]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/shmem.c
mm: memcontrol: document the new swap control behavior
[mirror_ubuntu-jammy-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4
LT
85#include <asm/pgtable.h>
86
dd56b046
MG
87#include "internal.h"
88
09cbfeaf
KS
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 91
1da177e4
LT
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
69f07ec9
HD
95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96#define SHORT_SYMLINK_LEN 128
97
1aac1400 98/*
f00cdc6d
HD
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
102 */
103struct shmem_falloc {
8e205f77 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109};
110
0b5071dd
AV
111struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
123};
124
b76db735 125#ifdef CONFIG_TMPFS
680d794b
AM
126static unsigned long shmem_default_max_blocks(void)
127{
ca79b0c2 128 return totalram_pages() / 2;
680d794b
AM
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
ca79b0c2
AK
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 136}
b76db735 137#endif
680d794b 138
bde05d1c
HD
139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
68da9f05 146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 147 struct page **pagep, enum sgp_type sgp,
cfda0526 148 gfp_t gfp, struct vm_area_struct *vma,
2b740303 149 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 150
f3f0e1d2 151int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 152 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
153{
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 156}
1da177e4 157
1da177e4
LT
158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159{
160 return sb->s_fs_info;
161}
162
163/*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169static inline int shmem_acct_size(unsigned long flags, loff_t size)
170{
0b0a0806 171 return (flags & VM_NORESERVE) ?
191c5424 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
173}
174
175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176{
0b0a0806 177 if (!(flags & VM_NORESERVE))
1da177e4
LT
178 vm_unacct_memory(VM_ACCT(size));
179}
180
77142517
KK
181static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183{
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192}
193
1da177e4
LT
194/*
195 * ... whereas tmpfs objects are accounted incrementally as
75edd345 196 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
800d8c63 200static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 201{
800d8c63
KS
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
0b0a0806 211 if (flags & VM_NORESERVE)
09cbfeaf 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
213}
214
0f079694
MR
215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235}
236
237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238{
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245}
246
759b9775 247static const struct super_operations shmem_ops;
f5e54d6e 248static const struct address_space_operations shmem_aops;
15ad7cdc 249static const struct file_operations shmem_file_operations;
92e1d5be
AV
250static const struct inode_operations shmem_inode_operations;
251static const struct inode_operations shmem_dir_inode_operations;
252static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 253static const struct vm_operations_struct shmem_vm_ops;
779750d2 254static struct file_system_type shmem_fs_type;
1da177e4 255
b0506e48
MR
256bool vma_is_shmem(struct vm_area_struct *vma)
257{
258 return vma->vm_ops == &shmem_vm_ops;
259}
260
1da177e4 261static LIST_HEAD(shmem_swaplist);
cb5f7b9a 262static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 263
5b04c689
PE
264static int shmem_reserve_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277}
278
279static void shmem_free_inode(struct super_block *sb)
280{
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287}
288
46711810 289/**
41ffe5d5 290 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301static void shmem_recalc_inode(struct inode *inode)
302{
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
54af6042 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 310 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
311 }
312}
313
800d8c63
KS
314bool shmem_charge(struct inode *inode, long pages)
315{
316 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 317 unsigned long flags;
800d8c63 318
0f079694 319 if (!shmem_inode_acct_block(inode, pages))
800d8c63 320 return false;
b1cc94ab 321
aaa52e34
HD
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
4595ef88 325 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
4595ef88 329 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 330
800d8c63
KS
331 return true;
332}
333
334void shmem_uncharge(struct inode *inode, long pages)
335{
336 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 337 unsigned long flags;
800d8c63 338
aaa52e34
HD
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
4595ef88 341 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
4595ef88 345 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 346
0f079694 347 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
348}
349
7a5d0fbb 350/*
62f945b6 351 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 352 */
62f945b6 353static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
354 pgoff_t index, void *expected, void *replacement)
355{
62f945b6 356 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 357 void *item;
7a5d0fbb
HD
358
359 VM_BUG_ON(!expected);
6dbaf22c 360 VM_BUG_ON(!replacement);
62f945b6 361 item = xas_load(&xas);
7a5d0fbb
HD
362 if (item != expected)
363 return -ENOENT;
62f945b6 364 xas_store(&xas, replacement);
7a5d0fbb
HD
365 return 0;
366}
367
d1899228
HD
368/*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377{
a12831bf 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
379}
380
5a6e75f8
KS
381/*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395#define SHMEM_HUGE_NEVER 0
396#define SHMEM_HUGE_ALWAYS 1
397#define SHMEM_HUGE_WITHIN_SIZE 2
398#define SHMEM_HUGE_ADVISE 3
399
400/*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410#define SHMEM_HUGE_DENY (-1)
411#define SHMEM_HUGE_FORCE (-2)
412
396bcc52 413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
414/* ifdef here to avoid bloating shmem.o when not necessary */
415
5b9c98f3 416static int shmem_huge __read_mostly;
5a6e75f8 417
e5f2249a 418#if defined(CONFIG_SYSFS)
5a6e75f8
KS
419static int shmem_parse_huge(const char *str)
420{
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434}
e5f2249a 435#endif
5a6e75f8 436
e5f2249a 437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
438static const char *shmem_format_huge(int huge)
439{
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457}
f1f5929c 458#endif
5a6e75f8 459
779750d2
KS
460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462{
463 LIST_HEAD(list), *pos, *next;
253fd0f0 464 LIST_HEAD(to_remove);
779750d2
KS
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 491 list_move(&info->shrinklist, &to_remove);
779750d2 492 removed++;
779750d2
KS
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
253fd0f0
KS
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
779750d2
KS
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
b3cd54b2
KS
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
779750d2 518
b3cd54b2 519 page = find_get_page(inode->i_mapping,
779750d2
KS
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
b3cd54b2 524 /* No huge page at the end of the file: nothing to split */
779750d2 525 if (!PageTransHuge(page)) {
779750d2
KS
526 put_page(page);
527 goto drop;
528 }
529
b3cd54b2
KS
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
779750d2
KS
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
b3cd54b2
KS
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
779750d2
KS
549
550 split++;
551drop:
552 list_del_init(&info->shrinklist);
553 removed++;
b3cd54b2 554leave:
779750d2
KS
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564}
565
566static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568{
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575}
576
577static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579{
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582}
396bcc52 583#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
584
585#define shmem_huge SHMEM_HUGE_DENY
586
779750d2
KS
587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589{
590 return 0;
591}
396bcc52 592#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 593
89fdcd26
YS
594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595{
396bcc52 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601}
602
46f65ec1
HD
603/*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
3fea5a49
JW
608 pgoff_t index, void *expected, gfp_t gfp,
609 struct mm_struct *charge_mm)
46f65ec1 610{
552446a4
MW
611 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
612 unsigned long i = 0;
d8c6546b 613 unsigned long nr = compound_nr(page);
3fea5a49 614 int error;
46f65ec1 615
800d8c63
KS
616 VM_BUG_ON_PAGE(PageTail(page), page);
617 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
618 VM_BUG_ON_PAGE(!PageLocked(page), page);
619 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 620 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 621
800d8c63 622 page_ref_add(page, nr);
b065b432
HD
623 page->mapping = mapping;
624 page->index = index;
625
4c6355b2
JW
626 if (!PageSwapCache(page)) {
627 error = mem_cgroup_charge(page, charge_mm, gfp, false);
628 if (error) {
629 if (PageTransHuge(page)) {
630 count_vm_event(THP_FILE_FALLBACK);
631 count_vm_event(THP_FILE_FALLBACK_CHARGE);
632 }
633 goto error;
3fea5a49 634 }
3fea5a49
JW
635 }
636 cgroup_throttle_swaprate(page, gfp);
637
552446a4
MW
638 do {
639 void *entry;
640 xas_lock_irq(&xas);
641 entry = xas_find_conflict(&xas);
642 if (entry != expected)
643 xas_set_err(&xas, -EEXIST);
644 xas_create_range(&xas);
645 if (xas_error(&xas))
646 goto unlock;
647next:
4101196b 648 xas_store(&xas, page);
552446a4
MW
649 if (++i < nr) {
650 xas_next(&xas);
651 goto next;
800d8c63 652 }
552446a4 653 if (PageTransHuge(page)) {
800d8c63 654 count_vm_event(THP_FILE_ALLOC);
552446a4 655 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 656 }
800d8c63 657 mapping->nrpages += nr;
0d1c2072
JW
658 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
659 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
660unlock:
661 xas_unlock_irq(&xas);
662 } while (xas_nomem(&xas, gfp));
663
664 if (xas_error(&xas)) {
3fea5a49
JW
665 error = xas_error(&xas);
666 goto error;
46f65ec1 667 }
552446a4
MW
668
669 return 0;
3fea5a49
JW
670error:
671 page->mapping = NULL;
672 page_ref_sub(page, nr);
673 return error;
46f65ec1
HD
674}
675
6922c0c7
HD
676/*
677 * Like delete_from_page_cache, but substitutes swap for page.
678 */
679static void shmem_delete_from_page_cache(struct page *page, void *radswap)
680{
681 struct address_space *mapping = page->mapping;
682 int error;
683
800d8c63
KS
684 VM_BUG_ON_PAGE(PageCompound(page), page);
685
b93b0163 686 xa_lock_irq(&mapping->i_pages);
62f945b6 687 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
688 page->mapping = NULL;
689 mapping->nrpages--;
0d1c2072
JW
690 __dec_lruvec_page_state(page, NR_FILE_PAGES);
691 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 692 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 693 put_page(page);
6922c0c7
HD
694 BUG_ON(error);
695}
696
7a5d0fbb 697/*
c121d3bb 698 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
699 */
700static int shmem_free_swap(struct address_space *mapping,
701 pgoff_t index, void *radswap)
702{
6dbaf22c 703 void *old;
7a5d0fbb 704
55f3f7ea 705 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
706 if (old != radswap)
707 return -ENOENT;
708 free_swap_and_cache(radix_to_swp_entry(radswap));
709 return 0;
7a5d0fbb
HD
710}
711
6a15a370
VB
712/*
713 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 714 * given offsets are swapped out.
6a15a370 715 *
b93b0163 716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
717 * as long as the inode doesn't go away and racy results are not a problem.
718 */
48131e03
VB
719unsigned long shmem_partial_swap_usage(struct address_space *mapping,
720 pgoff_t start, pgoff_t end)
6a15a370 721{
7ae3424f 722 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 723 struct page *page;
48131e03 724 unsigned long swapped = 0;
6a15a370
VB
725
726 rcu_read_lock();
7ae3424f
MW
727 xas_for_each(&xas, page, end - 1) {
728 if (xas_retry(&xas, page))
2cf938aa 729 continue;
3159f943 730 if (xa_is_value(page))
6a15a370
VB
731 swapped++;
732
733 if (need_resched()) {
7ae3424f 734 xas_pause(&xas);
6a15a370 735 cond_resched_rcu();
6a15a370
VB
736 }
737 }
738
739 rcu_read_unlock();
740
741 return swapped << PAGE_SHIFT;
742}
743
48131e03
VB
744/*
745 * Determine (in bytes) how many of the shmem object's pages mapped by the
746 * given vma is swapped out.
747 *
b93b0163 748 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
749 * as long as the inode doesn't go away and racy results are not a problem.
750 */
751unsigned long shmem_swap_usage(struct vm_area_struct *vma)
752{
753 struct inode *inode = file_inode(vma->vm_file);
754 struct shmem_inode_info *info = SHMEM_I(inode);
755 struct address_space *mapping = inode->i_mapping;
756 unsigned long swapped;
757
758 /* Be careful as we don't hold info->lock */
759 swapped = READ_ONCE(info->swapped);
760
761 /*
762 * The easier cases are when the shmem object has nothing in swap, or
763 * the vma maps it whole. Then we can simply use the stats that we
764 * already track.
765 */
766 if (!swapped)
767 return 0;
768
769 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
770 return swapped << PAGE_SHIFT;
771
772 /* Here comes the more involved part */
773 return shmem_partial_swap_usage(mapping,
774 linear_page_index(vma, vma->vm_start),
775 linear_page_index(vma, vma->vm_end));
776}
777
24513264
HD
778/*
779 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
780 */
781void shmem_unlock_mapping(struct address_space *mapping)
782{
783 struct pagevec pvec;
784 pgoff_t indices[PAGEVEC_SIZE];
785 pgoff_t index = 0;
786
86679820 787 pagevec_init(&pvec);
24513264
HD
788 /*
789 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
790 */
791 while (!mapping_unevictable(mapping)) {
792 /*
793 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
794 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
795 */
0cd6144a
JW
796 pvec.nr = find_get_entries(mapping, index,
797 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
798 if (!pvec.nr)
799 break;
800 index = indices[pvec.nr - 1] + 1;
0cd6144a 801 pagevec_remove_exceptionals(&pvec);
64e3d12f 802 check_move_unevictable_pages(&pvec);
24513264
HD
803 pagevec_release(&pvec);
804 cond_resched();
805 }
7a5d0fbb
HD
806}
807
71725ed1
HD
808/*
809 * Check whether a hole-punch or truncation needs to split a huge page,
810 * returning true if no split was required, or the split has been successful.
811 *
812 * Eviction (or truncation to 0 size) should never need to split a huge page;
813 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
814 * head, and then succeeded to trylock on tail.
815 *
816 * A split can only succeed when there are no additional references on the
817 * huge page: so the split below relies upon find_get_entries() having stopped
818 * when it found a subpage of the huge page, without getting further references.
