]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/shmem.c
signal/sh: Ensure si_signo is initialized in do_divide_error
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b
AM
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
0006ebb4 114static int shmem_default_max_inodes(void)
680d794b 115{
0006ebb4
SF
116 unsigned long ul;
117
118 ul = INT_MAX;
119 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
120 return ul;
680d794b 121}
b76db735 122#endif
680d794b 123
bde05d1c
HD
124static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
68da9f05 127static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 128 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
129 gfp_t gfp, struct vm_area_struct *vma,
130 struct vm_fault *vmf, int *fault_type);
68da9f05 131
f3f0e1d2 132int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 133 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
134{
135 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 136 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 137}
1da177e4 138
1da177e4
LT
139static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140{
141 return sb->s_fs_info;
142}
143
144/*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150static inline int shmem_acct_size(unsigned long flags, loff_t size)
151{
0b0a0806 152 return (flags & VM_NORESERVE) ?
191c5424 153 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
154}
155
156static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157{
0b0a0806 158 if (!(flags & VM_NORESERVE))
1da177e4
LT
159 vm_unacct_memory(VM_ACCT(size));
160}
161
77142517
KK
162static inline int shmem_reacct_size(unsigned long flags,
163 loff_t oldsize, loff_t newsize)
164{
165 if (!(flags & VM_NORESERVE)) {
166 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
167 return security_vm_enough_memory_mm(current->mm,
168 VM_ACCT(newsize) - VM_ACCT(oldsize));
169 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
170 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 }
172 return 0;
173}
174
1da177e4
LT
175/*
176 * ... whereas tmpfs objects are accounted incrementally as
75edd345 177 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
800d8c63 181static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 182{
800d8c63
KS
183 if (!(flags & VM_NORESERVE))
184 return 0;
185
186 return security_vm_enough_memory_mm(current->mm,
187 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
188}
189
190static inline void shmem_unacct_blocks(unsigned long flags, long pages)
191{
0b0a0806 192 if (flags & VM_NORESERVE)
09cbfeaf 193 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
194}
195
0f079694
MR
196static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
197{
198 struct shmem_inode_info *info = SHMEM_I(inode);
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200
201 if (shmem_acct_block(info->flags, pages))
202 return false;
203
204 if (sbinfo->max_blocks) {
205 if (percpu_counter_compare(&sbinfo->used_blocks,
206 sbinfo->max_blocks - pages) > 0)
207 goto unacct;
208 percpu_counter_add(&sbinfo->used_blocks, pages);
209 }
210
211 return true;
212
213unacct:
214 shmem_unacct_blocks(info->flags, pages);
215 return false;
216}
217
218static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
219{
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (sbinfo->max_blocks)
224 percpu_counter_sub(&sbinfo->used_blocks, pages);
225 shmem_unacct_blocks(info->flags, pages);
226}
227
759b9775 228static const struct super_operations shmem_ops;
f5e54d6e 229static const struct address_space_operations shmem_aops;
15ad7cdc 230static const struct file_operations shmem_file_operations;
92e1d5be
AV
231static const struct inode_operations shmem_inode_operations;
232static const struct inode_operations shmem_dir_inode_operations;
233static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 234static const struct vm_operations_struct shmem_vm_ops;
779750d2 235static struct file_system_type shmem_fs_type;
1da177e4 236
b0506e48
MR
237bool vma_is_shmem(struct vm_area_struct *vma)
238{
239 return vma->vm_ops == &shmem_vm_ops;
240}
241
1da177e4 242static LIST_HEAD(shmem_swaplist);
cb5f7b9a 243static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 244
5b04c689
PE
245static int shmem_reserve_inode(struct super_block *sb)
246{
247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
248 if (sbinfo->max_inodes) {
249 spin_lock(&sbinfo->stat_lock);
250 if (!sbinfo->free_inodes) {
251 spin_unlock(&sbinfo->stat_lock);
252 return -ENOSPC;
253 }
254 sbinfo->free_inodes--;
255 spin_unlock(&sbinfo->stat_lock);
256 }
257 return 0;
258}
259
260static void shmem_free_inode(struct super_block *sb)
261{
262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 if (sbinfo->max_inodes) {
264 spin_lock(&sbinfo->stat_lock);
265 sbinfo->free_inodes++;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268}
269
46711810 270/**
41ffe5d5 271 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
272 * @inode: inode to recalc
273 *
274 * We have to calculate the free blocks since the mm can drop
275 * undirtied hole pages behind our back.
276 *
277 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
278 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 *
280 * It has to be called with the spinlock held.
281 */
282static void shmem_recalc_inode(struct inode *inode)
283{
284 struct shmem_inode_info *info = SHMEM_I(inode);
285 long freed;
286
287 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
288 if (freed > 0) {
289 info->alloced -= freed;
54af6042 290 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 291 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
292 }
293}
294
800d8c63
KS
295bool shmem_charge(struct inode *inode, long pages)
296{
297 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 298 unsigned long flags;
800d8c63 299
0f079694 300 if (!shmem_inode_acct_block(inode, pages))
800d8c63 301 return false;
b1cc94ab 302
4595ef88 303 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
4595ef88 307 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
308 inode->i_mapping->nrpages += pages;
309
800d8c63
KS
310 return true;
311}
312
313void shmem_uncharge(struct inode *inode, long pages)
314{
315 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 316 unsigned long flags;
800d8c63 317
4595ef88 318 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
4595ef88 322 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 323
0f079694 324 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
325}
326
7a5d0fbb
HD
327/*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332{
f7942430 333 struct radix_tree_node *node;
7a5d0fbb 334 void **pslot;
6dbaf22c 335 void *item;
7a5d0fbb
HD
336
337 VM_BUG_ON(!expected);
6dbaf22c 338 VM_BUG_ON(!replacement);
f7942430
JW
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
6dbaf22c 341 return -ENOENT;
7a5d0fbb
HD
342 if (item != expected)
343 return -ENOENT;
4d693d08 344 __radix_tree_replace(&mapping->page_tree, node, pslot,
c7df8ad2 345 replacement, NULL);
7a5d0fbb
HD
346 return 0;
347}
348
d1899228
HD
349/*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358{
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365}
366
5a6e75f8
KS
367/*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381#define SHMEM_HUGE_NEVER 0
382#define SHMEM_HUGE_ALWAYS 1
383#define SHMEM_HUGE_WITHIN_SIZE 2
384#define SHMEM_HUGE_ADVISE 3
385
386/*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396#define SHMEM_HUGE_DENY (-1)
397#define SHMEM_HUGE_FORCE (-2)
398
e496cf3d 399#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
400/* ifdef here to avoid bloating shmem.o when not necessary */
401
402int shmem_huge __read_mostly;
403
f1f5929c 404#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
405static int shmem_parse_huge(const char *str)
406{
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420}
421
422static const char *shmem_format_huge(int huge)
423{
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441}
f1f5929c 442#endif
5a6e75f8 443
779750d2
KS
444static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446{
447 LIST_HEAD(list), *pos, *next;
253fd0f0 448 LIST_HEAD(to_remove);
779750d2
KS
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 475 list_move(&info->shrinklist, &to_remove);
779750d2 476 removed++;
779750d2
KS
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
253fd0f0
KS
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
779750d2
KS
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
500 if (nr_to_split && split >= nr_to_split) {
501 iput(inode);
502 continue;
503 }
504
505 page = find_lock_page(inode->i_mapping,
506 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
507 if (!page)
508 goto drop;
509
510 if (!PageTransHuge(page)) {
511 unlock_page(page);
512 put_page(page);
513 goto drop;
514 }
515
516 ret = split_huge_page(page);
517 unlock_page(page);
518 put_page(page);
519
520 if (ret) {
521 /* split failed: leave it on the list */
522 iput(inode);
523 continue;
524 }
525
526 split++;
527drop:
528 list_del_init(&info->shrinklist);
529 removed++;
530 iput(inode);
531 }
532
533 spin_lock(&sbinfo->shrinklist_lock);
534 list_splice_tail(&list, &sbinfo->shrinklist);
535 sbinfo->shrinklist_len -= removed;
536 spin_unlock(&sbinfo->shrinklist_lock);
537
538 return split;
539}
540
541static long shmem_unused_huge_scan(struct super_block *sb,
542 struct shrink_control *sc)
543{
544 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
545
546 if (!READ_ONCE(sbinfo->shrinklist_len))
547 return SHRINK_STOP;
548
549 return shmem_unused_huge_shrink(sbinfo, sc, 0);
550}
551
552static long shmem_unused_huge_count(struct super_block *sb,
553 struct shrink_control *sc)
554{
555 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
556 return READ_ONCE(sbinfo->shrinklist_len);
557}
e496cf3d 558#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
559
560#define shmem_huge SHMEM_HUGE_DENY
561
779750d2
KS
562static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
563 struct shrink_control *sc, unsigned long nr_to_split)
564{
565 return 0;
566}
e496cf3d 567#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 568
46f65ec1
HD
569/*
570 * Like add_to_page_cache_locked, but error if expected item has gone.
571 */
572static int shmem_add_to_page_cache(struct page *page,
573 struct address_space *mapping,
fed400a1 574 pgoff_t index, void *expected)
46f65ec1 575{
800d8c63 576 int error, nr = hpage_nr_pages(page);
46f65ec1 577
800d8c63
KS
578 VM_BUG_ON_PAGE(PageTail(page), page);
579 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
580 VM_BUG_ON_PAGE(!PageLocked(page), page);
581 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 582 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 583
800d8c63 584 page_ref_add(page, nr);
b065b432
HD
585 page->mapping = mapping;
586 page->index = index;
587
588 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
589 if (PageTransHuge(page)) {
590 void __rcu **results;
591 pgoff_t idx;
592 int i;
593
594 error = 0;
595 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
596 &results, &idx, index, 1) &&
597 idx < index + HPAGE_PMD_NR) {
598 error = -EEXIST;
599 }
600
601 if (!error) {
602 for (i = 0; i < HPAGE_PMD_NR; i++) {
603 error = radix_tree_insert(&mapping->page_tree,
604 index + i, page + i);
605 VM_BUG_ON(error);
606 }
607 count_vm_event(THP_FILE_ALLOC);
608 }
609 } else if (!expected) {
b065b432 610 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 611 } else {
b065b432
HD
612 error = shmem_radix_tree_replace(mapping, index, expected,
613 page);
800d8c63
KS
614 }
615
46f65ec1 616 if (!error) {
800d8c63
KS
617 mapping->nrpages += nr;
618 if (PageTransHuge(page))
11fb9989
MG
619 __inc_node_page_state(page, NR_SHMEM_THPS);
620 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
621 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
622 spin_unlock_irq(&mapping->tree_lock);
623 } else {
624 page->mapping = NULL;
625 spin_unlock_irq(&mapping->tree_lock);
800d8c63 626 page_ref_sub(page, nr);
46f65ec1 627 }
46f65ec1
HD
628 return error;
629}
630
6922c0c7
HD
631/*
632 * Like delete_from_page_cache, but substitutes swap for page.
633 */
634static void shmem_delete_from_page_cache(struct page *page, void *radswap)
635{
636 struct address_space *mapping = page->mapping;
637 int error;
638
800d8c63
KS
639 VM_BUG_ON_PAGE(PageCompound(page), page);
640
6922c0c7
HD
641 spin_lock_irq(&mapping->tree_lock);
642 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
643 page->mapping = NULL;
644 mapping->nrpages--;
11fb9989
MG
645 __dec_node_page_state(page, NR_FILE_PAGES);
646 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 647 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 648 put_page(page);
6922c0c7
HD
649 BUG_ON(error);
650}
651
7a5d0fbb
HD
652/*
653 * Remove swap entry from radix tree, free the swap and its page cache.
654 */
655static int shmem_free_swap(struct address_space *mapping,
656 pgoff_t index, void *radswap)
657{
6dbaf22c 658 void *old;
7a5d0fbb
HD
659
660 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 661 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 662 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
663 if (old != radswap)
664 return -ENOENT;
665 free_swap_and_cache(radix_to_swp_entry(radswap));
666 return 0;
7a5d0fbb
HD
667}
668
6a15a370
VB
669/*
670 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 671 * given offsets are swapped out.
6a15a370
VB
672 *
673 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
674 * as long as the inode doesn't go away and racy results are not a problem.
675 */
48131e03
VB
676unsigned long shmem_partial_swap_usage(struct address_space *mapping,
677 pgoff_t start, pgoff_t end)
6a15a370 678{
6a15a370
VB
679 struct radix_tree_iter iter;
680 void **slot;
681 struct page *page;
48131e03 682 unsigned long swapped = 0;
6a15a370
VB
683
684 rcu_read_lock();
685
6a15a370
VB
686 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
687 if (iter.index >= end)
688 break;
689
690 page = radix_tree_deref_slot(slot);
691
2cf938aa
MW
692 if (radix_tree_deref_retry(page)) {
693 slot = radix_tree_iter_retry(&iter);
694 continue;
695 }
6a15a370
VB
696
697 if (radix_tree_exceptional_entry(page))
698 swapped++;
699
700 if (need_resched()) {
148deab2 701 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 702 cond_resched_rcu();
6a15a370
VB
703 }
704 }
705
706 rcu_read_unlock();
707
708 return swapped << PAGE_SHIFT;
709}
710
48131e03
VB
711/*
712 * Determine (in bytes) how many of the shmem object's pages mapped by the
713 * given vma is swapped out.
714 *
715 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
716 * as long as the inode doesn't go away and racy results are not a problem.
717 */
718unsigned long shmem_swap_usage(struct vm_area_struct *vma)
719{
720 struct inode *inode = file_inode(vma->vm_file);
721 struct shmem_inode_info *info = SHMEM_I(inode);
722 struct address_space *mapping = inode->i_mapping;
723 unsigned long swapped;
724
725 /* Be careful as we don't hold info->lock */
726 swapped = READ_ONCE(info->swapped);
727
728 /*
729 * The easier cases are when the shmem object has nothing in swap, or
730 * the vma maps it whole. Then we can simply use the stats that we
731 * already track.
