]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/shmem.c
Merge tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4 85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
0b5071dd
AV
110struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
ea3271f7 117 bool full_inums;
0b5071dd
AV
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
ea3271f7 123#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
124};
125
b76db735 126#ifdef CONFIG_TMPFS
680d794b
AM
127static unsigned long shmem_default_max_blocks(void)
128{
ca79b0c2 129 return totalram_pages() / 2;
680d794b
AM
130}
131
132static unsigned long shmem_default_max_inodes(void)
133{
ca79b0c2
AK
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 137}
b76db735 138#endif
680d794b 139
bde05d1c
HD
140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
68da9f05 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp,
cfda0526 149 gfp_t gfp, struct vm_area_struct *vma,
2b740303 150 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 151
f3f0e1d2 152int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 153 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
154{
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 157}
1da177e4 158
1da177e4
LT
159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160{
161 return sb->s_fs_info;
162}
163
164/*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170static inline int shmem_acct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 return (flags & VM_NORESERVE) ?
191c5424 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
174}
175
176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177{
0b0a0806 178 if (!(flags & VM_NORESERVE))
1da177e4
LT
179 vm_unacct_memory(VM_ACCT(size));
180}
181
77142517
KK
182static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184{
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193}
194
1da177e4
LT
195/*
196 * ... whereas tmpfs objects are accounted incrementally as
75edd345 197 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
800d8c63 201static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 202{
800d8c63
KS
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
0b0a0806 212 if (flags & VM_NORESERVE)
09cbfeaf 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
214}
215
0f079694
MR
216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217{
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236}
237
238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239{
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246}
247
759b9775 248static const struct super_operations shmem_ops;
f5e54d6e 249static const struct address_space_operations shmem_aops;
15ad7cdc 250static const struct file_operations shmem_file_operations;
92e1d5be
AV
251static const struct inode_operations shmem_inode_operations;
252static const struct inode_operations shmem_dir_inode_operations;
253static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 254static const struct vm_operations_struct shmem_vm_ops;
779750d2 255static struct file_system_type shmem_fs_type;
1da177e4 256
b0506e48
MR
257bool vma_is_shmem(struct vm_area_struct *vma)
258{
259 return vma->vm_ops == &shmem_vm_ops;
260}
261
1da177e4 262static LIST_HEAD(shmem_swaplist);
cb5f7b9a 263static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 264
e809d5f0
CD
265/*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274#define SHMEM_INO_BATCH 1024
275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
276{
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
5b04c689 281 spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
5b04c689 288 }
e809d5f0
CD
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
ea3271f7
CD
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
e809d5f0
CD
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
ea3271f7
CD
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
e809d5f0
CD
304 }
305 *inop = ino;
306 }
5b04c689 307 spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
ea3271f7
CD
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
e809d5f0
CD
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
5b04c689 335 }
e809d5f0 336
5b04c689
PE
337 return 0;
338}
339
340static void shmem_free_inode(struct super_block *sb)
341{
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348}
349
46711810 350/**
41ffe5d5 351 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362static void shmem_recalc_inode(struct inode *inode)
363{
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
54af6042 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 371 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
372 }
373}
374
800d8c63
KS
375bool shmem_charge(struct inode *inode, long pages)
376{
377 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 378 unsigned long flags;
800d8c63 379
0f079694 380 if (!shmem_inode_acct_block(inode, pages))
800d8c63 381 return false;
b1cc94ab 382
aaa52e34
HD
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
4595ef88 386 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
4595ef88 390 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 391
800d8c63
KS
392 return true;
393}
394
395void shmem_uncharge(struct inode *inode, long pages)
396{
397 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 398 unsigned long flags;
800d8c63 399
aaa52e34
HD
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
4595ef88 402 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
4595ef88 406 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 407
0f079694 408 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
409}
410
7a5d0fbb 411/*
62f945b6 412 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 413 */
62f945b6 414static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
415 pgoff_t index, void *expected, void *replacement)
416{
62f945b6 417 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 418 void *item;
7a5d0fbb
HD
419
420 VM_BUG_ON(!expected);
6dbaf22c 421 VM_BUG_ON(!replacement);
62f945b6 422 item = xas_load(&xas);
7a5d0fbb
HD
423 if (item != expected)
424 return -ENOENT;
62f945b6 425 xas_store(&xas, replacement);
7a5d0fbb
HD
426 return 0;
427}
428
d1899228
HD
429/*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438{
a12831bf 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
440}
441
5a6e75f8
KS
442/*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456#define SHMEM_HUGE_NEVER 0
457#define SHMEM_HUGE_ALWAYS 1
458#define SHMEM_HUGE_WITHIN_SIZE 2
459#define SHMEM_HUGE_ADVISE 3
460
461/*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471#define SHMEM_HUGE_DENY (-1)
472#define SHMEM_HUGE_FORCE (-2)
473
396bcc52 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
475/* ifdef here to avoid bloating shmem.o when not necessary */
476
5b9c98f3 477static int shmem_huge __read_mostly;
5a6e75f8 478
e5f2249a 479#if defined(CONFIG_SYSFS)
5a6e75f8
KS
480static int shmem_parse_huge(const char *str)
481{
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495}
e5f2249a 496#endif
5a6e75f8 497
e5f2249a 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
499static const char *shmem_format_huge(int huge)
500{
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518}
f1f5929c 519#endif
5a6e75f8 520
779750d2
KS
521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523{
524 LIST_HEAD(list), *pos, *next;
253fd0f0 525 LIST_HEAD(to_remove);
779750d2
KS
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 552 list_move(&info->shrinklist, &to_remove);
779750d2 553 removed++;
779750d2
KS
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
253fd0f0
KS
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
779750d2
KS
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
b3cd54b2
KS
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
779750d2 579
b3cd54b2 580 page = find_get_page(inode->i_mapping,
779750d2
KS
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
b3cd54b2 585 /* No huge page at the end of the file: nothing to split */
779750d2 586 if (!PageTransHuge(page)) {
779750d2
KS
587 put_page(page);
588 goto drop;
589 }
590
b3cd54b2
KS
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
779750d2
KS
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
b3cd54b2
KS
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
779750d2
KS
610
611 split++;
612drop:
613 list_del_init(&info->shrinklist);
614 removed++;
b3cd54b2 615leave:
779750d2
KS
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625}
626
627static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629{
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636}
637
638static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640{
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643}
396bcc52 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
645
646#define shmem_huge SHMEM_HUGE_DENY
647
779750d2
KS
648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650{
651 return 0;
652}
396bcc52 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 654
89fdcd26
YS
655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656{
396bcc52 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662}
663
46f65ec1
HD
664/*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
3fea5a49
JW
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
46f65ec1 671{
552446a4
MW
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
d8c6546b 674 unsigned long nr = compound_nr(page);
3fea5a49 675 int error;
46f65ec1 676
800d8c63
KS
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 681 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 682
800d8c63 683 page_ref_add(page, nr);
b065b432
HD
684 page->mapping = mapping;
685 page->index = index;
686
4c6355b2 687 if (!PageSwapCache(page)) {
d9eb1ea2 688 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
3fea5a49 695 }
3fea5a49
JW
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
552446a4
MW
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708next:
4101196b 709 xas_store(&xas, page);
552446a4
MW
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
800d8c63 713 }
552446a4 714 if (PageTransHuge(page)) {
800d8c63 715 count_vm_event(THP_FILE_ALLOC);
552446a4 716 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 717 }
800d8c63 718 mapping->nrpages += nr;
0d1c2072
JW
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
721unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
3fea5a49
JW
726 error = xas_error(&xas);
727 goto error;
46f65ec1 728 }
552446a4
MW
729
730 return 0;
3fea5a49
JW
731error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
46f65ec1
HD
735}
736
6922c0c7
HD
737/*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741{
742 struct address_space *mapping = page->mapping;
743 int error;
744
800d8c63
KS
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
b93b0163 747 xa_lock_irq(&mapping->i_pages);
62f945b6 748 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
749 page->mapping = NULL;
750 mapping->nrpages--;
0d1c2072
JW
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 753 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 754 put_page(page);
6922c0c7
HD
755 BUG_ON(error);
756}
757
7a5d0fbb 758/*
c121d3bb 759 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
760 */
761static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763{
6dbaf22c 764 void *old;
7a5d0fbb 765
55f3f7ea 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
7a5d0fbb
HD
771}
772
6a15a370
VB
773/*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 775 * given offsets are swapped out.
6a15a370 776 *
b93b0163 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
48131e03
VB
780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
6a15a370 782{
7ae3424f 783 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 784 struct page *page;
48131e03 785 unsigned long swapped = 0;
6a15a370
VB
786
787 rcu_read_lock();
7ae3424f
MW
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
2cf938aa 790 continue;
3159f943 791 if (xa_is_value(page))
6a15a370
VB
792 swapped++;
793
794 if (need_resched()) {
7ae3424f 795 xas_pause(&xas);
6a15a370 796 cond_resched_rcu();
6a15a370
VB
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803}
804
48131e03
VB
805/*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
b93b0163 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813{
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837}
838
24513264
HD
839/*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842void shmem_unlock_mapping(struct address_space *mapping)
843{
844 struct pagevec pvec;
845 pgoff_t indices[PAGEVEC_SIZE];
846 pgoff_t index = 0;
847
86679820 848 pagevec_init(&pvec);
24513264
HD
849 /*
850 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851 */
852 while (!mapping_unevictable(mapping)) {
853 /*
854 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
856 */
0cd6144a
JW
857 pvec.nr = find_get_entries(mapping, index,
858 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
859 if (!pvec.nr)
860 break;
861 index = indices[pvec.nr - 1] + 1;
0cd6144a 862 pagevec_remove_exceptionals(&pvec);
64e3d12f 863 check_move_unevictable_pages(&pvec);
24513264
HD
864 pagevec_release(&pvec);
865 cond_resched();
866 }
7a5d0fbb
HD
867}
868
71725ed1
HD
869/*
870 * Check whether a hole-punch or truncation needs to split a huge page,
871 * returning true if no split was required, or the split has been successful.
872 *
873 * Eviction (or truncation to 0 size) should never need to split a huge page;
874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875 * head, and then succeeded to trylock on tail.
876 *
877 * A split can only succeed when there are no additional references on the
878 * huge page: so the split below relies upon find_get_entries() having stopped
879 * when it found a subpage of the huge page, without getting further references.
880 */
881static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
882{
883 if (!PageTransCompound(page))
884 return true;
885
886 /* Just proceed to delete a huge page wholly within the range punched */
887 if (PageHead(page) &&
888 page->index >= start && page->index + HPAGE_PMD_NR <= end)
889 return true;
890
891 /* Try to split huge page, so we can truly punch the hole or truncate */
892 return split_huge_page(page) >= 0;
893}
894
7a5d0fbb 895/*
7f4446ee 896 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 898 */
1635f6a7
HD
899static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900 bool unfalloc)
1da177e4 901{
285b2c4f 902 struct address_space *mapping = inode->i_mapping;
1da177e4 903 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
904 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 908 struct pagevec pvec;
7a5d0fbb
HD
909 pgoff_t indices[PAGEVEC_SIZE];
910 long nr_swaps_freed = 0;
285b2c4f 911 pgoff_t index;
bda97eab
HD
912 int i;
913
83e4fa9c
HD
914 if (lend == -1)
915 end = -1; /* unsigned, so actually very big */
bda97eab 916
86679820 917 pagevec_init(&pvec);
bda97eab 918 index = start;
83e4fa9c 919 while (index < end) {
0cd6144a
JW
920 pvec.nr = find_get_entries(mapping, index,
921 min(end - index, (pgoff_t)PAGEVEC_SIZE),
922 pvec.pages, indices);
7a5d0fbb
HD
923 if (!pvec.nr)
924 break;
bda97eab
HD
925 for (i = 0; i < pagevec_count(&pvec); i++) {
926 struct page *page = pvec.pages[i];
927
7a5d0fbb 928 index = indices[i];
83e4fa9c 929 if (index >= end)
bda97eab
HD
930 break;
931
3159f943 932 if (xa_is_value(page)) {
1635f6a7
HD
933 if (unfalloc)
934 continue;
7a5d0fbb
HD
935 nr_swaps_freed += !shmem_free_swap(mapping,
936 index, page);
bda97eab 937 continue;
7a5d0fbb
HD
938 }
939
800d8c63
KS
940 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
941
7a5d0fbb 942 if (!trylock_page(page))
bda97eab 943 continue;
800d8c63 944
71725ed1
HD
945 if ((!unfalloc || !PageUptodate(page)) &&
946 page_mapping(page) == mapping) {
947 VM_BUG_ON_PAGE(PageWriteback(page), page);
948 if (shmem_punch_compound(page, start, end))
1635f6a7 949 truncate_inode_page(mapping, page);
bda97eab 950 }
bda97eab
HD
951 unlock_page(page);
952 }
0cd6144a 953 pagevec_remove_exceptionals(&pvec);
24513264 954 pagevec_release(&pvec);
bda97eab
HD
955 cond_resched();
956 index++;
957 }
1da177e4 958
83e4fa9c 959 if (partial_start) {
bda97eab 960 struct page *page = NULL;
9e18eb29 961 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 962 if (page) {
09cbfeaf 963 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
964 if (start > end) {
965 top = partial_end;
966 partial_end = 0;
967 }
968 zero_user_segment(page, partial_start, top);
969 set_page_dirty(page);
970 unlock_page(page);
09cbfeaf 971 put_page(page);
83e4fa9c
HD
972 }
973 }
974 if (partial_end) {
975 struct page *page = NULL;
9e18eb29 976 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
977 if (page) {
978 zero_user_segment(page, 0, partial_end);
bda97eab
HD
979 set_page_dirty(page);
980 unlock_page(page);
09cbfeaf 981 put_page(page);
bda97eab
HD
982 }
983 }
83e4fa9c
HD
984 if (start >= end)
985 return;
bda97eab
HD
986
987 index = start;
b1a36650 988 while (index < end) {
bda97eab 989 cond_resched();
0cd6144a
JW
990
991 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 992 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 993 pvec.pages, indices);
7a5d0fbb 994 if (!pvec.nr) {
b1a36650
HD
995 /* If all gone or hole-punch or unfalloc, we're done */
996 if (index == start || end != -1)
bda97eab 997 break;
b1a36650 998 /* But if truncating, restart to make sure all gone */
bda97eab
HD
999 index = start;
1000 continue;
1001 }
bda97eab
HD
1002 for (i = 0; i < pagevec_count(&pvec); i++) {
1003 struct page *page = pvec.pages[i];
1004
7a5d0fbb 1005 index = indices[i];
83e4fa9c 1006 if (index >= end)
bda97eab
HD
1007 break;
1008
3159f943 1009 if (xa_is_value(page)) {
1635f6a7
HD
1010 if (unfalloc)
1011 continue;
b1a36650
HD
1012 if (shmem_free_swap(mapping, index, page)) {
1013 /* Swap was replaced by page: retry */
1014 index--;
1015 break;
1016 }
1017 nr_swaps_freed++;
7a5d0fbb
HD
1018 continue;
1019 }
1020
bda97eab 1021 lock_page(page);
800d8c63 1022
1635f6a7 1023 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1024 if (page_mapping(page) != mapping) {
b1a36650
HD
1025 /* Page was replaced by swap: retry */
1026 unlock_page(page);
1027 index--;
1028 break;
1635f6a7 1029 }
71725ed1
HD
1030 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 if (shmem_punch_compound(page, start, end))
1032 truncate_inode_page(mapping, page);
0783ac95 1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1034 /* Wipe the page and don't get stuck */
1035 clear_highpage(page);
1036 flush_dcache_page(page);
1037 set_page_dirty(page);
1038 if (index <
1039 round_up(start, HPAGE_PMD_NR))
1040 start = index + 1;
1041 }
7a5d0fbb 1042 }
bda97eab
HD
1043 unlock_page(page);
1044 }
0cd6144a 1045 pagevec_remove_exceptionals(&pvec);
24513264 1046 pagevec_release(&pvec);
bda97eab
HD
1047 index++;
1048 }
94c1e62d 1049
4595ef88 1050 spin_lock_irq(&info->lock);
7a5d0fbb 1051 info->swapped -= nr_swaps_freed;
1da177e4 1052 shmem_recalc_inode(inode);
4595ef88 1053 spin_unlock_irq(&info->lock);
1635f6a7 1054}
1da177e4 1055
1635f6a7
HD
1056void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057{
1058 shmem_undo_range(inode, lstart, lend, false);
078cd827 1059 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1060}
94c1e62d 1061EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1062
a528d35e
DH
1063static int shmem_getattr(const struct path *path, struct kstat *stat,
1064 u32 request_mask, unsigned int query_flags)
44a30220 1065{
a528d35e 1066 struct inode *inode = path->dentry->d_inode;
44a30220 1067 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1068 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1069
d0424c42 1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1071 spin_lock_irq(&info->lock);
d0424c42 1072 shmem_recalc_inode(inode);
4595ef88 1073 spin_unlock_irq(&info->lock);
d0424c42 1074 }
44a30220 1075 generic_fillattr(inode, stat);
89fdcd26
YS
1076
1077 if (is_huge_enabled(sb_info))
1078 stat->blksize = HPAGE_PMD_SIZE;
1079
44a30220
YZ
1080 return 0;
1081}
1082
94c1e62d 1083static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1084{
75c3cfa8 1085 struct inode *inode = d_inode(dentry);
40e041a2 1086 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1088 int error;
1089
31051c85 1090 error = setattr_prepare(dentry, attr);
db78b877
CH
1091 if (error)
1092 return error;
1093
94c1e62d
HD
1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 loff_t oldsize = inode->i_size;
1096 loff_t newsize = attr->ia_size;
3889e6e7 1097
40e041a2
DH
1098 /* protected by i_mutex */
1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 return -EPERM;
1102
94c1e62d 1103 if (newsize != oldsize) {
77142517
KK
1104 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 oldsize, newsize);
1106 if (error)
1107 return error;
94c1e62d 1108 i_size_write(inode, newsize);
078cd827 1109 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1110 }
afa2db2f 1111 if (newsize <= oldsize) {
94c1e62d 1112 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1113 if (oldsize > holebegin)
1114 unmap_mapping_range(inode->i_mapping,
1115 holebegin, 0, 1);
1116 if (info->alloced)
1117 shmem_truncate_range(inode,
1118 newsize, (loff_t)-1);
94c1e62d 1119 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1120 if (oldsize > holebegin)
1121 unmap_mapping_range(inode->i_mapping,
1122 holebegin, 0, 1);
779750d2
KS
1123
1124 /*
1125 * Part of the huge page can be beyond i_size: subject
1126 * to shrink under memory pressure.