819 */
820static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
821{
822 if (!PageTransCompound(page))
823 return true;
824
825 /* Just proceed to delete a huge page wholly within the range punched */
826 if (PageHead(page) &&
827 page->index >= start && page->index + HPAGE_PMD_NR <= end)
828 return true;
829
830 /* Try to split huge page, so we can truly punch the hole or truncate */
831 return split_huge_page(page) >= 0;
832}
833
7a5d0fbb 834/*
7f4446ee 835 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 836 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 837 */
1635f6a7
HD
838static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
839 bool unfalloc)
1da177e4 840{
285b2c4f 841 struct address_space *mapping = inode->i_mapping;
1da177e4 842 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
843 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
845 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
846 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 847 struct pagevec pvec;
7a5d0fbb
HD
848 pgoff_t indices[PAGEVEC_SIZE];
849 long nr_swaps_freed = 0;
285b2c4f 850 pgoff_t index;
bda97eab
HD
851 int i;
852
83e4fa9c
HD
853 if (lend == -1)
854 end = -1; /* unsigned, so actually very big */
bda97eab 855
86679820 856 pagevec_init(&pvec);
bda97eab 857 index = start;
83e4fa9c 858 while (index < end) {
0cd6144a
JW
859 pvec.nr = find_get_entries(mapping, index,
860 min(end - index, (pgoff_t)PAGEVEC_SIZE),
861 pvec.pages, indices);
7a5d0fbb
HD
862 if (!pvec.nr)
863 break;
bda97eab
HD
864 for (i = 0; i < pagevec_count(&pvec); i++) {
865 struct page *page = pvec.pages[i];
866
7a5d0fbb 867 index = indices[i];
83e4fa9c 868 if (index >= end)
bda97eab
HD
869 break;
870
3159f943 871 if (xa_is_value(page)) {
1635f6a7
HD
872 if (unfalloc)
873 continue;
7a5d0fbb
HD
874 nr_swaps_freed += !shmem_free_swap(mapping,
875 index, page);
bda97eab 876 continue;
7a5d0fbb
HD
877 }
878
800d8c63
KS
879 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
880
7a5d0fbb 881 if (!trylock_page(page))
bda97eab 882 continue;
800d8c63 883
71725ed1
HD
884 if ((!unfalloc || !PageUptodate(page)) &&
885 page_mapping(page) == mapping) {
886 VM_BUG_ON_PAGE(PageWriteback(page), page);
887 if (shmem_punch_compound(page, start, end))
1635f6a7 888 truncate_inode_page(mapping, page);
bda97eab 889 }
bda97eab
HD
890 unlock_page(page);
891 }
0cd6144a 892 pagevec_remove_exceptionals(&pvec);
24513264 893 pagevec_release(&pvec);
bda97eab
HD
894 cond_resched();
895 index++;
896 }
1da177e4 897
83e4fa9c 898 if (partial_start) {
bda97eab 899 struct page *page = NULL;
9e18eb29 900 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 901 if (page) {
09cbfeaf 902 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
903 if (start > end) {
904 top = partial_end;
905 partial_end = 0;
906 }
907 zero_user_segment(page, partial_start, top);
908 set_page_dirty(page);
909 unlock_page(page);
09cbfeaf 910 put_page(page);
83e4fa9c
HD
911 }
912 }
913 if (partial_end) {
914 struct page *page = NULL;
9e18eb29 915 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
916 if (page) {
917 zero_user_segment(page, 0, partial_end);
bda97eab
HD
918 set_page_dirty(page);
919 unlock_page(page);
09cbfeaf 920 put_page(page);
bda97eab
HD
921 }
922 }
83e4fa9c
HD
923 if (start >= end)
924 return;
bda97eab
HD
925
926 index = start;
b1a36650 927 while (index < end) {
bda97eab 928 cond_resched();
0cd6144a
JW
929
930 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 931 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 932 pvec.pages, indices);
7a5d0fbb 933 if (!pvec.nr) {
b1a36650
HD
934 /* If all gone or hole-punch or unfalloc, we're done */
935 if (index == start || end != -1)
bda97eab 936 break;
b1a36650 937 /* But if truncating, restart to make sure all gone */
bda97eab
HD
938 index = start;
939 continue;
940 }
bda97eab
HD
941 for (i = 0; i < pagevec_count(&pvec); i++) {
942 struct page *page = pvec.pages[i];
943
7a5d0fbb 944 index = indices[i];
83e4fa9c 945 if (index >= end)
bda97eab
HD
946 break;
947
3159f943 948 if (xa_is_value(page)) {
1635f6a7
HD
949 if (unfalloc)
950 continue;
b1a36650
HD
951 if (shmem_free_swap(mapping, index, page)) {
952 /* Swap was replaced by page: retry */
953 index--;
954 break;
955 }
956 nr_swaps_freed++;
7a5d0fbb
HD
957 continue;
958 }
959
bda97eab 960 lock_page(page);
800d8c63 961
1635f6a7 962 if (!unfalloc || !PageUptodate(page)) {
71725ed1 963 if (page_mapping(page) != mapping) {
b1a36650
HD
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
1635f6a7 968 }
71725ed1
HD
969 VM_BUG_ON_PAGE(PageWriteback(page), page);
970 if (shmem_punch_compound(page, start, end))
971 truncate_inode_page(mapping, page);
0783ac95 972 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
973 /* Wipe the page and don't get stuck */
974 clear_highpage(page);
975 flush_dcache_page(page);
976 set_page_dirty(page);
977 if (index <
978 round_up(start, HPAGE_PMD_NR))
979 start = index + 1;
980 }
7a5d0fbb 981 }
bda97eab
HD
982 unlock_page(page);
983 }
0cd6144a 984 pagevec_remove_exceptionals(&pvec);
24513264 985 pagevec_release(&pvec);
bda97eab
HD
986 index++;
987 }
94c1e62d 988
4595ef88 989 spin_lock_irq(&info->lock);
7a5d0fbb 990 info->swapped -= nr_swaps_freed;
1da177e4 991 shmem_recalc_inode(inode);
4595ef88 992 spin_unlock_irq(&info->lock);
1635f6a7 993}
1da177e4 994
1635f6a7
HD
995void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996{
997 shmem_undo_range(inode, lstart, lend, false);
078cd827 998 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 999}
94c1e62d 1000EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1001
a528d35e
DH
1002static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 u32 request_mask, unsigned int query_flags)
44a30220 1004{
a528d35e 1005 struct inode *inode = path->dentry->d_inode;
44a30220 1006 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1007 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1008
d0424c42 1009 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1010 spin_lock_irq(&info->lock);
d0424c42 1011 shmem_recalc_inode(inode);
4595ef88 1012 spin_unlock_irq(&info->lock);
d0424c42 1013 }
44a30220 1014 generic_fillattr(inode, stat);
89fdcd26
YS
1015
1016 if (is_huge_enabled(sb_info))
1017 stat->blksize = HPAGE_PMD_SIZE;
1018
44a30220
YZ
1019 return 0;
1020}
1021
94c1e62d 1022static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1023{
75c3cfa8 1024 struct inode *inode = d_inode(dentry);
40e041a2 1025 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1026 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1027 int error;
1028
31051c85 1029 error = setattr_prepare(dentry, attr);
db78b877
CH
1030 if (error)
1031 return error;
1032
94c1e62d
HD
1033 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 loff_t oldsize = inode->i_size;
1035 loff_t newsize = attr->ia_size;
3889e6e7 1036
40e041a2
DH
1037 /* protected by i_mutex */
1038 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 return -EPERM;
1041
94c1e62d 1042 if (newsize != oldsize) {
77142517
KK
1043 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044 oldsize, newsize);
1045 if (error)
1046 return error;
94c1e62d 1047 i_size_write(inode, newsize);
078cd827 1048 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1049 }
afa2db2f 1050 if (newsize <= oldsize) {
94c1e62d 1051 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
1055 if (info->alloced)
1056 shmem_truncate_range(inode,
1057 newsize, (loff_t)-1);
94c1e62d 1058 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1059 if (oldsize > holebegin)
1060 unmap_mapping_range(inode->i_mapping,
1061 holebegin, 0, 1);
779750d2
KS
1062
1063 /*
1064 * Part of the huge page can be beyond i_size: subject
1065 * to shrink under memory pressure.
1066 */
396bcc52 1067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1068 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1069 /*
1070 * _careful to defend against unlocked access to
1071 * ->shrink_list in shmem_unused_huge_shrink()
1072 */
1073 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1074 list_add_tail(&info->shrinklist,
1075 &sbinfo->shrinklist);
1076 sbinfo->shrinklist_len++;
1077 }
1078 spin_unlock(&sbinfo->shrinklist_lock);
1079 }
94c1e62d 1080 }
1da177e4
LT
1081 }
1082
db78b877 1083 setattr_copy(inode, attr);
db78b877 1084 if (attr->ia_valid & ATTR_MODE)
feda821e 1085 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1086 return error;
1087}
1088
1f895f75 1089static void shmem_evict_inode(struct inode *inode)
1da177e4 1090{
1da177e4 1091 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1093
3889e6e7 1094 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1095 shmem_unacct_size(info->flags, inode->i_size);
1096 inode->i_size = 0;
3889e6e7 1097 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1098 if (!list_empty(&info->shrinklist)) {
1099 spin_lock(&sbinfo->shrinklist_lock);
1100 if (!list_empty(&info->shrinklist)) {
1101 list_del_init(&info->shrinklist);
1102 sbinfo->shrinklist_len--;
1103 }
1104 spin_unlock(&sbinfo->shrinklist_lock);
1105 }
af53d3e9
HD
1106 while (!list_empty(&info->swaplist)) {
1107 /* Wait while shmem_unuse() is scanning this inode... */
1108 wait_var_event(&info->stop_eviction,
1109 !atomic_read(&info->stop_eviction));
cb5f7b9a 1110 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1111 /* ...but beware of the race if we peeked too early */
1112 if (!atomic_read(&info->stop_eviction))
1113 list_del_init(&info->swaplist);
cb5f7b9a 1114 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1115 }
3ed47db3 1116 }
b09e0fa4 1117
38f38657 1118 simple_xattrs_free(&info->xattrs);
0f3c42f5 1119 WARN_ON(inode->i_blocks);
5b04c689 1120 shmem_free_inode(inode->i_sb);
dbd5768f 1121 clear_inode(inode);
1da177e4
LT
1122}
1123
b56a2d8a
VRP
1124extern struct swap_info_struct *swap_info[];
1125
1126static int shmem_find_swap_entries(struct address_space *mapping,
1127 pgoff_t start, unsigned int nr_entries,
1128 struct page **entries, pgoff_t *indices,
87039546 1129 unsigned int type, bool frontswap)
478922e2 1130{
b56a2d8a
VRP
1131 XA_STATE(xas, &mapping->i_pages, start);
1132 struct page *page;
87039546 1133 swp_entry_t entry;
b56a2d8a
VRP
1134 unsigned int ret = 0;
1135
1136 if (!nr_entries)
1137 return 0;
478922e2
MW
1138
1139 rcu_read_lock();
b56a2d8a
VRP
1140 xas_for_each(&xas, page, ULONG_MAX) {
1141 if (xas_retry(&xas, page))
5b9c98f3 1142 continue;
b56a2d8a
VRP
1143
1144 if (!xa_is_value(page))
478922e2 1145 continue;
b56a2d8a 1146
87039546
HD
1147 entry = radix_to_swp_entry(page);
1148 if (swp_type(entry) != type)
1149 continue;
1150 if (frontswap &&
1151 !frontswap_test(swap_info[type], swp_offset(entry)))
1152 continue;
b56a2d8a
VRP
1153
1154 indices[ret] = xas.xa_index;
1155 entries[ret] = page;
1156
1157 if (need_resched()) {
1158 xas_pause(&xas);
1159 cond_resched_rcu();
1160 }
1161 if (++ret == nr_entries)
1162 break;
478922e2 1163 }
478922e2 1164 rcu_read_unlock();
e21a2955 1165
b56a2d8a 1166 return ret;
478922e2
MW
1167}
1168
46f65ec1 1169/*
b56a2d8a
VRP
1170 * Move the swapped pages for an inode to page cache. Returns the count
1171 * of pages swapped in, or the error in case of failure.
46f65ec1 1172 */
b56a2d8a
VRP
1173static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 pgoff_t *indices)
1da177e4 1175{
b56a2d8a
VRP
1176 int i = 0;
1177 int ret = 0;
bde05d1c 1178 int error = 0;
b56a2d8a 1179 struct address_space *mapping = inode->i_mapping;
1da177e4 1180
b56a2d8a
VRP
1181 for (i = 0; i < pvec.nr; i++) {
1182 struct page *page = pvec.pages[i];
2e0e26c7 1183
b56a2d8a
VRP
1184 if (!xa_is_value(page))
1185 continue;
1186 error = shmem_swapin_page(inode, indices[i],
1187 &page, SGP_CACHE,
1188 mapping_gfp_mask(mapping),
1189 NULL, NULL);
1190 if (error == 0) {
1191 unlock_page(page);
1192 put_page(page);
1193 ret++;
1194 }
1195 if (error == -ENOMEM)
1196 break;
1197 error = 0;
bde05d1c 1198 }
b56a2d8a
VRP
1199 return error ? error : ret;
1200}
bde05d1c 1201
b56a2d8a
VRP
1202/*
1203 * If swap found in inode, free it and move page from swapcache to filecache.
1204 */
1205static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 bool frontswap, unsigned long *fs_pages_to_unuse)
1207{
1208 struct address_space *mapping = inode->i_mapping;
1209 pgoff_t start = 0;
1210 struct pagevec pvec;
1211 pgoff_t indices[PAGEVEC_SIZE];
1212 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 int ret = 0;
1214
1215 pagevec_init(&pvec);
1216 do {
1217 unsigned int nr_entries = PAGEVEC_SIZE;
1218
1219 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 nr_entries = *fs_pages_to_unuse;
1221
1222 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 pvec.pages, indices,
87039546 1224 type, frontswap);
b56a2d8a
VRP
1225 if (pvec.nr == 0) {
1226 ret = 0;
1227 break;
46f65ec1 1228 }
b56a2d8a
VRP
1229
1230 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231 if (ret < 0)
1232 break;
1233
1234 if (frontswap_partial) {
1235 *fs_pages_to_unuse -= ret;
1236 if (*fs_pages_to_unuse == 0) {
1237 ret = FRONTSWAP_PAGES_UNUSED;
1238 break;
1239 }
1240 }
1241
1242 start = indices[pvec.nr - 1];
1243 } while (true);
1244
1245 return ret;
1da177e4
LT
1246}
1247
1248/*
b56a2d8a
VRP
1249 * Read all the shared memory data that resides in the swap
1250 * device 'type' back into memory, so the swap device can be
1251 * unused.
1da177e4 1252 */
b56a2d8a
VRP
1253int shmem_unuse(unsigned int type, bool frontswap,
1254 unsigned long *fs_pages_to_unuse)
1da177e4 1255{
b56a2d8a 1256 struct shmem_inode_info *info, *next;
bde05d1c
HD
1257 int error = 0;
1258
b56a2d8a
VRP
1259 if (list_empty(&shmem_swaplist))
1260 return 0;
1261
1262 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1263 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 if (!info->swapped) {
6922c0c7 1265 list_del_init(&info->swaplist);
b56a2d8a
VRP
1266 continue;
1267 }
af53d3e9
HD
1268 /*
1269 * Drop the swaplist mutex while searching the inode for swap;
1270 * but before doing so, make sure shmem_evict_inode() will not
1271 * remove placeholder inode from swaplist, nor let it be freed
1272 * (igrab() would protect from unlink, but not from unmount).
1273 */
1274 atomic_inc(&info->stop_eviction);
b56a2d8a 1275 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1276
af53d3e9 1277 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1278 fs_pages_to_unuse);
cb5f7b9a 1279 cond_resched();
b56a2d8a
VRP
1280
1281 mutex_lock(&shmem_swaplist_mutex);
1282 next = list_next_entry(info, swaplist);
1283 if (!info->swapped)
1284 list_del_init(&info->swaplist);
af53d3e9
HD
1285 if (atomic_dec_and_test(&info->stop_eviction))
1286 wake_up_var(&info->stop_eviction);
b56a2d8a 1287 if (error)
778dd893 1288 break;
1da177e4 1289 }
cb5f7b9a 1290 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1291
778dd893 1292 return error;
1da177e4
LT
1293}
1294
1295/*
1296 * Move the page from the page cache to the swap cache.
