]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/shmem.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
853ac43a 37
95cc09d6
AA
38#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
853ac43a
MM
40static struct vfsmount *shm_mnt;
41
42#ifdef CONFIG_SHMEM
1da177e4
LT
43/*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
39f0247d 49#include <linux/xattr.h>
a5694255 50#include <linux/exportfs.h>
1c7c474c 51#include <linux/posix_acl.h>
feda821e 52#include <linux/posix_acl_xattr.h>
1da177e4 53#include <linux/mman.h>
1da177e4
LT
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <linux/backing-dev.h>
57#include <linux/shmem_fs.h>
1da177e4 58#include <linux/writeback.h>
1da177e4 59#include <linux/blkdev.h>
bda97eab 60#include <linux/pagevec.h>
41ffe5d5 61#include <linux/percpu_counter.h>
83e4fa9c 62#include <linux/falloc.h>
708e3508 63#include <linux/splice.h>
1da177e4
LT
64#include <linux/security.h>
65#include <linux/swapops.h>
66#include <linux/mempolicy.h>
67#include <linux/namei.h>
b00dc3ad 68#include <linux/ctype.h>
304dbdb7 69#include <linux/migrate.h>
c1f60a5a 70#include <linux/highmem.h>
680d794b 71#include <linux/seq_file.h>
92562927 72#include <linux/magic.h>
9183df25 73#include <linux/syscalls.h>
40e041a2 74#include <linux/fcntl.h>
9183df25 75#include <uapi/linux/memfd.h>
cfda0526 76#include <linux/userfaultfd_k.h>
4c27fe4c 77#include <linux/rmap.h>
2b4db796 78#include <linux/uuid.h>
304dbdb7 79
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/pgtable.h>
82
dd56b046
MG
83#include "internal.h"
84
09cbfeaf
KS
85#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 87
1da177e4
LT
88/* Pretend that each entry is of this size in directory's i_size */
89#define BOGO_DIRENT_SIZE 20
90
69f07ec9
HD
91/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92#define SHORT_SYMLINK_LEN 128
93
1aac1400 94/*
f00cdc6d
HD
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
98 */
99struct shmem_falloc {
8e205f77 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105};
106
b76db735 107#ifdef CONFIG_TMPFS
680d794b
AM
108static unsigned long shmem_default_max_blocks(void)
109{
110 return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
b76db735 117#endif
680d794b 118
bde05d1c
HD
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
68da9f05 122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 123 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
124 gfp_t gfp, struct vm_area_struct *vma,
125 struct vm_fault *vmf, int *fault_type);
68da9f05 126
f3f0e1d2 127int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 128 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
75edd345 172 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
800d8c63 176static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 177{
800d8c63
KS
178 if (!(flags & VM_NORESERVE))
179 return 0;
180
181 return security_vm_enough_memory_mm(current->mm,
182 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
183}
184
185static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186{
0b0a0806 187 if (flags & VM_NORESERVE)
09cbfeaf 188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
189}
190
759b9775 191static const struct super_operations shmem_ops;
f5e54d6e 192static const struct address_space_operations shmem_aops;
15ad7cdc 193static const struct file_operations shmem_file_operations;
92e1d5be
AV
194static const struct inode_operations shmem_inode_operations;
195static const struct inode_operations shmem_dir_inode_operations;
196static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 197static const struct vm_operations_struct shmem_vm_ops;
779750d2 198static struct file_system_type shmem_fs_type;
1da177e4 199
b0506e48
MR
200bool vma_is_shmem(struct vm_area_struct *vma)
201{
202 return vma->vm_ops == &shmem_vm_ops;
203}
204
1da177e4 205static LIST_HEAD(shmem_swaplist);
cb5f7b9a 206static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 207
5b04c689
PE
208static int shmem_reserve_inode(struct super_block *sb)
209{
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
215 return -ENOSPC;
216 }
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 return 0;
221}
222
223static void shmem_free_inode(struct super_block *sb)
224{
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
230 }
231}
232
46711810 233/**
41ffe5d5 234 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
235 * @inode: inode to recalc
236 *
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
239 *
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242 *
243 * It has to be called with the spinlock held.
244 */
245static void shmem_recalc_inode(struct inode *inode)
246{
247 struct shmem_inode_info *info = SHMEM_I(inode);
248 long freed;
249
250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 if (freed > 0) {
54af6042
HD
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 if (sbinfo->max_blocks)
254 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 255 info->alloced -= freed;
54af6042 256 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 257 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
258 }
259}
260
800d8c63
KS
261bool shmem_charge(struct inode *inode, long pages)
262{
263 struct shmem_inode_info *info = SHMEM_I(inode);
264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 265 unsigned long flags;
800d8c63
KS
266
267 if (shmem_acct_block(info->flags, pages))
268 return false;
4595ef88 269 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
270 info->alloced += pages;
271 inode->i_blocks += pages * BLOCKS_PER_PAGE;
272 shmem_recalc_inode(inode);
4595ef88 273 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
274 inode->i_mapping->nrpages += pages;
275
276 if (!sbinfo->max_blocks)
277 return true;
278 if (percpu_counter_compare(&sbinfo->used_blocks,
279 sbinfo->max_blocks - pages) > 0) {
280 inode->i_mapping->nrpages -= pages;
4595ef88 281 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
282 info->alloced -= pages;
283 shmem_recalc_inode(inode);
4595ef88 284 spin_unlock_irqrestore(&info->lock, flags);
71664665 285 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
286 return false;
287 }
288 percpu_counter_add(&sbinfo->used_blocks, pages);
289 return true;
290}
291
292void shmem_uncharge(struct inode *inode, long pages)
293{
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 296 unsigned long flags;
800d8c63 297
4595ef88 298 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
299 info->alloced -= pages;
300 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301 shmem_recalc_inode(inode);
4595ef88 302 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
303
304 if (sbinfo->max_blocks)
305 percpu_counter_sub(&sbinfo->used_blocks, pages);
71664665 306 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
307}
308
7a5d0fbb
HD
309/*
310 * Replace item expected in radix tree by a new item, while holding tree lock.
311 */
312static int shmem_radix_tree_replace(struct address_space *mapping,
313 pgoff_t index, void *expected, void *replacement)
314{
f7942430 315 struct radix_tree_node *node;
7a5d0fbb 316 void **pslot;
6dbaf22c 317 void *item;
7a5d0fbb
HD
318
319 VM_BUG_ON(!expected);
6dbaf22c 320 VM_BUG_ON(!replacement);
f7942430
JW
321 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
322 if (!item)
6dbaf22c 323 return -ENOENT;
7a5d0fbb
HD
324 if (item != expected)
325 return -ENOENT;
4d693d08
JW
326 __radix_tree_replace(&mapping->page_tree, node, pslot,
327 replacement, NULL, NULL);
7a5d0fbb
HD
328 return 0;
329}
330
d1899228
HD
331/*
332 * Sometimes, before we decide whether to proceed or to fail, we must check
333 * that an entry was not already brought back from swap by a racing thread.
334 *
335 * Checking page is not enough: by the time a SwapCache page is locked, it
336 * might be reused, and again be SwapCache, using the same swap as before.
337 */
338static bool shmem_confirm_swap(struct address_space *mapping,
339 pgoff_t index, swp_entry_t swap)
340{
341 void *item;
342
343 rcu_read_lock();
344 item = radix_tree_lookup(&mapping->page_tree, index);
345 rcu_read_unlock();
346 return item == swp_to_radix_entry(swap);
347}
348
5a6e75f8
KS
349/*
350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
351 *
352 * SHMEM_HUGE_NEVER:
353 * disables huge pages for the mount;
354 * SHMEM_HUGE_ALWAYS:
355 * enables huge pages for the mount;
356 * SHMEM_HUGE_WITHIN_SIZE:
357 * only allocate huge pages if the page will be fully within i_size,
358 * also respect fadvise()/madvise() hints;
359 * SHMEM_HUGE_ADVISE:
360 * only allocate huge pages if requested with fadvise()/madvise();
361 */
362
363#define SHMEM_HUGE_NEVER 0
364#define SHMEM_HUGE_ALWAYS 1
365#define SHMEM_HUGE_WITHIN_SIZE 2
366#define SHMEM_HUGE_ADVISE 3
367
368/*
369 * Special values.
370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
371 *
372 * SHMEM_HUGE_DENY:
373 * disables huge on shm_mnt and all mounts, for emergency use;
374 * SHMEM_HUGE_FORCE:
375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
376 *
377 */
378#define SHMEM_HUGE_DENY (-1)
379#define SHMEM_HUGE_FORCE (-2)
380
e496cf3d 381#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
382/* ifdef here to avoid bloating shmem.o when not necessary */
383
384int shmem_huge __read_mostly;
385
f1f5929c 386#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
387static int shmem_parse_huge(const char *str)
388{
389 if (!strcmp(str, "never"))
390 return SHMEM_HUGE_NEVER;
391 if (!strcmp(str, "always"))
392 return SHMEM_HUGE_ALWAYS;
393 if (!strcmp(str, "within_size"))
394 return SHMEM_HUGE_WITHIN_SIZE;
395 if (!strcmp(str, "advise"))
396 return SHMEM_HUGE_ADVISE;
397 if (!strcmp(str, "deny"))
398 return SHMEM_HUGE_DENY;
399 if (!strcmp(str, "force"))
400 return SHMEM_HUGE_FORCE;
401 return -EINVAL;
402}
403
404static const char *shmem_format_huge(int huge)
405{
406 switch (huge) {
407 case SHMEM_HUGE_NEVER:
408 return "never";
409 case SHMEM_HUGE_ALWAYS:
410 return "always";
411 case SHMEM_HUGE_WITHIN_SIZE:
412 return "within_size";
413 case SHMEM_HUGE_ADVISE:
414 return "advise";
415 case SHMEM_HUGE_DENY:
416 return "deny";
417 case SHMEM_HUGE_FORCE:
418 return "force";
419 default:
420 VM_BUG_ON(1);
421 return "bad_val";
422 }
423}
f1f5929c 424#endif
5a6e75f8 425
779750d2
KS
426static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427 struct shrink_control *sc, unsigned long nr_to_split)
428{
429 LIST_HEAD(list), *pos, *next;
253fd0f0 430 LIST_HEAD(to_remove);
779750d2
KS
431 struct inode *inode;
432 struct shmem_inode_info *info;
433 struct page *page;
434 unsigned long batch = sc ? sc->nr_to_scan : 128;
435 int removed = 0, split = 0;
436
437 if (list_empty(&sbinfo->shrinklist))
438 return SHRINK_STOP;
439
440 spin_lock(&sbinfo->shrinklist_lock);
441 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442 info = list_entry(pos, struct shmem_inode_info, shrinklist);
443
444 /* pin the inode */
445 inode = igrab(&info->vfs_inode);
446
447 /* inode is about to be evicted */
448 if (!inode) {
449 list_del_init(&info->shrinklist);
450 removed++;
451 goto next;
452 }
453
454 /* Check if there's anything to gain */
455 if (round_up(inode->i_size, PAGE_SIZE) ==
456 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 457 list_move(&info->shrinklist, &to_remove);
779750d2 458 removed++;
779750d2
KS
459 goto next;
460 }
461
462 list_move(&info->shrinklist, &list);
463next:
464 if (!--batch)
465 break;
466 }
467 spin_unlock(&sbinfo->shrinklist_lock);
468
253fd0f0
KS
469 list_for_each_safe(pos, next, &to_remove) {
470 info = list_entry(pos, struct shmem_inode_info, shrinklist);
471 inode = &info->vfs_inode;
472 list_del_init(&info->shrinklist);
473 iput(inode);
474 }
475
779750d2
KS
476 list_for_each_safe(pos, next, &list) {
477 int ret;
478
479 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480 inode = &info->vfs_inode;
481
482 if (nr_to_split && split >= nr_to_split) {
483 iput(inode);
484 continue;
485 }
486
487 page = find_lock_page(inode->i_mapping,
488 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
489 if (!page)
490 goto drop;
491
492 if (!PageTransHuge(page)) {
493 unlock_page(page);
494 put_page(page);
495 goto drop;
496 }
497
498 ret = split_huge_page(page);
499 unlock_page(page);
500 put_page(page);
501
502 if (ret) {
503 /* split failed: leave it on the list */
504 iput(inode);
505 continue;
506 }
507
508 split++;
509drop:
510 list_del_init(&info->shrinklist);
511 removed++;
512 iput(inode);
513 }
514
515 spin_lock(&sbinfo->shrinklist_lock);
516 list_splice_tail(&list, &sbinfo->shrinklist);
517 sbinfo->shrinklist_len -= removed;
518 spin_unlock(&sbinfo->shrinklist_lock);
519
520 return split;
521}
522
523static long shmem_unused_huge_scan(struct super_block *sb,
524 struct shrink_control *sc)
525{
526 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
527
528 if (!READ_ONCE(sbinfo->shrinklist_len))
529 return SHRINK_STOP;
530
531 return shmem_unused_huge_shrink(sbinfo, sc, 0);
532}
533
534static long shmem_unused_huge_count(struct super_block *sb,
535 struct shrink_control *sc)
536{
537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538 return READ_ONCE(sbinfo->shrinklist_len);
539}
e496cf3d 540#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
541
542#define shmem_huge SHMEM_HUGE_DENY
543
779750d2
KS
544static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545 struct shrink_control *sc, unsigned long nr_to_split)
546{
547 return 0;
548}
e496cf3d 549#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 550
46f65ec1
HD
551/*
552 * Like add_to_page_cache_locked, but error if expected item has gone.
553 */
554static int shmem_add_to_page_cache(struct page *page,
555 struct address_space *mapping,
fed400a1 556 pgoff_t index, void *expected)
46f65ec1 557{
800d8c63 558 int error, nr = hpage_nr_pages(page);
46f65ec1 559
800d8c63
KS
560 VM_BUG_ON_PAGE(PageTail(page), page);
561 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
562 VM_BUG_ON_PAGE(!PageLocked(page), page);
563 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 564 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 565
800d8c63 566 page_ref_add(page, nr);
b065b432
HD
567 page->mapping = mapping;
568 page->index = index;
569
570 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
571 if (PageTransHuge(page)) {
572 void __rcu **results;
573 pgoff_t idx;
574 int i;
575
576 error = 0;
577 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578 &results, &idx, index, 1) &&
579 idx < index + HPAGE_PMD_NR) {
580 error = -EEXIST;
581 }
582
583 if (!error) {
584 for (i = 0; i < HPAGE_PMD_NR; i++) {
585 error = radix_tree_insert(&mapping->page_tree,
586 index + i, page + i);
587 VM_BUG_ON(error);
588 }
589 count_vm_event(THP_FILE_ALLOC);
590 }
591 } else if (!expected) {
b065b432 592 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 593 } else {
b065b432
HD
594 error = shmem_radix_tree_replace(mapping, index, expected,
595 page);
800d8c63
KS
596 }
597
46f65ec1 598 if (!error) {
800d8c63
KS
599 mapping->nrpages += nr;
600 if (PageTransHuge(page))
11fb9989
MG
601 __inc_node_page_state(page, NR_SHMEM_THPS);
602 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
604 spin_unlock_irq(&mapping->tree_lock);
605 } else {
606 page->mapping = NULL;
607 spin_unlock_irq(&mapping->tree_lock);
800d8c63 608 page_ref_sub(page, nr);
46f65ec1 609 }
46f65ec1
HD
610 return error;
611}
612
6922c0c7
HD
613/*
614 * Like delete_from_page_cache, but substitutes swap for page.
615 */
616static void shmem_delete_from_page_cache(struct page *page, void *radswap)
617{
618 struct address_space *mapping = page->mapping;
619 int error;
620
800d8c63
KS
621 VM_BUG_ON_PAGE(PageCompound(page), page);
622
6922c0c7
HD
623 spin_lock_irq(&mapping->tree_lock);
624 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625 page->mapping = NULL;
626 mapping->nrpages--;
11fb9989
MG
627 __dec_node_page_state(page, NR_FILE_PAGES);
628 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 629 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 630 put_page(page);
6922c0c7
HD
631 BUG_ON(error);
632}
633
7a5d0fbb
HD
634/*
635 * Remove swap entry from radix tree, free the swap and its page cache.
636 */
637static int shmem_free_swap(struct address_space *mapping,
638 pgoff_t index, void *radswap)
639{
6dbaf22c 640 void *old;
7a5d0fbb
HD
641
642 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 643 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 644 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
645 if (old != radswap)
646 return -ENOENT;
647 free_swap_and_cache(radix_to_swp_entry(radswap));
648 return 0;
7a5d0fbb
HD
649}
650
6a15a370
VB
651/*
652 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 653 * given offsets are swapped out.
6a15a370
VB
654 *
655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656 * as long as the inode doesn't go away and racy results are not a problem.