1127 */
396bcc52 1128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1129 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1130 /*
1131 * _careful to defend against unlocked access to
1132 * ->shrink_list in shmem_unused_huge_shrink()
1133 */
1134 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1135 list_add_tail(&info->shrinklist,
1136 &sbinfo->shrinklist);
1137 sbinfo->shrinklist_len++;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
94c1e62d 1141 }
1da177e4
LT
1142 }
1143
db78b877 1144 setattr_copy(inode, attr);
db78b877 1145 if (attr->ia_valid & ATTR_MODE)
feda821e 1146 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1147 return error;
1148}
1149
1f895f75 1150static void shmem_evict_inode(struct inode *inode)
1da177e4 1151{
1da177e4 1152 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1153 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1154
3889e6e7 1155 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1156 shmem_unacct_size(info->flags, inode->i_size);
1157 inode->i_size = 0;
3889e6e7 1158 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1159 if (!list_empty(&info->shrinklist)) {
1160 spin_lock(&sbinfo->shrinklist_lock);
1161 if (!list_empty(&info->shrinklist)) {
1162 list_del_init(&info->shrinklist);
1163 sbinfo->shrinklist_len--;
1164 }
1165 spin_unlock(&sbinfo->shrinklist_lock);
1166 }
af53d3e9
HD
1167 while (!list_empty(&info->swaplist)) {
1168 /* Wait while shmem_unuse() is scanning this inode... */
1169 wait_var_event(&info->stop_eviction,
1170 !atomic_read(&info->stop_eviction));
cb5f7b9a 1171 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1172 /* ...but beware of the race if we peeked too early */
1173 if (!atomic_read(&info->stop_eviction))
1174 list_del_init(&info->swaplist);
cb5f7b9a 1175 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1176 }
3ed47db3 1177 }
b09e0fa4 1178
38f38657 1179 simple_xattrs_free(&info->xattrs);
0f3c42f5 1180 WARN_ON(inode->i_blocks);
5b04c689 1181 shmem_free_inode(inode->i_sb);
dbd5768f 1182 clear_inode(inode);
1da177e4
LT
1183}
1184
b56a2d8a
VRP
1185extern struct swap_info_struct *swap_info[];
1186
1187static int shmem_find_swap_entries(struct address_space *mapping,
1188 pgoff_t start, unsigned int nr_entries,
1189 struct page **entries, pgoff_t *indices,
87039546 1190 unsigned int type, bool frontswap)
478922e2 1191{
b56a2d8a
VRP
1192 XA_STATE(xas, &mapping->i_pages, start);
1193 struct page *page;
87039546 1194 swp_entry_t entry;
b56a2d8a
VRP
1195 unsigned int ret = 0;
1196
1197 if (!nr_entries)
1198 return 0;
478922e2
MW
1199
1200 rcu_read_lock();
b56a2d8a
VRP
1201 xas_for_each(&xas, page, ULONG_MAX) {
1202 if (xas_retry(&xas, page))
5b9c98f3 1203 continue;
b56a2d8a
VRP
1204
1205 if (!xa_is_value(page))
478922e2 1206 continue;
b56a2d8a 1207
87039546
HD
1208 entry = radix_to_swp_entry(page);
1209 if (swp_type(entry) != type)
1210 continue;
1211 if (frontswap &&
1212 !frontswap_test(swap_info[type], swp_offset(entry)))
1213 continue;
b56a2d8a
VRP
1214
1215 indices[ret] = xas.xa_index;
1216 entries[ret] = page;
1217
1218 if (need_resched()) {
1219 xas_pause(&xas);
1220 cond_resched_rcu();
1221 }
1222 if (++ret == nr_entries)
1223 break;
478922e2 1224 }
478922e2 1225 rcu_read_unlock();
e21a2955 1226
b56a2d8a 1227 return ret;
478922e2
MW
1228}
1229
46f65ec1 1230/*
b56a2d8a
VRP
1231 * Move the swapped pages for an inode to page cache. Returns the count
1232 * of pages swapped in, or the error in case of failure.
46f65ec1 1233 */
b56a2d8a
VRP
1234static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235 pgoff_t *indices)
1da177e4 1236{
b56a2d8a
VRP
1237 int i = 0;
1238 int ret = 0;
bde05d1c 1239 int error = 0;
b56a2d8a 1240 struct address_space *mapping = inode->i_mapping;
1da177e4 1241
b56a2d8a
VRP
1242 for (i = 0; i < pvec.nr; i++) {
1243 struct page *page = pvec.pages[i];
2e0e26c7 1244
b56a2d8a
VRP
1245 if (!xa_is_value(page))
1246 continue;
1247 error = shmem_swapin_page(inode, indices[i],
1248 &page, SGP_CACHE,
1249 mapping_gfp_mask(mapping),
1250 NULL, NULL);
1251 if (error == 0) {
1252 unlock_page(page);
1253 put_page(page);
1254 ret++;
1255 }
1256 if (error == -ENOMEM)
1257 break;
1258 error = 0;
bde05d1c 1259 }
b56a2d8a
VRP
1260 return error ? error : ret;
1261}
bde05d1c 1262
b56a2d8a
VRP
1263/*
1264 * If swap found in inode, free it and move page from swapcache to filecache.
1265 */
1266static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267 bool frontswap, unsigned long *fs_pages_to_unuse)
1268{
1269 struct address_space *mapping = inode->i_mapping;
1270 pgoff_t start = 0;
1271 struct pagevec pvec;
1272 pgoff_t indices[PAGEVEC_SIZE];
1273 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274 int ret = 0;
1275
1276 pagevec_init(&pvec);
1277 do {
1278 unsigned int nr_entries = PAGEVEC_SIZE;
1279
1280 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281 nr_entries = *fs_pages_to_unuse;
1282
1283 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284 pvec.pages, indices,
87039546 1285 type, frontswap);
b56a2d8a
VRP
1286 if (pvec.nr == 0) {
1287 ret = 0;
1288 break;
46f65ec1 1289 }
b56a2d8a
VRP
1290
1291 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292 if (ret < 0)
1293 break;
1294
1295 if (frontswap_partial) {
1296 *fs_pages_to_unuse -= ret;
1297 if (*fs_pages_to_unuse == 0) {
1298 ret = FRONTSWAP_PAGES_UNUSED;
1299 break;
1300 }
1301 }
1302
1303 start = indices[pvec.nr - 1];
1304 } while (true);
1305
1306 return ret;
1da177e4
LT
1307}
1308
1309/*
b56a2d8a
VRP
1310 * Read all the shared memory data that resides in the swap
1311 * device 'type' back into memory, so the swap device can be
1312 * unused.
1da177e4 1313 */
b56a2d8a
VRP
1314int shmem_unuse(unsigned int type, bool frontswap,
1315 unsigned long *fs_pages_to_unuse)
1da177e4 1316{
b56a2d8a 1317 struct shmem_inode_info *info, *next;
bde05d1c
HD
1318 int error = 0;
1319
b56a2d8a
VRP
1320 if (list_empty(&shmem_swaplist))
1321 return 0;
1322
1323 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1324 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325 if (!info->swapped) {
6922c0c7 1326 list_del_init(&info->swaplist);
b56a2d8a
VRP
1327 continue;
1328 }
af53d3e9
HD
1329 /*
1330 * Drop the swaplist mutex while searching the inode for swap;
1331 * but before doing so, make sure shmem_evict_inode() will not
1332 * remove placeholder inode from swaplist, nor let it be freed
1333 * (igrab() would protect from unlink, but not from unmount).
1334 */
1335 atomic_inc(&info->stop_eviction);
b56a2d8a 1336 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1337
af53d3e9 1338 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1339 fs_pages_to_unuse);
cb5f7b9a 1340 cond_resched();
b56a2d8a
VRP
1341
1342 mutex_lock(&shmem_swaplist_mutex);
1343 next = list_next_entry(info, swaplist);
1344 if (!info->swapped)
1345 list_del_init(&info->swaplist);
af53d3e9
HD
1346 if (atomic_dec_and_test(&info->stop_eviction))
1347 wake_up_var(&info->stop_eviction);
b56a2d8a 1348 if (error)
778dd893 1349 break;
1da177e4 1350 }
cb5f7b9a 1351 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1352
778dd893 1353 return error;
1da177e4
LT
1354}
1355
1356/*
1357 * Move the page from the page cache to the swap cache.
1358 */
1359static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360{
1361 struct shmem_inode_info *info;
1da177e4 1362 struct address_space *mapping;
1da177e4 1363 struct inode *inode;
6922c0c7
HD
1364 swp_entry_t swap;
1365 pgoff_t index;
1da177e4 1366
800d8c63 1367 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1368 BUG_ON(!PageLocked(page));
1da177e4
LT
1369 mapping = page->mapping;
1370 index = page->index;
1371 inode = mapping->host;
1372 info = SHMEM_I(inode);
1373 if (info->flags & VM_LOCKED)
1374 goto redirty;
d9fe526a 1375 if (!total_swap_pages)
1da177e4
LT
1376 goto redirty;
1377
d9fe526a 1378 /*
97b713ba
CH
1379 * Our capabilities prevent regular writeback or sync from ever calling
1380 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381 * its underlying filesystem, in which case tmpfs should write out to
1382 * swap only in response to memory pressure, and not for the writeback
1383 * threads or sync.
