]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/shmem.c
ASoC: SOF: Intel: add PCI ID for CometLake-S
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4
LT
85#include <asm/pgtable.h>
86
dd56b046
MG
87#include "internal.h"
88
09cbfeaf
KS
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 91
1da177e4
LT
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
69f07ec9
HD
95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96#define SHORT_SYMLINK_LEN 128
97
1aac1400 98/*
f00cdc6d
HD
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
102 */
103struct shmem_falloc {
8e205f77 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109};
110
0b5071dd
AV
111struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
123};
124
b76db735 125#ifdef CONFIG_TMPFS
680d794b
AM
126static unsigned long shmem_default_max_blocks(void)
127{
ca79b0c2 128 return totalram_pages() / 2;
680d794b
AM
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
ca79b0c2
AK
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 136}
b76db735 137#endif
680d794b 138
bde05d1c
HD
139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
68da9f05 146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 147 struct page **pagep, enum sgp_type sgp,
cfda0526 148 gfp_t gfp, struct vm_area_struct *vma,
2b740303 149 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 150
f3f0e1d2 151int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 152 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
153{
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 156}
1da177e4 157
1da177e4
LT
158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159{
160 return sb->s_fs_info;
161}
162
163/*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169static inline int shmem_acct_size(unsigned long flags, loff_t size)
170{
0b0a0806 171 return (flags & VM_NORESERVE) ?
191c5424 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
173}
174
175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176{
0b0a0806 177 if (!(flags & VM_NORESERVE))
1da177e4
LT
178 vm_unacct_memory(VM_ACCT(size));
179}
180
77142517
KK
181static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183{
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192}
193
1da177e4
LT
194/*
195 * ... whereas tmpfs objects are accounted incrementally as
75edd345 196 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
800d8c63 200static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 201{
800d8c63
KS
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
0b0a0806 211 if (flags & VM_NORESERVE)
09cbfeaf 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
213}
214
0f079694
MR
215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235}
236
237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238{
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245}
246
759b9775 247static const struct super_operations shmem_ops;
f5e54d6e 248static const struct address_space_operations shmem_aops;
15ad7cdc 249static const struct file_operations shmem_file_operations;
92e1d5be
AV
250static const struct inode_operations shmem_inode_operations;
251static const struct inode_operations shmem_dir_inode_operations;
252static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 253static const struct vm_operations_struct shmem_vm_ops;
779750d2 254static struct file_system_type shmem_fs_type;
1da177e4 255
b0506e48
MR
256bool vma_is_shmem(struct vm_area_struct *vma)
257{
258 return vma->vm_ops == &shmem_vm_ops;
259}
260
1da177e4 261static LIST_HEAD(shmem_swaplist);
cb5f7b9a 262static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 263
5b04c689
PE
264static int shmem_reserve_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277}
278
279static void shmem_free_inode(struct super_block *sb)
280{
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287}
288
46711810 289/**
41ffe5d5 290 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301static void shmem_recalc_inode(struct inode *inode)
302{
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
54af6042 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 310 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
311 }
312}
313
800d8c63
KS
314bool shmem_charge(struct inode *inode, long pages)
315{
316 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 317 unsigned long flags;
800d8c63 318
0f079694 319 if (!shmem_inode_acct_block(inode, pages))
800d8c63 320 return false;
b1cc94ab 321
aaa52e34
HD
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
4595ef88 325 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
4595ef88 329 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 330
800d8c63
KS
331 return true;
332}
333
334void shmem_uncharge(struct inode *inode, long pages)
335{
336 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 337 unsigned long flags;
800d8c63 338
aaa52e34
HD
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
4595ef88 341 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
4595ef88 345 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 346
0f079694 347 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
348}
349
7a5d0fbb 350/*
62f945b6 351 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 352 */
62f945b6 353static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
354 pgoff_t index, void *expected, void *replacement)
355{
62f945b6 356 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 357 void *item;
7a5d0fbb
HD
358
359 VM_BUG_ON(!expected);
6dbaf22c 360 VM_BUG_ON(!replacement);
62f945b6 361 item = xas_load(&xas);
7a5d0fbb
HD
362 if (item != expected)
363 return -ENOENT;
62f945b6 364 xas_store(&xas, replacement);
7a5d0fbb
HD
365 return 0;
366}
367
d1899228
HD
368/*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377{
a12831bf 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
379}
380
5a6e75f8
KS
381/*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395#define SHMEM_HUGE_NEVER 0
396#define SHMEM_HUGE_ALWAYS 1
397#define SHMEM_HUGE_WITHIN_SIZE 2
398#define SHMEM_HUGE_ADVISE 3
399
400/*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410#define SHMEM_HUGE_DENY (-1)
411#define SHMEM_HUGE_FORCE (-2)
412
396bcc52 413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
414/* ifdef here to avoid bloating shmem.o when not necessary */
415
5b9c98f3 416static int shmem_huge __read_mostly;
5a6e75f8 417
e5f2249a 418#if defined(CONFIG_SYSFS)
5a6e75f8
KS
419static int shmem_parse_huge(const char *str)
420{
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434}
e5f2249a 435#endif
5a6e75f8 436
e5f2249a 437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
438static const char *shmem_format_huge(int huge)
439{
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457}
f1f5929c 458#endif
5a6e75f8 459
779750d2
KS
460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462{
463 LIST_HEAD(list), *pos, *next;
253fd0f0 464 LIST_HEAD(to_remove);
779750d2
KS
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 491 list_move(&info->shrinklist, &to_remove);
779750d2 492 removed++;
779750d2
KS
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
253fd0f0
KS
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
779750d2
KS
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
b3cd54b2
KS
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
779750d2 518
b3cd54b2 519 page = find_get_page(inode->i_mapping,
779750d2
KS
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
b3cd54b2 524 /* No huge page at the end of the file: nothing to split */
779750d2 525 if (!PageTransHuge(page)) {
779750d2
KS
526 put_page(page);
527 goto drop;
528 }
529
b3cd54b2
KS
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
779750d2
KS
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
b3cd54b2
KS
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
779750d2
KS
549
550 split++;
551drop:
552 list_del_init(&info->shrinklist);
553 removed++;
b3cd54b2 554leave:
779750d2
KS
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564}
565
566static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568{
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575}
576
577static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579{
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582}
396bcc52 583#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
584
585#define shmem_huge SHMEM_HUGE_DENY
586
779750d2
KS
587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589{
590 return 0;
591}
396bcc52 592#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 593
89fdcd26
YS
594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595{
396bcc52 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601}
602
46f65ec1
HD
603/*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
552446a4 608 pgoff_t index, void *expected, gfp_t gfp)
46f65ec1 609{
552446a4
MW
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
d8c6546b 612 unsigned long nr = compound_nr(page);
46f65ec1 613
800d8c63
KS
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 618 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 619
800d8c63 620 page_ref_add(page, nr);
b065b432
HD
621 page->mapping = mapping;
622 page->index = index;
623
552446a4
MW
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633next:
4101196b 634 xas_store(&xas, page);
552446a4
MW
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
800d8c63 638 }
552446a4 639 if (PageTransHuge(page)) {
800d8c63 640 count_vm_event(THP_FILE_ALLOC);
552446a4 641 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 642 }
800d8c63 643 mapping->nrpages += nr;
11fb9989
MG
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
552446a4
MW
646unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
b065b432 651 page->mapping = NULL;
800d8c63 652 page_ref_sub(page, nr);
552446a4 653 return xas_error(&xas);
46f65ec1 654 }
552446a4
MW
655
656 return 0;
46f65ec1
HD
657}
658
6922c0c7
HD
659/*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663{
664 struct address_space *mapping = page->mapping;
665 int error;
666
800d8c63
KS
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
b93b0163 669 xa_lock_irq(&mapping->i_pages);
62f945b6 670 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
671 page->mapping = NULL;
672 mapping->nrpages--;
11fb9989
MG
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
b93b0163 675 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 676 put_page(page);
6922c0c7
HD
677 BUG_ON(error);
678}
679
7a5d0fbb 680/*
c121d3bb 681 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
682 */
683static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685{
6dbaf22c 686 void *old;
7a5d0fbb 687
55f3f7ea 688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
7a5d0fbb
HD
693}
694
6a15a370
VB
695/*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 697 * given offsets are swapped out.
6a15a370 698 *
b93b0163 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
48131e03
VB
702unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
6a15a370 704{
7ae3424f 705 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 706 struct page *page;
48131e03 707 unsigned long swapped = 0;
6a15a370
VB
708
709 rcu_read_lock();
7ae3424f
MW
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
2cf938aa 712 continue;
3159f943 713 if (xa_is_value(page))
6a15a370
VB
714 swapped++;
715
716 if (need_resched()) {
7ae3424f 717 xas_pause(&xas);
6a15a370 718 cond_resched_rcu();
6a15a370
VB
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725}
726
48131e03
VB
727/*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
b93b0163 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735{
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759}
760
24513264
HD
761/*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764void shmem_unlock_mapping(struct address_space *mapping)
765{
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
86679820 770 pagevec_init(&pvec);
24513264
HD
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
0cd6144a
JW
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
0cd6144a 784 pagevec_remove_exceptionals(&pvec);
64e3d12f 785 check_move_unevictable_pages(&pvec);
24513264
HD
786 pagevec_release(&pvec);
787 cond_resched();
788 }
7a5d0fbb
HD
789}
790
71725ed1
HD
791/*
792 * Check whether a hole-punch or truncation needs to split a huge page,
793 * returning true if no split was required, or the split has been successful.
794 *
795 * Eviction (or truncation to 0 size) should never need to split a huge page;
796 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
797 * head, and then succeeded to trylock on tail.
798 *
799 * A split can only succeed when there are no additional references on the
800 * huge page: so the split below relies upon find_get_entries() having stopped
801 * when it found a subpage of the huge page, without getting further references.
802 */
803static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
804{
805 if (!PageTransCompound(page))
806 return true;
807
808 /* Just proceed to delete a huge page wholly within the range punched */
809 if (PageHead(page) &&
810 page->index >= start && page->index + HPAGE_PMD_NR <= end)
811 return true;
812
813 /* Try to split huge page, so we can truly punch the hole or truncate */
814 return split_huge_page(page) >= 0;
815}
816
7a5d0fbb 817/*
7f4446ee 818 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 819 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 820 */
1635f6a7
HD
821static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
822 bool unfalloc)
1da177e4 823{
285b2c4f 824 struct address_space *mapping = inode->i_mapping;
1da177e4 825 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
826 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
827 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
828 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
829 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 830 struct pagevec pvec;
7a5d0fbb
HD
831 pgoff_t indices[PAGEVEC_SIZE];
832 long nr_swaps_freed = 0;
285b2c4f 833 pgoff_t index;
bda97eab
HD
834 int i;
835
83e4fa9c
HD
836 if (lend == -1)
837 end = -1; /* unsigned, so actually very big */
bda97eab 838
86679820 839 pagevec_init(&pvec);
bda97eab 840 index = start;
83e4fa9c 841 while (index < end) {
0cd6144a
JW
842 pvec.nr = find_get_entries(mapping, index,
843 min(end - index, (pgoff_t)PAGEVEC_SIZE),
844 pvec.pages, indices);
7a5d0fbb
HD
845 if (!pvec.nr)
846 break;
bda97eab
HD
847 for (i = 0; i < pagevec_count(&pvec); i++) {
848 struct page *page = pvec.pages[i];
849
7a5d0fbb 850 index = indices[i];
83e4fa9c 851 if (index >= end)
bda97eab
HD
852 break;
853
3159f943 854 if (xa_is_value(page)) {
1635f6a7
HD
855 if (unfalloc)
856 continue;
7a5d0fbb
HD
857 nr_swaps_freed += !shmem_free_swap(mapping,
858 index, page);
bda97eab 859 continue;
7a5d0fbb
HD
860 }
861
800d8c63
KS
862 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
863
7a5d0fbb 864 if (!trylock_page(page))
bda97eab 865 continue;
800d8c63 866
71725ed1
HD
867 if ((!unfalloc || !PageUptodate(page)) &&
868 page_mapping(page) == mapping) {
869 VM_BUG_ON_PAGE(PageWriteback(page), page);
870 if (shmem_punch_compound(page, start, end))
1635f6a7 871 truncate_inode_page(mapping, page);
bda97eab 872 }
bda97eab
HD
873 unlock_page(page);
874 }
0cd6144a 875 pagevec_remove_exceptionals(&pvec);
24513264 876 pagevec_release(&pvec);
bda97eab
HD
877 cond_resched();
878 index++;
879 }
1da177e4 880
83e4fa9c 881 if (partial_start) {
bda97eab 882 struct page *page = NULL;
9e18eb29 883 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 884 if (page) {
09cbfeaf 885 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
886 if (start > end) {
887 top = partial_end;
888 partial_end = 0;
889 }
890 zero_user_segment(page, partial_start, top);
891 set_page_dirty(page);
892 unlock_page(page);
09cbfeaf 893 put_page(page);
83e4fa9c
HD
894 }
895 }
896 if (partial_end) {
897 struct page *page = NULL;
9e18eb29 898 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
899 if (page) {
900 zero_user_segment(page, 0, partial_end);
bda97eab
HD
901 set_page_dirty(page);
902 unlock_page(page);
09cbfeaf 903 put_page(page);
bda97eab
HD
904 }
905 }
83e4fa9c
HD
906 if (start >= end)
907 return;
bda97eab
HD
908
909 index = start;
b1a36650 910 while (index < end) {
bda97eab 911 cond_resched();
0cd6144a
JW
912
913 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 914 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 915 pvec.pages, indices);
7a5d0fbb 916 if (!pvec.nr) {
b1a36650
HD
917 /* If all gone or hole-punch or unfalloc, we're done */
918 if (index == start || end != -1)
bda97eab 919 break;
b1a36650 920 /* But if truncating, restart to make sure all gone */
bda97eab
HD
921 index = start;
922 continue;
923 }
bda97eab
HD
924 for (i = 0; i < pagevec_count(&pvec); i++) {
925 struct page *page = pvec.pages[i];
926
7a5d0fbb 927 index = indices[i];
83e4fa9c 928 if (index >= end)
bda97eab
HD
929 break;
930
3159f943 931 if (xa_is_value(page)) {
1635f6a7
HD
932 if (unfalloc)
933 continue;
b1a36650
HD
934 if (shmem_free_swap(mapping, index, page)) {
935 /* Swap was replaced by page: retry */
936 index--;
937 break;
938 }
939 nr_swaps_freed++;
7a5d0fbb
HD
940 continue;
941 }
942
bda97eab 943 lock_page(page);
800d8c63 944
1635f6a7 945 if (!unfalloc || !PageUptodate(page)) {
71725ed1 946 if (page_mapping(page) != mapping) {
b1a36650
HD
947 /* Page was replaced by swap: retry */
948 unlock_page(page);
949 index--;
950 break;
1635f6a7 951 }
71725ed1
HD
952 VM_BUG_ON_PAGE(PageWriteback(page), page);
953 if (shmem_punch_compound(page, start, end))
954 truncate_inode_page(mapping, page);
955 else {
956 /* Wipe the page and don't get stuck */
957 clear_highpage(page);