657 */
48131e03
VB
658unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659 pgoff_t start, pgoff_t end)
6a15a370 660{
6a15a370
VB
661 struct radix_tree_iter iter;
662 void **slot;
663 struct page *page;
48131e03 664 unsigned long swapped = 0;
6a15a370
VB
665
666 rcu_read_lock();
667
6a15a370
VB
668 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669 if (iter.index >= end)
670 break;
671
672 page = radix_tree_deref_slot(slot);
673
2cf938aa
MW
674 if (radix_tree_deref_retry(page)) {
675 slot = radix_tree_iter_retry(&iter);
676 continue;
677 }
6a15a370
VB
678
679 if (radix_tree_exceptional_entry(page))
680 swapped++;
681
682 if (need_resched()) {
148deab2 683 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 684 cond_resched_rcu();
6a15a370
VB
685 }
686 }
687
688 rcu_read_unlock();
689
690 return swapped << PAGE_SHIFT;
691}
692
48131e03
VB
693/*
694 * Determine (in bytes) how many of the shmem object's pages mapped by the
695 * given vma is swapped out.
696 *
697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698 * as long as the inode doesn't go away and racy results are not a problem.
699 */
700unsigned long shmem_swap_usage(struct vm_area_struct *vma)
701{
702 struct inode *inode = file_inode(vma->vm_file);
703 struct shmem_inode_info *info = SHMEM_I(inode);
704 struct address_space *mapping = inode->i_mapping;
705 unsigned long swapped;
706
707 /* Be careful as we don't hold info->lock */
708 swapped = READ_ONCE(info->swapped);
709
710 /*
711 * The easier cases are when the shmem object has nothing in swap, or
712 * the vma maps it whole. Then we can simply use the stats that we
713 * already track.
714 */
715 if (!swapped)
716 return 0;
717
718 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719 return swapped << PAGE_SHIFT;
720
721 /* Here comes the more involved part */
722 return shmem_partial_swap_usage(mapping,
723 linear_page_index(vma, vma->vm_start),
724 linear_page_index(vma, vma->vm_end));
725}
726
24513264
HD
727/*
728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729 */
730void shmem_unlock_mapping(struct address_space *mapping)
731{
732 struct pagevec pvec;
733 pgoff_t indices[PAGEVEC_SIZE];
734 pgoff_t index = 0;
735
736 pagevec_init(&pvec, 0);
737 /*
738 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739 */
740 while (!mapping_unevictable(mapping)) {
741 /*
742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744 */
0cd6144a
JW
745 pvec.nr = find_get_entries(mapping, index,
746 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
747 if (!pvec.nr)
748 break;
749 index = indices[pvec.nr - 1] + 1;
0cd6144a 750 pagevec_remove_exceptionals(&pvec);
24513264
HD
751 check_move_unevictable_pages(pvec.pages, pvec.nr);
752 pagevec_release(&pvec);
753 cond_resched();
754 }
7a5d0fbb
HD
755}
756
757/*
758 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 760 */
1635f6a7
HD
761static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
762 bool unfalloc)
1da177e4 763{
285b2c4f 764 struct address_space *mapping = inode->i_mapping;
1da177e4 765 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
766 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 770 struct pagevec pvec;
7a5d0fbb
HD
771 pgoff_t indices[PAGEVEC_SIZE];
772 long nr_swaps_freed = 0;
285b2c4f 773 pgoff_t index;
bda97eab
HD
774 int i;
775
83e4fa9c
HD
776 if (lend == -1)
777 end = -1; /* unsigned, so actually very big */
bda97eab
HD
778
779 pagevec_init(&pvec, 0);
780 index = start;
83e4fa9c 781 while (index < end) {
0cd6144a
JW
782 pvec.nr = find_get_entries(mapping, index,
783 min(end - index, (pgoff_t)PAGEVEC_SIZE),
784 pvec.pages, indices);
7a5d0fbb
HD
785 if (!pvec.nr)
786 break;
bda97eab
HD
787 for (i = 0; i < pagevec_count(&pvec); i++) {
788 struct page *page = pvec.pages[i];
789
7a5d0fbb 790 index = indices[i];
83e4fa9c 791 if (index >= end)
bda97eab
HD
792 break;
793
7a5d0fbb 794 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
795 if (unfalloc)
796 continue;
7a5d0fbb
HD
797 nr_swaps_freed += !shmem_free_swap(mapping,
798 index, page);
bda97eab 799 continue;
7a5d0fbb
HD
800 }
801
800d8c63
KS
802 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
803
7a5d0fbb 804 if (!trylock_page(page))
bda97eab 805 continue;
800d8c63
KS
806
807 if (PageTransTail(page)) {
808 /* Middle of THP: zero out the page */
809 clear_highpage(page);
810 unlock_page(page);
811 continue;
812 } else if (PageTransHuge(page)) {
813 if (index == round_down(end, HPAGE_PMD_NR)) {
814 /*
815 * Range ends in the middle of THP:
816 * zero out the page
817 */
818 clear_highpage(page);
819 unlock_page(page);
820 continue;
821 }
822 index += HPAGE_PMD_NR - 1;
823 i += HPAGE_PMD_NR - 1;
824 }
825
1635f6a7 826 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
827 VM_BUG_ON_PAGE(PageTail(page), page);
828 if (page_mapping(page) == mapping) {
309381fe 829 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
830 truncate_inode_page(mapping, page);
831 }
bda97eab 832 }
bda97eab
HD
833 unlock_page(page);
834 }
0cd6144a 835 pagevec_remove_exceptionals(&pvec);
24513264 836 pagevec_release(&pvec);
bda97eab
HD
837 cond_resched();
838 index++;
839 }
1da177e4 840
83e4fa9c 841 if (partial_start) {
bda97eab 842 struct page *page = NULL;
9e18eb29 843 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 844 if (page) {
09cbfeaf 845 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
846 if (start > end) {
847 top = partial_end;
848 partial_end = 0;
849 }
850 zero_user_segment(page, partial_start, top);
851 set_page_dirty(page);
852 unlock_page(page);
09cbfeaf 853 put_page(page);
83e4fa9c
HD
854 }
855 }
856 if (partial_end) {
857 struct page *page = NULL;
9e18eb29 858 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
859 if (page) {
860 zero_user_segment(page, 0, partial_end);
bda97eab
HD
861 set_page_dirty(page);
862 unlock_page(page);
09cbfeaf 863 put_page(page);
bda97eab
HD
864 }
865 }
83e4fa9c
HD
866 if (start >= end)
867 return;
bda97eab
HD
868
869 index = start;
b1a36650 870 while (index < end) {
bda97eab 871 cond_resched();
0cd6144a
JW
872
873 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 874 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 875 pvec.pages, indices);
7a5d0fbb 876 if (!pvec.nr) {
b1a36650
HD
877 /* If all gone or hole-punch or unfalloc, we're done */
878 if (index == start || end != -1)
bda97eab 879 break;
b1a36650 880 /* But if truncating, restart to make sure all gone */
bda97eab
HD
881 index = start;
882 continue;
883 }
bda97eab
HD
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 struct page *page = pvec.pages[i];
886
7a5d0fbb 887 index = indices[i];
83e4fa9c 888 if (index >= end)
bda97eab
HD
889 break;
890
7a5d0fbb 891 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
892 if (unfalloc)
893 continue;
b1a36650
HD
894 if (shmem_free_swap(mapping, index, page)) {
895 /* Swap was replaced by page: retry */
896 index--;
897 break;
898 }
899 nr_swaps_freed++;
7a5d0fbb
HD
900 continue;
901 }
902
bda97eab 903 lock_page(page);
800d8c63
KS
904
905 if (PageTransTail(page)) {
906 /* Middle of THP: zero out the page */
907 clear_highpage(page);
908 unlock_page(page);
909 /*
910 * Partial thp truncate due 'start' in middle
911 * of THP: don't need to look on these pages
912 * again on !pvec.nr restart.
913 */
914 if (index != round_down(end, HPAGE_PMD_NR))
915 start++;
916 continue;
917 } else if (PageTransHuge(page)) {
918 if (index == round_down(end, HPAGE_PMD_NR)) {
919 /*
920 * Range ends in the middle of THP:
921 * zero out the page
922 */
923 clear_highpage(page);
924 unlock_page(page);
925 continue;
926 }
927 index += HPAGE_PMD_NR - 1;
928 i += HPAGE_PMD_NR - 1;
929 }
930
1635f6a7 931 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
932 VM_BUG_ON_PAGE(PageTail(page), page);
933 if (page_mapping(page) == mapping) {
309381fe 934 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 935 truncate_inode_page(mapping, page);
b1a36650
HD
936 } else {
937 /* Page was replaced by swap: retry */
938 unlock_page(page);
939 index--;
940 break;
1635f6a7 941 }
7a5d0fbb 942 }
bda97eab
HD
943 unlock_page(page);
944 }
0cd6144a 945 pagevec_remove_exceptionals(&pvec);
24513264 946 pagevec_release(&pvec);
bda97eab
HD
947 index++;
948 }
94c1e62d 949
4595ef88 950 spin_lock_irq(&info->lock);
7a5d0fbb 951 info->swapped -= nr_swaps_freed;
1da177e4 952 shmem_recalc_inode(inode);
4595ef88 953 spin_unlock_irq(&info->lock);
1635f6a7 954}
1da177e4 955
1635f6a7
HD
956void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
957{
958 shmem_undo_range(inode, lstart, lend, false);
078cd827 959 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 960}
94c1e62d 961EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 962
a528d35e
DH
963static int shmem_getattr(const struct path *path, struct kstat *stat,
964 u32 request_mask, unsigned int query_flags)
44a30220 965{
a528d35e 966 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
967 struct shmem_inode_info *info = SHMEM_I(inode);
968
d0424c42 969 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 970 spin_lock_irq(&info->lock);
d0424c42 971 shmem_recalc_inode(inode);
4595ef88 972 spin_unlock_irq(&info->lock);
d0424c42 973 }
44a30220 974 generic_fillattr(inode, stat);
44a30220
YZ
975 return 0;
976}
977
94c1e62d 978static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 979{
75c3cfa8 980 struct inode *inode = d_inode(dentry);
40e041a2 981 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
983 int error;
984
31051c85 985 error = setattr_prepare(dentry, attr);
db78b877
CH
986 if (error)
987 return error;
988
94c1e62d
HD
989 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990 loff_t oldsize = inode->i_size;
991 loff_t newsize = attr->ia_size;
3889e6e7 992
40e041a2
DH
993 /* protected by i_mutex */
994 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
996 return -EPERM;
997
94c1e62d 998 if (newsize != oldsize) {
77142517
KK
999 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1000 oldsize, newsize);
1001 if (error)
1002 return error;
94c1e62d 1003 i_size_write(inode, newsize);
078cd827 1004 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1005 }
afa2db2f 1006 if (newsize <= oldsize) {
94c1e62d 1007 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1008 if (oldsize > holebegin)
1009 unmap_mapping_range(inode->i_mapping,
1010 holebegin, 0, 1);
1011 if (info->alloced)
1012 shmem_truncate_range(inode,
1013 newsize, (loff_t)-1);
94c1e62d 1014 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1015 if (oldsize > holebegin)
1016 unmap_mapping_range(inode->i_mapping,
1017 holebegin, 0, 1);
779750d2
KS
1018
1019 /*
1020 * Part of the huge page can be beyond i_size: subject
1021 * to shrink under memory pressure.
1022 */
1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1025 /*
1026 * _careful to defend against unlocked access to
1027 * ->shrink_list in shmem_unused_huge_shrink()
1028 */
1029 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1030 list_add_tail(&info->shrinklist,
1031 &sbinfo->shrinklist);
1032 sbinfo->shrinklist_len++;
1033 }
1034 spin_unlock(&sbinfo->shrinklist_lock);
1035 }
94c1e62d 1036 }
1da177e4
LT
1037 }
1038
db78b877 1039 setattr_copy(inode, attr);
db78b877 1040 if (attr->ia_valid & ATTR_MODE)
feda821e 1041 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1042 return error;
1043}
1044
1f895f75 1045static void shmem_evict_inode(struct inode *inode)
1da177e4 1046{
1da177e4 1047 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1048 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1049
3889e6e7 1050 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1051 shmem_unacct_size(info->flags, inode->i_size);
1052 inode->i_size = 0;
3889e6e7 1053 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1054 if (!list_empty(&info->shrinklist)) {
1055 spin_lock(&sbinfo->shrinklist_lock);
1056 if (!list_empty(&info->shrinklist)) {
1057 list_del_init(&info->shrinklist);
1058 sbinfo->shrinklist_len--;
1059 }
1060 spin_unlock(&sbinfo->shrinklist_lock);
1061 }
1da177e4 1062 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1063 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1064 list_del_init(&info->swaplist);
cb5f7b9a 1065 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1066 }
3ed47db3 1067 }
b09e0fa4 1068
38f38657 1069 simple_xattrs_free(&info->xattrs);
0f3c42f5 1070 WARN_ON(inode->i_blocks);
5b04c689 1071 shmem_free_inode(inode->i_sb);
dbd5768f 1072 clear_inode(inode);
1da177e4
LT
1073}
1074
478922e2
MW
1075static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1076{
1077 struct radix_tree_iter iter;
1078 void **slot;
1079 unsigned long found = -1;
1080 unsigned int checked = 0;
1081
1082 rcu_read_lock();
1083 radix_tree_for_each_slot(slot, root, &iter, 0) {
1084 if (*slot == item) {
1085 found = iter.index;
1086 break;
1087 }
1088 checked++;
1089 if ((checked % 4096) != 0)
1090 continue;
1091 slot = radix_tree_iter_resume(slot, &iter);
1092 cond_resched_rcu();
1093 }
1094
1095 rcu_read_unlock();
1096 return found;
1097}
1098
46f65ec1
HD
1099/*
1100 * If swap found in inode, free it and move page from swapcache to filecache.
1101 */
41ffe5d5 1102static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1103 swp_entry_t swap, struct page **pagep)
1da177e4 1104{
285b2c4f 1105 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1106 void *radswap;
41ffe5d5 1107 pgoff_t index;
bde05d1c
HD
1108 gfp_t gfp;
1109 int error = 0;
1da177e4 1110
46f65ec1 1111 radswap = swp_to_radix_entry(swap);
478922e2 1112 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1113 if (index == -1)
00501b53 1114 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1115
1b1b32f2
HD
1116 /*
1117 * Move _head_ to start search for next from here.
1f895f75 1118 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1119 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1120 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1121 */
1122 if (shmem_swaplist.next != &info->swaplist)
1123 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1124
bde05d1c
HD
1125 gfp = mapping_gfp_mask(mapping);
1126 if (shmem_should_replace_page(*pagep, gfp)) {
1127 mutex_unlock(&shmem_swaplist_mutex);
1128 error = shmem_replace_page(pagep, gfp, info, index);
1129 mutex_lock(&shmem_swaplist_mutex);
1130 /*
1131 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1132 * allocation, but the inode might have been freed while we
1133 * dropped it: although a racing shmem_evict_inode() cannot
1134 * complete without emptying the radix_tree, our page lock
1135 * on this swapcache page is not enough to prevent that -
1136 * free_swap_and_cache() of our swap entry will only
1137 * trylock_page(), removing swap from radix_tree whatever.
1138 *
1139 * We must not proceed to shmem_add_to_page_cache() if the
1140 * inode has been freed, but of course we cannot rely on
1141 * inode or mapping or info to check that. However, we can
1142 * safely check if our swap entry is still in use (and here
1143 * it can't have got reused for another page): if it's still
1144 * in use, then the inode cannot have been freed yet, and we
1145 * can safely proceed (if it's no longer in use, that tells
1146 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1147 */
1148 if (!page_swapcount(*pagep))
1149 error = -ENOENT;
1150 }
1151
d13d1443 1152 /*
778dd893
HD
1153 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1154 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1155 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1156 */
bde05d1c
HD
1157 if (!error)
1158 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1159 radswap);
48f170fb 1160 if (error != -ENOMEM) {
46f65ec1
HD
1161 /*
1162 * Truncation and eviction use free_swap_and_cache(), which
1163 * only does trylock page: if we raced, best clean up here.
1164 */
bde05d1c
HD
1165 delete_from_swap_cache(*pagep);
1166 set_page_dirty(*pagep);
46f65ec1 1167 if (!error) {
4595ef88 1168 spin_lock_irq(&info->lock);
46f65ec1 1169 info->swapped--;
4595ef88 1170 spin_unlock_irq(&info->lock);
46f65ec1
HD
1171 swap_free(swap);
1172 }
1da177e4 1173 }
2e0e26c7 1174 return error;
1da177e4
LT
1175}
1176
1177/*
46f65ec1 1178 * Search through swapped inodes to find and replace swap by page.