1297 */
1298static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299{
1300 struct shmem_inode_info *info;
1da177e4 1301 struct address_space *mapping;
1da177e4 1302 struct inode *inode;
6922c0c7
HD
1303 swp_entry_t swap;
1304 pgoff_t index;
1da177e4 1305
800d8c63 1306 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1307 BUG_ON(!PageLocked(page));
1da177e4
LT
1308 mapping = page->mapping;
1309 index = page->index;
1310 inode = mapping->host;
1311 info = SHMEM_I(inode);
1312 if (info->flags & VM_LOCKED)
1313 goto redirty;
d9fe526a 1314 if (!total_swap_pages)
1da177e4
LT
1315 goto redirty;
1316
d9fe526a 1317 /*
97b713ba
CH
1318 * Our capabilities prevent regular writeback or sync from ever calling
1319 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 * its underlying filesystem, in which case tmpfs should write out to
1321 * swap only in response to memory pressure, and not for the writeback
1322 * threads or sync.
d9fe526a 1323 */
48f170fb
HD
1324 if (!wbc->for_reclaim) {
1325 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1326 goto redirty;
1327 }
1635f6a7
HD
1328
1329 /*
1330 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 * value into swapfile.c, the only way we can correctly account for a
1332 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1333 *
1334 * That's okay for a page already fallocated earlier, but if we have
1335 * not yet completed the fallocation, then (a) we want to keep track
1336 * of this page in case we have to undo it, and (b) it may not be a
1337 * good idea to continue anyway, once we're pushing into swap. So
1338 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1339 */
1340 if (!PageUptodate(page)) {
1aac1400
HD
1341 if (inode->i_private) {
1342 struct shmem_falloc *shmem_falloc;
1343 spin_lock(&inode->i_lock);
1344 shmem_falloc = inode->i_private;
1345 if (shmem_falloc &&
8e205f77 1346 !shmem_falloc->waitq &&
1aac1400
HD
1347 index >= shmem_falloc->start &&
1348 index < shmem_falloc->next)
1349 shmem_falloc->nr_unswapped++;
1350 else
1351 shmem_falloc = NULL;
1352 spin_unlock(&inode->i_lock);
1353 if (shmem_falloc)
1354 goto redirty;
1355 }
1635f6a7
HD
1356 clear_highpage(page);
1357 flush_dcache_page(page);
1358 SetPageUptodate(page);
1359 }
1360
38d8b4e6 1361 swap = get_swap_page(page);
48f170fb
HD
1362 if (!swap.val)
1363 goto redirty;
d9fe526a 1364
b1dea800
HD
1365 /*
1366 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1367 * if it's not already there. Do it now before the page is
1368 * moved to swap cache, when its pagelock no longer protects
b1dea800 1369 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1370 * we've incremented swapped, because shmem_unuse_inode() will
1371 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1372 */
48f170fb
HD
1373 mutex_lock(&shmem_swaplist_mutex);
1374 if (list_empty(&info->swaplist))
b56a2d8a 1375 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1376
4afab1cd
YS
1377 if (add_to_swap_cache(page, swap,
1378 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
4595ef88 1379 spin_lock_irq(&info->lock);
6922c0c7 1380 shmem_recalc_inode(inode);
267a4c76 1381 info->swapped++;
4595ef88 1382 spin_unlock_irq(&info->lock);
6922c0c7 1383
267a4c76
HD
1384 swap_shmem_alloc(swap);
1385 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1386
6922c0c7 1387 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1388 BUG_ON(page_mapped(page));
9fab5619 1389 swap_writepage(page, wbc);
1da177e4
LT
1390 return 0;
1391 }
1392
6922c0c7 1393 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1394 put_swap_page(page, swap);
1da177e4
LT
1395redirty:
1396 set_page_dirty(page);
d9fe526a
HD
1397 if (wbc->for_reclaim)
1398 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1399 unlock_page(page);
1400 return 0;
1da177e4
LT
1401}
1402
75edd345 1403#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1404static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1405{
095f1fc4 1406 char buffer[64];
680d794b 1407
71fe804b 1408 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1409 return; /* show nothing */
680d794b 1410
a7a88b23 1411 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1412
1413 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1414}
71fe804b
LS
1415
1416static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1417{
1418 struct mempolicy *mpol = NULL;
1419 if (sbinfo->mpol) {
1420 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1421 mpol = sbinfo->mpol;
1422 mpol_get(mpol);
1423 spin_unlock(&sbinfo->stat_lock);
1424 }
1425 return mpol;
1426}
75edd345
HD
1427#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1428static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429{
1430}
1431static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1432{
1433 return NULL;
1434}
1435#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1436#ifndef CONFIG_NUMA
1437#define vm_policy vm_private_data
1438#endif
680d794b 1439
800d8c63
KS
1440static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1441 struct shmem_inode_info *info, pgoff_t index)
1442{
1443 /* Create a pseudo vma that just contains the policy */
2c4541e2 1444 vma_init(vma, NULL);
800d8c63
KS
1445 /* Bias interleave by inode number to distribute better across nodes */
1446 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1447 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1448}
1449
1450static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1451{
1452 /* Drop reference taken by mpol_shared_policy_lookup() */
1453 mpol_cond_put(vma->vm_policy);
1454}
1455
41ffe5d5
HD
1456static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1457 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1458{
1da177e4 1459 struct vm_area_struct pvma;
18a2f371 1460 struct page *page;
e9e9b7ec 1461 struct vm_fault vmf;
52cd3b07 1462
800d8c63 1463 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1464 vmf.vma = &pvma;
1465 vmf.address = 0;
1466 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1467 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1468
800d8c63
KS
1469 return page;
1470}
1471
1472static struct page *shmem_alloc_hugepage(gfp_t gfp,
1473 struct shmem_inode_info *info, pgoff_t index)
1474{
1475 struct vm_area_struct pvma;
7b8d046f
MW
1476 struct address_space *mapping = info->vfs_inode.i_mapping;
1477 pgoff_t hindex;
800d8c63
KS
1478 struct page *page;
1479
4620a06e 1480 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1481 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1482 XA_PRESENT))
800d8c63 1483 return NULL;
18a2f371 1484
800d8c63
KS
1485 shmem_pseudo_vma_init(&pvma, info, hindex);
1486 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
19deb769 1487 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1488 shmem_pseudo_vma_destroy(&pvma);
1489 if (page)
1490 prep_transhuge_page(page);
dcdf11ee
DR
1491 else
1492 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1493 return page;
1da177e4
LT
1494}
1495
02098fea 1496static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1497 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1498{
1499 struct vm_area_struct pvma;
18a2f371 1500 struct page *page;
1da177e4 1501
800d8c63
KS
1502 shmem_pseudo_vma_init(&pvma, info, index);
1503 page = alloc_page_vma(gfp, &pvma, 0);
1504 shmem_pseudo_vma_destroy(&pvma);
1505
1506 return page;
1507}
1508
1509static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1510 struct inode *inode,
800d8c63
KS
1511 pgoff_t index, bool huge)
1512{
0f079694 1513 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1514 struct page *page;
1515 int nr;
1516 int err = -ENOSPC;
52cd3b07 1517
396bcc52 1518 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1519 huge = false;
1520 nr = huge ? HPAGE_PMD_NR : 1;
1521
0f079694 1522 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1523 goto failed;
800d8c63
KS
1524
1525 if (huge)
1526 page = shmem_alloc_hugepage(gfp, info, index);
1527 else
1528 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1529 if (page) {
1530 __SetPageLocked(page);
1531 __SetPageSwapBacked(page);
800d8c63 1532 return page;
75edd345 1533 }
18a2f371 1534
800d8c63 1535 err = -ENOMEM;
0f079694 1536 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1537failed:
1538 return ERR_PTR(err);
1da177e4 1539}
71fe804b 1540
bde05d1c
HD
1541/*
1542 * When a page is moved from swapcache to shmem filecache (either by the
1543 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545 * ignorance of the mapping it belongs to. If that mapping has special
1546 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547 * we may need to copy to a suitable page before moving to filecache.
1548 *
1549 * In a future release, this may well be extended to respect cpuset and
1550 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551 * but for now it is a simple matter of zone.
1552 */
1553static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554{
1555 return page_zonenum(page) > gfp_zone(gfp);
1556}
1557
1558static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1560{
1561 struct page *oldpage, *newpage;
1562 struct address_space *swap_mapping;
c1cb20d4 1563 swp_entry_t entry;
bde05d1c
HD
1564 pgoff_t swap_index;
1565 int error;
1566
1567 oldpage = *pagep;
c1cb20d4
YZ
1568 entry.val = page_private(oldpage);
1569 swap_index = swp_offset(entry);
bde05d1c
HD
1570 swap_mapping = page_mapping(oldpage);
1571
1572 /*
1573 * We have arrived here because our zones are constrained, so don't
1574 * limit chance of success by further cpuset and node constraints.
1575 */
1576 gfp &= ~GFP_CONSTRAINT_MASK;
1577 newpage = shmem_alloc_page(gfp, info, index);
1578 if (!newpage)
1579 return -ENOMEM;
bde05d1c 1580
09cbfeaf 1581 get_page(newpage);
bde05d1c 1582 copy_highpage(newpage, oldpage);
0142ef6c 1583 flush_dcache_page(newpage);
bde05d1c 1584
9956edf3
HD
1585 __SetPageLocked(newpage);
1586 __SetPageSwapBacked(newpage);
bde05d1c 1587 SetPageUptodate(newpage);
c1cb20d4 1588 set_page_private(newpage, entry.val);
bde05d1c
HD
1589 SetPageSwapCache(newpage);
1590
1591 /*
1592 * Our caller will very soon move newpage out of swapcache, but it's
1593 * a nice clean interface for us to replace oldpage by newpage there.
1594 */
b93b0163 1595 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1596 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1597 if (!error) {
0d1c2072
JW
1598 mem_cgroup_migrate(oldpage, newpage);
1599 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1600 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1601 }
b93b0163 1602 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1603
0142ef6c
HD
1604 if (unlikely(error)) {
1605 /*
1606 * Is this possible? I think not, now that our callers check
1607 * both PageSwapCache and page_private after getting page lock;
1608 * but be defensive. Reverse old to newpage for clear and free.
1609 */
1610 oldpage = newpage;
1611 } else {
0142ef6c
HD
1612 lru_cache_add_anon(newpage);
1613 *pagep = newpage;
1614 }
bde05d1c
HD
1615
1616 ClearPageSwapCache(oldpage);
1617 set_page_private(oldpage, 0);
1618
1619 unlock_page(oldpage);
09cbfeaf
KS
1620 put_page(oldpage);
1621 put_page(oldpage);
0142ef6c 1622 return error;
bde05d1c
HD
1623}
1624
c5bf121e
VRP
1625/*
1626 * Swap in the page pointed to by *pagep.
1627 * Caller has to make sure that *pagep contains a valid swapped page.
1628 * Returns 0 and the page in pagep if success. On failure, returns the
1629 * the error code and NULL in *pagep.
1630 */
1631static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 struct page **pagep, enum sgp_type sgp,
1633 gfp_t gfp, struct vm_area_struct *vma,
1634 vm_fault_t *fault_type)
1635{
1636 struct address_space *mapping = inode->i_mapping;
1637 struct shmem_inode_info *info = SHMEM_I(inode);
1638 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
c5bf121e
VRP
1639 struct page *page;
1640 swp_entry_t swap;
1641 int error;
1642
1643 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1644 swap = radix_to_swp_entry(*pagep);
1645 *pagep = NULL;
1646
1647 /* Look it up and read it in.. */
1648 page = lookup_swap_cache(swap, NULL, 0);
1649 if (!page) {
1650 /* Or update major stats only when swapin succeeds?? */
1651 if (fault_type) {
1652 *fault_type |= VM_FAULT_MAJOR;
1653 count_vm_event(PGMAJFAULT);
1654 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1655 }
1656 /* Here we actually start the io */
1657 page = shmem_swapin(swap, gfp, info, index);
1658 if (!page) {
1659 error = -ENOMEM;
1660 goto failed;
1661 }
1662 }
1663
1664 /* We have to do this with page locked to prevent races */
1665 lock_page(page);
1666 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1667 !shmem_confirm_swap(mapping, index, swap)) {
1668 error = -EEXIST;
1669 goto unlock;
1670 }
1671 if (!PageUptodate(page)) {
1672 error = -EIO;
1673 goto failed;
1674 }
1675 wait_on_page_writeback(page);
1676
1677 if (shmem_should_replace_page(page, gfp)) {
1678 error = shmem_replace_page(&page, gfp, info, index);
1679 if (error)
1680 goto failed;
1681 }
1682
14235ab3 1683 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1684 swp_to_radix_entry(swap), gfp,
1685 charge_mm);
1686 if (error)
14235ab3 1687 goto failed;
c5bf121e
VRP
1688
1689 spin_lock_irq(&info->lock);
1690 info->swapped--;
1691 shmem_recalc_inode(inode);
1692 spin_unlock_irq(&info->lock);
1693
1694 if (sgp == SGP_WRITE)
1695 mark_page_accessed(page);
1696
1697 delete_from_swap_cache(page);
1698 set_page_dirty(page);
1699 swap_free(swap);
1700
1701 *pagep = page;
1702 return 0;
1703failed:
1704 if (!shmem_confirm_swap(mapping, index, swap))
1705 error = -EEXIST;
1706unlock:
1707 if (page) {
1708 unlock_page(page);
1709 put_page(page);
1710 }
1711
1712 return error;
1713}
1714
1da177e4 1715/*
68da9f05 1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1717 *
1718 * If we allocate a new one we do not mark it dirty. That's up to the
1719 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1720 * entry since a page cannot live in both the swap and page cache.
1721 *
28eb3c80 1722 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1723 * otherwise they are NULL.
1da177e4 1724 */
41ffe5d5 1725static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1727 struct vm_area_struct *vma, struct vm_fault *vmf,
1728 vm_fault_t *fault_type)
1da177e4
LT
1729{
1730 struct address_space *mapping = inode->i_mapping;
23f919d4 1731 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1732 struct shmem_sb_info *sbinfo;
9e18eb29 1733 struct mm_struct *charge_mm;
27ab7006 1734 struct page *page;
657e3038 1735 enum sgp_type sgp_huge = sgp;
800d8c63 1736 pgoff_t hindex = index;
1da177e4 1737 int error;
54af6042 1738 int once = 0;
1635f6a7 1739 int alloced = 0;
1da177e4 1740
09cbfeaf 1741 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1742 return -EFBIG;
657e3038
KS
1743 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1744 sgp = SGP_CACHE;
1da177e4 1745repeat:
c5bf121e
VRP
1746 if (sgp <= SGP_CACHE &&
1747 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1748 return -EINVAL;
1749 }
1750
1751 sbinfo = SHMEM_SB(inode->i_sb);
1752 charge_mm = vma ? vma->vm_mm : current->mm;
1753
0cd6144a 1754 page = find_lock_entry(mapping, index);
3159f943 1755 if (xa_is_value(page)) {
c5bf121e
VRP
1756 error = shmem_swapin_page(inode, index, &page,
1757 sgp, gfp, vma, fault_type);
1758 if (error == -EEXIST)
1759 goto repeat;
54af6042 1760
c5bf121e
VRP
1761 *pagep = page;
1762 return error;
54af6042
HD
1763 }
1764
66d2f4d2
HD
1765 if (page && sgp == SGP_WRITE)
1766 mark_page_accessed(page);
1767
1635f6a7
HD
1768 /* fallocated page? */
1769 if (page && !PageUptodate(page)) {
1770 if (sgp != SGP_READ)
1771 goto clear;
1772 unlock_page(page);
09cbfeaf 1773 put_page(page);
1635f6a7
HD
1774 page = NULL;
1775 }
c5bf121e 1776 if (page || sgp == SGP_READ) {
54af6042
HD
1777 *pagep = page;
1778 return 0;
27ab7006
HD
1779 }
1780
1781 /*
54af6042
HD
1782 * Fast cache lookup did not find it:
1783 * bring it back from swap or allocate.
27ab7006 1784 */
54af6042 1785
c5bf121e
VRP
1786 if (vma && userfaultfd_missing(vma)) {
1787 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1788 return 0;
1789 }
cfda0526 1790
c5bf121e
VRP
1791 /* shmem_symlink() */
1792 if (mapping->a_ops != &shmem_aops)
1793 goto alloc_nohuge;
1794 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1795 goto alloc_nohuge;
1796 if (shmem_huge == SHMEM_HUGE_FORCE)
1797 goto alloc_huge;
1798 switch (sbinfo->huge) {
c5bf121e
VRP
1799 case SHMEM_HUGE_NEVER:
1800 goto alloc_nohuge;
27d80fa2
KC
1801 case SHMEM_HUGE_WITHIN_SIZE: {
1802 loff_t i_size;
1803 pgoff_t off;
1804
c5bf121e
VRP
1805 off = round_up(index, HPAGE_PMD_NR);
1806 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 if (i_size >= HPAGE_PMD_SIZE &&
1808 i_size >> PAGE_SHIFT >= off)
800d8c63 1809 goto alloc_huge;
27d80fa2
KC
1810
1811 fallthrough;
1812 }
c5bf121e
VRP
1813 case SHMEM_HUGE_ADVISE:
1814 if (sgp_huge == SGP_HUGE)
1815 goto alloc_huge;
1816 /* TODO: implement fadvise() hints */
1817 goto alloc_nohuge;
1818 }
1da177e4 1819
800d8c63 1820alloc_huge:
c5bf121e
VRP
1821 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1822 if (IS_ERR(page)) {
1823alloc_nohuge:
1824 page = shmem_alloc_and_acct_page(gfp, inode,
1825 index, false);
1826 }
1827 if (IS_ERR(page)) {
1828 int retry = 5;
800d8c63 1829
c5bf121e
VRP
1830 error = PTR_ERR(page);
1831 page = NULL;
1832 if (error != -ENOSPC)
1833 goto unlock;
1834 /*
1835 * Try to reclaim some space by splitting a huge page
1836 * beyond i_size on the filesystem.
