creation. Allocate an inode, and we're done..
2303 */
2304static int
1a67aafb 2305shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2306{
0b0a0806 2307 struct inode *inode;
1da177e4
LT
2308 int error = -ENOSPC;
2309
454abafe 2310 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2311 if (inode) {
feda821e
CH
2312 error = simple_acl_create(dir, inode);
2313 if (error)
2314 goto out_iput;
2a7dba39 2315 error = security_inode_init_security(inode, dir,
9d8f13ba 2316 &dentry->d_name,
6d9d88d0 2317 shmem_initxattrs, NULL);
feda821e
CH
2318 if (error && error != -EOPNOTSUPP)
2319 goto out_iput;
37ec43cd 2320
718deb6b 2321 error = 0;
1da177e4
LT
2322 dir->i_size += BOGO_DIRENT_SIZE;
2323 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2324 d_instantiate(dentry, inode);
2325 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2326 }
2327 return error;
feda821e
CH
2328out_iput:
2329 iput(inode);
2330 return error;
1da177e4
LT
2331}
2332
60545d0d
AV
2333static int
2334shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2335{
2336 struct inode *inode;
2337 int error = -ENOSPC;
2338
2339 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2340 if (inode) {
2341 error = security_inode_init_security(inode, dir,
2342 NULL,
2343 shmem_initxattrs, NULL);
feda821e
CH
2344 if (error && error != -EOPNOTSUPP)
2345 goto out_iput;
2346 error = simple_acl_create(dir, inode);
2347 if (error)
2348 goto out_iput;
60545d0d
AV
2349 d_tmpfile(dentry, inode);
2350 }
2351 return error;
feda821e
CH
2352out_iput:
2353 iput(inode);
2354 return error;
60545d0d
AV
2355}
2356
18bb1db3 2357static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2358{
2359 int error;
2360
2361 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2362 return error;
d8c76e6f 2363 inc_nlink(dir);
1da177e4
LT
2364 return 0;
2365}
2366
4acdaf27 2367static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2368 bool excl)
1da177e4
LT
2369{
2370 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2371}
2372
2373/*
2374 * Link a file..
2375 */
2376static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377{
75c3cfa8 2378 struct inode *inode = d_inode(old_dentry);
5b04c689 2379 int ret;
1da177e4
LT
2380
2381 /*
2382 * No ordinary (disk based) filesystem counts links as inodes;
2383 * but each new link needs a new dentry, pinning lowmem, and
2384 * tmpfs dentries cannot be pruned until they are unlinked.
2385 */
5b04c689
PE
2386 ret = shmem_reserve_inode(inode->i_sb);
2387 if (ret)
2388 goto out;
1da177e4
LT
2389
2390 dir->i_size += BOGO_DIRENT_SIZE;
2391 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2392 inc_nlink(inode);
7de9c6ee 2393 ihold(inode); /* New dentry reference */
1da177e4
LT
2394 dget(dentry); /* Extra pinning count for the created dentry */
2395 d_instantiate(dentry, inode);
5b04c689
PE
2396out:
2397 return ret;
1da177e4
LT
2398}
2399
2400static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2401{
75c3cfa8 2402 struct inode *inode = d_inode(dentry);
1da177e4 2403
5b04c689
PE
2404 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2405 shmem_free_inode(inode->i_sb);
1da177e4
LT
2406
2407 dir->i_size -= BOGO_DIRENT_SIZE;
2408 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2409 drop_nlink(inode);
1da177e4
LT
2410 dput(dentry); /* Undo the count from "create" - this does all the work */
2411 return 0;
2412}
2413
2414static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2415{
2416 if (!simple_empty(dentry))
2417 return -ENOTEMPTY;
2418
75c3cfa8 2419 drop_nlink(d_inode(dentry));
9a53c3a7 2420 drop_nlink(dir);
1da177e4
LT
2421 return shmem_unlink(dir, dentry);
2422}
2423
37456771
MS
2424static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2425{
e36cb0b8
DH
2426 bool old_is_dir = d_is_dir(old_dentry);
2427 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2428
2429 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2430 if (old_is_dir) {
2431 drop_nlink(old_dir);
2432 inc_nlink(new_dir);
2433 } else {
2434 drop_nlink(new_dir);
2435 inc_nlink(old_dir);
2436 }
2437 }
2438 old_dir->i_ctime = old_dir->i_mtime =
2439 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2440 d_inode(old_dentry)->i_ctime =
2441 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2442
2443 return 0;
2444}
2445
46fdb794
MS
2446static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2447{
2448 struct dentry *whiteout;
2449 int error;
2450
2451 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2452 if (!whiteout)
2453 return -ENOMEM;
2454
2455 error = shmem_mknod(old_dir, whiteout,
2456 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2457 dput(whiteout);
2458 if (error)
2459 return error;
2460
2461 /*
2462 * Cheat and hash the whiteout while the old dentry is still in
2463 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2464 *
2465 * d_lookup() will consistently find one of them at this point,
2466 * not sure which one, but that isn't even important.