1da177e4 1179 */
41ffe5d5 1180int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1181{
41ffe5d5 1182 struct list_head *this, *next;
1da177e4 1183 struct shmem_inode_info *info;
00501b53 1184 struct mem_cgroup *memcg;
bde05d1c
HD
1185 int error = 0;
1186
1187 /*
1188 * There's a faint possibility that swap page was replaced before
0142ef6c 1189 * caller locked it: caller will come back later with the right page.
bde05d1c 1190 */
0142ef6c 1191 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1192 goto out;
778dd893
HD
1193
1194 /*
1195 * Charge page using GFP_KERNEL while we can wait, before taking
1196 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1197 * Charged back to the user (not to caller) when swap account is used.
778dd893 1198 */
f627c2f5
KS
1199 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1200 false);
778dd893
HD
1201 if (error)
1202 goto out;
46f65ec1 1203 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1204 error = -EAGAIN;
1da177e4 1205
cb5f7b9a 1206 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1207 list_for_each_safe(this, next, &shmem_swaplist) {
1208 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1209 if (info->swapped)
00501b53 1210 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1211 else
1212 list_del_init(&info->swaplist);
cb5f7b9a 1213 cond_resched();
00501b53 1214 if (error != -EAGAIN)
778dd893 1215 break;
00501b53 1216 /* found nothing in this: move on to search the next */
1da177e4 1217 }
cb5f7b9a 1218 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1219
00501b53
JW
1220 if (error) {
1221 if (error != -ENOMEM)
1222 error = 0;
f627c2f5 1223 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1224 } else
f627c2f5 1225 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1226out:
aaa46865 1227 unlock_page(page);
09cbfeaf 1228 put_page(page);
778dd893 1229 return error;
1da177e4
LT
1230}
1231
1232/*
1233 * Move the page from the page cache to the swap cache.
1234 */
1235static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1236{
1237 struct shmem_inode_info *info;
1da177e4 1238 struct address_space *mapping;
1da177e4 1239 struct inode *inode;
6922c0c7
HD
1240 swp_entry_t swap;
1241 pgoff_t index;
1da177e4 1242
800d8c63 1243 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1244 BUG_ON(!PageLocked(page));
1da177e4
LT
1245 mapping = page->mapping;
1246 index = page->index;
1247 inode = mapping->host;
1248 info = SHMEM_I(inode);
1249 if (info->flags & VM_LOCKED)
1250 goto redirty;
d9fe526a 1251 if (!total_swap_pages)
1da177e4
LT
1252 goto redirty;
1253
d9fe526a 1254 /*
97b713ba
CH
1255 * Our capabilities prevent regular writeback or sync from ever calling
1256 * shmem_writepage; but a stacking filesystem might use ->writepage of
1257 * its underlying filesystem, in which case tmpfs should write out to
1258 * swap only in response to memory pressure, and not for the writeback
1259 * threads or sync.
d9fe526a 1260 */
48f170fb
HD
1261 if (!wbc->for_reclaim) {
1262 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1263 goto redirty;
1264 }
1635f6a7
HD
1265
1266 /*
1267 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1268 * value into swapfile.c, the only way we can correctly account for a
1269 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1270 *
1271 * That's okay for a page already fallocated earlier, but if we have
1272 * not yet completed the fallocation, then (a) we want to keep track
1273 * of this page in case we have to undo it, and (b) it may not be a
1274 * good idea to continue anyway, once we're pushing into swap. So
1275 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1276 */
1277 if (!PageUptodate(page)) {
1aac1400
HD
1278 if (inode->i_private) {
1279 struct shmem_falloc *shmem_falloc;
1280 spin_lock(&inode->i_lock);
1281 shmem_falloc = inode->i_private;
1282 if (shmem_falloc &&
8e205f77 1283 !shmem_falloc->waitq &&
1aac1400
HD
1284 index >= shmem_falloc->start &&
1285 index < shmem_falloc->next)
1286 shmem_falloc->nr_unswapped++;
1287 else
1288 shmem_falloc = NULL;
1289 spin_unlock(&inode->i_lock);
1290 if (shmem_falloc)
1291 goto redirty;
1292 }
1635f6a7
HD
1293 clear_highpage(page);
1294 flush_dcache_page(page);
1295 SetPageUptodate(page);
1296 }
1297
38d8b4e6 1298 swap = get_swap_page(page);
48f170fb
HD
1299 if (!swap.val)
1300 goto redirty;
d9fe526a 1301
37e84351
VD
1302 if (mem_cgroup_try_charge_swap(page, swap))
1303 goto free_swap;
1304
b1dea800
HD
1305 /*
1306 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1307 * if it's not already there. Do it now before the page is
1308 * moved to swap cache, when its pagelock no longer protects
b1dea800 1309 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1310 * we've incremented swapped, because shmem_unuse_inode() will
1311 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1312 */
48f170fb
HD
1313 mutex_lock(&shmem_swaplist_mutex);
1314 if (list_empty(&info->swaplist))
1315 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1316
48f170fb 1317 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1318 spin_lock_irq(&info->lock);
6922c0c7 1319 shmem_recalc_inode(inode);
267a4c76 1320 info->swapped++;
4595ef88 1321 spin_unlock_irq(&info->lock);
6922c0c7 1322
267a4c76
HD
1323 swap_shmem_alloc(swap);
1324 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1325
6922c0c7 1326 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1327 BUG_ON(page_mapped(page));
9fab5619 1328 swap_writepage(page, wbc);
1da177e4
LT
1329 return 0;
1330 }
1331
6922c0c7 1332 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1333free_swap:
75f6d6d2 1334 put_swap_page(page, swap);
1da177e4
LT
1335redirty:
1336 set_page_dirty(page);
d9fe526a
HD
1337 if (wbc->for_reclaim)
1338 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1339 unlock_page(page);
1340 return 0;
1da177e4
LT
1341}
1342
75edd345 1343#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1344static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1345{
095f1fc4 1346 char buffer[64];
680d794b 1347
71fe804b 1348 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1349 return; /* show nothing */
680d794b 1350
a7a88b23 1351 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1352
1353 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1354}
71fe804b
LS
1355
1356static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1357{
1358 struct mempolicy *mpol = NULL;
1359 if (sbinfo->mpol) {
1360 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1361 mpol = sbinfo->mpol;
1362 mpol_get(mpol);
1363 spin_unlock(&sbinfo->stat_lock);
1364 }
1365 return mpol;
1366}
75edd345
HD
1367#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1368static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1369{
1370}
1371static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1372{
1373 return NULL;
1374}
1375#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1376#ifndef CONFIG_NUMA
1377#define vm_policy vm_private_data
1378#endif
680d794b 1379
800d8c63
KS
1380static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1381 struct shmem_inode_info *info, pgoff_t index)
1382{
1383 /* Create a pseudo vma that just contains the policy */
1384 vma->vm_start = 0;
1385 /* Bias interleave by inode number to distribute better across nodes */
1386 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1387 vma->vm_ops = NULL;
1388 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1389}
1390
1391static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1392{
1393 /* Drop reference taken by mpol_shared_policy_lookup() */
1394 mpol_cond_put(vma->vm_policy);
1395}
1396
41ffe5d5
HD
1397static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1398 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1399{
1da177e4 1400 struct vm_area_struct pvma;
18a2f371 1401 struct page *page;
52cd3b07 1402
800d8c63 1403 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1404 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1405 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1406
800d8c63
KS
1407 return page;
1408}
1409
1410static struct page *shmem_alloc_hugepage(gfp_t gfp,
1411 struct shmem_inode_info *info, pgoff_t index)
1412{
1413 struct vm_area_struct pvma;
1414 struct inode *inode = &info->vfs_inode;
1415 struct address_space *mapping = inode->i_mapping;
4620a06e 1416 pgoff_t idx, hindex;
800d8c63
KS
1417 void __rcu **results;
1418 struct page *page;
1419
e496cf3d 1420 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1421 return NULL;
1422
4620a06e 1423 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1424 rcu_read_lock();
1425 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1426 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1427 rcu_read_unlock();
1428 return NULL;
1429 }
1430 rcu_read_unlock();
18a2f371 1431
800d8c63
KS
1432 shmem_pseudo_vma_init(&pvma, info, hindex);
1433 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1434 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1435 shmem_pseudo_vma_destroy(&pvma);
1436 if (page)
1437 prep_transhuge_page(page);
18a2f371 1438 return page;
1da177e4
LT
1439}
1440
02098fea 1441static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1442 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1443{
1444 struct vm_area_struct pvma;
18a2f371 1445 struct page *page;
1da177e4 1446
800d8c63
KS
1447 shmem_pseudo_vma_init(&pvma, info, index);
1448 page = alloc_page_vma(gfp, &pvma, 0);
1449 shmem_pseudo_vma_destroy(&pvma);
1450
1451 return page;
1452}
1453
1454static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1455 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1456 pgoff_t index, bool huge)
1457{
1458 struct page *page;
1459 int nr;
1460 int err = -ENOSPC;
52cd3b07 1461
e496cf3d 1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1463 huge = false;
1464 nr = huge ? HPAGE_PMD_NR : 1;
1465
1466 if (shmem_acct_block(info->flags, nr))
1467 goto failed;
1468 if (sbinfo->max_blocks) {
1469 if (percpu_counter_compare(&sbinfo->used_blocks,
1470 sbinfo->max_blocks - nr) > 0)
1471 goto unacct;
1472 percpu_counter_add(&sbinfo->used_blocks, nr);
1473 }
1474
1475 if (huge)
1476 page = shmem_alloc_hugepage(gfp, info, index);
1477 else
1478 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1479 if (page) {
1480 __SetPageLocked(page);
1481 __SetPageSwapBacked(page);
800d8c63 1482 return page;
75edd345 1483 }
18a2f371 1484
800d8c63
KS
1485 err = -ENOMEM;
1486 if (sbinfo->max_blocks)
1487 percpu_counter_add(&sbinfo->used_blocks, -nr);
1488unacct:
1489 shmem_unacct_blocks(info->flags, nr);
1490failed:
1491 return ERR_PTR(err);
1da177e4 1492}
71fe804b 1493
bde05d1c
HD
1494/*
1495 * When a page is moved from swapcache to shmem filecache (either by the
1496 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1497 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1498 * ignorance of the mapping it belongs to. If that mapping has special
1499 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1500 * we may need to copy to a suitable page before moving to filecache.
1501 *
1502 * In a future release, this may well be extended to respect cpuset and
1503 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1504 * but for now it is a simple matter of zone.
1505 */
1506static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1507{
1508 return page_zonenum(page) > gfp_zone(gfp);
1509}
1510
1511static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1512 struct shmem_inode_info *info, pgoff_t index)
1513{
1514 struct page *oldpage, *newpage;
1515 struct address_space *swap_mapping;
1516 pgoff_t swap_index;
1517 int error;
1518
1519 oldpage = *pagep;
1520 swap_index = page_private(oldpage);
1521 swap_mapping = page_mapping(oldpage);
1522
1523 /*
1524 * We have arrived here because our zones are constrained, so don't
1525 * limit chance of success by further cpuset and node constraints.
1526 */
1527 gfp &= ~GFP_CONSTRAINT_MASK;
1528 newpage = shmem_alloc_page(gfp, info, index);
1529 if (!newpage)
1530 return -ENOMEM;
bde05d1c 1531
09cbfeaf 1532 get_page(newpage);
bde05d1c 1533 copy_highpage(newpage, oldpage);
0142ef6c 1534 flush_dcache_page(newpage);
bde05d1c 1535
9956edf3
HD
1536 __SetPageLocked(newpage);
1537 __SetPageSwapBacked(newpage);
bde05d1c 1538 SetPageUptodate(newpage);
bde05d1c 1539 set_page_private(newpage, swap_index);
bde05d1c
HD
1540 SetPageSwapCache(newpage);
1541
1542 /*
1543 * Our caller will very soon move newpage out of swapcache, but it's
1544 * a nice clean interface for us to replace oldpage by newpage there.
1545 */
1546 spin_lock_irq(&swap_mapping->tree_lock);
1547 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1548 newpage);
0142ef6c 1549 if (!error) {
11fb9989
MG
1550 __inc_node_page_state(newpage, NR_FILE_PAGES);
1551 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1552 }
bde05d1c 1553 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1554
0142ef6c
HD
1555 if (unlikely(error)) {
1556 /*
1557 * Is this possible? I think not, now that our callers check
1558 * both PageSwapCache and page_private after getting page lock;
1559 * but be defensive. Reverse old to newpage for clear and free.
1560 */
1561 oldpage = newpage;
1562 } else {
6a93ca8f 1563 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1564 lru_cache_add_anon(newpage);
1565 *pagep = newpage;
1566 }
bde05d1c
HD
1567
1568 ClearPageSwapCache(oldpage);
1569 set_page_private(oldpage, 0);
1570
1571 unlock_page(oldpage);
09cbfeaf
KS
1572 put_page(oldpage);
1573 put_page(oldpage);
0142ef6c 1574 return error;
bde05d1c
HD
1575}
1576
1da177e4 1577/*
68da9f05 1578 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1579 *
1580 * If we allocate a new one we do not mark it dirty. That's up to the
1581 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1582 * entry since a page cannot live in both the swap and page cache.
1583 *
1584 * fault_mm and fault_type are only supplied by shmem_fault:
1585 * otherwise they are NULL.
1da177e4 1586 */
41ffe5d5 1587static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1588 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1589 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1590{
1591 struct address_space *mapping = inode->i_mapping;
23f919d4 1592 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1593 struct shmem_sb_info *sbinfo;
9e18eb29 1594 struct mm_struct *charge_mm;
00501b53 1595 struct mem_cgroup *memcg;
27ab7006 1596 struct page *page;
1da177e4 1597 swp_entry_t swap;
657e3038 1598 enum sgp_type sgp_huge = sgp;
800d8c63 1599 pgoff_t hindex = index;
1da177e4 1600 int error;
54af6042 1601 int once = 0;
1635f6a7 1602 int alloced = 0;
1da177e4 1603
09cbfeaf 1604 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1605 return -EFBIG;
657e3038
KS
1606 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1607 sgp = SGP_CACHE;
1da177e4 1608repeat:
54af6042 1609 swap.val = 0;
0cd6144a 1610 page = find_lock_entry(mapping, index);
54af6042
HD
1611 if (radix_tree_exceptional_entry(page)) {
1612 swap = radix_to_swp_entry(page);
1613 page = NULL;
1614 }
1615
75edd345 1616 if (sgp <= SGP_CACHE &&
09cbfeaf 1617 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1618 error = -EINVAL;
267a4c76 1619 goto unlock;
54af6042
HD
1620 }
1621
66d2f4d2
HD
1622 if (page && sgp == SGP_WRITE)
1623 mark_page_accessed(page);
1624
1635f6a7
HD
1625 /* fallocated page? */
1626 if (page && !PageUptodate(page)) {
1627 if (sgp != SGP_READ)
1628 goto clear;
1629 unlock_page(page);
09cbfeaf 1630 put_page(page);
1635f6a7
HD
1631 page = NULL;
1632 }
54af6042 1633 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1634 *pagep = page;
1635 return 0;
27ab7006
HD
1636 }
1637
1638 /*
54af6042
HD
1639 * Fast cache lookup did not find it:
1640 * bring it back from swap or allocate.
27ab7006 1641 */
54af6042 1642 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1643 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1644
1da177e4
LT
1645 if (swap.val) {
1646 /* Look it up and read it in.. */
27ab7006
HD
1647 page = lookup_swap_cache(swap);
1648 if (!page) {
9e18eb29
ALC
1649 /* Or update major stats only when swapin succeeds?? */
1650 if (fault_type) {
68da9f05 1651 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1652 count_vm_event(PGMAJFAULT);
2262185c 1653 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1654 }
1655 /* Here we actually start the io */
41ffe5d5 1656 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1657 if (!page) {
54af6042
HD
1658 error = -ENOMEM;
1659 goto failed;
1da177e4 1660 }
1da177e4
LT
1661 }
1662
1663 /* We have to do this with page locked to prevent races */
54af6042 1664 lock_page(page);
0142ef6c 1665 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1666 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1667 error = -EEXIST; /* try again */
d1899228 1668 goto unlock;
bde05d1c 1669 }
27ab7006 1670 if (!PageUptodate(page)) {
1da177e4 1671 error = -EIO;
54af6042 1672 goto failed;
1da177e4 1673 }
54af6042
HD
1674 wait_on_page_writeback(page);
1675
bde05d1c
HD
1676 if (shmem_should_replace_page(page, gfp)) {
1677 error = shmem_replace_page(&page, gfp, info, index);
1678 if (error)
1679 goto failed;
1da177e4 1680 }
27ab7006 1681
9e18eb29 1682 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1683 false);
d1899228 1684 if (!error) {
aa3b1895 1685 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1686 swp_to_radix_entry(swap));
215c02bc
HD
1687 /*
1688 * We already confirmed swap under page lock, and make
1689 * no memory allocation here, so usually no possibility
1690 * of error; but free_swap_and_cache() only trylocks a
1691 * page, so it is just possible that the entry has been
1692 * truncated or holepunched since swap was confirmed.
1693 * shmem_undo_range() will have done some of the
1694 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1695 * the rest.