1837 */
1838 while (retry--) {
1839 int ret;
66d2f4d2 1840
c5bf121e
VRP
1841 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1842 if (ret == SHRINK_STOP)
1843 break;
1844 if (ret)
1845 goto alloc_nohuge;
b065b432 1846 }
c5bf121e
VRP
1847 goto unlock;
1848 }
54af6042 1849
c5bf121e
VRP
1850 if (PageTransHuge(page))
1851 hindex = round_down(index, HPAGE_PMD_NR);
1852 else
1853 hindex = index;
54af6042 1854
c5bf121e
VRP
1855 if (sgp == SGP_WRITE)
1856 __SetPageReferenced(page);
1857
c5bf121e 1858 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1859 NULL, gfp & GFP_RECLAIM_MASK,
1860 charge_mm);
1861 if (error)
c5bf121e 1862 goto unacct;
c5bf121e 1863 lru_cache_add_anon(page);
779750d2 1864
c5bf121e 1865 spin_lock_irq(&info->lock);
d8c6546b 1866 info->alloced += compound_nr(page);
c5bf121e
VRP
1867 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1868 shmem_recalc_inode(inode);
1869 spin_unlock_irq(&info->lock);
1870 alloced = true;
1871
1872 if (PageTransHuge(page) &&
1873 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1874 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1875 /*
c5bf121e
VRP
1876 * Part of the huge page is beyond i_size: subject
1877 * to shrink under memory pressure.
1635f6a7 1878 */
c5bf121e 1879 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1880 /*
c5bf121e
VRP
1881 * _careful to defend against unlocked access to
1882 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1883 */
c5bf121e
VRP
1884 if (list_empty_careful(&info->shrinklist)) {
1885 list_add_tail(&info->shrinklist,
1886 &sbinfo->shrinklist);
1887 sbinfo->shrinklist_len++;
1888 }
1889 spin_unlock(&sbinfo->shrinklist_lock);
1890 }
800d8c63 1891
c5bf121e
VRP
1892 /*
1893 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1894 */
1895 if (sgp == SGP_FALLOC)
1896 sgp = SGP_WRITE;
1897clear:
1898 /*
1899 * Let SGP_WRITE caller clear ends if write does not fill page;
1900 * but SGP_FALLOC on a page fallocated earlier must initialize
1901 * it now, lest undo on failure cancel our earlier guarantee.
1902 */
1903 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1904 struct page *head = compound_head(page);
1905 int i;
1906
d8c6546b 1907 for (i = 0; i < compound_nr(head); i++) {
c5bf121e
VRP
1908 clear_highpage(head + i);
1909 flush_dcache_page(head + i);
ec9516fb 1910 }
c5bf121e 1911 SetPageUptodate(head);
1da177e4 1912 }
bde05d1c 1913
54af6042 1914 /* Perhaps the file has been truncated since we checked */
75edd345 1915 if (sgp <= SGP_CACHE &&
09cbfeaf 1916 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1917 if (alloced) {
1918 ClearPageDirty(page);
1919 delete_from_page_cache(page);
4595ef88 1920 spin_lock_irq(&info->lock);
267a4c76 1921 shmem_recalc_inode(inode);
4595ef88 1922 spin_unlock_irq(&info->lock);
267a4c76 1923 }
54af6042 1924 error = -EINVAL;
267a4c76 1925 goto unlock;
e83c32e8 1926 }
800d8c63 1927 *pagep = page + index - hindex;
54af6042 1928 return 0;
1da177e4 1929
59a16ead 1930 /*
54af6042 1931 * Error recovery.
59a16ead 1932 */
54af6042 1933unacct:
d8c6546b 1934 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1935
1936 if (PageTransHuge(page)) {
1937 unlock_page(page);
1938 put_page(page);
1939 goto alloc_nohuge;
1940 }
d1899228 1941unlock:
27ab7006 1942 if (page) {
54af6042 1943 unlock_page(page);
09cbfeaf 1944 put_page(page);
54af6042
HD
1945 }
1946 if (error == -ENOSPC && !once++) {
4595ef88 1947 spin_lock_irq(&info->lock);
54af6042 1948 shmem_recalc_inode(inode);
4595ef88 1949 spin_unlock_irq(&info->lock);
27ab7006 1950 goto repeat;
ff36b801 1951 }
7f4446ee 1952 if (error == -EEXIST)
54af6042
HD
1953 goto repeat;
1954 return error;
1da177e4
LT
1955}
1956
10d20bd2
LT
1957/*
1958 * This is like autoremove_wake_function, but it removes the wait queue
1959 * entry unconditionally - even if something else had already woken the
1960 * target.
1961 */
ac6424b9 1962static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1963{
1964 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1965 list_del_init(&wait->entry);
10d20bd2
LT
1966 return ret;
1967}
1968
20acce67 1969static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1970{
11bac800 1971 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1972 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1973 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1974 enum sgp_type sgp;
20acce67
SJ
1975 int err;
1976 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1977
f00cdc6d
HD
1978 /*
1979 * Trinity finds that probing a hole which tmpfs is punching can
1980 * prevent the hole-punch from ever completing: which in turn
1981 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1982 * faulting pages into the hole while it's being punched. Although
1983 * shmem_undo_range() does remove the additions, it may be unable to
1984 * keep up, as each new page needs its own unmap_mapping_range() call,
1985 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1986 *
1987 * It does not matter if we sometimes reach this check just before the
1988 * hole-punch begins, so that one fault then races with the punch:
1989 * we just need to make racing faults a rare case.
1990 *
1991 * The implementation below would be much simpler if we just used a
1992 * standard mutex or completion: but we cannot take i_mutex in fault,
1993 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1994 */
1995 if (unlikely(inode->i_private)) {
1996 struct shmem_falloc *shmem_falloc;
1997
1998 spin_lock(&inode->i_lock);
1999 shmem_falloc = inode->i_private;
8e205f77
HD
2000 if (shmem_falloc &&
2001 shmem_falloc->waitq &&
2002 vmf->pgoff >= shmem_falloc->start &&
2003 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2004 struct file *fpin;
8e205f77 2005 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2006 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2007
2008 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2009 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2010 if (fpin)
8e205f77 2011 ret = VM_FAULT_RETRY;
8e205f77
HD
2012
2013 shmem_falloc_waitq = shmem_falloc->waitq;
2014 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2015 TASK_UNINTERRUPTIBLE);
2016 spin_unlock(&inode->i_lock);
2017 schedule();
2018
2019 /*
2020 * shmem_falloc_waitq points into the shmem_fallocate()
2021 * stack of the hole-punching task: shmem_falloc_waitq
2022 * is usually invalid by the time we reach here, but
2023 * finish_wait() does not dereference it in that case;
2024 * though i_lock needed lest racing with wake_up_all().
2025 */
2026 spin_lock(&inode->i_lock);
2027 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2028 spin_unlock(&inode->i_lock);
8897c1b1
KS
2029
2030 if (fpin)
2031 fput(fpin);
8e205f77 2032 return ret;
f00cdc6d 2033 }
8e205f77 2034 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2035 }
2036
657e3038 2037 sgp = SGP_CACHE;
18600332
MH
2038
2039 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2040 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2041 sgp = SGP_NOHUGE;
18600332
MH
2042 else if (vma->vm_flags & VM_HUGEPAGE)
2043 sgp = SGP_HUGE;
657e3038 2044
20acce67 2045 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2046 gfp, vma, vmf, &ret);
20acce67
SJ
2047 if (err)
2048 return vmf_error(err);
68da9f05 2049 return ret;
1da177e4
LT
2050}
2051
c01d5b30
HD
2052unsigned long shmem_get_unmapped_area(struct file *file,
2053 unsigned long uaddr, unsigned long len,
2054 unsigned long pgoff, unsigned long flags)
2055{
2056 unsigned long (*get_area)(struct file *,
2057 unsigned long, unsigned long, unsigned long, unsigned long);
2058 unsigned long addr;
2059 unsigned long offset;
2060 unsigned long inflated_len;
2061 unsigned long inflated_addr;
2062 unsigned long inflated_offset;
2063
2064 if (len > TASK_SIZE)
2065 return -ENOMEM;
2066
2067 get_area = current->mm->get_unmapped_area;
2068 addr = get_area(file, uaddr, len, pgoff, flags);
2069
396bcc52 2070 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2071 return addr;
2072 if (IS_ERR_VALUE(addr))
2073 return addr;
2074 if (addr & ~PAGE_MASK)
2075 return addr;
2076 if (addr > TASK_SIZE - len)
2077 return addr;
2078
2079 if (shmem_huge == SHMEM_HUGE_DENY)
2080 return addr;
2081 if (len < HPAGE_PMD_SIZE)
2082 return addr;
2083 if (flags & MAP_FIXED)
2084 return addr;
2085 /*
2086 * Our priority is to support MAP_SHARED mapped hugely;
2087 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2088 * But if caller specified an address hint and we allocated area there
2089 * successfully, respect that as before.
c01d5b30 2090 */
99158997 2091 if (uaddr == addr)
c01d5b30
HD
2092 return addr;
2093
2094 if (shmem_huge != SHMEM_HUGE_FORCE) {
2095 struct super_block *sb;
2096
2097 if (file) {
2098 VM_BUG_ON(file->f_op != &shmem_file_operations);
2099 sb = file_inode(file)->i_sb;
2100 } else {
2101 /*
2102 * Called directly from mm/mmap.c, or drivers/char/mem.c
2103 * for "/dev/zero", to create a shared anonymous object.
2104 */
2105 if (IS_ERR(shm_mnt))
2106 return addr;
2107 sb = shm_mnt->mnt_sb;
2108 }
3089bf61 2109 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2110 return addr;
2111 }
2112
2113 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2114 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2115 return addr;
2116 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2117 return addr;
2118
2119 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2120 if (inflated_len > TASK_SIZE)
2121 return addr;
2122 if (inflated_len < len)
2123 return addr;
2124
99158997 2125 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2126 if (IS_ERR_VALUE(inflated_addr))
2127 return addr;
2128 if (inflated_addr & ~PAGE_MASK)
2129 return addr;
2130
2131 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2132 inflated_addr += offset - inflated_offset;
2133 if (inflated_offset > offset)
2134 inflated_addr += HPAGE_PMD_SIZE;
2135
2136 if (inflated_addr > TASK_SIZE - len)
2137 return addr;
2138 return inflated_addr;
2139}
2140
1da177e4 2141#ifdef CONFIG_NUMA
41ffe5d5 2142static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2143{
496ad9aa 2144 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2145 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2146}
2147
d8dc74f2
AB
2148static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2149 unsigned long addr)
1da177e4 2150{
496ad9aa 2151 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2152 pgoff_t index;
1da177e4 2153
41ffe5d5
HD
2154 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2155 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2156}
2157#endif
2158
2159int shmem_lock(struct file *file, int lock, struct user_struct *user)
2160{
496ad9aa 2161 struct inode *inode = file_inode(file);
1da177e4
LT
2162 struct shmem_inode_info *info = SHMEM_I(inode);
2163 int retval = -ENOMEM;
2164
ea0dfeb4
HD
2165 /*
2166 * What serializes the accesses to info->flags?
2167 * ipc_lock_object() when called from shmctl_do_lock(),
2168 * no serialization needed when called from shm_destroy().
2169 */
1da177e4
LT
2170 if (lock && !(info->flags & VM_LOCKED)) {
2171 if (!user_shm_lock(inode->i_size, user))
2172 goto out_nomem;
2173 info->flags |= VM_LOCKED;
89e004ea 2174 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2175 }
2176 if (!lock && (info->flags & VM_LOCKED) && user) {
2177 user_shm_unlock(inode->i_size, user);
2178 info->flags &= ~VM_LOCKED;
89e004ea 2179 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2180 }
2181 retval = 0;
89e004ea 2182
1da177e4 2183out_nomem:
1da177e4
LT
2184 return retval;
2185}
2186
9b83a6a8 2187static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2188{
ab3948f5
JFG
2189 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2190
2191 if (info->seals & F_SEAL_FUTURE_WRITE) {
2192 /*
2193 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2194 * "future write" seal active.
2195 */
2196 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2197 return -EPERM;
2198
2199 /*
05d35110
NG
2200 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2201 * MAP_SHARED and read-only, take care to not allow mprotect to
2202 * revert protections on such mappings. Do this only for shared
2203 * mappings. For private mappings, don't need to mask
2204 * VM_MAYWRITE as we still want them to be COW-writable.
ab3948f5 2205 */
05d35110
NG
2206 if (vma->vm_flags & VM_SHARED)
2207 vma->vm_flags &= ~(VM_MAYWRITE);
ab3948f5
JFG
2208 }
2209
1da177e4
LT
2210 file_accessed(file);
2211 vma->vm_ops = &shmem_vm_ops;
396bcc52 2212 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2213 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2214 (vma->vm_end & HPAGE_PMD_MASK)) {
2215 khugepaged_enter(vma, vma->vm_flags);
2216 }
1da177e4
LT
2217 return 0;
2218}
2219
454abafe 2220static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2221 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2222{
2223 struct inode *inode;
2224 struct shmem_inode_info *info;
2225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2226
5b04c689
PE
2227 if (shmem_reserve_inode(sb))
2228 return NULL;
1da177e4
LT
2229
2230 inode = new_inode(sb);
2231 if (inode) {
85fe4025 2232 inode->i_ino = get_next_ino();
454abafe 2233 inode_init_owner(inode, dir, mode);
1da177e4 2234 inode->i_blocks = 0;
078cd827 2235 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2236 inode->i_generation = prandom_u32();
1da177e4
LT
2237 info = SHMEM_I(inode);
2238 memset(info, 0, (char *)inode - (char *)info);
2239 spin_lock_init(&info->lock);
af53d3e9 2240 atomic_set(&info->stop_eviction, 0);
40e041a2 2241 info->seals = F_SEAL_SEAL;
0b0a0806 2242 info->flags = flags & VM_NORESERVE;
779750d2 2243 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2244 INIT_LIST_HEAD(&info->swaplist);
38f38657 2245 simple_xattrs_init(&info->xattrs);
72c04902 2246 cache_no_acl(inode);
1da177e4
LT
2247
2248 switch (mode & S_IFMT) {
2249 default:
39f0247d 2250 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2251 init_special_inode(inode, mode, dev);
2252 break;
2253 case S_IFREG:
14fcc23f 2254 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2255 inode->i_op = &shmem_inode_operations;
2256 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2257 mpol_shared_policy_init(&info->policy,
2258 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2259 break;
2260 case S_IFDIR:
d8c76e6f 2261 inc_nlink(inode);
1da177e4
LT
2262 /* Some things misbehave if size == 0 on a directory */
2263 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2264 inode->i_op = &shmem_dir_inode_operations;
2265 inode->i_fop = &simple_dir_operations;
2266 break;
2267 case S_IFLNK:
2268 /*
2269 * Must not load anything in the rbtree,
2270 * mpol_free_shared_policy will not be called.