732 */
733 if (!swapped)
734 return 0;
735
736 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
737 return swapped << PAGE_SHIFT;
738
739 /* Here comes the more involved part */
740 return shmem_partial_swap_usage(mapping,
741 linear_page_index(vma, vma->vm_start),
742 linear_page_index(vma, vma->vm_end));
743}
744
24513264
HD
745/*
746 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
747 */
748void shmem_unlock_mapping(struct address_space *mapping)
749{
750 struct pagevec pvec;
751 pgoff_t indices[PAGEVEC_SIZE];
752 pgoff_t index = 0;
753
86679820 754 pagevec_init(&pvec);
24513264
HD
755 /*
756 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
757 */
758 while (!mapping_unevictable(mapping)) {
759 /*
760 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
761 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
762 */
0cd6144a
JW
763 pvec.nr = find_get_entries(mapping, index,
764 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
765 if (!pvec.nr)
766 break;
767 index = indices[pvec.nr - 1] + 1;
0cd6144a 768 pagevec_remove_exceptionals(&pvec);
24513264
HD
769 check_move_unevictable_pages(pvec.pages, pvec.nr);
770 pagevec_release(&pvec);
771 cond_resched();
772 }
7a5d0fbb
HD
773}
774
775/*
776 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 777 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 778 */
1635f6a7
HD
779static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
780 bool unfalloc)
1da177e4 781{
285b2c4f 782 struct address_space *mapping = inode->i_mapping;
1da177e4 783 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
784 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
785 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
786 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
787 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 788 struct pagevec pvec;
7a5d0fbb
HD
789 pgoff_t indices[PAGEVEC_SIZE];
790 long nr_swaps_freed = 0;
285b2c4f 791 pgoff_t index;
bda97eab
HD
792 int i;
793
83e4fa9c
HD
794 if (lend == -1)
795 end = -1; /* unsigned, so actually very big */
bda97eab 796
86679820 797 pagevec_init(&pvec);
bda97eab 798 index = start;
83e4fa9c 799 while (index < end) {
0cd6144a
JW
800 pvec.nr = find_get_entries(mapping, index,
801 min(end - index, (pgoff_t)PAGEVEC_SIZE),
802 pvec.pages, indices);
7a5d0fbb
HD
803 if (!pvec.nr)
804 break;
bda97eab
HD
805 for (i = 0; i < pagevec_count(&pvec); i++) {
806 struct page *page = pvec.pages[i];
807
7a5d0fbb 808 index = indices[i];
83e4fa9c 809 if (index >= end)
bda97eab
HD
810 break;
811
7a5d0fbb 812 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
813 if (unfalloc)
814 continue;
7a5d0fbb
HD
815 nr_swaps_freed += !shmem_free_swap(mapping,
816 index, page);
bda97eab 817 continue;
7a5d0fbb
HD
818 }
819
800d8c63
KS
820 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
821
7a5d0fbb 822 if (!trylock_page(page))
bda97eab 823 continue;
800d8c63
KS
824
825 if (PageTransTail(page)) {
826 /* Middle of THP: zero out the page */
827 clear_highpage(page);
828 unlock_page(page);
829 continue;
830 } else if (PageTransHuge(page)) {
831 if (index == round_down(end, HPAGE_PMD_NR)) {
832 /*
833 * Range ends in the middle of THP:
834 * zero out the page
835 */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 }
840 index += HPAGE_PMD_NR - 1;
841 i += HPAGE_PMD_NR - 1;
842 }
843
1635f6a7 844 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
845 VM_BUG_ON_PAGE(PageTail(page), page);
846 if (page_mapping(page) == mapping) {
309381fe 847 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
848 truncate_inode_page(mapping, page);
849 }
bda97eab 850 }
bda97eab
HD
851 unlock_page(page);
852 }
0cd6144a 853 pagevec_remove_exceptionals(&pvec);
24513264 854 pagevec_release(&pvec);
bda97eab
HD
855 cond_resched();
856 index++;
857 }
1da177e4 858
83e4fa9c 859 if (partial_start) {
bda97eab 860 struct page *page = NULL;
9e18eb29 861 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 862 if (page) {
09cbfeaf 863 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
864 if (start > end) {
865 top = partial_end;
866 partial_end = 0;
867 }
868 zero_user_segment(page, partial_start, top);
869 set_page_dirty(page);
870 unlock_page(page);
09cbfeaf 871 put_page(page);
83e4fa9c
HD
872 }
873 }
874 if (partial_end) {
875 struct page *page = NULL;
9e18eb29 876 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
877 if (page) {
878 zero_user_segment(page, 0, partial_end);
bda97eab
HD
879 set_page_dirty(page);
880 unlock_page(page);
09cbfeaf 881 put_page(page);
bda97eab
HD
882 }
883 }
83e4fa9c
HD
884 if (start >= end)
885 return;
bda97eab
HD
886
887 index = start;
b1a36650 888 while (index < end) {
bda97eab 889 cond_resched();
0cd6144a
JW
890
891 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 892 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 893 pvec.pages, indices);
7a5d0fbb 894 if (!pvec.nr) {
b1a36650
HD
895 /* If all gone or hole-punch or unfalloc, we're done */
896 if (index == start || end != -1)
bda97eab 897 break;
b1a36650 898 /* But if truncating, restart to make sure all gone */
bda97eab
HD
899 index = start;
900 continue;
901 }
bda97eab
HD
902 for (i = 0; i < pagevec_count(&pvec); i++) {
903 struct page *page = pvec.pages[i];
904
7a5d0fbb 905 index = indices[i];
83e4fa9c 906 if (index >= end)
bda97eab
HD
907 break;
908
7a5d0fbb 909 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
910 if (unfalloc)
911 continue;
b1a36650
HD
912 if (shmem_free_swap(mapping, index, page)) {
913 /* Swap was replaced by page: retry */
914 index--;
915 break;
916 }
917 nr_swaps_freed++;
7a5d0fbb
HD
918 continue;
919 }
920
bda97eab 921 lock_page(page);
800d8c63
KS
922
923 if (PageTransTail(page)) {
924 /* Middle of THP: zero out the page */
925 clear_highpage(page);
926 unlock_page(page);
927 /*
928 * Partial thp truncate due 'start' in middle
929 * of THP: don't need to look on these pages
930 * again on !pvec.nr restart.
931 */
932 if (index != round_down(end, HPAGE_PMD_NR))
933 start++;
934 continue;
935 } else if (PageTransHuge(page)) {
936 if (index == round_down(end, HPAGE_PMD_NR)) {
937 /*
938 * Range ends in the middle of THP:
939 * zero out the page
940 */
941 clear_highpage(page);
942 unlock_page(page);
943 continue;
944 }
945 index += HPAGE_PMD_NR - 1;
946 i += HPAGE_PMD_NR - 1;
947 }
948
1635f6a7 949 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
950 VM_BUG_ON_PAGE(PageTail(page), page);
951 if (page_mapping(page) == mapping) {
309381fe 952 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 953 truncate_inode_page(mapping, page);
b1a36650
HD
954 } else {
955 /* Page was replaced by swap: retry */
956 unlock_page(page);
957 index--;
958 break;
1635f6a7 959 }
7a5d0fbb 960 }
bda97eab
HD
961 unlock_page(page);
962 }
0cd6144a 963 pagevec_remove_exceptionals(&pvec);
24513264 964 pagevec_release(&pvec);
bda97eab
HD
965 index++;
966 }
94c1e62d 967
4595ef88 968 spin_lock_irq(&info->lock);
7a5d0fbb 969 info->swapped -= nr_swaps_freed;
1da177e4 970 shmem_recalc_inode(inode);
4595ef88 971 spin_unlock_irq(&info->lock);
1635f6a7 972}
1da177e4 973
1635f6a7
HD
974void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
975{
976 shmem_undo_range(inode, lstart, lend, false);
078cd827 977 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 978}
94c1e62d 979EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 980
a528d35e
DH
981static int shmem_getattr(const struct path *path, struct kstat *stat,
982 u32 request_mask, unsigned int query_flags)
44a30220 983{
a528d35e 984 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
985 struct shmem_inode_info *info = SHMEM_I(inode);
986
d0424c42 987 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 988 spin_lock_irq(&info->lock);
d0424c42 989 shmem_recalc_inode(inode);
4595ef88 990 spin_unlock_irq(&info->lock);
d0424c42 991 }
44a30220 992 generic_fillattr(inode, stat);
44a30220
YZ
993 return 0;
994}
995
94c1e62d 996static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 997{
75c3cfa8 998 struct inode *inode = d_inode(dentry);
40e041a2 999 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1000 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1001 int error;
1002
31051c85 1003 error = setattr_prepare(dentry, attr);
db78b877
CH
1004 if (error)
1005 return error;
1006
94c1e62d
HD
1007 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1008 loff_t oldsize = inode->i_size;
1009 loff_t newsize = attr->ia_size;
3889e6e7 1010
40e041a2
DH
1011 /* protected by i_mutex */
1012 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1013 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1014 return -EPERM;
1015
94c1e62d 1016 if (newsize != oldsize) {
77142517
KK
1017 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1018 oldsize, newsize);
1019 if (error)
1020 return error;
94c1e62d 1021 i_size_write(inode, newsize);
078cd827 1022 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1023 }
afa2db2f 1024 if (newsize <= oldsize) {
94c1e62d 1025 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1026 if (oldsize > holebegin)
1027 unmap_mapping_range(inode->i_mapping,
1028 holebegin, 0, 1);
1029 if (info->alloced)
1030 shmem_truncate_range(inode,
1031 newsize, (loff_t)-1);
94c1e62d 1032 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1033 if (oldsize > holebegin)
1034 unmap_mapping_range(inode->i_mapping,
1035 holebegin, 0, 1);
779750d2
KS
1036
1037 /*
1038 * Part of the huge page can be beyond i_size: subject
1039 * to shrink under memory pressure.
1040 */
1041 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1042 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1043 /*
1044 * _careful to defend against unlocked access to
1045 * ->shrink_list in shmem_unused_huge_shrink()
1046 */
1047 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1048 list_add_tail(&info->shrinklist,
1049 &sbinfo->shrinklist);
1050 sbinfo->shrinklist_len++;
1051 }
1052 spin_unlock(&sbinfo->shrinklist_lock);
1053 }
94c1e62d 1054 }
1da177e4
LT
1055 }
1056
db78b877 1057 setattr_copy(inode, attr);
db78b877 1058 if (attr->ia_valid & ATTR_MODE)
feda821e 1059 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1060 return error;
1061}
1062
1f895f75 1063static void shmem_evict_inode(struct inode *inode)
1da177e4 1064{
1da177e4 1065 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1066 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1067
3889e6e7 1068 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1069 shmem_unacct_size(info->flags, inode->i_size);
1070 inode->i_size = 0;
3889e6e7 1071 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1072 if (!list_empty(&info->shrinklist)) {
1073 spin_lock(&sbinfo->shrinklist_lock);
1074 if (!list_empty(&info->shrinklist)) {
1075 list_del_init(&info->shrinklist);
1076 sbinfo->shrinklist_len--;
1077 }
1078 spin_unlock(&sbinfo->shrinklist_lock);
1079 }
1da177e4 1080 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1081 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1082 list_del_init(&info->swaplist);
cb5f7b9a 1083 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1084 }
3ed47db3 1085 }
b09e0fa4 1086
38f38657 1087 simple_xattrs_free(&info->xattrs);
0f3c42f5 1088 WARN_ON(inode->i_blocks);
0006ebb4
SF
1089 if (!sbinfo->idr_nouse && inode->i_ino) {
1090 mutex_lock(&sbinfo->idr_lock);
1091 idr_remove(&sbinfo->idr, inode->i_ino);
1092 mutex_unlock(&sbinfo->idr_lock);
1093 }
5b04c689 1094 shmem_free_inode(inode->i_sb);
dbd5768f 1095 clear_inode(inode);
1da177e4
LT
1096}
1097
478922e2
MW
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120}
1121
46f65ec1
HD
1122/*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
41ffe5d5 1125static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1126 swp_entry_t swap, struct page **pagep)
1da177e4 1127{
285b2c4f 1128 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1129 void *radswap;
41ffe5d5 1130 pgoff_t index;
bde05d1c
HD
1131 gfp_t gfp;
1132 int error = 0;
1da177e4 1133
46f65ec1 1134 radswap = swp_to_radix_entry(swap);
478922e2 1135 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1136 if (index == -1)
00501b53 1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1138
1b1b32f2
HD
1139 /*
1140 * Move _head_ to start search for next from here.
1f895f75 1141 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1142 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1143 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1147
bde05d1c
HD
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
d13d1443 1175 /*
778dd893
HD
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1179 */
bde05d1c
HD
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1182 radswap);
48f170fb 1183 if (error != -ENOMEM) {
46f65ec1
HD
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
bde05d1c
HD
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
46f65ec1 1190 if (!error) {
4595ef88 1191 spin_lock_irq(&info->lock);
46f65ec1 1192 info->swapped--;
4595ef88 1193 spin_unlock_irq(&info->lock);
46f65ec1
HD
1194 swap_free(swap);
1195 }
1da177e4 1196 }
2e0e26c7 1197 return error;
1da177e4
LT
1198}
1199
1200/*
46f65ec1 1201 * Search through swapped inodes to find and replace swap by page.
1da177e4 1202 */
41ffe5d5 1203int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1204{
41ffe5d5 1205 struct list_head *this, *next;
1da177e4 1206 struct shmem_inode_info *info;
00501b53 1207 struct mem_cgroup *memcg;
bde05d1c
HD
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
0142ef6c 1212 * caller locked it: caller will come back later with the right page.
bde05d1c 1213 */
0142ef6c 1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1215 goto out;
778dd893
HD
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
778dd893 1221 */
f627c2f5
KS
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
778dd893
HD
1224 if (error)
1225 goto out;
46f65ec1 1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1227 error = -EAGAIN;
1da177e4 1228
cb5f7b9a 1229 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1232 if (info->swapped)
00501b53 1233 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1234 else
1235 list_del_init(&info->swaplist);
cb5f7b9a 1236 cond_resched();
00501b53 1237 if (error != -EAGAIN)
778dd893 1238 break;
00501b53 1239 /* found nothing in this: move on to search the next */
1da177e4 1240 }
cb5f7b9a 1241 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1242
00501b53
JW
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
f627c2f5 1246 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1247 } else
f627c2f5 1248 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1249out:
aaa46865 1250 unlock_page(page);
09cbfeaf 1251 put_page(page);
778dd893 1252 return error;
1da177e4
LT
1253}
1254
1255/*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259{
1260 struct shmem_inode_info *info;
1da177e4 1261 struct address_space *mapping;
1da177e4 1262 struct inode *inode;
6922c0c7
HD
1263 swp_entry_t swap;
1264 pgoff_t index;
1da177e4 1265
800d8c63 1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1267 BUG_ON(!PageLocked(page));
1da177e4
LT
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
d9fe526a 1274 if (!total_swap_pages)
1da177e4
LT
1275 goto redirty;
1276
d9fe526a 1277 /*
97b713ba
CH
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
d9fe526a 1283 */
48f170fb
HD
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1635f6a7
HD
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1299 */
1300 if (!PageUptodate(page)) {
1aac1400
HD
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
8e205f77 1306 !shmem_falloc->waitq &&
1aac1400
HD
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1635f6a7
HD
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
38d8b4e6 1321 swap = get_swap_page(page);
48f170fb
HD
1322 if (!swap.val)
1323 goto redirty;
d9fe526a 1324
37e84351
VD
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
b1dea800
HD
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
b1dea800 1332 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1335 */
48f170fb
HD
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1339
48f170fb 1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1341 spin_lock_irq(&info->lock);
6922c0c7 1342 shmem_recalc_inode(inode);
267a4c76 1343 info->swapped++;
4595ef88 1344 spin_unlock_irq(&info->lock);
6922c0c7 1345
267a4c76
HD
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
6922c0c7 1349 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1350 BUG_ON(page_mapped(page));
9fab5619 1351 swap_writepage(page, wbc);
1da177e4
LT
1352 return 0;
1353 }
1354
6922c0c7 1355 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1356free_swap:
75f6d6d2 1357 put_swap_page(page, swap);
1da177e4
LT
1358redirty:
1359 set_page_dirty(page);
d9fe526a
HD
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1da177e4
LT
1364}
1365
75edd345 1366#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1367static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1368{
095f1fc4 1369 char buffer[64];
680d794b 1370
71fe804b 1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1372 return; /* show nothing */
680d794b 1373
a7a88b23 1374 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1377}
71fe804b
LS
1378
1379static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380{
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389}
75edd345
HD
1390#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392{
1393}
1394static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395{
1396 return NULL;
1397}
1398#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399#ifndef CONFIG_NUMA
1400#define vm_policy vm_private_data
1401#endif
680d794b 1402
800d8c63
KS
1403static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405{
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412}
1413
1414static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415{
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418}
1419
41ffe5d5
HD
1420static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1422{
1da177e4 1423 struct vm_area_struct pvma;
18a2f371 1424 struct page *page;
52cd3b07 1425
800d8c63 1426 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1427 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1428 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1429
800d8c63
KS
1430 return page;
1431}
1432
1433static struct page *shmem_alloc_hugepage(gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435{
1436 struct vm_area_struct pvma;
1437 struct inode *inode = &info->vfs_inode;
1438 struct address_space *mapping = inode->i_mapping;
4620a06e 1439 pgoff_t idx, hindex;
800d8c63
KS
1440 void __rcu **results;
1441 struct page *page;
1442
e496cf3d 1443 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1444 return NULL;
1445
4620a06e 1446 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1447 rcu_read_lock();
1448 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1449 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1450 rcu_read_unlock();
1451 return NULL;
1452 }
1453 rcu_read_unlock();
18a2f371 1454
800d8c63
KS
1455 shmem_pseudo_vma_init(&pvma, info, hindex);
1456 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1457 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1458 shmem_pseudo_vma_destroy(&pvma);
1459 if (page)
1460 prep_transhuge_page(page);
18a2f371 1461 return page;
1da177e4
LT
1462}
1463
02098fea 1464static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1465 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1466{
1467 struct vm_area_struct pvma;
18a2f371 1468 struct page *page;
1da177e4 1469
800d8c63
KS
1470 shmem_pseudo_vma_init(&pvma, info, index);
1471 page = alloc_page_vma(gfp, &pvma, 0);
1472 shmem_pseudo_vma_destroy(&pvma);
1473
1474 return page;
1475}
1476
1477static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1478 struct inode *inode,
800d8c63
KS
1479 pgoff_t index, bool huge)
1480{
0f079694 1481 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1482 struct page *page;
1483 int nr;
1484 int err = -ENOSPC;
52cd3b07 1485
e496cf3d 1486 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1487 huge = false;
1488 nr = huge ? HPAGE_PMD_NR : 1;
1489
0f079694 1490 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1491 goto failed;
800d8c63
KS
1492
1493 if (huge)
1494 page = shmem_alloc_hugepage(gfp, info, index);
1495 else
1496 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1497 if (page) {
1498 __SetPageLocked(page);
1499 __SetPageSwapBacked(page);
800d8c63 1500 return page;
75edd345 1501 }
18a2f371 1502
800d8c63 1503 err = -ENOMEM;
0f079694 1504 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1505failed:
1506 return ERR_PTR(err);
1da177e4 1507}
71fe804b 1508
bde05d1c
HD
1509/*
1510 * When a page is moved from swapcache to shmem filecache (either by the
1511 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1512 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1513 * ignorance of the mapping it belongs to. If that mapping has special
1514 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1515 * we may need to copy to a suitable page before moving to filecache.
