]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
mm: rename NR_ANON_PAGES to NR_ANON_MAPPED
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
f3f0e1d2 35#include <linux/khugepaged.h>
853ac43a
MM
36
37static struct vfsmount *shm_mnt;
38
39#ifdef CONFIG_SHMEM
1da177e4
LT
40/*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
39f0247d 46#include <linux/xattr.h>
a5694255 47#include <linux/exportfs.h>
1c7c474c 48#include <linux/posix_acl.h>
feda821e 49#include <linux/posix_acl_xattr.h>
1da177e4 50#include <linux/mman.h>
1da177e4
LT
51#include <linux/string.h>
52#include <linux/slab.h>
53#include <linux/backing-dev.h>
54#include <linux/shmem_fs.h>
1da177e4 55#include <linux/writeback.h>
1da177e4 56#include <linux/blkdev.h>
bda97eab 57#include <linux/pagevec.h>
41ffe5d5 58#include <linux/percpu_counter.h>
83e4fa9c 59#include <linux/falloc.h>
708e3508 60#include <linux/splice.h>
1da177e4
LT
61#include <linux/security.h>
62#include <linux/swapops.h>
63#include <linux/mempolicy.h>
64#include <linux/namei.h>
b00dc3ad 65#include <linux/ctype.h>
304dbdb7 66#include <linux/migrate.h>
c1f60a5a 67#include <linux/highmem.h>
680d794b 68#include <linux/seq_file.h>
92562927 69#include <linux/magic.h>
9183df25 70#include <linux/syscalls.h>
40e041a2 71#include <linux/fcntl.h>
9183df25 72#include <uapi/linux/memfd.h>
304dbdb7 73
1da177e4 74#include <asm/uaccess.h>
1da177e4
LT
75#include <asm/pgtable.h>
76
dd56b046
MG
77#include "internal.h"
78
09cbfeaf
KS
79#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 81
1da177e4
LT
82/* Pretend that each entry is of this size in directory's i_size */
83#define BOGO_DIRENT_SIZE 20
84
69f07ec9
HD
85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86#define SHORT_SYMLINK_LEN 128
87
1aac1400 88/*
f00cdc6d
HD
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
92 */
93struct shmem_falloc {
8e205f77 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99};
100
b76db735 101#ifdef CONFIG_TMPFS
680d794b
AM
102static unsigned long shmem_default_max_blocks(void)
103{
104 return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
b76db735 111#endif
680d794b 112
bde05d1c
HD
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
68da9f05 116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
68da9f05 119
f3f0e1d2 120int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 121 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
122{
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
9e18eb29 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
68da9f05 125}
1da177e4 126
1da177e4
LT
127static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128{
129 return sb->s_fs_info;
130}
131
132/*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138static inline int shmem_acct_size(unsigned long flags, loff_t size)
139{
0b0a0806 140 return (flags & VM_NORESERVE) ?
191c5424 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
142}
143
144static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145{
0b0a0806 146 if (!(flags & VM_NORESERVE))
1da177e4
LT
147 vm_unacct_memory(VM_ACCT(size));
148}
149
77142517
KK
150static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152{
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161}
162
1da177e4
LT
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
75edd345 165 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
800d8c63 169static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 170{
800d8c63
KS
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
176}
177
178static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179{
0b0a0806 180 if (flags & VM_NORESERVE)
09cbfeaf 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
182}
183
759b9775 184static const struct super_operations shmem_ops;
f5e54d6e 185static const struct address_space_operations shmem_aops;
15ad7cdc 186static const struct file_operations shmem_file_operations;
92e1d5be
AV
187static const struct inode_operations shmem_inode_operations;
188static const struct inode_operations shmem_dir_inode_operations;
189static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 190static const struct vm_operations_struct shmem_vm_ops;
779750d2 191static struct file_system_type shmem_fs_type;
1da177e4 192
1da177e4 193static LIST_HEAD(shmem_swaplist);
cb5f7b9a 194static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 195
5b04c689
PE
196static int shmem_reserve_inode(struct super_block *sb)
197{
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209}
210
211static void shmem_free_inode(struct super_block *sb)
212{
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219}
220
46711810 221/**
41ffe5d5 222 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233static void shmem_recalc_inode(struct inode *inode)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
54af6042
HD
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 243 info->alloced -= freed;
54af6042 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 245 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
246 }
247}
248
800d8c63
KS
249bool shmem_charge(struct inode *inode, long pages)
250{
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 253 unsigned long flags;
800d8c63
KS
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
4595ef88 257 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
4595ef88 261 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
4595ef88 269 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
4595ef88 272 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
273
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278}
279
280void shmem_uncharge(struct inode *inode, long pages)
281{
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 284 unsigned long flags;
800d8c63 285
4595ef88 286 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
4595ef88 290 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294}
295
7a5d0fbb
HD
296/*
297 * Replace item expected in radix tree by a new item, while holding tree lock.
298 */
299static int shmem_radix_tree_replace(struct address_space *mapping,
300 pgoff_t index, void *expected, void *replacement)
301{
302 void **pslot;
6dbaf22c 303 void *item;
7a5d0fbb
HD
304
305 VM_BUG_ON(!expected);
6dbaf22c 306 VM_BUG_ON(!replacement);
7a5d0fbb 307 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
308 if (!pslot)
309 return -ENOENT;
310 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
311 if (item != expected)
312 return -ENOENT;
6dbaf22c 313 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
314 return 0;
315}
316
d1899228
HD
317/*
318 * Sometimes, before we decide whether to proceed or to fail, we must check
319 * that an entry was not already brought back from swap by a racing thread.
320 *
321 * Checking page is not enough: by the time a SwapCache page is locked, it
322 * might be reused, and again be SwapCache, using the same swap as before.
323 */
324static bool shmem_confirm_swap(struct address_space *mapping,
325 pgoff_t index, swp_entry_t swap)
326{
327 void *item;
328
329 rcu_read_lock();
330 item = radix_tree_lookup(&mapping->page_tree, index);
331 rcu_read_unlock();
332 return item == swp_to_radix_entry(swap);
333}
334
5a6e75f8
KS
335/*
336 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
337 *
338 * SHMEM_HUGE_NEVER:
339 * disables huge pages for the mount;
340 * SHMEM_HUGE_ALWAYS:
341 * enables huge pages for the mount;
342 * SHMEM_HUGE_WITHIN_SIZE:
343 * only allocate huge pages if the page will be fully within i_size,
344 * also respect fadvise()/madvise() hints;
345 * SHMEM_HUGE_ADVISE:
346 * only allocate huge pages if requested with fadvise()/madvise();
347 */
348
349#define SHMEM_HUGE_NEVER 0
350#define SHMEM_HUGE_ALWAYS 1
351#define SHMEM_HUGE_WITHIN_SIZE 2
352#define SHMEM_HUGE_ADVISE 3
353
354/*
355 * Special values.
356 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
357 *
358 * SHMEM_HUGE_DENY:
359 * disables huge on shm_mnt and all mounts, for emergency use;
360 * SHMEM_HUGE_FORCE:
361 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
362 *
363 */
364#define SHMEM_HUGE_DENY (-1)
365#define SHMEM_HUGE_FORCE (-2)
366
e496cf3d 367#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
368/* ifdef here to avoid bloating shmem.o when not necessary */
369
370int shmem_huge __read_mostly;
371
372static int shmem_parse_huge(const char *str)
373{
374 if (!strcmp(str, "never"))
375 return SHMEM_HUGE_NEVER;
376 if (!strcmp(str, "always"))
377 return SHMEM_HUGE_ALWAYS;
378 if (!strcmp(str, "within_size"))
379 return SHMEM_HUGE_WITHIN_SIZE;
380 if (!strcmp(str, "advise"))
381 return SHMEM_HUGE_ADVISE;
382 if (!strcmp(str, "deny"))
383 return SHMEM_HUGE_DENY;
384 if (!strcmp(str, "force"))
385 return SHMEM_HUGE_FORCE;
386 return -EINVAL;
387}
388
389static const char *shmem_format_huge(int huge)
390{
391 switch (huge) {
392 case SHMEM_HUGE_NEVER:
393 return "never";
394 case SHMEM_HUGE_ALWAYS:
395 return "always";
396 case SHMEM_HUGE_WITHIN_SIZE:
397 return "within_size";
398 case SHMEM_HUGE_ADVISE:
399 return "advise";
400 case SHMEM_HUGE_DENY:
401 return "deny";
402 case SHMEM_HUGE_FORCE:
403 return "force";
404 default:
405 VM_BUG_ON(1);
406 return "bad_val";
407 }
408}
409
779750d2
KS
410static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
411 struct shrink_control *sc, unsigned long nr_to_split)
412{
413 LIST_HEAD(list), *pos, *next;
414 struct inode *inode;
415 struct shmem_inode_info *info;
416 struct page *page;
417 unsigned long batch = sc ? sc->nr_to_scan : 128;
418 int removed = 0, split = 0;
419
420 if (list_empty(&sbinfo->shrinklist))
421 return SHRINK_STOP;
422
423 spin_lock(&sbinfo->shrinklist_lock);
424 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
425 info = list_entry(pos, struct shmem_inode_info, shrinklist);
426
427 /* pin the inode */
428 inode = igrab(&info->vfs_inode);
429
430 /* inode is about to be evicted */
431 if (!inode) {
432 list_del_init(&info->shrinklist);
433 removed++;
434 goto next;
435 }
436
437 /* Check if there's anything to gain */
438 if (round_up(inode->i_size, PAGE_SIZE) ==
439 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
440 list_del_init(&info->shrinklist);
441 removed++;
442 iput(inode);
443 goto next;
444 }
445
446 list_move(&info->shrinklist, &list);
447next:
448 if (!--batch)
449 break;
450 }
451 spin_unlock(&sbinfo->shrinklist_lock);
452
453 list_for_each_safe(pos, next, &list) {
454 int ret;
455
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 inode = &info->vfs_inode;
458
459 if (nr_to_split && split >= nr_to_split) {
460 iput(inode);
461 continue;
462 }
463
464 page = find_lock_page(inode->i_mapping,
465 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
466 if (!page)
467 goto drop;
468
469 if (!PageTransHuge(page)) {
470 unlock_page(page);
471 put_page(page);
472 goto drop;
473 }
474
475 ret = split_huge_page(page);
476 unlock_page(page);
477 put_page(page);
478
479 if (ret) {
480 /* split failed: leave it on the list */
481 iput(inode);
482 continue;
483 }
484
485 split++;
486drop:
487 list_del_init(&info->shrinklist);
488 removed++;
489 iput(inode);
490 }
491
492 spin_lock(&sbinfo->shrinklist_lock);
493 list_splice_tail(&list, &sbinfo->shrinklist);
494 sbinfo->shrinklist_len -= removed;
495 spin_unlock(&sbinfo->shrinklist_lock);
496
497 return split;
498}
499
500static long shmem_unused_huge_scan(struct super_block *sb,
501 struct shrink_control *sc)
502{
503 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
504
505 if (!READ_ONCE(sbinfo->shrinklist_len))
506 return SHRINK_STOP;
507
508 return shmem_unused_huge_shrink(sbinfo, sc, 0);
509}
510
511static long shmem_unused_huge_count(struct super_block *sb,
512 struct shrink_control *sc)
513{
514 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515 return READ_ONCE(sbinfo->shrinklist_len);
516}
e496cf3d 517#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
518
519#define shmem_huge SHMEM_HUGE_DENY
520
779750d2
KS
521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523{
524 return 0;
525}
e496cf3d 526#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 527
46f65ec1
HD
528/*
529 * Like add_to_page_cache_locked, but error if expected item has gone.
530 */
531static int shmem_add_to_page_cache(struct page *page,
532 struct address_space *mapping,
fed400a1 533 pgoff_t index, void *expected)
46f65ec1 534{
800d8c63 535 int error, nr = hpage_nr_pages(page);
46f65ec1 536
800d8c63
KS
537 VM_BUG_ON_PAGE(PageTail(page), page);
538 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
539 VM_BUG_ON_PAGE(!PageLocked(page), page);
540 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 541 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 542
800d8c63 543 page_ref_add(page, nr);
b065b432
HD
544 page->mapping = mapping;
545 page->index = index;
546
547 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
548 if (PageTransHuge(page)) {
549 void __rcu **results;
550 pgoff_t idx;
551 int i;
552
553 error = 0;
554 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
555 &results, &idx, index, 1) &&
556 idx < index + HPAGE_PMD_NR) {
557 error = -EEXIST;
558 }
559
560 if (!error) {
561 for (i = 0; i < HPAGE_PMD_NR; i++) {
562 error = radix_tree_insert(&mapping->page_tree,
563 index + i, page + i);
564 VM_BUG_ON(error);
565 }
566 count_vm_event(THP_FILE_ALLOC);
567 }
568 } else if (!expected) {
b065b432 569 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 570 } else {
b065b432
HD
571 error = shmem_radix_tree_replace(mapping, index, expected,
572 page);
800d8c63
KS
573 }
574
46f65ec1 575 if (!error) {
800d8c63
KS
576 mapping->nrpages += nr;
577 if (PageTransHuge(page))
578 __inc_zone_page_state(page, NR_SHMEM_THPS);
579 __mod_zone_page_state(page_zone(page), NR_FILE_PAGES, nr);
580 __mod_zone_page_state(page_zone(page), NR_SHMEM, nr);
b065b432
HD
581 spin_unlock_irq(&mapping->tree_lock);
582 } else {
583 page->mapping = NULL;
584 spin_unlock_irq(&mapping->tree_lock);
800d8c63 585 page_ref_sub(page, nr);
46f65ec1 586 }
46f65ec1
HD
587 return error;
588}
589
6922c0c7
HD
590/*
591 * Like delete_from_page_cache, but substitutes swap for page.
592 */
593static void shmem_delete_from_page_cache(struct page *page, void *radswap)
594{
595 struct address_space *mapping = page->mapping;
596 int error;
597
800d8c63
KS
598 VM_BUG_ON_PAGE(PageCompound(page), page);
599
6922c0c7
HD
600 spin_lock_irq(&mapping->tree_lock);
601 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
602 page->mapping = NULL;
603 mapping->nrpages--;
604 __dec_zone_page_state(page, NR_FILE_PAGES);
605 __dec_zone_page_state(page, NR_SHMEM);
606 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 607 put_page(page);
6922c0c7
HD
608 BUG_ON(error);
609}
610
7a5d0fbb
HD
611/*
612 * Remove swap entry from radix tree, free the swap and its page cache.
613 */
614static int shmem_free_swap(struct address_space *mapping,
615 pgoff_t index, void *radswap)
616{
6dbaf22c 617 void *old;
7a5d0fbb
HD
618
619 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 620 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 621 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
622 if (old != radswap)
623 return -ENOENT;
624 free_swap_and_cache(radix_to_swp_entry(radswap));
625 return 0;
7a5d0fbb
HD
626}
627
6a15a370
VB
628/*
629 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 630 * given offsets are swapped out.
6a15a370
VB
631 *
632 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
633 * as long as the inode doesn't go away and racy results are not a problem.