215c02bc
HD
1696 * Reset swap.val? No, leave it so "failed" goes back to
1697 * "repeat": reading a hole and writing should succeed.
1698 */
00501b53 1699 if (error) {
f627c2f5 1700 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1701 delete_from_swap_cache(page);
00501b53 1702 }
d1899228 1703 }
54af6042
HD
1704 if (error)
1705 goto failed;
1706
f627c2f5 1707 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1708
4595ef88 1709 spin_lock_irq(&info->lock);
285b2c4f 1710 info->swapped--;
54af6042 1711 shmem_recalc_inode(inode);
4595ef88 1712 spin_unlock_irq(&info->lock);
54af6042 1713
66d2f4d2
HD
1714 if (sgp == SGP_WRITE)
1715 mark_page_accessed(page);
1716
54af6042 1717 delete_from_swap_cache(page);
27ab7006
HD
1718 set_page_dirty(page);
1719 swap_free(swap);
1720
54af6042 1721 } else {
cfda0526
MR
1722 if (vma && userfaultfd_missing(vma)) {
1723 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1724 return 0;
1725 }
1726
800d8c63
KS
1727 /* shmem_symlink() */
1728 if (mapping->a_ops != &shmem_aops)
1729 goto alloc_nohuge;
657e3038 1730 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1731 goto alloc_nohuge;
1732 if (shmem_huge == SHMEM_HUGE_FORCE)
1733 goto alloc_huge;
1734 switch (sbinfo->huge) {
1735 loff_t i_size;
1736 pgoff_t off;
1737 case SHMEM_HUGE_NEVER:
1738 goto alloc_nohuge;
1739 case SHMEM_HUGE_WITHIN_SIZE:
1740 off = round_up(index, HPAGE_PMD_NR);
1741 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1742 if (i_size >= HPAGE_PMD_SIZE &&
1743 i_size >> PAGE_SHIFT >= off)
1744 goto alloc_huge;
1745 /* fallthrough */
1746 case SHMEM_HUGE_ADVISE:
657e3038
KS
1747 if (sgp_huge == SGP_HUGE)
1748 goto alloc_huge;
1749 /* TODO: implement fadvise() hints */
800d8c63 1750 goto alloc_nohuge;
54af6042 1751 }
1da177e4 1752
800d8c63
KS
1753alloc_huge:
1754 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1755 index, true);
1756 if (IS_ERR(page)) {
1757alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1758 index, false);
1da177e4 1759 }
800d8c63 1760 if (IS_ERR(page)) {
779750d2 1761 int retry = 5;
800d8c63
KS
1762 error = PTR_ERR(page);
1763 page = NULL;
779750d2
KS
1764 if (error != -ENOSPC)
1765 goto failed;
1766 /*
1767 * Try to reclaim some spece by splitting a huge page
1768 * beyond i_size on the filesystem.
1769 */
1770 while (retry--) {
1771 int ret;
1772 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1773 if (ret == SHRINK_STOP)
1774 break;
1775 if (ret)
1776 goto alloc_nohuge;
1777 }
800d8c63
KS
1778 goto failed;
1779 }
1780
1781 if (PageTransHuge(page))
1782 hindex = round_down(index, HPAGE_PMD_NR);
1783 else
1784 hindex = index;
1785
66d2f4d2 1786 if (sgp == SGP_WRITE)
eb39d618 1787 __SetPageReferenced(page);
66d2f4d2 1788
9e18eb29 1789 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1790 PageTransHuge(page));
54af6042 1791 if (error)
800d8c63
KS
1792 goto unacct;
1793 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1794 compound_order(page));
b065b432 1795 if (!error) {
800d8c63 1796 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1797 NULL);
b065b432
HD
1798 radix_tree_preload_end();
1799 }
1800 if (error) {
800d8c63
KS
1801 mem_cgroup_cancel_charge(page, memcg,
1802 PageTransHuge(page));
1803 goto unacct;
b065b432 1804 }
800d8c63
KS
1805 mem_cgroup_commit_charge(page, memcg, false,
1806 PageTransHuge(page));
54af6042
HD
1807 lru_cache_add_anon(page);
1808
4595ef88 1809 spin_lock_irq(&info->lock);
800d8c63
KS
1810 info->alloced += 1 << compound_order(page);
1811 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1812 shmem_recalc_inode(inode);
4595ef88 1813 spin_unlock_irq(&info->lock);
1635f6a7 1814 alloced = true;
54af6042 1815
779750d2
KS
1816 if (PageTransHuge(page) &&
1817 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1818 hindex + HPAGE_PMD_NR - 1) {
1819 /*
1820 * Part of the huge page is beyond i_size: subject
1821 * to shrink under memory pressure.
1822 */
1823 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1824 /*
1825 * _careful to defend against unlocked access to
1826 * ->shrink_list in shmem_unused_huge_shrink()
1827 */
1828 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1829 list_add_tail(&info->shrinklist,
1830 &sbinfo->shrinklist);
1831 sbinfo->shrinklist_len++;
1832 }
1833 spin_unlock(&sbinfo->shrinklist_lock);
1834 }
1835
ec9516fb 1836 /*
1635f6a7
HD
1837 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1838 */
1839 if (sgp == SGP_FALLOC)
1840 sgp = SGP_WRITE;
1841clear:
1842 /*
1843 * Let SGP_WRITE caller clear ends if write does not fill page;
1844 * but SGP_FALLOC on a page fallocated earlier must initialize
1845 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1846 */
800d8c63
KS
1847 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1848 struct page *head = compound_head(page);
1849 int i;
1850
1851 for (i = 0; i < (1 << compound_order(head)); i++) {
1852 clear_highpage(head + i);
1853 flush_dcache_page(head + i);
1854 }
1855 SetPageUptodate(head);
ec9516fb 1856 }
1da177e4 1857 }
bde05d1c 1858
54af6042 1859 /* Perhaps the file has been truncated since we checked */
75edd345 1860 if (sgp <= SGP_CACHE &&
09cbfeaf 1861 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1862 if (alloced) {
1863 ClearPageDirty(page);
1864 delete_from_page_cache(page);
4595ef88 1865 spin_lock_irq(&info->lock);
267a4c76 1866 shmem_recalc_inode(inode);
4595ef88 1867 spin_unlock_irq(&info->lock);
267a4c76 1868 }
54af6042 1869 error = -EINVAL;
267a4c76 1870 goto unlock;
e83c32e8 1871 }
800d8c63 1872 *pagep = page + index - hindex;
54af6042 1873 return 0;
1da177e4 1874
59a16ead 1875 /*
54af6042 1876 * Error recovery.
59a16ead 1877 */
54af6042 1878unacct:
800d8c63
KS
1879 if (sbinfo->max_blocks)
1880 percpu_counter_sub(&sbinfo->used_blocks,
1881 1 << compound_order(page));
1882 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1883
1884 if (PageTransHuge(page)) {
1885 unlock_page(page);
1886 put_page(page);
1887 goto alloc_nohuge;
1888 }
54af6042 1889failed:
267a4c76 1890 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1891 error = -EEXIST;
1892unlock:
27ab7006 1893 if (page) {
54af6042 1894 unlock_page(page);
09cbfeaf 1895 put_page(page);
54af6042
HD
1896 }
1897 if (error == -ENOSPC && !once++) {
4595ef88 1898 spin_lock_irq(&info->lock);
54af6042 1899 shmem_recalc_inode(inode);
4595ef88 1900 spin_unlock_irq(&info->lock);
27ab7006 1901 goto repeat;
ff36b801 1902 }
d1899228 1903 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1904 goto repeat;
1905 return error;
1da177e4
LT
1906}
1907
10d20bd2
LT
1908/*
1909 * This is like autoremove_wake_function, but it removes the wait queue
1910 * entry unconditionally - even if something else had already woken the
1911 * target.
1912 */
ac6424b9 1913static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1914{
1915 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1916 list_del_init(&wait->entry);
10d20bd2
LT
1917 return ret;
1918}
1919
11bac800 1920static int shmem_fault(struct vm_fault *vmf)
1da177e4 1921{
11bac800 1922 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1923 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1924 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1925 enum sgp_type sgp;
1da177e4 1926 int error;
68da9f05 1927 int ret = VM_FAULT_LOCKED;
1da177e4 1928
f00cdc6d
HD
1929 /*
1930 * Trinity finds that probing a hole which tmpfs is punching can
1931 * prevent the hole-punch from ever completing: which in turn
1932 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1933 * faulting pages into the hole while it's being punched. Although
1934 * shmem_undo_range() does remove the additions, it may be unable to
1935 * keep up, as each new page needs its own unmap_mapping_range() call,
1936 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1937 *
1938 * It does not matter if we sometimes reach this check just before the
1939 * hole-punch begins, so that one fault then races with the punch:
1940 * we just need to make racing faults a rare case.
1941 *
1942 * The implementation below would be much simpler if we just used a
1943 * standard mutex or completion: but we cannot take i_mutex in fault,
1944 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1945 */
1946 if (unlikely(inode->i_private)) {
1947 struct shmem_falloc *shmem_falloc;
1948
1949 spin_lock(&inode->i_lock);
1950 shmem_falloc = inode->i_private;
8e205f77
HD
1951 if (shmem_falloc &&
1952 shmem_falloc->waitq &&
1953 vmf->pgoff >= shmem_falloc->start &&
1954 vmf->pgoff < shmem_falloc->next) {
1955 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1956 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1957
1958 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1959 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1960 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1961 /* It's polite to up mmap_sem if we can */
f00cdc6d 1962 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1963 ret = VM_FAULT_RETRY;
f00cdc6d 1964 }
8e205f77
HD
1965
1966 shmem_falloc_waitq = shmem_falloc->waitq;
1967 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1968 TASK_UNINTERRUPTIBLE);
1969 spin_unlock(&inode->i_lock);
1970 schedule();
1971
1972 /*
1973 * shmem_falloc_waitq points into the shmem_fallocate()
1974 * stack of the hole-punching task: shmem_falloc_waitq
1975 * is usually invalid by the time we reach here, but
1976 * finish_wait() does not dereference it in that case;
1977 * though i_lock needed lest racing with wake_up_all().
1978 */
1979 spin_lock(&inode->i_lock);
1980 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1981 spin_unlock(&inode->i_lock);
1982 return ret;
f00cdc6d 1983 }
8e205f77 1984 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1985 }
1986
657e3038 1987 sgp = SGP_CACHE;
18600332
MH
1988
1989 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1990 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 1991 sgp = SGP_NOHUGE;
18600332
MH
1992 else if (vma->vm_flags & VM_HUGEPAGE)
1993 sgp = SGP_HUGE;
657e3038
KS
1994
1995 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 1996 gfp, vma, vmf, &ret);
d0217ac0
NP
1997 if (error)
1998 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1999 return ret;
1da177e4
LT
2000}
2001
c01d5b30
HD
2002unsigned long shmem_get_unmapped_area(struct file *file,
2003 unsigned long uaddr, unsigned long len,
2004 unsigned long pgoff, unsigned long flags)
2005{
2006 unsigned long (*get_area)(struct file *,
2007 unsigned long, unsigned long, unsigned long, unsigned long);
2008 unsigned long addr;
2009 unsigned long offset;
2010 unsigned long inflated_len;
2011 unsigned long inflated_addr;
2012 unsigned long inflated_offset;
2013
2014 if (len > TASK_SIZE)
2015 return -ENOMEM;
2016
2017 get_area = current->mm->get_unmapped_area;
2018 addr = get_area(file, uaddr, len, pgoff, flags);
2019
e496cf3d 2020 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2021 return addr;
2022 if (IS_ERR_VALUE(addr))
2023 return addr;
2024 if (addr & ~PAGE_MASK)
2025 return addr;
2026 if (addr > TASK_SIZE - len)
2027 return addr;
2028
2029 if (shmem_huge == SHMEM_HUGE_DENY)
2030 return addr;
2031 if (len < HPAGE_PMD_SIZE)
2032 return addr;
2033 if (flags & MAP_FIXED)
2034 return addr;
2035 /*
2036 * Our priority is to support MAP_SHARED mapped hugely;
2037 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2038 * But if caller specified an address hint, respect that as before.
2039 */
2040 if (uaddr)
2041 return addr;
2042
2043 if (shmem_huge != SHMEM_HUGE_FORCE) {
2044 struct super_block *sb;
2045
2046 if (file) {
2047 VM_BUG_ON(file->f_op != &shmem_file_operations);
2048 sb = file_inode(file)->i_sb;
2049 } else {
2050 /*
2051 * Called directly from mm/mmap.c, or drivers/char/mem.c
2052 * for "/dev/zero", to create a shared anonymous object.
2053 */
2054 if (IS_ERR(shm_mnt))
2055 return addr;
2056 sb = shm_mnt->mnt_sb;
2057 }
3089bf61 2058 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2059 return addr;
2060 }
2061
2062 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2063 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2064 return addr;
2065 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2066 return addr;
2067
2068 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2069 if (inflated_len > TASK_SIZE)
2070 return addr;
2071 if (inflated_len < len)
2072 return addr;
2073
2074 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2075 if (IS_ERR_VALUE(inflated_addr))
2076 return addr;
2077 if (inflated_addr & ~PAGE_MASK)
2078 return addr;
2079
2080 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2081 inflated_addr += offset - inflated_offset;
2082 if (inflated_offset > offset)
2083 inflated_addr += HPAGE_PMD_SIZE;
2084
2085 if (inflated_addr > TASK_SIZE - len)
2086 return addr;
2087 return inflated_addr;
2088}
2089
1da177e4 2090#ifdef CONFIG_NUMA
41ffe5d5 2091static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2092{
496ad9aa 2093 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2094 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2095}
2096
d8dc74f2
AB
2097static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2098 unsigned long addr)
1da177e4 2099{
496ad9aa 2100 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2101 pgoff_t index;
1da177e4 2102
41ffe5d5
HD
2103 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2104 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2105}
2106#endif
2107
2108int shmem_lock(struct file *file, int lock, struct user_struct *user)
2109{
496ad9aa 2110 struct inode *inode = file_inode(file);
1da177e4
LT
2111 struct shmem_inode_info *info = SHMEM_I(inode);
2112 int retval = -ENOMEM;
2113
4595ef88 2114 spin_lock_irq(&info->lock);
1da177e4
LT
2115 if (lock && !(info->flags & VM_LOCKED)) {
2116 if (!user_shm_lock(inode->i_size, user))
2117 goto out_nomem;
2118 info->flags |= VM_LOCKED;
89e004ea 2119 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2120 }
2121 if (!lock && (info->flags & VM_LOCKED) && user) {
2122 user_shm_unlock(inode->i_size, user);
2123 info->flags &= ~VM_LOCKED;
89e004ea 2124 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2125 }
2126 retval = 0;
89e004ea 2127
1da177e4 2128out_nomem:
4595ef88 2129 spin_unlock_irq(&info->lock);
1da177e4
LT
2130 return retval;
2131}
2132
9b83a6a8 2133static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2134{
2135 file_accessed(file);
2136 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2137 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2138 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2139 (vma->vm_end & HPAGE_PMD_MASK)) {
2140 khugepaged_enter(vma, vma->vm_flags);
2141 }
1da177e4
LT
2142 return 0;
2143}
2144
454abafe 2145static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2146 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2147{
2148 struct inode *inode;
2149 struct shmem_inode_info *info;
2150 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2151
5b04c689
PE
2152 if (shmem_reserve_inode(sb))
2153 return NULL;
1da177e4
LT
2154
2155 inode = new_inode(sb);
2156 if (inode) {
85fe4025 2157 inode->i_ino = get_next_ino();
454abafe 2158 inode_init_owner(inode, dir, mode);
1da177e4 2159 inode->i_blocks = 0;
078cd827 2160 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2161 inode->i_generation = get_seconds();
1da177e4
LT
2162 info = SHMEM_I(inode);
2163 memset(info, 0, (char *)inode - (char *)info);
2164 spin_lock_init(&info->lock);
40e041a2 2165 info->seals = F_SEAL_SEAL;
0b0a0806 2166 info->flags = flags & VM_NORESERVE;
779750d2 2167 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2168 INIT_LIST_HEAD(&info->swaplist);
38f38657 2169 simple_xattrs_init(&info->xattrs);
72c04902 2170 cache_no_acl(inode);
1da177e4
LT
2171
2172 switch (mode & S_IFMT) {
2173 default:
39f0247d 2174 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2175 init_special_inode(inode, mode, dev);
2176 break;
2177 case S_IFREG:
14fcc23f 2178 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2179 inode->i_op = &shmem_inode_operations;
2180 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2181 mpol_shared_policy_init(&info->policy,
2182 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2183 break;
2184 case S_IFDIR:
d8c76e6f 2185 inc_nlink(inode);
1da177e4
LT
2186 /* Some things misbehave if size == 0 on a directory */
2187 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2188 inode->i_op = &shmem_dir_inode_operations;
2189 inode->i_fop = &simple_dir_operations;
2190 break;
2191 case S_IFLNK:
2192 /*
2193 * Must not load anything in the rbtree,
2194 * mpol_free_shared_policy will not be called.