d9fe526a 1384 */
48f170fb
HD
1385 if (!wbc->for_reclaim) {
1386 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1387 goto redirty;
1388 }
1635f6a7
HD
1389
1390 /*
1391 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392 * value into swapfile.c, the only way we can correctly account for a
1393 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1394 *
1395 * That's okay for a page already fallocated earlier, but if we have
1396 * not yet completed the fallocation, then (a) we want to keep track
1397 * of this page in case we have to undo it, and (b) it may not be a
1398 * good idea to continue anyway, once we're pushing into swap. So
1399 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1400 */
1401 if (!PageUptodate(page)) {
1aac1400
HD
1402 if (inode->i_private) {
1403 struct shmem_falloc *shmem_falloc;
1404 spin_lock(&inode->i_lock);
1405 shmem_falloc = inode->i_private;
1406 if (shmem_falloc &&
8e205f77 1407 !shmem_falloc->waitq &&
1aac1400
HD
1408 index >= shmem_falloc->start &&
1409 index < shmem_falloc->next)
1410 shmem_falloc->nr_unswapped++;
1411 else
1412 shmem_falloc = NULL;
1413 spin_unlock(&inode->i_lock);
1414 if (shmem_falloc)
1415 goto redirty;
1416 }
1635f6a7
HD
1417 clear_highpage(page);
1418 flush_dcache_page(page);
1419 SetPageUptodate(page);
1420 }
1421
38d8b4e6 1422 swap = get_swap_page(page);
48f170fb
HD
1423 if (!swap.val)
1424 goto redirty;
d9fe526a 1425
b1dea800
HD
1426 /*
1427 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1428 * if it's not already there. Do it now before the page is
1429 * moved to swap cache, when its pagelock no longer protects
b1dea800 1430 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1431 * we've incremented swapped, because shmem_unuse_inode() will
1432 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1433 */
48f170fb
HD
1434 mutex_lock(&shmem_swaplist_mutex);
1435 if (list_empty(&info->swaplist))
b56a2d8a 1436 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1437
4afab1cd 1438 if (add_to_swap_cache(page, swap,
3852f676
JK
1439 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440 NULL) == 0) {
4595ef88 1441 spin_lock_irq(&info->lock);
6922c0c7 1442 shmem_recalc_inode(inode);
267a4c76 1443 info->swapped++;
4595ef88 1444 spin_unlock_irq(&info->lock);
6922c0c7 1445
267a4c76
HD
1446 swap_shmem_alloc(swap);
1447 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448
6922c0c7 1449 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1450 BUG_ON(page_mapped(page));
9fab5619 1451 swap_writepage(page, wbc);
1da177e4
LT
1452 return 0;
1453 }
1454
6922c0c7 1455 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1456 put_swap_page(page, swap);
1da177e4
LT
1457redirty:
1458 set_page_dirty(page);
d9fe526a
HD
1459 if (wbc->for_reclaim)
1460 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1461 unlock_page(page);
1462 return 0;
1da177e4
LT
1463}
1464
75edd345 1465#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1466static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1467{
095f1fc4 1468 char buffer[64];
680d794b 1469
71fe804b 1470 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1471 return; /* show nothing */
680d794b 1472
a7a88b23 1473 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1474
1475 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1476}
71fe804b
LS
1477
1478static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479{
1480 struct mempolicy *mpol = NULL;
1481 if (sbinfo->mpol) {
1482 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1483 mpol = sbinfo->mpol;
1484 mpol_get(mpol);
1485 spin_unlock(&sbinfo->stat_lock);
1486 }
1487 return mpol;
1488}
75edd345
HD
1489#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491{
1492}
1493static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494{
1495 return NULL;
1496}
1497#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498#ifndef CONFIG_NUMA
1499#define vm_policy vm_private_data
1500#endif
680d794b 1501
800d8c63
KS
1502static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503 struct shmem_inode_info *info, pgoff_t index)
1504{
1505 /* Create a pseudo vma that just contains the policy */
2c4541e2 1506 vma_init(vma, NULL);
800d8c63
KS
1507 /* Bias interleave by inode number to distribute better across nodes */
1508 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1509 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510}
1511
1512static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513{
1514 /* Drop reference taken by mpol_shared_policy_lookup() */
1515 mpol_cond_put(vma->vm_policy);
1516}
1517
41ffe5d5
HD
1518static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1520{
1da177e4 1521 struct vm_area_struct pvma;
18a2f371 1522 struct page *page;
e9e9b7ec 1523 struct vm_fault vmf;
52cd3b07 1524
800d8c63 1525 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1526 vmf.vma = &pvma;
1527 vmf.address = 0;
1528 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1529 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1530
800d8c63
KS
1531 return page;
1532}
1533
1534static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535 struct shmem_inode_info *info, pgoff_t index)
1536{
1537 struct vm_area_struct pvma;
7b8d046f
MW
1538 struct address_space *mapping = info->vfs_inode.i_mapping;
1539 pgoff_t hindex;
800d8c63
KS
1540 struct page *page;
1541
4620a06e 1542 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1543 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544 XA_PRESENT))
800d8c63 1545 return NULL;
18a2f371 1546
800d8c63
KS
1547 shmem_pseudo_vma_init(&pvma, info, hindex);
1548 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
19deb769 1549 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1550 shmem_pseudo_vma_destroy(&pvma);
1551 if (page)
1552 prep_transhuge_page(page);
dcdf11ee
DR
1553 else
1554 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1555 return page;
1da177e4
LT
1556}
1557
02098fea 1558static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1559 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1560{
1561 struct vm_area_struct pvma;
18a2f371 1562 struct page *page;
1da177e4 1563
800d8c63
KS
1564 shmem_pseudo_vma_init(&pvma, info, index);
1565 page = alloc_page_vma(gfp, &pvma, 0);
1566 shmem_pseudo_vma_destroy(&pvma);
1567
1568 return page;
1569}
1570
1571static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1572 struct inode *inode,
800d8c63
KS
1573 pgoff_t index, bool huge)
1574{
0f079694 1575 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1576 struct page *page;
1577 int nr;
1578 int err = -ENOSPC;
52cd3b07 1579
396bcc52 1580 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1581 huge = false;
1582 nr = huge ? HPAGE_PMD_NR : 1;
1583
0f079694 1584 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1585 goto failed;
800d8c63
KS
1586
1587 if (huge)
1588 page = shmem_alloc_hugepage(gfp, info, index);
1589 else
1590 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1591 if (page) {
1592 __SetPageLocked(page);
1593 __SetPageSwapBacked(page);
800d8c63 1594 return page;
75edd345 1595 }
18a2f371 1596
800d8c63 1597 err = -ENOMEM;
0f079694 1598 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1599failed:
1600 return ERR_PTR(err);
1da177e4 1601}
71fe804b 1602
bde05d1c
HD
1603/*
1604 * When a page is moved from swapcache to shmem filecache (either by the
1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607 * ignorance of the mapping it belongs to. If that mapping has special
1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609 * we may need to copy to a suitable page before moving to filecache.
1610 *
1611 * In a future release, this may well be extended to respect cpuset and
1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613 * but for now it is a simple matter of zone.
1614 */
1615static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616{
1617 return page_zonenum(page) > gfp_zone(gfp);
1618}
1619
1620static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 struct shmem_inode_info *info, pgoff_t index)
1622{
1623 struct page *oldpage, *newpage;
1624 struct address_space *swap_mapping;
c1cb20d4 1625 swp_entry_t entry;
bde05d1c
HD
1626 pgoff_t swap_index;
1627 int error;
1628
1629 oldpage = *pagep;
c1cb20d4
YZ
1630 entry.val = page_private(oldpage);
1631 swap_index = swp_offset(entry);
bde05d1c
HD
1632 swap_mapping = page_mapping(oldpage);
1633
1634 /*
1635 * We have arrived here because our zones are constrained, so don't
1636 * limit chance of success by further cpuset and node constraints.
1637 */
1638 gfp &= ~GFP_CONSTRAINT_MASK;
1639 newpage = shmem_alloc_page(gfp, info, index);
1640 if (!newpage)
1641 return -ENOMEM;
bde05d1c 1642
09cbfeaf 1643 get_page(newpage);
bde05d1c 1644 copy_highpage(newpage, oldpage);
0142ef6c 1645 flush_dcache_page(newpage);
bde05d1c 1646
9956edf3
HD
1647 __SetPageLocked(newpage);
1648 __SetPageSwapBacked(newpage);
bde05d1c 1649 SetPageUptodate(newpage);
c1cb20d4 1650 set_page_private(newpage, entry.val);
bde05d1c
HD
1651 SetPageSwapCache(newpage);
1652
1653 /*
1654 * Our caller will very soon move newpage out of swapcache, but it's
1655 * a nice clean interface for us to replace oldpage by newpage there.
1656 */
b93b0163 1657 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1658 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1659 if (!error) {
0d1c2072
JW
1660 mem_cgroup_migrate(oldpage, newpage);
1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1663 }
b93b0163 1664 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1665
0142ef6c
HD
1666 if (unlikely(error)) {
1667 /*
1668 * Is this possible? I think not, now that our callers check
1669 * both PageSwapCache and page_private after getting page lock;
1670 * but be defensive. Reverse old to newpage for clear and free.
1671 */
1672 oldpage = newpage;
1673 } else {
6058eaec 1674 lru_cache_add(newpage);
0142ef6c
HD
1675 *pagep = newpage;
1676 }
bde05d1c
HD
1677
1678 ClearPageSwapCache(oldpage);
1679 set_page_private(oldpage, 0);
1680
1681 unlock_page(oldpage);
09cbfeaf
KS
1682 put_page(oldpage);
1683 put_page(oldpage);
0142ef6c 1684 return error;
bde05d1c
HD
1685}
1686
c5bf121e
VRP
1687/*
1688 * Swap in the page pointed to by *pagep.
1689 * Caller has to make sure that *pagep contains a valid swapped page.
1690 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1691 * error code and NULL in *pagep.
c5bf121e
VRP
1692 */
1693static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694 struct page **pagep, enum sgp_type sgp,
1695 gfp_t gfp, struct vm_area_struct *vma,
1696 vm_fault_t *fault_type)
1697{
1698 struct address_space *mapping = inode->i_mapping;
1699 struct shmem_inode_info *info = SHMEM_I(inode);
1700 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
c5bf121e
VRP
1701 struct page *page;
1702 swp_entry_t swap;
1703 int error;
1704
1705 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706 swap = radix_to_swp_entry(*pagep);
1707 *pagep = NULL;
1708
1709 /* Look it up and read it in.. */
1710 page = lookup_swap_cache(swap, NULL, 0);
1711 if (!page) {
1712 /* Or update major stats only when swapin succeeds?? */
1713 if (fault_type) {
1714 *fault_type |= VM_FAULT_MAJOR;
1715 count_vm_event(PGMAJFAULT);
1716 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717 }
1718 /* Here we actually start the io */
1719 page = shmem_swapin(swap, gfp, info, index);
1720 if (!page) {
1721 error = -ENOMEM;
1722 goto failed;
1723 }
1724 }
1725
1726 /* We have to do this with page locked to prevent races */
1727 lock_page(page);
1728 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729 !shmem_confirm_swap(mapping, index, swap)) {
1730 error = -EEXIST;
1731 goto unlock;
1732 }
1733 if (!PageUptodate(page)) {
1734 error = -EIO;
1735 goto failed;
1736 }
1737 wait_on_page_writeback(page);
1738
8a84802e
SP
1739 /*
1740 * Some architectures may have to restore extra metadata to the
1741 * physical page after reading from swap.
1742 */
1743 arch_swap_restore(swap, page);
1744
c5bf121e
VRP
1745 if (shmem_should_replace_page(page, gfp)) {
1746 error = shmem_replace_page(&page, gfp, info, index);
1747 if (error)
1748 goto failed;
1749 }
1750
14235ab3 1751 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1752 swp_to_radix_entry(swap), gfp,
1753 charge_mm);
1754 if (error)
14235ab3 1755 goto failed;
c5bf121e
VRP
1756
1757 spin_lock_irq(&info->lock);
1758 info->swapped--;
1759 shmem_recalc_inode(inode);
1760 spin_unlock_irq(&info->lock);
1761
1762 if (sgp == SGP_WRITE)
1763 mark_page_accessed(page);
1764
1765 delete_from_swap_cache(page);
1766 set_page_dirty(page);
1767 swap_free(swap);
1768
1769 *pagep = page;
1770 return 0;
1771failed:
1772 if (!shmem_confirm_swap(mapping, index, swap))
1773 error = -EEXIST;
1774unlock:
1775 if (page) {
1776 unlock_page(page);
1777 put_page(page);
1778 }
1779
1780 return error;
1781}
1782
1da177e4 1783/*
68da9f05 1784 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1785 *
1786 * If we allocate a new one we do not mark it dirty. That's up to the
1787 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1788 * entry since a page cannot live in both the swap and page cache.
1789 *
28eb3c80 1790 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1791 * otherwise they are NULL.
1da177e4 1792 */
41ffe5d5 1793static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1794 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1795 struct vm_area_struct *vma, struct vm_fault *vmf,
1796 vm_fault_t *fault_type)
1da177e4
LT
1797{
1798 struct address_space *mapping = inode->i_mapping;
23f919d4 1799 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1800 struct shmem_sb_info *sbinfo;
9e18eb29 1801 struct mm_struct *charge_mm;
27ab7006 1802 struct page *page;
657e3038 1803 enum sgp_type sgp_huge = sgp;
800d8c63 1804 pgoff_t hindex = index;
1da177e4 1805 int error;
54af6042 1806 int once = 0;
1635f6a7 1807 int alloced = 0;
1da177e4 1808
09cbfeaf 1809 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1810 return -EFBIG;
657e3038
KS
1811 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1812 sgp = SGP_CACHE;
1da177e4 1813repeat:
c5bf121e
VRP
1814 if (sgp <= SGP_CACHE &&
1815 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1816 return -EINVAL;
1817 }
1818
1819 sbinfo = SHMEM_SB(inode->i_sb);
1820 charge_mm = vma ? vma->vm_mm : current->mm;
1821
0cd6144a 1822 page = find_lock_entry(mapping, index);
3159f943 1823 if (xa_is_value(page)) {
c5bf121e
VRP
1824 error = shmem_swapin_page(inode, index, &page,
1825 sgp, gfp, vma, fault_type);
1826 if (error == -EEXIST)
1827 goto repeat;
54af6042 1828
c5bf121e
VRP
1829 *pagep = page;
1830 return error;
54af6042
HD
1831 }
1832
66d2f4d2
HD
1833 if (page && sgp == SGP_WRITE)
1834 mark_page_accessed(page);
1835
1635f6a7
HD
1836 /* fallocated page? */
1837 if (page && !PageUptodate(page)) {
1838 if (sgp != SGP_READ)
1839 goto clear;
1840 unlock_page(page);
09cbfeaf 1841 put_page(page);
1635f6a7
HD
1842 page = NULL;
1843 }
c5bf121e 1844 if (page || sgp == SGP_READ) {
54af6042
HD
1845 *pagep = page;
1846 return 0;
27ab7006
HD
1847 }
1848
1849 /*
54af6042
HD
1850 * Fast cache lookup did not find it:
1851 * bring it back from swap or allocate.
27ab7006 1852 */
54af6042 1853
c5bf121e
VRP
1854 if (vma && userfaultfd_missing(vma)) {
1855 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1856 return 0;
1857 }
cfda0526 1858
c5bf121e
VRP
1859 /* shmem_symlink() */
1860 if (mapping->a_ops != &shmem_aops)
1861 goto alloc_nohuge;
1862 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1863 goto alloc_nohuge;
1864 if (shmem_huge == SHMEM_HUGE_FORCE)
1865 goto alloc_huge;
1866 switch (sbinfo->huge) {
c5bf121e
VRP
1867 case SHMEM_HUGE_NEVER:
1868 goto alloc_nohuge;
27d80fa2
KC
1869 case SHMEM_HUGE_WITHIN_SIZE: {
1870 loff_t i_size;
1871 pgoff_t off;
1872
c5bf121e
VRP
1873 off = round_up(index, HPAGE_PMD_NR);
1874 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1875 if (i_size >= HPAGE_PMD_SIZE &&
1876 i_size >> PAGE_SHIFT >= off)
800d8c63 1877 goto alloc_huge;
27d80fa2
KC
1878
1879 fallthrough;
1880 }
c5bf121e
VRP
1881 case SHMEM_HUGE_ADVISE:
1882 if (sgp_huge == SGP_HUGE)
1883 goto alloc_huge;
1884 /* TODO: implement fadvise() hints */
1885 goto alloc_nohuge;
1886 }
1da177e4 1887
800d8c63 1888alloc_huge:
c5bf121e
VRP
1889 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1890 if (IS_ERR(page)) {
1891alloc_nohuge:
1892 page = shmem_alloc_and_acct_page(gfp, inode,
1893 index, false);
1894 }
1895 if (IS_ERR(page)) {
1896 int retry = 5;
800d8c63 1897
c5bf121e
VRP
1898 error = PTR_ERR(page);
1899 page = NULL;
1900 if (error != -ENOSPC)
1901 goto unlock;
1902 /*
1903 * Try to reclaim some space by splitting a huge page
1904 * beyond i_size on the filesystem.
1905 */
1906 while (retry--) {
1907 int ret;
66d2f4d2 1908
c5bf121e
VRP
1909 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1910 if (ret == SHRINK_STOP)
1911 break;
1912 if (ret)
1913 goto alloc_nohuge;
b065b432 1914 }
c5bf121e
VRP
1915 goto unlock;
1916 }
54af6042 1917
c5bf121e
VRP
1918 if (PageTransHuge(page))
1919 hindex = round_down(index, HPAGE_PMD_NR);
1920 else
1921 hindex = index;
54af6042 1922
c5bf121e
VRP
1923 if (sgp == SGP_WRITE)
1924 __SetPageReferenced(page);
1925
c5bf121e 1926 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1927 NULL, gfp & GFP_RECLAIM_MASK,
1928 charge_mm);
1929 if (error)
c5bf121e 1930 goto unacct;
6058eaec 1931 lru_cache_add(page);
779750d2 1932
c5bf121e 1933 spin_lock_irq(&info->lock);
d8c6546b 1934 info->alloced += compound_nr(page);
c5bf121e
VRP
1935 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1936 shmem_recalc_inode(inode);
1937 spin_unlock_irq(&info->lock);
1938 alloced = true;
1939
1940 if (PageTransHuge(page) &&
1941 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1942 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1943 /*
c5bf121e
VRP
1944 * Part of the huge page is beyond i_size: subject
1945 * to shrink under memory pressure.