634 */
48131e03
VB
635unsigned long shmem_partial_swap_usage(struct address_space *mapping,
636 pgoff_t start, pgoff_t end)
6a15a370 637{
6a15a370
VB
638 struct radix_tree_iter iter;
639 void **slot;
640 struct page *page;
48131e03 641 unsigned long swapped = 0;
6a15a370
VB
642
643 rcu_read_lock();
644
6a15a370
VB
645 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
646 if (iter.index >= end)
647 break;
648
649 page = radix_tree_deref_slot(slot);
650
2cf938aa
MW
651 if (radix_tree_deref_retry(page)) {
652 slot = radix_tree_iter_retry(&iter);
653 continue;
654 }
6a15a370
VB
655
656 if (radix_tree_exceptional_entry(page))
657 swapped++;
658
659 if (need_resched()) {
660 cond_resched_rcu();
7165092f 661 slot = radix_tree_iter_next(&iter);
6a15a370
VB
662 }
663 }
664
665 rcu_read_unlock();
666
667 return swapped << PAGE_SHIFT;
668}
669
48131e03
VB
670/*
671 * Determine (in bytes) how many of the shmem object's pages mapped by the
672 * given vma is swapped out.
673 *
674 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
675 * as long as the inode doesn't go away and racy results are not a problem.
676 */
677unsigned long shmem_swap_usage(struct vm_area_struct *vma)
678{
679 struct inode *inode = file_inode(vma->vm_file);
680 struct shmem_inode_info *info = SHMEM_I(inode);
681 struct address_space *mapping = inode->i_mapping;
682 unsigned long swapped;
683
684 /* Be careful as we don't hold info->lock */
685 swapped = READ_ONCE(info->swapped);
686
687 /*
688 * The easier cases are when the shmem object has nothing in swap, or
689 * the vma maps it whole. Then we can simply use the stats that we
690 * already track.
691 */
692 if (!swapped)
693 return 0;
694
695 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
696 return swapped << PAGE_SHIFT;
697
698 /* Here comes the more involved part */
699 return shmem_partial_swap_usage(mapping,
700 linear_page_index(vma, vma->vm_start),
701 linear_page_index(vma, vma->vm_end));
702}
703
24513264
HD
704/*
705 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
706 */
707void shmem_unlock_mapping(struct address_space *mapping)
708{
709 struct pagevec pvec;
710 pgoff_t indices[PAGEVEC_SIZE];
711 pgoff_t index = 0;
712
713 pagevec_init(&pvec, 0);
714 /*
715 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
716 */
717 while (!mapping_unevictable(mapping)) {
718 /*
719 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
720 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
721 */
0cd6144a
JW
722 pvec.nr = find_get_entries(mapping, index,
723 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
724 if (!pvec.nr)
725 break;
726 index = indices[pvec.nr - 1] + 1;
0cd6144a 727 pagevec_remove_exceptionals(&pvec);
24513264
HD
728 check_move_unevictable_pages(pvec.pages, pvec.nr);
729 pagevec_release(&pvec);
730 cond_resched();
731 }
7a5d0fbb
HD
732}
733
734/*
735 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 736 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 737 */
1635f6a7
HD
738static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
739 bool unfalloc)
1da177e4 740{
285b2c4f 741 struct address_space *mapping = inode->i_mapping;
1da177e4 742 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
743 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
744 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
745 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
746 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 747 struct pagevec pvec;
7a5d0fbb
HD
748 pgoff_t indices[PAGEVEC_SIZE];
749 long nr_swaps_freed = 0;
285b2c4f 750 pgoff_t index;
bda97eab
HD
751 int i;
752
83e4fa9c
HD
753 if (lend == -1)
754 end = -1; /* unsigned, so actually very big */
bda97eab
HD
755
756 pagevec_init(&pvec, 0);
757 index = start;
83e4fa9c 758 while (index < end) {
0cd6144a
JW
759 pvec.nr = find_get_entries(mapping, index,
760 min(end - index, (pgoff_t)PAGEVEC_SIZE),
761 pvec.pages, indices);
7a5d0fbb
HD
762 if (!pvec.nr)
763 break;
bda97eab
HD
764 for (i = 0; i < pagevec_count(&pvec); i++) {
765 struct page *page = pvec.pages[i];
766
7a5d0fbb 767 index = indices[i];
83e4fa9c 768 if (index >= end)
bda97eab
HD
769 break;
770
7a5d0fbb 771 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
772 if (unfalloc)
773 continue;
7a5d0fbb
HD
774 nr_swaps_freed += !shmem_free_swap(mapping,
775 index, page);
bda97eab 776 continue;
7a5d0fbb
HD
777 }
778
800d8c63
KS
779 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
780
7a5d0fbb 781 if (!trylock_page(page))
bda97eab 782 continue;
800d8c63
KS
783
784 if (PageTransTail(page)) {
785 /* Middle of THP: zero out the page */
786 clear_highpage(page);
787 unlock_page(page);
788 continue;
789 } else if (PageTransHuge(page)) {
790 if (index == round_down(end, HPAGE_PMD_NR)) {
791 /*
792 * Range ends in the middle of THP:
793 * zero out the page
794 */
795 clear_highpage(page);
796 unlock_page(page);
797 continue;
798 }
799 index += HPAGE_PMD_NR - 1;
800 i += HPAGE_PMD_NR - 1;
801 }
802
1635f6a7 803 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
804 VM_BUG_ON_PAGE(PageTail(page), page);
805 if (page_mapping(page) == mapping) {
309381fe 806 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
807 truncate_inode_page(mapping, page);
808 }
bda97eab 809 }
bda97eab
HD
810 unlock_page(page);
811 }
0cd6144a 812 pagevec_remove_exceptionals(&pvec);
24513264 813 pagevec_release(&pvec);
bda97eab
HD
814 cond_resched();
815 index++;
816 }
1da177e4 817
83e4fa9c 818 if (partial_start) {
bda97eab 819 struct page *page = NULL;
9e18eb29 820 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 821 if (page) {
09cbfeaf 822 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
823 if (start > end) {
824 top = partial_end;
825 partial_end = 0;
826 }
827 zero_user_segment(page, partial_start, top);
828 set_page_dirty(page);
829 unlock_page(page);
09cbfeaf 830 put_page(page);
83e4fa9c
HD
831 }
832 }
833 if (partial_end) {
834 struct page *page = NULL;
9e18eb29 835 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
836 if (page) {
837 zero_user_segment(page, 0, partial_end);
bda97eab
HD
838 set_page_dirty(page);
839 unlock_page(page);
09cbfeaf 840 put_page(page);
bda97eab
HD
841 }
842 }
83e4fa9c
HD
843 if (start >= end)
844 return;
bda97eab
HD
845
846 index = start;
b1a36650 847 while (index < end) {
bda97eab 848 cond_resched();
0cd6144a
JW
849
850 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 851 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 852 pvec.pages, indices);
7a5d0fbb 853 if (!pvec.nr) {
b1a36650
HD
854 /* If all gone or hole-punch or unfalloc, we're done */
855 if (index == start || end != -1)
bda97eab 856 break;
b1a36650 857 /* But if truncating, restart to make sure all gone */
bda97eab
HD
858 index = start;
859 continue;
860 }
bda97eab
HD
861 for (i = 0; i < pagevec_count(&pvec); i++) {
862 struct page *page = pvec.pages[i];
863
7a5d0fbb 864 index = indices[i];
83e4fa9c 865 if (index >= end)
bda97eab
HD
866 break;
867
7a5d0fbb 868 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
869 if (unfalloc)
870 continue;
b1a36650
HD
871 if (shmem_free_swap(mapping, index, page)) {
872 /* Swap was replaced by page: retry */
873 index--;
874 break;
875 }
876 nr_swaps_freed++;
7a5d0fbb
HD
877 continue;
878 }
879
bda97eab 880 lock_page(page);
800d8c63
KS
881
882 if (PageTransTail(page)) {
883 /* Middle of THP: zero out the page */
884 clear_highpage(page);
885 unlock_page(page);
886 /*
887 * Partial thp truncate due 'start' in middle
888 * of THP: don't need to look on these pages
889 * again on !pvec.nr restart.
890 */
891 if (index != round_down(end, HPAGE_PMD_NR))
892 start++;
893 continue;
894 } else if (PageTransHuge(page)) {
895 if (index == round_down(end, HPAGE_PMD_NR)) {
896 /*
897 * Range ends in the middle of THP:
898 * zero out the page
899 */
900 clear_highpage(page);
901 unlock_page(page);
902 continue;
903 }
904 index += HPAGE_PMD_NR - 1;
905 i += HPAGE_PMD_NR - 1;
906 }
907
1635f6a7 908 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
909 VM_BUG_ON_PAGE(PageTail(page), page);
910 if (page_mapping(page) == mapping) {
309381fe 911 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 912 truncate_inode_page(mapping, page);
b1a36650
HD
913 } else {
914 /* Page was replaced by swap: retry */
915 unlock_page(page);
916 index--;
917 break;
1635f6a7 918 }
7a5d0fbb 919 }
bda97eab
HD
920 unlock_page(page);
921 }
0cd6144a 922 pagevec_remove_exceptionals(&pvec);
24513264 923 pagevec_release(&pvec);
bda97eab
HD
924 index++;
925 }
94c1e62d 926
4595ef88 927 spin_lock_irq(&info->lock);
7a5d0fbb 928 info->swapped -= nr_swaps_freed;
1da177e4 929 shmem_recalc_inode(inode);
4595ef88 930 spin_unlock_irq(&info->lock);
1635f6a7 931}
1da177e4 932
1635f6a7
HD
933void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
934{
935 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 936 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 937}
94c1e62d 938EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 939
44a30220
YZ
940static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
941 struct kstat *stat)
942{
943 struct inode *inode = dentry->d_inode;
944 struct shmem_inode_info *info = SHMEM_I(inode);
945
d0424c42 946 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 947 spin_lock_irq(&info->lock);
d0424c42 948 shmem_recalc_inode(inode);
4595ef88 949 spin_unlock_irq(&info->lock);
d0424c42 950 }
44a30220 951 generic_fillattr(inode, stat);
44a30220
YZ
952 return 0;
953}
954
94c1e62d 955static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 956{
75c3cfa8 957 struct inode *inode = d_inode(dentry);
40e041a2 958 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 959 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
960 int error;
961
db78b877
CH
962 error = inode_change_ok(inode, attr);
963 if (error)
964 return error;
965
94c1e62d
HD
966 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
967 loff_t oldsize = inode->i_size;
968 loff_t newsize = attr->ia_size;
3889e6e7 969
40e041a2
DH
970 /* protected by i_mutex */
971 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
972 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
973 return -EPERM;
974
94c1e62d 975 if (newsize != oldsize) {
77142517
KK
976 error = shmem_reacct_size(SHMEM_I(inode)->flags,
977 oldsize, newsize);
978 if (error)
979 return error;
94c1e62d
HD
980 i_size_write(inode, newsize);
981 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
982 }
afa2db2f 983 if (newsize <= oldsize) {
94c1e62d 984 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
985 if (oldsize > holebegin)
986 unmap_mapping_range(inode->i_mapping,
987 holebegin, 0, 1);
988 if (info->alloced)
989 shmem_truncate_range(inode,
990 newsize, (loff_t)-1);
94c1e62d 991 /* unmap again to remove racily COWed private pages */
d0424c42
HD
992 if (oldsize > holebegin)
993 unmap_mapping_range(inode->i_mapping,
994 holebegin, 0, 1);
779750d2
KS
995
996 /*
997 * Part of the huge page can be beyond i_size: subject
998 * to shrink under memory pressure.
999 */
1000 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1001 spin_lock(&sbinfo->shrinklist_lock);
1002 if (list_empty(&info->shrinklist)) {
1003 list_add_tail(&info->shrinklist,
1004 &sbinfo->shrinklist);
1005 sbinfo->shrinklist_len++;
1006 }
1007 spin_unlock(&sbinfo->shrinklist_lock);
1008 }
94c1e62d 1009 }
1da177e4
LT
1010 }
1011
db78b877 1012 setattr_copy(inode, attr);
db78b877 1013 if (attr->ia_valid & ATTR_MODE)
feda821e 1014 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1015 return error;
1016}
1017
1f895f75 1018static void shmem_evict_inode(struct inode *inode)
1da177e4 1019{
1da177e4 1020 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1022
3889e6e7 1023 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1024 shmem_unacct_size(info->flags, inode->i_size);
1025 inode->i_size = 0;
3889e6e7 1026 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1027 if (!list_empty(&info->shrinklist)) {
1028 spin_lock(&sbinfo->shrinklist_lock);
1029 if (!list_empty(&info->shrinklist)) {
1030 list_del_init(&info->shrinklist);
1031 sbinfo->shrinklist_len--;
1032 }
1033 spin_unlock(&sbinfo->shrinklist_lock);
1034 }
1da177e4 1035 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1036 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1037 list_del_init(&info->swaplist);
cb5f7b9a 1038 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1039 }
3ed47db3 1040 }
b09e0fa4 1041
38f38657 1042 simple_xattrs_free(&info->xattrs);
0f3c42f5 1043 WARN_ON(inode->i_blocks);
5b04c689 1044 shmem_free_inode(inode->i_sb);
dbd5768f 1045 clear_inode(inode);
1da177e4
LT
1046}
1047
46f65ec1
HD
1048/*
1049 * If swap found in inode, free it and move page from swapcache to filecache.
1050 */
41ffe5d5 1051static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1052 swp_entry_t swap, struct page **pagep)
1da177e4 1053{
285b2c4f 1054 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1055 void *radswap;
41ffe5d5 1056 pgoff_t index;
bde05d1c
HD
1057 gfp_t gfp;
1058 int error = 0;
1da177e4 1059
46f65ec1 1060 radswap = swp_to_radix_entry(swap);
e504f3fd 1061 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 1062 if (index == -1)
00501b53 1063 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1064
1b1b32f2
HD
1065 /*
1066 * Move _head_ to start search for next from here.
1f895f75 1067 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1068 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1069 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1070 */
1071 if (shmem_swaplist.next != &info->swaplist)
1072 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1073
bde05d1c
HD
1074 gfp = mapping_gfp_mask(mapping);
1075 if (shmem_should_replace_page(*pagep, gfp)) {
1076 mutex_unlock(&shmem_swaplist_mutex);
1077 error = shmem_replace_page(pagep, gfp, info, index);
1078 mutex_lock(&shmem_swaplist_mutex);
1079 /*
1080 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1081 * allocation, but the inode might have been freed while we
1082 * dropped it: although a racing shmem_evict_inode() cannot
1083 * complete without emptying the radix_tree, our page lock
1084 * on this swapcache page is not enough to prevent that -
1085 * free_swap_and_cache() of our swap entry will only
1086 * trylock_page(), removing swap from radix_tree whatever.
1087 *
1088 * We must not proceed to shmem_add_to_page_cache() if the
1089 * inode has been freed, but of course we cannot rely on
1090 * inode or mapping or info to check that. However, we can
1091 * safely check if our swap entry is still in use (and here
1092 * it can't have got reused for another page): if it's still
1093 * in use, then the inode cannot have been freed yet, and we
1094 * can safely proceed (if it's no longer in use, that tells
1095 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1096 */
1097 if (!page_swapcount(*pagep))
1098 error = -ENOENT;
1099 }
1100
d13d1443 1101 /*
778dd893
HD
1102 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1103 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1104 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1105 */
bde05d1c
HD
1106 if (!error)
1107 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1108 radswap);
48f170fb 1109 if (error != -ENOMEM) {
46f65ec1
HD
1110 /*
1111 * Truncation and eviction use free_swap_and_cache(), which
1112 * only does trylock page: if we raced, best clean up here.
1113 */
bde05d1c
HD
1114 delete_from_swap_cache(*pagep);
1115 set_page_dirty(*pagep);
46f65ec1 1116 if (!error) {
4595ef88 1117 spin_lock_irq(&info->lock);
46f65ec1 1118 info->swapped--;
4595ef88 1119 spin_unlock_irq(&info->lock);
46f65ec1
HD
1120 swap_free(swap);
1121 }
1da177e4 1122 }
2e0e26c7 1123 return error;
1da177e4
LT
1124}
1125
1126/*
46f65ec1 1127 * Search through swapped inodes to find and replace swap by page.