2467 */
2468 d_rehash(whiteout);
2469 return 0;
2470}
2471
1da177e4
LT
2472/*
2473 * The VFS layer already does all the dentry stuff for rename,
2474 * we just have to decrement the usage count for the target if
2475 * it exists so that the VFS layer correctly free's it when it
2476 * gets overwritten.
2477 */
3b69ff51 2478static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2479{
75c3cfa8 2480 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2481 int they_are_dirs = S_ISDIR(inode->i_mode);
2482
46fdb794 2483 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2484 return -EINVAL;
2485
37456771
MS
2486 if (flags & RENAME_EXCHANGE)
2487 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2488
1da177e4
LT
2489 if (!simple_empty(new_dentry))
2490 return -ENOTEMPTY;
2491
46fdb794
MS
2492 if (flags & RENAME_WHITEOUT) {
2493 int error;
2494
2495 error = shmem_whiteout(old_dir, old_dentry);
2496 if (error)
2497 return error;
2498 }
2499
75c3cfa8 2500 if (d_really_is_positive(new_dentry)) {
1da177e4 2501 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2502 if (they_are_dirs) {
75c3cfa8 2503 drop_nlink(d_inode(new_dentry));
9a53c3a7 2504 drop_nlink(old_dir);
b928095b 2505 }
1da177e4 2506 } else if (they_are_dirs) {
9a53c3a7 2507 drop_nlink(old_dir);
d8c76e6f 2508 inc_nlink(new_dir);
1da177e4
LT
2509 }
2510
2511 old_dir->i_size -= BOGO_DIRENT_SIZE;
2512 new_dir->i_size += BOGO_DIRENT_SIZE;
2513 old_dir->i_ctime = old_dir->i_mtime =
2514 new_dir->i_ctime = new_dir->i_mtime =
2515 inode->i_ctime = CURRENT_TIME;
2516 return 0;
2517}
2518
2519static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2520{
2521 int error;
2522 int len;
2523 struct inode *inode;
9276aad6 2524 struct page *page;
1da177e4
LT
2525 struct shmem_inode_info *info;
2526
2527 len = strlen(symname) + 1;
2528 if (len > PAGE_CACHE_SIZE)
2529 return -ENAMETOOLONG;
2530
454abafe 2531 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2532 if (!inode)
2533 return -ENOSPC;
2534
9d8f13ba 2535 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2536 shmem_initxattrs, NULL);
570bc1c2
SS
2537 if (error) {
2538 if (error != -EOPNOTSUPP) {
2539 iput(inode);
2540 return error;
2541 }
2542 error = 0;
2543 }
2544
1da177e4
LT
2545 info = SHMEM_I(inode);
2546 inode->i_size = len-1;
69f07ec9
HD
2547 if (len <= SHORT_SYMLINK_LEN) {
2548 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2549 if (!info->symlink) {
2550 iput(inode);
2551 return -ENOMEM;
2552 }
2553 inode->i_op = &shmem_short_symlink_operations;
60380f19 2554 inode->i_link = info->symlink;
1da177e4 2555 } else {
e8ecde25 2556 inode_nohighmem(inode);
1da177e4
LT
2557 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2558 if (error) {
2559 iput(inode);
2560 return error;
2561 }
14fcc23f 2562 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2563 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 2564 memcpy(page_address(page), symname, len);
ec9516fb 2565 SetPageUptodate(page);
1da177e4 2566 set_page_dirty(page);
6746aff7 2567 unlock_page(page);
1da177e4
LT
2568 page_cache_release(page);
2569 }
1da177e4
LT
2570 dir->i_size += BOGO_DIRENT_SIZE;
2571 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2572 d_instantiate(dentry, inode);
2573 dget(dentry);
2574 return 0;
2575}
2576
fceef393 2577static void shmem_put_link(void *arg)
1da177e4 2578{
fceef393
AV
2579 mark_page_accessed(arg);
2580 put_page(arg);
1da177e4
LT
2581}
2582
6b255391 2583static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
2584 struct inode *inode,
2585 struct delayed_call *done)
1da177e4 2586{
1da177e4 2587 struct page *page = NULL;
6b255391 2588 int error;
6a6c9904
AV
2589 if (!dentry) {
2590 page = find_get_page(inode->i_mapping, 0);
2591 if (!page)
2592 return ERR_PTR(-ECHILD);
2593 if (!PageUptodate(page)) {
2594 put_page(page);
2595 return ERR_PTR(-ECHILD);
2596 }
2597 } else {
2598 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2599 if (error)
2600 return ERR_PTR(error);
2601 unlock_page(page);
2602 }
fceef393 2603 set_delayed_call(done, shmem_put_link, page);
21fc61c7 2604 return page_address(page);
1da177e4
LT
2605}
2606
b09e0fa4 2607#ifdef CONFIG_TMPFS_XATTR
46711810 2608/*
b09e0fa4
EP
2609 * Superblocks without xattr inode operations may get some security.* xattr
2610 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2611 * like ACLs, we also need to implement the security.* handlers at
2612 * filesystem level, though.