1516 *
1517 * In a future release, this may well be extended to respect cpuset and
1518 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1519 * but for now it is a simple matter of zone.
1520 */
1521static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1522{
1523 return page_zonenum(page) > gfp_zone(gfp);
1524}
1525
1526static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1527 struct shmem_inode_info *info, pgoff_t index)
1528{
1529 struct page *oldpage, *newpage;
1530 struct address_space *swap_mapping;
1531 pgoff_t swap_index;
1532 int error;
1533
1534 oldpage = *pagep;
1535 swap_index = page_private(oldpage);
1536 swap_mapping = page_mapping(oldpage);
1537
1538 /*
1539 * We have arrived here because our zones are constrained, so don't
1540 * limit chance of success by further cpuset and node constraints.
1541 */
1542 gfp &= ~GFP_CONSTRAINT_MASK;
1543 newpage = shmem_alloc_page(gfp, info, index);
1544 if (!newpage)
1545 return -ENOMEM;
bde05d1c 1546
09cbfeaf 1547 get_page(newpage);
bde05d1c 1548 copy_highpage(newpage, oldpage);
0142ef6c 1549 flush_dcache_page(newpage);
bde05d1c 1550
9956edf3
HD
1551 __SetPageLocked(newpage);
1552 __SetPageSwapBacked(newpage);
bde05d1c 1553 SetPageUptodate(newpage);
bde05d1c 1554 set_page_private(newpage, swap_index);
bde05d1c
HD
1555 SetPageSwapCache(newpage);
1556
1557 /*
1558 * Our caller will very soon move newpage out of swapcache, but it's
1559 * a nice clean interface for us to replace oldpage by newpage there.
1560 */
1561 spin_lock_irq(&swap_mapping->tree_lock);
1562 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1563 newpage);
0142ef6c 1564 if (!error) {
11fb9989
MG
1565 __inc_node_page_state(newpage, NR_FILE_PAGES);
1566 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1567 }
bde05d1c 1568 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1569
0142ef6c
HD
1570 if (unlikely(error)) {
1571 /*
1572 * Is this possible? I think not, now that our callers check
1573 * both PageSwapCache and page_private after getting page lock;
1574 * but be defensive. Reverse old to newpage for clear and free.
1575 */
1576 oldpage = newpage;
1577 } else {
6a93ca8f 1578 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1579 lru_cache_add_anon(newpage);
1580 *pagep = newpage;
1581 }
bde05d1c
HD
1582
1583 ClearPageSwapCache(oldpage);
1584 set_page_private(oldpage, 0);
1585
1586 unlock_page(oldpage);
09cbfeaf
KS
1587 put_page(oldpage);
1588 put_page(oldpage);
0142ef6c 1589 return error;
bde05d1c
HD
1590}
1591
1da177e4 1592/*
68da9f05 1593 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1594 *
1595 * If we allocate a new one we do not mark it dirty. That's up to the
1596 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1597 * entry since a page cannot live in both the swap and page cache.
1598 *
1599 * fault_mm and fault_type are only supplied by shmem_fault:
1600 * otherwise they are NULL.
1da177e4 1601 */
41ffe5d5 1602static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1603 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1604 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1605{
1606 struct address_space *mapping = inode->i_mapping;
23f919d4 1607 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1608 struct shmem_sb_info *sbinfo;
9e18eb29 1609 struct mm_struct *charge_mm;
00501b53 1610 struct mem_cgroup *memcg;
27ab7006 1611 struct page *page;
1da177e4 1612 swp_entry_t swap;
657e3038 1613 enum sgp_type sgp_huge = sgp;
800d8c63 1614 pgoff_t hindex = index;
1da177e4 1615 int error;
54af6042 1616 int once = 0;
1635f6a7 1617 int alloced = 0;
1da177e4 1618
09cbfeaf 1619 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1620 return -EFBIG;
657e3038
KS
1621 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1622 sgp = SGP_CACHE;
1da177e4 1623repeat:
54af6042 1624 swap.val = 0;
0cd6144a 1625 page = find_lock_entry(mapping, index);
54af6042
HD
1626 if (radix_tree_exceptional_entry(page)) {
1627 swap = radix_to_swp_entry(page);
1628 page = NULL;
1629 }
1630
75edd345 1631 if (sgp <= SGP_CACHE &&
09cbfeaf 1632 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1633 error = -EINVAL;
267a4c76 1634 goto unlock;
54af6042
HD
1635 }
1636
66d2f4d2
HD
1637 if (page && sgp == SGP_WRITE)
1638 mark_page_accessed(page);
1639
1635f6a7
HD
1640 /* fallocated page? */
1641 if (page && !PageUptodate(page)) {
1642 if (sgp != SGP_READ)
1643 goto clear;
1644 unlock_page(page);
09cbfeaf 1645 put_page(page);
1635f6a7
HD
1646 page = NULL;
1647 }
54af6042 1648 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1649 *pagep = page;
1650 return 0;
27ab7006
HD
1651 }
1652
1653 /*
54af6042
HD
1654 * Fast cache lookup did not find it:
1655 * bring it back from swap or allocate.
27ab7006 1656 */
54af6042 1657 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1658 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1659
1da177e4
LT
1660 if (swap.val) {
1661 /* Look it up and read it in.. */
ec560175 1662 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1663 if (!page) {
9e18eb29
ALC
1664 /* Or update major stats only when swapin succeeds?? */
1665 if (fault_type) {
68da9f05 1666 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1667 count_vm_event(PGMAJFAULT);
2262185c 1668 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1669 }
1670 /* Here we actually start the io */
41ffe5d5 1671 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1672 if (!page) {
54af6042
HD
1673 error = -ENOMEM;
1674 goto failed;
1da177e4 1675 }
1da177e4
LT
1676 }
1677
1678 /* We have to do this with page locked to prevent races */
54af6042 1679 lock_page(page);
0142ef6c 1680 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1681 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1682 error = -EEXIST; /* try again */
d1899228 1683 goto unlock;
bde05d1c 1684 }
27ab7006 1685 if (!PageUptodate(page)) {
1da177e4 1686 error = -EIO;
54af6042 1687 goto failed;
1da177e4 1688 }
54af6042
HD
1689 wait_on_page_writeback(page);
1690
bde05d1c
HD
1691 if (shmem_should_replace_page(page, gfp)) {
1692 error = shmem_replace_page(&page, gfp, info, index);
1693 if (error)
1694 goto failed;
1da177e4 1695 }
27ab7006 1696
9e18eb29 1697 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1698 false);
d1899228 1699 if (!error) {
aa3b1895 1700 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1701 swp_to_radix_entry(swap));
215c02bc
HD
1702 /*
1703 * We already confirmed swap under page lock, and make
1704 * no memory allocation here, so usually no possibility
1705 * of error; but free_swap_and_cache() only trylocks a
1706 * page, so it is just possible that the entry has been
1707 * truncated or holepunched since swap was confirmed.
1708 * shmem_undo_range() will have done some of the
1709 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1710 * the rest.
215c02bc
HD
1711 * Reset swap.val? No, leave it so "failed" goes back to
1712 * "repeat": reading a hole and writing should succeed.
1713 */
00501b53 1714 if (error) {
f627c2f5 1715 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1716 delete_from_swap_cache(page);
00501b53 1717 }
d1899228 1718 }
54af6042
HD
1719 if (error)
1720 goto failed;
1721
f627c2f5 1722 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1723
4595ef88 1724 spin_lock_irq(&info->lock);
285b2c4f 1725 info->swapped--;
54af6042 1726 shmem_recalc_inode(inode);
4595ef88 1727 spin_unlock_irq(&info->lock);
54af6042 1728
66d2f4d2
HD
1729 if (sgp == SGP_WRITE)
1730 mark_page_accessed(page);
1731
54af6042 1732 delete_from_swap_cache(page);
27ab7006
HD
1733 set_page_dirty(page);
1734 swap_free(swap);
1735
54af6042 1736 } else {
cfda0526
MR
1737 if (vma && userfaultfd_missing(vma)) {
1738 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1739 return 0;
1740 }
1741
800d8c63
KS
1742 /* shmem_symlink() */
1743 if (mapping->a_ops != &shmem_aops)
1744 goto alloc_nohuge;
657e3038 1745 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1746 goto alloc_nohuge;
1747 if (shmem_huge == SHMEM_HUGE_FORCE)
1748 goto alloc_huge;
1749 switch (sbinfo->huge) {
1750 loff_t i_size;
1751 pgoff_t off;
1752 case SHMEM_HUGE_NEVER:
1753 goto alloc_nohuge;
1754 case SHMEM_HUGE_WITHIN_SIZE:
1755 off = round_up(index, HPAGE_PMD_NR);
1756 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1757 if (i_size >= HPAGE_PMD_SIZE &&
1758 i_size >> PAGE_SHIFT >= off)
1759 goto alloc_huge;
1760 /* fallthrough */
1761 case SHMEM_HUGE_ADVISE:
657e3038
KS
1762 if (sgp_huge == SGP_HUGE)
1763 goto alloc_huge;
1764 /* TODO: implement fadvise() hints */
800d8c63 1765 goto alloc_nohuge;
54af6042 1766 }
1da177e4 1767
800d8c63 1768alloc_huge:
0f079694 1769 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1770 if (IS_ERR(page)) {
0f079694 1771alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1772 index, false);
1da177e4 1773 }
800d8c63 1774 if (IS_ERR(page)) {
779750d2 1775 int retry = 5;
800d8c63
KS
1776 error = PTR_ERR(page);
1777 page = NULL;
779750d2
KS
1778 if (error != -ENOSPC)
1779 goto failed;
1780 /*
1781 * Try to reclaim some spece by splitting a huge page
1782 * beyond i_size on the filesystem.
1783 */
1784 while (retry--) {
1785 int ret;
1786 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1787 if (ret == SHRINK_STOP)
1788 break;
1789 if (ret)
1790 goto alloc_nohuge;
1791 }
800d8c63
KS
1792 goto failed;
1793 }
1794
1795 if (PageTransHuge(page))
1796 hindex = round_down(index, HPAGE_PMD_NR);
1797 else
1798 hindex = index;
1799
66d2f4d2 1800 if (sgp == SGP_WRITE)
eb39d618 1801 __SetPageReferenced(page);
66d2f4d2 1802
9e18eb29 1803 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1804 PageTransHuge(page));
54af6042 1805 if (error)
800d8c63
KS
1806 goto unacct;
1807 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1808 compound_order(page));
b065b432 1809 if (!error) {
800d8c63 1810 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1811 NULL);
b065b432
HD
1812 radix_tree_preload_end();
1813 }
1814 if (error) {
800d8c63
KS
1815 mem_cgroup_cancel_charge(page, memcg,
1816 PageTransHuge(page));
1817 goto unacct;
b065b432 1818 }
800d8c63
KS
1819 mem_cgroup_commit_charge(page, memcg, false,
1820 PageTransHuge(page));
54af6042
HD
1821 lru_cache_add_anon(page);
1822
4595ef88 1823 spin_lock_irq(&info->lock);
800d8c63
KS
1824 info->alloced += 1 << compound_order(page);
1825 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1826 shmem_recalc_inode(inode);
4595ef88 1827 spin_unlock_irq(&info->lock);
1635f6a7 1828 alloced = true;
54af6042 1829
779750d2
KS
1830 if (PageTransHuge(page) &&
1831 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1832 hindex + HPAGE_PMD_NR - 1) {
1833 /*
1834 * Part of the huge page is beyond i_size: subject
1835 * to shrink under memory pressure.
1836 */
1837 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1838 /*
1839 * _careful to defend against unlocked access to
1840 * ->shrink_list in shmem_unused_huge_shrink()
1841 */
1842 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1843 list_add_tail(&info->shrinklist,
1844 &sbinfo->shrinklist);
1845 sbinfo->shrinklist_len++;
1846 }
1847 spin_unlock(&sbinfo->shrinklist_lock);
1848 }
1849
ec9516fb 1850 /*
1635f6a7
HD
1851 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1852 */
1853 if (sgp == SGP_FALLOC)
1854 sgp = SGP_WRITE;
1855clear:
1856 /*
1857 * Let SGP_WRITE caller clear ends if write does not fill page;
1858 * but SGP_FALLOC on a page fallocated earlier must initialize
1859 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1860 */
800d8c63
KS
1861 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1862 struct page *head = compound_head(page);
1863 int i;
1864
1865 for (i = 0; i < (1 << compound_order(head)); i++) {
1866 clear_highpage(head + i);
1867 flush_dcache_page(head + i);
1868 }
1869 SetPageUptodate(head);
ec9516fb 1870 }
1da177e4 1871 }
bde05d1c 1872
54af6042 1873 /* Perhaps the file has been truncated since we checked */
75edd345 1874 if (sgp <= SGP_CACHE &&
09cbfeaf 1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1876 if (alloced) {
1877 ClearPageDirty(page);
1878 delete_from_page_cache(page);
4595ef88 1879 spin_lock_irq(&info->lock);
267a4c76 1880 shmem_recalc_inode(inode);
4595ef88 1881 spin_unlock_irq(&info->lock);
267a4c76 1882 }
54af6042 1883 error = -EINVAL;
267a4c76 1884 goto unlock;
e83c32e8 1885 }
800d8c63 1886 *pagep = page + index - hindex;
54af6042 1887 return 0;
1da177e4 1888
59a16ead 1889 /*
54af6042 1890 * Error recovery.
59a16ead 1891 */
54af6042 1892unacct:
0f079694 1893 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1894
1895 if (PageTransHuge(page)) {
1896 unlock_page(page);
1897 put_page(page);
1898 goto alloc_nohuge;
1899 }
54af6042 1900failed:
267a4c76 1901 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1902 error = -EEXIST;
1903unlock:
27ab7006 1904 if (page) {
54af6042 1905 unlock_page(page);
09cbfeaf 1906 put_page(page);
54af6042
HD
1907 }
1908 if (error == -ENOSPC && !once++) {
4595ef88 1909 spin_lock_irq(&info->lock);
54af6042 1910 shmem_recalc_inode(inode);
4595ef88 1911 spin_unlock_irq(&info->lock);
27ab7006 1912 goto repeat;
ff36b801 1913 }
d1899228 1914 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1915 goto repeat;
1916 return error;
1da177e4
LT
1917}
1918
10d20bd2
LT
1919/*
1920 * This is like autoremove_wake_function, but it removes the wait queue
1921 * entry unconditionally - even if something else had already woken the
1922 * target.