1da177e4 1128 */
41ffe5d5 1129int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1130{
41ffe5d5 1131 struct list_head *this, *next;
1da177e4 1132 struct shmem_inode_info *info;
00501b53 1133 struct mem_cgroup *memcg;
bde05d1c
HD
1134 int error = 0;
1135
1136 /*
1137 * There's a faint possibility that swap page was replaced before
0142ef6c 1138 * caller locked it: caller will come back later with the right page.
bde05d1c 1139 */
0142ef6c 1140 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1141 goto out;
778dd893
HD
1142
1143 /*
1144 * Charge page using GFP_KERNEL while we can wait, before taking
1145 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1146 * Charged back to the user (not to caller) when swap account is used.
778dd893 1147 */
f627c2f5
KS
1148 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1149 false);
778dd893
HD
1150 if (error)
1151 goto out;
46f65ec1 1152 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1153 error = -EAGAIN;
1da177e4 1154
cb5f7b9a 1155 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1156 list_for_each_safe(this, next, &shmem_swaplist) {
1157 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1158 if (info->swapped)
00501b53 1159 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1160 else
1161 list_del_init(&info->swaplist);
cb5f7b9a 1162 cond_resched();
00501b53 1163 if (error != -EAGAIN)
778dd893 1164 break;
00501b53 1165 /* found nothing in this: move on to search the next */
1da177e4 1166 }
cb5f7b9a 1167 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1168
00501b53
JW
1169 if (error) {
1170 if (error != -ENOMEM)
1171 error = 0;
f627c2f5 1172 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1173 } else
f627c2f5 1174 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1175out:
aaa46865 1176 unlock_page(page);
09cbfeaf 1177 put_page(page);
778dd893 1178 return error;
1da177e4
LT
1179}
1180
1181/*
1182 * Move the page from the page cache to the swap cache.
1183 */
1184static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1185{
1186 struct shmem_inode_info *info;
1da177e4 1187 struct address_space *mapping;
1da177e4 1188 struct inode *inode;
6922c0c7
HD
1189 swp_entry_t swap;
1190 pgoff_t index;
1da177e4 1191
800d8c63 1192 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1193 BUG_ON(!PageLocked(page));
1da177e4
LT
1194 mapping = page->mapping;
1195 index = page->index;
1196 inode = mapping->host;
1197 info = SHMEM_I(inode);
1198 if (info->flags & VM_LOCKED)
1199 goto redirty;
d9fe526a 1200 if (!total_swap_pages)
1da177e4
LT
1201 goto redirty;
1202
d9fe526a 1203 /*
97b713ba
CH
1204 * Our capabilities prevent regular writeback or sync from ever calling
1205 * shmem_writepage; but a stacking filesystem might use ->writepage of
1206 * its underlying filesystem, in which case tmpfs should write out to
1207 * swap only in response to memory pressure, and not for the writeback
1208 * threads or sync.
d9fe526a 1209 */
48f170fb
HD
1210 if (!wbc->for_reclaim) {
1211 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1212 goto redirty;
1213 }
1635f6a7
HD
1214
1215 /*
1216 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1217 * value into swapfile.c, the only way we can correctly account for a
1218 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1219 *
1220 * That's okay for a page already fallocated earlier, but if we have
1221 * not yet completed the fallocation, then (a) we want to keep track
1222 * of this page in case we have to undo it, and (b) it may not be a
1223 * good idea to continue anyway, once we're pushing into swap. So
1224 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1225 */
1226 if (!PageUptodate(page)) {
1aac1400
HD
1227 if (inode->i_private) {
1228 struct shmem_falloc *shmem_falloc;
1229 spin_lock(&inode->i_lock);
1230 shmem_falloc = inode->i_private;
1231 if (shmem_falloc &&
8e205f77 1232 !shmem_falloc->waitq &&
1aac1400
HD
1233 index >= shmem_falloc->start &&
1234 index < shmem_falloc->next)
1235 shmem_falloc->nr_unswapped++;
1236 else
1237 shmem_falloc = NULL;
1238 spin_unlock(&inode->i_lock);
1239 if (shmem_falloc)
1240 goto redirty;
1241 }
1635f6a7
HD
1242 clear_highpage(page);
1243 flush_dcache_page(page);
1244 SetPageUptodate(page);
1245 }
1246
48f170fb
HD
1247 swap = get_swap_page();
1248 if (!swap.val)
1249 goto redirty;
d9fe526a 1250
37e84351
VD
1251 if (mem_cgroup_try_charge_swap(page, swap))
1252 goto free_swap;
1253
b1dea800
HD
1254 /*
1255 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1256 * if it's not already there. Do it now before the page is
1257 * moved to swap cache, when its pagelock no longer protects
b1dea800 1258 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1259 * we've incremented swapped, because shmem_unuse_inode() will
1260 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1261 */
48f170fb
HD
1262 mutex_lock(&shmem_swaplist_mutex);
1263 if (list_empty(&info->swaplist))
1264 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1265
48f170fb 1266 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1267 spin_lock_irq(&info->lock);
6922c0c7 1268 shmem_recalc_inode(inode);
267a4c76 1269 info->swapped++;
4595ef88 1270 spin_unlock_irq(&info->lock);
6922c0c7 1271
267a4c76
HD
1272 swap_shmem_alloc(swap);
1273 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1274
6922c0c7 1275 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1276 BUG_ON(page_mapped(page));
9fab5619 1277 swap_writepage(page, wbc);
1da177e4
LT
1278 return 0;
1279 }
1280
6922c0c7 1281 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1282free_swap:
0a31bc97 1283 swapcache_free(swap);
1da177e4
LT
1284redirty:
1285 set_page_dirty(page);
d9fe526a
HD
1286 if (wbc->for_reclaim)
1287 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1288 unlock_page(page);
1289 return 0;
1da177e4
LT
1290}
1291
75edd345 1292#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1293static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1294{
095f1fc4 1295 char buffer[64];
680d794b 1296
71fe804b 1297 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1298 return; /* show nothing */
680d794b 1299
a7a88b23 1300 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1301
1302 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1303}
71fe804b
LS
1304
1305static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1306{
1307 struct mempolicy *mpol = NULL;
1308 if (sbinfo->mpol) {
1309 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1310 mpol = sbinfo->mpol;
1311 mpol_get(mpol);
1312 spin_unlock(&sbinfo->stat_lock);
1313 }
1314 return mpol;
1315}
75edd345
HD
1316#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1317static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1318{
1319}
1320static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1321{
1322 return NULL;
1323}
1324#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1325#ifndef CONFIG_NUMA
1326#define vm_policy vm_private_data
1327#endif
680d794b 1328
800d8c63
KS
1329static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1330 struct shmem_inode_info *info, pgoff_t index)
1331{
1332 /* Create a pseudo vma that just contains the policy */
1333 vma->vm_start = 0;
1334 /* Bias interleave by inode number to distribute better across nodes */
1335 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1336 vma->vm_ops = NULL;
1337 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1338}
1339
1340static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1341{
1342 /* Drop reference taken by mpol_shared_policy_lookup() */
1343 mpol_cond_put(vma->vm_policy);
1344}
1345
41ffe5d5
HD
1346static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1347 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1348{
1da177e4 1349 struct vm_area_struct pvma;
18a2f371 1350 struct page *page;
52cd3b07 1351
800d8c63 1352 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1353 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1354 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1355
800d8c63
KS
1356 return page;
1357}
1358
1359static struct page *shmem_alloc_hugepage(gfp_t gfp,
1360 struct shmem_inode_info *info, pgoff_t index)
1361{
1362 struct vm_area_struct pvma;
1363 struct inode *inode = &info->vfs_inode;
1364 struct address_space *mapping = inode->i_mapping;
1365 pgoff_t idx, hindex = round_down(index, HPAGE_PMD_NR);
1366 void __rcu **results;
1367 struct page *page;
1368
e496cf3d 1369 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1370 return NULL;
1371
1372 rcu_read_lock();
1373 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1374 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1375 rcu_read_unlock();
1376 return NULL;
1377 }
1378 rcu_read_unlock();
18a2f371 1379
800d8c63
KS
1380 shmem_pseudo_vma_init(&pvma, info, hindex);
1381 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1382 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1383 shmem_pseudo_vma_destroy(&pvma);
1384 if (page)
1385 prep_transhuge_page(page);
18a2f371 1386 return page;
1da177e4
LT
1387}
1388
02098fea 1389static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1390 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1391{
1392 struct vm_area_struct pvma;
18a2f371 1393 struct page *page;
1da177e4 1394
800d8c63
KS
1395 shmem_pseudo_vma_init(&pvma, info, index);
1396 page = alloc_page_vma(gfp, &pvma, 0);
1397 shmem_pseudo_vma_destroy(&pvma);
1398
1399 return page;
1400}
1401
1402static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1403 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1404 pgoff_t index, bool huge)
1405{
1406 struct page *page;
1407 int nr;
1408 int err = -ENOSPC;
52cd3b07 1409
e496cf3d 1410 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1411 huge = false;
1412 nr = huge ? HPAGE_PMD_NR : 1;
1413
1414 if (shmem_acct_block(info->flags, nr))
1415 goto failed;
1416 if (sbinfo->max_blocks) {
1417 if (percpu_counter_compare(&sbinfo->used_blocks,
1418 sbinfo->max_blocks - nr) > 0)
1419 goto unacct;
1420 percpu_counter_add(&sbinfo->used_blocks, nr);
1421 }
1422
1423 if (huge)
1424 page = shmem_alloc_hugepage(gfp, info, index);
1425 else
1426 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1427 if (page) {
1428 __SetPageLocked(page);
1429 __SetPageSwapBacked(page);
800d8c63 1430 return page;
75edd345 1431 }
18a2f371 1432
800d8c63
KS
1433 err = -ENOMEM;
1434 if (sbinfo->max_blocks)
1435 percpu_counter_add(&sbinfo->used_blocks, -nr);
1436unacct:
1437 shmem_unacct_blocks(info->flags, nr);
1438failed:
1439 return ERR_PTR(err);
1da177e4 1440}
71fe804b 1441
bde05d1c
HD
1442/*
1443 * When a page is moved from swapcache to shmem filecache (either by the
1444 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1445 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1446 * ignorance of the mapping it belongs to. If that mapping has special
1447 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1448 * we may need to copy to a suitable page before moving to filecache.
1449 *
1450 * In a future release, this may well be extended to respect cpuset and
1451 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1452 * but for now it is a simple matter of zone.
1453 */
1454static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1455{
1456 return page_zonenum(page) > gfp_zone(gfp);
1457}
1458
1459static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1460 struct shmem_inode_info *info, pgoff_t index)
1461{
1462 struct page *oldpage, *newpage;
1463 struct address_space *swap_mapping;
1464 pgoff_t swap_index;
1465 int error;
1466
1467 oldpage = *pagep;
1468 swap_index = page_private(oldpage);
1469 swap_mapping = page_mapping(oldpage);
1470
1471 /*
1472 * We have arrived here because our zones are constrained, so don't
1473 * limit chance of success by further cpuset and node constraints.
1474 */
1475 gfp &= ~GFP_CONSTRAINT_MASK;
1476 newpage = shmem_alloc_page(gfp, info, index);
1477 if (!newpage)
1478 return -ENOMEM;
bde05d1c 1479
09cbfeaf 1480 get_page(newpage);
bde05d1c 1481 copy_highpage(newpage, oldpage);
0142ef6c 1482 flush_dcache_page(newpage);
bde05d1c 1483
bde05d1c 1484 SetPageUptodate(newpage);
bde05d1c 1485 set_page_private(newpage, swap_index);
bde05d1c
HD
1486 SetPageSwapCache(newpage);
1487
1488 /*
1489 * Our caller will very soon move newpage out of swapcache, but it's
1490 * a nice clean interface for us to replace oldpage by newpage there.
1491 */
1492 spin_lock_irq(&swap_mapping->tree_lock);
1493 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1494 newpage);
0142ef6c
HD
1495 if (!error) {
1496 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1497 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1498 }
bde05d1c 1499 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1500
0142ef6c
HD
1501 if (unlikely(error)) {
1502 /*
1503 * Is this possible? I think not, now that our callers check
1504 * both PageSwapCache and page_private after getting page lock;
1505 * but be defensive. Reverse old to newpage for clear and free.
1506 */
1507 oldpage = newpage;
1508 } else {
6a93ca8f 1509 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1510 lru_cache_add_anon(newpage);
1511 *pagep = newpage;
1512 }
bde05d1c
HD
1513
1514 ClearPageSwapCache(oldpage);
1515 set_page_private(oldpage, 0);
1516
1517 unlock_page(oldpage);
09cbfeaf
KS
1518 put_page(oldpage);
1519 put_page(oldpage);
0142ef6c 1520 return error;
bde05d1c
HD
1521}
1522
1da177e4 1523/*
68da9f05 1524 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1525 *
1526 * If we allocate a new one we do not mark it dirty. That's up to the
1527 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1528 * entry since a page cannot live in both the swap and page cache.
1529 *
1530 * fault_mm and fault_type are only supplied by shmem_fault:
1531 * otherwise they are NULL.
1da177e4 1532 */
41ffe5d5 1533static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
1534 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1535 struct mm_struct *fault_mm, int *fault_type)
1da177e4
LT
1536{
1537 struct address_space *mapping = inode->i_mapping;
54af6042 1538 struct shmem_inode_info *info;
1da177e4 1539 struct shmem_sb_info *sbinfo;
9e18eb29 1540 struct mm_struct *charge_mm;
00501b53 1541 struct mem_cgroup *memcg;
27ab7006 1542 struct page *page;
1da177e4 1543 swp_entry_t swap;
657e3038 1544 enum sgp_type sgp_huge = sgp;
800d8c63 1545 pgoff_t hindex = index;
1da177e4 1546 int error;
54af6042 1547 int once = 0;
1635f6a7 1548 int alloced = 0;
1da177e4 1549
09cbfeaf 1550 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1551 return -EFBIG;
657e3038
KS
1552 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1553 sgp = SGP_CACHE;
1da177e4 1554repeat:
54af6042 1555 swap.val = 0;
0cd6144a 1556 page = find_lock_entry(mapping, index);
54af6042
HD
1557 if (radix_tree_exceptional_entry(page)) {
1558 swap = radix_to_swp_entry(page);
1559 page = NULL;
1560 }
1561
75edd345 1562 if (sgp <= SGP_CACHE &&
09cbfeaf 1563 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1564 error = -EINVAL;
267a4c76 1565 goto unlock;
54af6042
HD
1566 }
1567
66d2f4d2
HD
1568 if (page && sgp == SGP_WRITE)
1569 mark_page_accessed(page);
1570
1635f6a7
HD
1571 /* fallocated page? */
1572 if (page && !PageUptodate(page)) {
1573 if (sgp != SGP_READ)
1574 goto clear;
1575 unlock_page(page);
09cbfeaf 1576 put_page(page);
1635f6a7
HD
1577 page = NULL;
1578 }
54af6042 1579 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1580 *pagep = page;
1581 return 0;
27ab7006
HD
1582 }
1583
1584 /*
54af6042
HD
1585 * Fast cache lookup did not find it:
1586 * bring it back from swap or allocate.