2271 */
71fe804b 2272 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2273 break;
2274 }
b45d71fb
JFG
2275
2276 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2277 } else
2278 shmem_free_inode(sb);
1da177e4
LT
2279 return inode;
2280}
2281
0cd6144a
JW
2282bool shmem_mapping(struct address_space *mapping)
2283{
f8005451 2284 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2285}
2286
8d103963
MR
2287static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2288 pmd_t *dst_pmd,
2289 struct vm_area_struct *dst_vma,
2290 unsigned long dst_addr,
2291 unsigned long src_addr,
2292 bool zeropage,
2293 struct page **pagep)
4c27fe4c
MR
2294{
2295 struct inode *inode = file_inode(dst_vma->vm_file);
2296 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2297 struct address_space *mapping = inode->i_mapping;
2298 gfp_t gfp = mapping_gfp_mask(mapping);
2299 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2300 spinlock_t *ptl;
2301 void *page_kaddr;
2302 struct page *page;
2303 pte_t _dst_pte, *dst_pte;
2304 int ret;
e2a50c1f 2305 pgoff_t offset, max_off;
4c27fe4c 2306
cb658a45 2307 ret = -ENOMEM;
0f079694 2308 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2309 goto out;
4c27fe4c 2310
cb658a45 2311 if (!*pagep) {
4c27fe4c
MR
2312 page = shmem_alloc_page(gfp, info, pgoff);
2313 if (!page)
0f079694 2314 goto out_unacct_blocks;
4c27fe4c 2315
8d103963
MR
2316 if (!zeropage) { /* mcopy_atomic */
2317 page_kaddr = kmap_atomic(page);
2318 ret = copy_from_user(page_kaddr,
2319 (const void __user *)src_addr,
2320 PAGE_SIZE);
2321 kunmap_atomic(page_kaddr);
2322
2323 /* fallback to copy_from_user outside mmap_sem */
2324 if (unlikely(ret)) {
2325 *pagep = page;
2326 shmem_inode_unacct_blocks(inode, 1);
2327 /* don't free the page */
9e368259 2328 return -ENOENT;
8d103963
MR
2329 }
2330 } else { /* mfill_zeropage_atomic */
2331 clear_highpage(page);
4c27fe4c
MR
2332 }
2333 } else {
2334 page = *pagep;
2335 *pagep = NULL;
2336 }
2337
9cc90c66
AA
2338 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2339 __SetPageLocked(page);
2340 __SetPageSwapBacked(page);
a425d358 2341 __SetPageUptodate(page);
9cc90c66 2342
e2a50c1f
AA
2343 ret = -EFAULT;
2344 offset = linear_page_index(dst_vma, dst_addr);
2345 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2346 if (unlikely(offset >= max_off))
2347 goto out_release;
2348
552446a4 2349 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2350 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2351 if (ret)
3fea5a49 2352 goto out_release;
4c27fe4c
MR
2353
2354 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2355 if (dst_vma->vm_flags & VM_WRITE)
2356 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2357 else {
2358 /*
2359 * We don't set the pte dirty if the vma has no
2360 * VM_WRITE permission, so mark the page dirty or it
2361 * could be freed from under us. We could do it
2362 * unconditionally before unlock_page(), but doing it
2363 * only if VM_WRITE is not set is faster.
2364 */
2365 set_page_dirty(page);
2366 }
4c27fe4c 2367
4c27fe4c 2368 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2369
2370 ret = -EFAULT;
2371 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372 if (unlikely(offset >= max_off))
3fea5a49 2373 goto out_release_unlock;
e2a50c1f
AA
2374
2375 ret = -EEXIST;
4c27fe4c 2376 if (!pte_none(*dst_pte))
3fea5a49 2377 goto out_release_unlock;
4c27fe4c 2378
4c27fe4c
MR
2379 lru_cache_add_anon(page);
2380
94b7cc01 2381 spin_lock_irq(&info->lock);
4c27fe4c
MR
2382 info->alloced++;
2383 inode->i_blocks += BLOCKS_PER_PAGE;
2384 shmem_recalc_inode(inode);
94b7cc01 2385 spin_unlock_irq(&info->lock);
4c27fe4c
MR
2386
2387 inc_mm_counter(dst_mm, mm_counter_file(page));
2388 page_add_file_rmap(page, false);
2389 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2390
2391 /* No need to invalidate - it was non-present before */
2392 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2393 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2394 unlock_page(page);
4c27fe4c
MR
2395 ret = 0;
2396out:
2397 return ret;
3fea5a49 2398out_release_unlock:
4c27fe4c 2399 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2400 ClearPageDirty(page);
e2a50c1f 2401 delete_from_page_cache(page);
4c27fe4c 2402out_release:
9cc90c66 2403 unlock_page(page);
4c27fe4c 2404 put_page(page);
4c27fe4c 2405out_unacct_blocks:
0f079694 2406 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2407 goto out;
2408}
2409
8d103963
MR
2410int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2411 pmd_t *dst_pmd,
2412 struct vm_area_struct *dst_vma,
2413 unsigned long dst_addr,
2414 unsigned long src_addr,
2415 struct page **pagep)
2416{
2417 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2418 dst_addr, src_addr, false, pagep);
2419}
2420
2421int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2422 pmd_t *dst_pmd,
2423 struct vm_area_struct *dst_vma,
2424 unsigned long dst_addr)
2425{
2426 struct page *page = NULL;
2427
2428 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2429 dst_addr, 0, true, &page);
2430}
2431
1da177e4 2432#ifdef CONFIG_TMPFS
92e1d5be 2433static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2434static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2435
6d9d88d0
JS
2436#ifdef CONFIG_TMPFS_XATTR
2437static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2438#else
2439#define shmem_initxattrs NULL
2440#endif
2441
1da177e4 2442static int
800d15a5
NP
2443shmem_write_begin(struct file *file, struct address_space *mapping,
2444 loff_t pos, unsigned len, unsigned flags,
2445 struct page **pagep, void **fsdata)
1da177e4 2446{
800d15a5 2447 struct inode *inode = mapping->host;
40e041a2 2448 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2449 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2450
2451 /* i_mutex is held by caller */
ab3948f5
JFG
2452 if (unlikely(info->seals & (F_SEAL_GROW |
2453 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2454 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2455 return -EPERM;
2456 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2457 return -EPERM;
2458 }
2459
9e18eb29 2460 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2461}
2462
2463static int
2464shmem_write_end(struct file *file, struct address_space *mapping,
2465 loff_t pos, unsigned len, unsigned copied,
2466 struct page *page, void *fsdata)
2467{
2468 struct inode *inode = mapping->host;
2469
d3602444
HD
2470 if (pos + copied > inode->i_size)
2471 i_size_write(inode, pos + copied);
2472
ec9516fb 2473 if (!PageUptodate(page)) {
800d8c63
KS
2474 struct page *head = compound_head(page);
2475 if (PageTransCompound(page)) {
2476 int i;
2477
2478 for (i = 0; i < HPAGE_PMD_NR; i++) {
2479 if (head + i == page)
2480 continue;
2481 clear_highpage(head + i);
2482 flush_dcache_page(head + i);
2483 }
2484 }
09cbfeaf
KS
2485 if (copied < PAGE_SIZE) {
2486 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2487 zero_user_segments(page, 0, from,
09cbfeaf 2488 from + copied, PAGE_SIZE);
ec9516fb 2489 }
800d8c63 2490 SetPageUptodate(head);
ec9516fb 2491 }
800d15a5 2492 set_page_dirty(page);
6746aff7 2493 unlock_page(page);
09cbfeaf 2494 put_page(page);
800d15a5 2495
800d15a5 2496 return copied;
1da177e4
LT
2497}
2498
2ba5bbed 2499static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2500{
6e58e79d
AV
2501 struct file *file = iocb->ki_filp;
2502 struct inode *inode = file_inode(file);
1da177e4 2503 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2504 pgoff_t index;
2505 unsigned long offset;
a0ee5ec5 2506 enum sgp_type sgp = SGP_READ;
f7c1d074 2507 int error = 0;
cb66a7a1 2508 ssize_t retval = 0;
6e58e79d 2509 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2510
2511 /*
2512 * Might this read be for a stacking filesystem? Then when reading
2513 * holes of a sparse file, we actually need to allocate those pages,
2514 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2515 */
777eda2c 2516 if (!iter_is_iovec(to))
75edd345 2517 sgp = SGP_CACHE;
1da177e4 2518
09cbfeaf
KS
2519 index = *ppos >> PAGE_SHIFT;
2520 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2521
2522 for (;;) {
2523 struct page *page = NULL;
41ffe5d5
HD
2524 pgoff_t end_index;
2525 unsigned long nr, ret;
1da177e4
LT
2526 loff_t i_size = i_size_read(inode);
2527
09cbfeaf 2528 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2529 if (index > end_index)
2530 break;
2531 if (index == end_index) {
09cbfeaf 2532 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2533 if (nr <= offset)
2534 break;
2535 }
2536
9e18eb29 2537 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2538 if (error) {
2539 if (error == -EINVAL)
2540 error = 0;
1da177e4
LT
2541 break;
2542 }
75edd345
HD
2543 if (page) {
2544 if (sgp == SGP_CACHE)
2545 set_page_dirty(page);
d3602444 2546 unlock_page(page);
75edd345 2547 }
1da177e4
LT
2548
2549 /*
2550 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2551 * are called without i_mutex protection against truncate
1da177e4 2552 */
09cbfeaf 2553 nr = PAGE_SIZE;
1da177e4 2554 i_size = i_size_read(inode);
09cbfeaf 2555 end_index = i_size >> PAGE_SHIFT;
1da177e4 2556 if (index == end_index) {
09cbfeaf 2557 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2558 if (nr <= offset) {
2559 if (page)
09cbfeaf 2560 put_page(page);
1da177e4
LT
2561 break;
2562 }
2563 }
2564 nr -= offset;
2565
2566 if (page) {
2567 /*
2568 * If users can be writing to this page using arbitrary
2569 * virtual addresses, take care about potential aliasing
2570 * before reading the page on the kernel side.
2571 */
2572 if (mapping_writably_mapped(mapping))
2573 flush_dcache_page(page);
2574 /*
2575 * Mark the page accessed if we read the beginning.
2576 */
2577 if (!offset)
2578 mark_page_accessed(page);
b5810039 2579 } else {
1da177e4 2580 page = ZERO_PAGE(0);
09cbfeaf 2581 get_page(page);
b5810039 2582 }
1da177e4
LT
2583
2584 /*
2585 * Ok, we have the page, and it's up-to-date, so
2586 * now we can copy it to user space...
1da177e4 2587 */
2ba5bbed 2588 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2589 retval += ret;
1da177e4 2590 offset += ret;
09cbfeaf
KS
2591 index += offset >> PAGE_SHIFT;
2592 offset &= ~PAGE_MASK;
1da177e4 2593
09cbfeaf 2594 put_page(page);
2ba5bbed 2595 if (!iov_iter_count(to))
1da177e4 2596 break;
6e58e79d
AV
2597 if (ret < nr) {
2598 error = -EFAULT;
2599 break;
2600 }
1da177e4
LT
2601 cond_resched();
2602 }
2603
09cbfeaf 2604 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2605 file_accessed(file);
2606 return retval ? retval : error;
1da177e4
LT
2607}
2608
220f2ac9 2609/*
7f4446ee 2610 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2611 */
2612static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2613 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2614{
2615 struct page *page;
2616 struct pagevec pvec;
2617 pgoff_t indices[PAGEVEC_SIZE];
2618 bool done = false;
2619 int i;
2620
86679820 2621 pagevec_init(&pvec);
220f2ac9
HD
2622 pvec.nr = 1; /* start small: we may be there already */
2623 while (!done) {
0cd6144a 2624 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2625 pvec.nr, pvec.pages, indices);
2626 if (!pvec.nr) {
965c8e59 2627 if (whence == SEEK_DATA)
220f2ac9
HD
2628 index = end;
2629 break;
2630 }
2631 for (i = 0; i < pvec.nr; i++, index++) {
2632 if (index < indices[i]) {
965c8e59 2633 if (whence == SEEK_HOLE) {
220f2ac9
HD
2634 done = true;
2635 break;
2636 }
2637 index = indices[i];
2638 }
2639 page = pvec.pages[i];
3159f943 2640 if (page && !xa_is_value(page)) {
220f2ac9
HD
2641 if (!PageUptodate(page))
2642 page = NULL;
2643 }
2644 if (index >= end ||
965c8e59
AM
2645 (page && whence == SEEK_DATA) ||
2646 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2647 done = true;
2648 break;
2649 }
2650 }
0cd6144a 2651 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2652 pagevec_release(&pvec);
2653 pvec.nr = PAGEVEC_SIZE;
2654 cond_resched();
2655 }
2656 return index;
2657}
2658
965c8e59 2659static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2660{
2661 struct address_space *mapping = file->f_mapping;
2662 struct inode *inode = mapping->host;
2663 pgoff_t start, end;
2664 loff_t new_offset;
2665
965c8e59
AM
2666 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2667 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2668 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2669 inode_lock(inode);
220f2ac9
HD
2670 /* We're holding i_mutex so we can access i_size directly */
2671
1a413646 2672 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2673 offset = -ENXIO;
2674 else {
09cbfeaf
KS
2675 start = offset >> PAGE_SHIFT;
2676 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2677 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2678 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2679 if (new_offset > offset) {
2680 if (new_offset < inode->i_size)
2681 offset = new_offset;
965c8e59 2682 else if (whence == SEEK_DATA)
220f2ac9
HD
2683 offset = -ENXIO;
2684 else
2685 offset = inode->i_size;
2686 }
2687 }
2688
387aae6f
HD
2689 if (offset >= 0)
2690 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2691 inode_unlock(inode);
220f2ac9
HD
2692 return offset;
2693}
2694
83e4fa9c
HD
2695static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2696 loff_t len)
2697{
496ad9aa 2698 struct inode *inode = file_inode(file);
e2d12e22 2699 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2700 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2701 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2702 pgoff_t start, index, end;
2703 int error;
83e4fa9c 2704
13ace4d0
HD
2705 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2706 return -EOPNOTSUPP;
2707
5955102c 2708 inode_lock(inode);
83e4fa9c
HD
2709
2710 if (mode & FALLOC_FL_PUNCH_HOLE) {
2711 struct address_space *mapping = file->f_mapping;
2712 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2713 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2714 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2715
40e041a2 2716 /* protected by i_mutex */
ab3948f5 2717 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2718 error = -EPERM;
2719 goto out;
2720 }
2721
8e205f77 2722 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2723 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2724 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = &shmem_falloc;
2727 spin_unlock(&inode->i_lock);
2728
83e4fa9c
HD
2729 if ((u64)unmap_end > (u64)unmap_start)
2730 unmap_mapping_range(mapping, unmap_start,
2731 1 + unmap_end - unmap_start, 0);
2732 shmem_truncate_range(inode, offset, offset + len - 1);
2733 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2734
2735 spin_lock(&inode->i_lock);
2736 inode->i_private = NULL;
2737 wake_up_all(&shmem_falloc_waitq);
2055da97 2738 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2739 spin_unlock(&inode->i_lock);
83e4fa9c 2740 error = 0;
8e205f77 2741 goto out;
e2d12e22
HD
2742 }
2743
2744 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2745 error = inode_newsize_ok(inode, offset + len);
2746 if (error)
2747 goto out;
2748
40e041a2
DH
2749 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2750 error = -EPERM;
2751 goto out;
2752 }
2753
09cbfeaf
KS
2754 start = offset >> PAGE_SHIFT;
2755 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2756 /* Try to avoid a swapstorm if len is impossible to satisfy */
2757 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2758 error = -ENOSPC;
2759 goto out;
83e4fa9c
HD
2760 }
2761
8e205f77 2762 shmem_falloc.waitq = NULL;
1aac1400
HD
2763 shmem_falloc.start = start;
2764 shmem_falloc.next = start;
2765 shmem_falloc.nr_falloced = 0;
2766 shmem_falloc.nr_unswapped = 0;
2767 spin_lock(&inode->i_lock);
2768 inode->i_private = &shmem_falloc;
2769 spin_unlock(&inode->i_lock);
2770
e2d12e22
HD
2771 for (index = start; index < end; index++) {
2772 struct page *page;
2773
2774 /*
2775 * Good, the fallocate(2) manpage permits EINTR: we may have
2776 * been interrupted because we are using up too much memory.