2195 */
71fe804b 2196 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2197 break;
2198 }
5b04c689
PE
2199 } else
2200 shmem_free_inode(sb);
1da177e4
LT
2201 return inode;
2202}
2203
0cd6144a
JW
2204bool shmem_mapping(struct address_space *mapping)
2205{
f8005451 2206 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2207}
2208
4c27fe4c
MR
2209int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2210 pmd_t *dst_pmd,
2211 struct vm_area_struct *dst_vma,
2212 unsigned long dst_addr,
2213 unsigned long src_addr,
2214 struct page **pagep)
2215{
2216 struct inode *inode = file_inode(dst_vma->vm_file);
2217 struct shmem_inode_info *info = SHMEM_I(inode);
2218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2219 struct address_space *mapping = inode->i_mapping;
2220 gfp_t gfp = mapping_gfp_mask(mapping);
2221 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2222 struct mem_cgroup *memcg;
2223 spinlock_t *ptl;
2224 void *page_kaddr;
2225 struct page *page;
2226 pte_t _dst_pte, *dst_pte;
2227 int ret;
2228
cb658a45
AA
2229 ret = -ENOMEM;
2230 if (shmem_acct_block(info->flags, 1))
2231 goto out;
2232 if (sbinfo->max_blocks) {
2233 if (percpu_counter_compare(&sbinfo->used_blocks,
2234 sbinfo->max_blocks) >= 0)
2235 goto out_unacct_blocks;
2236 percpu_counter_inc(&sbinfo->used_blocks);
2237 }
4c27fe4c 2238
cb658a45 2239 if (!*pagep) {
4c27fe4c
MR
2240 page = shmem_alloc_page(gfp, info, pgoff);
2241 if (!page)
2242 goto out_dec_used_blocks;
2243
2244 page_kaddr = kmap_atomic(page);
2245 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2246 PAGE_SIZE);
2247 kunmap_atomic(page_kaddr);
2248
2249 /* fallback to copy_from_user outside mmap_sem */
2250 if (unlikely(ret)) {
2251 *pagep = page;
cb658a45
AA
2252 if (sbinfo->max_blocks)
2253 percpu_counter_add(&sbinfo->used_blocks, -1);
2254 shmem_unacct_blocks(info->flags, 1);
4c27fe4c
MR
2255 /* don't free the page */
2256 return -EFAULT;
2257 }
2258 } else {
2259 page = *pagep;
2260 *pagep = NULL;
2261 }
2262
9cc90c66
AA
2263 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2264 __SetPageLocked(page);
2265 __SetPageSwapBacked(page);
a425d358 2266 __SetPageUptodate(page);
9cc90c66 2267
4c27fe4c
MR
2268 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2269 if (ret)
2270 goto out_release;
2271
2272 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2273 if (!ret) {
2274 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2275 radix_tree_preload_end();
2276 }
2277 if (ret)
2278 goto out_release_uncharge;
2279
2280 mem_cgroup_commit_charge(page, memcg, false, false);
2281
2282 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2283 if (dst_vma->vm_flags & VM_WRITE)
2284 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2285
2286 ret = -EEXIST;
2287 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2288 if (!pte_none(*dst_pte))
2289 goto out_release_uncharge_unlock;
2290
4c27fe4c
MR
2291 lru_cache_add_anon(page);
2292
2293 spin_lock(&info->lock);
2294 info->alloced++;
2295 inode->i_blocks += BLOCKS_PER_PAGE;
2296 shmem_recalc_inode(inode);
2297 spin_unlock(&info->lock);
2298
2299 inc_mm_counter(dst_mm, mm_counter_file(page));
2300 page_add_file_rmap(page, false);
2301 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2302
2303 /* No need to invalidate - it was non-present before */
2304 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2305 unlock_page(page);
2306 pte_unmap_unlock(dst_pte, ptl);
2307 ret = 0;
2308out:
2309 return ret;
2310out_release_uncharge_unlock:
2311 pte_unmap_unlock(dst_pte, ptl);
2312out_release_uncharge:
2313 mem_cgroup_cancel_charge(page, memcg, false);
2314out_release:
9cc90c66 2315 unlock_page(page);
4c27fe4c
MR
2316 put_page(page);
2317out_dec_used_blocks:
2318 if (sbinfo->max_blocks)
2319 percpu_counter_add(&sbinfo->used_blocks, -1);
2320out_unacct_blocks:
2321 shmem_unacct_blocks(info->flags, 1);
2322 goto out;
2323}
2324
1da177e4 2325#ifdef CONFIG_TMPFS
92e1d5be 2326static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2327static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2328
6d9d88d0
JS
2329#ifdef CONFIG_TMPFS_XATTR
2330static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2331#else
2332#define shmem_initxattrs NULL
2333#endif
2334
1da177e4 2335static int
800d15a5
NP
2336shmem_write_begin(struct file *file, struct address_space *mapping,
2337 loff_t pos, unsigned len, unsigned flags,
2338 struct page **pagep, void **fsdata)
1da177e4 2339{
800d15a5 2340 struct inode *inode = mapping->host;
40e041a2 2341 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2342 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2343
2344 /* i_mutex is held by caller */
3f472cc9 2345 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2346 if (info->seals & F_SEAL_WRITE)
2347 return -EPERM;
2348 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2349 return -EPERM;
2350 }
2351
9e18eb29 2352 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2353}
2354
2355static int
2356shmem_write_end(struct file *file, struct address_space *mapping,
2357 loff_t pos, unsigned len, unsigned copied,
2358 struct page *page, void *fsdata)
2359{
2360 struct inode *inode = mapping->host;
2361
d3602444
HD
2362 if (pos + copied > inode->i_size)
2363 i_size_write(inode, pos + copied);
2364
ec9516fb 2365 if (!PageUptodate(page)) {
800d8c63
KS
2366 struct page *head = compound_head(page);
2367 if (PageTransCompound(page)) {
2368 int i;
2369
2370 for (i = 0; i < HPAGE_PMD_NR; i++) {
2371 if (head + i == page)
2372 continue;
2373 clear_highpage(head + i);
2374 flush_dcache_page(head + i);
2375 }
2376 }
09cbfeaf
KS
2377 if (copied < PAGE_SIZE) {
2378 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2379 zero_user_segments(page, 0, from,
09cbfeaf 2380 from + copied, PAGE_SIZE);
ec9516fb 2381 }
800d8c63 2382 SetPageUptodate(head);
ec9516fb 2383 }
800d15a5 2384 set_page_dirty(page);
6746aff7 2385 unlock_page(page);
09cbfeaf 2386 put_page(page);
800d15a5 2387
800d15a5 2388 return copied;
1da177e4
LT
2389}
2390
2ba5bbed 2391static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2392{
6e58e79d
AV
2393 struct file *file = iocb->ki_filp;
2394 struct inode *inode = file_inode(file);
1da177e4 2395 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2396 pgoff_t index;
2397 unsigned long offset;
a0ee5ec5 2398 enum sgp_type sgp = SGP_READ;
f7c1d074 2399 int error = 0;
cb66a7a1 2400 ssize_t retval = 0;
6e58e79d 2401 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2402
2403 /*
2404 * Might this read be for a stacking filesystem? Then when reading
2405 * holes of a sparse file, we actually need to allocate those pages,
2406 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2407 */
777eda2c 2408 if (!iter_is_iovec(to))
75edd345 2409 sgp = SGP_CACHE;
1da177e4 2410
09cbfeaf
KS
2411 index = *ppos >> PAGE_SHIFT;
2412 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2413
2414 for (;;) {
2415 struct page *page = NULL;
41ffe5d5
HD
2416 pgoff_t end_index;
2417 unsigned long nr, ret;
1da177e4
LT
2418 loff_t i_size = i_size_read(inode);
2419
09cbfeaf 2420 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2421 if (index > end_index)
2422 break;
2423 if (index == end_index) {
09cbfeaf 2424 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2425 if (nr <= offset)
2426 break;
2427 }
2428
9e18eb29 2429 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2430 if (error) {
2431 if (error == -EINVAL)
2432 error = 0;
1da177e4
LT
2433 break;
2434 }
75edd345
HD
2435 if (page) {
2436 if (sgp == SGP_CACHE)
2437 set_page_dirty(page);
d3602444 2438 unlock_page(page);
75edd345 2439 }
1da177e4
LT
2440
2441 /*
2442 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2443 * are called without i_mutex protection against truncate
1da177e4 2444 */
09cbfeaf 2445 nr = PAGE_SIZE;
1da177e4 2446 i_size = i_size_read(inode);
09cbfeaf 2447 end_index = i_size >> PAGE_SHIFT;
1da177e4 2448 if (index == end_index) {
09cbfeaf 2449 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2450 if (nr <= offset) {
2451 if (page)
09cbfeaf 2452 put_page(page);
1da177e4
LT
2453 break;
2454 }
2455 }
2456 nr -= offset;
2457
2458 if (page) {
2459 /*
2460 * If users can be writing to this page using arbitrary
2461 * virtual addresses, take care about potential aliasing
2462 * before reading the page on the kernel side.
2463 */
2464 if (mapping_writably_mapped(mapping))
2465 flush_dcache_page(page);
2466 /*
2467 * Mark the page accessed if we read the beginning.
2468 */
2469 if (!offset)
2470 mark_page_accessed(page);
b5810039 2471 } else {
1da177e4 2472 page = ZERO_PAGE(0);
09cbfeaf 2473 get_page(page);
b5810039 2474 }
1da177e4
LT
2475
2476 /*
2477 * Ok, we have the page, and it's up-to-date, so
2478 * now we can copy it to user space...
1da177e4 2479 */
2ba5bbed 2480 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2481 retval += ret;
1da177e4 2482 offset += ret;
09cbfeaf
KS
2483 index += offset >> PAGE_SHIFT;
2484 offset &= ~PAGE_MASK;
1da177e4 2485
09cbfeaf 2486 put_page(page);
2ba5bbed 2487 if (!iov_iter_count(to))
1da177e4 2488 break;
6e58e79d
AV
2489 if (ret < nr) {
2490 error = -EFAULT;
2491 break;
2492 }
1da177e4
LT
2493 cond_resched();
2494 }
2495
09cbfeaf 2496 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2497 file_accessed(file);
2498 return retval ? retval : error;
1da177e4
LT
2499}
2500
220f2ac9
HD
2501/*
2502 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2503 */
2504static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2505 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2506{
2507 struct page *page;
2508 struct pagevec pvec;
2509 pgoff_t indices[PAGEVEC_SIZE];
2510 bool done = false;
2511 int i;
2512
2513 pagevec_init(&pvec, 0);
2514 pvec.nr = 1; /* start small: we may be there already */
2515 while (!done) {
0cd6144a 2516 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2517 pvec.nr, pvec.pages, indices);
2518 if (!pvec.nr) {
965c8e59 2519 if (whence == SEEK_DATA)
220f2ac9
HD
2520 index = end;
2521 break;
2522 }
2523 for (i = 0; i < pvec.nr; i++, index++) {
2524 if (index < indices[i]) {
965c8e59 2525 if (whence == SEEK_HOLE) {
220f2ac9
HD
2526 done = true;
2527 break;
2528 }
2529 index = indices[i];
2530 }
2531 page = pvec.pages[i];
2532 if (page && !radix_tree_exceptional_entry(page)) {
2533 if (!PageUptodate(page))
2534 page = NULL;
2535 }
2536 if (index >= end ||
965c8e59
AM
2537 (page && whence == SEEK_DATA) ||
2538 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2539 done = true;
2540 break;
2541 }
2542 }
0cd6144a 2543 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2544 pagevec_release(&pvec);
2545 pvec.nr = PAGEVEC_SIZE;
2546 cond_resched();
2547 }
2548 return index;
2549}
2550
965c8e59 2551static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2552{
2553 struct address_space *mapping = file->f_mapping;
2554 struct inode *inode = mapping->host;
2555 pgoff_t start, end;
2556 loff_t new_offset;
2557
965c8e59
AM
2558 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2559 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2560 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2561 inode_lock(inode);
220f2ac9
HD
2562 /* We're holding i_mutex so we can access i_size directly */
2563
2564 if (offset < 0)
2565 offset = -EINVAL;
2566 else if (offset >= inode->i_size)
2567 offset = -ENXIO;
2568 else {
09cbfeaf
KS
2569 start = offset >> PAGE_SHIFT;
2570 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2571 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2572 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2573 if (new_offset > offset) {
2574 if (new_offset < inode->i_size)
2575 offset = new_offset;
965c8e59 2576 else if (whence == SEEK_DATA)
220f2ac9
HD
2577 offset = -ENXIO;
2578 else
2579 offset = inode->i_size;
2580 }
2581 }
2582
387aae6f
HD
2583 if (offset >= 0)
2584 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2585 inode_unlock(inode);
220f2ac9
HD
2586 return offset;
2587}
2588
05f65b5c
DH
2589/*
2590 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2591 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2592 */
2593#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2594#define LAST_SCAN 4 /* about 150ms max */
2595
2596static void shmem_tag_pins(struct address_space *mapping)
2597{
2598 struct radix_tree_iter iter;
2599 void **slot;
2600 pgoff_t start;
2601 struct page *page;
2602
2603 lru_add_drain();
2604 start = 0;
2605 rcu_read_lock();
2606
05f65b5c
DH
2607 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2608 page = radix_tree_deref_slot(slot);
2609 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2610 if (radix_tree_deref_retry(page)) {
2611 slot = radix_tree_iter_retry(&iter);
2612 continue;
2613 }
05f65b5c
DH
2614 } else if (page_count(page) - page_mapcount(page) > 1) {
2615 spin_lock_irq(&mapping->tree_lock);
2616 radix_tree_tag_set(&mapping->page_tree, iter.index,
2617 SHMEM_TAG_PINNED);
2618 spin_unlock_irq(&mapping->tree_lock);
2619 }
2620
2621 if (need_resched()) {
148deab2 2622 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2623 cond_resched_rcu();
05f65b5c
DH
2624 }
2625 }
2626 rcu_read_unlock();
2627}
2628
2629/*
2630 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2631 * via get_user_pages(), drivers might have some pending I/O without any active
2632 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2633 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2634 * them to be dropped.
2635 * The caller must guarantee that no new user will acquire writable references
2636 * to those pages to avoid races.
2637 */
40e041a2
DH
2638static int shmem_wait_for_pins(struct address_space *mapping)
2639{
05f65b5c
DH
2640 struct radix_tree_iter iter;
2641 void **slot;
2642 pgoff_t start;
2643 struct page *page;
2644 int error, scan;
2645
2646 shmem_tag_pins(mapping);
2647
2648 error = 0;
2649 for (scan = 0; scan <= LAST_SCAN; scan++) {
2650 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2651 break;
2652
2653 if (!scan)
2654 lru_add_drain_all();
2655 else if (schedule_timeout_killable((HZ << scan) / 200))
2656 scan = LAST_SCAN;
2657
2658 start = 0;
2659 rcu_read_lock();
05f65b5c
DH
2660 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2661 start, SHMEM_TAG_PINNED) {
2662
2663 page = radix_tree_deref_slot(slot);
2664 if (radix_tree_exception(page)) {
2cf938aa
MW
2665 if (radix_tree_deref_retry(page)) {
2666 slot = radix_tree_iter_retry(&iter);
2667 continue;
2668 }
05f65b5c
DH
2669
2670 page = NULL;
2671 }
2672
2673 if (page &&
2674 page_count(page) - page_mapcount(page) != 1) {
2675 if (scan < LAST_SCAN)
2676 goto continue_resched;
2677
2678 /*
2679 * On the last scan, we clean up all those tags
2680 * we inserted; but make a note that we still
2681 * found pages pinned.
2682 */
2683 error = -EBUSY;
2684 }
2685
2686 spin_lock_irq(&mapping->tree_lock);
2687 radix_tree_tag_clear(&mapping->page_tree,
2688 iter.index, SHMEM_TAG_PINNED);
2689 spin_unlock_irq(&mapping->tree_lock);
2690continue_resched:
2691 if (need_resched()) {
148deab2 2692 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2693 cond_resched_rcu();
05f65b5c
DH
2694 }
2695 }
2696 rcu_read_unlock();
2697 }
2698
2699 return error;
40e041a2
DH
2700}
2701
2702#define F_ALL_SEALS (F_SEAL_SEAL | \
2703 F_SEAL_SHRINK | \
2704 F_SEAL_GROW | \
2705 F_SEAL_WRITE)
2706
2707int shmem_add_seals(struct file *file, unsigned int seals)
2708{
2709 struct inode *inode = file_inode(file);
2710 struct shmem_inode_info *info = SHMEM_I(inode);
2711 int error;
2712
2713 /*
2714 * SEALING
2715 * Sealing allows multiple parties to share a shmem-file but restrict
2716 * access to a specific subset of file operations. Seals can only be
2717 * added, but never removed. This way, mutually untrusted parties can
2718 * share common memory regions with a well-defined policy. A malicious
2719 * peer can thus never perform unwanted operations on a shared object.