1635f6a7 1946 */
c5bf121e 1947 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1948 /*
c5bf121e
VRP
1949 * _careful to defend against unlocked access to
1950 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1951 */
c5bf121e
VRP
1952 if (list_empty_careful(&info->shrinklist)) {
1953 list_add_tail(&info->shrinklist,
1954 &sbinfo->shrinklist);
1955 sbinfo->shrinklist_len++;
1956 }
1957 spin_unlock(&sbinfo->shrinklist_lock);
1958 }
800d8c63 1959
c5bf121e
VRP
1960 /*
1961 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1962 */
1963 if (sgp == SGP_FALLOC)
1964 sgp = SGP_WRITE;
1965clear:
1966 /*
1967 * Let SGP_WRITE caller clear ends if write does not fill page;
1968 * but SGP_FALLOC on a page fallocated earlier must initialize
1969 * it now, lest undo on failure cancel our earlier guarantee.
1970 */
1971 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1972 struct page *head = compound_head(page);
1973 int i;
1974
d8c6546b 1975 for (i = 0; i < compound_nr(head); i++) {
c5bf121e
VRP
1976 clear_highpage(head + i);
1977 flush_dcache_page(head + i);
ec9516fb 1978 }
c5bf121e 1979 SetPageUptodate(head);
1da177e4 1980 }
bde05d1c 1981
54af6042 1982 /* Perhaps the file has been truncated since we checked */
75edd345 1983 if (sgp <= SGP_CACHE &&
09cbfeaf 1984 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1985 if (alloced) {
1986 ClearPageDirty(page);
1987 delete_from_page_cache(page);
4595ef88 1988 spin_lock_irq(&info->lock);
267a4c76 1989 shmem_recalc_inode(inode);
4595ef88 1990 spin_unlock_irq(&info->lock);
267a4c76 1991 }
54af6042 1992 error = -EINVAL;
267a4c76 1993 goto unlock;
e83c32e8 1994 }
800d8c63 1995 *pagep = page + index - hindex;
54af6042 1996 return 0;
1da177e4 1997
59a16ead 1998 /*
54af6042 1999 * Error recovery.
59a16ead 2000 */
54af6042 2001unacct:
d8c6546b 2002 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2003
2004 if (PageTransHuge(page)) {
2005 unlock_page(page);
2006 put_page(page);
2007 goto alloc_nohuge;
2008 }
d1899228 2009unlock:
27ab7006 2010 if (page) {
54af6042 2011 unlock_page(page);
09cbfeaf 2012 put_page(page);
54af6042
HD
2013 }
2014 if (error == -ENOSPC && !once++) {
4595ef88 2015 spin_lock_irq(&info->lock);
54af6042 2016 shmem_recalc_inode(inode);
4595ef88 2017 spin_unlock_irq(&info->lock);
27ab7006 2018 goto repeat;
ff36b801 2019 }
7f4446ee 2020 if (error == -EEXIST)
54af6042
HD
2021 goto repeat;
2022 return error;
1da177e4
LT
2023}
2024
10d20bd2
LT
2025/*
2026 * This is like autoremove_wake_function, but it removes the wait queue
2027 * entry unconditionally - even if something else had already woken the
2028 * target.
2029 */
ac6424b9 2030static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2031{
2032 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2033 list_del_init(&wait->entry);
10d20bd2
LT
2034 return ret;
2035}
2036
20acce67 2037static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2038{
11bac800 2039 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2040 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2041 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2042 enum sgp_type sgp;
20acce67
SJ
2043 int err;
2044 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2045
f00cdc6d
HD
2046 /*
2047 * Trinity finds that probing a hole which tmpfs is punching can
2048 * prevent the hole-punch from ever completing: which in turn
2049 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2050 * faulting pages into the hole while it's being punched. Although
2051 * shmem_undo_range() does remove the additions, it may be unable to
2052 * keep up, as each new page needs its own unmap_mapping_range() call,
2053 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2054 *
2055 * It does not matter if we sometimes reach this check just before the
2056 * hole-punch begins, so that one fault then races with the punch:
2057 * we just need to make racing faults a rare case.
2058 *
2059 * The implementation below would be much simpler if we just used a
2060 * standard mutex or completion: but we cannot take i_mutex in fault,
2061 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2062 */
2063 if (unlikely(inode->i_private)) {
2064 struct shmem_falloc *shmem_falloc;
2065
2066 spin_lock(&inode->i_lock);
2067 shmem_falloc = inode->i_private;
8e205f77
HD
2068 if (shmem_falloc &&
2069 shmem_falloc->waitq &&
2070 vmf->pgoff >= shmem_falloc->start &&
2071 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2072 struct file *fpin;
8e205f77 2073 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2074 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2075
2076 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2077 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2078 if (fpin)
8e205f77 2079 ret = VM_FAULT_RETRY;
8e205f77
HD
2080
2081 shmem_falloc_waitq = shmem_falloc->waitq;
2082 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2083 TASK_UNINTERRUPTIBLE);
2084 spin_unlock(&inode->i_lock);
2085 schedule();
2086
2087 /*
2088 * shmem_falloc_waitq points into the shmem_fallocate()
2089 * stack of the hole-punching task: shmem_falloc_waitq
2090 * is usually invalid by the time we reach here, but
2091 * finish_wait() does not dereference it in that case;
2092 * though i_lock needed lest racing with wake_up_all().
2093 */
2094 spin_lock(&inode->i_lock);
2095 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2096 spin_unlock(&inode->i_lock);
8897c1b1
KS
2097
2098 if (fpin)
2099 fput(fpin);
8e205f77 2100 return ret;
f00cdc6d 2101 }
8e205f77 2102 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2103 }
2104
657e3038 2105 sgp = SGP_CACHE;
18600332
MH
2106
2107 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2108 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2109 sgp = SGP_NOHUGE;
18600332
MH
2110 else if (vma->vm_flags & VM_HUGEPAGE)
2111 sgp = SGP_HUGE;
657e3038 2112
20acce67 2113 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2114 gfp, vma, vmf, &ret);
20acce67
SJ
2115 if (err)
2116 return vmf_error(err);
68da9f05 2117 return ret;
1da177e4
LT
2118}
2119
c01d5b30
HD
2120unsigned long shmem_get_unmapped_area(struct file *file,
2121 unsigned long uaddr, unsigned long len,
2122 unsigned long pgoff, unsigned long flags)
2123{
2124 unsigned long (*get_area)(struct file *,
2125 unsigned long, unsigned long, unsigned long, unsigned long);
2126 unsigned long addr;
2127 unsigned long offset;
2128 unsigned long inflated_len;
2129 unsigned long inflated_addr;
2130 unsigned long inflated_offset;
2131
2132 if (len > TASK_SIZE)
2133 return -ENOMEM;
2134
2135 get_area = current->mm->get_unmapped_area;
2136 addr = get_area(file, uaddr, len, pgoff, flags);
2137
396bcc52 2138 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2139 return addr;
2140 if (IS_ERR_VALUE(addr))
2141 return addr;
2142 if (addr & ~PAGE_MASK)
2143 return addr;
2144 if (addr > TASK_SIZE - len)
2145 return addr;
2146
2147 if (shmem_huge == SHMEM_HUGE_DENY)
2148 return addr;
2149 if (len < HPAGE_PMD_SIZE)
2150 return addr;
2151 if (flags & MAP_FIXED)
2152 return addr;
2153 /*
2154 * Our priority is to support MAP_SHARED mapped hugely;
2155 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2156 * But if caller specified an address hint and we allocated area there
2157 * successfully, respect that as before.
c01d5b30 2158 */
99158997 2159 if (uaddr == addr)
c01d5b30
HD
2160 return addr;
2161
2162 if (shmem_huge != SHMEM_HUGE_FORCE) {
2163 struct super_block *sb;
2164
2165 if (file) {
2166 VM_BUG_ON(file->f_op != &shmem_file_operations);
2167 sb = file_inode(file)->i_sb;
2168 } else {
2169 /*
2170 * Called directly from mm/mmap.c, or drivers/char/mem.c
2171 * for "/dev/zero", to create a shared anonymous object.
2172 */
2173 if (IS_ERR(shm_mnt))
2174 return addr;
2175 sb = shm_mnt->mnt_sb;
2176 }
3089bf61 2177 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2178 return addr;
2179 }
2180
2181 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2182 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2183 return addr;
2184 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2185 return addr;
2186
2187 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2188 if (inflated_len > TASK_SIZE)
2189 return addr;
2190 if (inflated_len < len)
2191 return addr;
2192
99158997 2193 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2194 if (IS_ERR_VALUE(inflated_addr))
2195 return addr;
2196 if (inflated_addr & ~PAGE_MASK)
2197 return addr;
2198
2199 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2200 inflated_addr += offset - inflated_offset;
2201 if (inflated_offset > offset)
2202 inflated_addr += HPAGE_PMD_SIZE;
2203
2204 if (inflated_addr > TASK_SIZE - len)
2205 return addr;
2206 return inflated_addr;
2207}
2208
1da177e4 2209#ifdef CONFIG_NUMA
41ffe5d5 2210static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2211{
496ad9aa 2212 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2213 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2214}
2215
d8dc74f2
AB
2216static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2217 unsigned long addr)
1da177e4 2218{
496ad9aa 2219 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2220 pgoff_t index;
1da177e4 2221
41ffe5d5
HD
2222 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2223 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2224}
2225#endif
2226
2227int shmem_lock(struct file *file, int lock, struct user_struct *user)
2228{
496ad9aa 2229 struct inode *inode = file_inode(file);
1da177e4
LT
2230 struct shmem_inode_info *info = SHMEM_I(inode);
2231 int retval = -ENOMEM;
2232
ea0dfeb4
HD
2233 /*
2234 * What serializes the accesses to info->flags?
2235 * ipc_lock_object() when called from shmctl_do_lock(),
2236 * no serialization needed when called from shm_destroy().
2237 */
1da177e4
LT
2238 if (lock && !(info->flags & VM_LOCKED)) {
2239 if (!user_shm_lock(inode->i_size, user))
2240 goto out_nomem;
2241 info->flags |= VM_LOCKED;
89e004ea 2242 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2243 }
2244 if (!lock && (info->flags & VM_LOCKED) && user) {
2245 user_shm_unlock(inode->i_size, user);
2246 info->flags &= ~VM_LOCKED;
89e004ea 2247 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2248 }
2249 retval = 0;
89e004ea 2250
1da177e4 2251out_nomem:
1da177e4
LT
2252 return retval;
2253}
2254
9b83a6a8 2255static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2256{
ab3948f5
JFG
2257 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2258
2259 if (info->seals & F_SEAL_FUTURE_WRITE) {
2260 /*
2261 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2262 * "future write" seal active.
2263 */
2264 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2265 return -EPERM;
2266
2267 /*
05d35110
NG
2268 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2269 * MAP_SHARED and read-only, take care to not allow mprotect to
2270 * revert protections on such mappings. Do this only for shared
2271 * mappings. For private mappings, don't need to mask
2272 * VM_MAYWRITE as we still want them to be COW-writable.
ab3948f5 2273 */
05d35110
NG
2274 if (vma->vm_flags & VM_SHARED)
2275 vma->vm_flags &= ~(VM_MAYWRITE);
ab3948f5
JFG
2276 }
2277
51b0bff2
CM
2278 /* arm64 - allow memory tagging on RAM-based files */
2279 vma->vm_flags |= VM_MTE_ALLOWED;
2280
1da177e4
LT
2281 file_accessed(file);
2282 vma->vm_ops = &shmem_vm_ops;
396bcc52 2283 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2284 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2285 (vma->vm_end & HPAGE_PMD_MASK)) {
2286 khugepaged_enter(vma, vma->vm_flags);
2287 }
1da177e4
LT
2288 return 0;
2289}
2290
454abafe 2291static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2292 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2293{
2294 struct inode *inode;
2295 struct shmem_inode_info *info;
2296 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2297 ino_t ino;
1da177e4 2298
e809d5f0 2299 if (shmem_reserve_inode(sb, &ino))
5b04c689 2300 return NULL;
1da177e4
LT
2301
2302 inode = new_inode(sb);
2303 if (inode) {
e809d5f0 2304 inode->i_ino = ino;
454abafe 2305 inode_init_owner(inode, dir, mode);
1da177e4 2306 inode->i_blocks = 0;
078cd827 2307 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2308 inode->i_generation = prandom_u32();
1da177e4
LT
2309 info = SHMEM_I(inode);
2310 memset(info, 0, (char *)inode - (char *)info);
2311 spin_lock_init(&info->lock);
af53d3e9 2312 atomic_set(&info->stop_eviction, 0);
40e041a2 2313 info->seals = F_SEAL_SEAL;
0b0a0806 2314 info->flags = flags & VM_NORESERVE;
779750d2 2315 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2316 INIT_LIST_HEAD(&info->swaplist);
38f38657 2317 simple_xattrs_init(&info->xattrs);
72c04902 2318 cache_no_acl(inode);
1da177e4
LT
2319
2320 switch (mode & S_IFMT) {
2321 default:
39f0247d 2322 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2323 init_special_inode(inode, mode, dev);
2324 break;
2325 case S_IFREG:
14fcc23f 2326 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2327 inode->i_op = &shmem_inode_operations;
2328 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2329 mpol_shared_policy_init(&info->policy,
2330 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2331 break;
2332 case S_IFDIR:
d8c76e6f 2333 inc_nlink(inode);
1da177e4
LT
2334 /* Some things misbehave if size == 0 on a directory */
2335 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2336 inode->i_op = &shmem_dir_inode_operations;
2337 inode->i_fop = &simple_dir_operations;
2338 break;
2339 case S_IFLNK:
2340 /*
2341 * Must not load anything in the rbtree,
2342 * mpol_free_shared_policy will not be called.
2343 */
71fe804b 2344 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2345 break;
2346 }
b45d71fb
JFG
2347
2348 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2349 } else
2350 shmem_free_inode(sb);
1da177e4
LT
2351 return inode;
2352}
2353
0cd6144a
JW
2354bool shmem_mapping(struct address_space *mapping)
2355{
f8005451 2356 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2357}
2358
8d103963
MR
2359static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2360 pmd_t *dst_pmd,
2361 struct vm_area_struct *dst_vma,
2362 unsigned long dst_addr,
2363 unsigned long src_addr,
2364 bool zeropage,
2365 struct page **pagep)
4c27fe4c
MR
2366{
2367 struct inode *inode = file_inode(dst_vma->vm_file);
2368 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2369 struct address_space *mapping = inode->i_mapping;
2370 gfp_t gfp = mapping_gfp_mask(mapping);
2371 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2372 spinlock_t *ptl;
2373 void *page_kaddr;
2374 struct page *page;
2375 pte_t _dst_pte, *dst_pte;
2376 int ret;
e2a50c1f 2377 pgoff_t offset, max_off;
4c27fe4c 2378
cb658a45 2379 ret = -ENOMEM;
0f079694 2380 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2381 goto out;
4c27fe4c 2382
cb658a45 2383 if (!*pagep) {
4c27fe4c
MR
2384 page = shmem_alloc_page(gfp, info, pgoff);
2385 if (!page)
0f079694 2386 goto out_unacct_blocks;
4c27fe4c 2387
8d103963
MR
2388 if (!zeropage) { /* mcopy_atomic */
2389 page_kaddr = kmap_atomic(page);
2390 ret = copy_from_user(page_kaddr,
2391 (const void __user *)src_addr,
2392 PAGE_SIZE);
2393 kunmap_atomic(page_kaddr);
2394
c1e8d7c6 2395 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2396 if (unlikely(ret)) {
2397 *pagep = page;
2398 shmem_inode_unacct_blocks(inode, 1);
2399 /* don't free the page */
9e368259 2400 return -ENOENT;
8d103963
MR
2401 }
2402 } else { /* mfill_zeropage_atomic */
2403 clear_highpage(page);
4c27fe4c
MR
2404 }
2405 } else {
2406 page = *pagep;
2407 *pagep = NULL;
2408 }
2409
9cc90c66
AA
2410 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2411 __SetPageLocked(page);
2412 __SetPageSwapBacked(page);
a425d358 2413 __SetPageUptodate(page);
9cc90c66 2414
e2a50c1f
AA
2415 ret = -EFAULT;
2416 offset = linear_page_index(dst_vma, dst_addr);
2417 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2418 if (unlikely(offset >= max_off))
2419 goto out_release;
2420
552446a4 2421 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2422 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2423 if (ret)
3fea5a49 2424 goto out_release;
4c27fe4c
MR
2425
2426 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2427 if (dst_vma->vm_flags & VM_WRITE)
2428 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2429 else {
2430 /*
2431 * We don't set the pte dirty if the vma has no
2432 * VM_WRITE permission, so mark the page dirty or it
2433 * could be freed from under us. We could do it
2434 * unconditionally before unlock_page(), but doing it
2435 * only if VM_WRITE is not set is faster.