2613 */
2614
6d9d88d0
JS
2615/*
2616 * Callback for security_inode_init_security() for acquiring xattrs.
2617 */
2618static int shmem_initxattrs(struct inode *inode,
2619 const struct xattr *xattr_array,
2620 void *fs_info)
2621{
2622 struct shmem_inode_info *info = SHMEM_I(inode);
2623 const struct xattr *xattr;
38f38657 2624 struct simple_xattr *new_xattr;
6d9d88d0
JS
2625 size_t len;
2626
2627 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2628 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2629 if (!new_xattr)
2630 return -ENOMEM;
2631
2632 len = strlen(xattr->name) + 1;
2633 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2634 GFP_KERNEL);
2635 if (!new_xattr->name) {
2636 kfree(new_xattr);
2637 return -ENOMEM;
2638 }
2639
2640 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2641 XATTR_SECURITY_PREFIX_LEN);
2642 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2643 xattr->name, len);
2644
38f38657 2645 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2646 }
2647
2648 return 0;
2649}
2650
aa7c5241
AG
2651static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2652 struct dentry *dentry, const char *name,
2653 void *buffer, size_t size)
b09e0fa4 2654{
75c3cfa8 2655 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2656
aa7c5241 2657 name = xattr_full_name(handler, name);
38f38657 2658 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2659}
2660
aa7c5241
AG
2661static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2662 struct dentry *dentry, const char *name,
2663 const void *value, size_t size, int flags)
b09e0fa4 2664{
75c3cfa8 2665 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2666
aa7c5241 2667 name = xattr_full_name(handler, name);
38f38657 2668 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2669}
2670
aa7c5241
AG
2671static const struct xattr_handler shmem_security_xattr_handler = {
2672 .prefix = XATTR_SECURITY_PREFIX,
2673 .get = shmem_xattr_handler_get,
2674 .set = shmem_xattr_handler_set,
2675};
b09e0fa4 2676
aa7c5241
AG
2677static const struct xattr_handler shmem_trusted_xattr_handler = {
2678 .prefix = XATTR_TRUSTED_PREFIX,
2679 .get = shmem_xattr_handler_get,
2680 .set = shmem_xattr_handler_set,
2681};
b09e0fa4 2682
aa7c5241
AG
2683static const struct xattr_handler *shmem_xattr_handlers[] = {
2684#ifdef CONFIG_TMPFS_POSIX_ACL
2685 &posix_acl_access_xattr_handler,
2686 &posix_acl_default_xattr_handler,
2687#endif
2688 &shmem_security_xattr_handler,
2689 &shmem_trusted_xattr_handler,
2690 NULL
2691};
b09e0fa4
EP
2692
2693static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2694{
75c3cfa8 2695 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 2696 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
2697}
2698#endif /* CONFIG_TMPFS_XATTR */
2699
69f07ec9 2700static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2701 .readlink = generic_readlink,
6b255391 2702 .get_link = simple_get_link,
b09e0fa4 2703#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2704 .setxattr = generic_setxattr,
2705 .getxattr = generic_getxattr,
b09e0fa4 2706 .listxattr = shmem_listxattr,
aa7c5241 2707 .removexattr = generic_removexattr,
b09e0fa4
EP
2708#endif
2709};
2710
2711static const struct inode_operations shmem_symlink_inode_operations = {
2712 .readlink = generic_readlink,
6b255391 2713 .get_link = shmem_get_link,
b09e0fa4 2714#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2715 .setxattr = generic_setxattr,
2716 .getxattr = generic_getxattr,
b09e0fa4 2717 .listxattr = shmem_listxattr,
aa7c5241 2718 .removexattr = generic_removexattr,
39f0247d 2719#endif
b09e0fa4 2720};
39f0247d 2721
91828a40
DG
2722static struct dentry *shmem_get_parent(struct dentry *child)
2723{
2724 return ERR_PTR(-ESTALE);
2725}
2726
2727static int shmem_match(struct inode *ino, void *vfh)
2728{
2729 __u32 *fh = vfh;
2730 __u64 inum = fh[2];
2731 inum = (inum << 32) | fh[1];
2732 return ino->i_ino == inum && fh[0] == ino->i_generation;
2733}
2734
480b116c
CH
2735static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2736 struct fid *fid, int fh_len, int fh_type)
91828a40 2737{
91828a40 2738 struct inode *inode;
480b116c 2739 struct dentry *dentry = NULL;
35c2a7f4 2740 u64 inum;
480b116c
CH
2741
2742 if (fh_len < 3)
2743 return NULL;
91828a40 2744
35c2a7f4
HD
2745 inum = fid->raw[2];
2746 inum = (inum << 32) | fid->raw[1];
2747
480b116c
CH
2748 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2749 shmem_match, fid->raw);
91828a40 2750 if (inode) {
480b116c 2751 dentry = d_find_alias(inode);
91828a40
DG
2752 iput(inode);
2753 }
2754
480b116c 2755 return dentry;
91828a40
DG
2756}
2757
b0b0382b
AV
2758static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2759 struct inode *parent)
91828a40 2760{
5fe0c237
AK
2761 if (*len < 3) {
2762 *len = 3;