1923 */
ac6424b9 1924static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1925{
1926 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1927 list_del_init(&wait->entry);
10d20bd2
LT
1928 return ret;
1929}
1930
11bac800 1931static int shmem_fault(struct vm_fault *vmf)
1da177e4 1932{
11bac800 1933 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1934 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1935 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1936 enum sgp_type sgp;
1da177e4 1937 int error;
68da9f05 1938 int ret = VM_FAULT_LOCKED;
1da177e4 1939
f00cdc6d
HD
1940 /*
1941 * Trinity finds that probing a hole which tmpfs is punching can
1942 * prevent the hole-punch from ever completing: which in turn
1943 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1944 * faulting pages into the hole while it's being punched. Although
1945 * shmem_undo_range() does remove the additions, it may be unable to
1946 * keep up, as each new page needs its own unmap_mapping_range() call,
1947 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1948 *
1949 * It does not matter if we sometimes reach this check just before the
1950 * hole-punch begins, so that one fault then races with the punch:
1951 * we just need to make racing faults a rare case.
1952 *
1953 * The implementation below would be much simpler if we just used a
1954 * standard mutex or completion: but we cannot take i_mutex in fault,
1955 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1956 */
1957 if (unlikely(inode->i_private)) {
1958 struct shmem_falloc *shmem_falloc;
1959
1960 spin_lock(&inode->i_lock);
1961 shmem_falloc = inode->i_private;
8e205f77
HD
1962 if (shmem_falloc &&
1963 shmem_falloc->waitq &&
1964 vmf->pgoff >= shmem_falloc->start &&
1965 vmf->pgoff < shmem_falloc->next) {
1966 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1967 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1968
1969 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1970 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1971 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1972 /* It's polite to up mmap_sem if we can */
f00cdc6d 1973 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1974 ret = VM_FAULT_RETRY;
f00cdc6d 1975 }
8e205f77
HD
1976
1977 shmem_falloc_waitq = shmem_falloc->waitq;
1978 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1979 TASK_UNINTERRUPTIBLE);
1980 spin_unlock(&inode->i_lock);
1981 schedule();
1982
1983 /*
1984 * shmem_falloc_waitq points into the shmem_fallocate()
1985 * stack of the hole-punching task: shmem_falloc_waitq
1986 * is usually invalid by the time we reach here, but
1987 * finish_wait() does not dereference it in that case;
1988 * though i_lock needed lest racing with wake_up_all().
1989 */
1990 spin_lock(&inode->i_lock);
1991 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1992 spin_unlock(&inode->i_lock);
1993 return ret;
f00cdc6d 1994 }
8e205f77 1995 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1996 }
1997
657e3038 1998 sgp = SGP_CACHE;
18600332
MH
1999
2000 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2001 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2002 sgp = SGP_NOHUGE;
18600332
MH
2003 else if (vma->vm_flags & VM_HUGEPAGE)
2004 sgp = SGP_HUGE;
657e3038
KS
2005
2006 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2007 gfp, vma, vmf, &ret);
d0217ac0
NP
2008 if (error)
2009 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2010 return ret;
1da177e4
LT
2011}
2012
c01d5b30
HD
2013unsigned long shmem_get_unmapped_area(struct file *file,
2014 unsigned long uaddr, unsigned long len,
2015 unsigned long pgoff, unsigned long flags)
2016{
2017 unsigned long (*get_area)(struct file *,
2018 unsigned long, unsigned long, unsigned long, unsigned long);
2019 unsigned long addr;
2020 unsigned long offset;
2021 unsigned long inflated_len;
2022 unsigned long inflated_addr;
2023 unsigned long inflated_offset;
2024
2025 if (len > TASK_SIZE)
2026 return -ENOMEM;
2027
2028 get_area = current->mm->get_unmapped_area;
2029 addr = get_area(file, uaddr, len, pgoff, flags);
2030
e496cf3d 2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2032 return addr;
2033 if (IS_ERR_VALUE(addr))
2034 return addr;
2035 if (addr & ~PAGE_MASK)
2036 return addr;
2037 if (addr > TASK_SIZE - len)
2038 return addr;
2039
2040 if (shmem_huge == SHMEM_HUGE_DENY)
2041 return addr;
2042 if (len < HPAGE_PMD_SIZE)
2043 return addr;
2044 if (flags & MAP_FIXED)
2045 return addr;
2046 /*
2047 * Our priority is to support MAP_SHARED mapped hugely;
2048 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2049 * But if caller specified an address hint, respect that as before.
2050 */
2051 if (uaddr)
2052 return addr;
2053
2054 if (shmem_huge != SHMEM_HUGE_FORCE) {
2055 struct super_block *sb;
2056
2057 if (file) {
2058 VM_BUG_ON(file->f_op != &shmem_file_operations);
2059 sb = file_inode(file)->i_sb;
2060 } else {
2061 /*
2062 * Called directly from mm/mmap.c, or drivers/char/mem.c
2063 * for "/dev/zero", to create a shared anonymous object.
2064 */
2065 if (IS_ERR(shm_mnt))
2066 return addr;
2067 sb = shm_mnt->mnt_sb;
2068 }
3089bf61 2069 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2070 return addr;
2071 }
2072
2073 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2074 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2075 return addr;
2076 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2077 return addr;
2078
2079 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2080 if (inflated_len > TASK_SIZE)
2081 return addr;
2082 if (inflated_len < len)
2083 return addr;
2084
2085 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2086 if (IS_ERR_VALUE(inflated_addr))
2087 return addr;
2088 if (inflated_addr & ~PAGE_MASK)
2089 return addr;
2090
2091 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2092 inflated_addr += offset - inflated_offset;
2093 if (inflated_offset > offset)
2094 inflated_addr += HPAGE_PMD_SIZE;
2095
2096 if (inflated_addr > TASK_SIZE - len)
2097 return addr;
2098 return inflated_addr;
2099}
2100
1da177e4 2101#ifdef CONFIG_NUMA
41ffe5d5 2102static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2103{
496ad9aa 2104 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2105 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2106}
2107
d8dc74f2
AB
2108static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2109 unsigned long addr)
1da177e4 2110{
496ad9aa 2111 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2112 pgoff_t index;
1da177e4 2113
41ffe5d5
HD
2114 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2115 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2116}
2117#endif
2118
2119int shmem_lock(struct file *file, int lock, struct user_struct *user)
2120{
496ad9aa 2121 struct inode *inode = file_inode(file);
1da177e4
LT
2122 struct shmem_inode_info *info = SHMEM_I(inode);
2123 int retval = -ENOMEM;
2124
4595ef88 2125 spin_lock_irq(&info->lock);
1da177e4
LT
2126 if (lock && !(info->flags & VM_LOCKED)) {
2127 if (!user_shm_lock(inode->i_size, user))
2128 goto out_nomem;
2129 info->flags |= VM_LOCKED;
89e004ea 2130 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2131 }
2132 if (!lock && (info->flags & VM_LOCKED) && user) {
2133 user_shm_unlock(inode->i_size, user);
2134 info->flags &= ~VM_LOCKED;
89e004ea 2135 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2136 }
2137 retval = 0;
89e004ea 2138
1da177e4 2139out_nomem:
4595ef88 2140 spin_unlock_irq(&info->lock);
1da177e4
LT
2141 return retval;
2142}
2143
9b83a6a8 2144static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2145{
2146 file_accessed(file);
2147 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2150 (vma->vm_end & HPAGE_PMD_MASK)) {
2151 khugepaged_enter(vma, vma->vm_flags);
2152 }
1da177e4
LT
2153 return 0;
2154}
2155
454abafe 2156static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2157 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2158{
2159 struct inode *inode;
2160 struct shmem_inode_info *info;
2161 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
0006ebb4 2162 int ino;
1da177e4 2163
5b04c689
PE
2164 if (shmem_reserve_inode(sb))
2165 return NULL;
1da177e4
LT
2166
2167 inode = new_inode(sb);
2168 if (inode) {
454abafe 2169 inode_init_owner(inode, dir, mode);
1da177e4 2170 inode->i_blocks = 0;
078cd827 2171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2172 inode->i_generation = get_seconds();
1da177e4
LT
2173 info = SHMEM_I(inode);
2174 memset(info, 0, (char *)inode - (char *)info);
2175 spin_lock_init(&info->lock);
40e041a2 2176 info->seals = F_SEAL_SEAL;
0b0a0806 2177 info->flags = flags & VM_NORESERVE;
779750d2 2178 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2179 INIT_LIST_HEAD(&info->swaplist);
38f38657 2180 simple_xattrs_init(&info->xattrs);
72c04902 2181 cache_no_acl(inode);
1da177e4
LT
2182
2183 switch (mode & S_IFMT) {
2184 default:
39f0247d 2185 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2186 init_special_inode(inode, mode, dev);
2187 break;
2188 case S_IFREG:
14fcc23f 2189 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2190 inode->i_op = &shmem_inode_operations;
2191 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2192 mpol_shared_policy_init(&info->policy,
2193 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2194 break;
2195 case S_IFDIR:
d8c76e6f 2196 inc_nlink(inode);
1da177e4
LT
2197 /* Some things misbehave if size == 0 on a directory */
2198 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2199 inode->i_op = &shmem_dir_inode_operations;
2200 inode->i_fop = &simple_dir_operations;
2201 break;
2202 case S_IFLNK:
2203 /*
2204 * Must not load anything in the rbtree,
2205 * mpol_free_shared_policy will not be called.
2206 */
71fe804b 2207 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2208 break;
2209 }
0006ebb4
SF
2210
2211 if (!sbinfo->idr_nouse) {
2212 /* inum 0 and 1 are unused */
2213 mutex_lock(&sbinfo->idr_lock);
2214 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2215 GFP_NOFS);
2216 if (ino > 0) {
2217 inode->i_ino = ino;
2218 mutex_unlock(&sbinfo->idr_lock);
2219 __insert_inode_hash(inode, inode->i_ino);
2220 } else {
2221 inode->i_ino = 0;
2222 mutex_unlock(&sbinfo->idr_lock);
2223 iput(inode);
2224 /* shmem_free_inode() will be called */
2225 inode = NULL;
2226 }
2227 } else
2228 inode->i_ino = get_next_ino();
5b04c689
PE
2229 } else
2230 shmem_free_inode(sb);
1da177e4
LT
2231 return inode;
2232}
2233
0cd6144a
JW
2234bool shmem_mapping(struct address_space *mapping)
2235{
f8005451 2236 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2237}
2238
8d103963
MR
2239static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2240 pmd_t *dst_pmd,
2241 struct vm_area_struct *dst_vma,
2242 unsigned long dst_addr,
2243 unsigned long src_addr,
2244 bool zeropage,
2245 struct page **pagep)
4c27fe4c
MR
2246{
2247 struct inode *inode = file_inode(dst_vma->vm_file);
2248 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2249 struct address_space *mapping = inode->i_mapping;
2250 gfp_t gfp = mapping_gfp_mask(mapping);
2251 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2252 struct mem_cgroup *memcg;
2253 spinlock_t *ptl;
2254 void *page_kaddr;
2255 struct page *page;
2256 pte_t _dst_pte, *dst_pte;
2257 int ret;
2258
cb658a45 2259 ret = -ENOMEM;
0f079694 2260 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2261 goto out;
4c27fe4c 2262
cb658a45 2263 if (!*pagep) {
4c27fe4c
MR
2264 page = shmem_alloc_page(gfp, info, pgoff);
2265 if (!page)
0f079694 2266 goto out_unacct_blocks;
4c27fe4c 2267
8d103963
MR
2268 if (!zeropage) { /* mcopy_atomic */
2269 page_kaddr = kmap_atomic(page);
2270 ret = copy_from_user(page_kaddr,
2271 (const void __user *)src_addr,
2272 PAGE_SIZE);
2273 kunmap_atomic(page_kaddr);
2274
2275 /* fallback to copy_from_user outside mmap_sem */
2276 if (unlikely(ret)) {
2277 *pagep = page;
2278 shmem_inode_unacct_blocks(inode, 1);
2279 /* don't free the page */
2280 return -EFAULT;
2281 }
2282 } else { /* mfill_zeropage_atomic */
2283 clear_highpage(page);
4c27fe4c
MR
2284 }
2285 } else {
2286 page = *pagep;
2287 *pagep = NULL;
2288 }
2289
9cc90c66
AA
2290 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2291 __SetPageLocked(page);
2292 __SetPageSwapBacked(page);
a425d358 2293 __SetPageUptodate(page);
9cc90c66 2294
4c27fe4c
MR
2295 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2296 if (ret)
2297 goto out_release;
2298
2299 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2300 if (!ret) {
2301 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2302 radix_tree_preload_end();
2303 }
2304 if (ret)
2305 goto out_release_uncharge;
2306
2307 mem_cgroup_commit_charge(page, memcg, false, false);
2308
2309 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2310 if (dst_vma->vm_flags & VM_WRITE)
2311 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2312
2313 ret = -EEXIST;
2314 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2315 if (!pte_none(*dst_pte))
2316 goto out_release_uncharge_unlock;
2317
4c27fe4c
MR
2318 lru_cache_add_anon(page);
2319
2320 spin_lock(&info->lock);
2321 info->alloced++;
2322 inode->i_blocks += BLOCKS_PER_PAGE;
2323 shmem_recalc_inode(inode);
2324 spin_unlock(&info->lock);
2325
2326 inc_mm_counter(dst_mm, mm_counter_file(page));
2327 page_add_file_rmap(page, false);
2328 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2329
2330 /* No need to invalidate - it was non-present before */
2331 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2332 unlock_page(page);
2333 pte_unmap_unlock(dst_pte, ptl);
2334 ret = 0;
2335out:
2336 return ret;
2337out_release_uncharge_unlock:
2338 pte_unmap_unlock(dst_pte, ptl);
2339out_release_uncharge:
2340 mem_cgroup_cancel_charge(page, memcg, false);
2341out_release:
9cc90c66 2342 unlock_page(page);
4c27fe4c 2343 put_page(page);
4c27fe4c 2344out_unacct_blocks:
0f079694 2345 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2346 goto out;
2347}
2348
8d103963
MR
2349int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2350 pmd_t *dst_pmd,
2351 struct vm_area_struct *dst_vma,
2352 unsigned long dst_addr,
2353 unsigned long src_addr,
2354 struct page **pagep)
2355{
2356 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2357 dst_addr, src_addr, false, pagep);
2358}
2359
2360int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2361 pmd_t *dst_pmd,
2362 struct vm_area_struct *dst_vma,
2363 unsigned long dst_addr)
2364{
2365 struct page *page = NULL;
2366
2367 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2368 dst_addr, 0, true, &page);
2369}
2370
1da177e4 2371#ifdef CONFIG_TMPFS
92e1d5be 2372static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2373static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2374
6d9d88d0
JS
2375#ifdef CONFIG_TMPFS_XATTR
2376static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2377#else
2378#define shmem_initxattrs NULL
2379#endif
2380
1da177e4 2381static int
800d15a5
NP
2382shmem_write_begin(struct file *file, struct address_space *mapping,
2383 loff_t pos, unsigned len, unsigned flags,
2384 struct page **pagep, void **fsdata)
1da177e4 2385{
800d15a5 2386 struct inode *inode = mapping->host;
40e041a2 2387 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2388 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2389
2390 /* i_mutex is held by caller */
3f472cc9 2391 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2392 if (info->seals & F_SEAL_WRITE)
2393 return -EPERM;
2394 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2395 return -EPERM;
2396 }
2397
9e18eb29 2398 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2399}
2400
2401static int
2402shmem_write_end(struct file *file, struct address_space *mapping,
2403 loff_t pos, unsigned len, unsigned copied,
2404 struct page *page, void *fsdata)
2405{
2406 struct inode *inode = mapping->host;
2407
d3602444
HD
2408 if (pos + copied > inode->i_size)
2409 i_size_write(inode, pos + copied);
2410
ec9516fb 2411 if (!PageUptodate(page)) {
800d8c63
KS
2412 struct page *head = compound_head(page);
2413 if (PageTransCompound(page)) {
2414 int i;
2415
2416 for (i = 0; i < HPAGE_PMD_NR; i++) {
2417 if (head + i == page)
2418 continue;
2419 clear_highpage(head + i);
2420 flush_dcache_page(head + i);
2421 }
2422 }
09cbfeaf
KS
2423 if (copied < PAGE_SIZE) {
2424 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2425 zero_user_segments(page, 0, from,
09cbfeaf 2426 from + copied, PAGE_SIZE);
ec9516fb 2427 }
800d8c63 2428 SetPageUptodate(head);
ec9516fb 2429 }
800d15a5 2430 set_page_dirty(page);
6746aff7 2431 unlock_page(page);
09cbfeaf 2432 put_page(page);
800d15a5 2433
800d15a5 2434 return copied;
1da177e4
LT
2435}
2436
2ba5bbed 2437static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2438{
6e58e79d
AV
2439 struct file *file = iocb->ki_filp;
2440 struct inode *inode = file_inode(file);
1da177e4 2441 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2442 pgoff_t index;
2443 unsigned long offset;
a0ee5ec5 2444 enum sgp_type sgp = SGP_READ;
f7c1d074 2445 int error = 0;
cb66a7a1 2446 ssize_t retval = 0;
6e58e79d 2447 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2448
2449 /*
2450 * Might this read be for a stacking filesystem? Then when reading
2451 * holes of a sparse file, we actually need to allocate those pages,
2452 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2453 */
777eda2c 2454 if (!iter_is_iovec(to))
75edd345 2455 sgp = SGP_CACHE;
1da177e4 2456
09cbfeaf
KS
2457 index = *ppos >> PAGE_SHIFT;
2458 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2459
2460 for (;;) {
2461 struct page *page = NULL;
41ffe5d5
HD
2462 pgoff_t end_index;
2463 unsigned long nr, ret;
1da177e4
LT
2464 loff_t i_size = i_size_read(inode);
2465
09cbfeaf 2466 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2467 if (index > end_index)
2468 break;
2469 if (index == end_index) {
09cbfeaf 2470 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2471 if (nr <= offset)
2472 break;
2473 }
2474
9e18eb29 2475 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2476 if (error) {
2477 if (error == -EINVAL)
2478 error = 0;
1da177e4
LT
2479 break;
2480 }
75edd345
HD
2481 if (page) {
2482 if (sgp == SGP_CACHE)
2483 set_page_dirty(page);
d3602444 2484 unlock_page(page);
75edd345 2485 }
1da177e4
LT
2486
2487 /*
2488 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2489 * are called without i_mutex protection against truncate
1da177e4 2490 */
09cbfeaf 2491 nr = PAGE_SIZE;
1da177e4 2492 i_size = i_size_read(inode);
09cbfeaf 2493 end_index = i_size >> PAGE_SHIFT;
1da177e4 2494 if (index == end_index) {
09cbfeaf 2495 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2496 if (nr <= offset) {
2497 if (page)
09cbfeaf 2498 put_page(page);
1da177e4
LT
2499 break;
2500 }
2501 }
2502 nr -= offset;
2503
2504 if (page) {
2505 /*
2506 * If users can be writing to this page using arbitrary
2507 * virtual addresses, take care about potential aliasing
2508 * before reading the page on the kernel side.