2436 */
2437 set_page_dirty(page);
2438 }
4c27fe4c 2439
4c27fe4c 2440 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2441
2442 ret = -EFAULT;
2443 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2444 if (unlikely(offset >= max_off))
3fea5a49 2445 goto out_release_unlock;
e2a50c1f
AA
2446
2447 ret = -EEXIST;
4c27fe4c 2448 if (!pte_none(*dst_pte))
3fea5a49 2449 goto out_release_unlock;
4c27fe4c 2450
6058eaec 2451 lru_cache_add(page);
4c27fe4c 2452
94b7cc01 2453 spin_lock_irq(&info->lock);
4c27fe4c
MR
2454 info->alloced++;
2455 inode->i_blocks += BLOCKS_PER_PAGE;
2456 shmem_recalc_inode(inode);
94b7cc01 2457 spin_unlock_irq(&info->lock);
4c27fe4c
MR
2458
2459 inc_mm_counter(dst_mm, mm_counter_file(page));
2460 page_add_file_rmap(page, false);
2461 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2462
2463 /* No need to invalidate - it was non-present before */
2464 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2465 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2466 unlock_page(page);
4c27fe4c
MR
2467 ret = 0;
2468out:
2469 return ret;
3fea5a49 2470out_release_unlock:
4c27fe4c 2471 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2472 ClearPageDirty(page);
e2a50c1f 2473 delete_from_page_cache(page);
4c27fe4c 2474out_release:
9cc90c66 2475 unlock_page(page);
4c27fe4c 2476 put_page(page);
4c27fe4c 2477out_unacct_blocks:
0f079694 2478 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2479 goto out;
2480}
2481
8d103963
MR
2482int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2483 pmd_t *dst_pmd,
2484 struct vm_area_struct *dst_vma,
2485 unsigned long dst_addr,
2486 unsigned long src_addr,
2487 struct page **pagep)
2488{
2489 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2490 dst_addr, src_addr, false, pagep);
2491}
2492
2493int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2494 pmd_t *dst_pmd,
2495 struct vm_area_struct *dst_vma,
2496 unsigned long dst_addr)
2497{
2498 struct page *page = NULL;
2499
2500 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2501 dst_addr, 0, true, &page);
2502}
2503
1da177e4 2504#ifdef CONFIG_TMPFS
92e1d5be 2505static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2506static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2507
6d9d88d0
JS
2508#ifdef CONFIG_TMPFS_XATTR
2509static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2510#else
2511#define shmem_initxattrs NULL
2512#endif
2513
1da177e4 2514static int
800d15a5
NP
2515shmem_write_begin(struct file *file, struct address_space *mapping,
2516 loff_t pos, unsigned len, unsigned flags,
2517 struct page **pagep, void **fsdata)
1da177e4 2518{
800d15a5 2519 struct inode *inode = mapping->host;
40e041a2 2520 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2521 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2522
2523 /* i_mutex is held by caller */
ab3948f5
JFG
2524 if (unlikely(info->seals & (F_SEAL_GROW |
2525 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2526 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2527 return -EPERM;
2528 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2529 return -EPERM;
2530 }
2531
9e18eb29 2532 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2533}
2534
2535static int
2536shmem_write_end(struct file *file, struct address_space *mapping,
2537 loff_t pos, unsigned len, unsigned copied,
2538 struct page *page, void *fsdata)
2539{
2540 struct inode *inode = mapping->host;
2541
d3602444
HD
2542 if (pos + copied > inode->i_size)
2543 i_size_write(inode, pos + copied);
2544
ec9516fb 2545 if (!PageUptodate(page)) {
800d8c63
KS
2546 struct page *head = compound_head(page);
2547 if (PageTransCompound(page)) {
2548 int i;
2549
2550 for (i = 0; i < HPAGE_PMD_NR; i++) {
2551 if (head + i == page)
2552 continue;
2553 clear_highpage(head + i);
2554 flush_dcache_page(head + i);
2555 }
2556 }
09cbfeaf
KS
2557 if (copied < PAGE_SIZE) {
2558 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2559 zero_user_segments(page, 0, from,
09cbfeaf 2560 from + copied, PAGE_SIZE);
ec9516fb 2561 }
800d8c63 2562 SetPageUptodate(head);
ec9516fb 2563 }
800d15a5 2564 set_page_dirty(page);
6746aff7 2565 unlock_page(page);
09cbfeaf 2566 put_page(page);
800d15a5 2567
800d15a5 2568 return copied;
1da177e4
LT
2569}
2570
2ba5bbed 2571static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2572{
6e58e79d
AV
2573 struct file *file = iocb->ki_filp;
2574 struct inode *inode = file_inode(file);
1da177e4 2575 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2576 pgoff_t index;
2577 unsigned long offset;
a0ee5ec5 2578 enum sgp_type sgp = SGP_READ;
f7c1d074 2579 int error = 0;
cb66a7a1 2580 ssize_t retval = 0;
6e58e79d 2581 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2582
2583 /*
2584 * Might this read be for a stacking filesystem? Then when reading
2585 * holes of a sparse file, we actually need to allocate those pages,
2586 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2587 */
777eda2c 2588 if (!iter_is_iovec(to))
75edd345 2589 sgp = SGP_CACHE;
1da177e4 2590
09cbfeaf
KS
2591 index = *ppos >> PAGE_SHIFT;
2592 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2593
2594 for (;;) {
2595 struct page *page = NULL;
41ffe5d5
HD
2596 pgoff_t end_index;
2597 unsigned long nr, ret;
1da177e4
LT
2598 loff_t i_size = i_size_read(inode);
2599
09cbfeaf 2600 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2601 if (index > end_index)
2602 break;
2603 if (index == end_index) {
09cbfeaf 2604 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2605 if (nr <= offset)
2606 break;
2607 }
2608
9e18eb29 2609 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2610 if (error) {
2611 if (error == -EINVAL)
2612 error = 0;
1da177e4
LT
2613 break;
2614 }
75edd345
HD
2615 if (page) {
2616 if (sgp == SGP_CACHE)
2617 set_page_dirty(page);
d3602444 2618 unlock_page(page);
75edd345 2619 }
1da177e4
LT
2620
2621 /*
2622 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2623 * are called without i_mutex protection against truncate
1da177e4 2624 */
09cbfeaf 2625 nr = PAGE_SIZE;
1da177e4 2626 i_size = i_size_read(inode);
09cbfeaf 2627 end_index = i_size >> PAGE_SHIFT;
1da177e4 2628 if (index == end_index) {
09cbfeaf 2629 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2630 if (nr <= offset) {
2631 if (page)
09cbfeaf 2632 put_page(page);
1da177e4
LT
2633 break;
2634 }
2635 }
2636 nr -= offset;
2637
2638 if (page) {
2639 /*
2640 * If users can be writing to this page using arbitrary
2641 * virtual addresses, take care about potential aliasing
2642 * before reading the page on the kernel side.
2643 */
2644 if (mapping_writably_mapped(mapping))
2645 flush_dcache_page(page);
2646 /*
2647 * Mark the page accessed if we read the beginning.
2648 */
2649 if (!offset)
2650 mark_page_accessed(page);
b5810039 2651 } else {
1da177e4 2652 page = ZERO_PAGE(0);
09cbfeaf 2653 get_page(page);
b5810039 2654 }
1da177e4
LT
2655
2656 /*
2657 * Ok, we have the page, and it's up-to-date, so
2658 * now we can copy it to user space...
1da177e4 2659 */
2ba5bbed 2660 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2661 retval += ret;
1da177e4 2662 offset += ret;
09cbfeaf
KS
2663 index += offset >> PAGE_SHIFT;
2664 offset &= ~PAGE_MASK;
1da177e4 2665
09cbfeaf 2666 put_page(page);
2ba5bbed 2667 if (!iov_iter_count(to))
1da177e4 2668 break;
6e58e79d
AV
2669 if (ret < nr) {
2670 error = -EFAULT;
2671 break;
2672 }
1da177e4
LT
2673 cond_resched();
2674 }
2675
09cbfeaf 2676 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2677 file_accessed(file);
2678 return retval ? retval : error;
1da177e4
LT
2679}
2680
220f2ac9 2681/*
7f4446ee 2682 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2683 */
2684static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2685 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2686{
2687 struct page *page;
2688 struct pagevec pvec;
2689 pgoff_t indices[PAGEVEC_SIZE];
2690 bool done = false;
2691 int i;
2692
86679820 2693 pagevec_init(&pvec);
220f2ac9
HD
2694 pvec.nr = 1; /* start small: we may be there already */
2695 while (!done) {
0cd6144a 2696 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2697 pvec.nr, pvec.pages, indices);
2698 if (!pvec.nr) {
965c8e59 2699 if (whence == SEEK_DATA)
220f2ac9
HD
2700 index = end;
2701 break;
2702 }
2703 for (i = 0; i < pvec.nr; i++, index++) {
2704 if (index < indices[i]) {
965c8e59 2705 if (whence == SEEK_HOLE) {
220f2ac9
HD
2706 done = true;
2707 break;
2708 }
2709 index = indices[i];
2710 }
2711 page = pvec.pages[i];
3159f943 2712 if (page && !xa_is_value(page)) {
220f2ac9
HD
2713 if (!PageUptodate(page))
2714 page = NULL;
2715 }
2716 if (index >= end ||
965c8e59
AM
2717 (page && whence == SEEK_DATA) ||
2718 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2719 done = true;
2720 break;
2721 }
2722 }
0cd6144a 2723 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2724 pagevec_release(&pvec);
2725 pvec.nr = PAGEVEC_SIZE;
2726 cond_resched();
2727 }
2728 return index;
2729}
2730
965c8e59 2731static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2732{
2733 struct address_space *mapping = file->f_mapping;
2734 struct inode *inode = mapping->host;
2735 pgoff_t start, end;
2736 loff_t new_offset;
2737
965c8e59
AM
2738 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2739 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2740 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2741 inode_lock(inode);
220f2ac9
HD
2742 /* We're holding i_mutex so we can access i_size directly */
2743
1a413646 2744 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2745 offset = -ENXIO;
2746 else {
09cbfeaf
KS
2747 start = offset >> PAGE_SHIFT;
2748 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2749 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2750 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2751 if (new_offset > offset) {
2752 if (new_offset < inode->i_size)
2753 offset = new_offset;
965c8e59 2754 else if (whence == SEEK_DATA)
220f2ac9
HD
2755 offset = -ENXIO;
2756 else
2757 offset = inode->i_size;
2758 }
2759 }
2760
387aae6f
HD
2761 if (offset >= 0)
2762 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2763 inode_unlock(inode);
220f2ac9
HD
2764 return offset;
2765}
2766
83e4fa9c
HD
2767static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2768 loff_t len)
2769{
496ad9aa 2770 struct inode *inode = file_inode(file);
e2d12e22 2771 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2772 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2773 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2774 pgoff_t start, index, end;
2775 int error;
83e4fa9c 2776
13ace4d0
HD
2777 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2778 return -EOPNOTSUPP;
2779
5955102c 2780 inode_lock(inode);
83e4fa9c
HD
2781
2782 if (mode & FALLOC_FL_PUNCH_HOLE) {
2783 struct address_space *mapping = file->f_mapping;
2784 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2785 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2786 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2787
40e041a2 2788 /* protected by i_mutex */
ab3948f5 2789 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2790 error = -EPERM;
2791 goto out;
2792 }
2793
8e205f77 2794 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2795 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2796 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2797 spin_lock(&inode->i_lock);
2798 inode->i_private = &shmem_falloc;
2799 spin_unlock(&inode->i_lock);
2800
83e4fa9c
HD
2801 if ((u64)unmap_end > (u64)unmap_start)
2802 unmap_mapping_range(mapping, unmap_start,
2803 1 + unmap_end - unmap_start, 0);
2804 shmem_truncate_range(inode, offset, offset + len - 1);
2805 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2806
2807 spin_lock(&inode->i_lock);
2808 inode->i_private = NULL;
2809 wake_up_all(&shmem_falloc_waitq);
2055da97 2810 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2811 spin_unlock(&inode->i_lock);
83e4fa9c 2812 error = 0;
8e205f77 2813 goto out;
e2d12e22
HD
2814 }
2815
2816 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2817 error = inode_newsize_ok(inode, offset + len);
2818 if (error)
2819 goto out;
2820
40e041a2
DH
2821 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2822 error = -EPERM;
2823 goto out;
2824 }
2825
09cbfeaf
KS
2826 start = offset >> PAGE_SHIFT;
2827 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2828 /* Try to avoid a swapstorm if len is impossible to satisfy */
2829 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2830 error = -ENOSPC;
2831 goto out;
83e4fa9c
HD
2832 }
2833
8e205f77 2834 shmem_falloc.waitq = NULL;
1aac1400
HD
2835 shmem_falloc.start = start;
2836 shmem_falloc.next = start;
2837 shmem_falloc.nr_falloced = 0;
2838 shmem_falloc.nr_unswapped = 0;
2839 spin_lock(&inode->i_lock);
2840 inode->i_private = &shmem_falloc;
2841 spin_unlock(&inode->i_lock);
2842
e2d12e22
HD
2843 for (index = start; index < end; index++) {
2844 struct page *page;
2845
2846 /*
2847 * Good, the fallocate(2) manpage permits EINTR: we may have
2848 * been interrupted because we are using up too much memory.
2849 */
2850 if (signal_pending(current))
2851 error = -EINTR;
1aac1400
HD
2852 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2853 error = -ENOMEM;
e2d12e22 2854 else
9e18eb29 2855 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2856 if (error) {
1635f6a7 2857 /* Remove the !PageUptodate pages we added */
7f556567
HD
2858 if (index > start) {
2859 shmem_undo_range(inode,
2860 (loff_t)start << PAGE_SHIFT,
2861 ((loff_t)index << PAGE_SHIFT) - 1, true);
2862 }
1aac1400 2863 goto undone;
e2d12e22
HD
2864 }
2865
1aac1400
HD
2866 /*
2867 * Inform shmem_writepage() how far we have reached.
2868 * No need for lock or barrier: we have the page lock.
2869 */
2870 shmem_falloc.next++;
2871 if (!PageUptodate(page))
2872 shmem_falloc.nr_falloced++;
2873
e2d12e22 2874 /*
1635f6a7
HD
2875 * If !PageUptodate, leave it that way so that freeable pages
2876 * can be recognized if we need to rollback on error later.
2877 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2878 * than free the pages we are allocating (and SGP_CACHE pages
2879 * might still be clean: we now need to mark those dirty too).