94e07a75 2763 return FILEID_INVALID;
5fe0c237 2764 }
91828a40 2765
1d3382cb 2766 if (inode_unhashed(inode)) {
91828a40
DG
2767 /* Unfortunately insert_inode_hash is not idempotent,
2768 * so as we hash inodes here rather than at creation
2769 * time, we need a lock to ensure we only try
2770 * to do it once
2771 */
2772 static DEFINE_SPINLOCK(lock);
2773 spin_lock(&lock);
1d3382cb 2774 if (inode_unhashed(inode))
91828a40
DG
2775 __insert_inode_hash(inode,
2776 inode->i_ino + inode->i_generation);
2777 spin_unlock(&lock);
2778 }
2779
2780 fh[0] = inode->i_generation;
2781 fh[1] = inode->i_ino;
2782 fh[2] = ((__u64)inode->i_ino) >> 32;
2783
2784 *len = 3;
2785 return 1;
2786}
2787
39655164 2788static const struct export_operations shmem_export_ops = {
91828a40 2789 .get_parent = shmem_get_parent,
91828a40 2790 .encode_fh = shmem_encode_fh,
480b116c 2791 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2792};
2793
680d794b
AM
2794static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2795 bool remount)
1da177e4
LT
2796{
2797 char *this_char, *value, *rest;
49cd0a5c 2798 struct mempolicy *mpol = NULL;
8751e039
EB
2799 uid_t uid;
2800 gid_t gid;
1da177e4 2801
b00dc3ad
HD
2802 while (options != NULL) {
2803 this_char = options;
2804 for (;;) {
2805 /*
2806 * NUL-terminate this option: unfortunately,
2807 * mount options form a comma-separated list,
2808 * but mpol's nodelist may also contain commas.
2809 */
2810 options = strchr(options, ',');
2811 if (options == NULL)
2812 break;
2813 options++;
2814 if (!isdigit(*options)) {
2815 options[-1] = '\0';
2816 break;
2817 }
2818 }
1da177e4
LT
2819 if (!*this_char)
2820 continue;
2821 if ((value = strchr(this_char,'=')) != NULL) {
2822 *value++ = 0;
2823 } else {
2824 printk(KERN_ERR
2825 "tmpfs: No value for mount option '%s'\n",
2826 this_char);
49cd0a5c 2827 goto error;
1da177e4
LT
2828 }
2829
2830 if (!strcmp(this_char,"size")) {
2831 unsigned long long size;
2832 size = memparse(value,&rest);
2833 if (*rest == '%') {
2834 size <<= PAGE_SHIFT;
2835 size *= totalram_pages;
2836 do_div(size, 100);
2837 rest++;
2838 }
2839 if (*rest)
2840 goto bad_val;
680d794b
AM
2841 sbinfo->max_blocks =
2842 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2843 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2844 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2845 if (*rest)
2846 goto bad_val;
2847 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2848 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2849 if (*rest)
2850 goto bad_val;
2851 } else if (!strcmp(this_char,"mode")) {
680d794b 2852 if (remount)
1da177e4 2853 continue;
680d794b 2854 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2855 if (*rest)
2856 goto bad_val;
2857 } else if (!strcmp(this_char,"uid")) {
680d794b 2858 if (remount)
1da177e4 2859 continue;
8751e039 2860 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2861 if (*rest)
2862 goto bad_val;
8751e039
EB
2863 sbinfo->uid = make_kuid(current_user_ns(), uid);
2864 if (!uid_valid(sbinfo->uid))
2865 goto bad_val;
1da177e4 2866 } else if (!strcmp(this_char,"gid")) {
680d794b 2867 if (remount)
1da177e4 2868 continue;
8751e039 2869 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2870 if (*rest)
2871 goto bad_val;
8751e039
EB
2872 sbinfo->gid = make_kgid(current_user_ns(), gid);
2873 if (!gid_valid(sbinfo->gid))
2874 goto bad_val;
7339ff83 2875 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2876 mpol_put(mpol);
2877 mpol = NULL;
2878 if (mpol_parse_str(value, &mpol))
7339ff83 2879 goto bad_val;
1da177e4
LT
2880 } else {
2881 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2882 this_char);
49cd0a5c 2883 goto error;
1da177e4
LT
2884 }
2885 }
49cd0a5c 2886 sbinfo->mpol = mpol;
1da177e4
LT
2887 return 0;
2888
2889bad_val:
2890 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2891 value, this_char);
49cd0a5c
GT
2892error:
2893 mpol_put(mpol);
1da177e4
LT
2894 return 1;
2895
2896}
2897
2898static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2899{
2900 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2901 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2902 unsigned long inodes;
2903 int error = -EINVAL;
2904
5f00110f 2905 config.mpol = NULL;
680d794b 2906 if (shmem_parse_options(data, &config, true))
0edd73b3 2907 return error;
1da177e4 2908
0edd73b3 2909 spin_lock(&sbinfo->stat_lock);
0edd73b3 2910 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2911 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2912 goto out;
680d794b 2913 if (config.max_inodes < inodes)
0edd73b3
HD
2914 goto out;
2915 /*
54af6042 2916 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2917 * but we must separately disallow unlimited->limited, because
2918 * in that case we have no record of how much is already in use.