958 flush_dcache_page(page);
959 set_page_dirty(page);
960 if (index <
961 round_up(start, HPAGE_PMD_NR))
962 start = index + 1;
963 }
7a5d0fbb 964 }
bda97eab
HD
965 unlock_page(page);
966 }
0cd6144a 967 pagevec_remove_exceptionals(&pvec);
24513264 968 pagevec_release(&pvec);
bda97eab
HD
969 index++;
970 }
94c1e62d 971
4595ef88 972 spin_lock_irq(&info->lock);
7a5d0fbb 973 info->swapped -= nr_swaps_freed;
1da177e4 974 shmem_recalc_inode(inode);
4595ef88 975 spin_unlock_irq(&info->lock);
1635f6a7 976}
1da177e4 977
1635f6a7
HD
978void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
979{
980 shmem_undo_range(inode, lstart, lend, false);
078cd827 981 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 982}
94c1e62d 983EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 984
a528d35e
DH
985static int shmem_getattr(const struct path *path, struct kstat *stat,
986 u32 request_mask, unsigned int query_flags)
44a30220 987{
a528d35e 988 struct inode *inode = path->dentry->d_inode;
44a30220 989 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 990 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 991
d0424c42 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 993 spin_lock_irq(&info->lock);
d0424c42 994 shmem_recalc_inode(inode);
4595ef88 995 spin_unlock_irq(&info->lock);
d0424c42 996 }
44a30220 997 generic_fillattr(inode, stat);
89fdcd26
YS
998
999 if (is_huge_enabled(sb_info))
1000 stat->blksize = HPAGE_PMD_SIZE;
1001
44a30220
YZ
1002 return 0;
1003}
1004
94c1e62d 1005static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1006{
75c3cfa8 1007 struct inode *inode = d_inode(dentry);
40e041a2 1008 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1010 int error;
1011
31051c85 1012 error = setattr_prepare(dentry, attr);
db78b877
CH
1013 if (error)
1014 return error;
1015
94c1e62d
HD
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
3889e6e7 1019
40e041a2
DH
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
94c1e62d 1025 if (newsize != oldsize) {
77142517
KK
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
94c1e62d 1030 i_size_write(inode, newsize);
078cd827 1031 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1032 }
afa2db2f 1033 if (newsize <= oldsize) {
94c1e62d 1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
94c1e62d 1041 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
779750d2
KS
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
396bcc52 1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1051 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
94c1e62d 1063 }
1da177e4
LT
1064 }
1065
db78b877 1066 setattr_copy(inode, attr);
db78b877 1067 if (attr->ia_valid & ATTR_MODE)
feda821e 1068 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1069 return error;
1070}
1071
1f895f75 1072static void shmem_evict_inode(struct inode *inode)
1da177e4 1073{
1da177e4 1074 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1076
3889e6e7 1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
3889e6e7 1080 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
af53d3e9
HD
1089 while (!list_empty(&info->swaplist)) {
1090 /* Wait while shmem_unuse() is scanning this inode... */
1091 wait_var_event(&info->stop_eviction,
1092 !atomic_read(&info->stop_eviction));
cb5f7b9a 1093 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1094 /* ...but beware of the race if we peeked too early */
1095 if (!atomic_read(&info->stop_eviction))
1096 list_del_init(&info->swaplist);
cb5f7b9a 1097 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1098 }
3ed47db3 1099 }
b09e0fa4 1100
38f38657 1101 simple_xattrs_free(&info->xattrs);
0f3c42f5 1102 WARN_ON(inode->i_blocks);
5b04c689 1103 shmem_free_inode(inode->i_sb);
dbd5768f 1104 clear_inode(inode);
1da177e4
LT
1105}
1106
b56a2d8a
VRP
1107extern struct swap_info_struct *swap_info[];
1108
1109static int shmem_find_swap_entries(struct address_space *mapping,
1110 pgoff_t start, unsigned int nr_entries,
1111 struct page **entries, pgoff_t *indices,
87039546 1112 unsigned int type, bool frontswap)
478922e2 1113{
b56a2d8a
VRP
1114 XA_STATE(xas, &mapping->i_pages, start);
1115 struct page *page;
87039546 1116 swp_entry_t entry;
b56a2d8a
VRP
1117 unsigned int ret = 0;
1118
1119 if (!nr_entries)
1120 return 0;
478922e2
MW
1121
1122 rcu_read_lock();
b56a2d8a
VRP
1123 xas_for_each(&xas, page, ULONG_MAX) {
1124 if (xas_retry(&xas, page))
5b9c98f3 1125 continue;
b56a2d8a
VRP
1126
1127 if (!xa_is_value(page))
478922e2 1128 continue;
b56a2d8a 1129
87039546
HD
1130 entry = radix_to_swp_entry(page);
1131 if (swp_type(entry) != type)
1132 continue;
1133 if (frontswap &&
1134 !frontswap_test(swap_info[type], swp_offset(entry)))
1135 continue;
b56a2d8a
VRP
1136
1137 indices[ret] = xas.xa_index;
1138 entries[ret] = page;
1139
1140 if (need_resched()) {
1141 xas_pause(&xas);
1142 cond_resched_rcu();
1143 }
1144 if (++ret == nr_entries)
1145 break;
478922e2 1146 }
478922e2 1147 rcu_read_unlock();
e21a2955 1148
b56a2d8a 1149 return ret;
478922e2
MW
1150}
1151
46f65ec1 1152/*
b56a2d8a
VRP
1153 * Move the swapped pages for an inode to page cache. Returns the count
1154 * of pages swapped in, or the error in case of failure.
46f65ec1 1155 */
b56a2d8a
VRP
1156static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1157 pgoff_t *indices)
1da177e4 1158{
b56a2d8a
VRP
1159 int i = 0;
1160 int ret = 0;
bde05d1c 1161 int error = 0;
b56a2d8a 1162 struct address_space *mapping = inode->i_mapping;
1da177e4 1163
b56a2d8a
VRP
1164 for (i = 0; i < pvec.nr; i++) {
1165 struct page *page = pvec.pages[i];
2e0e26c7 1166
b56a2d8a
VRP
1167 if (!xa_is_value(page))
1168 continue;
1169 error = shmem_swapin_page(inode, indices[i],
1170 &page, SGP_CACHE,
1171 mapping_gfp_mask(mapping),
1172 NULL, NULL);
1173 if (error == 0) {
1174 unlock_page(page);
1175 put_page(page);
1176 ret++;
1177 }
1178 if (error == -ENOMEM)
1179 break;
1180 error = 0;
bde05d1c 1181 }
b56a2d8a
VRP
1182 return error ? error : ret;
1183}
bde05d1c 1184
b56a2d8a
VRP
1185/*
1186 * If swap found in inode, free it and move page from swapcache to filecache.
1187 */
1188static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1189 bool frontswap, unsigned long *fs_pages_to_unuse)
1190{
1191 struct address_space *mapping = inode->i_mapping;
1192 pgoff_t start = 0;
1193 struct pagevec pvec;
1194 pgoff_t indices[PAGEVEC_SIZE];
1195 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1196 int ret = 0;
1197
1198 pagevec_init(&pvec);
1199 do {
1200 unsigned int nr_entries = PAGEVEC_SIZE;
1201
1202 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1203 nr_entries = *fs_pages_to_unuse;
1204
1205 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1206 pvec.pages, indices,
87039546 1207 type, frontswap);
b56a2d8a
VRP
1208 if (pvec.nr == 0) {
1209 ret = 0;
1210 break;
46f65ec1 1211 }
b56a2d8a
VRP
1212
1213 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1214 if (ret < 0)
1215 break;
1216
1217 if (frontswap_partial) {
1218 *fs_pages_to_unuse -= ret;
1219 if (*fs_pages_to_unuse == 0) {
1220 ret = FRONTSWAP_PAGES_UNUSED;
1221 break;
1222 }
1223 }
1224
1225 start = indices[pvec.nr - 1];
1226 } while (true);
1227
1228 return ret;
1da177e4
LT
1229}
1230
1231/*
b56a2d8a
VRP
1232 * Read all the shared memory data that resides in the swap
1233 * device 'type' back into memory, so the swap device can be
1234 * unused.
1da177e4 1235 */
b56a2d8a
VRP
1236int shmem_unuse(unsigned int type, bool frontswap,
1237 unsigned long *fs_pages_to_unuse)
1da177e4 1238{
b56a2d8a 1239 struct shmem_inode_info *info, *next;
bde05d1c
HD
1240 int error = 0;
1241
b56a2d8a
VRP
1242 if (list_empty(&shmem_swaplist))
1243 return 0;
1244
1245 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1246 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1247 if (!info->swapped) {
6922c0c7 1248 list_del_init(&info->swaplist);
b56a2d8a
VRP
1249 continue;
1250 }
af53d3e9
HD
1251 /*
1252 * Drop the swaplist mutex while searching the inode for swap;
1253 * but before doing so, make sure shmem_evict_inode() will not
1254 * remove placeholder inode from swaplist, nor let it be freed
1255 * (igrab() would protect from unlink, but not from unmount).
1256 */
1257 atomic_inc(&info->stop_eviction);
b56a2d8a 1258 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1259
af53d3e9 1260 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1261 fs_pages_to_unuse);
cb5f7b9a 1262 cond_resched();
b56a2d8a
VRP
1263
1264 mutex_lock(&shmem_swaplist_mutex);
1265 next = list_next_entry(info, swaplist);
1266 if (!info->swapped)
1267 list_del_init(&info->swaplist);
af53d3e9
HD
1268 if (atomic_dec_and_test(&info->stop_eviction))
1269 wake_up_var(&info->stop_eviction);
b56a2d8a 1270 if (error)
778dd893 1271 break;
1da177e4 1272 }
cb5f7b9a 1273 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1274
778dd893 1275 return error;
1da177e4
LT
1276}
1277
1278/*
1279 * Move the page from the page cache to the swap cache.
1280 */
1281static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1282{
1283 struct shmem_inode_info *info;
1da177e4 1284 struct address_space *mapping;
1da177e4 1285 struct inode *inode;
6922c0c7
HD
1286 swp_entry_t swap;
1287 pgoff_t index;
1da177e4 1288
800d8c63 1289 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1290 BUG_ON(!PageLocked(page));
1da177e4
LT
1291 mapping = page->mapping;
1292 index = page->index;
1293 inode = mapping->host;
1294 info = SHMEM_I(inode);
1295 if (info->flags & VM_LOCKED)
1296 goto redirty;
d9fe526a 1297 if (!total_swap_pages)
1da177e4
LT
1298 goto redirty;
1299
d9fe526a 1300 /*
97b713ba
CH
1301 * Our capabilities prevent regular writeback or sync from ever calling
1302 * shmem_writepage; but a stacking filesystem might use ->writepage of
1303 * its underlying filesystem, in which case tmpfs should write out to
1304 * swap only in response to memory pressure, and not for the writeback
1305 * threads or sync.
d9fe526a 1306 */
48f170fb
HD
1307 if (!wbc->for_reclaim) {
1308 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1309 goto redirty;
1310 }
1635f6a7
HD
1311
1312 /*
1313 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1314 * value into swapfile.c, the only way we can correctly account for a
1315 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1316 *
1317 * That's okay for a page already fallocated earlier, but if we have
1318 * not yet completed the fallocation, then (a) we want to keep track
1319 * of this page in case we have to undo it, and (b) it may not be a
1320 * good idea to continue anyway, once we're pushing into swap. So
1321 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1322 */
1323 if (!PageUptodate(page)) {
1aac1400
HD
1324 if (inode->i_private) {
1325 struct shmem_falloc *shmem_falloc;
1326 spin_lock(&inode->i_lock);
1327 shmem_falloc = inode->i_private;
1328 if (shmem_falloc &&
8e205f77 1329 !shmem_falloc->waitq &&
1aac1400
HD
1330 index >= shmem_falloc->start &&
1331 index < shmem_falloc->next)
1332 shmem_falloc->nr_unswapped++;
1333 else
1334 shmem_falloc = NULL;
1335 spin_unlock(&inode->i_lock);
1336 if (shmem_falloc)
1337 goto redirty;
1338 }
1635f6a7
HD
1339 clear_highpage(page);
1340 flush_dcache_page(page);
1341 SetPageUptodate(page);
1342 }
1343
38d8b4e6 1344 swap = get_swap_page(page);
48f170fb
HD
1345 if (!swap.val)
1346 goto redirty;
d9fe526a 1347
b1dea800
HD
1348 /*
1349 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1350 * if it's not already there. Do it now before the page is
1351 * moved to swap cache, when its pagelock no longer protects
b1dea800 1352 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1353 * we've incremented swapped, because shmem_unuse_inode() will
1354 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1355 */
48f170fb
HD
1356 mutex_lock(&shmem_swaplist_mutex);
1357 if (list_empty(&info->swaplist))
b56a2d8a 1358 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1359
4afab1cd
YS
1360 if (add_to_swap_cache(page, swap,
1361 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
4595ef88 1362 spin_lock_irq(&info->lock);
6922c0c7 1363 shmem_recalc_inode(inode);
267a4c76 1364 info->swapped++;
4595ef88 1365 spin_unlock_irq(&info->lock);
6922c0c7 1366
267a4c76
HD
1367 swap_shmem_alloc(swap);
1368 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1369
6922c0c7 1370 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1371 BUG_ON(page_mapped(page));
9fab5619 1372 swap_writepage(page, wbc);
1da177e4
LT
1373 return 0;
1374 }
1375
6922c0c7 1376 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1377 put_swap_page(page, swap);
1da177e4
LT
1378redirty:
1379 set_page_dirty(page);
d9fe526a
HD
1380 if (wbc->for_reclaim)
1381 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1382 unlock_page(page);
1383 return 0;
1da177e4
LT
1384}
1385
75edd345 1386#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1387static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1388{
095f1fc4 1389 char buffer[64];
680d794b 1390
71fe804b 1391 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1392 return; /* show nothing */
680d794b 1393
a7a88b23 1394 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1395
1396 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1397}
71fe804b
LS
1398
1399static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1400{
1401 struct mempolicy *mpol = NULL;
1402 if (sbinfo->mpol) {
1403 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1404 mpol = sbinfo->mpol;
1405 mpol_get(mpol);
1406 spin_unlock(&sbinfo->stat_lock);
1407 }
1408 return mpol;
1409}
75edd345
HD
1410#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1411static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1412{
1413}
1414static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1415{
1416 return NULL;
1417}
1418#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1419#ifndef CONFIG_NUMA
1420#define vm_policy vm_private_data
1421#endif
680d794b 1422
800d8c63
KS
1423static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1424 struct shmem_inode_info *info, pgoff_t index)
1425{
1426 /* Create a pseudo vma that just contains the policy */
2c4541e2 1427 vma_init(vma, NULL);
800d8c63
KS
1428 /* Bias interleave by inode number to distribute better across nodes */
1429 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1430 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1431}
1432
1433static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1434{
1435 /* Drop reference taken by mpol_shared_policy_lookup() */
1436 mpol_cond_put(vma->vm_policy);
1437}
1438
41ffe5d5
HD
1439static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1440 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1441{
1da177e4 1442 struct vm_area_struct pvma;
18a2f371 1443 struct page *page;
e9e9b7ec 1444 struct vm_fault vmf;
52cd3b07 1445
800d8c63 1446 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1447 vmf.vma = &pvma;
1448 vmf.address = 0;
1449 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1450 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1451
800d8c63
KS
1452 return page;
1453}
1454
1455static struct page *shmem_alloc_hugepage(gfp_t gfp,
1456 struct shmem_inode_info *info, pgoff_t index)
1457{
1458 struct vm_area_struct pvma;
7b8d046f
MW
1459 struct address_space *mapping = info->vfs_inode.i_mapping;
1460 pgoff_t hindex;
800d8c63
KS
1461 struct page *page;
1462
4620a06e 1463 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1464 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1465 XA_PRESENT))
800d8c63 1466 return NULL;
18a2f371 1467
800d8c63
KS
1468 shmem_pseudo_vma_init(&pvma, info, hindex);
1469 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
19deb769 1470 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1471 shmem_pseudo_vma_destroy(&pvma);
1472 if (page)
1473 prep_transhuge_page(page);
dcdf11ee
DR
1474 else
1475 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1476 return page;
1da177e4
LT
1477}
1478
02098fea 1479static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1480 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1481{
1482 struct vm_area_struct pvma;
18a2f371 1483 struct page *page;
1da177e4 1484
800d8c63
KS
1485 shmem_pseudo_vma_init(&pvma, info, index);
1486 page = alloc_page_vma(gfp, &pvma, 0);
1487 shmem_pseudo_vma_destroy(&pvma);
1488
1489 return page;
1490}
1491
1492static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1493 struct inode *inode,
800d8c63
KS
1494 pgoff_t index, bool huge)
1495{
0f079694 1496 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1497 struct page *page;
1498 int nr;
1499 int err = -ENOSPC;
52cd3b07 1500
396bcc52 1501 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1502 huge = false;
1503 nr = huge ? HPAGE_PMD_NR : 1;
1504
0f079694 1505 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1506 goto failed;
800d8c63
KS
1507
1508 if (huge)
1509 page = shmem_alloc_hugepage(gfp, info, index);
1510 else
1511 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1512 if (page) {
1513 __SetPageLocked(page);
1514 __SetPageSwapBacked(page);
800d8c63 1515 return page;
75edd345 1516 }
18a2f371 1517
800d8c63 1518 err = -ENOMEM;
0f079694 1519 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1520failed:
1521 return ERR_PTR(err);
1da177e4 1522}
71fe804b 1523
bde05d1c
HD
1524/*
1525 * When a page is moved from swapcache to shmem filecache (either by the
1526 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1527 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1528 * ignorance of the mapping it belongs to. If that mapping has special
1529 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1530 * we may need to copy to a suitable page before moving to filecache.