2777 */
2778 if (signal_pending(current))
2779 error = -EINTR;
1aac1400
HD
2780 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2781 error = -ENOMEM;
e2d12e22 2782 else
9e18eb29 2783 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2784 if (error) {
1635f6a7 2785 /* Remove the !PageUptodate pages we added */
7f556567
HD
2786 if (index > start) {
2787 shmem_undo_range(inode,
2788 (loff_t)start << PAGE_SHIFT,
2789 ((loff_t)index << PAGE_SHIFT) - 1, true);
2790 }
1aac1400 2791 goto undone;
e2d12e22
HD
2792 }
2793
1aac1400
HD
2794 /*
2795 * Inform shmem_writepage() how far we have reached.
2796 * No need for lock or barrier: we have the page lock.
2797 */
2798 shmem_falloc.next++;
2799 if (!PageUptodate(page))
2800 shmem_falloc.nr_falloced++;
2801
e2d12e22 2802 /*
1635f6a7
HD
2803 * If !PageUptodate, leave it that way so that freeable pages
2804 * can be recognized if we need to rollback on error later.
2805 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2806 * than free the pages we are allocating (and SGP_CACHE pages
2807 * might still be clean: we now need to mark those dirty too).
2808 */
2809 set_page_dirty(page);
2810 unlock_page(page);
09cbfeaf 2811 put_page(page);
e2d12e22
HD
2812 cond_resched();
2813 }
2814
2815 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2816 i_size_write(inode, offset + len);
078cd827 2817 inode->i_ctime = current_time(inode);
1aac1400
HD
2818undone:
2819 spin_lock(&inode->i_lock);
2820 inode->i_private = NULL;
2821 spin_unlock(&inode->i_lock);
e2d12e22 2822out:
5955102c 2823 inode_unlock(inode);
83e4fa9c
HD
2824 return error;
2825}
2826
726c3342 2827static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2828{
726c3342 2829 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2830
2831 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2832 buf->f_bsize = PAGE_SIZE;
1da177e4 2833 buf->f_namelen = NAME_MAX;
0edd73b3 2834 if (sbinfo->max_blocks) {
1da177e4 2835 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2836 buf->f_bavail =
2837 buf->f_bfree = sbinfo->max_blocks -
2838 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2839 }
2840 if (sbinfo->max_inodes) {
1da177e4
LT
2841 buf->f_files = sbinfo->max_inodes;
2842 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2843 }
2844 /* else leave those fields 0 like simple_statfs */
2845 return 0;
2846}
2847
2848/*
2849 * File creation. Allocate an inode, and we're done..
2850 */
2851static int
1a67aafb 2852shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2853{
0b0a0806 2854 struct inode *inode;
1da177e4
LT
2855 int error = -ENOSPC;
2856
454abafe 2857 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2858 if (inode) {
feda821e
CH
2859 error = simple_acl_create(dir, inode);
2860 if (error)
2861 goto out_iput;
2a7dba39 2862 error = security_inode_init_security(inode, dir,
9d8f13ba 2863 &dentry->d_name,
6d9d88d0 2864 shmem_initxattrs, NULL);
feda821e
CH
2865 if (error && error != -EOPNOTSUPP)
2866 goto out_iput;
37ec43cd 2867
718deb6b 2868 error = 0;
1da177e4 2869 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2870 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2871 d_instantiate(dentry, inode);
2872 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2873 }
2874 return error;
feda821e
CH
2875out_iput:
2876 iput(inode);
2877 return error;
1da177e4
LT
2878}
2879
60545d0d
AV
2880static int
2881shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2882{
2883 struct inode *inode;
2884 int error = -ENOSPC;
2885
2886 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2887 if (inode) {
2888 error = security_inode_init_security(inode, dir,
2889 NULL,
2890 shmem_initxattrs, NULL);
feda821e
CH
2891 if (error && error != -EOPNOTSUPP)
2892 goto out_iput;
2893 error = simple_acl_create(dir, inode);
2894 if (error)
2895 goto out_iput;
60545d0d
AV
2896 d_tmpfile(dentry, inode);
2897 }
2898 return error;
feda821e
CH
2899out_iput:
2900 iput(inode);
2901 return error;
60545d0d
AV
2902}
2903
18bb1db3 2904static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2905{
2906 int error;
2907
2908 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2909 return error;
d8c76e6f 2910 inc_nlink(dir);
1da177e4
LT
2911 return 0;
2912}
2913
4acdaf27 2914static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2915 bool excl)
1da177e4
LT
2916{
2917 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2918}
2919
2920/*
2921 * Link a file..
2922 */
2923static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2924{
75c3cfa8 2925 struct inode *inode = d_inode(old_dentry);
29b00e60 2926 int ret = 0;
1da177e4
LT
2927
2928 /*
2929 * No ordinary (disk based) filesystem counts links as inodes;
2930 * but each new link needs a new dentry, pinning lowmem, and
2931 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2932 * But if an O_TMPFILE file is linked into the tmpfs, the
2933 * first link must skip that, to get the accounting right.
1da177e4 2934 */
1062af92
DW
2935 if (inode->i_nlink) {
2936 ret = shmem_reserve_inode(inode->i_sb);
2937 if (ret)
2938 goto out;
2939 }
1da177e4
LT
2940
2941 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2942 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2943 inc_nlink(inode);
7de9c6ee 2944 ihold(inode); /* New dentry reference */
1da177e4
LT
2945 dget(dentry); /* Extra pinning count for the created dentry */
2946 d_instantiate(dentry, inode);
5b04c689
PE
2947out:
2948 return ret;
1da177e4
LT
2949}
2950
2951static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2952{
75c3cfa8 2953 struct inode *inode = d_inode(dentry);
1da177e4 2954
5b04c689
PE
2955 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956 shmem_free_inode(inode->i_sb);
1da177e4
LT
2957
2958 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2959 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2960 drop_nlink(inode);
1da177e4
LT
2961 dput(dentry); /* Undo the count from "create" - this does all the work */
2962 return 0;
2963}
2964
2965static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2966{
2967 if (!simple_empty(dentry))
2968 return -ENOTEMPTY;
2969
75c3cfa8 2970 drop_nlink(d_inode(dentry));
9a53c3a7 2971 drop_nlink(dir);
1da177e4
LT
2972 return shmem_unlink(dir, dentry);
2973}
2974
37456771
MS
2975static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2976{
e36cb0b8
DH
2977 bool old_is_dir = d_is_dir(old_dentry);
2978 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2979
2980 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2981 if (old_is_dir) {
2982 drop_nlink(old_dir);
2983 inc_nlink(new_dir);
2984 } else {
2985 drop_nlink(new_dir);
2986 inc_nlink(old_dir);
2987 }
2988 }
2989 old_dir->i_ctime = old_dir->i_mtime =
2990 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2991 d_inode(old_dentry)->i_ctime =
078cd827 2992 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2993
2994 return 0;
2995}
2996
46fdb794
MS
2997static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2998{
2999 struct dentry *whiteout;
3000 int error;
3001
3002 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003 if (!whiteout)
3004 return -ENOMEM;
3005
3006 error = shmem_mknod(old_dir, whiteout,
3007 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008 dput(whiteout);
3009 if (error)
3010 return error;
3011
3012 /*
3013 * Cheat and hash the whiteout while the old dentry is still in
3014 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015 *
3016 * d_lookup() will consistently find one of them at this point,
3017 * not sure which one, but that isn't even important.
3018 */
3019 d_rehash(whiteout);
3020 return 0;
3021}
3022
1da177e4
LT
3023/*
3024 * The VFS layer already does all the dentry stuff for rename,
3025 * we just have to decrement the usage count for the target if
3026 * it exists so that the VFS layer correctly free's it when it
3027 * gets overwritten.
3028 */
3b69ff51 3029static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3030{
75c3cfa8 3031 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3032 int they_are_dirs = S_ISDIR(inode->i_mode);
3033
46fdb794 3034 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3035 return -EINVAL;
3036
37456771
MS
3037 if (flags & RENAME_EXCHANGE)
3038 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3039
1da177e4
LT
3040 if (!simple_empty(new_dentry))
3041 return -ENOTEMPTY;
3042
46fdb794
MS
3043 if (flags & RENAME_WHITEOUT) {
3044 int error;
3045
3046 error = shmem_whiteout(old_dir, old_dentry);
3047 if (error)
3048 return error;
3049 }
3050
75c3cfa8 3051 if (d_really_is_positive(new_dentry)) {
1da177e4 3052 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3053 if (they_are_dirs) {
75c3cfa8 3054 drop_nlink(d_inode(new_dentry));
9a53c3a7 3055 drop_nlink(old_dir);
b928095b 3056 }
1da177e4 3057 } else if (they_are_dirs) {
9a53c3a7 3058 drop_nlink(old_dir);
d8c76e6f 3059 inc_nlink(new_dir);
1da177e4
LT
3060 }
3061
3062 old_dir->i_size -= BOGO_DIRENT_SIZE;
3063 new_dir->i_size += BOGO_DIRENT_SIZE;
3064 old_dir->i_ctime = old_dir->i_mtime =
3065 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3066 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3067 return 0;
3068}
3069
3070static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3071{
3072 int error;
3073 int len;
3074 struct inode *inode;
9276aad6 3075 struct page *page;
1da177e4
LT
3076
3077 len = strlen(symname) + 1;
09cbfeaf 3078 if (len > PAGE_SIZE)
1da177e4
LT
3079 return -ENAMETOOLONG;
3080
0825a6f9
JP
3081 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3082 VM_NORESERVE);
1da177e4
LT
3083 if (!inode)
3084 return -ENOSPC;
3085
9d8f13ba 3086 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3087 shmem_initxattrs, NULL);
343c3d7f
MN
3088 if (error && error != -EOPNOTSUPP) {
3089 iput(inode);
3090 return error;
570bc1c2
SS
3091 }
3092
1da177e4 3093 inode->i_size = len-1;
69f07ec9 3094 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3095 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3096 if (!inode->i_link) {
69f07ec9
HD
3097 iput(inode);
3098 return -ENOMEM;
3099 }
3100 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3101 } else {
e8ecde25 3102 inode_nohighmem(inode);
9e18eb29 3103 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3104 if (error) {
3105 iput(inode);
3106 return error;
3107 }
14fcc23f 3108 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3109 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3110 memcpy(page_address(page), symname, len);
ec9516fb 3111 SetPageUptodate(page);
1da177e4 3112 set_page_dirty(page);
6746aff7 3113 unlock_page(page);
09cbfeaf 3114 put_page(page);
1da177e4 3115 }
1da177e4 3116 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3117 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3118 d_instantiate(dentry, inode);
3119 dget(dentry);
3120 return 0;
3121}
3122
fceef393 3123static void shmem_put_link(void *arg)
1da177e4 3124{
fceef393
AV
3125 mark_page_accessed(arg);
3126 put_page(arg);
1da177e4
LT
3127}
3128
6b255391 3129static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3130 struct inode *inode,
3131 struct delayed_call *done)
1da177e4 3132{
1da177e4 3133 struct page *page = NULL;
6b255391 3134 int error;
6a6c9904
AV
3135 if (!dentry) {
3136 page = find_get_page(inode->i_mapping, 0);
3137 if (!page)
3138 return ERR_PTR(-ECHILD);
3139 if (!PageUptodate(page)) {
3140 put_page(page);
3141 return ERR_PTR(-ECHILD);
3142 }
3143 } else {
9e18eb29 3144 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3145 if (error)
3146 return ERR_PTR(error);
3147 unlock_page(page);
3148 }
fceef393 3149 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3150 return page_address(page);
1da177e4
LT
3151}
3152
b09e0fa4 3153#ifdef CONFIG_TMPFS_XATTR
46711810 3154/*
b09e0fa4
EP
3155 * Superblocks without xattr inode operations may get some security.* xattr
3156 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3157 * like ACLs, we also need to implement the security.* handlers at
3158 * filesystem level, though.
3159 */
3160
6d9d88d0
JS
3161/*
3162 * Callback for security_inode_init_security() for acquiring xattrs.