27ab7006 1587 */
54af6042
HD
1588 info = SHMEM_I(inode);
1589 sbinfo = SHMEM_SB(inode->i_sb);
9e18eb29 1590 charge_mm = fault_mm ? : current->mm;
1da177e4 1591
1da177e4
LT
1592 if (swap.val) {
1593 /* Look it up and read it in.. */
27ab7006
HD
1594 page = lookup_swap_cache(swap);
1595 if (!page) {
9e18eb29
ALC
1596 /* Or update major stats only when swapin succeeds?? */
1597 if (fault_type) {
68da9f05 1598 *fault_type |= VM_FAULT_MAJOR;
9e18eb29
ALC
1599 count_vm_event(PGMAJFAULT);
1600 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1601 }
1602 /* Here we actually start the io */
41ffe5d5 1603 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1604 if (!page) {
54af6042
HD
1605 error = -ENOMEM;
1606 goto failed;
1da177e4 1607 }
1da177e4
LT
1608 }
1609
1610 /* We have to do this with page locked to prevent races */
54af6042 1611 lock_page(page);
0142ef6c 1612 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1613 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1614 error = -EEXIST; /* try again */
d1899228 1615 goto unlock;
bde05d1c 1616 }
27ab7006 1617 if (!PageUptodate(page)) {
1da177e4 1618 error = -EIO;
54af6042 1619 goto failed;
1da177e4 1620 }
54af6042
HD
1621 wait_on_page_writeback(page);
1622
bde05d1c
HD
1623 if (shmem_should_replace_page(page, gfp)) {
1624 error = shmem_replace_page(&page, gfp, info, index);
1625 if (error)
1626 goto failed;
1da177e4 1627 }
27ab7006 1628
9e18eb29 1629 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1630 false);
d1899228 1631 if (!error) {
aa3b1895 1632 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1633 swp_to_radix_entry(swap));
215c02bc
HD
1634 /*
1635 * We already confirmed swap under page lock, and make
1636 * no memory allocation here, so usually no possibility
1637 * of error; but free_swap_and_cache() only trylocks a
1638 * page, so it is just possible that the entry has been
1639 * truncated or holepunched since swap was confirmed.
1640 * shmem_undo_range() will have done some of the
1641 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1642 * the rest.
215c02bc
HD
1643 * Reset swap.val? No, leave it so "failed" goes back to
1644 * "repeat": reading a hole and writing should succeed.
1645 */
00501b53 1646 if (error) {
f627c2f5 1647 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1648 delete_from_swap_cache(page);
00501b53 1649 }
d1899228 1650 }
54af6042
HD
1651 if (error)
1652 goto failed;
1653
f627c2f5 1654 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1655
4595ef88 1656 spin_lock_irq(&info->lock);
285b2c4f 1657 info->swapped--;
54af6042 1658 shmem_recalc_inode(inode);
4595ef88 1659 spin_unlock_irq(&info->lock);
54af6042 1660
66d2f4d2
HD
1661 if (sgp == SGP_WRITE)
1662 mark_page_accessed(page);
1663
54af6042 1664 delete_from_swap_cache(page);
27ab7006
HD
1665 set_page_dirty(page);
1666 swap_free(swap);
1667
54af6042 1668 } else {
800d8c63
KS
1669 /* shmem_symlink() */
1670 if (mapping->a_ops != &shmem_aops)
1671 goto alloc_nohuge;
657e3038 1672 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1673 goto alloc_nohuge;
1674 if (shmem_huge == SHMEM_HUGE_FORCE)
1675 goto alloc_huge;
1676 switch (sbinfo->huge) {
1677 loff_t i_size;
1678 pgoff_t off;
1679 case SHMEM_HUGE_NEVER:
1680 goto alloc_nohuge;
1681 case SHMEM_HUGE_WITHIN_SIZE:
1682 off = round_up(index, HPAGE_PMD_NR);
1683 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1684 if (i_size >= HPAGE_PMD_SIZE &&
1685 i_size >> PAGE_SHIFT >= off)
1686 goto alloc_huge;
1687 /* fallthrough */
1688 case SHMEM_HUGE_ADVISE:
657e3038
KS
1689 if (sgp_huge == SGP_HUGE)
1690 goto alloc_huge;
1691 /* TODO: implement fadvise() hints */
800d8c63 1692 goto alloc_nohuge;
54af6042 1693 }
1da177e4 1694
800d8c63
KS
1695alloc_huge:
1696 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1697 index, true);
1698 if (IS_ERR(page)) {
1699alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1700 index, false);
1da177e4 1701 }
800d8c63 1702 if (IS_ERR(page)) {
779750d2 1703 int retry = 5;
800d8c63
KS
1704 error = PTR_ERR(page);
1705 page = NULL;
779750d2
KS
1706 if (error != -ENOSPC)
1707 goto failed;
1708 /*
1709 * Try to reclaim some spece by splitting a huge page
1710 * beyond i_size on the filesystem.
1711 */
1712 while (retry--) {
1713 int ret;
1714 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1715 if (ret == SHRINK_STOP)
1716 break;
1717 if (ret)
1718 goto alloc_nohuge;
1719 }
800d8c63
KS
1720 goto failed;
1721 }
1722
1723 if (PageTransHuge(page))
1724 hindex = round_down(index, HPAGE_PMD_NR);
1725 else
1726 hindex = index;
1727
66d2f4d2 1728 if (sgp == SGP_WRITE)
eb39d618 1729 __SetPageReferenced(page);
66d2f4d2 1730
9e18eb29 1731 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1732 PageTransHuge(page));
54af6042 1733 if (error)
800d8c63
KS
1734 goto unacct;
1735 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1736 compound_order(page));
b065b432 1737 if (!error) {
800d8c63 1738 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1739 NULL);
b065b432
HD
1740 radix_tree_preload_end();
1741 }
1742 if (error) {
800d8c63
KS
1743 mem_cgroup_cancel_charge(page, memcg,
1744 PageTransHuge(page));
1745 goto unacct;
b065b432 1746 }
800d8c63
KS
1747 mem_cgroup_commit_charge(page, memcg, false,
1748 PageTransHuge(page));
54af6042
HD
1749 lru_cache_add_anon(page);
1750
4595ef88 1751 spin_lock_irq(&info->lock);
800d8c63
KS
1752 info->alloced += 1 << compound_order(page);
1753 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1754 shmem_recalc_inode(inode);
4595ef88 1755 spin_unlock_irq(&info->lock);
1635f6a7 1756 alloced = true;
54af6042 1757
779750d2
KS
1758 if (PageTransHuge(page) &&
1759 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1760 hindex + HPAGE_PMD_NR - 1) {
1761 /*
1762 * Part of the huge page is beyond i_size: subject
1763 * to shrink under memory pressure.
1764 */
1765 spin_lock(&sbinfo->shrinklist_lock);
1766 if (list_empty(&info->shrinklist)) {
1767 list_add_tail(&info->shrinklist,
1768 &sbinfo->shrinklist);
1769 sbinfo->shrinklist_len++;
1770 }
1771 spin_unlock(&sbinfo->shrinklist_lock);
1772 }
1773
ec9516fb 1774 /*
1635f6a7
HD
1775 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1776 */
1777 if (sgp == SGP_FALLOC)
1778 sgp = SGP_WRITE;
1779clear:
1780 /*
1781 * Let SGP_WRITE caller clear ends if write does not fill page;
1782 * but SGP_FALLOC on a page fallocated earlier must initialize
1783 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1784 */
800d8c63
KS
1785 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1786 struct page *head = compound_head(page);
1787 int i;
1788
1789 for (i = 0; i < (1 << compound_order(head)); i++) {
1790 clear_highpage(head + i);
1791 flush_dcache_page(head + i);
1792 }
1793 SetPageUptodate(head);
ec9516fb 1794 }
1da177e4 1795 }
bde05d1c 1796
54af6042 1797 /* Perhaps the file has been truncated since we checked */
75edd345 1798 if (sgp <= SGP_CACHE &&
09cbfeaf 1799 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1800 if (alloced) {
1801 ClearPageDirty(page);
1802 delete_from_page_cache(page);
4595ef88 1803 spin_lock_irq(&info->lock);
267a4c76 1804 shmem_recalc_inode(inode);
4595ef88 1805 spin_unlock_irq(&info->lock);
267a4c76 1806 }
54af6042 1807 error = -EINVAL;
267a4c76 1808 goto unlock;
e83c32e8 1809 }
800d8c63 1810 *pagep = page + index - hindex;
54af6042 1811 return 0;
1da177e4 1812
59a16ead 1813 /*
54af6042 1814 * Error recovery.
59a16ead 1815 */
54af6042 1816unacct:
800d8c63
KS
1817 if (sbinfo->max_blocks)
1818 percpu_counter_sub(&sbinfo->used_blocks,
1819 1 << compound_order(page));
1820 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1821
1822 if (PageTransHuge(page)) {
1823 unlock_page(page);
1824 put_page(page);
1825 goto alloc_nohuge;
1826 }
54af6042 1827failed:
267a4c76 1828 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1829 error = -EEXIST;
1830unlock:
27ab7006 1831 if (page) {
54af6042 1832 unlock_page(page);
09cbfeaf 1833 put_page(page);
54af6042
HD
1834 }
1835 if (error == -ENOSPC && !once++) {
1836 info = SHMEM_I(inode);
4595ef88 1837 spin_lock_irq(&info->lock);
54af6042 1838 shmem_recalc_inode(inode);
4595ef88 1839 spin_unlock_irq(&info->lock);
27ab7006 1840 goto repeat;
ff36b801 1841 }
d1899228 1842 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1843 goto repeat;
1844 return error;
1da177e4
LT
1845}
1846
d0217ac0 1847static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1848{
496ad9aa 1849 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1850 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1851 enum sgp_type sgp;
1da177e4 1852 int error;
68da9f05 1853 int ret = VM_FAULT_LOCKED;
1da177e4 1854
f00cdc6d
HD
1855 /*
1856 * Trinity finds that probing a hole which tmpfs is punching can
1857 * prevent the hole-punch from ever completing: which in turn
1858 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1859 * faulting pages into the hole while it's being punched. Although
1860 * shmem_undo_range() does remove the additions, it may be unable to
1861 * keep up, as each new page needs its own unmap_mapping_range() call,
1862 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1863 *
1864 * It does not matter if we sometimes reach this check just before the
1865 * hole-punch begins, so that one fault then races with the punch:
1866 * we just need to make racing faults a rare case.
1867 *
1868 * The implementation below would be much simpler if we just used a
1869 * standard mutex or completion: but we cannot take i_mutex in fault,
1870 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1871 */
1872 if (unlikely(inode->i_private)) {
1873 struct shmem_falloc *shmem_falloc;
1874
1875 spin_lock(&inode->i_lock);
1876 shmem_falloc = inode->i_private;
8e205f77
HD
1877 if (shmem_falloc &&
1878 shmem_falloc->waitq &&
1879 vmf->pgoff >= shmem_falloc->start &&
1880 vmf->pgoff < shmem_falloc->next) {
1881 wait_queue_head_t *shmem_falloc_waitq;
1882 DEFINE_WAIT(shmem_fault_wait);
1883
1884 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1885 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1886 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1887 /* It's polite to up mmap_sem if we can */
f00cdc6d 1888 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1889 ret = VM_FAULT_RETRY;
f00cdc6d 1890 }
8e205f77
HD
1891
1892 shmem_falloc_waitq = shmem_falloc->waitq;
1893 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1894 TASK_UNINTERRUPTIBLE);
1895 spin_unlock(&inode->i_lock);
1896 schedule();
1897
1898 /*
1899 * shmem_falloc_waitq points into the shmem_fallocate()
1900 * stack of the hole-punching task: shmem_falloc_waitq
1901 * is usually invalid by the time we reach here, but
1902 * finish_wait() does not dereference it in that case;
1903 * though i_lock needed lest racing with wake_up_all().
1904 */
1905 spin_lock(&inode->i_lock);
1906 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1907 spin_unlock(&inode->i_lock);
1908 return ret;
f00cdc6d 1909 }
8e205f77 1910 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1911 }
1912
657e3038
KS
1913 sgp = SGP_CACHE;
1914 if (vma->vm_flags & VM_HUGEPAGE)
1915 sgp = SGP_HUGE;
1916 else if (vma->vm_flags & VM_NOHUGEPAGE)
1917 sgp = SGP_NOHUGE;
1918
1919 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
9e18eb29 1920 gfp, vma->vm_mm, &ret);
d0217ac0
NP
1921 if (error)
1922 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1923 return ret;
1da177e4
LT
1924}
1925
c01d5b30
HD
1926unsigned long shmem_get_unmapped_area(struct file *file,
1927 unsigned long uaddr, unsigned long len,
1928 unsigned long pgoff, unsigned long flags)
1929{
1930 unsigned long (*get_area)(struct file *,
1931 unsigned long, unsigned long, unsigned long, unsigned long);
1932 unsigned long addr;
1933 unsigned long offset;
1934 unsigned long inflated_len;
1935 unsigned long inflated_addr;
1936 unsigned long inflated_offset;
1937
1938 if (len > TASK_SIZE)
1939 return -ENOMEM;
1940
1941 get_area = current->mm->get_unmapped_area;
1942 addr = get_area(file, uaddr, len, pgoff, flags);
1943
e496cf3d 1944 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
1945 return addr;
1946 if (IS_ERR_VALUE(addr))
1947 return addr;
1948 if (addr & ~PAGE_MASK)
1949 return addr;
1950 if (addr > TASK_SIZE - len)
1951 return addr;
1952
1953 if (shmem_huge == SHMEM_HUGE_DENY)
1954 return addr;
1955 if (len < HPAGE_PMD_SIZE)
1956 return addr;
1957 if (flags & MAP_FIXED)
1958 return addr;
1959 /*
1960 * Our priority is to support MAP_SHARED mapped hugely;
1961 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1962 * But if caller specified an address hint, respect that as before.
1963 */
1964 if (uaddr)
1965 return addr;
1966
1967 if (shmem_huge != SHMEM_HUGE_FORCE) {
1968 struct super_block *sb;
1969
1970 if (file) {
1971 VM_BUG_ON(file->f_op != &shmem_file_operations);
1972 sb = file_inode(file)->i_sb;
1973 } else {
1974 /*
1975 * Called directly from mm/mmap.c, or drivers/char/mem.c
1976 * for "/dev/zero", to create a shared anonymous object.