2509 */
2510 if (mapping_writably_mapped(mapping))
2511 flush_dcache_page(page);
2512 /*
2513 * Mark the page accessed if we read the beginning.
2514 */
2515 if (!offset)
2516 mark_page_accessed(page);
b5810039 2517 } else {
1da177e4 2518 page = ZERO_PAGE(0);
09cbfeaf 2519 get_page(page);
b5810039 2520 }
1da177e4
LT
2521
2522 /*
2523 * Ok, we have the page, and it's up-to-date, so
2524 * now we can copy it to user space...
1da177e4 2525 */
2ba5bbed 2526 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2527 retval += ret;
1da177e4 2528 offset += ret;
09cbfeaf
KS
2529 index += offset >> PAGE_SHIFT;
2530 offset &= ~PAGE_MASK;
1da177e4 2531
09cbfeaf 2532 put_page(page);
2ba5bbed 2533 if (!iov_iter_count(to))
1da177e4 2534 break;
6e58e79d
AV
2535 if (ret < nr) {
2536 error = -EFAULT;
2537 break;
2538 }
1da177e4
LT
2539 cond_resched();
2540 }
2541
09cbfeaf 2542 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2543 file_accessed(file);
2544 return retval ? retval : error;
1da177e4
LT
2545}
2546
220f2ac9
HD
2547/*
2548 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2549 */
2550static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2551 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2552{
2553 struct page *page;
2554 struct pagevec pvec;
2555 pgoff_t indices[PAGEVEC_SIZE];
2556 bool done = false;
2557 int i;
2558
86679820 2559 pagevec_init(&pvec);
220f2ac9
HD
2560 pvec.nr = 1; /* start small: we may be there already */
2561 while (!done) {
0cd6144a 2562 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2563 pvec.nr, pvec.pages, indices);
2564 if (!pvec.nr) {
965c8e59 2565 if (whence == SEEK_DATA)
220f2ac9
HD
2566 index = end;
2567 break;
2568 }
2569 for (i = 0; i < pvec.nr; i++, index++) {
2570 if (index < indices[i]) {
965c8e59 2571 if (whence == SEEK_HOLE) {
220f2ac9
HD
2572 done = true;
2573 break;
2574 }
2575 index = indices[i];
2576 }
2577 page = pvec.pages[i];
2578 if (page && !radix_tree_exceptional_entry(page)) {
2579 if (!PageUptodate(page))
2580 page = NULL;
2581 }
2582 if (index >= end ||
965c8e59
AM
2583 (page && whence == SEEK_DATA) ||
2584 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2585 done = true;
2586 break;
2587 }
2588 }
0cd6144a 2589 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2590 pagevec_release(&pvec);
2591 pvec.nr = PAGEVEC_SIZE;
2592 cond_resched();
2593 }
2594 return index;
2595}
2596
965c8e59 2597static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2598{
2599 struct address_space *mapping = file->f_mapping;
2600 struct inode *inode = mapping->host;
2601 pgoff_t start, end;
2602 loff_t new_offset;
2603
965c8e59
AM
2604 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2605 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2606 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2607 inode_lock(inode);
220f2ac9
HD
2608 /* We're holding i_mutex so we can access i_size directly */
2609
2610 if (offset < 0)
2611 offset = -EINVAL;
2612 else if (offset >= inode->i_size)
2613 offset = -ENXIO;
2614 else {
09cbfeaf
KS
2615 start = offset >> PAGE_SHIFT;
2616 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2617 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2618 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2619 if (new_offset > offset) {
2620 if (new_offset < inode->i_size)
2621 offset = new_offset;
965c8e59 2622 else if (whence == SEEK_DATA)
220f2ac9
HD
2623 offset = -ENXIO;
2624 else
2625 offset = inode->i_size;
2626 }
2627 }
2628
387aae6f
HD
2629 if (offset >= 0)
2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2631 inode_unlock(inode);
220f2ac9
HD
2632 return offset;
2633}
2634
05f65b5c
DH
2635/*
2636 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2637 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2638 */
2639#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2640#define LAST_SCAN 4 /* about 150ms max */
2641
2642static void shmem_tag_pins(struct address_space *mapping)
2643{
2644 struct radix_tree_iter iter;
2645 void **slot;
2646 pgoff_t start;
2647 struct page *page;
2648
2649 lru_add_drain();
2650 start = 0;
2651 rcu_read_lock();
2652
05f65b5c
DH
2653 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2654 page = radix_tree_deref_slot(slot);
2655 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2656 if (radix_tree_deref_retry(page)) {
2657 slot = radix_tree_iter_retry(&iter);
2658 continue;
2659 }
05f65b5c
DH
2660 } else if (page_count(page) - page_mapcount(page) > 1) {
2661 spin_lock_irq(&mapping->tree_lock);
2662 radix_tree_tag_set(&mapping->page_tree, iter.index,
2663 SHMEM_TAG_PINNED);
2664 spin_unlock_irq(&mapping->tree_lock);
2665 }
2666
2667 if (need_resched()) {
148deab2 2668 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2669 cond_resched_rcu();
05f65b5c
DH
2670 }
2671 }
2672 rcu_read_unlock();
2673}
2674
2675/*
2676 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2677 * via get_user_pages(), drivers might have some pending I/O without any active
2678 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2679 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2680 * them to be dropped.
2681 * The caller must guarantee that no new user will acquire writable references
2682 * to those pages to avoid races.
2683 */
40e041a2
DH
2684static int shmem_wait_for_pins(struct address_space *mapping)
2685{
05f65b5c
DH
2686 struct radix_tree_iter iter;
2687 void **slot;
2688 pgoff_t start;
2689 struct page *page;
2690 int error, scan;
2691
2692 shmem_tag_pins(mapping);
2693
2694 error = 0;
2695 for (scan = 0; scan <= LAST_SCAN; scan++) {
2696 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2697 break;
2698
2699 if (!scan)
2700 lru_add_drain_all();
2701 else if (schedule_timeout_killable((HZ << scan) / 200))
2702 scan = LAST_SCAN;
2703
2704 start = 0;
2705 rcu_read_lock();
05f65b5c
DH
2706 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2707 start, SHMEM_TAG_PINNED) {
2708
2709 page = radix_tree_deref_slot(slot);
2710 if (radix_tree_exception(page)) {
2cf938aa
MW
2711 if (radix_tree_deref_retry(page)) {
2712 slot = radix_tree_iter_retry(&iter);
2713 continue;
2714 }
05f65b5c
DH
2715
2716 page = NULL;
2717 }
2718
2719 if (page &&
2720 page_count(page) - page_mapcount(page) != 1) {
2721 if (scan < LAST_SCAN)
2722 goto continue_resched;
2723
2724 /*
2725 * On the last scan, we clean up all those tags
2726 * we inserted; but make a note that we still
2727 * found pages pinned.
2728 */
2729 error = -EBUSY;
2730 }
2731
2732 spin_lock_irq(&mapping->tree_lock);
2733 radix_tree_tag_clear(&mapping->page_tree,
2734 iter.index, SHMEM_TAG_PINNED);
2735 spin_unlock_irq(&mapping->tree_lock);
2736continue_resched:
2737 if (need_resched()) {
148deab2 2738 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2739 cond_resched_rcu();
05f65b5c
DH
2740 }
2741 }
2742 rcu_read_unlock();
2743 }
2744
2745 return error;
40e041a2
DH
2746}
2747
2748#define F_ALL_SEALS (F_SEAL_SEAL | \
2749 F_SEAL_SHRINK | \
2750 F_SEAL_GROW | \
2751 F_SEAL_WRITE)
2752
2753int shmem_add_seals(struct file *file, unsigned int seals)
2754{
2755 struct inode *inode = file_inode(file);
2756 struct shmem_inode_info *info = SHMEM_I(inode);
2757 int error;
2758
2759 /*
2760 * SEALING
2761 * Sealing allows multiple parties to share a shmem-file but restrict
2762 * access to a specific subset of file operations. Seals can only be
2763 * added, but never removed. This way, mutually untrusted parties can
2764 * share common memory regions with a well-defined policy. A malicious
2765 * peer can thus never perform unwanted operations on a shared object.
2766 *
2767 * Seals are only supported on special shmem-files and always affect
2768 * the whole underlying inode. Once a seal is set, it may prevent some
2769 * kinds of access to the file. Currently, the following seals are
2770 * defined:
2771 * SEAL_SEAL: Prevent further seals from being set on this file
2772 * SEAL_SHRINK: Prevent the file from shrinking
2773 * SEAL_GROW: Prevent the file from growing
2774 * SEAL_WRITE: Prevent write access to the file
2775 *
2776 * As we don't require any trust relationship between two parties, we
2777 * must prevent seals from being removed. Therefore, sealing a file
2778 * only adds a given set of seals to the file, it never touches
2779 * existing seals. Furthermore, the "setting seals"-operation can be
2780 * sealed itself, which basically prevents any further seal from being
2781 * added.
2782 *
2783 * Semantics of sealing are only defined on volatile files. Only
2784 * anonymous shmem files support sealing. More importantly, seals are
2785 * never written to disk. Therefore, there's no plan to support it on
2786 * other file types.
2787 */
2788
2789 if (file->f_op != &shmem_file_operations)
2790 return -EINVAL;
2791 if (!(file->f_mode & FMODE_WRITE))
2792 return -EPERM;
2793 if (seals & ~(unsigned int)F_ALL_SEALS)
2794 return -EINVAL;
2795
5955102c 2796 inode_lock(inode);
40e041a2
DH
2797
2798 if (info->seals & F_SEAL_SEAL) {
2799 error = -EPERM;
2800 goto unlock;
2801 }
2802
2803 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2804 error = mapping_deny_writable(file->f_mapping);
2805 if (error)
2806 goto unlock;
2807
2808 error = shmem_wait_for_pins(file->f_mapping);
2809 if (error) {
2810 mapping_allow_writable(file->f_mapping);
2811 goto unlock;
2812 }
2813 }
2814
2815 info->seals |= seals;
2816 error = 0;
2817
2818unlock:
5955102c 2819 inode_unlock(inode);
40e041a2
DH
2820 return error;
2821}
2822EXPORT_SYMBOL_GPL(shmem_add_seals);
2823
2824int shmem_get_seals(struct file *file)
2825{
2826 if (file->f_op != &shmem_file_operations)
2827 return -EINVAL;
2828
2829 return SHMEM_I(file_inode(file))->seals;
2830}
2831EXPORT_SYMBOL_GPL(shmem_get_seals);
2832
2833long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2834{
2835 long error;
2836
2837 switch (cmd) {
2838 case F_ADD_SEALS:
2839 /* disallow upper 32bit */
2840 if (arg > UINT_MAX)
2841 return -EINVAL;
2842
2843 error = shmem_add_seals(file, arg);
2844 break;
2845 case F_GET_SEALS:
2846 error = shmem_get_seals(file);
2847 break;
2848 default:
2849 error = -EINVAL;
2850 break;
2851 }
2852
2853 return error;
2854}
2855
83e4fa9c
HD
2856static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2857 loff_t len)
2858{
496ad9aa 2859 struct inode *inode = file_inode(file);
e2d12e22 2860 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2861 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2862 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2863 pgoff_t start, index, end;
2864 int error;
83e4fa9c 2865
13ace4d0
HD
2866 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2867 return -EOPNOTSUPP;
2868
5955102c 2869 inode_lock(inode);
83e4fa9c
HD
2870
2871 if (mode & FALLOC_FL_PUNCH_HOLE) {
2872 struct address_space *mapping = file->f_mapping;
2873 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2874 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2875 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2876
40e041a2
DH
2877 /* protected by i_mutex */
2878 if (info->seals & F_SEAL_WRITE) {
2879 error = -EPERM;
2880 goto out;
2881 }
2882
8e205f77 2883 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2884 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2885 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2886 spin_lock(&inode->i_lock);
2887 inode->i_private = &shmem_falloc;
2888 spin_unlock(&inode->i_lock);
2889
83e4fa9c
HD
2890 if ((u64)unmap_end > (u64)unmap_start)
2891 unmap_mapping_range(mapping, unmap_start,
2892 1 + unmap_end - unmap_start, 0);
2893 shmem_truncate_range(inode, offset, offset + len - 1);
2894 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2895
2896 spin_lock(&inode->i_lock);
2897 inode->i_private = NULL;
2898 wake_up_all(&shmem_falloc_waitq);
2055da97 2899 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2900 spin_unlock(&inode->i_lock);
83e4fa9c 2901 error = 0;
8e205f77 2902 goto out;
e2d12e22
HD
2903 }
2904
2905 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2906 error = inode_newsize_ok(inode, offset + len);
2907 if (error)
2908 goto out;
2909
40e041a2
DH
2910 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2911 error = -EPERM;
2912 goto out;
2913 }
2914
09cbfeaf
KS
2915 start = offset >> PAGE_SHIFT;
2916 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2917 /* Try to avoid a swapstorm if len is impossible to satisfy */
2918 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2919 error = -ENOSPC;
2920 goto out;
83e4fa9c
HD
2921 }
2922
8e205f77 2923 shmem_falloc.waitq = NULL;
1aac1400
HD
2924 shmem_falloc.start = start;
2925 shmem_falloc.next = start;
2926 shmem_falloc.nr_falloced = 0;
2927 shmem_falloc.nr_unswapped = 0;
2928 spin_lock(&inode->i_lock);
2929 inode->i_private = &shmem_falloc;
2930 spin_unlock(&inode->i_lock);
2931
e2d12e22
HD
2932 for (index = start; index < end; index++) {
2933 struct page *page;
2934
2935 /*
2936 * Good, the fallocate(2) manpage permits EINTR: we may have
2937 * been interrupted because we are using up too much memory.