2880 */
2881 set_page_dirty(page);
2882 unlock_page(page);
09cbfeaf 2883 put_page(page);
e2d12e22
HD
2884 cond_resched();
2885 }
2886
2887 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2888 i_size_write(inode, offset + len);
078cd827 2889 inode->i_ctime = current_time(inode);
1aac1400
HD
2890undone:
2891 spin_lock(&inode->i_lock);
2892 inode->i_private = NULL;
2893 spin_unlock(&inode->i_lock);
e2d12e22 2894out:
5955102c 2895 inode_unlock(inode);
83e4fa9c
HD
2896 return error;
2897}
2898
726c3342 2899static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2900{
726c3342 2901 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2902
2903 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2904 buf->f_bsize = PAGE_SIZE;
1da177e4 2905 buf->f_namelen = NAME_MAX;
0edd73b3 2906 if (sbinfo->max_blocks) {
1da177e4 2907 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2908 buf->f_bavail =
2909 buf->f_bfree = sbinfo->max_blocks -
2910 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2911 }
2912 if (sbinfo->max_inodes) {
1da177e4
LT
2913 buf->f_files = sbinfo->max_inodes;
2914 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2915 }
2916 /* else leave those fields 0 like simple_statfs */
2917 return 0;
2918}
2919
2920/*
2921 * File creation. Allocate an inode, and we're done..
2922 */
2923static int
1a67aafb 2924shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2925{
0b0a0806 2926 struct inode *inode;
1da177e4
LT
2927 int error = -ENOSPC;
2928
454abafe 2929 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2930 if (inode) {
feda821e
CH
2931 error = simple_acl_create(dir, inode);
2932 if (error)
2933 goto out_iput;
2a7dba39 2934 error = security_inode_init_security(inode, dir,
9d8f13ba 2935 &dentry->d_name,
6d9d88d0 2936 shmem_initxattrs, NULL);
feda821e
CH
2937 if (error && error != -EOPNOTSUPP)
2938 goto out_iput;
37ec43cd 2939
718deb6b 2940 error = 0;
1da177e4 2941 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2942 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2943 d_instantiate(dentry, inode);
2944 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2945 }
2946 return error;
feda821e
CH
2947out_iput:
2948 iput(inode);
2949 return error;
1da177e4
LT
2950}
2951
60545d0d
AV
2952static int
2953shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2954{
2955 struct inode *inode;
2956 int error = -ENOSPC;
2957
2958 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2959 if (inode) {
2960 error = security_inode_init_security(inode, dir,
2961 NULL,
2962 shmem_initxattrs, NULL);
feda821e
CH
2963 if (error && error != -EOPNOTSUPP)
2964 goto out_iput;
2965 error = simple_acl_create(dir, inode);
2966 if (error)
2967 goto out_iput;
60545d0d
AV
2968 d_tmpfile(dentry, inode);
2969 }
2970 return error;
feda821e
CH
2971out_iput:
2972 iput(inode);
2973 return error;
60545d0d
AV
2974}
2975
18bb1db3 2976static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2977{
2978 int error;
2979
2980 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2981 return error;
d8c76e6f 2982 inc_nlink(dir);
1da177e4
LT
2983 return 0;
2984}
2985
4acdaf27 2986static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2987 bool excl)
1da177e4
LT
2988{
2989 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2990}
2991
2992/*
2993 * Link a file..
2994 */
2995static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2996{
75c3cfa8 2997 struct inode *inode = d_inode(old_dentry);
29b00e60 2998 int ret = 0;
1da177e4
LT
2999
3000 /*
3001 * No ordinary (disk based) filesystem counts links as inodes;
3002 * but each new link needs a new dentry, pinning lowmem, and
3003 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
3004 * But if an O_TMPFILE file is linked into the tmpfs, the
3005 * first link must skip that, to get the accounting right.
1da177e4 3006 */
1062af92 3007 if (inode->i_nlink) {
e809d5f0 3008 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
3009 if (ret)
3010 goto out;
3011 }
1da177e4
LT
3012
3013 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3014 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3015 inc_nlink(inode);
7de9c6ee 3016 ihold(inode); /* New dentry reference */
1da177e4
LT
3017 dget(dentry); /* Extra pinning count for the created dentry */
3018 d_instantiate(dentry, inode);
5b04c689
PE
3019out:
3020 return ret;
1da177e4
LT
3021}
3022
3023static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3024{
75c3cfa8 3025 struct inode *inode = d_inode(dentry);
1da177e4 3026
5b04c689
PE
3027 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3028 shmem_free_inode(inode->i_sb);
1da177e4
LT
3029
3030 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3031 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3032 drop_nlink(inode);
1da177e4
LT
3033 dput(dentry); /* Undo the count from "create" - this does all the work */
3034 return 0;
3035}
3036
3037static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3038{
3039 if (!simple_empty(dentry))
3040 return -ENOTEMPTY;
3041
75c3cfa8 3042 drop_nlink(d_inode(dentry));
9a53c3a7 3043 drop_nlink(dir);
1da177e4
LT
3044 return shmem_unlink(dir, dentry);
3045}
3046
37456771
MS
3047static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3048{
e36cb0b8
DH
3049 bool old_is_dir = d_is_dir(old_dentry);
3050 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3051
3052 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3053 if (old_is_dir) {
3054 drop_nlink(old_dir);
3055 inc_nlink(new_dir);
3056 } else {
3057 drop_nlink(new_dir);
3058 inc_nlink(old_dir);
3059 }
3060 }
3061 old_dir->i_ctime = old_dir->i_mtime =
3062 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3063 d_inode(old_dentry)->i_ctime =
078cd827 3064 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3065
3066 return 0;
3067}
3068
46fdb794
MS
3069static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3070{
3071 struct dentry *whiteout;
3072 int error;
3073
3074 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3075 if (!whiteout)
3076 return -ENOMEM;
3077
3078 error = shmem_mknod(old_dir, whiteout,
3079 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3080 dput(whiteout);
3081 if (error)
3082 return error;
3083
3084 /*
3085 * Cheat and hash the whiteout while the old dentry is still in
3086 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3087 *
3088 * d_lookup() will consistently find one of them at this point,
3089 * not sure which one, but that isn't even important.
3090 */
3091 d_rehash(whiteout);
3092 return 0;
3093}
3094
1da177e4
LT
3095/*
3096 * The VFS layer already does all the dentry stuff for rename,
3097 * we just have to decrement the usage count for the target if
3098 * it exists so that the VFS layer correctly free's it when it
3099 * gets overwritten.
3100 */
3b69ff51 3101static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3102{
75c3cfa8 3103 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3104 int they_are_dirs = S_ISDIR(inode->i_mode);
3105
46fdb794 3106 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3107 return -EINVAL;
3108
37456771
MS
3109 if (flags & RENAME_EXCHANGE)
3110 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3111
1da177e4
LT
3112 if (!simple_empty(new_dentry))
3113 return -ENOTEMPTY;
3114
46fdb794
MS
3115 if (flags & RENAME_WHITEOUT) {
3116 int error;
3117
3118 error = shmem_whiteout(old_dir, old_dentry);
3119 if (error)
3120 return error;
3121 }
3122
75c3cfa8 3123 if (d_really_is_positive(new_dentry)) {
1da177e4 3124 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3125 if (they_are_dirs) {
75c3cfa8 3126 drop_nlink(d_inode(new_dentry));
9a53c3a7 3127 drop_nlink(old_dir);
b928095b 3128 }
1da177e4 3129 } else if (they_are_dirs) {
9a53c3a7 3130 drop_nlink(old_dir);
d8c76e6f 3131 inc_nlink(new_dir);
1da177e4
LT
3132 }
3133
3134 old_dir->i_size -= BOGO_DIRENT_SIZE;
3135 new_dir->i_size += BOGO_DIRENT_SIZE;
3136 old_dir->i_ctime = old_dir->i_mtime =
3137 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3138 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3139 return 0;
3140}
3141
3142static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3143{
3144 int error;
3145 int len;
3146 struct inode *inode;
9276aad6 3147 struct page *page;
1da177e4
LT
3148
3149 len = strlen(symname) + 1;
09cbfeaf 3150 if (len > PAGE_SIZE)
1da177e4
LT
3151 return -ENAMETOOLONG;
3152
0825a6f9
JP
3153 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3154 VM_NORESERVE);
1da177e4
LT
3155 if (!inode)
3156 return -ENOSPC;
3157
9d8f13ba 3158 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3159 shmem_initxattrs, NULL);
343c3d7f
MN
3160 if (error && error != -EOPNOTSUPP) {
3161 iput(inode);
3162 return error;
570bc1c2
SS
3163 }
3164
1da177e4 3165 inode->i_size = len-1;
69f07ec9 3166 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3167 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3168 if (!inode->i_link) {
69f07ec9
HD
3169 iput(inode);
3170 return -ENOMEM;
3171 }
3172 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3173 } else {
e8ecde25 3174 inode_nohighmem(inode);
9e18eb29 3175 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3176 if (error) {
3177 iput(inode);
3178 return error;
3179 }
14fcc23f 3180 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3181 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3182 memcpy(page_address(page), symname, len);
ec9516fb 3183 SetPageUptodate(page);
1da177e4 3184 set_page_dirty(page);
6746aff7 3185 unlock_page(page);
09cbfeaf 3186 put_page(page);
1da177e4 3187 }
1da177e4 3188 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3189 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3190 d_instantiate(dentry, inode);
3191 dget(dentry);
3192 return 0;
3193}
3194
fceef393 3195static void shmem_put_link(void *arg)
1da177e4 3196{
fceef393
AV
3197 mark_page_accessed(arg);
3198 put_page(arg);
1da177e4
LT
3199}
3200
6b255391 3201static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3202 struct inode *inode,
3203 struct delayed_call *done)
1da177e4 3204{
1da177e4 3205 struct page *page = NULL;
6b255391 3206 int error;
6a6c9904
AV
3207 if (!dentry) {
3208 page = find_get_page(inode->i_mapping, 0);
3209 if (!page)
3210 return ERR_PTR(-ECHILD);
3211 if (!PageUptodate(page)) {
3212 put_page(page);
3213 return ERR_PTR(-ECHILD);
3214 }
3215 } else {
9e18eb29 3216 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3217 if (error)
3218 return ERR_PTR(error);
3219 unlock_page(page);
3220 }
fceef393 3221 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3222 return page_address(page);
1da177e4
LT
3223}
3224
b09e0fa4 3225#ifdef CONFIG_TMPFS_XATTR
46711810 3226/*
b09e0fa4
EP
3227 * Superblocks without xattr inode operations may get some security.* xattr
3228 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3229 * like ACLs, we also need to implement the security.* handlers at
3230 * filesystem level, though.
3231 */
3232
6d9d88d0
JS
3233/*
3234 * Callback for security_inode_init_security() for acquiring xattrs.
3235 */
3236static int shmem_initxattrs(struct inode *inode,
3237 const struct xattr *xattr_array,
3238 void *fs_info)
3239{
3240 struct shmem_inode_info *info = SHMEM_I(inode);
3241 const struct xattr *xattr;
38f38657 3242 struct simple_xattr *new_xattr;
6d9d88d0
JS
3243 size_t len;
3244
3245 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3246 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3247 if (!new_xattr)
3248 return -ENOMEM;
3249
3250 len = strlen(xattr->name) + 1;
3251 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3252 GFP_KERNEL);
3253 if (!new_xattr->name) {
3bef735a 3254 kvfree(new_xattr);
6d9d88d0
JS
3255 return -ENOMEM;
3256 }
3257
3258 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3259 XATTR_SECURITY_PREFIX_LEN);
3260 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3261 xattr->name, len);
3262
38f38657 3263 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3264 }
3265
3266 return 0;
3267}
3268
aa7c5241 3269static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3270 struct dentry *unused, struct inode *inode,
3271 const char *name, void *buffer, size_t size)
b09e0fa4 3272{
b296821a 3273 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3274
aa7c5241 3275 name = xattr_full_name(handler, name);
38f38657 3276 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3277}
3278
aa7c5241 3279static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3280 struct dentry *unused, struct inode *inode,
3281 const char *name, const void *value,
3282 size_t size, int flags)
b09e0fa4 3283{
59301226 3284 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3285
aa7c5241 3286 name = xattr_full_name(handler, name);
a46a2295 3287 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3288}
3289
aa7c5241
AG
3290static const struct xattr_handler shmem_security_xattr_handler = {
3291 .prefix = XATTR_SECURITY_PREFIX,
3292 .get = shmem_xattr_handler_get,
3293 .set = shmem_xattr_handler_set,
3294};
b09e0fa4 3295
aa7c5241
AG
3296static const struct xattr_handler shmem_trusted_xattr_handler = {
3297 .prefix = XATTR_TRUSTED_PREFIX,
3298 .get = shmem_xattr_handler_get,
3299 .set = shmem_xattr_handler_set,
3300};
b09e0fa4 3301
aa7c5241
AG
3302static const struct xattr_handler *shmem_xattr_handlers[] = {
3303#ifdef CONFIG_TMPFS_POSIX_ACL
3304 &posix_acl_access_xattr_handler,
3305 &posix_acl_default_xattr_handler,
3306#endif
3307 &shmem_security_xattr_handler,
3308 &shmem_trusted_xattr_handler,
3309 NULL
3310};
b09e0fa4
EP
3311
3312static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3313{
75c3cfa8 3314 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3315 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3316}