1977 */
1978 if (IS_ERR(shm_mnt))
1979 return addr;
1980 sb = shm_mnt->mnt_sb;
1981 }
1982 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1983 return addr;
1984 }
1985
1986 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1987 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1988 return addr;
1989 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1990 return addr;
1991
1992 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1993 if (inflated_len > TASK_SIZE)
1994 return addr;
1995 if (inflated_len < len)
1996 return addr;
1997
1998 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1999 if (IS_ERR_VALUE(inflated_addr))
2000 return addr;
2001 if (inflated_addr & ~PAGE_MASK)
2002 return addr;
2003
2004 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2005 inflated_addr += offset - inflated_offset;
2006 if (inflated_offset > offset)
2007 inflated_addr += HPAGE_PMD_SIZE;
2008
2009 if (inflated_addr > TASK_SIZE - len)
2010 return addr;
2011 return inflated_addr;
2012}
2013
1da177e4 2014#ifdef CONFIG_NUMA
41ffe5d5 2015static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2016{
496ad9aa 2017 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2018 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2019}
2020
d8dc74f2
AB
2021static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2022 unsigned long addr)
1da177e4 2023{
496ad9aa 2024 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2025 pgoff_t index;
1da177e4 2026
41ffe5d5
HD
2027 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2028 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2029}
2030#endif
2031
2032int shmem_lock(struct file *file, int lock, struct user_struct *user)
2033{
496ad9aa 2034 struct inode *inode = file_inode(file);
1da177e4
LT
2035 struct shmem_inode_info *info = SHMEM_I(inode);
2036 int retval = -ENOMEM;
2037
4595ef88 2038 spin_lock_irq(&info->lock);
1da177e4
LT
2039 if (lock && !(info->flags & VM_LOCKED)) {
2040 if (!user_shm_lock(inode->i_size, user))
2041 goto out_nomem;
2042 info->flags |= VM_LOCKED;
89e004ea 2043 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2044 }
2045 if (!lock && (info->flags & VM_LOCKED) && user) {
2046 user_shm_unlock(inode->i_size, user);
2047 info->flags &= ~VM_LOCKED;
89e004ea 2048 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2049 }
2050 retval = 0;
89e004ea 2051
1da177e4 2052out_nomem:
4595ef88 2053 spin_unlock_irq(&info->lock);
1da177e4
LT
2054 return retval;
2055}
2056
9b83a6a8 2057static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2058{
2059 file_accessed(file);
2060 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2061 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2062 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2063 (vma->vm_end & HPAGE_PMD_MASK)) {
2064 khugepaged_enter(vma, vma->vm_flags);
2065 }
1da177e4
LT
2066 return 0;
2067}
2068
454abafe 2069static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2070 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2071{
2072 struct inode *inode;
2073 struct shmem_inode_info *info;
2074 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2075
5b04c689
PE
2076 if (shmem_reserve_inode(sb))
2077 return NULL;
1da177e4
LT
2078
2079 inode = new_inode(sb);
2080 if (inode) {
85fe4025 2081 inode->i_ino = get_next_ino();
454abafe 2082 inode_init_owner(inode, dir, mode);
1da177e4 2083 inode->i_blocks = 0;
1da177e4 2084 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 2085 inode->i_generation = get_seconds();
1da177e4
LT
2086 info = SHMEM_I(inode);
2087 memset(info, 0, (char *)inode - (char *)info);
2088 spin_lock_init(&info->lock);
40e041a2 2089 info->seals = F_SEAL_SEAL;
0b0a0806 2090 info->flags = flags & VM_NORESERVE;
779750d2 2091 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2092 INIT_LIST_HEAD(&info->swaplist);
38f38657 2093 simple_xattrs_init(&info->xattrs);
72c04902 2094 cache_no_acl(inode);
1da177e4
LT
2095
2096 switch (mode & S_IFMT) {
2097 default:
39f0247d 2098 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2099 init_special_inode(inode, mode, dev);
2100 break;
2101 case S_IFREG:
14fcc23f 2102 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2103 inode->i_op = &shmem_inode_operations;
2104 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2105 mpol_shared_policy_init(&info->policy,
2106 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2107 break;
2108 case S_IFDIR:
d8c76e6f 2109 inc_nlink(inode);
1da177e4
LT
2110 /* Some things misbehave if size == 0 on a directory */
2111 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2112 inode->i_op = &shmem_dir_inode_operations;
2113 inode->i_fop = &simple_dir_operations;
2114 break;
2115 case S_IFLNK:
2116 /*
2117 * Must not load anything in the rbtree,
2118 * mpol_free_shared_policy will not be called.
2119 */
71fe804b 2120 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2121 break;
2122 }
5b04c689
PE
2123 } else
2124 shmem_free_inode(sb);
1da177e4
LT
2125 return inode;
2126}
2127
0cd6144a
JW
2128bool shmem_mapping(struct address_space *mapping)
2129{
f0774d88
SL
2130 if (!mapping->host)
2131 return false;
2132
97b713ba 2133 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
2134}
2135
1da177e4 2136#ifdef CONFIG_TMPFS
92e1d5be 2137static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2138static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2139
6d9d88d0
JS
2140#ifdef CONFIG_TMPFS_XATTR
2141static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2142#else
2143#define shmem_initxattrs NULL
2144#endif
2145
1da177e4 2146static int
800d15a5
NP
2147shmem_write_begin(struct file *file, struct address_space *mapping,
2148 loff_t pos, unsigned len, unsigned flags,
2149 struct page **pagep, void **fsdata)
1da177e4 2150{
800d15a5 2151 struct inode *inode = mapping->host;
40e041a2 2152 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2153 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2154
2155 /* i_mutex is held by caller */
2156 if (unlikely(info->seals)) {
2157 if (info->seals & F_SEAL_WRITE)
2158 return -EPERM;
2159 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2160 return -EPERM;
2161 }
2162
9e18eb29 2163 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2164}
2165
2166static int
2167shmem_write_end(struct file *file, struct address_space *mapping,
2168 loff_t pos, unsigned len, unsigned copied,
2169 struct page *page, void *fsdata)
2170{
2171 struct inode *inode = mapping->host;
2172
d3602444
HD
2173 if (pos + copied > inode->i_size)
2174 i_size_write(inode, pos + copied);
2175
ec9516fb 2176 if (!PageUptodate(page)) {
800d8c63
KS
2177 struct page *head = compound_head(page);
2178 if (PageTransCompound(page)) {
2179 int i;
2180
2181 for (i = 0; i < HPAGE_PMD_NR; i++) {
2182 if (head + i == page)
2183 continue;
2184 clear_highpage(head + i);
2185 flush_dcache_page(head + i);
2186 }
2187 }
09cbfeaf
KS
2188 if (copied < PAGE_SIZE) {
2189 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2190 zero_user_segments(page, 0, from,
09cbfeaf 2191 from + copied, PAGE_SIZE);
ec9516fb 2192 }
800d8c63 2193 SetPageUptodate(head);
ec9516fb 2194 }
800d15a5 2195 set_page_dirty(page);
6746aff7 2196 unlock_page(page);
09cbfeaf 2197 put_page(page);
800d15a5 2198
800d15a5 2199 return copied;
1da177e4
LT
2200}
2201
2ba5bbed 2202static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2203{
6e58e79d
AV
2204 struct file *file = iocb->ki_filp;
2205 struct inode *inode = file_inode(file);
1da177e4 2206 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2207 pgoff_t index;
2208 unsigned long offset;
a0ee5ec5 2209 enum sgp_type sgp = SGP_READ;
f7c1d074 2210 int error = 0;
cb66a7a1 2211 ssize_t retval = 0;
6e58e79d 2212 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2213
2214 /*
2215 * Might this read be for a stacking filesystem? Then when reading
2216 * holes of a sparse file, we actually need to allocate those pages,
2217 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2218 */
777eda2c 2219 if (!iter_is_iovec(to))
75edd345 2220 sgp = SGP_CACHE;
1da177e4 2221
09cbfeaf
KS
2222 index = *ppos >> PAGE_SHIFT;
2223 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2224
2225 for (;;) {
2226 struct page *page = NULL;
41ffe5d5
HD
2227 pgoff_t end_index;
2228 unsigned long nr, ret;
1da177e4
LT
2229 loff_t i_size = i_size_read(inode);
2230
09cbfeaf 2231 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2232 if (index > end_index)
2233 break;
2234 if (index == end_index) {
09cbfeaf 2235 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2236 if (nr <= offset)
2237 break;
2238 }
2239
9e18eb29 2240 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2241 if (error) {
2242 if (error == -EINVAL)
2243 error = 0;
1da177e4
LT
2244 break;
2245 }
75edd345
HD
2246 if (page) {
2247 if (sgp == SGP_CACHE)
2248 set_page_dirty(page);
d3602444 2249 unlock_page(page);
75edd345 2250 }
1da177e4
LT
2251
2252 /*
2253 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2254 * are called without i_mutex protection against truncate
1da177e4 2255 */
09cbfeaf 2256 nr = PAGE_SIZE;
1da177e4 2257 i_size = i_size_read(inode);
09cbfeaf 2258 end_index = i_size >> PAGE_SHIFT;
1da177e4 2259 if (index == end_index) {
09cbfeaf 2260 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2261 if (nr <= offset) {
2262 if (page)
09cbfeaf 2263 put_page(page);
1da177e4
LT
2264 break;
2265 }
2266 }
2267 nr -= offset;
2268
2269 if (page) {
2270 /*
2271 * If users can be writing to this page using arbitrary
2272 * virtual addresses, take care about potential aliasing
2273 * before reading the page on the kernel side.
2274 */
2275 if (mapping_writably_mapped(mapping))
2276 flush_dcache_page(page);
2277 /*
2278 * Mark the page accessed if we read the beginning.
2279 */
2280 if (!offset)
2281 mark_page_accessed(page);
b5810039 2282 } else {
1da177e4 2283 page = ZERO_PAGE(0);
09cbfeaf 2284 get_page(page);
b5810039 2285 }
1da177e4
LT
2286
2287 /*
2288 * Ok, we have the page, and it's up-to-date, so
2289 * now we can copy it to user space...
1da177e4 2290 */
2ba5bbed 2291 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2292 retval += ret;
1da177e4 2293 offset += ret;
09cbfeaf
KS
2294 index += offset >> PAGE_SHIFT;
2295 offset &= ~PAGE_MASK;
1da177e4 2296
09cbfeaf 2297 put_page(page);
2ba5bbed 2298 if (!iov_iter_count(to))
1da177e4 2299 break;
6e58e79d
AV
2300 if (ret < nr) {
2301 error = -EFAULT;
2302 break;
2303 }
1da177e4
LT
2304 cond_resched();
2305 }
2306
09cbfeaf 2307 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2308 file_accessed(file);
2309 return retval ? retval : error;
1da177e4
LT
2310}
2311
708e3508
HD
2312static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2313 struct pipe_inode_info *pipe, size_t len,
2314 unsigned int flags)
2315{
2316 struct address_space *mapping = in->f_mapping;
71f0e07a 2317 struct inode *inode = mapping->host;
708e3508
HD
2318 unsigned int loff, nr_pages, req_pages;
2319 struct page *pages[PIPE_DEF_BUFFERS];
2320 struct partial_page partial[PIPE_DEF_BUFFERS];
2321 struct page *page;
2322 pgoff_t index, end_index;
2323 loff_t isize, left;
2324 int error, page_nr;
2325 struct splice_pipe_desc spd = {
2326 .pages = pages,
2327 .partial = partial,
047fe360 2328 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
2329 .flags = flags,
2330 .ops = &page_cache_pipe_buf_ops,
2331 .spd_release = spd_release_page,
2332 };
2333
71f0e07a 2334 isize = i_size_read(inode);
708e3508
HD
2335 if (unlikely(*ppos >= isize))
2336 return 0;
2337
2338 left = isize - *ppos;
2339 if (unlikely(left < len))
2340 len = left;
2341
2342 if (splice_grow_spd(pipe, &spd))
2343 return -ENOMEM;
2344
09cbfeaf
KS
2345 index = *ppos >> PAGE_SHIFT;
2346 loff = *ppos & ~PAGE_MASK;
2347 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
a786c06d 2348 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 2349
708e3508
HD
2350 spd.nr_pages = find_get_pages_contig(mapping, index,
2351 nr_pages, spd.pages);
2352 index += spd.nr_pages;
708e3508 2353 error = 0;
708e3508 2354
71f0e07a 2355 while (spd.nr_pages < nr_pages) {
9e18eb29 2356 error = shmem_getpage(inode, index, &page, SGP_CACHE);
71f0e07a
HD
2357 if (error)
2358 break;
2359 unlock_page(page);
708e3508
HD
2360 spd.pages[spd.nr_pages++] = page;
2361 index++;
2362 }
2363
09cbfeaf 2364 index = *ppos >> PAGE_SHIFT;
708e3508
HD
2365 nr_pages = spd.nr_pages;
2366 spd.nr_pages = 0;
71f0e07a 2367
708e3508
HD
2368 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2369 unsigned int this_len;
2370
2371 if (!len)
2372 break;
2373
09cbfeaf 2374 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
708e3508
HD
2375 page = spd.pages[page_nr];
2376
71f0e07a 2377 if (!PageUptodate(page) || page->mapping != mapping) {
9e18eb29 2378 error = shmem_getpage(inode, index, &page, SGP_CACHE);
71f0e07a 2379 if (error)
708e3508 2380 break;
71f0e07a 2381 unlock_page(page);
09cbfeaf 2382 put_page(spd.pages[page_nr]);
71f0e07a 2383 spd.pages[page_nr] = page;
708e3508 2384 }
71f0e07a
HD
2385
2386 isize = i_size_read(inode);
09cbfeaf 2387 end_index = (isize - 1) >> PAGE_SHIFT;
708e3508
HD
2388 if (unlikely(!isize || index > end_index))
2389 break;
2390
708e3508
HD
2391 if (end_index == index) {
2392 unsigned int plen;
2393
09cbfeaf 2394 plen = ((isize - 1) & ~PAGE_MASK) + 1;
708e3508
HD
2395 if (plen <= loff)
2396 break;
2397
708e3508
HD
2398 this_len = min(this_len, plen - loff);
2399 len = this_len;
2400 }
2401
2402 spd.partial[page_nr].offset = loff;
2403 spd.partial[page_nr].len = this_len;
2404 len -= this_len;
2405 loff = 0;
2406 spd.nr_pages++;
2407 index++;
2408 }
2409
708e3508 2410 while (page_nr < nr_pages)
09cbfeaf 2411 put_page(spd.pages[page_nr++]);
708e3508
HD
2412
2413 if (spd.nr_pages)
2414 error = splice_to_pipe(pipe, &spd);
2415
047fe360 2416 splice_shrink_spd(&spd);
708e3508
HD
2417
2418 if (error > 0) {
2419 *ppos += error;
2420 file_accessed(in);
2421 }
2422 return error;
2423}
2424
220f2ac9
HD
2425/*
2426 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2427 */
2428static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2429 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2430{
2431 struct page *page;
2432 struct pagevec pvec;
2433 pgoff_t indices[PAGEVEC_SIZE];
2434 bool done = false;
2435 int i;
2436
2437 pagevec_init(&pvec, 0);
2438 pvec.nr = 1; /* start small: we may be there already */
2439 while (!done) {
0cd6144a 2440 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2441 pvec.nr, pvec.pages, indices);
2442 if (!pvec.nr) {
965c8e59 2443 if (whence == SEEK_DATA)
220f2ac9
HD
2444 index = end;
2445 break;
2446 }
2447 for (i = 0; i < pvec.nr; i++, index++) {
2448 if (index < indices[i]) {
965c8e59 2449 if (whence == SEEK_HOLE) {
220f2ac9
HD
2450 done = true;
2451 break;
2452 }
2453 index = indices[i];
2454 }
2455 page = pvec.pages[i];
2456 if (page && !radix_tree_exceptional_entry(page)) {
2457 if (!PageUptodate(page))
2458 page = NULL;
2459 }
2460 if (index >= end ||
965c8e59
AM
2461 (page && whence == SEEK_DATA) ||
2462 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2463 done = true;
2464 break;
2465 }
2466 }
0cd6144a 2467 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2468 pagevec_release(&pvec);
2469 pvec.nr = PAGEVEC_SIZE;
2470 cond_resched();
2471 }
2472 return index;
2473}
2474
965c8e59 2475static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2476{
2477 struct address_space *mapping = file->f_mapping;
2478 struct inode *inode = mapping->host;
2479 pgoff_t start, end;
2480 loff_t new_offset;
2481
965c8e59
AM
2482 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2483 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2484 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2485 inode_lock(inode);
220f2ac9
HD
2486 /* We're holding i_mutex so we can access i_size directly */
2487
2488 if (offset < 0)
2489 offset = -EINVAL;
2490 else if (offset >= inode->i_size)
2491 offset = -ENXIO;
2492 else {
09cbfeaf
KS
2493 start = offset >> PAGE_SHIFT;
2494 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2495 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2496 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2497 if (new_offset > offset) {
2498 if (new_offset < inode->i_size)
2499 offset = new_offset;
965c8e59 2500 else if (whence == SEEK_DATA)
220f2ac9
HD
2501 offset = -ENXIO;
2502 else
2503 offset = inode->i_size;
2504 }
2505 }
2506
387aae6f
HD
2507 if (offset >= 0)
2508 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2509 inode_unlock(inode);
220f2ac9
HD
2510 return offset;
2511}
2512
05f65b5c
DH
2513/*
2514 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2515 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2516 */
2517#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2518#define LAST_SCAN 4 /* about 150ms max */
2519
2520static void shmem_tag_pins(struct address_space *mapping)
2521{
2522 struct radix_tree_iter iter;
2523 void **slot;
2524 pgoff_t start;
2525 struct page *page;
2526
2527 lru_add_drain();
2528 start = 0;
2529 rcu_read_lock();
2530
05f65b5c
DH
2531 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2532 page = radix_tree_deref_slot(slot);
2533 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2534 if (radix_tree_deref_retry(page)) {
2535 slot = radix_tree_iter_retry(&iter);
2536 continue;
2537 }
05f65b5c
DH
2538 } else if (page_count(page) - page_mapcount(page) > 1) {
2539 spin_lock_irq(&mapping->tree_lock);
2540 radix_tree_tag_set(&mapping->page_tree, iter.index,
2541 SHMEM_TAG_PINNED);
2542 spin_unlock_irq(&mapping->tree_lock);
2543 }
2544
2545 if (need_resched()) {
2546 cond_resched_rcu();
7165092f 2547 slot = radix_tree_iter_next(&iter);
05f65b5c
DH
2548 }
2549 }
2550 rcu_read_unlock();
2551}
2552
2553/*
2554 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2555 * via get_user_pages(), drivers might have some pending I/O without any active
2556 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2557 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2558 * them to be dropped.