2720 *
2721 * Seals are only supported on special shmem-files and always affect
2722 * the whole underlying inode. Once a seal is set, it may prevent some
2723 * kinds of access to the file. Currently, the following seals are
2724 * defined:
2725 * SEAL_SEAL: Prevent further seals from being set on this file
2726 * SEAL_SHRINK: Prevent the file from shrinking
2727 * SEAL_GROW: Prevent the file from growing
2728 * SEAL_WRITE: Prevent write access to the file
2729 *
2730 * As we don't require any trust relationship between two parties, we
2731 * must prevent seals from being removed. Therefore, sealing a file
2732 * only adds a given set of seals to the file, it never touches
2733 * existing seals. Furthermore, the "setting seals"-operation can be
2734 * sealed itself, which basically prevents any further seal from being
2735 * added.
2736 *
2737 * Semantics of sealing are only defined on volatile files. Only
2738 * anonymous shmem files support sealing. More importantly, seals are
2739 * never written to disk. Therefore, there's no plan to support it on
2740 * other file types.
2741 */
2742
2743 if (file->f_op != &shmem_file_operations)
2744 return -EINVAL;
2745 if (!(file->f_mode & FMODE_WRITE))
2746 return -EPERM;
2747 if (seals & ~(unsigned int)F_ALL_SEALS)
2748 return -EINVAL;
2749
5955102c 2750 inode_lock(inode);
40e041a2
DH
2751
2752 if (info->seals & F_SEAL_SEAL) {
2753 error = -EPERM;
2754 goto unlock;
2755 }
2756
2757 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2758 error = mapping_deny_writable(file->f_mapping);
2759 if (error)
2760 goto unlock;
2761
2762 error = shmem_wait_for_pins(file->f_mapping);
2763 if (error) {
2764 mapping_allow_writable(file->f_mapping);
2765 goto unlock;
2766 }
2767 }
2768
2769 info->seals |= seals;
2770 error = 0;
2771
2772unlock:
5955102c 2773 inode_unlock(inode);
40e041a2
DH
2774 return error;
2775}
2776EXPORT_SYMBOL_GPL(shmem_add_seals);
2777
2778int shmem_get_seals(struct file *file)
2779{
2780 if (file->f_op != &shmem_file_operations)
2781 return -EINVAL;
2782
2783 return SHMEM_I(file_inode(file))->seals;
2784}
2785EXPORT_SYMBOL_GPL(shmem_get_seals);
2786
2787long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2788{
2789 long error;
2790
2791 switch (cmd) {
2792 case F_ADD_SEALS:
2793 /* disallow upper 32bit */
2794 if (arg > UINT_MAX)
2795 return -EINVAL;
2796
2797 error = shmem_add_seals(file, arg);
2798 break;
2799 case F_GET_SEALS:
2800 error = shmem_get_seals(file);
2801 break;
2802 default:
2803 error = -EINVAL;
2804 break;
2805 }
2806
2807 return error;
2808}
2809
83e4fa9c
HD
2810static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2811 loff_t len)
2812{
496ad9aa 2813 struct inode *inode = file_inode(file);
e2d12e22 2814 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2815 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2816 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2817 pgoff_t start, index, end;
2818 int error;
83e4fa9c 2819
13ace4d0
HD
2820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2821 return -EOPNOTSUPP;
2822
5955102c 2823 inode_lock(inode);
83e4fa9c
HD
2824
2825 if (mode & FALLOC_FL_PUNCH_HOLE) {
2826 struct address_space *mapping = file->f_mapping;
2827 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2828 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2829 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2830
40e041a2
DH
2831 /* protected by i_mutex */
2832 if (info->seals & F_SEAL_WRITE) {
2833 error = -EPERM;
2834 goto out;
2835 }
2836
8e205f77 2837 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2838 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2839 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2840 spin_lock(&inode->i_lock);
2841 inode->i_private = &shmem_falloc;
2842 spin_unlock(&inode->i_lock);
2843
83e4fa9c
HD
2844 if ((u64)unmap_end > (u64)unmap_start)
2845 unmap_mapping_range(mapping, unmap_start,
2846 1 + unmap_end - unmap_start, 0);
2847 shmem_truncate_range(inode, offset, offset + len - 1);
2848 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2849
2850 spin_lock(&inode->i_lock);
2851 inode->i_private = NULL;
2852 wake_up_all(&shmem_falloc_waitq);
2055da97 2853 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2854 spin_unlock(&inode->i_lock);
83e4fa9c 2855 error = 0;
8e205f77 2856 goto out;
e2d12e22
HD
2857 }
2858
2859 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2860 error = inode_newsize_ok(inode, offset + len);
2861 if (error)
2862 goto out;
2863
40e041a2
DH
2864 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2865 error = -EPERM;
2866 goto out;
2867 }
2868
09cbfeaf
KS
2869 start = offset >> PAGE_SHIFT;
2870 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2871 /* Try to avoid a swapstorm if len is impossible to satisfy */
2872 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2873 error = -ENOSPC;
2874 goto out;
83e4fa9c
HD
2875 }
2876
8e205f77 2877 shmem_falloc.waitq = NULL;
1aac1400
HD
2878 shmem_falloc.start = start;
2879 shmem_falloc.next = start;
2880 shmem_falloc.nr_falloced = 0;
2881 shmem_falloc.nr_unswapped = 0;
2882 spin_lock(&inode->i_lock);
2883 inode->i_private = &shmem_falloc;
2884 spin_unlock(&inode->i_lock);
2885
e2d12e22
HD
2886 for (index = start; index < end; index++) {
2887 struct page *page;
2888
2889 /*
2890 * Good, the fallocate(2) manpage permits EINTR: we may have
2891 * been interrupted because we are using up too much memory.
2892 */
2893 if (signal_pending(current))
2894 error = -EINTR;
1aac1400
HD
2895 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2896 error = -ENOMEM;
e2d12e22 2897 else
9e18eb29 2898 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2899 if (error) {
1635f6a7 2900 /* Remove the !PageUptodate pages we added */
7f556567
HD
2901 if (index > start) {
2902 shmem_undo_range(inode,
2903 (loff_t)start << PAGE_SHIFT,
2904 ((loff_t)index << PAGE_SHIFT) - 1, true);
2905 }
1aac1400 2906 goto undone;
e2d12e22
HD
2907 }
2908
1aac1400
HD
2909 /*
2910 * Inform shmem_writepage() how far we have reached.
2911 * No need for lock or barrier: we have the page lock.
2912 */
2913 shmem_falloc.next++;
2914 if (!PageUptodate(page))
2915 shmem_falloc.nr_falloced++;
2916
e2d12e22 2917 /*
1635f6a7
HD
2918 * If !PageUptodate, leave it that way so that freeable pages
2919 * can be recognized if we need to rollback on error later.
2920 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2921 * than free the pages we are allocating (and SGP_CACHE pages
2922 * might still be clean: we now need to mark those dirty too).
2923 */
2924 set_page_dirty(page);
2925 unlock_page(page);
09cbfeaf 2926 put_page(page);
e2d12e22
HD
2927 cond_resched();
2928 }
2929
2930 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2931 i_size_write(inode, offset + len);
078cd827 2932 inode->i_ctime = current_time(inode);
1aac1400
HD
2933undone:
2934 spin_lock(&inode->i_lock);
2935 inode->i_private = NULL;
2936 spin_unlock(&inode->i_lock);
e2d12e22 2937out:
5955102c 2938 inode_unlock(inode);
83e4fa9c
HD
2939 return error;
2940}
2941
726c3342 2942static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2943{
726c3342 2944 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2945
2946 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2947 buf->f_bsize = PAGE_SIZE;
1da177e4 2948 buf->f_namelen = NAME_MAX;
0edd73b3 2949 if (sbinfo->max_blocks) {
1da177e4 2950 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2951 buf->f_bavail =
2952 buf->f_bfree = sbinfo->max_blocks -
2953 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2954 }
2955 if (sbinfo->max_inodes) {
1da177e4
LT
2956 buf->f_files = sbinfo->max_inodes;
2957 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2958 }
2959 /* else leave those fields 0 like simple_statfs */
2960 return 0;
2961}
2962
2963/*
2964 * File creation. Allocate an inode, and we're done..
2965 */
2966static int
1a67aafb 2967shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2968{
0b0a0806 2969 struct inode *inode;
1da177e4
LT
2970 int error = -ENOSPC;
2971
454abafe 2972 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2973 if (inode) {
feda821e
CH
2974 error = simple_acl_create(dir, inode);
2975 if (error)
2976 goto out_iput;
2a7dba39 2977 error = security_inode_init_security(inode, dir,
9d8f13ba 2978 &dentry->d_name,
6d9d88d0 2979 shmem_initxattrs, NULL);
feda821e
CH
2980 if (error && error != -EOPNOTSUPP)
2981 goto out_iput;
37ec43cd 2982
718deb6b 2983 error = 0;
1da177e4 2984 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2985 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2986 d_instantiate(dentry, inode);
2987 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2988 }
2989 return error;
feda821e
CH
2990out_iput:
2991 iput(inode);
2992 return error;
1da177e4
LT
2993}
2994
60545d0d
AV
2995static int
2996shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2997{
2998 struct inode *inode;
2999 int error = -ENOSPC;
3000
3001 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3002 if (inode) {
3003 error = security_inode_init_security(inode, dir,
3004 NULL,
3005 shmem_initxattrs, NULL);
feda821e
CH
3006 if (error && error != -EOPNOTSUPP)
3007 goto out_iput;
3008 error = simple_acl_create(dir, inode);
3009 if (error)
3010 goto out_iput;
60545d0d
AV
3011 d_tmpfile(dentry, inode);
3012 }
3013 return error;
feda821e
CH
3014out_iput:
3015 iput(inode);
3016 return error;
60545d0d
AV
3017}
3018
18bb1db3 3019static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3020{
3021 int error;
3022
3023 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3024 return error;
d8c76e6f 3025 inc_nlink(dir);
1da177e4
LT
3026 return 0;
3027}
3028
4acdaf27 3029static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3030 bool excl)
1da177e4
LT
3031{
3032 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3033}
3034
3035/*
3036 * Link a file..
3037 */
3038static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3039{
75c3cfa8 3040 struct inode *inode = d_inode(old_dentry);
5b04c689 3041 int ret;
1da177e4
LT
3042
3043 /*
3044 * No ordinary (disk based) filesystem counts links as inodes;
3045 * but each new link needs a new dentry, pinning lowmem, and
3046 * tmpfs dentries cannot be pruned until they are unlinked.
3047 */
5b04c689
PE
3048 ret = shmem_reserve_inode(inode->i_sb);
3049 if (ret)
3050 goto out;
1da177e4
LT
3051
3052 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3053 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3054 inc_nlink(inode);
7de9c6ee 3055 ihold(inode); /* New dentry reference */
1da177e4
LT
3056 dget(dentry); /* Extra pinning count for the created dentry */
3057 d_instantiate(dentry, inode);
5b04c689
PE
3058out:
3059 return ret;
1da177e4
LT
3060}
3061
3062static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3063{
75c3cfa8 3064 struct inode *inode = d_inode(dentry);
1da177e4 3065
5b04c689
PE
3066 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3067 shmem_free_inode(inode->i_sb);
1da177e4
LT
3068
3069 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3070 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3071 drop_nlink(inode);
1da177e4
LT
3072 dput(dentry); /* Undo the count from "create" - this does all the work */
3073 return 0;
3074}
3075
3076static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3077{
3078 if (!simple_empty(dentry))
3079 return -ENOTEMPTY;
3080
75c3cfa8 3081 drop_nlink(d_inode(dentry));
9a53c3a7 3082 drop_nlink(dir);
1da177e4
LT
3083 return shmem_unlink(dir, dentry);
3084}
3085
37456771
MS
3086static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3087{
e36cb0b8
DH
3088 bool old_is_dir = d_is_dir(old_dentry);
3089 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3090
3091 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3092 if (old_is_dir) {
3093 drop_nlink(old_dir);
3094 inc_nlink(new_dir);
3095 } else {
3096 drop_nlink(new_dir);
3097 inc_nlink(old_dir);
3098 }
3099 }
3100 old_dir->i_ctime = old_dir->i_mtime =
3101 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3102 d_inode(old_dentry)->i_ctime =
078cd827 3103 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3104
3105 return 0;
3106}
3107
46fdb794
MS
3108static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3109{
3110 struct dentry *whiteout;
3111 int error;
3112
3113 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3114 if (!whiteout)
3115 return -ENOMEM;
3116
3117 error = shmem_mknod(old_dir, whiteout,
3118 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3119 dput(whiteout);
3120 if (error)
3121 return error;
3122
3123 /*
3124 * Cheat and hash the whiteout while the old dentry is still in
3125 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3126 *
3127 * d_lookup() will consistently find one of them at this point,
3128 * not sure which one, but that isn't even important.
3129 */
3130 d_rehash(whiteout);
3131 return 0;
3132}
3133
1da177e4
LT
3134/*
3135 * The VFS layer already does all the dentry stuff for rename,
3136 * we just have to decrement the usage count for the target if
3137 * it exists so that the VFS layer correctly free's it when it
3138 * gets overwritten.
3139 */
3b69ff51 3140static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3141{
75c3cfa8 3142 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3143 int they_are_dirs = S_ISDIR(inode->i_mode);
3144
46fdb794 3145 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3146 return -EINVAL;
3147
37456771
MS
3148 if (flags & RENAME_EXCHANGE)
3149 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3150
1da177e4
LT
3151 if (!simple_empty(new_dentry))
3152 return -ENOTEMPTY;
3153
46fdb794
MS
3154 if (flags & RENAME_WHITEOUT) {
3155 int error;
3156
3157 error = shmem_whiteout(old_dir, old_dentry);
3158 if (error)
3159 return error;
3160 }
3161
75c3cfa8 3162 if (d_really_is_positive(new_dentry)) {
1da177e4 3163 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3164 if (they_are_dirs) {
75c3cfa8 3165 drop_nlink(d_inode(new_dentry));
9a53c3a7 3166 drop_nlink(old_dir);
b928095b 3167 }
1da177e4 3168 } else if (they_are_dirs) {
9a53c3a7 3169 drop_nlink(old_dir);
d8c76e6f 3170 inc_nlink(new_dir);
1da177e4
LT
3171 }
3172
3173 old_dir->i_size -= BOGO_DIRENT_SIZE;
3174 new_dir->i_size += BOGO_DIRENT_SIZE;
3175 old_dir->i_ctime = old_dir->i_mtime =
3176 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3177 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3178 return 0;
3179}
3180
3181static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3182{
3183 int error;
3184 int len;
3185 struct inode *inode;
9276aad6 3186 struct page *page;
1da177e4
LT
3187 struct shmem_inode_info *info;
3188
3189 len = strlen(symname) + 1;
09cbfeaf 3190 if (len > PAGE_SIZE)
1da177e4
LT
3191 return -ENAMETOOLONG;
3192
454abafe 3193 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3194 if (!inode)
3195 return -ENOSPC;
3196
9d8f13ba 3197 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3198 shmem_initxattrs, NULL);
570bc1c2
SS
3199 if (error) {
3200 if (error != -EOPNOTSUPP) {
3201 iput(inode);
3202 return error;
3203 }
3204 error = 0;
3205 }
3206
1da177e4
LT
3207 info = SHMEM_I(inode);
3208 inode->i_size = len-1;
69f07ec9 3209 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3210 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3211 if (!inode->i_link) {
69f07ec9
HD
3212 iput(inode);
3213 return -ENOMEM;
3214 }
3215 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3216 } else {
e8ecde25 3217 inode_nohighmem(inode);
9e18eb29 3218 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3219 if (error) {
3220 iput(inode);
3221 return error;
3222 }
14fcc23f 3223 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3224 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3225 memcpy(page_address(page), symname, len);
ec9516fb 3226 SetPageUptodate(page);
1da177e4 3227 set_page_dirty(page);
6746aff7 3228 unlock_page(page);
09cbfeaf 3229 put_page(page);
1da177e4 3230 }
1da177e4 3231 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3232 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3233 d_instantiate(dentry, inode);
3234 dget(dentry);
3235 return 0;
3236}
3237
fceef393 3238static void shmem_put_link(void *arg)
1da177e4 3239{
fceef393
AV
3240 mark_page_accessed(arg);
3241 put_page(arg);
1da177e4
LT
3242}
3243
6b255391 3244static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3245 struct inode *inode,
3246 struct delayed_call *done)
1da177e4 3247{
1da177e4 3248 struct page *page = NULL;
6b255391 3249 int error;
6a6c9904
AV
3250 if (!dentry) {
3251 page = find_get_page(inode->i_mapping, 0);
3252 if (!page)
3253 return ERR_PTR(-ECHILD);
3254 if (!PageUptodate(page)) {
3255 put_page(page);
3256 return ERR_PTR(-ECHILD);
3257 }
3258 } else {
9e18eb29 3259 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3260 if (error)
3261 return ERR_PTR(error);
3262 unlock_page(page);
3263 }
fceef393 3264 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3265 return page_address(page);
1da177e4
LT
3266}
3267
b09e0fa4 3268#ifdef CONFIG_TMPFS_XATTR
46711810 3269/*
b09e0fa4
EP
3270 * Superblocks without xattr inode operations may get some security.* xattr
3271 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3272 * like ACLs, we also need to implement the security.* handlers at
3273 * filesystem level, though.