3163 */
3164static int shmem_initxattrs(struct inode *inode,
3165 const struct xattr *xattr_array,
3166 void *fs_info)
3167{
3168 struct shmem_inode_info *info = SHMEM_I(inode);
3169 const struct xattr *xattr;
38f38657 3170 struct simple_xattr *new_xattr;
6d9d88d0
JS
3171 size_t len;
3172
3173 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3174 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3175 if (!new_xattr)
3176 return -ENOMEM;
3177
3178 len = strlen(xattr->name) + 1;
3179 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3180 GFP_KERNEL);
3181 if (!new_xattr->name) {
3182 kfree(new_xattr);
3183 return -ENOMEM;
3184 }
3185
3186 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3187 XATTR_SECURITY_PREFIX_LEN);
3188 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3189 xattr->name, len);
3190
38f38657 3191 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3192 }
3193
3194 return 0;
3195}
3196
aa7c5241 3197static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3198 struct dentry *unused, struct inode *inode,
3199 const char *name, void *buffer, size_t size)
b09e0fa4 3200{
b296821a 3201 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3202
aa7c5241 3203 name = xattr_full_name(handler, name);
38f38657 3204 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3205}
3206
aa7c5241 3207static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, const void *value,
3210 size_t size, int flags)
b09e0fa4 3211{
59301226 3212 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3213
aa7c5241 3214 name = xattr_full_name(handler, name);
a46a2295 3215 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3216}
3217
aa7c5241
AG
3218static const struct xattr_handler shmem_security_xattr_handler = {
3219 .prefix = XATTR_SECURITY_PREFIX,
3220 .get = shmem_xattr_handler_get,
3221 .set = shmem_xattr_handler_set,
3222};
b09e0fa4 3223
aa7c5241
AG
3224static const struct xattr_handler shmem_trusted_xattr_handler = {
3225 .prefix = XATTR_TRUSTED_PREFIX,
3226 .get = shmem_xattr_handler_get,
3227 .set = shmem_xattr_handler_set,
3228};
b09e0fa4 3229
aa7c5241
AG
3230static const struct xattr_handler *shmem_xattr_handlers[] = {
3231#ifdef CONFIG_TMPFS_POSIX_ACL
3232 &posix_acl_access_xattr_handler,
3233 &posix_acl_default_xattr_handler,
3234#endif
3235 &shmem_security_xattr_handler,
3236 &shmem_trusted_xattr_handler,
3237 NULL
3238};
b09e0fa4
EP
3239
3240static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3241{
75c3cfa8 3242 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3243 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3244}
3245#endif /* CONFIG_TMPFS_XATTR */
3246
69f07ec9 3247static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3248 .get_link = simple_get_link,
b09e0fa4 3249#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3250 .listxattr = shmem_listxattr,
b09e0fa4
EP
3251#endif
3252};
3253
3254static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3255 .get_link = shmem_get_link,
b09e0fa4 3256#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3257 .listxattr = shmem_listxattr,
39f0247d 3258#endif
b09e0fa4 3259};
39f0247d 3260
91828a40
DG
3261static struct dentry *shmem_get_parent(struct dentry *child)
3262{
3263 return ERR_PTR(-ESTALE);
3264}
3265
3266static int shmem_match(struct inode *ino, void *vfh)
3267{
3268 __u32 *fh = vfh;
3269 __u64 inum = fh[2];
3270 inum = (inum << 32) | fh[1];
3271 return ino->i_ino == inum && fh[0] == ino->i_generation;
3272}
3273
12ba780d
AG
3274/* Find any alias of inode, but prefer a hashed alias */
3275static struct dentry *shmem_find_alias(struct inode *inode)
3276{
3277 struct dentry *alias = d_find_alias(inode);
3278
3279 return alias ?: d_find_any_alias(inode);
3280}
3281
3282
480b116c
CH
3283static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3284 struct fid *fid, int fh_len, int fh_type)
91828a40 3285{
91828a40 3286 struct inode *inode;
480b116c 3287 struct dentry *dentry = NULL;
35c2a7f4 3288 u64 inum;
480b116c
CH
3289
3290 if (fh_len < 3)
3291 return NULL;
91828a40 3292
35c2a7f4
HD
3293 inum = fid->raw[2];
3294 inum = (inum << 32) | fid->raw[1];
3295
480b116c
CH
3296 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3297 shmem_match, fid->raw);
91828a40 3298 if (inode) {
12ba780d 3299 dentry = shmem_find_alias(inode);
91828a40
DG
3300 iput(inode);
3301 }
3302
480b116c 3303 return dentry;
91828a40
DG
3304}
3305
b0b0382b
AV
3306static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3307 struct inode *parent)
91828a40 3308{
5fe0c237
AK
3309 if (*len < 3) {
3310 *len = 3;
94e07a75 3311 return FILEID_INVALID;
5fe0c237 3312 }
91828a40 3313
1d3382cb 3314 if (inode_unhashed(inode)) {
91828a40
DG
3315 /* Unfortunately insert_inode_hash is not idempotent,
3316 * so as we hash inodes here rather than at creation
3317 * time, we need a lock to ensure we only try
3318 * to do it once
3319 */
3320 static DEFINE_SPINLOCK(lock);
3321 spin_lock(&lock);
1d3382cb 3322 if (inode_unhashed(inode))
91828a40
DG
3323 __insert_inode_hash(inode,
3324 inode->i_ino + inode->i_generation);
3325 spin_unlock(&lock);
3326 }
3327
3328 fh[0] = inode->i_generation;
3329 fh[1] = inode->i_ino;
3330 fh[2] = ((__u64)inode->i_ino) >> 32;
3331
3332 *len = 3;
3333 return 1;
3334}
3335
39655164 3336static const struct export_operations shmem_export_ops = {
91828a40 3337 .get_parent = shmem_get_parent,
91828a40 3338 .encode_fh = shmem_encode_fh,
480b116c 3339 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3340};
3341
626c3920
AV
3342enum shmem_param {
3343 Opt_gid,
3344 Opt_huge,
3345 Opt_mode,
3346 Opt_mpol,
3347 Opt_nr_blocks,
3348 Opt_nr_inodes,
3349 Opt_size,
3350 Opt_uid,
3351};
3352
5eede625 3353static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3354 {"never", SHMEM_HUGE_NEVER },
3355 {"always", SHMEM_HUGE_ALWAYS },
3356 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3357 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3358 {}
3359};
3360
d7167b14 3361const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3362 fsparam_u32 ("gid", Opt_gid),
2710c957 3363 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3364 fsparam_u32oct("mode", Opt_mode),
3365 fsparam_string("mpol", Opt_mpol),
3366 fsparam_string("nr_blocks", Opt_nr_blocks),
3367 fsparam_string("nr_inodes", Opt_nr_inodes),
3368 fsparam_string("size", Opt_size),
3369 fsparam_u32 ("uid", Opt_uid),
3370 {}
3371};
3372
f3235626 3373static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3374{
f3235626 3375 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3376 struct fs_parse_result result;
3377 unsigned long long size;
e04dc423 3378 char *rest;
626c3920
AV
3379 int opt;
3380
d7167b14 3381 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3382 if (opt < 0)
626c3920 3383 return opt;
1da177e4 3384
626c3920
AV
3385 switch (opt) {
3386 case Opt_size:
3387 size = memparse(param->string, &rest);
e04dc423
AV
3388 if (*rest == '%') {
3389 size <<= PAGE_SHIFT;
3390 size *= totalram_pages();
3391 do_div(size, 100);
3392 rest++;
3393 }
3394 if (*rest)
626c3920 3395 goto bad_value;
e04dc423
AV
3396 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3397 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3398 break;
3399 case Opt_nr_blocks:
3400 ctx->blocks = memparse(param->string, &rest);
e04dc423 3401 if (*rest)
626c3920 3402 goto bad_value;
e04dc423 3403 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3404 break;
3405 case Opt_nr_inodes:
3406 ctx->inodes = memparse(param->string, &rest);
e04dc423 3407 if (*rest)
626c3920 3408 goto bad_value;
e04dc423 3409 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3410 break;
3411 case Opt_mode:
3412 ctx->mode = result.uint_32 & 07777;
3413 break;
3414 case Opt_uid:
3415 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3416 if (!uid_valid(ctx->uid))
626c3920
AV
3417 goto bad_value;
3418 break;
3419 case Opt_gid:
3420 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3421 if (!gid_valid(ctx->gid))
626c3920
AV
3422 goto bad_value;
3423 break;
3424 case Opt_huge:
3425 ctx->huge = result.uint_32;
3426 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3427 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3428 has_transparent_hugepage()))
3429 goto unsupported_parameter;
e04dc423 3430 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3431 break;
3432 case Opt_mpol:
3433 if (IS_ENABLED(CONFIG_NUMA)) {
3434 mpol_put(ctx->mpol);
3435 ctx->mpol = NULL;
3436 if (mpol_parse_str(param->string, &ctx->mpol))
3437 goto bad_value;
3438 break;
3439 }
3440 goto unsupported_parameter;
e04dc423
AV
3441 }
3442 return 0;
3443
626c3920 3444unsupported_parameter:
f35aa2bc 3445 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3446bad_value:
f35aa2bc 3447 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3448}
3449
f3235626 3450static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3451{
f3235626
DH
3452 char *options = data;
3453
33f37c64
AV
3454 if (options) {
3455 int err = security_sb_eat_lsm_opts(options, &fc->security);
3456 if (err)
3457 return err;
3458 }
3459
b00dc3ad 3460 while (options != NULL) {
626c3920 3461 char *this_char = options;
b00dc3ad
HD
3462 for (;;) {
3463 /*
3464 * NUL-terminate this option: unfortunately,
3465 * mount options form a comma-separated list,
3466 * but mpol's nodelist may also contain commas.
3467 */
3468 options = strchr(options, ',');
3469 if (options == NULL)
3470 break;
3471 options++;
3472 if (!isdigit(*options)) {
3473 options[-1] = '\0';
3474 break;
3475 }
3476 }
626c3920
AV
3477 if (*this_char) {
3478 char *value = strchr(this_char,'=');
f3235626 3479 size_t len = 0;
626c3920
AV
3480 int err;
3481
3482 if (value) {
3483 *value++ = '\0';
f3235626 3484 len = strlen(value);
626c3920 3485 }
f3235626
DH
3486 err = vfs_parse_fs_string(fc, this_char, value, len);
3487 if (err < 0)
3488 return err;
1da177e4 3489 }
1da177e4
LT
3490 }
3491 return 0;
1da177e4
LT
3492}
3493
f3235626
DH
3494/*
3495 * Reconfigure a shmem filesystem.
3496 *
3497 * Note that we disallow change from limited->unlimited blocks/inodes while any
3498 * are in use; but we must separately disallow unlimited->limited, because in
3499 * that case we have no record of how much is already in use.
3500 */
3501static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3502{
f3235626
DH
3503 struct shmem_options *ctx = fc->fs_private;
3504 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3505 unsigned long inodes;
f3235626 3506 const char *err;
1da177e4 3507
0edd73b3 3508 spin_lock(&sbinfo->stat_lock);
0edd73b3 3509 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3510 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3511 if (!sbinfo->max_blocks) {
3512 err = "Cannot retroactively limit size";
0b5071dd 3513 goto out;
f3235626 3514 }
0b5071dd 3515 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3516 ctx->blocks) > 0) {
3517 err = "Too small a size for current use";
0b5071dd 3518 goto out;
f3235626 3519 }
0b5071dd 3520 }
f3235626
DH
3521 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3522 if (!sbinfo->max_inodes) {
3523 err = "Cannot retroactively limit inodes";
0b5071dd 3524 goto out;
f3235626
DH
3525 }
3526 if (ctx->inodes < inodes) {
3527 err = "Too few inodes for current use";
0b5071dd 3528 goto out;
f3235626 3529 }
0b5071dd 3530 }
0edd73b3 3531
f3235626
DH
3532 if (ctx->seen & SHMEM_SEEN_HUGE)
3533 sbinfo->huge = ctx->huge;
3534 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3535 sbinfo->max_blocks = ctx->blocks;
3536 if (ctx->seen & SHMEM_SEEN_INODES) {
3537 sbinfo->max_inodes = ctx->inodes;
3538 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3539 }
71fe804b 3540
5f00110f
GT
3541 /*
3542 * Preserve previous mempolicy unless mpol remount option was specified.
3543 */
f3235626 3544 if (ctx->mpol) {
5f00110f 3545 mpol_put(sbinfo->mpol);
f3235626
DH
3546 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3547 ctx->mpol = NULL;
5f00110f 3548 }
f3235626
DH
3549 spin_unlock(&sbinfo->stat_lock);
3550 return 0;
0edd73b3
HD
3551out:
3552 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3553 return invalfc(fc, "%s", err);
1da177e4 3554}
680d794b 3555
34c80b1d 3556static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3557{
34c80b1d 3558 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3559
3560 if (sbinfo->max_blocks != shmem_default_max_blocks())
3561 seq_printf(seq, ",size=%luk",
09cbfeaf 3562 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3563 if (sbinfo->max_inodes != shmem_default_max_inodes())
3564 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3565 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3566 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3567 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3568 seq_printf(seq, ",uid=%u",
3569 from_kuid_munged(&init_user_ns, sbinfo->uid));
3570 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3571 seq_printf(seq, ",gid=%u",
3572 from_kgid_munged(&init_user_ns, sbinfo->gid));
396bcc52 3573#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575 if (sbinfo->huge)
3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3577#endif
71fe804b 3578 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3579 return 0;
3580}
9183df25 3581
680d794b 3582#endif /* CONFIG_TMPFS */
1da177e4
LT
3583
3584static void shmem_put_super(struct super_block *sb)
3585{
602586a8
HD
3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3587
3588 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3589 mpol_put(sbinfo->mpol);
602586a8 3590 kfree(sbinfo);
1da177e4
LT
3591 sb->s_fs_info = NULL;
3592}
3593
f3235626 3594static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3595{
f3235626 3596 struct shmem_options *ctx = fc->fs_private;
1da177e4 3597 struct inode *inode;
0edd73b3 3598 struct shmem_sb_info *sbinfo;
680d794b
AM
3599 int err = -ENOMEM;
3600
3601 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3603 L1_CACHE_BYTES), GFP_KERNEL);
3604 if (!sbinfo)
3605 return -ENOMEM;
3606
680d794b 3607 sb->s_fs_info = sbinfo;
1da177e4 3608
0edd73b3 3609#ifdef CONFIG_TMPFS
1da177e4
LT
3610 /*
3611 * Per default we only allow half of the physical ram per
3612 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 * but the internal instance is left unlimited.