2919 */
680d794b 2920 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2921 goto out;
680d794b 2922 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2923 goto out;
2924
2925 error = 0;
680d794b 2926 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2927 sbinfo->max_inodes = config.max_inodes;
2928 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2929
5f00110f
GT
2930 /*
2931 * Preserve previous mempolicy unless mpol remount option was specified.
2932 */
2933 if (config.mpol) {
2934 mpol_put(sbinfo->mpol);
2935 sbinfo->mpol = config.mpol; /* transfers initial ref */
2936 }
0edd73b3
HD
2937out:
2938 spin_unlock(&sbinfo->stat_lock);
2939 return error;
1da177e4 2940}
680d794b 2941
34c80b1d 2942static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2943{
34c80b1d 2944 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2945
2946 if (sbinfo->max_blocks != shmem_default_max_blocks())
2947 seq_printf(seq, ",size=%luk",
2948 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2949 if (sbinfo->max_inodes != shmem_default_max_inodes())
2950 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2951 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2952 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2953 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2954 seq_printf(seq, ",uid=%u",
2955 from_kuid_munged(&init_user_ns, sbinfo->uid));
2956 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2957 seq_printf(seq, ",gid=%u",
2958 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2959 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2960 return 0;
2961}
9183df25
DH
2962
2963#define MFD_NAME_PREFIX "memfd:"
2964#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2965#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2966
2967#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2968
2969SYSCALL_DEFINE2(memfd_create,
2970 const char __user *, uname,
2971 unsigned int, flags)
2972{
2973 struct shmem_inode_info *info;
2974 struct file *file;
2975 int fd, error;
2976 char *name;
2977 long len;
2978
2979 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2980 return -EINVAL;
2981
2982 /* length includes terminating zero */
2983 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2984 if (len <= 0)
2985 return -EFAULT;
2986 if (len > MFD_NAME_MAX_LEN + 1)
2987 return -EINVAL;
2988
2989 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2990 if (!name)
2991 return -ENOMEM;
2992
2993 strcpy(name, MFD_NAME_PREFIX);
2994 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2995 error = -EFAULT;
2996 goto err_name;
2997 }
2998
2999 /* terminating-zero may have changed after strnlen_user() returned */
3000 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3001 error = -EFAULT;
3002 goto err_name;
3003 }
3004
3005 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3006 if (fd < 0) {
3007 error = fd;
3008 goto err_name;
3009 }
3010
3011 file = shmem_file_setup(name, 0, VM_NORESERVE);
3012 if (IS_ERR(file)) {
3013 error = PTR_ERR(file);
3014 goto err_fd;
3015 }
3016 info = SHMEM_I(file_inode(file));
3017 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3018 file->f_flags |= O_RDWR | O_LARGEFILE;
3019 if (flags & MFD_ALLOW_SEALING)
3020 info->seals &= ~F_SEAL_SEAL;
3021
3022 fd_install(fd, file);
3023 kfree(name);
3024 return fd;
3025
3026err_fd:
3027 put_unused_fd(fd);
3028err_name:
3029 kfree(name);
3030 return error;
3031}
3032
680d794b 3033#endif /* CONFIG_TMPFS */
1da177e4
LT
3034
3035static void shmem_put_super(struct super_block *sb)
3036{
602586a8
HD
3037 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3038
3039 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3040 mpol_put(sbinfo->mpol);
602586a8 3041 kfree(sbinfo);
1da177e4
LT
3042 sb->s_fs_info = NULL;
3043}
3044
2b2af54a 3045int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3046{
3047 struct inode *inode;
0edd73b3 3048 struct shmem_sb_info *sbinfo;
680d794b
AM
3049 int err = -ENOMEM;
3050
3051 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3052 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3053 L1_CACHE_BYTES), GFP_KERNEL);
3054 if (!sbinfo)
3055 return -ENOMEM;
3056
680d794b 3057 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3058 sbinfo->uid = current_fsuid();
3059 sbinfo->gid = current_fsgid();
680d794b 3060 sb->s_fs_info = sbinfo;
1da177e4 3061
0edd73b3 3062#ifdef CONFIG_TMPFS
1da177e4
LT
3063 /*
3064 * Per default we only allow half of the physical ram per
3065 * tmpfs instance, limiting inodes to one per page of lowmem;
3066 * but the internal instance is left unlimited.