3274 */
3275
6d9d88d0
JS
3276/*
3277 * Callback for security_inode_init_security() for acquiring xattrs.
3278 */
3279static int shmem_initxattrs(struct inode *inode,
3280 const struct xattr *xattr_array,
3281 void *fs_info)
3282{
3283 struct shmem_inode_info *info = SHMEM_I(inode);
3284 const struct xattr *xattr;
38f38657 3285 struct simple_xattr *new_xattr;
6d9d88d0
JS
3286 size_t len;
3287
3288 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3289 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3290 if (!new_xattr)
3291 return -ENOMEM;
3292
3293 len = strlen(xattr->name) + 1;
3294 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3295 GFP_KERNEL);
3296 if (!new_xattr->name) {
3297 kfree(new_xattr);
3298 return -ENOMEM;
3299 }
3300
3301 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3302 XATTR_SECURITY_PREFIX_LEN);
3303 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3304 xattr->name, len);
3305
38f38657 3306 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3307 }
3308
3309 return 0;
3310}
3311
aa7c5241 3312static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3313 struct dentry *unused, struct inode *inode,
3314 const char *name, void *buffer, size_t size)
b09e0fa4 3315{
b296821a 3316 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3317
aa7c5241 3318 name = xattr_full_name(handler, name);
38f38657 3319 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3320}
3321
aa7c5241 3322static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3323 struct dentry *unused, struct inode *inode,
3324 const char *name, const void *value,
3325 size_t size, int flags)
b09e0fa4 3326{
59301226 3327 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3328
aa7c5241 3329 name = xattr_full_name(handler, name);
38f38657 3330 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3331}
3332
aa7c5241
AG
3333static const struct xattr_handler shmem_security_xattr_handler = {
3334 .prefix = XATTR_SECURITY_PREFIX,
3335 .get = shmem_xattr_handler_get,
3336 .set = shmem_xattr_handler_set,
3337};
b09e0fa4 3338
aa7c5241
AG
3339static const struct xattr_handler shmem_trusted_xattr_handler = {
3340 .prefix = XATTR_TRUSTED_PREFIX,
3341 .get = shmem_xattr_handler_get,
3342 .set = shmem_xattr_handler_set,
3343};
b09e0fa4 3344
aa7c5241
AG
3345static const struct xattr_handler *shmem_xattr_handlers[] = {
3346#ifdef CONFIG_TMPFS_POSIX_ACL
3347 &posix_acl_access_xattr_handler,
3348 &posix_acl_default_xattr_handler,
3349#endif
3350 &shmem_security_xattr_handler,
3351 &shmem_trusted_xattr_handler,
3352 NULL
3353};
b09e0fa4
EP
3354
3355static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3356{
75c3cfa8 3357 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3358 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3359}
3360#endif /* CONFIG_TMPFS_XATTR */
3361
69f07ec9 3362static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3363 .get_link = simple_get_link,
b09e0fa4 3364#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3365 .listxattr = shmem_listxattr,
b09e0fa4
EP
3366#endif
3367};
3368
3369static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3370 .get_link = shmem_get_link,
b09e0fa4 3371#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3372 .listxattr = shmem_listxattr,
39f0247d 3373#endif
b09e0fa4 3374};
39f0247d 3375
91828a40
DG
3376static struct dentry *shmem_get_parent(struct dentry *child)
3377{
3378 return ERR_PTR(-ESTALE);
3379}
3380
3381static int shmem_match(struct inode *ino, void *vfh)
3382{
3383 __u32 *fh = vfh;
3384 __u64 inum = fh[2];
3385 inum = (inum << 32) | fh[1];
3386 return ino->i_ino == inum && fh[0] == ino->i_generation;
3387}
3388
480b116c
CH
3389static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3390 struct fid *fid, int fh_len, int fh_type)
91828a40 3391{
91828a40 3392 struct inode *inode;
480b116c 3393 struct dentry *dentry = NULL;
35c2a7f4 3394 u64 inum;
480b116c
CH
3395
3396 if (fh_len < 3)
3397 return NULL;
91828a40 3398
35c2a7f4
HD
3399 inum = fid->raw[2];
3400 inum = (inum << 32) | fid->raw[1];
3401
480b116c
CH
3402 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3403 shmem_match, fid->raw);
91828a40 3404 if (inode) {
480b116c 3405 dentry = d_find_alias(inode);
91828a40
DG
3406 iput(inode);
3407 }
3408
480b116c 3409 return dentry;
91828a40
DG
3410}
3411
b0b0382b
AV
3412static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3413 struct inode *parent)
91828a40 3414{
5fe0c237
AK
3415 if (*len < 3) {
3416 *len = 3;
94e07a75 3417 return FILEID_INVALID;
5fe0c237 3418 }
91828a40 3419
1d3382cb 3420 if (inode_unhashed(inode)) {
91828a40
DG
3421 /* Unfortunately insert_inode_hash is not idempotent,
3422 * so as we hash inodes here rather than at creation
3423 * time, we need a lock to ensure we only try
3424 * to do it once
3425 */
3426 static DEFINE_SPINLOCK(lock);
3427 spin_lock(&lock);
1d3382cb 3428 if (inode_unhashed(inode))
91828a40
DG
3429 __insert_inode_hash(inode,
3430 inode->i_ino + inode->i_generation);
3431 spin_unlock(&lock);
3432 }
3433
3434 fh[0] = inode->i_generation;
3435 fh[1] = inode->i_ino;
3436 fh[2] = ((__u64)inode->i_ino) >> 32;
3437
3438 *len = 3;
3439 return 1;
3440}
3441
39655164 3442static const struct export_operations shmem_export_ops = {
91828a40 3443 .get_parent = shmem_get_parent,
91828a40 3444 .encode_fh = shmem_encode_fh,
480b116c 3445 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3446};
3447
680d794b
AM
3448static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3449 bool remount)
1da177e4
LT
3450{
3451 char *this_char, *value, *rest;
49cd0a5c 3452 struct mempolicy *mpol = NULL;
8751e039
EB
3453 uid_t uid;
3454 gid_t gid;
1da177e4 3455
b00dc3ad
HD
3456 while (options != NULL) {
3457 this_char = options;
3458 for (;;) {
3459 /*
3460 * NUL-terminate this option: unfortunately,
3461 * mount options form a comma-separated list,
3462 * but mpol's nodelist may also contain commas.
3463 */
3464 options = strchr(options, ',');
3465 if (options == NULL)
3466 break;
3467 options++;
3468 if (!isdigit(*options)) {
3469 options[-1] = '\0';
3470 break;
3471 }
3472 }
1da177e4
LT
3473 if (!*this_char)
3474 continue;
3475 if ((value = strchr(this_char,'=')) != NULL) {
3476 *value++ = 0;
3477 } else {
1170532b
JP
3478 pr_err("tmpfs: No value for mount option '%s'\n",
3479 this_char);
49cd0a5c 3480 goto error;
1da177e4
LT
3481 }
3482
3483 if (!strcmp(this_char,"size")) {
3484 unsigned long long size;
3485 size = memparse(value,&rest);
3486 if (*rest == '%') {
3487 size <<= PAGE_SHIFT;
3488 size *= totalram_pages;
3489 do_div(size, 100);
3490 rest++;
3491 }
3492 if (*rest)
3493 goto bad_val;
680d794b 3494 sbinfo->max_blocks =
09cbfeaf 3495 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3496 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3497 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3498 if (*rest)
3499 goto bad_val;
3500 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3501 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3502 if (*rest)
3503 goto bad_val;
3504 } else if (!strcmp(this_char,"mode")) {
680d794b 3505 if (remount)
1da177e4 3506 continue;
680d794b 3507 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3508 if (*rest)
3509 goto bad_val;
3510 } else if (!strcmp(this_char,"uid")) {
680d794b 3511 if (remount)
1da177e4 3512 continue;
8751e039 3513 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3514 if (*rest)
3515 goto bad_val;
8751e039
EB
3516 sbinfo->uid = make_kuid(current_user_ns(), uid);
3517 if (!uid_valid(sbinfo->uid))
3518 goto bad_val;
1da177e4 3519 } else if (!strcmp(this_char,"gid")) {
680d794b 3520 if (remount)
1da177e4 3521 continue;
8751e039 3522 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3523 if (*rest)
3524 goto bad_val;
8751e039
EB
3525 sbinfo->gid = make_kgid(current_user_ns(), gid);
3526 if (!gid_valid(sbinfo->gid))
3527 goto bad_val;
e496cf3d 3528#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3529 } else if (!strcmp(this_char, "huge")) {
3530 int huge;
3531 huge = shmem_parse_huge(value);
3532 if (huge < 0)
3533 goto bad_val;
3534 if (!has_transparent_hugepage() &&
3535 huge != SHMEM_HUGE_NEVER)
3536 goto bad_val;
3537 sbinfo->huge = huge;
3538#endif
3539#ifdef CONFIG_NUMA
7339ff83 3540 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3541 mpol_put(mpol);
3542 mpol = NULL;
3543 if (mpol_parse_str(value, &mpol))
7339ff83 3544 goto bad_val;
5a6e75f8 3545#endif
1da177e4 3546 } else {
1170532b 3547 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3548 goto error;
1da177e4
LT
3549 }
3550 }
49cd0a5c 3551 sbinfo->mpol = mpol;
1da177e4
LT
3552 return 0;
3553
3554bad_val:
1170532b 3555 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3556 value, this_char);
49cd0a5c
GT
3557error:
3558 mpol_put(mpol);
1da177e4
LT
3559 return 1;
3560
3561}
3562
3563static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3564{
3565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3566 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3567 unsigned long inodes;
3568 int error = -EINVAL;
3569
5f00110f 3570 config.mpol = NULL;
680d794b 3571 if (shmem_parse_options(data, &config, true))
0edd73b3 3572 return error;
1da177e4 3573
0edd73b3 3574 spin_lock(&sbinfo->stat_lock);
0edd73b3 3575 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3576 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3577 goto out;
680d794b 3578 if (config.max_inodes < inodes)
0edd73b3
HD
3579 goto out;
3580 /*
54af6042 3581 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3582 * but we must separately disallow unlimited->limited, because
3583 * in that case we have no record of how much is already in use.
3584 */
680d794b 3585 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3586 goto out;
680d794b 3587 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3588 goto out;
3589
3590 error = 0;
5a6e75f8 3591 sbinfo->huge = config.huge;
680d794b 3592 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3593 sbinfo->max_inodes = config.max_inodes;
3594 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3595
5f00110f
GT
3596 /*
3597 * Preserve previous mempolicy unless mpol remount option was specified.
3598 */
3599 if (config.mpol) {
3600 mpol_put(sbinfo->mpol);
3601 sbinfo->mpol = config.mpol; /* transfers initial ref */
3602 }
0edd73b3
HD
3603out:
3604 spin_unlock(&sbinfo->stat_lock);
3605 return error;
1da177e4 3606}
680d794b 3607
34c80b1d 3608static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3609{
34c80b1d 3610 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3611
3612 if (sbinfo->max_blocks != shmem_default_max_blocks())
3613 seq_printf(seq, ",size=%luk",
09cbfeaf 3614 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3615 if (sbinfo->max_inodes != shmem_default_max_inodes())
3616 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3617 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3618 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3619 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3620 seq_printf(seq, ",uid=%u",
3621 from_kuid_munged(&init_user_ns, sbinfo->uid));
3622 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3623 seq_printf(seq, ",gid=%u",
3624 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3625#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3626 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3627 if (sbinfo->huge)
3628 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3629#endif
71fe804b 3630 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3631 return 0;
3632}
9183df25
DH
3633
3634#define MFD_NAME_PREFIX "memfd:"
3635#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3636#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3637
3638#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3639
3640SYSCALL_DEFINE2(memfd_create,
3641 const char __user *, uname,
3642 unsigned int, flags)
3643{
3644 struct shmem_inode_info *info;
3645 struct file *file;
3646 int fd, error;
3647 char *name;
3648 long len;
3649
3650 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3651 return -EINVAL;
3652
3653 /* length includes terminating zero */
3654 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3655 if (len <= 0)
3656 return -EFAULT;
3657 if (len > MFD_NAME_MAX_LEN + 1)
3658 return -EINVAL;
3659
3660 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3661 if (!name)
3662 return -ENOMEM;
3663
3664 strcpy(name, MFD_NAME_PREFIX);
3665 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3666 error = -EFAULT;
3667 goto err_name;
3668 }
3669
3670 /* terminating-zero may have changed after strnlen_user() returned */
3671 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3672 error = -EFAULT;
3673 goto err_name;
3674 }
3675
3676 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3677 if (fd < 0) {
3678 error = fd;
3679 goto err_name;
3680 }
3681
3682 file = shmem_file_setup(name, 0, VM_NORESERVE);
3683 if (IS_ERR(file)) {
3684 error = PTR_ERR(file);
3685 goto err_fd;
3686 }
3687 info = SHMEM_I(file_inode(file));
3688 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3689 file->f_flags |= O_RDWR | O_LARGEFILE;
3690 if (flags & MFD_ALLOW_SEALING)
3691 info->seals &= ~F_SEAL_SEAL;
3692
3693 fd_install(fd, file);
3694 kfree(name);
3695 return fd;
3696
3697err_fd:
3698 put_unused_fd(fd);
3699err_name:
3700 kfree(name);
3701 return error;
3702}
3703
680d794b 3704#endif /* CONFIG_TMPFS */
1da177e4
LT
3705
3706static void shmem_put_super(struct super_block *sb)
3707{
602586a8
HD
3708 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3709
3710 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3711 mpol_put(sbinfo->mpol);
602586a8 3712 kfree(sbinfo);
1da177e4
LT
3713 sb->s_fs_info = NULL;
3714}
3715
2b2af54a 3716int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3717{
3718 struct inode *inode;
0edd73b3 3719 struct shmem_sb_info *sbinfo;
680d794b
AM
3720 int err = -ENOMEM;
3721
3722 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3723 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3724 L1_CACHE_BYTES), GFP_KERNEL);
3725 if (!sbinfo)
3726 return -ENOMEM;
3727
680d794b 3728 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3729 sbinfo->uid = current_fsuid();
3730 sbinfo->gid = current_fsgid();
680d794b 3731 sb->s_fs_info = sbinfo;
1da177e4 3732
0edd73b3 3733#ifdef CONFIG_TMPFS
1da177e4
LT
3734 /*
3735 * Per default we only allow half of the physical ram per
3736 * tmpfs instance, limiting inodes to one per page of lowmem;
3737 * but the internal instance is left unlimited.