2938 */
2939 if (signal_pending(current))
2940 error = -EINTR;
1aac1400
HD
2941 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2942 error = -ENOMEM;
e2d12e22 2943 else
9e18eb29 2944 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2945 if (error) {
1635f6a7 2946 /* Remove the !PageUptodate pages we added */
7f556567
HD
2947 if (index > start) {
2948 shmem_undo_range(inode,
2949 (loff_t)start << PAGE_SHIFT,
2950 ((loff_t)index << PAGE_SHIFT) - 1, true);
2951 }
1aac1400 2952 goto undone;
e2d12e22
HD
2953 }
2954
1aac1400
HD
2955 /*
2956 * Inform shmem_writepage() how far we have reached.
2957 * No need for lock or barrier: we have the page lock.
2958 */
2959 shmem_falloc.next++;
2960 if (!PageUptodate(page))
2961 shmem_falloc.nr_falloced++;
2962
e2d12e22 2963 /*
1635f6a7
HD
2964 * If !PageUptodate, leave it that way so that freeable pages
2965 * can be recognized if we need to rollback on error later.
2966 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2967 * than free the pages we are allocating (and SGP_CACHE pages
2968 * might still be clean: we now need to mark those dirty too).
2969 */
2970 set_page_dirty(page);
2971 unlock_page(page);
09cbfeaf 2972 put_page(page);
e2d12e22
HD
2973 cond_resched();
2974 }
2975
2976 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2977 i_size_write(inode, offset + len);
078cd827 2978 inode->i_ctime = current_time(inode);
1aac1400
HD
2979undone:
2980 spin_lock(&inode->i_lock);
2981 inode->i_private = NULL;
2982 spin_unlock(&inode->i_lock);
e2d12e22 2983out:
5955102c 2984 inode_unlock(inode);
83e4fa9c
HD
2985 return error;
2986}
2987
726c3342 2988static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2989{
726c3342 2990 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2991
2992 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2993 buf->f_bsize = PAGE_SIZE;
1da177e4 2994 buf->f_namelen = NAME_MAX;
0edd73b3 2995 if (sbinfo->max_blocks) {
1da177e4 2996 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2997 buf->f_bavail =
2998 buf->f_bfree = sbinfo->max_blocks -
2999 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
3000 }
3001 if (sbinfo->max_inodes) {
1da177e4
LT
3002 buf->f_files = sbinfo->max_inodes;
3003 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
3004 }
3005 /* else leave those fields 0 like simple_statfs */
3006 return 0;
3007}
3008
3009/*
3010 * File creation. Allocate an inode, and we're done..
3011 */
3012static int
1a67aafb 3013shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 3014{
0b0a0806 3015 struct inode *inode;
1da177e4
LT
3016 int error = -ENOSPC;
3017
454abafe 3018 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 3019 if (inode) {
feda821e
CH
3020 error = simple_acl_create(dir, inode);
3021 if (error)
3022 goto out_iput;
2a7dba39 3023 error = security_inode_init_security(inode, dir,
9d8f13ba 3024 &dentry->d_name,
6d9d88d0 3025 shmem_initxattrs, NULL);
feda821e
CH
3026 if (error && error != -EOPNOTSUPP)
3027 goto out_iput;
37ec43cd 3028
718deb6b 3029 error = 0;
1da177e4 3030 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3031 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3032 d_instantiate(dentry, inode);
3033 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3034 }
3035 return error;
feda821e
CH
3036out_iput:
3037 iput(inode);
3038 return error;
1da177e4
LT
3039}
3040
60545d0d
AV
3041static int
3042shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3043{
3044 struct inode *inode;
3045 int error = -ENOSPC;
3046
3047 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3048 if (inode) {
3049 error = security_inode_init_security(inode, dir,
3050 NULL,
3051 shmem_initxattrs, NULL);
feda821e
CH
3052 if (error && error != -EOPNOTSUPP)
3053 goto out_iput;
3054 error = simple_acl_create(dir, inode);
3055 if (error)
3056 goto out_iput;
60545d0d
AV
3057 d_tmpfile(dentry, inode);
3058 }
3059 return error;
feda821e
CH
3060out_iput:
3061 iput(inode);
3062 return error;
60545d0d
AV
3063}
3064
18bb1db3 3065static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3066{
3067 int error;
3068
3069 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3070 return error;
d8c76e6f 3071 inc_nlink(dir);
1da177e4
LT
3072 return 0;
3073}
3074
4acdaf27 3075static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3076 bool excl)
1da177e4
LT
3077{
3078 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3079}
3080
3081/*
3082 * Link a file..
3083 */
3084static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3085{
75c3cfa8 3086 struct inode *inode = d_inode(old_dentry);
5b04c689 3087 int ret;
1da177e4
LT
3088
3089 /*
3090 * No ordinary (disk based) filesystem counts links as inodes;
3091 * but each new link needs a new dentry, pinning lowmem, and
3092 * tmpfs dentries cannot be pruned until they are unlinked.
3093 */
5b04c689
PE
3094 ret = shmem_reserve_inode(inode->i_sb);
3095 if (ret)
3096 goto out;
1da177e4
LT
3097
3098 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3099 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3100 inc_nlink(inode);
7de9c6ee 3101 ihold(inode); /* New dentry reference */
1da177e4
LT
3102 dget(dentry); /* Extra pinning count for the created dentry */
3103 d_instantiate(dentry, inode);
5b04c689
PE
3104out:
3105 return ret;
1da177e4
LT
3106}
3107
3108static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3109{
75c3cfa8 3110 struct inode *inode = d_inode(dentry);
1da177e4 3111
5b04c689
PE
3112 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3113 shmem_free_inode(inode->i_sb);
1da177e4
LT
3114
3115 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3116 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3117 drop_nlink(inode);
1da177e4
LT
3118 dput(dentry); /* Undo the count from "create" - this does all the work */
3119 return 0;
3120}
3121
3122static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3123{
3124 if (!simple_empty(dentry))
3125 return -ENOTEMPTY;
3126
75c3cfa8 3127 drop_nlink(d_inode(dentry));
9a53c3a7 3128 drop_nlink(dir);
1da177e4
LT
3129 return shmem_unlink(dir, dentry);
3130}
3131
37456771
MS
3132static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3133{
e36cb0b8
DH
3134 bool old_is_dir = d_is_dir(old_dentry);
3135 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3136
3137 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3138 if (old_is_dir) {
3139 drop_nlink(old_dir);
3140 inc_nlink(new_dir);
3141 } else {
3142 drop_nlink(new_dir);
3143 inc_nlink(old_dir);
3144 }
3145 }
3146 old_dir->i_ctime = old_dir->i_mtime =
3147 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3148 d_inode(old_dentry)->i_ctime =
078cd827 3149 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3150
3151 return 0;
3152}
3153
46fdb794
MS
3154static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3155{
3156 struct dentry *whiteout;
3157 int error;
3158
3159 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3160 if (!whiteout)
3161 return -ENOMEM;
3162
3163 error = shmem_mknod(old_dir, whiteout,
3164 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3165 dput(whiteout);
3166 if (error)
3167 return error;
3168
3169 /*
3170 * Cheat and hash the whiteout while the old dentry is still in
3171 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3172 *
3173 * d_lookup() will consistently find one of them at this point,
3174 * not sure which one, but that isn't even important.
3175 */
3176 d_rehash(whiteout);
3177 return 0;
3178}
3179
1da177e4
LT
3180/*
3181 * The VFS layer already does all the dentry stuff for rename,
3182 * we just have to decrement the usage count for the target if
3183 * it exists so that the VFS layer correctly free's it when it
3184 * gets overwritten.
3185 */
3b69ff51 3186static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3187{
75c3cfa8 3188 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3189 int they_are_dirs = S_ISDIR(inode->i_mode);
3190
46fdb794 3191 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3192 return -EINVAL;
3193
37456771
MS
3194 if (flags & RENAME_EXCHANGE)
3195 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3196
1da177e4
LT
3197 if (!simple_empty(new_dentry))
3198 return -ENOTEMPTY;
3199
46fdb794
MS
3200 if (flags & RENAME_WHITEOUT) {
3201 int error;
3202
3203 error = shmem_whiteout(old_dir, old_dentry);
3204 if (error)
3205 return error;
3206 }
3207
75c3cfa8 3208 if (d_really_is_positive(new_dentry)) {
1da177e4 3209 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3210 if (they_are_dirs) {
75c3cfa8 3211 drop_nlink(d_inode(new_dentry));
9a53c3a7 3212 drop_nlink(old_dir);
b928095b 3213 }
1da177e4 3214 } else if (they_are_dirs) {
9a53c3a7 3215 drop_nlink(old_dir);
d8c76e6f 3216 inc_nlink(new_dir);
1da177e4
LT
3217 }
3218
3219 old_dir->i_size -= BOGO_DIRENT_SIZE;
3220 new_dir->i_size += BOGO_DIRENT_SIZE;
3221 old_dir->i_ctime = old_dir->i_mtime =
3222 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3223 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3224 return 0;
3225}
3226
3227static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3228{
3229 int error;
3230 int len;
3231 struct inode *inode;
9276aad6 3232 struct page *page;
1da177e4
LT
3233
3234 len = strlen(symname) + 1;
09cbfeaf 3235 if (len > PAGE_SIZE)
1da177e4
LT
3236 return -ENAMETOOLONG;
3237
454abafe 3238 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3239 if (!inode)
3240 return -ENOSPC;
3241
9d8f13ba 3242 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3243 shmem_initxattrs, NULL);
570bc1c2
SS
3244 if (error) {
3245 if (error != -EOPNOTSUPP) {
3246 iput(inode);
3247 return error;
3248 }
3249 error = 0;
3250 }
3251
1da177e4 3252 inode->i_size = len-1;
69f07ec9 3253 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3254 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3255 if (!inode->i_link) {
69f07ec9
HD
3256 iput(inode);
3257 return -ENOMEM;
3258 }
3259 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3260 } else {
e8ecde25 3261 inode_nohighmem(inode);
9e18eb29 3262 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3263 if (error) {
3264 iput(inode);
3265 return error;
3266 }
14fcc23f 3267 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3268 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3269 memcpy(page_address(page), symname, len);
ec9516fb 3270 SetPageUptodate(page);
1da177e4 3271 set_page_dirty(page);
6746aff7 3272 unlock_page(page);
09cbfeaf 3273 put_page(page);
1da177e4 3274 }
1da177e4 3275 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3276 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3277 d_instantiate(dentry, inode);
3278 dget(dentry);
3279 return 0;
3280}
3281
fceef393 3282static void shmem_put_link(void *arg)
1da177e4 3283{
fceef393
AV
3284 mark_page_accessed(arg);
3285 put_page(arg);
1da177e4
LT
3286}
3287
6b255391 3288static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3289 struct inode *inode,
3290 struct delayed_call *done)
1da177e4 3291{
1da177e4 3292 struct page *page = NULL;
6b255391 3293 int error;
6a6c9904
AV
3294 if (!dentry) {
3295 page = find_get_page(inode->i_mapping, 0);
3296 if (!page)
3297 return ERR_PTR(-ECHILD);
3298 if (!PageUptodate(page)) {
3299 put_page(page);
3300 return ERR_PTR(-ECHILD);
3301 }
3302 } else {
9e18eb29 3303 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3304 if (error)
3305 return ERR_PTR(error);
3306 unlock_page(page);
3307 }
fceef393 3308 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3309 return page_address(page);
1da177e4
LT
3310}
3311
b09e0fa4 3312#ifdef CONFIG_TMPFS_XATTR
46711810 3313/*
b09e0fa4
EP
3314 * Superblocks without xattr inode operations may get some security.* xattr
3315 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3316 * like ACLs, we also need to implement the security.* handlers at
3317 * filesystem level, though.
3318 */
3319
6d9d88d0
JS
3320/*
3321 * Callback for security_inode_init_security() for acquiring xattrs.