3067 */
ca4e0519 3068 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3069 sbinfo->max_blocks = shmem_default_max_blocks();
3070 sbinfo->max_inodes = shmem_default_max_inodes();
3071 if (shmem_parse_options(data, sbinfo, false)) {
3072 err = -EINVAL;
3073 goto failed;
3074 }
ca4e0519
AV
3075 } else {
3076 sb->s_flags |= MS_NOUSER;
1da177e4 3077 }
91828a40 3078 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3079 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3080#else
3081 sb->s_flags |= MS_NOUSER;
3082#endif
3083
0edd73b3 3084 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3085 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3086 goto failed;
680d794b 3087 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3088
285b2c4f 3089 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3090 sb->s_blocksize = PAGE_CACHE_SIZE;
3091 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3092 sb->s_magic = TMPFS_MAGIC;
3093 sb->s_op = &shmem_ops;
cfd95a9c 3094 sb->s_time_gran = 1;
b09e0fa4 3095#ifdef CONFIG_TMPFS_XATTR
39f0247d 3096 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3097#endif
3098#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3099 sb->s_flags |= MS_POSIXACL;
3100#endif
0edd73b3 3101
454abafe 3102 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3103 if (!inode)
3104 goto failed;
680d794b
AM
3105 inode->i_uid = sbinfo->uid;
3106 inode->i_gid = sbinfo->gid;
318ceed0
AV
3107 sb->s_root = d_make_root(inode);
3108 if (!sb->s_root)
48fde701 3109 goto failed;
1da177e4
LT
3110 return 0;
3111
1da177e4
LT
3112failed:
3113 shmem_put_super(sb);
3114 return err;
3115}
3116
fcc234f8 3117static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3118
3119static struct inode *shmem_alloc_inode(struct super_block *sb)
3120{
41ffe5d5
HD
3121 struct shmem_inode_info *info;
3122 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3123 if (!info)
1da177e4 3124 return NULL;
41ffe5d5 3125 return &info->vfs_inode;
1da177e4
LT
3126}
3127
41ffe5d5 3128static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3129{
3130 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
3131 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3132}
3133
1da177e4
LT
3134static void shmem_destroy_inode(struct inode *inode)
3135{
09208d15 3136 if (S_ISREG(inode->i_mode))
1da177e4 3137 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3138 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3139}
3140
41ffe5d5 3141static void shmem_init_inode(void *foo)
1da177e4 3142{
41ffe5d5
HD
3143 struct shmem_inode_info *info = foo;
3144 inode_init_once(&info->vfs_inode);
1da177e4
LT
3145}
3146
41ffe5d5 3147static int shmem_init_inodecache(void)
1da177e4
LT
3148{
3149 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3150 sizeof(struct shmem_inode_info),
5d097056 3151 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3152 return 0;
3153}
3154
41ffe5d5 3155static void shmem_destroy_inodecache(void)
1da177e4 3156{
1a1d92c1 3157 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3158}
3159
f5e54d6e 3160static const struct address_space_operations shmem_aops = {
1da177e4 3161 .writepage = shmem_writepage,
76719325 3162 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3163#ifdef CONFIG_TMPFS
800d15a5
NP
3164 .write_begin = shmem_write_begin,
3165 .write_end = shmem_write_end,
1da177e4 3166#endif
1c93923c 3167#ifdef CONFIG_MIGRATION
304dbdb7 3168 .migratepage = migrate_page,
1c93923c 3169#endif
aa261f54 3170 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3171};
3172
15ad7cdc 3173static const struct file_operations shmem_file_operations = {
1da177e4
LT
3174 .mmap = shmem_mmap,
3175#ifdef CONFIG_TMPFS
220f2ac9 3176 .llseek = shmem_file_llseek,
2ba5bbed 3177 .read_iter = shmem_file_read_iter,
8174202b 3178 .write_iter = generic_file_write_iter,
1b061d92 3179 .fsync = noop_fsync,
708e3508 3180 .splice_read = shmem_file_splice_read,
f6cb85d0 3181 .splice_write = iter_file_splice_write,
83e4fa9c 3182 .fallocate = shmem_fallocate,
1da177e4
LT
3183#endif
3184};
3185
92e1d5be 3186static const struct inode_operations shmem_inode_operations = {
44a30220 3187 .getattr = shmem_getattr,
94c1e62d 3188 .setattr = shmem_setattr,