2559 * The caller must guarantee that no new user will acquire writable references
2560 * to those pages to avoid races.
2561 */
40e041a2
DH
2562static int shmem_wait_for_pins(struct address_space *mapping)
2563{
05f65b5c
DH
2564 struct radix_tree_iter iter;
2565 void **slot;
2566 pgoff_t start;
2567 struct page *page;
2568 int error, scan;
2569
2570 shmem_tag_pins(mapping);
2571
2572 error = 0;
2573 for (scan = 0; scan <= LAST_SCAN; scan++) {
2574 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2575 break;
2576
2577 if (!scan)
2578 lru_add_drain_all();
2579 else if (schedule_timeout_killable((HZ << scan) / 200))
2580 scan = LAST_SCAN;
2581
2582 start = 0;
2583 rcu_read_lock();
05f65b5c
DH
2584 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2585 start, SHMEM_TAG_PINNED) {
2586
2587 page = radix_tree_deref_slot(slot);
2588 if (radix_tree_exception(page)) {
2cf938aa
MW
2589 if (radix_tree_deref_retry(page)) {
2590 slot = radix_tree_iter_retry(&iter);
2591 continue;
2592 }
05f65b5c
DH
2593
2594 page = NULL;
2595 }
2596
2597 if (page &&
2598 page_count(page) - page_mapcount(page) != 1) {
2599 if (scan < LAST_SCAN)
2600 goto continue_resched;
2601
2602 /*
2603 * On the last scan, we clean up all those tags
2604 * we inserted; but make a note that we still
2605 * found pages pinned.
2606 */
2607 error = -EBUSY;
2608 }
2609
2610 spin_lock_irq(&mapping->tree_lock);
2611 radix_tree_tag_clear(&mapping->page_tree,
2612 iter.index, SHMEM_TAG_PINNED);
2613 spin_unlock_irq(&mapping->tree_lock);
2614continue_resched:
2615 if (need_resched()) {
2616 cond_resched_rcu();
7165092f 2617 slot = radix_tree_iter_next(&iter);
05f65b5c
DH
2618 }
2619 }
2620 rcu_read_unlock();
2621 }
2622
2623 return error;
40e041a2
DH
2624}
2625
2626#define F_ALL_SEALS (F_SEAL_SEAL | \
2627 F_SEAL_SHRINK | \
2628 F_SEAL_GROW | \
2629 F_SEAL_WRITE)
2630
2631int shmem_add_seals(struct file *file, unsigned int seals)
2632{
2633 struct inode *inode = file_inode(file);
2634 struct shmem_inode_info *info = SHMEM_I(inode);
2635 int error;
2636
2637 /*
2638 * SEALING
2639 * Sealing allows multiple parties to share a shmem-file but restrict
2640 * access to a specific subset of file operations. Seals can only be
2641 * added, but never removed. This way, mutually untrusted parties can
2642 * share common memory regions with a well-defined policy. A malicious
2643 * peer can thus never perform unwanted operations on a shared object.
2644 *
2645 * Seals are only supported on special shmem-files and always affect
2646 * the whole underlying inode. Once a seal is set, it may prevent some
2647 * kinds of access to the file. Currently, the following seals are
2648 * defined:
2649 * SEAL_SEAL: Prevent further seals from being set on this file
2650 * SEAL_SHRINK: Prevent the file from shrinking
2651 * SEAL_GROW: Prevent the file from growing
2652 * SEAL_WRITE: Prevent write access to the file
2653 *
2654 * As we don't require any trust relationship between two parties, we
2655 * must prevent seals from being removed. Therefore, sealing a file
2656 * only adds a given set of seals to the file, it never touches
2657 * existing seals. Furthermore, the "setting seals"-operation can be
2658 * sealed itself, which basically prevents any further seal from being
2659 * added.
2660 *
2661 * Semantics of sealing are only defined on volatile files. Only
2662 * anonymous shmem files support sealing. More importantly, seals are
2663 * never written to disk. Therefore, there's no plan to support it on
2664 * other file types.
2665 */
2666
2667 if (file->f_op != &shmem_file_operations)
2668 return -EINVAL;
2669 if (!(file->f_mode & FMODE_WRITE))
2670 return -EPERM;
2671 if (seals & ~(unsigned int)F_ALL_SEALS)
2672 return -EINVAL;
2673
5955102c 2674 inode_lock(inode);
40e041a2
DH
2675
2676 if (info->seals & F_SEAL_SEAL) {
2677 error = -EPERM;
2678 goto unlock;
2679 }
2680
2681 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2682 error = mapping_deny_writable(file->f_mapping);
2683 if (error)
2684 goto unlock;
2685
2686 error = shmem_wait_for_pins(file->f_mapping);
2687 if (error) {
2688 mapping_allow_writable(file->f_mapping);
2689 goto unlock;
2690 }
2691 }
2692
2693 info->seals |= seals;
2694 error = 0;
2695
2696unlock:
5955102c 2697 inode_unlock(inode);
40e041a2
DH
2698 return error;
2699}
2700EXPORT_SYMBOL_GPL(shmem_add_seals);
2701
2702int shmem_get_seals(struct file *file)
2703{
2704 if (file->f_op != &shmem_file_operations)
2705 return -EINVAL;
2706
2707 return SHMEM_I(file_inode(file))->seals;
2708}
2709EXPORT_SYMBOL_GPL(shmem_get_seals);
2710
2711long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2712{
2713 long error;
2714
2715 switch (cmd) {
2716 case F_ADD_SEALS:
2717 /* disallow upper 32bit */
2718 if (arg > UINT_MAX)
2719 return -EINVAL;
2720
2721 error = shmem_add_seals(file, arg);
2722 break;
2723 case F_GET_SEALS:
2724 error = shmem_get_seals(file);
2725 break;
2726 default:
2727 error = -EINVAL;
2728 break;
2729 }
2730
2731 return error;
2732}
2733
83e4fa9c
HD
2734static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735 loff_t len)
2736{
496ad9aa 2737 struct inode *inode = file_inode(file);
e2d12e22 2738 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2739 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2740 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2741 pgoff_t start, index, end;
2742 int error;
83e4fa9c 2743
13ace4d0
HD
2744 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745 return -EOPNOTSUPP;
2746
5955102c 2747 inode_lock(inode);
83e4fa9c
HD
2748
2749 if (mode & FALLOC_FL_PUNCH_HOLE) {
2750 struct address_space *mapping = file->f_mapping;
2751 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2753 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2754
40e041a2
DH
2755 /* protected by i_mutex */
2756 if (info->seals & F_SEAL_WRITE) {
2757 error = -EPERM;
2758 goto out;
2759 }
2760
8e205f77 2761 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2762 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2763 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764 spin_lock(&inode->i_lock);
2765 inode->i_private = &shmem_falloc;
2766 spin_unlock(&inode->i_lock);
2767
83e4fa9c
HD
2768 if ((u64)unmap_end > (u64)unmap_start)
2769 unmap_mapping_range(mapping, unmap_start,
2770 1 + unmap_end - unmap_start, 0);
2771 shmem_truncate_range(inode, offset, offset + len - 1);
2772 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2773
2774 spin_lock(&inode->i_lock);
2775 inode->i_private = NULL;
2776 wake_up_all(&shmem_falloc_waitq);
2777 spin_unlock(&inode->i_lock);
83e4fa9c 2778 error = 0;
8e205f77 2779 goto out;
e2d12e22
HD
2780 }
2781
2782 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2783 error = inode_newsize_ok(inode, offset + len);
2784 if (error)
2785 goto out;
2786
40e041a2
DH
2787 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2788 error = -EPERM;
2789 goto out;
2790 }
2791
09cbfeaf
KS
2792 start = offset >> PAGE_SHIFT;
2793 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2794 /* Try to avoid a swapstorm if len is impossible to satisfy */
2795 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2796 error = -ENOSPC;
2797 goto out;
83e4fa9c
HD
2798 }
2799
8e205f77 2800 shmem_falloc.waitq = NULL;
1aac1400
HD
2801 shmem_falloc.start = start;
2802 shmem_falloc.next = start;
2803 shmem_falloc.nr_falloced = 0;
2804 shmem_falloc.nr_unswapped = 0;
2805 spin_lock(&inode->i_lock);
2806 inode->i_private = &shmem_falloc;
2807 spin_unlock(&inode->i_lock);
2808
e2d12e22
HD
2809 for (index = start; index < end; index++) {
2810 struct page *page;
2811
2812 /*
2813 * Good, the fallocate(2) manpage permits EINTR: we may have
2814 * been interrupted because we are using up too much memory.
2815 */
2816 if (signal_pending(current))
2817 error = -EINTR;
1aac1400
HD
2818 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2819 error = -ENOMEM;
e2d12e22 2820 else
9e18eb29 2821 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2822 if (error) {
1635f6a7 2823 /* Remove the !PageUptodate pages we added */
7f556567
HD
2824 if (index > start) {
2825 shmem_undo_range(inode,
2826 (loff_t)start << PAGE_SHIFT,
2827 ((loff_t)index << PAGE_SHIFT) - 1, true);
2828 }
1aac1400 2829 goto undone;
e2d12e22
HD
2830 }
2831
1aac1400
HD
2832 /*
2833 * Inform shmem_writepage() how far we have reached.
2834 * No need for lock or barrier: we have the page lock.
2835 */
2836 shmem_falloc.next++;
2837 if (!PageUptodate(page))
2838 shmem_falloc.nr_falloced++;
2839
e2d12e22 2840 /*
1635f6a7
HD
2841 * If !PageUptodate, leave it that way so that freeable pages
2842 * can be recognized if we need to rollback on error later.
2843 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2844 * than free the pages we are allocating (and SGP_CACHE pages
2845 * might still be clean: we now need to mark those dirty too).
2846 */
2847 set_page_dirty(page);
2848 unlock_page(page);
09cbfeaf 2849 put_page(page);
e2d12e22
HD
2850 cond_resched();
2851 }
2852
2853 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2854 i_size_write(inode, offset + len);
e2d12e22 2855 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2856undone:
2857 spin_lock(&inode->i_lock);
2858 inode->i_private = NULL;
2859 spin_unlock(&inode->i_lock);
e2d12e22 2860out:
5955102c 2861 inode_unlock(inode);
83e4fa9c
HD
2862 return error;
2863}
2864
726c3342 2865static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2866{
726c3342 2867 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2868
2869 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2870 buf->f_bsize = PAGE_SIZE;
1da177e4 2871 buf->f_namelen = NAME_MAX;
0edd73b3 2872 if (sbinfo->max_blocks) {
1da177e4 2873 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2874 buf->f_bavail =
2875 buf->f_bfree = sbinfo->max_blocks -
2876 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2877 }
2878 if (sbinfo->max_inodes) {
1da177e4
LT
2879 buf->f_files = sbinfo->max_inodes;
2880 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2881 }
2882 /* else leave those fields 0 like simple_statfs */
2883 return 0;
2884}
2885
2886/*
2887 * File creation. Allocate an inode, and we're done..
2888 */
2889static int
1a67aafb 2890shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2891{
0b0a0806 2892 struct inode *inode;
1da177e4
LT
2893 int error = -ENOSPC;
2894
454abafe 2895 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2896 if (inode) {
feda821e
CH
2897 error = simple_acl_create(dir, inode);
2898 if (error)
2899 goto out_iput;
2a7dba39 2900 error = security_inode_init_security(inode, dir,
9d8f13ba 2901 &dentry->d_name,
6d9d88d0 2902 shmem_initxattrs, NULL);
feda821e
CH
2903 if (error && error != -EOPNOTSUPP)
2904 goto out_iput;
37ec43cd 2905
718deb6b 2906 error = 0;
1da177e4
LT
2907 dir->i_size += BOGO_DIRENT_SIZE;
2908 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2909 d_instantiate(dentry, inode);
2910 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2911 }
2912 return error;
feda821e
CH
2913out_iput:
2914 iput(inode);
2915 return error;
1da177e4
LT
2916}
2917
60545d0d
AV
2918static int
2919shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2920{
2921 struct inode *inode;
2922 int error = -ENOSPC;
2923
2924 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2925 if (inode) {
2926 error = security_inode_init_security(inode, dir,
2927 NULL,
2928 shmem_initxattrs, NULL);
feda821e
CH
2929 if (error && error != -EOPNOTSUPP)
2930 goto out_iput;
2931 error = simple_acl_create(dir, inode);
2932 if (error)
2933 goto out_iput;
60545d0d
AV
2934 d_tmpfile(dentry, inode);
2935 }
2936 return error;
feda821e
CH
2937out_iput:
2938 iput(inode);
2939 return error;
60545d0d
AV
2940}
2941
18bb1db3 2942static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2943{
2944 int error;
2945
2946 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2947 return error;
d8c76e6f 2948 inc_nlink(dir);
1da177e4
LT
2949 return 0;
2950}
2951
4acdaf27 2952static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2953 bool excl)
1da177e4
LT
2954{
2955 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2956}
2957
2958/*
2959 * Link a file..
2960 */
2961static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2962{
75c3cfa8 2963 struct inode *inode = d_inode(old_dentry);
5b04c689 2964 int ret;
1da177e4
LT
2965
2966 /*
2967 * No ordinary (disk based) filesystem counts links as inodes;
2968 * but each new link needs a new dentry, pinning lowmem, and
2969 * tmpfs dentries cannot be pruned until they are unlinked.