3322 */
3323static int shmem_initxattrs(struct inode *inode,
3324 const struct xattr *xattr_array,
3325 void *fs_info)
3326{
3327 struct shmem_inode_info *info = SHMEM_I(inode);
3328 const struct xattr *xattr;
38f38657 3329 struct simple_xattr *new_xattr;
6d9d88d0
JS
3330 size_t len;
3331
3332 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3333 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3334 if (!new_xattr)
3335 return -ENOMEM;
3336
3337 len = strlen(xattr->name) + 1;
3338 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3339 GFP_KERNEL);
3340 if (!new_xattr->name) {
3341 kfree(new_xattr);
3342 return -ENOMEM;
3343 }
3344
3345 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3346 XATTR_SECURITY_PREFIX_LEN);
3347 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3348 xattr->name, len);
3349
38f38657 3350 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3351 }
3352
3353 return 0;
3354}
3355
aa7c5241 3356static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3357 struct dentry *unused, struct inode *inode,
3358 const char *name, void *buffer, size_t size)
b09e0fa4 3359{
b296821a 3360 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3361
aa7c5241 3362 name = xattr_full_name(handler, name);
38f38657 3363 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3364}
3365
aa7c5241 3366static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3367 struct dentry *unused, struct inode *inode,
3368 const char *name, const void *value,
3369 size_t size, int flags)
b09e0fa4 3370{
59301226 3371 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3372
aa7c5241 3373 name = xattr_full_name(handler, name);
38f38657 3374 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3375}
3376
aa7c5241
AG
3377static const struct xattr_handler shmem_security_xattr_handler = {
3378 .prefix = XATTR_SECURITY_PREFIX,
3379 .get = shmem_xattr_handler_get,
3380 .set = shmem_xattr_handler_set,
3381};
b09e0fa4 3382
aa7c5241
AG
3383static const struct xattr_handler shmem_trusted_xattr_handler = {
3384 .prefix = XATTR_TRUSTED_PREFIX,
3385 .get = shmem_xattr_handler_get,
3386 .set = shmem_xattr_handler_set,
3387};
b09e0fa4 3388
aa7c5241
AG
3389static const struct xattr_handler *shmem_xattr_handlers[] = {
3390#ifdef CONFIG_TMPFS_POSIX_ACL
3391 &posix_acl_access_xattr_handler,
3392 &posix_acl_default_xattr_handler,
3393#endif
3394 &shmem_security_xattr_handler,
3395 &shmem_trusted_xattr_handler,
3396 NULL
3397};
b09e0fa4
EP
3398
3399static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3400{
75c3cfa8 3401 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3402 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3403}
3404#endif /* CONFIG_TMPFS_XATTR */
3405
69f07ec9 3406static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3407 .get_link = simple_get_link,
b09e0fa4 3408#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3409 .listxattr = shmem_listxattr,
b09e0fa4
EP
3410#endif
3411};
3412
3413static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3414 .get_link = shmem_get_link,
b09e0fa4 3415#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3416 .listxattr = shmem_listxattr,
39f0247d 3417#endif
b09e0fa4 3418};
39f0247d 3419
91828a40
DG
3420static struct dentry *shmem_get_parent(struct dentry *child)
3421{
3422 return ERR_PTR(-ESTALE);
3423}
3424
3425static int shmem_match(struct inode *ino, void *vfh)
3426{
3427 __u32 *fh = vfh;
0006ebb4 3428 __u64 inum = fh[1];
91828a40
DG
3429 return ino->i_ino == inum && fh[0] == ino->i_generation;
3430}
3431
480b116c
CH
3432static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3433 struct fid *fid, int fh_len, int fh_type)
91828a40 3434{
91828a40 3435 struct inode *inode;
480b116c 3436 struct dentry *dentry = NULL;
35c2a7f4 3437 u64 inum;
480b116c 3438
0006ebb4 3439 if (fh_len < 2)
480b116c 3440 return NULL;
91828a40 3441
0006ebb4
SF
3442 inum = fid->raw[1];
3443 inode = ilookup5(sb, inum, shmem_match, fid->raw);
91828a40 3444 if (inode) {
480b116c 3445 dentry = d_find_alias(inode);
91828a40
DG
3446 iput(inode);
3447 }
3448
480b116c 3449 return dentry;
91828a40
DG
3450}
3451
b0b0382b
AV
3452static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3453 struct inode *parent)
91828a40 3454{
0006ebb4
SF
3455 if (*len < 2) {
3456 *len = 2;
94e07a75 3457 return FILEID_INVALID;
5fe0c237 3458 }
91828a40 3459
91828a40
DG
3460 fh[0] = inode->i_generation;
3461 fh[1] = inode->i_ino;
91828a40 3462
0006ebb4 3463 *len = 2;
91828a40
DG
3464 return 1;
3465}
3466
39655164 3467static const struct export_operations shmem_export_ops = {
91828a40 3468 .get_parent = shmem_get_parent,
91828a40 3469 .encode_fh = shmem_encode_fh,
480b116c 3470 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3471};
3472
680d794b
AM
3473static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3474 bool remount)
1da177e4
LT
3475{
3476 char *this_char, *value, *rest;
49cd0a5c 3477 struct mempolicy *mpol = NULL;
8751e039
EB
3478 uid_t uid;
3479 gid_t gid;
1da177e4 3480
b00dc3ad
HD
3481 while (options != NULL) {
3482 this_char = options;
3483 for (;;) {
3484 /*
3485 * NUL-terminate this option: unfortunately,
3486 * mount options form a comma-separated list,
3487 * but mpol's nodelist may also contain commas.
3488 */
3489 options = strchr(options, ',');
3490 if (options == NULL)
3491 break;
3492 options++;
3493 if (!isdigit(*options)) {
3494 options[-1] = '\0';
3495 break;
3496 }
3497 }
1da177e4
LT
3498 if (!*this_char)
3499 continue;
3500 if ((value = strchr(this_char,'=')) != NULL) {
3501 *value++ = 0;
3502 } else {
1170532b
JP
3503 pr_err("tmpfs: No value for mount option '%s'\n",
3504 this_char);
49cd0a5c 3505 goto error;
1da177e4
LT
3506 }
3507
3508 if (!strcmp(this_char,"size")) {
3509 unsigned long long size;
3510 size = memparse(value,&rest);
3511 if (*rest == '%') {
3512 size <<= PAGE_SHIFT;
3513 size *= totalram_pages;
3514 do_div(size, 100);
3515 rest++;
3516 }
3517 if (*rest)
3518 goto bad_val;
680d794b 3519 sbinfo->max_blocks =
09cbfeaf 3520 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3521 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3522 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3523 if (*rest)
3524 goto bad_val;
3525 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3526 sbinfo->max_inodes = memparse(value, &rest);
0006ebb4 3527 if (*rest || sbinfo->max_inodes < 2)
1da177e4
LT
3528 goto bad_val;
3529 } else if (!strcmp(this_char,"mode")) {
680d794b 3530 if (remount)
1da177e4 3531 continue;
680d794b 3532 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3533 if (*rest)
3534 goto bad_val;
3535 } else if (!strcmp(this_char,"uid")) {
680d794b 3536 if (remount)
1da177e4 3537 continue;
8751e039 3538 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3539 if (*rest)
3540 goto bad_val;
8751e039
EB
3541 sbinfo->uid = make_kuid(current_user_ns(), uid);
3542 if (!uid_valid(sbinfo->uid))
3543 goto bad_val;
1da177e4 3544 } else if (!strcmp(this_char,"gid")) {
680d794b 3545 if (remount)
1da177e4 3546 continue;
8751e039 3547 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3548 if (*rest)
3549 goto bad_val;
8751e039
EB
3550 sbinfo->gid = make_kgid(current_user_ns(), gid);
3551 if (!gid_valid(sbinfo->gid))
3552 goto bad_val;
e496cf3d 3553#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3554 } else if (!strcmp(this_char, "huge")) {
3555 int huge;
3556 huge = shmem_parse_huge(value);
3557 if (huge < 0)
3558 goto bad_val;
3559 if (!has_transparent_hugepage() &&
3560 huge != SHMEM_HUGE_NEVER)
3561 goto bad_val;
3562 sbinfo->huge = huge;
3563#endif
3564#ifdef CONFIG_NUMA
7339ff83 3565 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3566 mpol_put(mpol);
3567 mpol = NULL;
3568 if (mpol_parse_str(value, &mpol))
7339ff83 3569 goto bad_val;
5a6e75f8 3570#endif
1da177e4 3571 } else {
1170532b 3572 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3573 goto error;
1da177e4
LT
3574 }
3575 }
49cd0a5c 3576 sbinfo->mpol = mpol;
1da177e4
LT
3577 return 0;
3578
3579bad_val:
1170532b 3580 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3581 value, this_char);
49cd0a5c
GT
3582error:
3583 mpol_put(mpol);
1da177e4
LT
3584 return 1;
3585
3586}
3587
3588static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3589{
3590 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3591 struct shmem_sb_info config = *sbinfo;
0006ebb4 3592 int inodes;
0edd73b3
HD
3593 int error = -EINVAL;
3594
5f00110f 3595 config.mpol = NULL;
680d794b 3596 if (shmem_parse_options(data, &config, true))
0edd73b3 3597 return error;
1da177e4 3598
0edd73b3 3599 spin_lock(&sbinfo->stat_lock);
0edd73b3 3600 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3601 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3602 goto out;
680d794b 3603 if (config.max_inodes < inodes)
0edd73b3
HD
3604 goto out;
3605 /*
54af6042 3606 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3607 * but we must separately disallow unlimited->limited, because
3608 * in that case we have no record of how much is already in use.
3609 */
680d794b 3610 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3611 goto out;
680d794b 3612 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3613 goto out;
3614
3615 error = 0;
5a6e75f8 3616 sbinfo->huge = config.huge;
680d794b 3617 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3618 sbinfo->max_inodes = config.max_inodes;
3619 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3620
5f00110f
GT
3621 /*
3622 * Preserve previous mempolicy unless mpol remount option was specified.
3623 */
3624 if (config.mpol) {
3625 mpol_put(sbinfo->mpol);
3626 sbinfo->mpol = config.mpol; /* transfers initial ref */
3627 }
0edd73b3
HD
3628out:
3629 spin_unlock(&sbinfo->stat_lock);
3630 return error;
1da177e4 3631}
680d794b 3632
34c80b1d 3633static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3634{
34c80b1d 3635 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3636
3637 if (sbinfo->max_blocks != shmem_default_max_blocks())
3638 seq_printf(seq, ",size=%luk",
09cbfeaf 3639 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3640 if (sbinfo->max_inodes != shmem_default_max_inodes())
0006ebb4 3641 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
680d794b 3642 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3643 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3644 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3645 seq_printf(seq, ",uid=%u",
3646 from_kuid_munged(&init_user_ns, sbinfo->uid));
3647 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3648 seq_printf(seq, ",gid=%u",
3649 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3650#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3651 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3652 if (sbinfo->huge)
3653 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3654#endif
71fe804b 3655 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3656 return 0;
3657}
9183df25
DH
3658
3659#define MFD_NAME_PREFIX "memfd:"
3660#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3661#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3662
749df87b 3663#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DH
3664
3665SYSCALL_DEFINE2(memfd_create,
3666 const char __user *, uname,
3667 unsigned int, flags)
3668{
3669 struct shmem_inode_info *info;
3670 struct file *file;
3671 int fd, error;
3672 char *name;
3673 long len;
3674
749df87b
MK
3675 if (!(flags & MFD_HUGETLB)) {
3676 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3677 return -EINVAL;
3678 } else {
3679 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3680 if (flags & MFD_ALLOW_SEALING)
3681 return -EINVAL;
3682 /* Allow huge page size encoding in flags. */
3683 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3684 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3685 return -EINVAL;
3686 }
9183df25
DH
3687
3688 /* length includes terminating zero */
3689 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3690 if (len <= 0)
3691 return -EFAULT;
3692 if (len > MFD_NAME_MAX_LEN + 1)
3693 return -EINVAL;
3694
0ee931c4 3695 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DH
3696 if (!name)
3697 return -ENOMEM;
3698
3699 strcpy(name, MFD_NAME_PREFIX);
3700 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3701 error = -EFAULT;
3702 goto err_name;
3703 }
3704
3705 /* terminating-zero may have changed after strnlen_user() returned */
3706 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3707 error = -EFAULT;
3708 goto err_name;
3709 }
3710
3711 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3712 if (fd < 0) {
3713 error = fd;
3714 goto err_name;
3715 }
3716
749df87b
MK
3717 if (flags & MFD_HUGETLB) {
3718 struct user_struct *user = NULL;
3719
3720 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3721 HUGETLB_ANONHUGE_INODE,
3722 (flags >> MFD_HUGE_SHIFT) &
3723 MFD_HUGE_MASK);
3724 } else
3725 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DH
3726 if (IS_ERR(file)) {
3727 error = PTR_ERR(file);
3728 goto err_fd;
3729 }
9183df25
DH
3730 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3731 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3732
3733 if (flags & MFD_ALLOW_SEALING) {
3734 /*
3735 * flags check at beginning of function ensures
3736 * this is not a hugetlbfs (MFD_HUGETLB) file.
3737 */
3738 info = SHMEM_I(file_inode(file));
9183df25 3739 info->seals &= ~F_SEAL_SEAL;
749df87b 3740 }
9183df25
DH
3741
3742 fd_install(fd, file);
3743 kfree(name);
3744 return fd;
3745
3746err_fd:
3747 put_unused_fd(fd);
3748err_name:
3749 kfree(name);
3750 return error;
3751}
3752
680d794b 3753#endif /* CONFIG_TMPFS */
1da177e4
LT
3754
3755static void shmem_put_super(struct super_block *sb)
3756{
602586a8
HD
3757 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3758
0006ebb4
SF
3759 if (!sbinfo->idr_nouse)
3760 idr_destroy(&sbinfo->idr);
602586a8 3761 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3762 mpol_put(sbinfo->mpol);
602586a8 3763 kfree(sbinfo);
1da177e4
LT
3764 sb->s_fs_info = NULL;
3765}
3766
2b2af54a 3767int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3768{
3769 struct inode *inode;
0edd73b3 3770 struct shmem_sb_info *sbinfo;
680d794b
AM
3771 int err = -ENOMEM;
3772
3773 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3774 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3775 L1_CACHE_BYTES), GFP_KERNEL);
3776 if (!sbinfo)
3777 return -ENOMEM;
3778
0006ebb4
SF
3779 mutex_init(&sbinfo->idr_lock);
3780 idr_init(&sbinfo->idr);
680d794b 3781 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3782 sbinfo->uid = current_fsuid();
3783 sbinfo->gid = current_fsgid();
680d794b 3784 sb->s_fs_info = sbinfo;
1da177e4 3785
0edd73b3 3786#ifdef CONFIG_TMPFS
1da177e4
LT
3787 /*
3788 * Per default we only allow half of the physical ram per
3789 * tmpfs instance, limiting inodes to one per page of lowmem;
3790 * but the internal instance is left unlimited.