1531 *
1532 * In a future release, this may well be extended to respect cpuset and
1533 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1534 * but for now it is a simple matter of zone.
1535 */
1536static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1537{
1538 return page_zonenum(page) > gfp_zone(gfp);
1539}
1540
1541static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1542 struct shmem_inode_info *info, pgoff_t index)
1543{
1544 struct page *oldpage, *newpage;
1545 struct address_space *swap_mapping;
c1cb20d4 1546 swp_entry_t entry;
bde05d1c
HD
1547 pgoff_t swap_index;
1548 int error;
1549
1550 oldpage = *pagep;
c1cb20d4
YZ
1551 entry.val = page_private(oldpage);
1552 swap_index = swp_offset(entry);
bde05d1c
HD
1553 swap_mapping = page_mapping(oldpage);
1554
1555 /*
1556 * We have arrived here because our zones are constrained, so don't
1557 * limit chance of success by further cpuset and node constraints.
1558 */
1559 gfp &= ~GFP_CONSTRAINT_MASK;
1560 newpage = shmem_alloc_page(gfp, info, index);
1561 if (!newpage)
1562 return -ENOMEM;
bde05d1c 1563
09cbfeaf 1564 get_page(newpage);
bde05d1c 1565 copy_highpage(newpage, oldpage);
0142ef6c 1566 flush_dcache_page(newpage);
bde05d1c 1567
9956edf3
HD
1568 __SetPageLocked(newpage);
1569 __SetPageSwapBacked(newpage);
bde05d1c 1570 SetPageUptodate(newpage);
c1cb20d4 1571 set_page_private(newpage, entry.val);
bde05d1c
HD
1572 SetPageSwapCache(newpage);
1573
1574 /*
1575 * Our caller will very soon move newpage out of swapcache, but it's
1576 * a nice clean interface for us to replace oldpage by newpage there.
1577 */
b93b0163 1578 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1579 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1580 if (!error) {
11fb9989
MG
1581 __inc_node_page_state(newpage, NR_FILE_PAGES);
1582 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1583 }
b93b0163 1584 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1585
0142ef6c
HD
1586 if (unlikely(error)) {
1587 /*
1588 * Is this possible? I think not, now that our callers check
1589 * both PageSwapCache and page_private after getting page lock;
1590 * but be defensive. Reverse old to newpage for clear and free.
1591 */
1592 oldpage = newpage;
1593 } else {
6a93ca8f 1594 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1595 lru_cache_add_anon(newpage);
1596 *pagep = newpage;
1597 }
bde05d1c
HD
1598
1599 ClearPageSwapCache(oldpage);
1600 set_page_private(oldpage, 0);
1601
1602 unlock_page(oldpage);
09cbfeaf
KS
1603 put_page(oldpage);
1604 put_page(oldpage);
0142ef6c 1605 return error;
bde05d1c
HD
1606}
1607
c5bf121e
VRP
1608/*
1609 * Swap in the page pointed to by *pagep.
1610 * Caller has to make sure that *pagep contains a valid swapped page.
1611 * Returns 0 and the page in pagep if success. On failure, returns the
1612 * the error code and NULL in *pagep.
1613 */
1614static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1615 struct page **pagep, enum sgp_type sgp,
1616 gfp_t gfp, struct vm_area_struct *vma,
1617 vm_fault_t *fault_type)
1618{
1619 struct address_space *mapping = inode->i_mapping;
1620 struct shmem_inode_info *info = SHMEM_I(inode);
1621 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1622 struct mem_cgroup *memcg;
1623 struct page *page;
1624 swp_entry_t swap;
1625 int error;
1626
1627 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1628 swap = radix_to_swp_entry(*pagep);
1629 *pagep = NULL;
1630
1631 /* Look it up and read it in.. */
1632 page = lookup_swap_cache(swap, NULL, 0);
1633 if (!page) {
1634 /* Or update major stats only when swapin succeeds?? */
1635 if (fault_type) {
1636 *fault_type |= VM_FAULT_MAJOR;
1637 count_vm_event(PGMAJFAULT);
1638 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1639 }
1640 /* Here we actually start the io */
1641 page = shmem_swapin(swap, gfp, info, index);
1642 if (!page) {
1643 error = -ENOMEM;
1644 goto failed;
1645 }
1646 }
1647
1648 /* We have to do this with page locked to prevent races */
1649 lock_page(page);
1650 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1651 !shmem_confirm_swap(mapping, index, swap)) {
1652 error = -EEXIST;
1653 goto unlock;
1654 }
1655 if (!PageUptodate(page)) {
1656 error = -EIO;
1657 goto failed;
1658 }
1659 wait_on_page_writeback(page);
1660
1661 if (shmem_should_replace_page(page, gfp)) {
1662 error = shmem_replace_page(&page, gfp, info, index);
1663 if (error)
1664 goto failed;
1665 }
1666
1667 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1668 false);
1669 if (!error) {
1670 error = shmem_add_to_page_cache(page, mapping, index,
1671 swp_to_radix_entry(swap), gfp);
1672 /*
1673 * We already confirmed swap under page lock, and make
1674 * no memory allocation here, so usually no possibility
1675 * of error; but free_swap_and_cache() only trylocks a
1676 * page, so it is just possible that the entry has been
1677 * truncated or holepunched since swap was confirmed.
1678 * shmem_undo_range() will have done some of the
1679 * unaccounting, now delete_from_swap_cache() will do
1680 * the rest.
1681 */
1682 if (error) {
1683 mem_cgroup_cancel_charge(page, memcg, false);
1684 delete_from_swap_cache(page);
1685 }
1686 }
1687 if (error)
1688 goto failed;
1689
1690 mem_cgroup_commit_charge(page, memcg, true, false);
1691
1692 spin_lock_irq(&info->lock);
1693 info->swapped--;
1694 shmem_recalc_inode(inode);
1695 spin_unlock_irq(&info->lock);
1696
1697 if (sgp == SGP_WRITE)
1698 mark_page_accessed(page);
1699
1700 delete_from_swap_cache(page);
1701 set_page_dirty(page);
1702 swap_free(swap);
1703
1704 *pagep = page;
1705 return 0;
1706failed:
1707 if (!shmem_confirm_swap(mapping, index, swap))
1708 error = -EEXIST;
1709unlock:
1710 if (page) {
1711 unlock_page(page);
1712 put_page(page);
1713 }
1714
1715 return error;
1716}
1717
1da177e4 1718/*
68da9f05 1719 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1720 *
1721 * If we allocate a new one we do not mark it dirty. That's up to the
1722 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1723 * entry since a page cannot live in both the swap and page cache.
1724 *
28eb3c80 1725 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1726 * otherwise they are NULL.
1da177e4 1727 */
41ffe5d5 1728static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1729 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1730 struct vm_area_struct *vma, struct vm_fault *vmf,
1731 vm_fault_t *fault_type)
1da177e4
LT
1732{
1733 struct address_space *mapping = inode->i_mapping;
23f919d4 1734 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1735 struct shmem_sb_info *sbinfo;
9e18eb29 1736 struct mm_struct *charge_mm;
00501b53 1737 struct mem_cgroup *memcg;
27ab7006 1738 struct page *page;
657e3038 1739 enum sgp_type sgp_huge = sgp;
800d8c63 1740 pgoff_t hindex = index;
1da177e4 1741 int error;
54af6042 1742 int once = 0;
1635f6a7 1743 int alloced = 0;
1da177e4 1744
09cbfeaf 1745 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1746 return -EFBIG;
657e3038
KS
1747 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1748 sgp = SGP_CACHE;
1da177e4 1749repeat:
c5bf121e
VRP
1750 if (sgp <= SGP_CACHE &&
1751 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1752 return -EINVAL;
1753 }
1754
1755 sbinfo = SHMEM_SB(inode->i_sb);
1756 charge_mm = vma ? vma->vm_mm : current->mm;
1757
0cd6144a 1758 page = find_lock_entry(mapping, index);
3159f943 1759 if (xa_is_value(page)) {
c5bf121e
VRP
1760 error = shmem_swapin_page(inode, index, &page,
1761 sgp, gfp, vma, fault_type);
1762 if (error == -EEXIST)
1763 goto repeat;
54af6042 1764
c5bf121e
VRP
1765 *pagep = page;
1766 return error;
54af6042
HD
1767 }
1768
66d2f4d2
HD
1769 if (page && sgp == SGP_WRITE)
1770 mark_page_accessed(page);
1771
1635f6a7
HD
1772 /* fallocated page? */
1773 if (page && !PageUptodate(page)) {
1774 if (sgp != SGP_READ)
1775 goto clear;
1776 unlock_page(page);
09cbfeaf 1777 put_page(page);
1635f6a7
HD
1778 page = NULL;
1779 }
c5bf121e 1780 if (page || sgp == SGP_READ) {
54af6042
HD
1781 *pagep = page;
1782 return 0;
27ab7006
HD
1783 }
1784
1785 /*
54af6042
HD
1786 * Fast cache lookup did not find it:
1787 * bring it back from swap or allocate.
27ab7006 1788 */
54af6042 1789
c5bf121e
VRP
1790 if (vma && userfaultfd_missing(vma)) {
1791 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1792 return 0;
1793 }
cfda0526 1794
c5bf121e
VRP
1795 /* shmem_symlink() */
1796 if (mapping->a_ops != &shmem_aops)
1797 goto alloc_nohuge;
1798 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1799 goto alloc_nohuge;
1800 if (shmem_huge == SHMEM_HUGE_FORCE)
1801 goto alloc_huge;
1802 switch (sbinfo->huge) {
c5bf121e
VRP
1803 case SHMEM_HUGE_NEVER:
1804 goto alloc_nohuge;
27d80fa2
KC
1805 case SHMEM_HUGE_WITHIN_SIZE: {
1806 loff_t i_size;
1807 pgoff_t off;
1808
c5bf121e
VRP
1809 off = round_up(index, HPAGE_PMD_NR);
1810 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1811 if (i_size >= HPAGE_PMD_SIZE &&
1812 i_size >> PAGE_SHIFT >= off)
800d8c63 1813 goto alloc_huge;
27d80fa2
KC
1814
1815 fallthrough;
1816 }
c5bf121e
VRP
1817 case SHMEM_HUGE_ADVISE:
1818 if (sgp_huge == SGP_HUGE)
1819 goto alloc_huge;
1820 /* TODO: implement fadvise() hints */
1821 goto alloc_nohuge;
1822 }
1da177e4 1823
800d8c63 1824alloc_huge:
c5bf121e
VRP
1825 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1826 if (IS_ERR(page)) {
1827alloc_nohuge:
1828 page = shmem_alloc_and_acct_page(gfp, inode,
1829 index, false);
1830 }
1831 if (IS_ERR(page)) {
1832 int retry = 5;
800d8c63 1833
c5bf121e
VRP
1834 error = PTR_ERR(page);
1835 page = NULL;
1836 if (error != -ENOSPC)
1837 goto unlock;
1838 /*
1839 * Try to reclaim some space by splitting a huge page
1840 * beyond i_size on the filesystem.
1841 */
1842 while (retry--) {
1843 int ret;
66d2f4d2 1844
c5bf121e
VRP
1845 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1846 if (ret == SHRINK_STOP)
1847 break;
1848 if (ret)
1849 goto alloc_nohuge;
b065b432 1850 }
c5bf121e
VRP
1851 goto unlock;
1852 }
54af6042 1853
c5bf121e
VRP
1854 if (PageTransHuge(page))
1855 hindex = round_down(index, HPAGE_PMD_NR);
1856 else
1857 hindex = index;
54af6042 1858
c5bf121e
VRP
1859 if (sgp == SGP_WRITE)
1860 __SetPageReferenced(page);
1861
1862 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1863 PageTransHuge(page));
dcdf11ee 1864 if (error) {
85b9f46e 1865 if (PageTransHuge(page)) {
dcdf11ee 1866 count_vm_event(THP_FILE_FALLBACK);
85b9f46e
DR
1867 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1868 }
c5bf121e 1869 goto unacct;
dcdf11ee 1870 }
c5bf121e
VRP
1871 error = shmem_add_to_page_cache(page, mapping, hindex,
1872 NULL, gfp & GFP_RECLAIM_MASK);
1873 if (error) {
1874 mem_cgroup_cancel_charge(page, memcg,
1875 PageTransHuge(page));
1876 goto unacct;
1877 }
1878 mem_cgroup_commit_charge(page, memcg, false,
1879 PageTransHuge(page));
1880 lru_cache_add_anon(page);
779750d2 1881
c5bf121e 1882 spin_lock_irq(&info->lock);
d8c6546b 1883 info->alloced += compound_nr(page);
c5bf121e
VRP
1884 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1885 shmem_recalc_inode(inode);
1886 spin_unlock_irq(&info->lock);
1887 alloced = true;
1888
1889 if (PageTransHuge(page) &&
1890 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1891 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1892 /*
c5bf121e
VRP
1893 * Part of the huge page is beyond i_size: subject
1894 * to shrink under memory pressure.