b09e0fa4 3189#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3190 .setxattr = generic_setxattr,
3191 .getxattr = generic_getxattr,
b09e0fa4 3192 .listxattr = shmem_listxattr,
aa7c5241 3193 .removexattr = generic_removexattr,
feda821e 3194 .set_acl = simple_set_acl,
b09e0fa4 3195#endif
1da177e4
LT
3196};
3197
92e1d5be 3198static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3199#ifdef CONFIG_TMPFS
3200 .create = shmem_create,
3201 .lookup = simple_lookup,
3202 .link = shmem_link,
3203 .unlink = shmem_unlink,
3204 .symlink = shmem_symlink,
3205 .mkdir = shmem_mkdir,
3206 .rmdir = shmem_rmdir,
3207 .mknod = shmem_mknod,
3b69ff51 3208 .rename2 = shmem_rename2,
60545d0d 3209 .tmpfile = shmem_tmpfile,
1da177e4 3210#endif
b09e0fa4 3211#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3212 .setxattr = generic_setxattr,
3213 .getxattr = generic_getxattr,
b09e0fa4 3214 .listxattr = shmem_listxattr,
aa7c5241 3215 .removexattr = generic_removexattr,
b09e0fa4 3216#endif
39f0247d 3217#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3218 .setattr = shmem_setattr,
feda821e 3219 .set_acl = simple_set_acl,
39f0247d
AG
3220#endif
3221};
3222
92e1d5be 3223static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3224#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3225 .setxattr = generic_setxattr,
3226 .getxattr = generic_getxattr,
b09e0fa4 3227 .listxattr = shmem_listxattr,
aa7c5241 3228 .removexattr = generic_removexattr,
b09e0fa4 3229#endif
39f0247d 3230#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3231 .setattr = shmem_setattr,
feda821e 3232 .set_acl = simple_set_acl,
39f0247d 3233#endif
1da177e4
LT
3234};
3235
759b9775 3236static const struct super_operations shmem_ops = {
1da177e4
LT
3237 .alloc_inode = shmem_alloc_inode,
3238 .destroy_inode = shmem_destroy_inode,
3239#ifdef CONFIG_TMPFS
3240 .statfs = shmem_statfs,
3241 .remount_fs = shmem_remount_fs,
680d794b 3242 .show_options = shmem_show_options,
1da177e4 3243#endif
1f895f75 3244 .evict_inode = shmem_evict_inode,
1da177e4
LT
3245 .drop_inode = generic_delete_inode,
3246 .put_super = shmem_put_super,
3247};
3248
f0f37e2f 3249static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3250 .fault = shmem_fault,
d7c17551 3251 .map_pages = filemap_map_pages,
1da177e4
LT
3252#ifdef CONFIG_NUMA
3253 .set_policy = shmem_set_policy,
3254 .get_policy = shmem_get_policy,
3255#endif
3256};
3257
3c26ff6e
AV
3258static struct dentry *shmem_mount(struct file_system_type *fs_type,
3259 int flags, const char *dev_name, void *data)
1da177e4 3260{
3c26ff6e 3261 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3262}
3263
41ffe5d5 3264static struct file_system_type shmem_fs_type = {
1da177e4
LT
3265 .owner = THIS_MODULE,
3266 .name = "tmpfs",
3c26ff6e 3267 .mount = shmem_mount,
1da177e4 3268 .kill_sb = kill_litter_super,
2b8576cb 3269 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3270};
1da177e4 3271
41ffe5d5 3272int __init shmem_init(void)
1da177e4
LT
3273{
3274 int error;
3275
16203a7a
RL
3276 /* If rootfs called this, don't re-init */
3277 if (shmem_inode_cachep)
3278 return 0;
3279
41ffe5d5 3280 error = shmem_init_inodecache();
1da177e4
LT
3281 if (error)
3282 goto out3;
3283
41ffe5d5 3284 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
3285 if (error) {
3286 printk(KERN_ERR "Could not register tmpfs\n");
3287 goto out2;
3288 }
95dc112a 3289
ca4e0519 3290 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3291 if (IS_ERR(shm_mnt)) {
3292 error = PTR_ERR(shm_mnt);
3293 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3294 goto out1;
3295 }
3296 return 0;
3297
3298out1:
41ffe5d5 3299 unregister_filesystem(&shmem_fs_type);
1da177e4 3300out2:
41ffe5d5 3301 shmem_destroy_inodecache();
1da177e4
LT
3302out3:
3303 shm_mnt = ERR_PTR(error);
3304 return error;
3305}
853ac43a
MM
3306
3307#else /* !CONFIG_SHMEM */
3308
3309/*
3310 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3311 *
3312 * This is intended for small system where the benefits of the full
3313 * shmem code (swap-backed and resource-limited) are outweighed by
3314 * their complexity. On systems without swap this code should be
3315 * effectively equivalent, but much lighter weight.