3791 */
1751e8a6 3792 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b
AM
3793 sbinfo->max_blocks = shmem_default_max_blocks();
3794 sbinfo->max_inodes = shmem_default_max_inodes();
3795 if (shmem_parse_options(data, sbinfo, false)) {
3796 err = -EINVAL;
3797 goto failed;
3798 }
ca4e0519 3799 } else {
1751e8a6 3800 sb->s_flags |= SB_NOUSER;
1da177e4 3801 }
91828a40 3802 sb->s_export_op = &shmem_export_ops;
1751e8a6 3803 sb->s_flags |= SB_NOSEC;
1da177e4 3804#else
1751e8a6 3805 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3806#endif
3807
0edd73b3 3808 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3809 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3810 goto failed;
680d794b 3811 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3812 spin_lock_init(&sbinfo->shrinklist_lock);
3813 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3814
285b2c4f 3815 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3816 sb->s_blocksize = PAGE_SIZE;
3817 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3818 sb->s_magic = TMPFS_MAGIC;
3819 sb->s_op = &shmem_ops;
cfd95a9c 3820 sb->s_time_gran = 1;
b09e0fa4 3821#ifdef CONFIG_TMPFS_XATTR
39f0247d 3822 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3823#endif
3824#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3825 sb->s_flags |= SB_POSIXACL;
39f0247d 3826#endif
2b4db796 3827 uuid_gen(&sb->s_uuid);
0edd73b3 3828
454abafe 3829 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3830 if (!inode)
3831 goto failed;
680d794b
AM
3832 inode->i_uid = sbinfo->uid;
3833 inode->i_gid = sbinfo->gid;
318ceed0
AV
3834 sb->s_root = d_make_root(inode);
3835 if (!sb->s_root)
48fde701 3836 goto failed;
1da177e4
LT
3837 return 0;
3838
1da177e4
LT
3839failed:
3840 shmem_put_super(sb);
3841 return err;
3842}
3843
fcc234f8 3844static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3845
3846static struct inode *shmem_alloc_inode(struct super_block *sb)
3847{
41ffe5d5
HD
3848 struct shmem_inode_info *info;
3849 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3850 if (!info)
1da177e4 3851 return NULL;
41ffe5d5 3852 return &info->vfs_inode;
1da177e4
LT
3853}
3854
41ffe5d5 3855static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3856{
3857 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3858 if (S_ISLNK(inode->i_mode))
3859 kfree(inode->i_link);
fa0d7e3d
NP
3860 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3861}
3862
1da177e4
LT
3863static void shmem_destroy_inode(struct inode *inode)
3864{
09208d15 3865 if (S_ISREG(inode->i_mode))
1da177e4 3866 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3867 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3868}
3869
41ffe5d5 3870static void shmem_init_inode(void *foo)
1da177e4 3871{
41ffe5d5
HD
3872 struct shmem_inode_info *info = foo;
3873 inode_init_once(&info->vfs_inode);
1da177e4
LT
3874}
3875
9a8ec03e 3876static void shmem_init_inodecache(void)
1da177e4
LT
3877{
3878 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3879 sizeof(struct shmem_inode_info),
5d097056 3880 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3881}
3882
41ffe5d5 3883static void shmem_destroy_inodecache(void)
1da177e4 3884{
1a1d92c1 3885 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3886}
3887
0006ebb4
SF
3888static __init void shmem_no_idr(struct super_block *sb)
3889{
3890 struct shmem_sb_info *sbinfo;
3891
3892 sbinfo = SHMEM_SB(sb);
3893 sbinfo->idr_nouse = true;
3894 idr_destroy(&sbinfo->idr);
3895}
3896
f5e54d6e 3897static const struct address_space_operations shmem_aops = {
1da177e4 3898 .writepage = shmem_writepage,
76719325 3899 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3900#ifdef CONFIG_TMPFS
800d15a5
NP
3901 .write_begin = shmem_write_begin,
3902 .write_end = shmem_write_end,
1da177e4 3903#endif
1c93923c 3904#ifdef CONFIG_MIGRATION
304dbdb7 3905 .migratepage = migrate_page,
1c93923c 3906#endif
aa261f54 3907 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3908};
3909
15ad7cdc 3910static const struct file_operations shmem_file_operations = {
1da177e4 3911 .mmap = shmem_mmap,
c01d5b30 3912 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3913#ifdef CONFIG_TMPFS
220f2ac9 3914 .llseek = shmem_file_llseek,
2ba5bbed 3915 .read_iter = shmem_file_read_iter,
8174202b 3916 .write_iter = generic_file_write_iter,
1b061d92 3917 .fsync = noop_fsync,
82c156f8 3918 .splice_read = generic_file_splice_read,
f6cb85d0 3919 .splice_write = iter_file_splice_write,
83e4fa9c 3920 .fallocate = shmem_fallocate,
1da177e4
LT
3921#endif
3922};
3923
92e1d5be 3924static const struct inode_operations shmem_inode_operations = {
44a30220 3925 .getattr = shmem_getattr,
94c1e62d 3926 .setattr = shmem_setattr,
b09e0fa4 3927#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3928 .listxattr = shmem_listxattr,
feda821e 3929 .set_acl = simple_set_acl,
b09e0fa4 3930#endif
1da177e4
LT
3931};
3932
92e1d5be 3933static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3934#ifdef CONFIG_TMPFS
3935 .create = shmem_create,
3936 .lookup = simple_lookup,
3937 .link = shmem_link,
3938 .unlink = shmem_unlink,
3939 .symlink = shmem_symlink,
3940 .mkdir = shmem_mkdir,
3941 .rmdir = shmem_rmdir,
3942 .mknod = shmem_mknod,
2773bf00 3943 .rename = shmem_rename2,
60545d0d 3944 .tmpfile = shmem_tmpfile,
1da177e4 3945#endif
b09e0fa4 3946#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3947 .listxattr = shmem_listxattr,
b09e0fa4 3948#endif
39f0247d 3949#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3950 .setattr = shmem_setattr,
feda821e 3951 .set_acl = simple_set_acl,
39f0247d
AG
3952#endif
3953};
3954
92e1d5be 3955static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3956#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3957 .listxattr = shmem_listxattr,
b09e0fa4 3958#endif
39f0247d 3959#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3960 .setattr = shmem_setattr,
feda821e 3961 .set_acl = simple_set_acl,
39f0247d 3962#endif
1da177e4
LT
3963};
3964
759b9775 3965static const struct super_operations shmem_ops = {
1da177e4
LT
3966 .alloc_inode = shmem_alloc_inode,
3967 .destroy_inode = shmem_destroy_inode,
3968#ifdef CONFIG_TMPFS
3969 .statfs = shmem_statfs,
3970 .remount_fs = shmem_remount_fs,
680d794b 3971 .show_options = shmem_show_options,
1da177e4 3972#endif
1f895f75 3973 .evict_inode = shmem_evict_inode,
1da177e4
LT
3974 .drop_inode = generic_delete_inode,
3975 .put_super = shmem_put_super,
779750d2
KS
3976#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3977 .nr_cached_objects = shmem_unused_huge_count,
3978 .free_cached_objects = shmem_unused_huge_scan,
3979#endif
1da177e4
LT
3980};
3981
f0f37e2f 3982static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3983 .fault = shmem_fault,
d7c17551 3984 .map_pages = filemap_map_pages,
1da177e4
LT
3985#ifdef CONFIG_NUMA
3986 .set_policy = shmem_set_policy,
3987 .get_policy = shmem_get_policy,
3988#endif
3989};
3990
3c26ff6e
AV
3991static struct dentry *shmem_mount(struct file_system_type *fs_type,
3992 int flags, const char *dev_name, void *data)
1da177e4 3993{
3c26ff6e 3994 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3995}
3996
41ffe5d5 3997static struct file_system_type shmem_fs_type = {
1da177e4
LT
3998 .owner = THIS_MODULE,
3999 .name = "tmpfs",
3c26ff6e 4000 .mount = shmem_mount,
1da177e4 4001 .kill_sb = kill_litter_super,
2b8576cb 4002 .fs_flags = FS_USERNS_MOUNT,
1da177e4 4003};
1da177e4 4004
41ffe5d5 4005int __init shmem_init(void)
1da177e4
LT
4006{
4007 int error;
4008
16203a7a
RL
4009 /* If rootfs called this, don't re-init */
4010 if (shmem_inode_cachep)
4011 return 0;
4012
9a8ec03e 4013 shmem_init_inodecache();
1da177e4 4014
41ffe5d5 4015 error = register_filesystem(&shmem_fs_type);
1da177e4 4016 if (error) {
1170532b 4017 pr_err("Could not register tmpfs\n");
1da177e4
LT
4018 goto out2;
4019 }
95dc112a 4020
ca4e0519 4021 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4022 if (IS_ERR(shm_mnt)) {
4023 error = PTR_ERR(shm_mnt);
1170532b 4024 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4025 goto out1;
4026 }
0006ebb4 4027 shmem_no_idr(shm_mnt->mnt_sb);
5a6e75f8 4028
e496cf3d 4029#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4030 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4031 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4032 else
4033 shmem_huge = 0; /* just in case it was patched */
4034#endif
1da177e4
LT
4035 return 0;
4036
4037out1:
41ffe5d5 4038 unregister_filesystem(&shmem_fs_type);
1da177e4 4039out2:
41ffe5d5 4040 shmem_destroy_inodecache();
1da177e4
LT
4041 shm_mnt = ERR_PTR(error);
4042 return error;
4043}
853ac43a 4044
e496cf3d 4045#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4046static ssize_t shmem_enabled_show(struct kobject *kobj,
4047 struct kobj_attribute *attr, char *buf)
4048{
4049 int values[] = {
4050 SHMEM_HUGE_ALWAYS,
4051 SHMEM_HUGE_WITHIN_SIZE,
4052 SHMEM_HUGE_ADVISE,
4053 SHMEM_HUGE_NEVER,
4054 SHMEM_HUGE_DENY,
4055 SHMEM_HUGE_FORCE,
4056 };
4057 int i, count;
4058
4059 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4060 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4061
4062 count += sprintf(buf + count, fmt,
4063 shmem_format_huge(values[i]));
4064 }
4065 buf[count - 1] = '\n';
4066 return count;
4067}
4068
4069static ssize_t shmem_enabled_store(struct kobject *kobj,
4070 struct kobj_attribute *attr, const char *buf, size_t count)
4071{
4072 char tmp[16];
4073 int huge;
4074
4075 if (count + 1 > sizeof(tmp))
4076 return -EINVAL;
4077 memcpy(tmp, buf, count);
4078 tmp[count] = '\0';
4079 if (count && tmp[count - 1] == '\n')
4080 tmp[count - 1] = '\0';
4081
4082 huge = shmem_parse_huge(tmp);
4083 if (huge == -EINVAL)
4084 return -EINVAL;
4085 if (!has_transparent_hugepage() &&
4086 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4087 return -EINVAL;
4088
4089 shmem_huge = huge;
435c0b87 4090 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4091 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4092 return count;
4093}
4094
4095struct kobj_attribute shmem_enabled_attr =
4096 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4097#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4098
3b33719c 4099#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4100bool shmem_huge_enabled(struct vm_area_struct *vma)
4101{
4102 struct inode *inode = file_inode(vma->vm_file);
4103 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4104 loff_t i_size;
4105 pgoff_t off;
4106
4107 if (shmem_huge == SHMEM_HUGE_FORCE)
4108 return true;
4109 if (shmem_huge == SHMEM_HUGE_DENY)
4110 return false;
4111 switch (sbinfo->huge) {
4112 case SHMEM_HUGE_NEVER:
4113 return false;
4114 case SHMEM_HUGE_ALWAYS:
4115 return true;
4116 case SHMEM_HUGE_WITHIN_SIZE:
4117 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4118 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4119 if (i_size >= HPAGE_PMD_SIZE &&
4120 i_size >> PAGE_SHIFT >= off)
4121 return true;
c8402871 4122 /* fall through */
f3f0e1d2
KS
4123 case SHMEM_HUGE_ADVISE:
4124 /* TODO: implement fadvise() hints */
4125 return (vma->vm_flags & VM_HUGEPAGE);
4126 default:
4127 VM_BUG_ON(1);
4128 return false;
4129 }
4130}
3b33719c 4131#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4132
853ac43a
MM
4133#else /* !CONFIG_SHMEM */
4134
4135/*
4136 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4137 *
4138 * This is intended for small system where the benefits of the full
4139 * shmem code (swap-backed and resource-limited) are outweighed by
4140 * their complexity. On systems without swap this code should be
4141 * effectively equivalent, but much lighter weight.
4142 */
4143
41ffe5d5 4144static struct file_system_type shmem_fs_type = {
853ac43a 4145 .name = "tmpfs",
3c26ff6e 4146 .mount = ramfs_mount,
853ac43a 4147 .kill_sb = kill_litter_super,
2b8576cb 4148 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4149};
4150
41ffe5d5 4151int __init shmem_init(void)
853ac43a 4152{
41ffe5d5 4153 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4154
41ffe5d5 4155 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4156 BUG_ON(IS_ERR(shm_mnt));
4157
4158 return 0;
4159}
4160
41ffe5d5 4161int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4162{
4163 return 0;
4164}
4165
3f96b79a
HD
4166int shmem_lock(struct file *file, int lock, struct user_struct *user)
4167{
4168 return 0;
4169}
4170
24513264
HD
4171void shmem_unlock_mapping(struct address_space *mapping)
4172{
4173}
4174
c01d5b30
HD
4175#ifdef CONFIG_MMU
4176unsigned long shmem_get_unmapped_area(struct file *file,
4177 unsigned long addr, unsigned long len,
4178 unsigned long pgoff, unsigned long flags)
4179{
4180 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4181}
4182#endif
4183
41ffe5d5 4184void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4185{
41ffe5d5 4186 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4187}
4188EXPORT_SYMBOL_GPL(shmem_truncate_range);
4189
0b0a0806
HD
4190#define shmem_vm_ops generic_file_vm_ops
4191#define shmem_file_operations ramfs_file_operations
454abafe 4192#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4193#define shmem_acct_size(flags, size) 0
4194#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4195
4196#endif /* CONFIG_SHMEM */
4197
4198/* common code */
1da177e4 4199
19938e35 4200static const struct dentry_operations anon_ops = {
118b2302 4201 .d_dname = simple_dname
3451538a
AV
4202};
4203
703321b6 4204static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4205 unsigned long flags, unsigned int i_flags)
1da177e4 4206{
6b4d0b27 4207 struct file *res;
1da177e4 4208 struct inode *inode;
2c48b9c4 4209 struct path path;
3451538a 4210 struct super_block *sb;
1da177e4
LT
4211 struct qstr this;
4212
703321b6
MA
4213 if (IS_ERR(mnt))
4214 return ERR_CAST(mnt);
1da177e4 4215
285b2c4f 4216 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4217 return ERR_PTR(-EINVAL);
4218
4219 if (shmem_acct_size(flags, size))
4220 return ERR_PTR(-ENOMEM);
4221
6b4d0b27 4222 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4223 this.name = name;
4224 this.len = strlen(name);
4225 this.hash = 0; /* will go */
703321b6
MA
4226 sb = mnt->mnt_sb;
4227 path.mnt = mntget(mnt);
3451538a 4228 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4229 if (!path.dentry)
1da177e4 4230 goto put_memory;
3451538a 4231 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4232
6b4d0b27 4233 res = ERR_PTR(-ENOSPC);
3451538a 4234 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4235 if (!inode)
66ee4b88 4236 goto put_memory;
1da177e4 4237
c7277090 4238 inode->i_flags |= i_flags;
2c48b9c4 4239 d_instantiate(path.dentry, inode);
1da177e4 4240 inode->i_size = size;
6d6b77f1 4241 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4242 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4243 if (IS_ERR(res))
66ee4b88 4244 goto put_path;
4b42af81 4245
6b4d0b27 4246 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4247 &shmem_file_operations);
6b4d0b27 4248 if (IS_ERR(res))
66ee4b88 4249 goto put_path;
4b42af81 4250
6b4d0b27 4251 return res;
1da177e4 4252
1da177e4
LT
4253put_memory:
4254 shmem_unacct_size(flags, size);
66ee4b88
KK
4255put_path:
4256 path_put(&path);
6b4d0b27 4257 return res;
1da177e4 4258}
c7277090
EP
4259
4260/**
4261 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4262 * kernel internal. There will be NO LSM permission checks against the
4263 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4264 * higher layer. The users are the big_key and shm implementations. LSM
4265 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4266 * @name: name for dentry (to be seen in /proc/<pid>/maps
4267 * @size: size to be set for the file
4268 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4269 */
4270struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4271{
703321b6 4272 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4273}
4274
4275/**
4276 * shmem_file_setup - get an unlinked file living in tmpfs
4277 * @name: name for dentry (to be seen in /proc/<pid>/maps
4278 * @size: size to be set for the file
4279 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4280 */
4281struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4282{
703321b6 4283 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4284}
395e0ddc 4285EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4286
703321b6
MA
4287/**
4288 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4289 * @mnt: the tmpfs mount where the file will be created
4290 * @name: name for dentry (to be seen in /proc/<pid>/maps
4291 * @size: size to be set for the file
4292 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4293 */
4294struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4295 loff_t size, unsigned long flags)
4296{
4297 return __shmem_file_setup(mnt, name, size, flags, 0);
4298}
4299EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4300
46711810 4301/**
1da177e4 4302 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4303 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4304 */
4305int shmem_zero_setup(struct vm_area_struct *vma)
4306{
4307 struct file *file;
4308 loff_t size = vma->vm_end - vma->vm_start;
4309
66fc1303
HD
4310 /*
4311 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4312 * between XFS directory reading and selinux: since this file is only
4313 * accessible to the user through its mapping, use S_PRIVATE flag to
4314 * bypass file security, in the same way as shmem_kernel_file_setup().
4315 */
703321b6 4316 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4317 if (IS_ERR(file))
4318 return PTR_ERR(file);
4319
4320 if (vma->vm_file)
4321 fput(vma->vm_file);
4322 vma->vm_file = file;
4323 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4324
e496cf3d 4325 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4326 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4327 (vma->vm_end & HPAGE_PMD_MASK)) {
4328 khugepaged_enter(vma, vma->vm_flags);
4329 }
4330
1da177e4
LT
4331 return 0;
4332}
d9d90e5e
HD
4333
4334/**
4335 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4336 * @mapping: the page's address_space
4337 * @index: the page index
4338 * @gfp: the page allocator flags to use if allocating
4339 *
4340 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4341 * with any new page allocations done using the specified allocation flags.
4342 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4343 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4344 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4345 *
68da9f05
HD
4346 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4347 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4348 */
4349struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4350 pgoff_t index, gfp_t gfp)
4351{
68da9f05
HD
4352#ifdef CONFIG_SHMEM
4353 struct inode *inode = mapping->host;
9276aad6 4354 struct page *page;
68da9f05
HD
4355 int error;
4356
4357 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4358 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4359 gfp, NULL, NULL, NULL);
68da9f05
HD
4360 if (error)
4361 page = ERR_PTR(error);
4362 else
4363 unlock_page(page);
4364 return page;
4365#else
4366 /*
4367 * The tiny !SHMEM case uses ramfs without swap
4368 */
d9d90e5e 4369 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4370#endif
d9d90e5e
HD
4371}
4372EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);