1635f6a7 1895 */
c5bf121e 1896 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1897 /*
c5bf121e
VRP
1898 * _careful to defend against unlocked access to
1899 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1900 */
c5bf121e
VRP
1901 if (list_empty_careful(&info->shrinklist)) {
1902 list_add_tail(&info->shrinklist,
1903 &sbinfo->shrinklist);
1904 sbinfo->shrinklist_len++;
1905 }
1906 spin_unlock(&sbinfo->shrinklist_lock);
1907 }
800d8c63 1908
c5bf121e
VRP
1909 /*
1910 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1911 */
1912 if (sgp == SGP_FALLOC)
1913 sgp = SGP_WRITE;
1914clear:
1915 /*
1916 * Let SGP_WRITE caller clear ends if write does not fill page;
1917 * but SGP_FALLOC on a page fallocated earlier must initialize
1918 * it now, lest undo on failure cancel our earlier guarantee.
1919 */
1920 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1921 struct page *head = compound_head(page);
1922 int i;
1923
d8c6546b 1924 for (i = 0; i < compound_nr(head); i++) {
c5bf121e
VRP
1925 clear_highpage(head + i);
1926 flush_dcache_page(head + i);
ec9516fb 1927 }
c5bf121e 1928 SetPageUptodate(head);
1da177e4 1929 }
bde05d1c 1930
54af6042 1931 /* Perhaps the file has been truncated since we checked */
75edd345 1932 if (sgp <= SGP_CACHE &&
09cbfeaf 1933 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1934 if (alloced) {
1935 ClearPageDirty(page);
1936 delete_from_page_cache(page);
4595ef88 1937 spin_lock_irq(&info->lock);
267a4c76 1938 shmem_recalc_inode(inode);
4595ef88 1939 spin_unlock_irq(&info->lock);
267a4c76 1940 }
54af6042 1941 error = -EINVAL;
267a4c76 1942 goto unlock;
e83c32e8 1943 }
800d8c63 1944 *pagep = page + index - hindex;
54af6042 1945 return 0;
1da177e4 1946
59a16ead 1947 /*
54af6042 1948 * Error recovery.
59a16ead 1949 */
54af6042 1950unacct:
d8c6546b 1951 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1952
1953 if (PageTransHuge(page)) {
1954 unlock_page(page);
1955 put_page(page);
1956 goto alloc_nohuge;
1957 }
d1899228 1958unlock:
27ab7006 1959 if (page) {
54af6042 1960 unlock_page(page);
09cbfeaf 1961 put_page(page);
54af6042
HD
1962 }
1963 if (error == -ENOSPC && !once++) {
4595ef88 1964 spin_lock_irq(&info->lock);
54af6042 1965 shmem_recalc_inode(inode);
4595ef88 1966 spin_unlock_irq(&info->lock);
27ab7006 1967 goto repeat;
ff36b801 1968 }
7f4446ee 1969 if (error == -EEXIST)
54af6042
HD
1970 goto repeat;
1971 return error;
1da177e4
LT
1972}
1973
10d20bd2
LT
1974/*
1975 * This is like autoremove_wake_function, but it removes the wait queue
1976 * entry unconditionally - even if something else had already woken the
1977 * target.
1978 */
ac6424b9 1979static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1980{
1981 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1982 list_del_init(&wait->entry);
10d20bd2
LT
1983 return ret;
1984}
1985
20acce67 1986static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1987{
11bac800 1988 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1989 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1990 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1991 enum sgp_type sgp;
20acce67
SJ
1992 int err;
1993 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1994
f00cdc6d
HD
1995 /*
1996 * Trinity finds that probing a hole which tmpfs is punching can
1997 * prevent the hole-punch from ever completing: which in turn
1998 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1999 * faulting pages into the hole while it's being punched. Although
2000 * shmem_undo_range() does remove the additions, it may be unable to
2001 * keep up, as each new page needs its own unmap_mapping_range() call,
2002 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2003 *
2004 * It does not matter if we sometimes reach this check just before the
2005 * hole-punch begins, so that one fault then races with the punch:
2006 * we just need to make racing faults a rare case.
2007 *
2008 * The implementation below would be much simpler if we just used a
2009 * standard mutex or completion: but we cannot take i_mutex in fault,
2010 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2011 */
2012 if (unlikely(inode->i_private)) {
2013 struct shmem_falloc *shmem_falloc;
2014
2015 spin_lock(&inode->i_lock);
2016 shmem_falloc = inode->i_private;
8e205f77
HD
2017 if (shmem_falloc &&
2018 shmem_falloc->waitq &&
2019 vmf->pgoff >= shmem_falloc->start &&
2020 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2021 struct file *fpin;
8e205f77 2022 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2023 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2024
2025 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2026 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2027 if (fpin)
8e205f77 2028 ret = VM_FAULT_RETRY;
8e205f77
HD
2029
2030 shmem_falloc_waitq = shmem_falloc->waitq;
2031 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2032 TASK_UNINTERRUPTIBLE);
2033 spin_unlock(&inode->i_lock);
2034 schedule();
2035
2036 /*
2037 * shmem_falloc_waitq points into the shmem_fallocate()
2038 * stack of the hole-punching task: shmem_falloc_waitq
2039 * is usually invalid by the time we reach here, but
2040 * finish_wait() does not dereference it in that case;
2041 * though i_lock needed lest racing with wake_up_all().
2042 */
2043 spin_lock(&inode->i_lock);
2044 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2045 spin_unlock(&inode->i_lock);
8897c1b1
KS
2046
2047 if (fpin)
2048 fput(fpin);
8e205f77 2049 return ret;
f00cdc6d 2050 }
8e205f77 2051 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2052 }
2053
657e3038 2054 sgp = SGP_CACHE;
18600332
MH
2055
2056 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2057 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2058 sgp = SGP_NOHUGE;
18600332
MH
2059 else if (vma->vm_flags & VM_HUGEPAGE)
2060 sgp = SGP_HUGE;
657e3038 2061
20acce67 2062 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2063 gfp, vma, vmf, &ret);
20acce67
SJ
2064 if (err)
2065 return vmf_error(err);
68da9f05 2066 return ret;
1da177e4
LT
2067}
2068
c01d5b30
HD
2069unsigned long shmem_get_unmapped_area(struct file *file,
2070 unsigned long uaddr, unsigned long len,
2071 unsigned long pgoff, unsigned long flags)
2072{
2073 unsigned long (*get_area)(struct file *,
2074 unsigned long, unsigned long, unsigned long, unsigned long);
2075 unsigned long addr;
2076 unsigned long offset;
2077 unsigned long inflated_len;
2078 unsigned long inflated_addr;
2079 unsigned long inflated_offset;
2080
2081 if (len > TASK_SIZE)
2082 return -ENOMEM;
2083
2084 get_area = current->mm->get_unmapped_area;
2085 addr = get_area(file, uaddr, len, pgoff, flags);
2086
396bcc52 2087 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2088 return addr;
2089 if (IS_ERR_VALUE(addr))
2090 return addr;
2091 if (addr & ~PAGE_MASK)
2092 return addr;
2093 if (addr > TASK_SIZE - len)
2094 return addr;
2095
2096 if (shmem_huge == SHMEM_HUGE_DENY)
2097 return addr;
2098 if (len < HPAGE_PMD_SIZE)
2099 return addr;
2100 if (flags & MAP_FIXED)
2101 return addr;
2102 /*
2103 * Our priority is to support MAP_SHARED mapped hugely;
2104 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2105 * But if caller specified an address hint and we allocated area there
2106 * successfully, respect that as before.
c01d5b30 2107 */
99158997 2108 if (uaddr == addr)
c01d5b30
HD
2109 return addr;
2110
2111 if (shmem_huge != SHMEM_HUGE_FORCE) {
2112 struct super_block *sb;
2113
2114 if (file) {
2115 VM_BUG_ON(file->f_op != &shmem_file_operations);
2116 sb = file_inode(file)->i_sb;
2117 } else {
2118 /*
2119 * Called directly from mm/mmap.c, or drivers/char/mem.c
2120 * for "/dev/zero", to create a shared anonymous object.
2121 */
2122 if (IS_ERR(shm_mnt))
2123 return addr;
2124 sb = shm_mnt->mnt_sb;
2125 }
3089bf61 2126 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2127 return addr;
2128 }
2129
2130 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2131 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2132 return addr;
2133 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2134 return addr;
2135
2136 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2137 if (inflated_len > TASK_SIZE)
2138 return addr;
2139 if (inflated_len < len)
2140 return addr;
2141
99158997 2142 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2143 if (IS_ERR_VALUE(inflated_addr))
2144 return addr;
2145 if (inflated_addr & ~PAGE_MASK)
2146 return addr;
2147
2148 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2149 inflated_addr += offset - inflated_offset;
2150 if (inflated_offset > offset)
2151 inflated_addr += HPAGE_PMD_SIZE;
2152
2153 if (inflated_addr > TASK_SIZE - len)
2154 return addr;
2155 return inflated_addr;
2156}
2157
1da177e4 2158#ifdef CONFIG_NUMA
41ffe5d5 2159static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2160{
496ad9aa 2161 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2162 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2163}
2164
d8dc74f2
AB
2165static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2166 unsigned long addr)
1da177e4 2167{
496ad9aa 2168 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2169 pgoff_t index;
1da177e4 2170
41ffe5d5
HD
2171 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2172 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2173}
2174#endif
2175
2176int shmem_lock(struct file *file, int lock, struct user_struct *user)
2177{
496ad9aa 2178 struct inode *inode = file_inode(file);
1da177e4
LT
2179 struct shmem_inode_info *info = SHMEM_I(inode);
2180 int retval = -ENOMEM;
2181
4595ef88 2182 spin_lock_irq(&info->lock);
1da177e4
LT
2183 if (lock && !(info->flags & VM_LOCKED)) {
2184 if (!user_shm_lock(inode->i_size, user))
2185 goto out_nomem;
2186 info->flags |= VM_LOCKED;
89e004ea 2187 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2188 }
2189 if (!lock && (info->flags & VM_LOCKED) && user) {
2190 user_shm_unlock(inode->i_size, user);
2191 info->flags &= ~VM_LOCKED;
89e004ea 2192 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2193 }
2194 retval = 0;
89e004ea 2195
1da177e4 2196out_nomem:
4595ef88 2197 spin_unlock_irq(&info->lock);
1da177e4
LT
2198 return retval;
2199}
2200
9b83a6a8 2201static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2202{
ab3948f5
JFG
2203 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2204
2205 if (info->seals & F_SEAL_FUTURE_WRITE) {
2206 /*
2207 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2208 * "future write" seal active.
2209 */
2210 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2211 return -EPERM;
2212
2213 /*
05d35110
NG
2214 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2215 * MAP_SHARED and read-only, take care to not allow mprotect to
2216 * revert protections on such mappings. Do this only for shared
2217 * mappings. For private mappings, don't need to mask
2218 * VM_MAYWRITE as we still want them to be COW-writable.
ab3948f5 2219 */
05d35110
NG
2220 if (vma->vm_flags & VM_SHARED)
2221 vma->vm_flags &= ~(VM_MAYWRITE);
ab3948f5
JFG
2222 }
2223
1da177e4
LT
2224 file_accessed(file);
2225 vma->vm_ops = &shmem_vm_ops;
396bcc52 2226 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2227 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2228 (vma->vm_end & HPAGE_PMD_MASK)) {
2229 khugepaged_enter(vma, vma->vm_flags);
2230 }
1da177e4
LT
2231 return 0;
2232}
2233
454abafe 2234static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2235 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2236{
2237 struct inode *inode;
2238 struct shmem_inode_info *info;
2239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240
5b04c689
PE
2241 if (shmem_reserve_inode(sb))
2242 return NULL;
1da177e4
LT
2243
2244 inode = new_inode(sb);
2245 if (inode) {
85fe4025 2246 inode->i_ino = get_next_ino();
454abafe 2247 inode_init_owner(inode, dir, mode);
1da177e4 2248 inode->i_blocks = 0;
078cd827 2249 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2250 inode->i_generation = prandom_u32();
1da177e4
LT
2251 info = SHMEM_I(inode);
2252 memset(info, 0, (char *)inode - (char *)info);
2253 spin_lock_init(&info->lock);
af53d3e9 2254 atomic_set(&info->stop_eviction, 0);
40e041a2 2255 info->seals = F_SEAL_SEAL;
0b0a0806 2256 info->flags = flags & VM_NORESERVE;
779750d2 2257 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2258 INIT_LIST_HEAD(&info->swaplist);
38f38657 2259 simple_xattrs_init(&info->xattrs);
72c04902 2260 cache_no_acl(inode);
1da177e4
LT
2261
2262 switch (mode & S_IFMT) {
2263 default:
39f0247d 2264 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2265 init_special_inode(inode, mode, dev);
2266 break;
2267 case S_IFREG:
14fcc23f 2268 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2269 inode->i_op = &shmem_inode_operations;
2270 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2271 mpol_shared_policy_init(&info->policy,
2272 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2273 break;
2274 case S_IFDIR:
d8c76e6f 2275 inc_nlink(inode);
1da177e4
LT
2276 /* Some things misbehave if size == 0 on a directory */
2277 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2278 inode->i_op = &shmem_dir_inode_operations;
2279 inode->i_fop = &simple_dir_operations;
2280 break;
2281 case S_IFLNK:
2282 /*
2283 * Must not load anything in the rbtree,
2284 * mpol_free_shared_policy will not be called.
2285 */
71fe804b 2286 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2287 break;
2288 }
b45d71fb
JFG
2289
2290 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2291 } else
2292 shmem_free_inode(sb);
1da177e4
LT
2293 return inode;
2294}
2295
0cd6144a
JW
2296bool shmem_mapping(struct address_space *mapping)
2297{
f8005451 2298 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2299}
2300
8d103963
MR
2301static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2302 pmd_t *dst_pmd,
2303 struct vm_area_struct *dst_vma,
2304 unsigned long dst_addr,
2305 unsigned long src_addr,
2306 bool zeropage,
2307 struct page **pagep)
4c27fe4c
MR
2308{
2309 struct inode *inode = file_inode(dst_vma->vm_file);
2310 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2311 struct address_space *mapping = inode->i_mapping;
2312 gfp_t gfp = mapping_gfp_mask(mapping);
2313 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2314 struct mem_cgroup *memcg;
2315 spinlock_t *ptl;
2316 void *page_kaddr;
2317 struct page *page;
2318 pte_t _dst_pte, *dst_pte;
2319 int ret;
e2a50c1f 2320 pgoff_t offset, max_off;
4c27fe4c 2321
cb658a45 2322 ret = -ENOMEM;
0f079694 2323 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2324 goto out;
4c27fe4c 2325
cb658a45 2326 if (!*pagep) {
4c27fe4c
MR
2327 page = shmem_alloc_page(gfp, info, pgoff);
2328 if (!page)
0f079694 2329 goto out_unacct_blocks;
4c27fe4c 2330
8d103963
MR
2331 if (!zeropage) { /* mcopy_atomic */
2332 page_kaddr = kmap_atomic(page);
2333 ret = copy_from_user(page_kaddr,
2334 (const void __user *)src_addr,
2335 PAGE_SIZE);
2336 kunmap_atomic(page_kaddr);
2337
2338 /* fallback to copy_from_user outside mmap_sem */
2339 if (unlikely(ret)) {
2340 *pagep = page;
2341 shmem_inode_unacct_blocks(inode, 1);
2342 /* don't free the page */
9e368259 2343 return -ENOENT;
8d103963
MR
2344 }
2345 } else { /* mfill_zeropage_atomic */
2346 clear_highpage(page);
4c27fe4c
MR
2347 }
2348 } else {
2349 page = *pagep;
2350 *pagep = NULL;
2351 }
2352
9cc90c66
AA
2353 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2354 __SetPageLocked(page);
2355 __SetPageSwapBacked(page);
a425d358 2356 __SetPageUptodate(page);
9cc90c66 2357
e2a50c1f
AA
2358 ret = -EFAULT;
2359 offset = linear_page_index(dst_vma, dst_addr);
2360 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2361 if (unlikely(offset >= max_off))
2362 goto out_release;
2363
2cf85583 2364 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
4c27fe4c
MR
2365 if (ret)
2366 goto out_release;
2367
552446a4
MW
2368 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2369 gfp & GFP_RECLAIM_MASK);
4c27fe4c
MR
2370 if (ret)
2371 goto out_release_uncharge;
2372
2373 mem_cgroup_commit_charge(page, memcg, false, false);
2374
2375 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2376 if (dst_vma->vm_flags & VM_WRITE)
2377 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2378 else {
2379 /*
2380 * We don't set the pte dirty if the vma has no
2381 * VM_WRITE permission, so mark the page dirty or it
2382 * could be freed from under us. We could do it
2383 * unconditionally before unlock_page(), but doing it
2384 * only if VM_WRITE is not set is faster.