3317#endif /* CONFIG_TMPFS_XATTR */
3318
69f07ec9 3319static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3320 .get_link = simple_get_link,
b09e0fa4 3321#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3322 .listxattr = shmem_listxattr,
b09e0fa4
EP
3323#endif
3324};
3325
3326static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3327 .get_link = shmem_get_link,
b09e0fa4 3328#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3329 .listxattr = shmem_listxattr,
39f0247d 3330#endif
b09e0fa4 3331};
39f0247d 3332
91828a40
DG
3333static struct dentry *shmem_get_parent(struct dentry *child)
3334{
3335 return ERR_PTR(-ESTALE);
3336}
3337
3338static int shmem_match(struct inode *ino, void *vfh)
3339{
3340 __u32 *fh = vfh;
3341 __u64 inum = fh[2];
3342 inum = (inum << 32) | fh[1];
3343 return ino->i_ino == inum && fh[0] == ino->i_generation;
3344}
3345
12ba780d
AG
3346/* Find any alias of inode, but prefer a hashed alias */
3347static struct dentry *shmem_find_alias(struct inode *inode)
3348{
3349 struct dentry *alias = d_find_alias(inode);
3350
3351 return alias ?: d_find_any_alias(inode);
3352}
3353
3354
480b116c
CH
3355static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3356 struct fid *fid, int fh_len, int fh_type)
91828a40 3357{
91828a40 3358 struct inode *inode;
480b116c 3359 struct dentry *dentry = NULL;
35c2a7f4 3360 u64 inum;
480b116c
CH
3361
3362 if (fh_len < 3)
3363 return NULL;
91828a40 3364
35c2a7f4
HD
3365 inum = fid->raw[2];
3366 inum = (inum << 32) | fid->raw[1];
3367
480b116c
CH
3368 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3369 shmem_match, fid->raw);
91828a40 3370 if (inode) {
12ba780d 3371 dentry = shmem_find_alias(inode);
91828a40
DG
3372 iput(inode);
3373 }
3374
480b116c 3375 return dentry;
91828a40
DG
3376}
3377
b0b0382b
AV
3378static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3379 struct inode *parent)
91828a40 3380{
5fe0c237
AK
3381 if (*len < 3) {
3382 *len = 3;
94e07a75 3383 return FILEID_INVALID;
5fe0c237 3384 }
91828a40 3385
1d3382cb 3386 if (inode_unhashed(inode)) {
91828a40
DG
3387 /* Unfortunately insert_inode_hash is not idempotent,
3388 * so as we hash inodes here rather than at creation
3389 * time, we need a lock to ensure we only try
3390 * to do it once
3391 */
3392 static DEFINE_SPINLOCK(lock);
3393 spin_lock(&lock);
1d3382cb 3394 if (inode_unhashed(inode))
91828a40
DG
3395 __insert_inode_hash(inode,
3396 inode->i_ino + inode->i_generation);
3397 spin_unlock(&lock);
3398 }
3399
3400 fh[0] = inode->i_generation;
3401 fh[1] = inode->i_ino;
3402 fh[2] = ((__u64)inode->i_ino) >> 32;
3403
3404 *len = 3;
3405 return 1;
3406}
3407
39655164 3408static const struct export_operations shmem_export_ops = {
91828a40 3409 .get_parent = shmem_get_parent,
91828a40 3410 .encode_fh = shmem_encode_fh,
480b116c 3411 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3412};
3413
626c3920
AV
3414enum shmem_param {
3415 Opt_gid,
3416 Opt_huge,
3417 Opt_mode,
3418 Opt_mpol,
3419 Opt_nr_blocks,
3420 Opt_nr_inodes,
3421 Opt_size,
3422 Opt_uid,
ea3271f7
CD
3423 Opt_inode32,
3424 Opt_inode64,
626c3920
AV
3425};
3426
5eede625 3427static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3428 {"never", SHMEM_HUGE_NEVER },
3429 {"always", SHMEM_HUGE_ALWAYS },
3430 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3431 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3432 {}
3433};
3434
d7167b14 3435const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3436 fsparam_u32 ("gid", Opt_gid),
2710c957 3437 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3438 fsparam_u32oct("mode", Opt_mode),
3439 fsparam_string("mpol", Opt_mpol),
3440 fsparam_string("nr_blocks", Opt_nr_blocks),
3441 fsparam_string("nr_inodes", Opt_nr_inodes),
3442 fsparam_string("size", Opt_size),
3443 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3444 fsparam_flag ("inode32", Opt_inode32),
3445 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3446 {}
3447};
3448
f3235626 3449static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3450{
f3235626 3451 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3452 struct fs_parse_result result;
3453 unsigned long long size;
e04dc423 3454 char *rest;
626c3920
AV
3455 int opt;
3456
d7167b14 3457 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3458 if (opt < 0)
626c3920 3459 return opt;
1da177e4 3460
626c3920
AV
3461 switch (opt) {
3462 case Opt_size:
3463 size = memparse(param->string, &rest);
e04dc423
AV
3464 if (*rest == '%') {
3465 size <<= PAGE_SHIFT;
3466 size *= totalram_pages();
3467 do_div(size, 100);
3468 rest++;
3469 }
3470 if (*rest)
626c3920 3471 goto bad_value;
e04dc423
AV
3472 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3473 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3474 break;
3475 case Opt_nr_blocks:
3476 ctx->blocks = memparse(param->string, &rest);
e04dc423 3477 if (*rest)
626c3920 3478 goto bad_value;
e04dc423 3479 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3480 break;
3481 case Opt_nr_inodes:
3482 ctx->inodes = memparse(param->string, &rest);
e04dc423 3483 if (*rest)
626c3920 3484 goto bad_value;
e04dc423 3485 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3486 break;
3487 case Opt_mode:
3488 ctx->mode = result.uint_32 & 07777;
3489 break;
3490 case Opt_uid:
3491 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3492 if (!uid_valid(ctx->uid))
626c3920
AV
3493 goto bad_value;
3494 break;
3495 case Opt_gid:
3496 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3497 if (!gid_valid(ctx->gid))
626c3920
AV
3498 goto bad_value;
3499 break;
3500 case Opt_huge:
3501 ctx->huge = result.uint_32;
3502 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3503 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3504 has_transparent_hugepage()))
3505 goto unsupported_parameter;
e04dc423 3506 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3507 break;
3508 case Opt_mpol:
3509 if (IS_ENABLED(CONFIG_NUMA)) {
3510 mpol_put(ctx->mpol);
3511 ctx->mpol = NULL;
3512 if (mpol_parse_str(param->string, &ctx->mpol))
3513 goto bad_value;
3514 break;
3515 }
3516 goto unsupported_parameter;
ea3271f7
CD
3517 case Opt_inode32:
3518 ctx->full_inums = false;
3519 ctx->seen |= SHMEM_SEEN_INUMS;
3520 break;
3521 case Opt_inode64:
3522 if (sizeof(ino_t) < 8) {
3523 return invalfc(fc,
3524 "Cannot use inode64 with <64bit inums in kernel\n");
3525 }
3526 ctx->full_inums = true;
3527 ctx->seen |= SHMEM_SEEN_INUMS;
3528 break;
e04dc423
AV
3529 }
3530 return 0;
3531
626c3920 3532unsupported_parameter:
f35aa2bc 3533 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3534bad_value:
f35aa2bc 3535 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3536}
3537
f3235626 3538static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3539{
f3235626
DH
3540 char *options = data;
3541
33f37c64
AV
3542 if (options) {
3543 int err = security_sb_eat_lsm_opts(options, &fc->security);
3544 if (err)
3545 return err;
3546 }
3547
b00dc3ad 3548 while (options != NULL) {
626c3920 3549 char *this_char = options;
b00dc3ad
HD
3550 for (;;) {
3551 /*
3552 * NUL-terminate this option: unfortunately,
3553 * mount options form a comma-separated list,
3554 * but mpol's nodelist may also contain commas.
3555 */
3556 options = strchr(options, ',');
3557 if (options == NULL)
3558 break;
3559 options++;
3560 if (!isdigit(*options)) {
3561 options[-1] = '\0';
3562 break;
3563 }
3564 }
626c3920
AV
3565 if (*this_char) {
3566 char *value = strchr(this_char,'=');
f3235626 3567 size_t len = 0;
626c3920
AV
3568 int err;
3569
3570 if (value) {
3571 *value++ = '\0';
f3235626 3572 len = strlen(value);
626c3920 3573 }
f3235626
DH
3574 err = vfs_parse_fs_string(fc, this_char, value, len);
3575 if (err < 0)
3576 return err;
1da177e4 3577 }
1da177e4
LT
3578 }
3579 return 0;
1da177e4
LT
3580}
3581
f3235626
DH
3582/*
3583 * Reconfigure a shmem filesystem.
3584 *
3585 * Note that we disallow change from limited->unlimited blocks/inodes while any
3586 * are in use; but we must separately disallow unlimited->limited, because in
3587 * that case we have no record of how much is already in use.
3588 */
3589static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3590{
f3235626
DH
3591 struct shmem_options *ctx = fc->fs_private;
3592 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3593 unsigned long inodes;
f3235626 3594 const char *err;
1da177e4 3595
0edd73b3 3596 spin_lock(&sbinfo->stat_lock);
0edd73b3 3597 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3598 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3599 if (!sbinfo->max_blocks) {
3600 err = "Cannot retroactively limit size";
0b5071dd 3601 goto out;
f3235626 3602 }
0b5071dd 3603 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3604 ctx->blocks) > 0) {
3605 err = "Too small a size for current use";
0b5071dd 3606 goto out;
f3235626 3607 }
0b5071dd 3608 }
f3235626
DH
3609 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3610 if (!sbinfo->max_inodes) {
3611 err = "Cannot retroactively limit inodes";
0b5071dd 3612 goto out;
f3235626
DH
3613 }
3614 if (ctx->inodes < inodes) {
3615 err = "Too few inodes for current use";
0b5071dd 3616 goto out;
f3235626 3617 }
0b5071dd 3618 }
0edd73b3 3619
ea3271f7
CD
3620 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3621 sbinfo->next_ino > UINT_MAX) {
3622 err = "Current inum too high to switch to 32-bit inums";
3623 goto out;
3624 }
3625
f3235626
DH
3626 if (ctx->seen & SHMEM_SEEN_HUGE)
3627 sbinfo->huge = ctx->huge;
ea3271f7
CD
3628 if (ctx->seen & SHMEM_SEEN_INUMS)
3629 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3630 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3631 sbinfo->max_blocks = ctx->blocks;
3632 if (ctx->seen & SHMEM_SEEN_INODES) {
3633 sbinfo->max_inodes = ctx->inodes;
3634 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3635 }
71fe804b 3636
5f00110f
GT
3637 /*
3638 * Preserve previous mempolicy unless mpol remount option was specified.
3639 */
f3235626 3640 if (ctx->mpol) {
5f00110f 3641 mpol_put(sbinfo->mpol);
f3235626
DH
3642 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3643 ctx->mpol = NULL;
5f00110f 3644 }
f3235626
DH
3645 spin_unlock(&sbinfo->stat_lock);
3646 return 0;
0edd73b3
HD
3647out:
3648 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3649 return invalfc(fc, "%s", err);
1da177e4 3650}
680d794b 3651
34c80b1d 3652static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3653{
34c80b1d 3654 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3655
3656 if (sbinfo->max_blocks != shmem_default_max_blocks())
3657 seq_printf(seq, ",size=%luk",
09cbfeaf 3658 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3659 if (sbinfo->max_inodes != shmem_default_max_inodes())
3660 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3661 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3662 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3663 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3664 seq_printf(seq, ",uid=%u",
3665 from_kuid_munged(&init_user_ns, sbinfo->uid));
3666 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3667 seq_printf(seq, ",gid=%u",
3668 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3669
3670 /*
3671 * Showing inode{64,32} might be useful even if it's the system default,
3672 * since then people don't have to resort to checking both here and
3673 * /proc/config.gz to confirm 64-bit inums were successfully applied
3674 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3675 *
3676 * We hide it when inode64 isn't the default and we are using 32-bit
3677 * inodes, since that probably just means the feature isn't even under
3678 * consideration.
3679 *
3680 * As such:
3681 *
3682 * +-----------------+-----------------+
3683 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3684 * +------------------+-----------------+-----------------+
3685 * | full_inums=true | show | show |
3686 * | full_inums=false | show | hide |
3687 * +------------------+-----------------+-----------------+
3688 *
3689 */
3690 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3691 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3692#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3693 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3694 if (sbinfo->huge)
3695 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3696#endif
71fe804b 3697 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3698 return 0;
3699}
9183df25 3700
680d794b 3701#endif /* CONFIG_TMPFS */
1da177e4
LT
3702
3703static void shmem_put_super(struct super_block *sb)
3704{
602586a8
HD
3705 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3706
e809d5f0 3707 free_percpu(sbinfo->ino_batch);
602586a8 3708 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3709 mpol_put(sbinfo->mpol);
602586a8 3710 kfree(sbinfo);
1da177e4
LT
3711 sb->s_fs_info = NULL;
3712}
3713
f3235626 3714static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3715{
f3235626 3716 struct shmem_options *ctx = fc->fs_private;
1da177e4 3717 struct inode *inode;
0edd73b3 3718 struct shmem_sb_info *sbinfo;
680d794b
AM
3719 int err = -ENOMEM;
3720
3721 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3722 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3723 L1_CACHE_BYTES), GFP_KERNEL);
3724 if (!sbinfo)
3725 return -ENOMEM;
3726
680d794b 3727 sb->s_fs_info = sbinfo;
1da177e4 3728
0edd73b3 3729#ifdef CONFIG_TMPFS
1da177e4
LT
3730 /*
3731 * Per default we only allow half of the physical ram per
3732 * tmpfs instance, limiting inodes to one per page of lowmem;
3733 * but the internal instance is left unlimited.