3316 */
3317
41ffe5d5 3318static struct file_system_type shmem_fs_type = {
853ac43a 3319 .name = "tmpfs",
3c26ff6e 3320 .mount = ramfs_mount,
853ac43a 3321 .kill_sb = kill_litter_super,
2b8576cb 3322 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3323};
3324
41ffe5d5 3325int __init shmem_init(void)
853ac43a 3326{
41ffe5d5 3327 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3328
41ffe5d5 3329 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3330 BUG_ON(IS_ERR(shm_mnt));
3331
3332 return 0;
3333}
3334
41ffe5d5 3335int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3336{
3337 return 0;
3338}
3339
3f96b79a
HD
3340int shmem_lock(struct file *file, int lock, struct user_struct *user)
3341{
3342 return 0;
3343}
3344
24513264
HD
3345void shmem_unlock_mapping(struct address_space *mapping)
3346{
3347}
3348
41ffe5d5 3349void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3350{
41ffe5d5 3351 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3352}
3353EXPORT_SYMBOL_GPL(shmem_truncate_range);
3354
0b0a0806
HD
3355#define shmem_vm_ops generic_file_vm_ops
3356#define shmem_file_operations ramfs_file_operations
454abafe 3357#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3358#define shmem_acct_size(flags, size) 0
3359#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3360
3361#endif /* CONFIG_SHMEM */
3362
3363/* common code */
1da177e4 3364
3451538a 3365static struct dentry_operations anon_ops = {
118b2302 3366 .d_dname = simple_dname
3451538a
AV
3367};
3368
c7277090
EP
3369static struct file *__shmem_file_setup(const char *name, loff_t size,
3370 unsigned long flags, unsigned int i_flags)
1da177e4 3371{
6b4d0b27 3372 struct file *res;
1da177e4 3373 struct inode *inode;
2c48b9c4 3374 struct path path;
3451538a 3375 struct super_block *sb;
1da177e4
LT
3376 struct qstr this;
3377
3378 if (IS_ERR(shm_mnt))
6b4d0b27 3379 return ERR_CAST(shm_mnt);
1da177e4 3380
285b2c4f 3381 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3382 return ERR_PTR(-EINVAL);
3383
3384 if (shmem_acct_size(flags, size))
3385 return ERR_PTR(-ENOMEM);
3386
6b4d0b27 3387 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3388 this.name = name;
3389 this.len = strlen(name);
3390 this.hash = 0; /* will go */
3451538a 3391 sb = shm_mnt->mnt_sb;
66ee4b88 3392 path.mnt = mntget(shm_mnt);
3451538a 3393 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3394 if (!path.dentry)
1da177e4 3395 goto put_memory;
3451538a 3396 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3397
6b4d0b27 3398 res = ERR_PTR(-ENOSPC);
3451538a 3399 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3400 if (!inode)
66ee4b88 3401 goto put_memory;
1da177e4 3402
c7277090 3403 inode->i_flags |= i_flags;
2c48b9c4 3404 d_instantiate(path.dentry, inode);
1da177e4 3405 inode->i_size = size;
6d6b77f1 3406 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3407 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3408 if (IS_ERR(res))
66ee4b88 3409 goto put_path;
4b42af81 3410
6b4d0b27 3411 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3412 &shmem_file_operations);
6b4d0b27 3413 if (IS_ERR(res))
66ee4b88 3414 goto put_path;
4b42af81 3415
6b4d0b27 3416 return res;
1da177e4 3417
1da177e4
LT
3418put_memory:
3419 shmem_unacct_size(flags, size);
66ee4b88
KK
3420put_path:
3421 path_put(&path);
6b4d0b27 3422 return res;
1da177e4 3423}
c7277090
EP
3424
3425/**
3426 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3427 * kernel internal. There will be NO LSM permission checks against the
3428 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3429 * higher layer. The users are the big_key and shm implementations. LSM
3430 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3431 * @name: name for dentry (to be seen in /proc/<pid>/maps
3432 * @size: size to be set for the file
3433 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3434 */
3435struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3436{
3437 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3438}
3439
3440/**
3441 * shmem_file_setup - get an unlinked file living in tmpfs
3442 * @name: name for dentry (to be seen in /proc/<pid>/maps
3443 * @size: size to be set for the file
3444 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3445 */
3446struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3447{
3448 return __shmem_file_setup(name, size, flags, 0);
3449}
395e0ddc 3450EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3451
46711810 3452/**
1da177e4 3453 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3454 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3455 */
3456int shmem_zero_setup(struct vm_area_struct *vma)
3457{
3458 struct file *file;
3459 loff_t size = vma->vm_end - vma->vm_start;
3460
66fc1303
HD
3461 /*
3462 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3463 * between XFS directory reading and selinux: since this file is only
3464 * accessible to the user through its mapping, use S_PRIVATE flag to
3465 * bypass file security, in the same way as shmem_kernel_file_setup().
3466 */
3467 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3468 if (IS_ERR(file))
3469 return PTR_ERR(file);
3470
3471 if (vma->vm_file)
3472 fput(vma->vm_file);
3473 vma->vm_file = file;
3474 vma->vm_ops = &shmem_vm_ops;
3475 return 0;
3476}
d9d90e5e
HD
3477
3478/**
3479 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3480 * @mapping: the page's address_space
3481 * @index: the page index
3482 * @gfp: the page allocator flags to use if allocating
3483 *
3484 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3485 * with any new page allocations done using the specified allocation flags.
3486 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3487 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3488 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3489 *
68da9f05
HD
3490 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3491 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3492 */
3493struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3494 pgoff_t index, gfp_t gfp)
3495{
68da9f05
HD
3496#ifdef CONFIG_SHMEM
3497 struct inode *inode = mapping->host;
9276aad6 3498 struct page *page;
68da9f05
HD
3499 int error;
3500
3501 BUG_ON(mapping->a_ops != &shmem_aops);
3502 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3503 if (error)
3504 page = ERR_PTR(error);
3505 else
3506 unlock_page(page);
3507 return page;
3508#else
3509 /*
3510 * The tiny !SHMEM case uses ramfs without swap
3511 */
d9d90e5e 3512 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3513#endif
d9d90e5e
HD
3514}
3515EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);