2385 */
2386 set_page_dirty(page);
2387 }
4c27fe4c 2388
4c27fe4c 2389 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2390
2391 ret = -EFAULT;
2392 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2393 if (unlikely(offset >= max_off))
2394 goto out_release_uncharge_unlock;
2395
2396 ret = -EEXIST;
4c27fe4c
MR
2397 if (!pte_none(*dst_pte))
2398 goto out_release_uncharge_unlock;
2399
4c27fe4c
MR
2400 lru_cache_add_anon(page);
2401
2402 spin_lock(&info->lock);
2403 info->alloced++;
2404 inode->i_blocks += BLOCKS_PER_PAGE;
2405 shmem_recalc_inode(inode);
2406 spin_unlock(&info->lock);
2407
2408 inc_mm_counter(dst_mm, mm_counter_file(page));
2409 page_add_file_rmap(page, false);
2410 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2411
2412 /* No need to invalidate - it was non-present before */
2413 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2414 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2415 unlock_page(page);
4c27fe4c
MR
2416 ret = 0;
2417out:
2418 return ret;
2419out_release_uncharge_unlock:
2420 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2421 ClearPageDirty(page);
e2a50c1f 2422 delete_from_page_cache(page);
4c27fe4c
MR
2423out_release_uncharge:
2424 mem_cgroup_cancel_charge(page, memcg, false);
2425out_release:
9cc90c66 2426 unlock_page(page);
4c27fe4c 2427 put_page(page);
4c27fe4c 2428out_unacct_blocks:
0f079694 2429 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2430 goto out;
2431}
2432
8d103963
MR
2433int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2434 pmd_t *dst_pmd,
2435 struct vm_area_struct *dst_vma,
2436 unsigned long dst_addr,
2437 unsigned long src_addr,
2438 struct page **pagep)
2439{
2440 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2441 dst_addr, src_addr, false, pagep);
2442}
2443
2444int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2445 pmd_t *dst_pmd,
2446 struct vm_area_struct *dst_vma,
2447 unsigned long dst_addr)
2448{
2449 struct page *page = NULL;
2450
2451 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2452 dst_addr, 0, true, &page);
2453}
2454
1da177e4 2455#ifdef CONFIG_TMPFS
92e1d5be 2456static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2457static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2458
6d9d88d0
JS
2459#ifdef CONFIG_TMPFS_XATTR
2460static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2461#else
2462#define shmem_initxattrs NULL
2463#endif
2464
1da177e4 2465static int
800d15a5
NP
2466shmem_write_begin(struct file *file, struct address_space *mapping,
2467 loff_t pos, unsigned len, unsigned flags,
2468 struct page **pagep, void **fsdata)
1da177e4 2469{
800d15a5 2470 struct inode *inode = mapping->host;
40e041a2 2471 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2472 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2473
2474 /* i_mutex is held by caller */
ab3948f5
JFG
2475 if (unlikely(info->seals & (F_SEAL_GROW |
2476 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2477 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2478 return -EPERM;
2479 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2480 return -EPERM;
2481 }
2482
9e18eb29 2483 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2484}
2485
2486static int
2487shmem_write_end(struct file *file, struct address_space *mapping,
2488 loff_t pos, unsigned len, unsigned copied,
2489 struct page *page, void *fsdata)
2490{
2491 struct inode *inode = mapping->host;
2492
d3602444
HD
2493 if (pos + copied > inode->i_size)
2494 i_size_write(inode, pos + copied);
2495
ec9516fb 2496 if (!PageUptodate(page)) {
800d8c63
KS
2497 struct page *head = compound_head(page);
2498 if (PageTransCompound(page)) {
2499 int i;
2500
2501 for (i = 0; i < HPAGE_PMD_NR; i++) {
2502 if (head + i == page)
2503 continue;
2504 clear_highpage(head + i);
2505 flush_dcache_page(head + i);
2506 }
2507 }
09cbfeaf
KS
2508 if (copied < PAGE_SIZE) {
2509 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2510 zero_user_segments(page, 0, from,
09cbfeaf 2511 from + copied, PAGE_SIZE);
ec9516fb 2512 }
800d8c63 2513 SetPageUptodate(head);
ec9516fb 2514 }
800d15a5 2515 set_page_dirty(page);
6746aff7 2516 unlock_page(page);
09cbfeaf 2517 put_page(page);
800d15a5 2518
800d15a5 2519 return copied;
1da177e4
LT
2520}
2521
2ba5bbed 2522static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2523{
6e58e79d
AV
2524 struct file *file = iocb->ki_filp;
2525 struct inode *inode = file_inode(file);
1da177e4 2526 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2527 pgoff_t index;
2528 unsigned long offset;
a0ee5ec5 2529 enum sgp_type sgp = SGP_READ;
f7c1d074 2530 int error = 0;
cb66a7a1 2531 ssize_t retval = 0;
6e58e79d 2532 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2533
2534 /*
2535 * Might this read be for a stacking filesystem? Then when reading
2536 * holes of a sparse file, we actually need to allocate those pages,
2537 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2538 */
777eda2c 2539 if (!iter_is_iovec(to))
75edd345 2540 sgp = SGP_CACHE;
1da177e4 2541
09cbfeaf
KS
2542 index = *ppos >> PAGE_SHIFT;
2543 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2544
2545 for (;;) {
2546 struct page *page = NULL;
41ffe5d5
HD
2547 pgoff_t end_index;
2548 unsigned long nr, ret;
1da177e4
LT
2549 loff_t i_size = i_size_read(inode);
2550
09cbfeaf 2551 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2552 if (index > end_index)
2553 break;
2554 if (index == end_index) {
09cbfeaf 2555 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2556 if (nr <= offset)
2557 break;
2558 }
2559
9e18eb29 2560 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2561 if (error) {
2562 if (error == -EINVAL)
2563 error = 0;
1da177e4
LT
2564 break;
2565 }
75edd345
HD
2566 if (page) {
2567 if (sgp == SGP_CACHE)
2568 set_page_dirty(page);
d3602444 2569 unlock_page(page);
75edd345 2570 }
1da177e4
LT
2571
2572 /*
2573 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2574 * are called without i_mutex protection against truncate
1da177e4 2575 */
09cbfeaf 2576 nr = PAGE_SIZE;
1da177e4 2577 i_size = i_size_read(inode);
09cbfeaf 2578 end_index = i_size >> PAGE_SHIFT;
1da177e4 2579 if (index == end_index) {
09cbfeaf 2580 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2581 if (nr <= offset) {
2582 if (page)
09cbfeaf 2583 put_page(page);
1da177e4
LT
2584 break;
2585 }
2586 }
2587 nr -= offset;
2588
2589 if (page) {
2590 /*
2591 * If users can be writing to this page using arbitrary
2592 * virtual addresses, take care about potential aliasing
2593 * before reading the page on the kernel side.
2594 */
2595 if (mapping_writably_mapped(mapping))
2596 flush_dcache_page(page);
2597 /*
2598 * Mark the page accessed if we read the beginning.
2599 */
2600 if (!offset)
2601 mark_page_accessed(page);
b5810039 2602 } else {
1da177e4 2603 page = ZERO_PAGE(0);
09cbfeaf 2604 get_page(page);
b5810039 2605 }
1da177e4
LT
2606
2607 /*
2608 * Ok, we have the page, and it's up-to-date, so
2609 * now we can copy it to user space...
1da177e4 2610 */
2ba5bbed 2611 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2612 retval += ret;
1da177e4 2613 offset += ret;
09cbfeaf
KS
2614 index += offset >> PAGE_SHIFT;
2615 offset &= ~PAGE_MASK;
1da177e4 2616
09cbfeaf 2617 put_page(page);
2ba5bbed 2618 if (!iov_iter_count(to))
1da177e4 2619 break;
6e58e79d
AV
2620 if (ret < nr) {
2621 error = -EFAULT;
2622 break;
2623 }
1da177e4
LT
2624 cond_resched();
2625 }
2626
09cbfeaf 2627 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2628 file_accessed(file);
2629 return retval ? retval : error;
1da177e4
LT
2630}
2631
220f2ac9 2632/*
7f4446ee 2633 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2634 */
2635static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2636 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2637{
2638 struct page *page;
2639 struct pagevec pvec;
2640 pgoff_t indices[PAGEVEC_SIZE];
2641 bool done = false;
2642 int i;
2643
86679820 2644 pagevec_init(&pvec);
220f2ac9
HD
2645 pvec.nr = 1; /* start small: we may be there already */
2646 while (!done) {
0cd6144a 2647 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2648 pvec.nr, pvec.pages, indices);
2649 if (!pvec.nr) {
965c8e59 2650 if (whence == SEEK_DATA)
220f2ac9
HD
2651 index = end;
2652 break;
2653 }
2654 for (i = 0; i < pvec.nr; i++, index++) {
2655 if (index < indices[i]) {
965c8e59 2656 if (whence == SEEK_HOLE) {
220f2ac9
HD
2657 done = true;
2658 break;
2659 }
2660 index = indices[i];
2661 }
2662 page = pvec.pages[i];
3159f943 2663 if (page && !xa_is_value(page)) {
220f2ac9
HD
2664 if (!PageUptodate(page))
2665 page = NULL;
2666 }
2667 if (index >= end ||
965c8e59
AM
2668 (page && whence == SEEK_DATA) ||
2669 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2670 done = true;
2671 break;
2672 }
2673 }
0cd6144a 2674 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2675 pagevec_release(&pvec);
2676 pvec.nr = PAGEVEC_SIZE;
2677 cond_resched();
2678 }
2679 return index;
2680}
2681
965c8e59 2682static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2683{
2684 struct address_space *mapping = file->f_mapping;
2685 struct inode *inode = mapping->host;
2686 pgoff_t start, end;
2687 loff_t new_offset;
2688
965c8e59
AM
2689 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2690 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2691 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2692 inode_lock(inode);
220f2ac9
HD
2693 /* We're holding i_mutex so we can access i_size directly */
2694
1a413646 2695 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2696 offset = -ENXIO;
2697 else {
09cbfeaf
KS
2698 start = offset >> PAGE_SHIFT;
2699 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2700 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2701 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2702 if (new_offset > offset) {
2703 if (new_offset < inode->i_size)
2704 offset = new_offset;
965c8e59 2705 else if (whence == SEEK_DATA)
220f2ac9
HD
2706 offset = -ENXIO;
2707 else
2708 offset = inode->i_size;
2709 }
2710 }
2711
387aae6f
HD
2712 if (offset >= 0)
2713 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2714 inode_unlock(inode);
220f2ac9
HD
2715 return offset;
2716}
2717
83e4fa9c
HD
2718static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2719 loff_t len)
2720{
496ad9aa 2721 struct inode *inode = file_inode(file);
e2d12e22 2722 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2723 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2724 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2725 pgoff_t start, index, end;
2726 int error;
83e4fa9c 2727
13ace4d0
HD
2728 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2729 return -EOPNOTSUPP;
2730
5955102c 2731 inode_lock(inode);
83e4fa9c
HD
2732
2733 if (mode & FALLOC_FL_PUNCH_HOLE) {
2734 struct address_space *mapping = file->f_mapping;
2735 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2736 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2737 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2738
40e041a2 2739 /* protected by i_mutex */
ab3948f5 2740 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2741 error = -EPERM;
2742 goto out;
2743 }
2744
8e205f77 2745 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2746 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2747 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2748 spin_lock(&inode->i_lock);
2749 inode->i_private = &shmem_falloc;
2750 spin_unlock(&inode->i_lock);
2751
83e4fa9c
HD
2752 if ((u64)unmap_end > (u64)unmap_start)
2753 unmap_mapping_range(mapping, unmap_start,
2754 1 + unmap_end - unmap_start, 0);
2755 shmem_truncate_range(inode, offset, offset + len - 1);
2756 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2757
2758 spin_lock(&inode->i_lock);
2759 inode->i_private = NULL;
2760 wake_up_all(&shmem_falloc_waitq);
2055da97 2761 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2762 spin_unlock(&inode->i_lock);
83e4fa9c 2763 error = 0;
8e205f77 2764 goto out;
e2d12e22
HD
2765 }
2766
2767 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2768 error = inode_newsize_ok(inode, offset + len);
2769 if (error)
2770 goto out;
2771
40e041a2
DH
2772 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2773 error = -EPERM;
2774 goto out;
2775 }
2776
09cbfeaf
KS
2777 start = offset >> PAGE_SHIFT;
2778 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2779 /* Try to avoid a swapstorm if len is impossible to satisfy */
2780 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2781 error = -ENOSPC;
2782 goto out;
83e4fa9c
HD
2783 }
2784
8e205f77 2785 shmem_falloc.waitq = NULL;
1aac1400
HD
2786 shmem_falloc.start = start;
2787 shmem_falloc.next = start;
2788 shmem_falloc.nr_falloced = 0;
2789 shmem_falloc.nr_unswapped = 0;
2790 spin_lock(&inode->i_lock);
2791 inode->i_private = &shmem_falloc;
2792 spin_unlock(&inode->i_lock);
2793
e2d12e22
HD
2794 for (index = start; index < end; index++) {
2795 struct page *page;
2796
2797 /*
2798 * Good, the fallocate(2) manpage permits EINTR: we may have
2799 * been interrupted because we are using up too much memory.
2800 */
2801 if (signal_pending(current))
2802 error = -EINTR;
1aac1400
HD
2803 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2804 error = -ENOMEM;
e2d12e22 2805 else
9e18eb29 2806 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2807 if (error) {
1635f6a7 2808 /* Remove the !PageUptodate pages we added */
7f556567
HD
2809 if (index > start) {
2810 shmem_undo_range(inode,
2811 (loff_t)start << PAGE_SHIFT,
2812 ((loff_t)index << PAGE_SHIFT) - 1, true);
2813 }
1aac1400 2814 goto undone;
e2d12e22
HD
2815 }
2816
1aac1400
HD
2817 /*
2818 * Inform shmem_writepage() how far we have reached.