3614 */
1751e8a6 3615 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 ctx->blocks = shmem_default_max_blocks();
3618 if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 ctx->inodes = shmem_default_max_inodes();
ca4e0519 3620 } else {
1751e8a6 3621 sb->s_flags |= SB_NOUSER;
1da177e4 3622 }
91828a40 3623 sb->s_export_op = &shmem_export_ops;
1751e8a6 3624 sb->s_flags |= SB_NOSEC;
1da177e4 3625#else
1751e8a6 3626 sb->s_flags |= SB_NOUSER;
1da177e4 3627#endif
f3235626
DH
3628 sbinfo->max_blocks = ctx->blocks;
3629 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3630 sbinfo->uid = ctx->uid;
3631 sbinfo->gid = ctx->gid;
3632 sbinfo->mode = ctx->mode;
3633 sbinfo->huge = ctx->huge;
3634 sbinfo->mpol = ctx->mpol;
3635 ctx->mpol = NULL;
1da177e4 3636
0edd73b3 3637 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3638 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3639 goto failed;
779750d2
KS
3640 spin_lock_init(&sbinfo->shrinklist_lock);
3641 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3642
285b2c4f 3643 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3644 sb->s_blocksize = PAGE_SIZE;
3645 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3646 sb->s_magic = TMPFS_MAGIC;
3647 sb->s_op = &shmem_ops;
cfd95a9c 3648 sb->s_time_gran = 1;
b09e0fa4 3649#ifdef CONFIG_TMPFS_XATTR
39f0247d 3650 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3651#endif
3652#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3653 sb->s_flags |= SB_POSIXACL;
39f0247d 3654#endif
2b4db796 3655 uuid_gen(&sb->s_uuid);
0edd73b3 3656
454abafe 3657 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3658 if (!inode)
3659 goto failed;
680d794b
AM
3660 inode->i_uid = sbinfo->uid;
3661 inode->i_gid = sbinfo->gid;
318ceed0
AV
3662 sb->s_root = d_make_root(inode);
3663 if (!sb->s_root)
48fde701 3664 goto failed;
1da177e4
LT
3665 return 0;
3666
1da177e4
LT
3667failed:
3668 shmem_put_super(sb);
3669 return err;
3670}
3671
f3235626
DH
3672static int shmem_get_tree(struct fs_context *fc)
3673{
3674 return get_tree_nodev(fc, shmem_fill_super);
3675}
3676
3677static void shmem_free_fc(struct fs_context *fc)
3678{
3679 struct shmem_options *ctx = fc->fs_private;
3680
3681 if (ctx) {
3682 mpol_put(ctx->mpol);
3683 kfree(ctx);
3684 }
3685}
3686
3687static const struct fs_context_operations shmem_fs_context_ops = {
3688 .free = shmem_free_fc,
3689 .get_tree = shmem_get_tree,
3690#ifdef CONFIG_TMPFS
3691 .parse_monolithic = shmem_parse_options,
3692 .parse_param = shmem_parse_one,
3693 .reconfigure = shmem_reconfigure,
3694#endif
3695};
3696
fcc234f8 3697static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3698
3699static struct inode *shmem_alloc_inode(struct super_block *sb)
3700{
41ffe5d5
HD
3701 struct shmem_inode_info *info;
3702 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3703 if (!info)
1da177e4 3704 return NULL;
41ffe5d5 3705 return &info->vfs_inode;
1da177e4
LT
3706}
3707
74b1da56 3708static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3709{
84e710da
AV
3710 if (S_ISLNK(inode->i_mode))
3711 kfree(inode->i_link);
fa0d7e3d
NP
3712 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3713}
3714
1da177e4
LT
3715static void shmem_destroy_inode(struct inode *inode)
3716{
09208d15 3717 if (S_ISREG(inode->i_mode))
1da177e4 3718 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3719}
3720
41ffe5d5 3721static void shmem_init_inode(void *foo)
1da177e4 3722{
41ffe5d5
HD
3723 struct shmem_inode_info *info = foo;
3724 inode_init_once(&info->vfs_inode);
1da177e4
LT
3725}
3726
9a8ec03e 3727static void shmem_init_inodecache(void)
1da177e4
LT
3728{
3729 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3730 sizeof(struct shmem_inode_info),
5d097056 3731 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3732}
3733
41ffe5d5 3734static void shmem_destroy_inodecache(void)
1da177e4 3735{
1a1d92c1 3736 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3737}
3738
f5e54d6e 3739static const struct address_space_operations shmem_aops = {
1da177e4 3740 .writepage = shmem_writepage,
76719325 3741 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3742#ifdef CONFIG_TMPFS
800d15a5
NP
3743 .write_begin = shmem_write_begin,
3744 .write_end = shmem_write_end,
1da177e4 3745#endif
1c93923c 3746#ifdef CONFIG_MIGRATION
304dbdb7 3747 .migratepage = migrate_page,
1c93923c 3748#endif
aa261f54 3749 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3750};
3751
15ad7cdc 3752static const struct file_operations shmem_file_operations = {
1da177e4 3753 .mmap = shmem_mmap,
c01d5b30 3754 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3755#ifdef CONFIG_TMPFS
220f2ac9 3756 .llseek = shmem_file_llseek,
2ba5bbed 3757 .read_iter = shmem_file_read_iter,
8174202b 3758 .write_iter = generic_file_write_iter,
1b061d92 3759 .fsync = noop_fsync,
82c156f8 3760 .splice_read = generic_file_splice_read,
f6cb85d0 3761 .splice_write = iter_file_splice_write,
83e4fa9c 3762 .fallocate = shmem_fallocate,
1da177e4
LT
3763#endif
3764};
3765
92e1d5be 3766static const struct inode_operations shmem_inode_operations = {
44a30220 3767 .getattr = shmem_getattr,
94c1e62d 3768 .setattr = shmem_setattr,
b09e0fa4 3769#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3770 .listxattr = shmem_listxattr,
feda821e 3771 .set_acl = simple_set_acl,
b09e0fa4 3772#endif
1da177e4
LT
3773};
3774
92e1d5be 3775static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3776#ifdef CONFIG_TMPFS
3777 .create = shmem_create,
3778 .lookup = simple_lookup,
3779 .link = shmem_link,
3780 .unlink = shmem_unlink,
3781 .symlink = shmem_symlink,
3782 .mkdir = shmem_mkdir,
3783 .rmdir = shmem_rmdir,
3784 .mknod = shmem_mknod,
2773bf00 3785 .rename = shmem_rename2,
60545d0d 3786 .tmpfile = shmem_tmpfile,
1da177e4 3787#endif
b09e0fa4 3788#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3789 .listxattr = shmem_listxattr,
b09e0fa4 3790#endif
39f0247d 3791#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3792 .setattr = shmem_setattr,
feda821e 3793 .set_acl = simple_set_acl,
39f0247d
AG
3794#endif
3795};
3796
92e1d5be 3797static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3798#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3799 .listxattr = shmem_listxattr,
b09e0fa4 3800#endif
39f0247d 3801#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3802 .setattr = shmem_setattr,
feda821e 3803 .set_acl = simple_set_acl,
39f0247d 3804#endif
1da177e4
LT
3805};
3806
759b9775 3807static const struct super_operations shmem_ops = {
1da177e4 3808 .alloc_inode = shmem_alloc_inode,
74b1da56 3809 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3810 .destroy_inode = shmem_destroy_inode,
3811#ifdef CONFIG_TMPFS
3812 .statfs = shmem_statfs,
680d794b 3813 .show_options = shmem_show_options,
1da177e4 3814#endif
1f895f75 3815 .evict_inode = shmem_evict_inode,
1da177e4
LT
3816 .drop_inode = generic_delete_inode,
3817 .put_super = shmem_put_super,
396bcc52 3818#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3819 .nr_cached_objects = shmem_unused_huge_count,
3820 .free_cached_objects = shmem_unused_huge_scan,
3821#endif
1da177e4
LT
3822};
3823
f0f37e2f 3824static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3825 .fault = shmem_fault,
d7c17551 3826 .map_pages = filemap_map_pages,
1da177e4
LT
3827#ifdef CONFIG_NUMA
3828 .set_policy = shmem_set_policy,
3829 .get_policy = shmem_get_policy,
3830#endif
3831};
3832
f3235626 3833int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3834{
f3235626
DH
3835 struct shmem_options *ctx;
3836
3837 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3838 if (!ctx)
3839 return -ENOMEM;
3840
3841 ctx->mode = 0777 | S_ISVTX;
3842 ctx->uid = current_fsuid();
3843 ctx->gid = current_fsgid();
3844
3845 fc->fs_private = ctx;
3846 fc->ops = &shmem_fs_context_ops;
3847 return 0;
1da177e4
LT
3848}
3849
41ffe5d5 3850static struct file_system_type shmem_fs_type = {
1da177e4
LT
3851 .owner = THIS_MODULE,
3852 .name = "tmpfs",
f3235626
DH
3853 .init_fs_context = shmem_init_fs_context,
3854#ifdef CONFIG_TMPFS
d7167b14 3855 .parameters = shmem_fs_parameters,
f3235626 3856#endif
1da177e4 3857 .kill_sb = kill_litter_super,
2b8576cb 3858 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3859};
1da177e4 3860
41ffe5d5 3861int __init shmem_init(void)
1da177e4
LT
3862{
3863 int error;
3864
9a8ec03e 3865 shmem_init_inodecache();
1da177e4 3866
41ffe5d5 3867 error = register_filesystem(&shmem_fs_type);
1da177e4 3868 if (error) {
1170532b 3869 pr_err("Could not register tmpfs\n");
1da177e4
LT
3870 goto out2;
3871 }
95dc112a 3872
ca4e0519 3873 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3874 if (IS_ERR(shm_mnt)) {
3875 error = PTR_ERR(shm_mnt);
1170532b 3876 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3877 goto out1;
3878 }
5a6e75f8 3879
396bcc52 3880#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3881 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3882 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3883 else
3884 shmem_huge = 0; /* just in case it was patched */
3885#endif
1da177e4
LT
3886 return 0;
3887
3888out1:
41ffe5d5 3889 unregister_filesystem(&shmem_fs_type);
1da177e4 3890out2:
41ffe5d5 3891 shmem_destroy_inodecache();
1da177e4
LT
3892 shm_mnt = ERR_PTR(error);
3893 return error;
3894}
853ac43a 3895
396bcc52 3896#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3897static ssize_t shmem_enabled_show(struct kobject *kobj,
3898 struct kobj_attribute *attr, char *buf)
3899{
26083eb6 3900 static const int values[] = {
5a6e75f8
KS
3901 SHMEM_HUGE_ALWAYS,
3902 SHMEM_HUGE_WITHIN_SIZE,
3903 SHMEM_HUGE_ADVISE,
3904 SHMEM_HUGE_NEVER,
3905 SHMEM_HUGE_DENY,
3906 SHMEM_HUGE_FORCE,
3907 };
3908 int i, count;
3909
3910 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3911 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3912
3913 count += sprintf(buf + count, fmt,
3914 shmem_format_huge(values[i]));
3915 }
3916 buf[count - 1] = '\n';
3917 return count;
3918}
3919
3920static ssize_t shmem_enabled_store(struct kobject *kobj,
3921 struct kobj_attribute *attr, const char *buf, size_t count)
3922{
3923 char tmp[16];
3924 int huge;
3925
3926 if (count + 1 > sizeof(tmp))
3927 return -EINVAL;
3928 memcpy(tmp, buf, count);
3929 tmp[count] = '\0';
3930 if (count && tmp[count - 1] == '\n')
3931 tmp[count - 1] = '\0';
3932
3933 huge = shmem_parse_huge(tmp);
3934 if (huge == -EINVAL)
3935 return -EINVAL;
3936 if (!has_transparent_hugepage() &&
3937 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3938 return -EINVAL;
3939
3940 shmem_huge = huge;
435c0b87 3941 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3942 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3943 return count;
3944}
3945
3946struct kobj_attribute shmem_enabled_attr =
3947 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3948#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3949
396bcc52 3950#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
3951bool shmem_huge_enabled(struct vm_area_struct *vma)
3952{
3953 struct inode *inode = file_inode(vma->vm_file);
3954 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3955 loff_t i_size;
3956 pgoff_t off;
3957
c0630669
YS
3958 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3959 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3960 return false;
f3f0e1d2
KS
3961 if (shmem_huge == SHMEM_HUGE_FORCE)
3962 return true;
3963 if (shmem_huge == SHMEM_HUGE_DENY)
3964 return false;
3965 switch (sbinfo->huge) {
3966 case SHMEM_HUGE_NEVER:
3967 return false;
3968 case SHMEM_HUGE_ALWAYS:
3969 return true;
3970 case SHMEM_HUGE_WITHIN_SIZE:
3971 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3972 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3973 if (i_size >= HPAGE_PMD_SIZE &&
3974 i_size >> PAGE_SHIFT >= off)
3975 return true;
e4a9bc58 3976 fallthrough;
f3f0e1d2
KS
3977 case SHMEM_HUGE_ADVISE:
3978 /* TODO: implement fadvise() hints */
3979 return (vma->vm_flags & VM_HUGEPAGE);
3980 default:
3981 VM_BUG_ON(1);
3982 return false;
3983 }
3984}
396bcc52 3985#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 3986
853ac43a
MM
3987#else /* !CONFIG_SHMEM */
3988
3989/*
3990 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3991 *
3992 * This is intended for small system where the benefits of the full
3993 * shmem code (swap-backed and resource-limited) are outweighed by
3994 * their complexity. On systems without swap this code should be
3995 * effectively equivalent, but much lighter weight.
3996 */
3997
41ffe5d5 3998static struct file_system_type shmem_fs_type = {
853ac43a 3999 .name = "tmpfs",
f3235626 4000 .init_fs_context = ramfs_init_fs_context,
d7167b14 4001 .parameters = ramfs_fs_parameters,
853ac43a 4002 .kill_sb = kill_litter_super,
2b8576cb 4003 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4004};
4005
41ffe5d5 4006int __init shmem_init(void)
853ac43a 4007{
41ffe5d5 4008 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4009
41ffe5d5 4010 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4011 BUG_ON(IS_ERR(shm_mnt));
4012
4013 return 0;
4014}
4015
b56a2d8a
VRP
4016int shmem_unuse(unsigned int type, bool frontswap,
4017 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4018{
4019 return 0;
4020}
4021
3f96b79a
HD
4022int shmem_lock(struct file *file, int lock, struct user_struct *user)
4023{
4024 return 0;
4025}
4026
24513264
HD
4027void shmem_unlock_mapping(struct address_space *mapping)
4028{
4029}
4030
c01d5b30
HD
4031#ifdef CONFIG_MMU
4032unsigned long shmem_get_unmapped_area(struct file *file,
4033 unsigned long addr, unsigned long len,
4034 unsigned long pgoff, unsigned long flags)
4035{
4036 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4037}
4038#endif
4039
41ffe5d5 4040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4041{
41ffe5d5 4042 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4043}
4044EXPORT_SYMBOL_GPL(shmem_truncate_range);
4045
0b0a0806
HD
4046#define shmem_vm_ops generic_file_vm_ops
4047#define shmem_file_operations ramfs_file_operations
454abafe 4048#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4049#define shmem_acct_size(flags, size) 0
4050#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4051
4052#endif /* CONFIG_SHMEM */
4053
4054/* common code */
1da177e4 4055
703321b6 4056static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4057 unsigned long flags, unsigned int i_flags)
1da177e4 4058{
1da177e4 4059 struct inode *inode;
93dec2da 4060 struct file *res;
1da177e4 4061
703321b6
MA
4062 if (IS_ERR(mnt))
4063 return ERR_CAST(mnt);
1da177e4 4064
285b2c4f 4065 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4066 return ERR_PTR(-EINVAL);
4067
4068 if (shmem_acct_size(flags, size))
4069 return ERR_PTR(-ENOMEM);
4070
93dec2da
AV
4071 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4072 flags);
dac2d1f6
AV
4073 if (unlikely(!inode)) {
4074 shmem_unacct_size(flags, size);
4075 return ERR_PTR(-ENOSPC);
4076 }
c7277090 4077 inode->i_flags |= i_flags;
1da177e4 4078 inode->i_size = size;
6d6b77f1 4079 clear_nlink(inode); /* It is unlinked */
26567cdb 4080 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4081 if (!IS_ERR(res))
4082 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4083 &shmem_file_operations);
26567cdb 4084 if (IS_ERR(res))
93dec2da 4085 iput(inode);
6b4d0b27 4086 return res;
1da177e4 4087}
c7277090
EP
4088
4089/**
4090 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4091 * kernel internal. There will be NO LSM permission checks against the
4092 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4093 * higher layer. The users are the big_key and shm implementations. LSM
4094 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4095 * @name: name for dentry (to be seen in /proc/<pid>/maps
4096 * @size: size to be set for the file
4097 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4098 */
4099struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4100{
703321b6 4101 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4102}
4103
4104/**
4105 * shmem_file_setup - get an unlinked file living in tmpfs
4106 * @name: name for dentry (to be seen in /proc/<pid>/maps
4107 * @size: size to be set for the file
4108 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4109 */
4110struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4111{
703321b6 4112 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4113}
395e0ddc 4114EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4115
703321b6
MA
4116/**
4117 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4118 * @mnt: the tmpfs mount where the file will be created
4119 * @name: name for dentry (to be seen in /proc/<pid>/maps
4120 * @size: size to be set for the file
4121 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122 */
4123struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4124 loff_t size, unsigned long flags)
4125{
4126 return __shmem_file_setup(mnt, name, size, flags, 0);
4127}
4128EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4129
46711810 4130/**
1da177e4 4131 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4132 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4133 */
4134int shmem_zero_setup(struct vm_area_struct *vma)
4135{
4136 struct file *file;
4137 loff_t size = vma->vm_end - vma->vm_start;
4138
66fc1303
HD
4139 /*
4140 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4141 * between XFS directory reading and selinux: since this file is only
4142 * accessible to the user through its mapping, use S_PRIVATE flag to
4143 * bypass file security, in the same way as shmem_kernel_file_setup().
4144 */
703321b6 4145 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4146 if (IS_ERR(file))
4147 return PTR_ERR(file);
4148
4149 if (vma->vm_file)
4150 fput(vma->vm_file);
4151 vma->vm_file = file;
4152 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4153
396bcc52 4154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4155 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4156 (vma->vm_end & HPAGE_PMD_MASK)) {
4157 khugepaged_enter(vma, vma->vm_flags);
4158 }
4159
1da177e4
LT
4160 return 0;
4161}
d9d90e5e
HD
4162
4163/**
4164 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4165 * @mapping: the page's address_space
4166 * @index: the page index
4167 * @gfp: the page allocator flags to use if allocating
4168 *
4169 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4170 * with any new page allocations done using the specified allocation flags.
4171 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4172 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4173 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4174 *
68da9f05
HD
4175 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4176 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4177 */
4178struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4179 pgoff_t index, gfp_t gfp)
4180{
68da9f05
HD
4181#ifdef CONFIG_SHMEM
4182 struct inode *inode = mapping->host;
9276aad6 4183 struct page *page;
68da9f05
HD
4184 int error;
4185
4186 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4187 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4188 gfp, NULL, NULL, NULL);
68da9f05
HD
4189 if (error)
4190 page = ERR_PTR(error);
4191 else
4192 unlock_page(page);
4193 return page;
4194#else
4195 /*
4196 * The tiny !SHMEM case uses ramfs without swap
4197 */
d9d90e5e 4198 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4199#endif
d9d90e5e
HD
4200}
4201EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);