2970 */
5b04c689
PE
2971 ret = shmem_reserve_inode(inode->i_sb);
2972 if (ret)
2973 goto out;
1da177e4
LT
2974
2975 dir->i_size += BOGO_DIRENT_SIZE;
2976 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2977 inc_nlink(inode);
7de9c6ee 2978 ihold(inode); /* New dentry reference */
1da177e4
LT
2979 dget(dentry); /* Extra pinning count for the created dentry */
2980 d_instantiate(dentry, inode);
5b04c689
PE
2981out:
2982 return ret;
1da177e4
LT
2983}
2984
2985static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2986{
75c3cfa8 2987 struct inode *inode = d_inode(dentry);
1da177e4 2988
5b04c689
PE
2989 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2990 shmem_free_inode(inode->i_sb);
1da177e4
LT
2991
2992 dir->i_size -= BOGO_DIRENT_SIZE;
2993 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2994 drop_nlink(inode);
1da177e4
LT
2995 dput(dentry); /* Undo the count from "create" - this does all the work */
2996 return 0;
2997}
2998
2999static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3000{
3001 if (!simple_empty(dentry))
3002 return -ENOTEMPTY;
3003
75c3cfa8 3004 drop_nlink(d_inode(dentry));
9a53c3a7 3005 drop_nlink(dir);
1da177e4
LT
3006 return shmem_unlink(dir, dentry);
3007}
3008
37456771
MS
3009static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3010{
e36cb0b8
DH
3011 bool old_is_dir = d_is_dir(old_dentry);
3012 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3013
3014 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3015 if (old_is_dir) {
3016 drop_nlink(old_dir);
3017 inc_nlink(new_dir);
3018 } else {
3019 drop_nlink(new_dir);
3020 inc_nlink(old_dir);
3021 }
3022 }
3023 old_dir->i_ctime = old_dir->i_mtime =
3024 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
3025 d_inode(old_dentry)->i_ctime =
3026 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
3027
3028 return 0;
3029}
3030
46fdb794
MS
3031static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3032{
3033 struct dentry *whiteout;
3034 int error;
3035
3036 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3037 if (!whiteout)
3038 return -ENOMEM;
3039
3040 error = shmem_mknod(old_dir, whiteout,
3041 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3042 dput(whiteout);
3043 if (error)
3044 return error;
3045
3046 /*
3047 * Cheat and hash the whiteout while the old dentry is still in
3048 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3049 *
3050 * d_lookup() will consistently find one of them at this point,
3051 * not sure which one, but that isn't even important.
3052 */
3053 d_rehash(whiteout);
3054 return 0;
3055}
3056
1da177e4
LT
3057/*
3058 * The VFS layer already does all the dentry stuff for rename,
3059 * we just have to decrement the usage count for the target if
3060 * it exists so that the VFS layer correctly free's it when it
3061 * gets overwritten.
3062 */
3b69ff51 3063static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3064{
75c3cfa8 3065 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3066 int they_are_dirs = S_ISDIR(inode->i_mode);
3067
46fdb794 3068 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3069 return -EINVAL;
3070
37456771
MS
3071 if (flags & RENAME_EXCHANGE)
3072 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3073
1da177e4
LT
3074 if (!simple_empty(new_dentry))
3075 return -ENOTEMPTY;
3076
46fdb794
MS
3077 if (flags & RENAME_WHITEOUT) {
3078 int error;
3079
3080 error = shmem_whiteout(old_dir, old_dentry);
3081 if (error)
3082 return error;
3083 }
3084
75c3cfa8 3085 if (d_really_is_positive(new_dentry)) {
1da177e4 3086 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3087 if (they_are_dirs) {
75c3cfa8 3088 drop_nlink(d_inode(new_dentry));
9a53c3a7 3089 drop_nlink(old_dir);
b928095b 3090 }
1da177e4 3091 } else if (they_are_dirs) {
9a53c3a7 3092 drop_nlink(old_dir);
d8c76e6f 3093 inc_nlink(new_dir);
1da177e4
LT
3094 }
3095
3096 old_dir->i_size -= BOGO_DIRENT_SIZE;
3097 new_dir->i_size += BOGO_DIRENT_SIZE;
3098 old_dir->i_ctime = old_dir->i_mtime =
3099 new_dir->i_ctime = new_dir->i_mtime =
3100 inode->i_ctime = CURRENT_TIME;
3101 return 0;
3102}
3103
3104static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3105{
3106 int error;
3107 int len;
3108 struct inode *inode;
9276aad6 3109 struct page *page;
1da177e4
LT
3110 struct shmem_inode_info *info;
3111
3112 len = strlen(symname) + 1;
09cbfeaf 3113 if (len > PAGE_SIZE)
1da177e4
LT
3114 return -ENAMETOOLONG;
3115
454abafe 3116 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3117 if (!inode)
3118 return -ENOSPC;
3119
9d8f13ba 3120 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3121 shmem_initxattrs, NULL);
570bc1c2
SS
3122 if (error) {
3123 if (error != -EOPNOTSUPP) {
3124 iput(inode);
3125 return error;
3126 }
3127 error = 0;
3128 }
3129
1da177e4
LT
3130 info = SHMEM_I(inode);
3131 inode->i_size = len-1;
69f07ec9 3132 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3133 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3134 if (!inode->i_link) {
69f07ec9
HD
3135 iput(inode);
3136 return -ENOMEM;
3137 }
3138 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3139 } else {
e8ecde25 3140 inode_nohighmem(inode);
9e18eb29 3141 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3142 if (error) {
3143 iput(inode);
3144 return error;
3145 }
14fcc23f 3146 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3147 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3148 memcpy(page_address(page), symname, len);
ec9516fb 3149 SetPageUptodate(page);
1da177e4 3150 set_page_dirty(page);
6746aff7 3151 unlock_page(page);
09cbfeaf 3152 put_page(page);
1da177e4 3153 }
1da177e4
LT
3154 dir->i_size += BOGO_DIRENT_SIZE;
3155 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
3156 d_instantiate(dentry, inode);
3157 dget(dentry);
3158 return 0;
3159}
3160
fceef393 3161static void shmem_put_link(void *arg)
1da177e4 3162{
fceef393
AV
3163 mark_page_accessed(arg);
3164 put_page(arg);
1da177e4
LT
3165}
3166
6b255391 3167static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3168 struct inode *inode,
3169 struct delayed_call *done)
1da177e4 3170{
1da177e4 3171 struct page *page = NULL;
6b255391 3172 int error;
6a6c9904
AV
3173 if (!dentry) {
3174 page = find_get_page(inode->i_mapping, 0);
3175 if (!page)
3176 return ERR_PTR(-ECHILD);
3177 if (!PageUptodate(page)) {
3178 put_page(page);
3179 return ERR_PTR(-ECHILD);
3180 }
3181 } else {
9e18eb29 3182 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3183 if (error)
3184 return ERR_PTR(error);
3185 unlock_page(page);
3186 }
fceef393 3187 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3188 return page_address(page);
1da177e4
LT
3189}
3190
b09e0fa4 3191#ifdef CONFIG_TMPFS_XATTR
46711810 3192/*
b09e0fa4
EP
3193 * Superblocks without xattr inode operations may get some security.* xattr
3194 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3195 * like ACLs, we also need to implement the security.* handlers at
3196 * filesystem level, though.
3197 */
3198
6d9d88d0
JS
3199/*
3200 * Callback for security_inode_init_security() for acquiring xattrs.
3201 */
3202static int shmem_initxattrs(struct inode *inode,
3203 const struct xattr *xattr_array,
3204 void *fs_info)
3205{
3206 struct shmem_inode_info *info = SHMEM_I(inode);
3207 const struct xattr *xattr;
38f38657 3208 struct simple_xattr *new_xattr;
6d9d88d0
JS
3209 size_t len;
3210
3211 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3212 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3213 if (!new_xattr)
3214 return -ENOMEM;
3215
3216 len = strlen(xattr->name) + 1;
3217 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3218 GFP_KERNEL);
3219 if (!new_xattr->name) {
3220 kfree(new_xattr);
3221 return -ENOMEM;
3222 }
3223
3224 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3225 XATTR_SECURITY_PREFIX_LEN);
3226 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3227 xattr->name, len);
3228
38f38657 3229 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3230 }
3231
3232 return 0;
3233}
3234
aa7c5241 3235static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3236 struct dentry *unused, struct inode *inode,
3237 const char *name, void *buffer, size_t size)
b09e0fa4 3238{
b296821a 3239 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3240
aa7c5241 3241 name = xattr_full_name(handler, name);
38f38657 3242 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3243}
3244
aa7c5241 3245static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3246 struct dentry *unused, struct inode *inode,
3247 const char *name, const void *value,
3248 size_t size, int flags)
b09e0fa4 3249{
59301226 3250 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3251
aa7c5241 3252 name = xattr_full_name(handler, name);
38f38657 3253 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3254}
3255
aa7c5241
AG
3256static const struct xattr_handler shmem_security_xattr_handler = {
3257 .prefix = XATTR_SECURITY_PREFIX,
3258 .get = shmem_xattr_handler_get,
3259 .set = shmem_xattr_handler_set,
3260};
b09e0fa4 3261
aa7c5241
AG
3262static const struct xattr_handler shmem_trusted_xattr_handler = {
3263 .prefix = XATTR_TRUSTED_PREFIX,
3264 .get = shmem_xattr_handler_get,
3265 .set = shmem_xattr_handler_set,
3266};
b09e0fa4 3267
aa7c5241
AG
3268static const struct xattr_handler *shmem_xattr_handlers[] = {
3269#ifdef CONFIG_TMPFS_POSIX_ACL
3270 &posix_acl_access_xattr_handler,
3271 &posix_acl_default_xattr_handler,
3272#endif
3273 &shmem_security_xattr_handler,
3274 &shmem_trusted_xattr_handler,
3275 NULL
3276};
b09e0fa4
EP
3277
3278static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3279{
75c3cfa8 3280 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3281 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3282}
3283#endif /* CONFIG_TMPFS_XATTR */
3284
69f07ec9 3285static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 3286 .readlink = generic_readlink,
6b255391 3287 .get_link = simple_get_link,
b09e0fa4 3288#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3289 .setxattr = generic_setxattr,
3290 .getxattr = generic_getxattr,
b09e0fa4 3291 .listxattr = shmem_listxattr,
aa7c5241 3292 .removexattr = generic_removexattr,
b09e0fa4
EP
3293#endif
3294};
3295
3296static const struct inode_operations shmem_symlink_inode_operations = {
3297 .readlink = generic_readlink,
6b255391 3298 .get_link = shmem_get_link,
b09e0fa4 3299#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3300 .setxattr = generic_setxattr,
3301 .getxattr = generic_getxattr,
b09e0fa4 3302 .listxattr = shmem_listxattr,
aa7c5241 3303 .removexattr = generic_removexattr,
39f0247d 3304#endif
b09e0fa4 3305};
39f0247d 3306
91828a40
DG
3307static struct dentry *shmem_get_parent(struct dentry *child)
3308{
3309 return ERR_PTR(-ESTALE);
3310}
3311
3312static int shmem_match(struct inode *ino, void *vfh)
3313{
3314 __u32 *fh = vfh;
3315 __u64 inum = fh[2];
3316 inum = (inum << 32) | fh[1];
3317 return ino->i_ino == inum && fh[0] == ino->i_generation;
3318}
3319
480b116c
CH
3320static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3321 struct fid *fid, int fh_len, int fh_type)
91828a40 3322{
91828a40 3323 struct inode *inode;
480b116c 3324 struct dentry *dentry = NULL;
35c2a7f4 3325 u64 inum;
480b116c
CH
3326
3327 if (fh_len < 3)
3328 return NULL;
91828a40 3329
35c2a7f4
HD
3330 inum = fid->raw[2];
3331 inum = (inum << 32) | fid->raw[1];
3332
480b116c
CH
3333 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3334 shmem_match, fid->raw);
91828a40 3335 if (inode) {
480b116c 3336 dentry = d_find_alias(inode);
91828a40
DG
3337 iput(inode);
3338 }
3339
480b116c 3340 return dentry;
91828a40
DG
3341}
3342
b0b0382b
AV
3343static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3344 struct inode *parent)
91828a40 3345{
5fe0c237
AK
3346 if (*len < 3) {
3347 *len = 3;
94e07a75 3348 return FILEID_INVALID;
5fe0c237 3349 }
91828a40 3350
1d3382cb 3351 if (inode_unhashed(inode)) {
91828a40
DG
3352 /* Unfortunately insert_inode_hash is not idempotent,
3353 * so as we hash inodes here rather than at creation
3354 * time, we need a lock to ensure we only try
3355 * to do it once
3356 */
3357 static DEFINE_SPINLOCK(lock);
3358 spin_lock(&lock);
1d3382cb 3359 if (inode_unhashed(inode))
91828a40
DG
3360 __insert_inode_hash(inode,
3361 inode->i_ino + inode->i_generation);
3362 spin_unlock(&lock);
3363 }
3364
3365 fh[0] = inode->i_generation;
3366 fh[1] = inode->i_ino;
3367 fh[2] = ((__u64)inode->i_ino) >> 32;
3368
3369 *len = 3;
3370 return 1;
3371}
3372
39655164 3373static const struct export_operations shmem_export_ops = {
91828a40 3374 .get_parent = shmem_get_parent,
91828a40 3375 .encode_fh = shmem_encode_fh,
480b116c 3376 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3377};
3378
680d794b
AM
3379static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3380 bool remount)
1da177e4
LT
3381{
3382 char *this_char, *value, *rest;
49cd0a5c 3383 struct mempolicy *mpol = NULL;
8751e039
EB
3384 uid_t uid;
3385 gid_t gid;
1da177e4 3386
b00dc3ad
HD
3387 while (options != NULL) {
3388 this_char = options;
3389 for (;;) {
3390 /*
3391 * NUL-terminate this option: unfortunately,
3392 * mount options form a comma-separated list,
3393 * but mpol's nodelist may also contain commas.
3394 */
3395 options = strchr(options, ',');
3396 if (options == NULL)
3397 break;
3398 options++;
3399 if (!isdigit(*options)) {
3400 options[-1] = '\0';
3401 break;
3402 }
3403 }
1da177e4
LT
3404 if (!*this_char)
3405 continue;
3406 if ((value = strchr(this_char,'=')) != NULL) {
3407 *value++ = 0;
3408 } else {
1170532b
JP
3409 pr_err("tmpfs: No value for mount option '%s'\n",
3410 this_char);
49cd0a5c 3411 goto error;
1da177e4
LT
3412 }
3413
3414 if (!strcmp(this_char,"size")) {
3415 unsigned long long size;
3416 size = memparse(value,&rest);
3417 if (*rest == '%') {
3418 size <<= PAGE_SHIFT;
3419 size *= totalram_pages;
3420 do_div(size, 100);
3421 rest++;
3422 }
3423 if (*rest)
3424 goto bad_val;
680d794b 3425 sbinfo->max_blocks =
09cbfeaf 3426 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3427 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3428 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3429 if (*rest)
3430 goto bad_val;
3431 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3432 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3433 if (*rest)
3434 goto bad_val;
3435 } else if (!strcmp(this_char,"mode")) {
680d794b 3436 if (remount)
1da177e4 3437 continue;
680d794b 3438 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3439 if (*rest)
3440 goto bad_val;
3441 } else if (!strcmp(this_char,"uid")) {
680d794b 3442 if (remount)
1da177e4 3443 continue;
8751e039 3444 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3445 if (*rest)
3446 goto bad_val;
8751e039
EB
3447 sbinfo->uid = make_kuid(current_user_ns(), uid);
3448 if (!uid_valid(sbinfo->uid))
3449 goto bad_val;
1da177e4 3450 } else if (!strcmp(this_char,"gid")) {
680d794b 3451 if (remount)
1da177e4 3452 continue;
8751e039 3453 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3454 if (*rest)
3455 goto bad_val;
8751e039
EB
3456 sbinfo->gid = make_kgid(current_user_ns(), gid);
3457 if (!gid_valid(sbinfo->gid))
3458 goto bad_val;
e496cf3d 3459#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3460 } else if (!strcmp(this_char, "huge")) {
3461 int huge;
3462 huge = shmem_parse_huge(value);
3463 if (huge < 0)
3464 goto bad_val;
3465 if (!has_transparent_hugepage() &&
3466 huge != SHMEM_HUGE_NEVER)
3467 goto bad_val;
3468 sbinfo->huge = huge;
3469#endif
3470#ifdef CONFIG_NUMA
7339ff83 3471 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3472 mpol_put(mpol);
3473 mpol = NULL;
3474 if (mpol_parse_str(value, &mpol))
7339ff83 3475 goto bad_val;
5a6e75f8 3476#endif
1da177e4 3477 } else {
1170532b 3478 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3479 goto error;
1da177e4
LT
3480 }
3481 }
49cd0a5c 3482 sbinfo->mpol = mpol;
1da177e4
LT
3483 return 0;
3484
3485bad_val:
1170532b 3486 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3487 value, this_char);
49cd0a5c
GT
3488error:
3489 mpol_put(mpol);
1da177e4
LT
3490 return 1;
3491
3492}
3493
3494static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3495{
3496 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3497 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3498 unsigned long inodes;
3499 int error = -EINVAL;
3500
5f00110f 3501 config.mpol = NULL;
680d794b 3502 if (shmem_parse_options(data, &config, true))
0edd73b3 3503 return error;
1da177e4 3504
0edd73b3 3505 spin_lock(&sbinfo->stat_lock);
0edd73b3 3506 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3507 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3508 goto out;
680d794b 3509 if (config.max_inodes < inodes)
0edd73b3
HD
3510 goto out;
3511 /*
54af6042 3512 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3513 * but we must separately disallow unlimited->limited, because
3514 * in that case we have no record of how much is already in use.