2819 * No need for lock or barrier: we have the page lock.
2820 */
2821 shmem_falloc.next++;
2822 if (!PageUptodate(page))
2823 shmem_falloc.nr_falloced++;
2824
e2d12e22 2825 /*
1635f6a7
HD
2826 * If !PageUptodate, leave it that way so that freeable pages
2827 * can be recognized if we need to rollback on error later.
2828 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2829 * than free the pages we are allocating (and SGP_CACHE pages
2830 * might still be clean: we now need to mark those dirty too).
2831 */
2832 set_page_dirty(page);
2833 unlock_page(page);
09cbfeaf 2834 put_page(page);
e2d12e22
HD
2835 cond_resched();
2836 }
2837
2838 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2839 i_size_write(inode, offset + len);
078cd827 2840 inode->i_ctime = current_time(inode);
1aac1400
HD
2841undone:
2842 spin_lock(&inode->i_lock);
2843 inode->i_private = NULL;
2844 spin_unlock(&inode->i_lock);
e2d12e22 2845out:
5955102c 2846 inode_unlock(inode);
83e4fa9c
HD
2847 return error;
2848}
2849
726c3342 2850static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2851{
726c3342 2852 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2853
2854 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2855 buf->f_bsize = PAGE_SIZE;
1da177e4 2856 buf->f_namelen = NAME_MAX;
0edd73b3 2857 if (sbinfo->max_blocks) {
1da177e4 2858 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2859 buf->f_bavail =
2860 buf->f_bfree = sbinfo->max_blocks -
2861 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2862 }
2863 if (sbinfo->max_inodes) {
1da177e4
LT
2864 buf->f_files = sbinfo->max_inodes;
2865 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2866 }
2867 /* else leave those fields 0 like simple_statfs */
2868 return 0;
2869}
2870
2871/*
2872 * File creation. Allocate an inode, and we're done..
2873 */
2874static int
1a67aafb 2875shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2876{
0b0a0806 2877 struct inode *inode;
1da177e4
LT
2878 int error = -ENOSPC;
2879
454abafe 2880 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2881 if (inode) {
feda821e
CH
2882 error = simple_acl_create(dir, inode);
2883 if (error)
2884 goto out_iput;
2a7dba39 2885 error = security_inode_init_security(inode, dir,
9d8f13ba 2886 &dentry->d_name,
6d9d88d0 2887 shmem_initxattrs, NULL);
feda821e
CH
2888 if (error && error != -EOPNOTSUPP)
2889 goto out_iput;
37ec43cd 2890
718deb6b 2891 error = 0;
1da177e4 2892 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2893 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2894 d_instantiate(dentry, inode);
2895 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2896 }
2897 return error;
feda821e
CH
2898out_iput:
2899 iput(inode);
2900 return error;
1da177e4
LT
2901}
2902
60545d0d
AV
2903static int
2904shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2905{
2906 struct inode *inode;
2907 int error = -ENOSPC;
2908
2909 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2910 if (inode) {
2911 error = security_inode_init_security(inode, dir,
2912 NULL,
2913 shmem_initxattrs, NULL);
feda821e
CH
2914 if (error && error != -EOPNOTSUPP)
2915 goto out_iput;
2916 error = simple_acl_create(dir, inode);
2917 if (error)
2918 goto out_iput;
60545d0d
AV
2919 d_tmpfile(dentry, inode);
2920 }
2921 return error;
feda821e
CH
2922out_iput:
2923 iput(inode);
2924 return error;
60545d0d
AV
2925}
2926
18bb1db3 2927static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2928{
2929 int error;
2930
2931 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2932 return error;
d8c76e6f 2933 inc_nlink(dir);
1da177e4
LT
2934 return 0;
2935}
2936
4acdaf27 2937static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2938 bool excl)
1da177e4
LT
2939{
2940 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2941}
2942
2943/*
2944 * Link a file..
2945 */
2946static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2947{
75c3cfa8 2948 struct inode *inode = d_inode(old_dentry);
29b00e60 2949 int ret = 0;
1da177e4
LT
2950
2951 /*
2952 * No ordinary (disk based) filesystem counts links as inodes;
2953 * but each new link needs a new dentry, pinning lowmem, and
2954 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2955 * But if an O_TMPFILE file is linked into the tmpfs, the
2956 * first link must skip that, to get the accounting right.
1da177e4 2957 */
1062af92
DW
2958 if (inode->i_nlink) {
2959 ret = shmem_reserve_inode(inode->i_sb);
2960 if (ret)
2961 goto out;
2962 }
1da177e4
LT
2963
2964 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2965 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2966 inc_nlink(inode);
7de9c6ee 2967 ihold(inode); /* New dentry reference */
1da177e4
LT
2968 dget(dentry); /* Extra pinning count for the created dentry */
2969 d_instantiate(dentry, inode);
5b04c689
PE
2970out:
2971 return ret;
1da177e4
LT
2972}
2973
2974static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2975{
75c3cfa8 2976 struct inode *inode = d_inode(dentry);
1da177e4 2977
5b04c689
PE
2978 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2979 shmem_free_inode(inode->i_sb);
1da177e4
LT
2980
2981 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2982 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2983 drop_nlink(inode);
1da177e4
LT
2984 dput(dentry); /* Undo the count from "create" - this does all the work */
2985 return 0;
2986}
2987
2988static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2989{
2990 if (!simple_empty(dentry))
2991 return -ENOTEMPTY;
2992
75c3cfa8 2993 drop_nlink(d_inode(dentry));
9a53c3a7 2994 drop_nlink(dir);
1da177e4
LT
2995 return shmem_unlink(dir, dentry);
2996}
2997
37456771
MS
2998static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2999{
e36cb0b8
DH
3000 bool old_is_dir = d_is_dir(old_dentry);
3001 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3002
3003 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3004 if (old_is_dir) {
3005 drop_nlink(old_dir);
3006 inc_nlink(new_dir);
3007 } else {
3008 drop_nlink(new_dir);
3009 inc_nlink(old_dir);
3010 }
3011 }
3012 old_dir->i_ctime = old_dir->i_mtime =
3013 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3014 d_inode(old_dentry)->i_ctime =
078cd827 3015 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3016
3017 return 0;
3018}
3019
46fdb794
MS
3020static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3021{
3022 struct dentry *whiteout;
3023 int error;
3024
3025 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3026 if (!whiteout)
3027 return -ENOMEM;
3028
3029 error = shmem_mknod(old_dir, whiteout,
3030 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3031 dput(whiteout);
3032 if (error)
3033 return error;
3034
3035 /*
3036 * Cheat and hash the whiteout while the old dentry is still in
3037 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3038 *
3039 * d_lookup() will consistently find one of them at this point,
3040 * not sure which one, but that isn't even important.
3041 */
3042 d_rehash(whiteout);
3043 return 0;
3044}
3045
1da177e4
LT
3046/*
3047 * The VFS layer already does all the dentry stuff for rename,
3048 * we just have to decrement the usage count for the target if
3049 * it exists so that the VFS layer correctly free's it when it
3050 * gets overwritten.
3051 */
3b69ff51 3052static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3053{
75c3cfa8 3054 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3055 int they_are_dirs = S_ISDIR(inode->i_mode);
3056
46fdb794 3057 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3058 return -EINVAL;
3059
37456771
MS
3060 if (flags & RENAME_EXCHANGE)
3061 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062
1da177e4
LT
3063 if (!simple_empty(new_dentry))
3064 return -ENOTEMPTY;
3065
46fdb794
MS
3066 if (flags & RENAME_WHITEOUT) {
3067 int error;
3068
3069 error = shmem_whiteout(old_dir, old_dentry);
3070 if (error)
3071 return error;
3072 }
3073
75c3cfa8 3074 if (d_really_is_positive(new_dentry)) {
1da177e4 3075 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3076 if (they_are_dirs) {
75c3cfa8 3077 drop_nlink(d_inode(new_dentry));
9a53c3a7 3078 drop_nlink(old_dir);
b928095b 3079 }
1da177e4 3080 } else if (they_are_dirs) {
9a53c3a7 3081 drop_nlink(old_dir);
d8c76e6f 3082 inc_nlink(new_dir);
1da177e4
LT
3083 }
3084
3085 old_dir->i_size -= BOGO_DIRENT_SIZE;
3086 new_dir->i_size += BOGO_DIRENT_SIZE;
3087 old_dir->i_ctime = old_dir->i_mtime =
3088 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3089 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3090 return 0;
3091}
3092
3093static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3094{
3095 int error;
3096 int len;
3097 struct inode *inode;
9276aad6 3098 struct page *page;
1da177e4
LT
3099
3100 len = strlen(symname) + 1;
09cbfeaf 3101 if (len > PAGE_SIZE)
1da177e4
LT
3102 return -ENAMETOOLONG;
3103
0825a6f9
JP
3104 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3105 VM_NORESERVE);
1da177e4
LT
3106 if (!inode)
3107 return -ENOSPC;
3108
9d8f13ba 3109 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3110 shmem_initxattrs, NULL);
343c3d7f
MN
3111 if (error && error != -EOPNOTSUPP) {
3112 iput(inode);
3113 return error;
570bc1c2
SS
3114 }
3115
1da177e4 3116 inode->i_size = len-1;
69f07ec9 3117 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3118 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3119 if (!inode->i_link) {
69f07ec9
HD
3120 iput(inode);
3121 return -ENOMEM;
3122 }
3123 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3124 } else {
e8ecde25 3125 inode_nohighmem(inode);
9e18eb29 3126 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3127 if (error) {
3128 iput(inode);
3129 return error;
3130 }
14fcc23f 3131 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3132 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3133 memcpy(page_address(page), symname, len);
ec9516fb 3134 SetPageUptodate(page);
1da177e4 3135 set_page_dirty(page);
6746aff7 3136 unlock_page(page);
09cbfeaf 3137 put_page(page);
1da177e4 3138 }
1da177e4 3139 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3140 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3141 d_instantiate(dentry, inode);
3142 dget(dentry);
3143 return 0;
3144}
3145
fceef393 3146static void shmem_put_link(void *arg)
1da177e4 3147{
fceef393
AV
3148 mark_page_accessed(arg);
3149 put_page(arg);
1da177e4
LT
3150}
3151
6b255391 3152static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3153 struct inode *inode,
3154 struct delayed_call *done)
1da177e4 3155{
1da177e4 3156 struct page *page = NULL;
6b255391 3157 int error;
6a6c9904
AV
3158 if (!dentry) {
3159 page = find_get_page(inode->i_mapping, 0);
3160 if (!page)
3161 return ERR_PTR(-ECHILD);
3162 if (!PageUptodate(page)) {
3163 put_page(page);
3164 return ERR_PTR(-ECHILD);
3165 }
3166 } else {
9e18eb29 3167 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3168 if (error)
3169 return ERR_PTR(error);
3170 unlock_page(page);
3171 }
fceef393 3172 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3173 return page_address(page);
1da177e4
LT
3174}
3175
b09e0fa4 3176#ifdef CONFIG_TMPFS_XATTR
46711810 3177/*
b09e0fa4
EP
3178 * Superblocks without xattr inode operations may get some security.* xattr
3179 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3180 * like ACLs, we also need to implement the security.* handlers at
3181 * filesystem level, though.
3182 */
3183
6d9d88d0
JS
3184/*
3185 * Callback for security_inode_init_security() for acquiring xattrs.