3738 */
ca4e0519 3739 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3740 sbinfo->max_blocks = shmem_default_max_blocks();
3741 sbinfo->max_inodes = shmem_default_max_inodes();
3742 if (shmem_parse_options(data, sbinfo, false)) {
3743 err = -EINVAL;
3744 goto failed;
3745 }
ca4e0519
AV
3746 } else {
3747 sb->s_flags |= MS_NOUSER;
1da177e4 3748 }
91828a40 3749 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3750 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3751#else
3752 sb->s_flags |= MS_NOUSER;
3753#endif
3754
0edd73b3 3755 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3756 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3757 goto failed;
680d794b 3758 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3759 spin_lock_init(&sbinfo->shrinklist_lock);
3760 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3761
285b2c4f 3762 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3763 sb->s_blocksize = PAGE_SIZE;
3764 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3765 sb->s_magic = TMPFS_MAGIC;
3766 sb->s_op = &shmem_ops;
cfd95a9c 3767 sb->s_time_gran = 1;
b09e0fa4 3768#ifdef CONFIG_TMPFS_XATTR
39f0247d 3769 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3770#endif
3771#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3772 sb->s_flags |= MS_POSIXACL;
3773#endif
2b4db796 3774 uuid_gen(&sb->s_uuid);
0edd73b3 3775
454abafe 3776 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3777 if (!inode)
3778 goto failed;
680d794b
AM
3779 inode->i_uid = sbinfo->uid;
3780 inode->i_gid = sbinfo->gid;
318ceed0
AV
3781 sb->s_root = d_make_root(inode);
3782 if (!sb->s_root)
48fde701 3783 goto failed;
1da177e4
LT
3784 return 0;
3785
1da177e4
LT
3786failed:
3787 shmem_put_super(sb);
3788 return err;
3789}
3790
fcc234f8 3791static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3792
3793static struct inode *shmem_alloc_inode(struct super_block *sb)
3794{
41ffe5d5
HD
3795 struct shmem_inode_info *info;
3796 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3797 if (!info)
1da177e4 3798 return NULL;
41ffe5d5 3799 return &info->vfs_inode;
1da177e4
LT
3800}
3801
41ffe5d5 3802static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3803{
3804 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3805 if (S_ISLNK(inode->i_mode))
3806 kfree(inode->i_link);
fa0d7e3d
NP
3807 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3808}
3809
1da177e4
LT
3810static void shmem_destroy_inode(struct inode *inode)
3811{
09208d15 3812 if (S_ISREG(inode->i_mode))
1da177e4 3813 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3814 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3815}
3816
41ffe5d5 3817static void shmem_init_inode(void *foo)
1da177e4 3818{
41ffe5d5
HD
3819 struct shmem_inode_info *info = foo;
3820 inode_init_once(&info->vfs_inode);
1da177e4
LT
3821}
3822
41ffe5d5 3823static int shmem_init_inodecache(void)
1da177e4
LT
3824{
3825 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3826 sizeof(struct shmem_inode_info),
5d097056 3827 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3828 return 0;
3829}
3830
41ffe5d5 3831static void shmem_destroy_inodecache(void)
1da177e4 3832{
1a1d92c1 3833 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3834}
3835
f5e54d6e 3836static const struct address_space_operations shmem_aops = {
1da177e4 3837 .writepage = shmem_writepage,
76719325 3838 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3839#ifdef CONFIG_TMPFS
800d15a5
NP
3840 .write_begin = shmem_write_begin,
3841 .write_end = shmem_write_end,
1da177e4 3842#endif
1c93923c 3843#ifdef CONFIG_MIGRATION
304dbdb7 3844 .migratepage = migrate_page,
1c93923c 3845#endif
aa261f54 3846 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3847};
3848
15ad7cdc 3849static const struct file_operations shmem_file_operations = {
1da177e4 3850 .mmap = shmem_mmap,
c01d5b30 3851 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3852#ifdef CONFIG_TMPFS
220f2ac9 3853 .llseek = shmem_file_llseek,
2ba5bbed 3854 .read_iter = shmem_file_read_iter,
8174202b 3855 .write_iter = generic_file_write_iter,
1b061d92 3856 .fsync = noop_fsync,
82c156f8 3857 .splice_read = generic_file_splice_read,
f6cb85d0 3858 .splice_write = iter_file_splice_write,
83e4fa9c 3859 .fallocate = shmem_fallocate,
1da177e4
LT
3860#endif
3861};
3862
92e1d5be 3863static const struct inode_operations shmem_inode_operations = {
44a30220 3864 .getattr = shmem_getattr,
94c1e62d 3865 .setattr = shmem_setattr,
b09e0fa4 3866#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3867 .listxattr = shmem_listxattr,
feda821e 3868 .set_acl = simple_set_acl,
b09e0fa4 3869#endif
1da177e4
LT
3870};
3871
92e1d5be 3872static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3873#ifdef CONFIG_TMPFS
3874 .create = shmem_create,
3875 .lookup = simple_lookup,
3876 .link = shmem_link,
3877 .unlink = shmem_unlink,
3878 .symlink = shmem_symlink,
3879 .mkdir = shmem_mkdir,
3880 .rmdir = shmem_rmdir,
3881 .mknod = shmem_mknod,
2773bf00 3882 .rename = shmem_rename2,
60545d0d 3883 .tmpfile = shmem_tmpfile,
1da177e4 3884#endif
b09e0fa4 3885#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3886 .listxattr = shmem_listxattr,
b09e0fa4 3887#endif
39f0247d 3888#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3889 .setattr = shmem_setattr,
feda821e 3890 .set_acl = simple_set_acl,
39f0247d
AG
3891#endif
3892};
3893
92e1d5be 3894static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3895#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3896 .listxattr = shmem_listxattr,
b09e0fa4 3897#endif
39f0247d 3898#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3899 .setattr = shmem_setattr,
feda821e 3900 .set_acl = simple_set_acl,
39f0247d 3901#endif
1da177e4
LT
3902};
3903
759b9775 3904static const struct super_operations shmem_ops = {
1da177e4
LT
3905 .alloc_inode = shmem_alloc_inode,
3906 .destroy_inode = shmem_destroy_inode,
3907#ifdef CONFIG_TMPFS
3908 .statfs = shmem_statfs,
3909 .remount_fs = shmem_remount_fs,
680d794b 3910 .show_options = shmem_show_options,
1da177e4 3911#endif
1f895f75 3912 .evict_inode = shmem_evict_inode,
1da177e4
LT
3913 .drop_inode = generic_delete_inode,
3914 .put_super = shmem_put_super,
779750d2
KS
3915#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3916 .nr_cached_objects = shmem_unused_huge_count,
3917 .free_cached_objects = shmem_unused_huge_scan,
3918#endif
1da177e4
LT
3919};
3920
f0f37e2f 3921static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3922 .fault = shmem_fault,
d7c17551 3923 .map_pages = filemap_map_pages,
1da177e4
LT
3924#ifdef CONFIG_NUMA
3925 .set_policy = shmem_set_policy,
3926 .get_policy = shmem_get_policy,
3927#endif
3928};
3929
3c26ff6e
AV
3930static struct dentry *shmem_mount(struct file_system_type *fs_type,
3931 int flags, const char *dev_name, void *data)
1da177e4 3932{
3c26ff6e 3933 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3934}
3935
41ffe5d5 3936static struct file_system_type shmem_fs_type = {
1da177e4
LT
3937 .owner = THIS_MODULE,
3938 .name = "tmpfs",
3c26ff6e 3939 .mount = shmem_mount,
1da177e4 3940 .kill_sb = kill_litter_super,
2b8576cb 3941 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3942};
1da177e4 3943
41ffe5d5 3944int __init shmem_init(void)
1da177e4
LT
3945{
3946 int error;
3947
16203a7a
RL
3948 /* If rootfs called this, don't re-init */
3949 if (shmem_inode_cachep)
3950 return 0;
3951
41ffe5d5 3952 error = shmem_init_inodecache();
1da177e4
LT
3953 if (error)
3954 goto out3;
3955
41ffe5d5 3956 error = register_filesystem(&shmem_fs_type);
1da177e4 3957 if (error) {
1170532b 3958 pr_err("Could not register tmpfs\n");
1da177e4
LT
3959 goto out2;
3960 }
95dc112a 3961
ca4e0519 3962 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3963 if (IS_ERR(shm_mnt)) {
3964 error = PTR_ERR(shm_mnt);
1170532b 3965 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3966 goto out1;
3967 }
5a6e75f8 3968
e496cf3d 3969#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3970 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 else
3973 shmem_huge = 0; /* just in case it was patched */
3974#endif
1da177e4
LT
3975 return 0;
3976
3977out1:
41ffe5d5 3978 unregister_filesystem(&shmem_fs_type);
1da177e4 3979out2:
41ffe5d5 3980 shmem_destroy_inodecache();
1da177e4
LT
3981out3:
3982 shm_mnt = ERR_PTR(error);
3983 return error;
3984}
853ac43a 3985
e496cf3d 3986#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3987static ssize_t shmem_enabled_show(struct kobject *kobj,
3988 struct kobj_attribute *attr, char *buf)
3989{
3990 int values[] = {
3991 SHMEM_HUGE_ALWAYS,
3992 SHMEM_HUGE_WITHIN_SIZE,
3993 SHMEM_HUGE_ADVISE,
3994 SHMEM_HUGE_NEVER,
3995 SHMEM_HUGE_DENY,
3996 SHMEM_HUGE_FORCE,
3997 };
3998 int i, count;
3999
4000 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4001 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4002
4003 count += sprintf(buf + count, fmt,
4004 shmem_format_huge(values[i]));
4005 }
4006 buf[count - 1] = '\n';
4007 return count;
4008}
4009
4010static ssize_t shmem_enabled_store(struct kobject *kobj,
4011 struct kobj_attribute *attr, const char *buf, size_t count)
4012{
4013 char tmp[16];
4014 int huge;
4015
4016 if (count + 1 > sizeof(tmp))
4017 return -EINVAL;
4018 memcpy(tmp, buf, count);
4019 tmp[count] = '\0';
4020 if (count && tmp[count - 1] == '\n')
4021 tmp[count - 1] = '\0';
4022
4023 huge = shmem_parse_huge(tmp);
4024 if (huge == -EINVAL)
4025 return -EINVAL;
4026 if (!has_transparent_hugepage() &&
4027 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4028 return -EINVAL;
4029
4030 shmem_huge = huge;
4031 if (shmem_huge < SHMEM_HUGE_DENY)
4032 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4033 return count;
4034}
4035
4036struct kobj_attribute shmem_enabled_attr =
4037 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4038#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4039
3b33719c 4040#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4041bool shmem_huge_enabled(struct vm_area_struct *vma)
4042{
4043 struct inode *inode = file_inode(vma->vm_file);
4044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4045 loff_t i_size;
4046 pgoff_t off;
4047
4048 if (shmem_huge == SHMEM_HUGE_FORCE)
4049 return true;
4050 if (shmem_huge == SHMEM_HUGE_DENY)
4051 return false;
4052 switch (sbinfo->huge) {
4053 case SHMEM_HUGE_NEVER:
4054 return false;
4055 case SHMEM_HUGE_ALWAYS:
4056 return true;
4057 case SHMEM_HUGE_WITHIN_SIZE:
4058 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4059 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4060 if (i_size >= HPAGE_PMD_SIZE &&
4061 i_size >> PAGE_SHIFT >= off)
4062 return true;
4063 case SHMEM_HUGE_ADVISE:
4064 /* TODO: implement fadvise() hints */
4065 return (vma->vm_flags & VM_HUGEPAGE);
4066 default:
4067 VM_BUG_ON(1);
4068 return false;
4069 }
4070}
3b33719c 4071#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4072
853ac43a
MM
4073#else /* !CONFIG_SHMEM */
4074
4075/*
4076 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4077 *
4078 * This is intended for small system where the benefits of the full
4079 * shmem code (swap-backed and resource-limited) are outweighed by
4080 * their complexity. On systems without swap this code should be
4081 * effectively equivalent, but much lighter weight.
4082 */
4083
41ffe5d5 4084static struct file_system_type shmem_fs_type = {
853ac43a 4085 .name = "tmpfs",
3c26ff6e 4086 .mount = ramfs_mount,
853ac43a 4087 .kill_sb = kill_litter_super,
2b8576cb 4088 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4089};
4090
41ffe5d5 4091int __init shmem_init(void)
853ac43a 4092{
41ffe5d5 4093 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4094
41ffe5d5 4095 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4096 BUG_ON(IS_ERR(shm_mnt));
4097
4098 return 0;
4099}
4100
41ffe5d5 4101int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4102{
4103 return 0;
4104}
4105
3f96b79a
HD
4106int shmem_lock(struct file *file, int lock, struct user_struct *user)
4107{
4108 return 0;
4109}
4110
24513264
HD
4111void shmem_unlock_mapping(struct address_space *mapping)
4112{
4113}
4114
c01d5b30
HD
4115#ifdef CONFIG_MMU
4116unsigned long shmem_get_unmapped_area(struct file *file,
4117 unsigned long addr, unsigned long len,
4118 unsigned long pgoff, unsigned long flags)
4119{
4120 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4121}
4122#endif
4123
41ffe5d5 4124void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4125{
41ffe5d5 4126 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4127}
4128EXPORT_SYMBOL_GPL(shmem_truncate_range);
4129
0b0a0806
HD
4130#define shmem_vm_ops generic_file_vm_ops
4131#define shmem_file_operations ramfs_file_operations
454abafe 4132#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4133#define shmem_acct_size(flags, size) 0
4134#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4135
4136#endif /* CONFIG_SHMEM */
4137
4138/* common code */
1da177e4 4139
19938e35 4140static const struct dentry_operations anon_ops = {
118b2302 4141 .d_dname = simple_dname
3451538a
AV
4142};
4143
c7277090
EP
4144static struct file *__shmem_file_setup(const char *name, loff_t size,
4145 unsigned long flags, unsigned int i_flags)
1da177e4 4146{
6b4d0b27 4147 struct file *res;
1da177e4 4148 struct inode *inode;
2c48b9c4 4149 struct path path;
3451538a 4150 struct super_block *sb;
1da177e4
LT
4151 struct qstr this;
4152
4153 if (IS_ERR(shm_mnt))
6b4d0b27 4154 return ERR_CAST(shm_mnt);
1da177e4 4155
285b2c4f 4156 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4157 return ERR_PTR(-EINVAL);
4158
4159 if (shmem_acct_size(flags, size))
4160 return ERR_PTR(-ENOMEM);
4161
6b4d0b27 4162 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4163 this.name = name;
4164 this.len = strlen(name);
4165 this.hash = 0; /* will go */
3451538a 4166 sb = shm_mnt->mnt_sb;
66ee4b88 4167 path.mnt = mntget(shm_mnt);
3451538a 4168 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4169 if (!path.dentry)
1da177e4 4170 goto put_memory;
3451538a 4171 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4172
6b4d0b27 4173 res = ERR_PTR(-ENOSPC);
3451538a 4174 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4175 if (!inode)
66ee4b88 4176 goto put_memory;
1da177e4 4177
c7277090 4178 inode->i_flags |= i_flags;
2c48b9c4 4179 d_instantiate(path.dentry, inode);
1da177e4 4180 inode->i_size = size;
6d6b77f1 4181 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4182 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4183 if (IS_ERR(res))
66ee4b88 4184 goto put_path;
4b42af81 4185
6b4d0b27 4186 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4187 &shmem_file_operations);
6b4d0b27 4188 if (IS_ERR(res))
66ee4b88 4189 goto put_path;
4b42af81 4190
6b4d0b27 4191 return res;
1da177e4 4192
1da177e4
LT
4193put_memory:
4194 shmem_unacct_size(flags, size);
66ee4b88
KK
4195put_path:
4196 path_put(&path);
6b4d0b27 4197 return res;
1da177e4 4198}
c7277090
EP
4199
4200/**
4201 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4202 * kernel internal. There will be NO LSM permission checks against the
4203 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4204 * higher layer. The users are the big_key and shm implementations. LSM
4205 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4206 * @name: name for dentry (to be seen in /proc/<pid>/maps
4207 * @size: size to be set for the file
4208 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4209 */
4210struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4211{
4212 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4213}
4214
4215/**
4216 * shmem_file_setup - get an unlinked file living in tmpfs
4217 * @name: name for dentry (to be seen in /proc/<pid>/maps
4218 * @size: size to be set for the file
4219 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4220 */
4221struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4222{
4223 return __shmem_file_setup(name, size, flags, 0);
4224}
395e0ddc 4225EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4226
46711810 4227/**
1da177e4 4228 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4229 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4230 */
4231int shmem_zero_setup(struct vm_area_struct *vma)
4232{
4233 struct file *file;
4234 loff_t size = vma->vm_end - vma->vm_start;
4235
66fc1303
HD
4236 /*
4237 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4238 * between XFS directory reading and selinux: since this file is only
4239 * accessible to the user through its mapping, use S_PRIVATE flag to
4240 * bypass file security, in the same way as shmem_kernel_file_setup().
4241 */
4242 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4243 if (IS_ERR(file))
4244 return PTR_ERR(file);
4245
4246 if (vma->vm_file)
4247 fput(vma->vm_file);
4248 vma->vm_file = file;
4249 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4250
e496cf3d 4251 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4252 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4253 (vma->vm_end & HPAGE_PMD_MASK)) {
4254 khugepaged_enter(vma, vma->vm_flags);
4255 }
4256
1da177e4
LT
4257 return 0;
4258}
d9d90e5e
HD
4259
4260/**
4261 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4262 * @mapping: the page's address_space
4263 * @index: the page index
4264 * @gfp: the page allocator flags to use if allocating
4265 *
4266 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4267 * with any new page allocations done using the specified allocation flags.
4268 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4269 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4270 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4271 *
68da9f05
HD
4272 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4273 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4274 */
4275struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4276 pgoff_t index, gfp_t gfp)
4277{
68da9f05
HD
4278#ifdef CONFIG_SHMEM
4279 struct inode *inode = mapping->host;
9276aad6 4280 struct page *page;
68da9f05
HD
4281 int error;
4282
4283 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4284 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4285 gfp, NULL, NULL, NULL);
68da9f05
HD
4286 if (error)
4287 page = ERR_PTR(error);
4288 else
4289 unlock_page(page);
4290 return page;
4291#else
4292 /*
4293 * The tiny !SHMEM case uses ramfs without swap
4294 */
d9d90e5e 4295 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4296#endif
d9d90e5e
HD
4297}
4298EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);