3734 */
1751e8a6 3735 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3736 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3737 ctx->blocks = shmem_default_max_blocks();
3738 if (!(ctx->seen & SHMEM_SEEN_INODES))
3739 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3740 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3741 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3742 } else {
1751e8a6 3743 sb->s_flags |= SB_NOUSER;
1da177e4 3744 }
91828a40 3745 sb->s_export_op = &shmem_export_ops;
1751e8a6 3746 sb->s_flags |= SB_NOSEC;
1da177e4 3747#else
1751e8a6 3748 sb->s_flags |= SB_NOUSER;
1da177e4 3749#endif
f3235626
DH
3750 sbinfo->max_blocks = ctx->blocks;
3751 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3752 if (sb->s_flags & SB_KERNMOUNT) {
3753 sbinfo->ino_batch = alloc_percpu(ino_t);
3754 if (!sbinfo->ino_batch)
3755 goto failed;
3756 }
f3235626
DH
3757 sbinfo->uid = ctx->uid;
3758 sbinfo->gid = ctx->gid;
ea3271f7 3759 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3760 sbinfo->mode = ctx->mode;
3761 sbinfo->huge = ctx->huge;
3762 sbinfo->mpol = ctx->mpol;
3763 ctx->mpol = NULL;
1da177e4 3764
0edd73b3 3765 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3766 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3767 goto failed;
779750d2
KS
3768 spin_lock_init(&sbinfo->shrinklist_lock);
3769 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3770
285b2c4f 3771 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3772 sb->s_blocksize = PAGE_SIZE;
3773 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3774 sb->s_magic = TMPFS_MAGIC;
3775 sb->s_op = &shmem_ops;
cfd95a9c 3776 sb->s_time_gran = 1;
b09e0fa4 3777#ifdef CONFIG_TMPFS_XATTR
39f0247d 3778 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3779#endif
3780#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3781 sb->s_flags |= SB_POSIXACL;
39f0247d 3782#endif
2b4db796 3783 uuid_gen(&sb->s_uuid);
0edd73b3 3784
454abafe 3785 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3786 if (!inode)
3787 goto failed;
680d794b
AM
3788 inode->i_uid = sbinfo->uid;
3789 inode->i_gid = sbinfo->gid;
318ceed0
AV
3790 sb->s_root = d_make_root(inode);
3791 if (!sb->s_root)
48fde701 3792 goto failed;
1da177e4
LT
3793 return 0;
3794
1da177e4
LT
3795failed:
3796 shmem_put_super(sb);
3797 return err;
3798}
3799
f3235626
DH
3800static int shmem_get_tree(struct fs_context *fc)
3801{
3802 return get_tree_nodev(fc, shmem_fill_super);
3803}
3804
3805static void shmem_free_fc(struct fs_context *fc)
3806{
3807 struct shmem_options *ctx = fc->fs_private;
3808
3809 if (ctx) {
3810 mpol_put(ctx->mpol);
3811 kfree(ctx);
3812 }
3813}
3814
3815static const struct fs_context_operations shmem_fs_context_ops = {
3816 .free = shmem_free_fc,
3817 .get_tree = shmem_get_tree,
3818#ifdef CONFIG_TMPFS
3819 .parse_monolithic = shmem_parse_options,
3820 .parse_param = shmem_parse_one,
3821 .reconfigure = shmem_reconfigure,
3822#endif
3823};
3824
fcc234f8 3825static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3826
3827static struct inode *shmem_alloc_inode(struct super_block *sb)
3828{
41ffe5d5
HD
3829 struct shmem_inode_info *info;
3830 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3831 if (!info)
1da177e4 3832 return NULL;
41ffe5d5 3833 return &info->vfs_inode;
1da177e4
LT
3834}
3835
74b1da56 3836static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3837{
84e710da
AV
3838 if (S_ISLNK(inode->i_mode))
3839 kfree(inode->i_link);
fa0d7e3d
NP
3840 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3841}
3842
1da177e4
LT
3843static void shmem_destroy_inode(struct inode *inode)
3844{
09208d15 3845 if (S_ISREG(inode->i_mode))
1da177e4 3846 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3847}
3848
41ffe5d5 3849static void shmem_init_inode(void *foo)
1da177e4 3850{
41ffe5d5
HD
3851 struct shmem_inode_info *info = foo;
3852 inode_init_once(&info->vfs_inode);
1da177e4
LT
3853}
3854
9a8ec03e 3855static void shmem_init_inodecache(void)
1da177e4
LT
3856{
3857 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3858 sizeof(struct shmem_inode_info),
5d097056 3859 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3860}
3861
41ffe5d5 3862static void shmem_destroy_inodecache(void)
1da177e4 3863{
1a1d92c1 3864 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3865}
3866
f5e54d6e 3867static const struct address_space_operations shmem_aops = {
1da177e4 3868 .writepage = shmem_writepage,
76719325 3869 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3870#ifdef CONFIG_TMPFS
800d15a5
NP
3871 .write_begin = shmem_write_begin,
3872 .write_end = shmem_write_end,
1da177e4 3873#endif
1c93923c 3874#ifdef CONFIG_MIGRATION
304dbdb7 3875 .migratepage = migrate_page,
1c93923c 3876#endif
aa261f54 3877 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3878};
3879
15ad7cdc 3880static const struct file_operations shmem_file_operations = {
1da177e4 3881 .mmap = shmem_mmap,
c01d5b30 3882 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3883#ifdef CONFIG_TMPFS
220f2ac9 3884 .llseek = shmem_file_llseek,
2ba5bbed 3885 .read_iter = shmem_file_read_iter,
8174202b 3886 .write_iter = generic_file_write_iter,
1b061d92 3887 .fsync = noop_fsync,
82c156f8 3888 .splice_read = generic_file_splice_read,
f6cb85d0 3889 .splice_write = iter_file_splice_write,
83e4fa9c 3890 .fallocate = shmem_fallocate,
1da177e4
LT
3891#endif
3892};
3893
92e1d5be 3894static const struct inode_operations shmem_inode_operations = {
44a30220 3895 .getattr = shmem_getattr,
94c1e62d 3896 .setattr = shmem_setattr,
b09e0fa4 3897#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3898 .listxattr = shmem_listxattr,
feda821e 3899 .set_acl = simple_set_acl,
b09e0fa4 3900#endif
1da177e4
LT
3901};
3902
92e1d5be 3903static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3904#ifdef CONFIG_TMPFS
3905 .create = shmem_create,
3906 .lookup = simple_lookup,
3907 .link = shmem_link,
3908 .unlink = shmem_unlink,
3909 .symlink = shmem_symlink,
3910 .mkdir = shmem_mkdir,
3911 .rmdir = shmem_rmdir,
3912 .mknod = shmem_mknod,
2773bf00 3913 .rename = shmem_rename2,
60545d0d 3914 .tmpfile = shmem_tmpfile,
1da177e4 3915#endif
b09e0fa4 3916#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3917 .listxattr = shmem_listxattr,
b09e0fa4 3918#endif
39f0247d 3919#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3920 .setattr = shmem_setattr,
feda821e 3921 .set_acl = simple_set_acl,
39f0247d
AG
3922#endif
3923};
3924
92e1d5be 3925static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3926#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3927 .listxattr = shmem_listxattr,
b09e0fa4 3928#endif
39f0247d 3929#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3930 .setattr = shmem_setattr,
feda821e 3931 .set_acl = simple_set_acl,
39f0247d 3932#endif
1da177e4
LT
3933};
3934
759b9775 3935static const struct super_operations shmem_ops = {
1da177e4 3936 .alloc_inode = shmem_alloc_inode,
74b1da56 3937 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3938 .destroy_inode = shmem_destroy_inode,
3939#ifdef CONFIG_TMPFS
3940 .statfs = shmem_statfs,
680d794b 3941 .show_options = shmem_show_options,
1da177e4 3942#endif
1f895f75 3943 .evict_inode = shmem_evict_inode,
1da177e4
LT
3944 .drop_inode = generic_delete_inode,
3945 .put_super = shmem_put_super,
396bcc52 3946#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3947 .nr_cached_objects = shmem_unused_huge_count,
3948 .free_cached_objects = shmem_unused_huge_scan,
3949#endif
1da177e4
LT
3950};
3951
f0f37e2f 3952static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3953 .fault = shmem_fault,
d7c17551 3954 .map_pages = filemap_map_pages,
1da177e4
LT
3955#ifdef CONFIG_NUMA
3956 .set_policy = shmem_set_policy,
3957 .get_policy = shmem_get_policy,
3958#endif
3959};
3960
f3235626 3961int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3962{
f3235626
DH
3963 struct shmem_options *ctx;
3964
3965 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3966 if (!ctx)
3967 return -ENOMEM;
3968
3969 ctx->mode = 0777 | S_ISVTX;
3970 ctx->uid = current_fsuid();
3971 ctx->gid = current_fsgid();
3972
3973 fc->fs_private = ctx;
3974 fc->ops = &shmem_fs_context_ops;
3975 return 0;
1da177e4
LT
3976}
3977
41ffe5d5 3978static struct file_system_type shmem_fs_type = {
1da177e4
LT
3979 .owner = THIS_MODULE,
3980 .name = "tmpfs",
f3235626
DH
3981 .init_fs_context = shmem_init_fs_context,
3982#ifdef CONFIG_TMPFS
d7167b14 3983 .parameters = shmem_fs_parameters,
f3235626 3984#endif
1da177e4 3985 .kill_sb = kill_litter_super,
2b8576cb 3986 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3987};
1da177e4 3988
41ffe5d5 3989int __init shmem_init(void)
1da177e4
LT
3990{
3991 int error;
3992
9a8ec03e 3993 shmem_init_inodecache();
1da177e4 3994
41ffe5d5 3995 error = register_filesystem(&shmem_fs_type);
1da177e4 3996 if (error) {
1170532b 3997 pr_err("Could not register tmpfs\n");
1da177e4
LT
3998 goto out2;
3999 }
95dc112a 4000
ca4e0519 4001 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4002 if (IS_ERR(shm_mnt)) {
4003 error = PTR_ERR(shm_mnt);
1170532b 4004 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4005 goto out1;
4006 }
5a6e75f8 4007
396bcc52 4008#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 4009 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4010 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4011 else
4012 shmem_huge = 0; /* just in case it was patched */
4013#endif
1da177e4
LT
4014 return 0;
4015
4016out1:
41ffe5d5 4017 unregister_filesystem(&shmem_fs_type);
1da177e4 4018out2:
41ffe5d5 4019 shmem_destroy_inodecache();
1da177e4
LT
4020 shm_mnt = ERR_PTR(error);
4021 return error;
4022}
853ac43a 4023
396bcc52 4024#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4025static ssize_t shmem_enabled_show(struct kobject *kobj,
4026 struct kobj_attribute *attr, char *buf)
4027{
26083eb6 4028 static const int values[] = {
5a6e75f8
KS
4029 SHMEM_HUGE_ALWAYS,
4030 SHMEM_HUGE_WITHIN_SIZE,
4031 SHMEM_HUGE_ADVISE,
4032 SHMEM_HUGE_NEVER,
4033 SHMEM_HUGE_DENY,
4034 SHMEM_HUGE_FORCE,
4035 };
4036 int i, count;
4037
4038 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4039 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4040
4041 count += sprintf(buf + count, fmt,
4042 shmem_format_huge(values[i]));
4043 }
4044 buf[count - 1] = '\n';
4045 return count;
4046}
4047
4048static ssize_t shmem_enabled_store(struct kobject *kobj,
4049 struct kobj_attribute *attr, const char *buf, size_t count)
4050{
4051 char tmp[16];
4052 int huge;
4053
4054 if (count + 1 > sizeof(tmp))
4055 return -EINVAL;
4056 memcpy(tmp, buf, count);
4057 tmp[count] = '\0';
4058 if (count && tmp[count - 1] == '\n')
4059 tmp[count - 1] = '\0';
4060
4061 huge = shmem_parse_huge(tmp);
4062 if (huge == -EINVAL)
4063 return -EINVAL;
4064 if (!has_transparent_hugepage() &&
4065 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4066 return -EINVAL;
4067
4068 shmem_huge = huge;
435c0b87 4069 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4070 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4071 return count;
4072}
4073
4074struct kobj_attribute shmem_enabled_attr =
4075 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4076#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4077
396bcc52 4078#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
4079bool shmem_huge_enabled(struct vm_area_struct *vma)
4080{
4081 struct inode *inode = file_inode(vma->vm_file);
4082 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4083 loff_t i_size;
4084 pgoff_t off;
4085
c0630669
YS
4086 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4087 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4088 return false;
f3f0e1d2
KS
4089 if (shmem_huge == SHMEM_HUGE_FORCE)
4090 return true;
4091 if (shmem_huge == SHMEM_HUGE_DENY)
4092 return false;
4093 switch (sbinfo->huge) {
4094 case SHMEM_HUGE_NEVER:
4095 return false;
4096 case SHMEM_HUGE_ALWAYS:
4097 return true;
4098 case SHMEM_HUGE_WITHIN_SIZE:
4099 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4100 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4101 if (i_size >= HPAGE_PMD_SIZE &&
4102 i_size >> PAGE_SHIFT >= off)
4103 return true;
e4a9bc58 4104 fallthrough;
f3f0e1d2
KS
4105 case SHMEM_HUGE_ADVISE:
4106 /* TODO: implement fadvise() hints */
4107 return (vma->vm_flags & VM_HUGEPAGE);
4108 default:
4109 VM_BUG_ON(1);
4110 return false;
4111 }
4112}
396bcc52 4113#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4114
853ac43a
MM
4115#else /* !CONFIG_SHMEM */
4116
4117/*
4118 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4119 *
4120 * This is intended for small system where the benefits of the full
4121 * shmem code (swap-backed and resource-limited) are outweighed by
4122 * their complexity. On systems without swap this code should be
4123 * effectively equivalent, but much lighter weight.
4124 */
4125
41ffe5d5 4126static struct file_system_type shmem_fs_type = {
853ac43a 4127 .name = "tmpfs",
f3235626 4128 .init_fs_context = ramfs_init_fs_context,
d7167b14 4129 .parameters = ramfs_fs_parameters,
853ac43a 4130 .kill_sb = kill_litter_super,
2b8576cb 4131 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4132};
4133
41ffe5d5 4134int __init shmem_init(void)
853ac43a 4135{
41ffe5d5 4136 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4137
41ffe5d5 4138 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4139 BUG_ON(IS_ERR(shm_mnt));
4140
4141 return 0;
4142}
4143
b56a2d8a
VRP
4144int shmem_unuse(unsigned int type, bool frontswap,
4145 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4146{
4147 return 0;
4148}
4149
3f96b79a
HD
4150int shmem_lock(struct file *file, int lock, struct user_struct *user)
4151{
4152 return 0;
4153}
4154
24513264
HD
4155void shmem_unlock_mapping(struct address_space *mapping)
4156{
4157}
4158
c01d5b30
HD
4159#ifdef CONFIG_MMU
4160unsigned long shmem_get_unmapped_area(struct file *file,
4161 unsigned long addr, unsigned long len,
4162 unsigned long pgoff, unsigned long flags)
4163{
4164 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4165}
4166#endif
4167
41ffe5d5 4168void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4169{
41ffe5d5 4170 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4171}
4172EXPORT_SYMBOL_GPL(shmem_truncate_range);
4173
0b0a0806
HD
4174#define shmem_vm_ops generic_file_vm_ops
4175#define shmem_file_operations ramfs_file_operations
454abafe 4176#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4177#define shmem_acct_size(flags, size) 0
4178#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4179
4180#endif /* CONFIG_SHMEM */
4181
4182/* common code */
1da177e4 4183
703321b6 4184static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4185 unsigned long flags, unsigned int i_flags)
1da177e4 4186{
1da177e4 4187 struct inode *inode;
93dec2da 4188 struct file *res;
1da177e4 4189
703321b6
MA
4190 if (IS_ERR(mnt))
4191 return ERR_CAST(mnt);
1da177e4 4192
285b2c4f 4193 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4194 return ERR_PTR(-EINVAL);
4195
4196 if (shmem_acct_size(flags, size))
4197 return ERR_PTR(-ENOMEM);
4198
93dec2da
AV
4199 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4200 flags);
dac2d1f6
AV
4201 if (unlikely(!inode)) {
4202 shmem_unacct_size(flags, size);
4203 return ERR_PTR(-ENOSPC);
4204 }
c7277090 4205 inode->i_flags |= i_flags;
1da177e4 4206 inode->i_size = size;
6d6b77f1 4207 clear_nlink(inode); /* It is unlinked */
26567cdb 4208 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4209 if (!IS_ERR(res))
4210 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4211 &shmem_file_operations);
26567cdb 4212 if (IS_ERR(res))
93dec2da 4213 iput(inode);
6b4d0b27 4214 return res;
1da177e4 4215}
c7277090
EP
4216
4217/**
4218 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4219 * kernel internal. There will be NO LSM permission checks against the
4220 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4221 * higher layer. The users are the big_key and shm implementations. LSM
4222 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4223 * @name: name for dentry (to be seen in /proc/<pid>/maps
4224 * @size: size to be set for the file
4225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4226 */
4227struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4228{
703321b6 4229 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4230}
4231
4232/**
4233 * shmem_file_setup - get an unlinked file living in tmpfs
4234 * @name: name for dentry (to be seen in /proc/<pid>/maps
4235 * @size: size to be set for the file
4236 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4237 */
4238struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4239{
703321b6 4240 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4241}
395e0ddc 4242EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4243
703321b6
MA
4244/**
4245 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4246 * @mnt: the tmpfs mount where the file will be created
4247 * @name: name for dentry (to be seen in /proc/<pid>/maps
4248 * @size: size to be set for the file
4249 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4250 */
4251struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4252 loff_t size, unsigned long flags)
4253{
4254 return __shmem_file_setup(mnt, name, size, flags, 0);
4255}
4256EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4257
46711810 4258/**
1da177e4 4259 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4260 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4261 */
4262int shmem_zero_setup(struct vm_area_struct *vma)
4263{
4264 struct file *file;
4265 loff_t size = vma->vm_end - vma->vm_start;
4266
66fc1303 4267 /*
c1e8d7c6 4268 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4269 * between XFS directory reading and selinux: since this file is only
4270 * accessible to the user through its mapping, use S_PRIVATE flag to
4271 * bypass file security, in the same way as shmem_kernel_file_setup().
4272 */
703321b6 4273 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4274 if (IS_ERR(file))
4275 return PTR_ERR(file);
4276
4277 if (vma->vm_file)
4278 fput(vma->vm_file);
4279 vma->vm_file = file;
4280 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4281
396bcc52 4282 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4283 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4284 (vma->vm_end & HPAGE_PMD_MASK)) {
4285 khugepaged_enter(vma, vma->vm_flags);
4286 }
4287
1da177e4
LT
4288 return 0;
4289}
d9d90e5e
HD
4290
4291/**
4292 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4293 * @mapping: the page's address_space
4294 * @index: the page index
4295 * @gfp: the page allocator flags to use if allocating
4296 *
4297 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4298 * with any new page allocations done using the specified allocation flags.
4299 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4300 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4301 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4302 *
68da9f05
HD
4303 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4304 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4305 */
4306struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4307 pgoff_t index, gfp_t gfp)
4308{
68da9f05
HD
4309#ifdef CONFIG_SHMEM
4310 struct inode *inode = mapping->host;
9276aad6 4311 struct page *page;
68da9f05
HD
4312 int error;
4313
4314 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4315 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4316 gfp, NULL, NULL, NULL);
68da9f05
HD
4317 if (error)
4318 page = ERR_PTR(error);
4319 else
4320 unlock_page(page);
4321 return page;
4322#else
4323 /*
4324 * The tiny !SHMEM case uses ramfs without swap
4325 */
d9d90e5e 4326 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4327#endif
d9d90e5e
HD
4328}
4329EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);