3186 */
3187static int shmem_initxattrs(struct inode *inode,
3188 const struct xattr *xattr_array,
3189 void *fs_info)
3190{
3191 struct shmem_inode_info *info = SHMEM_I(inode);
3192 const struct xattr *xattr;
38f38657 3193 struct simple_xattr *new_xattr;
6d9d88d0
JS
3194 size_t len;
3195
3196 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3197 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3198 if (!new_xattr)
3199 return -ENOMEM;
3200
3201 len = strlen(xattr->name) + 1;
3202 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3203 GFP_KERNEL);
3204 if (!new_xattr->name) {
3205 kfree(new_xattr);
3206 return -ENOMEM;
3207 }
3208
3209 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3210 XATTR_SECURITY_PREFIX_LEN);
3211 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3212 xattr->name, len);
3213
38f38657 3214 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3215 }
3216
3217 return 0;
3218}
3219
aa7c5241 3220static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3221 struct dentry *unused, struct inode *inode,
3222 const char *name, void *buffer, size_t size)
b09e0fa4 3223{
b296821a 3224 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3225
aa7c5241 3226 name = xattr_full_name(handler, name);
38f38657 3227 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3228}
3229
aa7c5241 3230static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3231 struct dentry *unused, struct inode *inode,
3232 const char *name, const void *value,
3233 size_t size, int flags)
b09e0fa4 3234{
59301226 3235 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3236
aa7c5241 3237 name = xattr_full_name(handler, name);
a46a2295 3238 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3239}
3240
aa7c5241
AG
3241static const struct xattr_handler shmem_security_xattr_handler = {
3242 .prefix = XATTR_SECURITY_PREFIX,
3243 .get = shmem_xattr_handler_get,
3244 .set = shmem_xattr_handler_set,
3245};
b09e0fa4 3246
aa7c5241
AG
3247static const struct xattr_handler shmem_trusted_xattr_handler = {
3248 .prefix = XATTR_TRUSTED_PREFIX,
3249 .get = shmem_xattr_handler_get,
3250 .set = shmem_xattr_handler_set,
3251};
b09e0fa4 3252
aa7c5241
AG
3253static const struct xattr_handler *shmem_xattr_handlers[] = {
3254#ifdef CONFIG_TMPFS_POSIX_ACL
3255 &posix_acl_access_xattr_handler,
3256 &posix_acl_default_xattr_handler,
3257#endif
3258 &shmem_security_xattr_handler,
3259 &shmem_trusted_xattr_handler,
3260 NULL
3261};
b09e0fa4
EP
3262
3263static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3264{
75c3cfa8 3265 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3266 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3267}
3268#endif /* CONFIG_TMPFS_XATTR */
3269
69f07ec9 3270static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3271 .get_link = simple_get_link,
b09e0fa4 3272#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3273 .listxattr = shmem_listxattr,
b09e0fa4
EP
3274#endif
3275};
3276
3277static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3278 .get_link = shmem_get_link,
b09e0fa4 3279#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3280 .listxattr = shmem_listxattr,
39f0247d 3281#endif
b09e0fa4 3282};
39f0247d 3283
91828a40
DG
3284static struct dentry *shmem_get_parent(struct dentry *child)
3285{
3286 return ERR_PTR(-ESTALE);
3287}
3288
3289static int shmem_match(struct inode *ino, void *vfh)
3290{
3291 __u32 *fh = vfh;
3292 __u64 inum = fh[2];
3293 inum = (inum << 32) | fh[1];
3294 return ino->i_ino == inum && fh[0] == ino->i_generation;
3295}
3296
12ba780d
AG
3297/* Find any alias of inode, but prefer a hashed alias */
3298static struct dentry *shmem_find_alias(struct inode *inode)
3299{
3300 struct dentry *alias = d_find_alias(inode);
3301
3302 return alias ?: d_find_any_alias(inode);
3303}
3304
3305
480b116c
CH
3306static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3307 struct fid *fid, int fh_len, int fh_type)
91828a40 3308{
91828a40 3309 struct inode *inode;
480b116c 3310 struct dentry *dentry = NULL;
35c2a7f4 3311 u64 inum;
480b116c
CH
3312
3313 if (fh_len < 3)
3314 return NULL;
91828a40 3315
35c2a7f4
HD
3316 inum = fid->raw[2];
3317 inum = (inum << 32) | fid->raw[1];
3318
480b116c
CH
3319 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3320 shmem_match, fid->raw);
91828a40 3321 if (inode) {
12ba780d 3322 dentry = shmem_find_alias(inode);
91828a40
DG
3323 iput(inode);
3324 }
3325
480b116c 3326 return dentry;
91828a40
DG
3327}
3328
b0b0382b
AV
3329static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3330 struct inode *parent)
91828a40 3331{
5fe0c237
AK
3332 if (*len < 3) {
3333 *len = 3;
94e07a75 3334 return FILEID_INVALID;
5fe0c237 3335 }
91828a40 3336
1d3382cb 3337 if (inode_unhashed(inode)) {
91828a40
DG
3338 /* Unfortunately insert_inode_hash is not idempotent,
3339 * so as we hash inodes here rather than at creation
3340 * time, we need a lock to ensure we only try
3341 * to do it once
3342 */
3343 static DEFINE_SPINLOCK(lock);
3344 spin_lock(&lock);
1d3382cb 3345 if (inode_unhashed(inode))
91828a40
DG
3346 __insert_inode_hash(inode,
3347 inode->i_ino + inode->i_generation);
3348 spin_unlock(&lock);
3349 }
3350
3351 fh[0] = inode->i_generation;
3352 fh[1] = inode->i_ino;
3353 fh[2] = ((__u64)inode->i_ino) >> 32;
3354
3355 *len = 3;
3356 return 1;
3357}
3358
39655164 3359static const struct export_operations shmem_export_ops = {
91828a40 3360 .get_parent = shmem_get_parent,
91828a40 3361 .encode_fh = shmem_encode_fh,
480b116c 3362 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3363};
3364
626c3920
AV
3365enum shmem_param {
3366 Opt_gid,
3367 Opt_huge,
3368 Opt_mode,
3369 Opt_mpol,
3370 Opt_nr_blocks,
3371 Opt_nr_inodes,
3372 Opt_size,
3373 Opt_uid,
3374};
3375
5eede625 3376static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3377 {"never", SHMEM_HUGE_NEVER },
3378 {"always", SHMEM_HUGE_ALWAYS },
3379 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3380 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3381 {}
3382};
3383
d7167b14 3384const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3385 fsparam_u32 ("gid", Opt_gid),
2710c957 3386 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3387 fsparam_u32oct("mode", Opt_mode),
3388 fsparam_string("mpol", Opt_mpol),
3389 fsparam_string("nr_blocks", Opt_nr_blocks),
3390 fsparam_string("nr_inodes", Opt_nr_inodes),
3391 fsparam_string("size", Opt_size),
3392 fsparam_u32 ("uid", Opt_uid),
3393 {}
3394};
3395
f3235626 3396static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3397{
f3235626 3398 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3399 struct fs_parse_result result;
3400 unsigned long long size;
e04dc423 3401 char *rest;
626c3920
AV
3402 int opt;
3403
d7167b14 3404 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3405 if (opt < 0)
626c3920 3406 return opt;
1da177e4 3407
626c3920
AV
3408 switch (opt) {
3409 case Opt_size:
3410 size = memparse(param->string, &rest);
e04dc423
AV
3411 if (*rest == '%') {
3412 size <<= PAGE_SHIFT;
3413 size *= totalram_pages();
3414 do_div(size, 100);
3415 rest++;
3416 }
3417 if (*rest)
626c3920 3418 goto bad_value;
e04dc423
AV
3419 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3420 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3421 break;
3422 case Opt_nr_blocks:
3423 ctx->blocks = memparse(param->string, &rest);
e04dc423 3424 if (*rest)
626c3920 3425 goto bad_value;
e04dc423 3426 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3427 break;
3428 case Opt_nr_inodes:
3429 ctx->inodes = memparse(param->string, &rest);
e04dc423 3430 if (*rest)
626c3920 3431 goto bad_value;
e04dc423 3432 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3433 break;
3434 case Opt_mode:
3435 ctx->mode = result.uint_32 & 07777;
3436 break;
3437 case Opt_uid:
3438 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3439 if (!uid_valid(ctx->uid))
626c3920
AV
3440 goto bad_value;
3441 break;
3442 case Opt_gid:
3443 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3444 if (!gid_valid(ctx->gid))
626c3920
AV
3445 goto bad_value;
3446 break;
3447 case Opt_huge:
3448 ctx->huge = result.uint_32;
3449 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3450 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3451 has_transparent_hugepage()))
3452 goto unsupported_parameter;
e04dc423 3453 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3454 break;
3455 case Opt_mpol:
3456 if (IS_ENABLED(CONFIG_NUMA)) {
3457 mpol_put(ctx->mpol);
3458 ctx->mpol = NULL;
3459 if (mpol_parse_str(param->string, &ctx->mpol))
3460 goto bad_value;
3461 break;
3462 }
3463 goto unsupported_parameter;
e04dc423
AV
3464 }
3465 return 0;
3466
626c3920 3467unsupported_parameter:
f35aa2bc 3468 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3469bad_value:
f35aa2bc 3470 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3471}
3472
f3235626 3473static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3474{
f3235626
DH
3475 char *options = data;
3476
33f37c64
AV
3477 if (options) {
3478 int err = security_sb_eat_lsm_opts(options, &fc->security);
3479 if (err)
3480 return err;
3481 }
3482
b00dc3ad 3483 while (options != NULL) {
626c3920 3484 char *this_char = options;
b00dc3ad
HD
3485 for (;;) {
3486 /*
3487 * NUL-terminate this option: unfortunately,
3488 * mount options form a comma-separated list,
3489 * but mpol's nodelist may also contain commas.
3490 */
3491 options = strchr(options, ',');
3492 if (options == NULL)
3493 break;
3494 options++;
3495 if (!isdigit(*options)) {
3496 options[-1] = '\0';
3497 break;
3498 }
3499 }
626c3920
AV
3500 if (*this_char) {
3501 char *value = strchr(this_char,'=');
f3235626 3502 size_t len = 0;
626c3920
AV
3503 int err;
3504
3505 if (value) {
3506 *value++ = '\0';
f3235626 3507 len = strlen(value);
626c3920 3508 }
f3235626
DH
3509 err = vfs_parse_fs_string(fc, this_char, value, len);
3510 if (err < 0)
3511 return err;
1da177e4 3512 }
1da177e4
LT
3513 }
3514 return 0;
1da177e4
LT
3515}
3516
f3235626
DH
3517/*
3518 * Reconfigure a shmem filesystem.
3519 *
3520 * Note that we disallow change from limited->unlimited blocks/inodes while any
3521 * are in use; but we must separately disallow unlimited->limited, because in
3522 * that case we have no record of how much is already in use.
3523 */
3524static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3525{
f3235626
DH
3526 struct shmem_options *ctx = fc->fs_private;
3527 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3528 unsigned long inodes;
f3235626 3529 const char *err;
1da177e4 3530
0edd73b3 3531 spin_lock(&sbinfo->stat_lock);
0edd73b3 3532 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3533 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3534 if (!sbinfo->max_blocks) {
3535 err = "Cannot retroactively limit size";
0b5071dd 3536 goto out;
f3235626 3537 }
0b5071dd 3538 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3539 ctx->blocks) > 0) {
3540 err = "Too small a size for current use";
0b5071dd 3541 goto out;
f3235626 3542 }
0b5071dd 3543 }
f3235626
DH
3544 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3545 if (!sbinfo->max_inodes) {
3546 err = "Cannot retroactively limit inodes";
0b5071dd 3547 goto out;
f3235626
DH
3548 }
3549 if (ctx->inodes < inodes) {
3550 err = "Too few inodes for current use";
0b5071dd 3551 goto out;
f3235626 3552 }
0b5071dd 3553 }
0edd73b3 3554
f3235626
DH
3555 if (ctx->seen & SHMEM_SEEN_HUGE)
3556 sbinfo->huge = ctx->huge;
3557 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3558 sbinfo->max_blocks = ctx->blocks;
3559 if (ctx->seen & SHMEM_SEEN_INODES) {
3560 sbinfo->max_inodes = ctx->inodes;
3561 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3562 }
71fe804b 3563
5f00110f
GT
3564 /*
3565 * Preserve previous mempolicy unless mpol remount option was specified.
3566 */
f3235626 3567 if (ctx->mpol) {
5f00110f 3568 mpol_put(sbinfo->mpol);
f3235626
DH
3569 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3570 ctx->mpol = NULL;
5f00110f 3571 }
f3235626
DH
3572 spin_unlock(&sbinfo->stat_lock);
3573 return 0;
0edd73b3
HD
3574out:
3575 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3576 return invalfc(fc, "%s", err);
1da177e4 3577}
680d794b 3578
34c80b1d 3579static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3580{
34c80b1d 3581 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3582
3583 if (sbinfo->max_blocks != shmem_default_max_blocks())
3584 seq_printf(seq, ",size=%luk",
09cbfeaf 3585 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3586 if (sbinfo->max_inodes != shmem_default_max_inodes())
3587 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3588 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3589 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3590 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3591 seq_printf(seq, ",uid=%u",
3592 from_kuid_munged(&init_user_ns, sbinfo->uid));
3593 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3594 seq_printf(seq, ",gid=%u",
3595 from_kgid_munged(&init_user_ns, sbinfo->gid));
396bcc52 3596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3597 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3598 if (sbinfo->huge)
3599 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3600#endif
71fe804b 3601 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3602 return 0;
3603}
9183df25 3604
680d794b 3605#endif /* CONFIG_TMPFS */
1da177e4
LT
3606
3607static void shmem_put_super(struct super_block *sb)
3608{
602586a8
HD
3609 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3610
3611 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3612 mpol_put(sbinfo->mpol);
602586a8 3613 kfree(sbinfo);
1da177e4
LT
3614 sb->s_fs_info = NULL;
3615}
3616
f3235626 3617static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3618{
f3235626 3619 struct shmem_options *ctx = fc->fs_private;
1da177e4 3620 struct inode *inode;
0edd73b3 3621 struct shmem_sb_info *sbinfo;
680d794b
AM
3622 int err = -ENOMEM;
3623
3624 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3625 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3626 L1_CACHE_BYTES), GFP_KERNEL);
3627 if (!sbinfo)
3628 return -ENOMEM;
3629
680d794b 3630 sb->s_fs_info = sbinfo;
1da177e4 3631
0edd73b3 3632#ifdef CONFIG_TMPFS
1da177e4
LT
3633 /*
3634 * Per default we only allow half of the physical ram per
3635 * tmpfs instance, limiting inodes to one per page of lowmem;
3636 * but the internal instance is left unlimited.
3637 */
1751e8a6 3638 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3639 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3640 ctx->blocks = shmem_default_max_blocks();
3641 if (!(ctx->seen & SHMEM_SEEN_INODES))
3642 ctx->inodes = shmem_default_max_inodes();
ca4e0519 3643 } else {
1751e8a6 3644 sb->s_flags |= SB_NOUSER;
1da177e4 3645 }
91828a40 3646 sb->s_export_op = &shmem_export_ops;
1751e8a6 3647 sb->s_flags |= SB_NOSEC;
1da177e4 3648#else
1751e8a6 3649 sb->s_flags |= SB_NOUSER;
1da177e4 3650#endif
f3235626
DH
3651 sbinfo->max_blocks = ctx->blocks;
3652 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3653 sbinfo->uid = ctx->uid;
3654 sbinfo->gid = ctx->gid;
3655 sbinfo->mode = ctx->mode;
3656 sbinfo->huge = ctx->huge;
3657 sbinfo->mpol = ctx->mpol;
3658 ctx->mpol = NULL;
1da177e4 3659
0edd73b3 3660 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3661 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3662 goto failed;
779750d2
KS
3663 spin_lock_init(&sbinfo->shrinklist_lock);
3664 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3665
285b2c4f 3666 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3667 sb->s_blocksize = PAGE_SIZE;
3668 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3669 sb->s_magic = TMPFS_MAGIC;
3670 sb->s_op = &shmem_ops;
cfd95a9c 3671 sb->s_time_gran = 1;
b09e0fa4 3672#ifdef CONFIG_TMPFS_XATTR
39f0247d 3673 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3674#endif
3675#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3676 sb->s_flags |= SB_POSIXACL;
39f0247d 3677#endif
2b4db796 3678 uuid_gen(&sb->s_uuid);
0edd73b3 3679
454abafe 3680 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3681 if (!inode)
3682 goto failed;
680d794b
AM
3683 inode->i_uid = sbinfo->uid;
3684 inode->i_gid = sbinfo->gid;
318ceed0
AV
3685 sb->s_root = d_make_root(inode);
3686 if (!sb->s_root)
48fde701 3687 goto failed;
1da177e4
LT
3688 return 0;
3689
1da177e4
LT
3690failed:
3691 shmem_put_super(sb);
3692 return err;
3693}
3694
f3235626
DH
3695static int shmem_get_tree(struct fs_context *fc)
3696{
3697 return get_tree_nodev(fc, shmem_fill_super);
3698}
3699
3700static void shmem_free_fc(struct fs_context *fc)
3701{
3702 struct shmem_options *ctx = fc->fs_private;
3703
3704 if (ctx) {
3705 mpol_put(ctx->mpol);
3706 kfree(ctx);
3707 }
3708}
3709
3710static const struct fs_context_operations shmem_fs_context_ops = {
3711 .free = shmem_free_fc,
3712 .get_tree = shmem_get_tree,
3713#ifdef CONFIG_TMPFS
3714 .parse_monolithic = shmem_parse_options,
3715 .parse_param = shmem_parse_one,
3716 .reconfigure = shmem_reconfigure,
3717#endif
3718};
3719
fcc234f8 3720static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3721
3722static struct inode *shmem_alloc_inode(struct super_block *sb)
3723{
41ffe5d5
HD
3724 struct shmem_inode_info *info;
3725 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3726 if (!info)
1da177e4 3727 return NULL;
41ffe5d5 3728 return &info->vfs_inode;
1da177e4
LT
3729}
3730
74b1da56 3731static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3732{
84e710da
AV
3733 if (S_ISLNK(inode->i_mode))
3734 kfree(inode->i_link);
fa0d7e3d
NP
3735 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3736}
3737
1da177e4
LT
3738static void shmem_destroy_inode(struct inode *inode)
3739{
09208d15 3740 if (S_ISREG(inode->i_mode))
1da177e4 3741 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3742}
3743
41ffe5d5 3744static void shmem_init_inode(void *foo)
1da177e4 3745{
41ffe5d5
HD
3746 struct shmem_inode_info *info = foo;
3747 inode_init_once(&info->vfs_inode);
1da177e4
LT
3748}
3749
9a8ec03e 3750static void shmem_init_inodecache(void)
1da177e4
LT
3751{
3752 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3753 sizeof(struct shmem_inode_info),
5d097056 3754 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3755}
3756
41ffe5d5 3757static void shmem_destroy_inodecache(void)
1da177e4 3758{
1a1d92c1 3759 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3760}
3761
f5e54d6e 3762static const struct address_space_operations shmem_aops = {
1da177e4 3763 .writepage = shmem_writepage,
76719325 3764 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3765#ifdef CONFIG_TMPFS
800d15a5
NP
3766 .write_begin = shmem_write_begin,
3767 .write_end = shmem_write_end,
1da177e4 3768#endif
1c93923c 3769#ifdef CONFIG_MIGRATION
304dbdb7 3770 .migratepage = migrate_page,
1c93923c 3771#endif
aa261f54 3772 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3773};
3774
15ad7cdc 3775static const struct file_operations shmem_file_operations = {
1da177e4 3776 .mmap = shmem_mmap,
c01d5b30 3777 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3778#ifdef CONFIG_TMPFS
220f2ac9 3779 .llseek = shmem_file_llseek,
2ba5bbed 3780 .read_iter = shmem_file_read_iter,
8174202b 3781 .write_iter = generic_file_write_iter,
1b061d92 3782 .fsync = noop_fsync,
82c156f8 3783 .splice_read = generic_file_splice_read,
f6cb85d0 3784 .splice_write = iter_file_splice_write,
83e4fa9c 3785 .fallocate = shmem_fallocate,
1da177e4
LT
3786#endif
3787};
3788
92e1d5be 3789static const struct inode_operations shmem_inode_operations = {
44a30220 3790 .getattr = shmem_getattr,
94c1e62d 3791 .setattr = shmem_setattr,
b09e0fa4 3792#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3793 .listxattr = shmem_listxattr,
feda821e 3794 .set_acl = simple_set_acl,
b09e0fa4 3795#endif
1da177e4
LT
3796};
3797
92e1d5be 3798static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3799#ifdef CONFIG_TMPFS
3800 .create = shmem_create,
3801 .lookup = simple_lookup,
3802 .link = shmem_link,
3803 .unlink = shmem_unlink,
3804 .symlink = shmem_symlink,
3805 .mkdir = shmem_mkdir,
3806 .rmdir = shmem_rmdir,
3807 .mknod = shmem_mknod,
2773bf00 3808 .rename = shmem_rename2,
60545d0d 3809 .tmpfile = shmem_tmpfile,
1da177e4 3810#endif
b09e0fa4 3811#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3812 .listxattr = shmem_listxattr,
b09e0fa4 3813#endif
39f0247d 3814#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3815 .setattr = shmem_setattr,
feda821e 3816 .set_acl = simple_set_acl,
39f0247d
AG
3817#endif
3818};
3819
92e1d5be 3820static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3821#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3822 .listxattr = shmem_listxattr,
b09e0fa4 3823#endif
39f0247d 3824#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3825 .setattr = shmem_setattr,
feda821e 3826 .set_acl = simple_set_acl,
39f0247d 3827#endif
1da177e4
LT
3828};
3829
759b9775 3830static const struct super_operations shmem_ops = {
1da177e4 3831 .alloc_inode = shmem_alloc_inode,
74b1da56 3832 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3833 .destroy_inode = shmem_destroy_inode,
3834#ifdef CONFIG_TMPFS
3835 .statfs = shmem_statfs,
680d794b 3836 .show_options = shmem_show_options,
1da177e4 3837#endif
1f895f75 3838 .evict_inode = shmem_evict_inode,
1da177e4
LT
3839 .drop_inode = generic_delete_inode,
3840 .put_super = shmem_put_super,
396bcc52 3841#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3842 .nr_cached_objects = shmem_unused_huge_count,
3843 .free_cached_objects = shmem_unused_huge_scan,
3844#endif
1da177e4
LT
3845};
3846
f0f37e2f 3847static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3848 .fault = shmem_fault,
d7c17551 3849 .map_pages = filemap_map_pages,
1da177e4
LT
3850#ifdef CONFIG_NUMA
3851 .set_policy = shmem_set_policy,
3852 .get_policy = shmem_get_policy,
3853#endif
3854};
3855
f3235626 3856int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3857{
f3235626
DH
3858 struct shmem_options *ctx;
3859
3860 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3861 if (!ctx)
3862 return -ENOMEM;
3863
3864 ctx->mode = 0777 | S_ISVTX;
3865 ctx->uid = current_fsuid();
3866 ctx->gid = current_fsgid();
3867
3868 fc->fs_private = ctx;
3869 fc->ops = &shmem_fs_context_ops;
3870 return 0;
1da177e4
LT
3871}
3872
41ffe5d5 3873static struct file_system_type shmem_fs_type = {
1da177e4
LT
3874 .owner = THIS_MODULE,
3875 .name = "tmpfs",
f3235626
DH
3876 .init_fs_context = shmem_init_fs_context,
3877#ifdef CONFIG_TMPFS
d7167b14 3878 .parameters = shmem_fs_parameters,
f3235626 3879#endif
1da177e4 3880 .kill_sb = kill_litter_super,
2b8576cb 3881 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3882};
1da177e4 3883
41ffe5d5 3884int __init shmem_init(void)
1da177e4
LT
3885{
3886 int error;
3887
9a8ec03e 3888 shmem_init_inodecache();
1da177e4 3889
41ffe5d5 3890 error = register_filesystem(&shmem_fs_type);
1da177e4 3891 if (error) {
1170532b 3892 pr_err("Could not register tmpfs\n");
1da177e4
LT
3893 goto out2;
3894 }
95dc112a 3895
ca4e0519 3896 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3897 if (IS_ERR(shm_mnt)) {
3898 error = PTR_ERR(shm_mnt);
1170532b 3899 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3900 goto out1;
3901 }
5a6e75f8 3902
396bcc52 3903#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3904 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3905 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3906 else
3907 shmem_huge = 0; /* just in case it was patched */
3908#endif
1da177e4
LT
3909 return 0;
3910
3911out1:
41ffe5d5 3912 unregister_filesystem(&shmem_fs_type);
1da177e4 3913out2:
41ffe5d5 3914 shmem_destroy_inodecache();
1da177e4
LT
3915 shm_mnt = ERR_PTR(error);
3916 return error;
3917}
853ac43a 3918
396bcc52 3919#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3920static ssize_t shmem_enabled_show(struct kobject *kobj,
3921 struct kobj_attribute *attr, char *buf)
3922{
26083eb6 3923 static const int values[] = {
5a6e75f8
KS
3924 SHMEM_HUGE_ALWAYS,
3925 SHMEM_HUGE_WITHIN_SIZE,
3926 SHMEM_HUGE_ADVISE,
3927 SHMEM_HUGE_NEVER,
3928 SHMEM_HUGE_DENY,
3929 SHMEM_HUGE_FORCE,
3930 };
3931 int i, count;
3932
3933 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3934 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3935
3936 count += sprintf(buf + count, fmt,
3937 shmem_format_huge(values[i]));
3938 }
3939 buf[count - 1] = '\n';
3940 return count;
3941}
3942
3943static ssize_t shmem_enabled_store(struct kobject *kobj,
3944 struct kobj_attribute *attr, const char *buf, size_t count)
3945{
3946 char tmp[16];
3947 int huge;
3948
3949 if (count + 1 > sizeof(tmp))
3950 return -EINVAL;
3951 memcpy(tmp, buf, count);
3952 tmp[count] = '\0';
3953 if (count && tmp[count - 1] == '\n')
3954 tmp[count - 1] = '\0';
3955
3956 huge = shmem_parse_huge(tmp);
3957 if (huge == -EINVAL)
3958 return -EINVAL;
3959 if (!has_transparent_hugepage() &&
3960 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3961 return -EINVAL;
3962
3963 shmem_huge = huge;
435c0b87 3964 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3965 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3966 return count;
3967}
3968
3969struct kobj_attribute shmem_enabled_attr =
3970 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3971#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3972
396bcc52 3973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
3974bool shmem_huge_enabled(struct vm_area_struct *vma)
3975{
3976 struct inode *inode = file_inode(vma->vm_file);
3977 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3978 loff_t i_size;
3979 pgoff_t off;
3980
c0630669
YS
3981 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3982 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3983 return false;
f3f0e1d2
KS
3984 if (shmem_huge == SHMEM_HUGE_FORCE)
3985 return true;
3986 if (shmem_huge == SHMEM_HUGE_DENY)
3987 return false;
3988 switch (sbinfo->huge) {
3989 case SHMEM_HUGE_NEVER:
3990 return false;
3991 case SHMEM_HUGE_ALWAYS:
3992 return true;
3993 case SHMEM_HUGE_WITHIN_SIZE:
3994 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3995 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3996 if (i_size >= HPAGE_PMD_SIZE &&
3997 i_size >> PAGE_SHIFT >= off)
3998 return true;
e4a9bc58 3999 fallthrough;
f3f0e1d2
KS
4000 case SHMEM_HUGE_ADVISE:
4001 /* TODO: implement fadvise() hints */
4002 return (vma->vm_flags & VM_HUGEPAGE);
4003 default:
4004 VM_BUG_ON(1);
4005 return false;
4006 }
4007}
396bcc52 4008#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4009
853ac43a
MM
4010#else /* !CONFIG_SHMEM */
4011
4012/*
4013 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014 *
4015 * This is intended for small system where the benefits of the full
4016 * shmem code (swap-backed and resource-limited) are outweighed by
4017 * their complexity. On systems without swap this code should be
4018 * effectively equivalent, but much lighter weight.
4019 */
4020
41ffe5d5 4021static struct file_system_type shmem_fs_type = {
853ac43a 4022 .name = "tmpfs",
f3235626 4023 .init_fs_context = ramfs_init_fs_context,
d7167b14 4024 .parameters = ramfs_fs_parameters,
853ac43a 4025 .kill_sb = kill_litter_super,
2b8576cb 4026 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4027};
4028
41ffe5d5 4029int __init shmem_init(void)
853ac43a 4030{
41ffe5d5 4031 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4032
41ffe5d5 4033 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4034 BUG_ON(IS_ERR(shm_mnt));
4035
4036 return 0;
4037}
4038
b56a2d8a
VRP
4039int shmem_unuse(unsigned int type, bool frontswap,
4040 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4041{
4042 return 0;
4043}
4044
3f96b79a
HD
4045int shmem_lock(struct file *file, int lock, struct user_struct *user)
4046{
4047 return 0;
4048}
4049
24513264
HD
4050void shmem_unlock_mapping(struct address_space *mapping)
4051{
4052}
4053
c01d5b30
HD
4054#ifdef CONFIG_MMU
4055unsigned long shmem_get_unmapped_area(struct file *file,
4056 unsigned long addr, unsigned long len,
4057 unsigned long pgoff, unsigned long flags)
4058{
4059 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4060}
4061#endif
4062
41ffe5d5 4063void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4064{
41ffe5d5 4065 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4066}
4067EXPORT_SYMBOL_GPL(shmem_truncate_range);
4068
0b0a0806
HD
4069#define shmem_vm_ops generic_file_vm_ops
4070#define shmem_file_operations ramfs_file_operations
454abafe 4071#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4072#define shmem_acct_size(flags, size) 0
4073#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4074
4075#endif /* CONFIG_SHMEM */
4076
4077/* common code */
1da177e4 4078
703321b6 4079static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4080 unsigned long flags, unsigned int i_flags)
1da177e4 4081{
1da177e4 4082 struct inode *inode;
93dec2da 4083 struct file *res;
1da177e4 4084
703321b6
MA
4085 if (IS_ERR(mnt))
4086 return ERR_CAST(mnt);
1da177e4 4087
285b2c4f 4088 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4089 return ERR_PTR(-EINVAL);
4090
4091 if (shmem_acct_size(flags, size))
4092 return ERR_PTR(-ENOMEM);
4093
93dec2da
AV
4094 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4095 flags);
dac2d1f6
AV
4096 if (unlikely(!inode)) {
4097 shmem_unacct_size(flags, size);
4098 return ERR_PTR(-ENOSPC);
4099 }
c7277090 4100 inode->i_flags |= i_flags;
1da177e4 4101 inode->i_size = size;
6d6b77f1 4102 clear_nlink(inode); /* It is unlinked */
26567cdb 4103 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4104 if (!IS_ERR(res))
4105 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4106 &shmem_file_operations);
26567cdb 4107 if (IS_ERR(res))
93dec2da 4108 iput(inode);
6b4d0b27 4109 return res;
1da177e4 4110}
c7277090
EP
4111
4112/**
4113 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4114 * kernel internal. There will be NO LSM permission checks against the
4115 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4116 * higher layer. The users are the big_key and shm implementations. LSM
4117 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4118 * @name: name for dentry (to be seen in /proc/<pid>/maps
4119 * @size: size to be set for the file
4120 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121 */
4122struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4123{
703321b6 4124 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4125}
4126
4127/**
4128 * shmem_file_setup - get an unlinked file living in tmpfs
4129 * @name: name for dentry (to be seen in /proc/<pid>/maps
4130 * @size: size to be set for the file
4131 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4132 */
4133struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4134{
703321b6 4135 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4136}
395e0ddc 4137EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4138
703321b6
MA
4139/**
4140 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4141 * @mnt: the tmpfs mount where the file will be created
4142 * @name: name for dentry (to be seen in /proc/<pid>/maps
4143 * @size: size to be set for the file
4144 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4145 */
4146struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4147 loff_t size, unsigned long flags)
4148{
4149 return __shmem_file_setup(mnt, name, size, flags, 0);
4150}
4151EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4152
46711810 4153/**
1da177e4 4154 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4155 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4156 */
4157int shmem_zero_setup(struct vm_area_struct *vma)
4158{
4159 struct file *file;
4160 loff_t size = vma->vm_end - vma->vm_start;
4161
66fc1303
HD
4162 /*
4163 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4164 * between XFS directory reading and selinux: since this file is only
4165 * accessible to the user through its mapping, use S_PRIVATE flag to
4166 * bypass file security, in the same way as shmem_kernel_file_setup().
4167 */
703321b6 4168 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4169 if (IS_ERR(file))
4170 return PTR_ERR(file);
4171
4172 if (vma->vm_file)
4173 fput(vma->vm_file);
4174 vma->vm_file = file;
4175 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4176
396bcc52 4177 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4178 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4179 (vma->vm_end & HPAGE_PMD_MASK)) {
4180 khugepaged_enter(vma, vma->vm_flags);
4181 }
4182
1da177e4
LT
4183 return 0;
4184}
d9d90e5e
HD
4185
4186/**
4187 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4188 * @mapping: the page's address_space
4189 * @index: the page index
4190 * @gfp: the page allocator flags to use if allocating
4191 *
4192 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4193 * with any new page allocations done using the specified allocation flags.
4194 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4195 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4196 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4197 *
68da9f05
HD
4198 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4199 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4200 */
4201struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4202 pgoff_t index, gfp_t gfp)
4203{
68da9f05
HD
4204#ifdef CONFIG_SHMEM
4205 struct inode *inode = mapping->host;
9276aad6 4206 struct page *page;
68da9f05
HD
4207 int error;
4208
4209 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4210 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4211 gfp, NULL, NULL, NULL);
68da9f05
HD
4212 if (error)
4213 page = ERR_PTR(error);
4214 else
4215 unlock_page(page);
4216 return page;
4217#else
4218 /*
4219 * The tiny !SHMEM case uses ramfs without swap
4220 */
d9d90e5e 4221 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4222#endif
d9d90e5e
HD
4223}
4224EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);