3515 */
680d794b 3516 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3517 goto out;
680d794b 3518 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3519 goto out;
3520
3521 error = 0;
5a6e75f8 3522 sbinfo->huge = config.huge;
680d794b 3523 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3524 sbinfo->max_inodes = config.max_inodes;
3525 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3526
5f00110f
GT
3527 /*
3528 * Preserve previous mempolicy unless mpol remount option was specified.
3529 */
3530 if (config.mpol) {
3531 mpol_put(sbinfo->mpol);
3532 sbinfo->mpol = config.mpol; /* transfers initial ref */
3533 }
0edd73b3
HD
3534out:
3535 spin_unlock(&sbinfo->stat_lock);
3536 return error;
1da177e4 3537}
680d794b 3538
34c80b1d 3539static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3540{
34c80b1d 3541 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3542
3543 if (sbinfo->max_blocks != shmem_default_max_blocks())
3544 seq_printf(seq, ",size=%luk",
09cbfeaf 3545 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3546 if (sbinfo->max_inodes != shmem_default_max_inodes())
3547 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3548 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3549 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3550 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3551 seq_printf(seq, ",uid=%u",
3552 from_kuid_munged(&init_user_ns, sbinfo->uid));
3553 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3554 seq_printf(seq, ",gid=%u",
3555 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3556#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3557 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3558 if (sbinfo->huge)
3559 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3560#endif
71fe804b 3561 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3562 return 0;
3563}
9183df25
DH
3564
3565#define MFD_NAME_PREFIX "memfd:"
3566#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3567#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3568
3569#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3570
3571SYSCALL_DEFINE2(memfd_create,
3572 const char __user *, uname,
3573 unsigned int, flags)
3574{
3575 struct shmem_inode_info *info;
3576 struct file *file;
3577 int fd, error;
3578 char *name;
3579 long len;
3580
3581 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3582 return -EINVAL;
3583
3584 /* length includes terminating zero */
3585 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3586 if (len <= 0)
3587 return -EFAULT;
3588 if (len > MFD_NAME_MAX_LEN + 1)
3589 return -EINVAL;
3590
3591 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3592 if (!name)
3593 return -ENOMEM;
3594
3595 strcpy(name, MFD_NAME_PREFIX);
3596 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3597 error = -EFAULT;
3598 goto err_name;
3599 }
3600
3601 /* terminating-zero may have changed after strnlen_user() returned */
3602 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3603 error = -EFAULT;
3604 goto err_name;
3605 }
3606
3607 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3608 if (fd < 0) {
3609 error = fd;
3610 goto err_name;
3611 }
3612
3613 file = shmem_file_setup(name, 0, VM_NORESERVE);
3614 if (IS_ERR(file)) {
3615 error = PTR_ERR(file);
3616 goto err_fd;
3617 }
3618 info = SHMEM_I(file_inode(file));
3619 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3620 file->f_flags |= O_RDWR | O_LARGEFILE;
3621 if (flags & MFD_ALLOW_SEALING)
3622 info->seals &= ~F_SEAL_SEAL;
3623
3624 fd_install(fd, file);
3625 kfree(name);
3626 return fd;
3627
3628err_fd:
3629 put_unused_fd(fd);
3630err_name:
3631 kfree(name);
3632 return error;
3633}
3634
680d794b 3635#endif /* CONFIG_TMPFS */
1da177e4
LT
3636
3637static void shmem_put_super(struct super_block *sb)
3638{
602586a8
HD
3639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3640
3641 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3642 mpol_put(sbinfo->mpol);
602586a8 3643 kfree(sbinfo);
1da177e4
LT
3644 sb->s_fs_info = NULL;
3645}
3646
2b2af54a 3647int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3648{
3649 struct inode *inode;
0edd73b3 3650 struct shmem_sb_info *sbinfo;
680d794b
AM
3651 int err = -ENOMEM;
3652
3653 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3654 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3655 L1_CACHE_BYTES), GFP_KERNEL);
3656 if (!sbinfo)
3657 return -ENOMEM;
3658
680d794b 3659 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3660 sbinfo->uid = current_fsuid();
3661 sbinfo->gid = current_fsgid();
680d794b 3662 sb->s_fs_info = sbinfo;
1da177e4 3663
0edd73b3 3664#ifdef CONFIG_TMPFS
1da177e4
LT
3665 /*
3666 * Per default we only allow half of the physical ram per
3667 * tmpfs instance, limiting inodes to one per page of lowmem;
3668 * but the internal instance is left unlimited.
3669 */
ca4e0519 3670 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3671 sbinfo->max_blocks = shmem_default_max_blocks();
3672 sbinfo->max_inodes = shmem_default_max_inodes();
3673 if (shmem_parse_options(data, sbinfo, false)) {
3674 err = -EINVAL;
3675 goto failed;
3676 }
ca4e0519
AV
3677 } else {
3678 sb->s_flags |= MS_NOUSER;
1da177e4 3679 }
91828a40 3680 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3681 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3682#else
3683 sb->s_flags |= MS_NOUSER;
3684#endif
3685
0edd73b3 3686 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3687 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3688 goto failed;
680d794b 3689 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3690 spin_lock_init(&sbinfo->shrinklist_lock);
3691 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3692
285b2c4f 3693 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3694 sb->s_blocksize = PAGE_SIZE;
3695 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3696 sb->s_magic = TMPFS_MAGIC;
3697 sb->s_op = &shmem_ops;
cfd95a9c 3698 sb->s_time_gran = 1;
b09e0fa4 3699#ifdef CONFIG_TMPFS_XATTR
39f0247d 3700 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3701#endif
3702#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3703 sb->s_flags |= MS_POSIXACL;
3704#endif
0edd73b3 3705
454abafe 3706 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3707 if (!inode)
3708 goto failed;
680d794b
AM
3709 inode->i_uid = sbinfo->uid;
3710 inode->i_gid = sbinfo->gid;
318ceed0
AV
3711 sb->s_root = d_make_root(inode);
3712 if (!sb->s_root)
48fde701 3713 goto failed;
1da177e4
LT
3714 return 0;
3715
1da177e4
LT
3716failed:
3717 shmem_put_super(sb);
3718 return err;
3719}
3720
fcc234f8 3721static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3722
3723static struct inode *shmem_alloc_inode(struct super_block *sb)
3724{
41ffe5d5
HD
3725 struct shmem_inode_info *info;
3726 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3727 if (!info)
1da177e4 3728 return NULL;
41ffe5d5 3729 return &info->vfs_inode;
1da177e4
LT
3730}
3731
41ffe5d5 3732static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3733{
3734 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3735 if (S_ISLNK(inode->i_mode))
3736 kfree(inode->i_link);
fa0d7e3d
NP
3737 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3738}
3739
1da177e4
LT
3740static void shmem_destroy_inode(struct inode *inode)
3741{
09208d15 3742 if (S_ISREG(inode->i_mode))
1da177e4 3743 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3744 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3745}
3746
41ffe5d5 3747static void shmem_init_inode(void *foo)
1da177e4 3748{
41ffe5d5
HD
3749 struct shmem_inode_info *info = foo;
3750 inode_init_once(&info->vfs_inode);
1da177e4
LT
3751}
3752
41ffe5d5 3753static int shmem_init_inodecache(void)
1da177e4
LT
3754{
3755 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3756 sizeof(struct shmem_inode_info),
5d097056 3757 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3758 return 0;
3759}
3760
41ffe5d5 3761static void shmem_destroy_inodecache(void)
1da177e4 3762{
1a1d92c1 3763 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3764}
3765
f5e54d6e 3766static const struct address_space_operations shmem_aops = {
1da177e4 3767 .writepage = shmem_writepage,
76719325 3768 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3769#ifdef CONFIG_TMPFS
800d15a5
NP
3770 .write_begin = shmem_write_begin,
3771 .write_end = shmem_write_end,
1da177e4 3772#endif
1c93923c 3773#ifdef CONFIG_MIGRATION
304dbdb7 3774 .migratepage = migrate_page,
1c93923c 3775#endif
aa261f54 3776 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3777};
3778
15ad7cdc 3779static const struct file_operations shmem_file_operations = {
1da177e4 3780 .mmap = shmem_mmap,
c01d5b30 3781 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3782#ifdef CONFIG_TMPFS
220f2ac9 3783 .llseek = shmem_file_llseek,
2ba5bbed 3784 .read_iter = shmem_file_read_iter,
8174202b 3785 .write_iter = generic_file_write_iter,
1b061d92 3786 .fsync = noop_fsync,
708e3508 3787 .splice_read = shmem_file_splice_read,
f6cb85d0 3788 .splice_write = iter_file_splice_write,
83e4fa9c 3789 .fallocate = shmem_fallocate,
1da177e4
LT
3790#endif
3791};
3792
92e1d5be 3793static const struct inode_operations shmem_inode_operations = {
44a30220 3794 .getattr = shmem_getattr,
94c1e62d 3795 .setattr = shmem_setattr,
b09e0fa4 3796#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3797 .setxattr = generic_setxattr,
3798 .getxattr = generic_getxattr,
b09e0fa4 3799 .listxattr = shmem_listxattr,
aa7c5241 3800 .removexattr = generic_removexattr,
feda821e 3801 .set_acl = simple_set_acl,
b09e0fa4 3802#endif
1da177e4
LT
3803};
3804
92e1d5be 3805static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3806#ifdef CONFIG_TMPFS
3807 .create = shmem_create,
3808 .lookup = simple_lookup,
3809 .link = shmem_link,
3810 .unlink = shmem_unlink,
3811 .symlink = shmem_symlink,
3812 .mkdir = shmem_mkdir,
3813 .rmdir = shmem_rmdir,
3814 .mknod = shmem_mknod,
3b69ff51 3815 .rename2 = shmem_rename2,
60545d0d 3816 .tmpfile = shmem_tmpfile,
1da177e4 3817#endif
b09e0fa4 3818#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3819 .setxattr = generic_setxattr,
3820 .getxattr = generic_getxattr,
b09e0fa4 3821 .listxattr = shmem_listxattr,
aa7c5241 3822 .removexattr = generic_removexattr,
b09e0fa4 3823#endif
39f0247d 3824#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3825 .setattr = shmem_setattr,
feda821e 3826 .set_acl = simple_set_acl,
39f0247d
AG
3827#endif
3828};
3829
92e1d5be 3830static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3831#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3832 .setxattr = generic_setxattr,
3833 .getxattr = generic_getxattr,
b09e0fa4 3834 .listxattr = shmem_listxattr,
aa7c5241 3835 .removexattr = generic_removexattr,
b09e0fa4 3836#endif
39f0247d 3837#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3838 .setattr = shmem_setattr,
feda821e 3839 .set_acl = simple_set_acl,
39f0247d 3840#endif
1da177e4
LT
3841};
3842
759b9775 3843static const struct super_operations shmem_ops = {
1da177e4
LT
3844 .alloc_inode = shmem_alloc_inode,
3845 .destroy_inode = shmem_destroy_inode,
3846#ifdef CONFIG_TMPFS
3847 .statfs = shmem_statfs,
3848 .remount_fs = shmem_remount_fs,
680d794b 3849 .show_options = shmem_show_options,
1da177e4 3850#endif
1f895f75 3851 .evict_inode = shmem_evict_inode,
1da177e4
LT
3852 .drop_inode = generic_delete_inode,
3853 .put_super = shmem_put_super,
779750d2
KS
3854#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3855 .nr_cached_objects = shmem_unused_huge_count,
3856 .free_cached_objects = shmem_unused_huge_scan,
3857#endif
1da177e4
LT
3858};
3859
f0f37e2f 3860static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3861 .fault = shmem_fault,
d7c17551 3862 .map_pages = filemap_map_pages,
1da177e4
LT
3863#ifdef CONFIG_NUMA
3864 .set_policy = shmem_set_policy,
3865 .get_policy = shmem_get_policy,
3866#endif
3867};
3868
3c26ff6e
AV
3869static struct dentry *shmem_mount(struct file_system_type *fs_type,
3870 int flags, const char *dev_name, void *data)
1da177e4 3871{
3c26ff6e 3872 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3873}
3874
41ffe5d5 3875static struct file_system_type shmem_fs_type = {
1da177e4
LT
3876 .owner = THIS_MODULE,
3877 .name = "tmpfs",
3c26ff6e 3878 .mount = shmem_mount,
1da177e4 3879 .kill_sb = kill_litter_super,
2b8576cb 3880 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3881};
1da177e4 3882
41ffe5d5 3883int __init shmem_init(void)
1da177e4
LT
3884{
3885 int error;
3886
16203a7a
RL
3887 /* If rootfs called this, don't re-init */
3888 if (shmem_inode_cachep)
3889 return 0;
3890
41ffe5d5 3891 error = shmem_init_inodecache();
1da177e4
LT
3892 if (error)
3893 goto out3;
3894
41ffe5d5 3895 error = register_filesystem(&shmem_fs_type);
1da177e4 3896 if (error) {
1170532b 3897 pr_err("Could not register tmpfs\n");
1da177e4
LT
3898 goto out2;
3899 }
95dc112a 3900
ca4e0519 3901 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3902 if (IS_ERR(shm_mnt)) {
3903 error = PTR_ERR(shm_mnt);
1170532b 3904 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3905 goto out1;
3906 }
5a6e75f8 3907
e496cf3d 3908#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3909 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3910 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3911 else
3912 shmem_huge = 0; /* just in case it was patched */
3913#endif
1da177e4
LT
3914 return 0;
3915
3916out1:
41ffe5d5 3917 unregister_filesystem(&shmem_fs_type);
1da177e4 3918out2:
41ffe5d5 3919 shmem_destroy_inodecache();
1da177e4
LT
3920out3:
3921 shm_mnt = ERR_PTR(error);
3922 return error;
3923}
853ac43a 3924
e496cf3d 3925#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3926static ssize_t shmem_enabled_show(struct kobject *kobj,
3927 struct kobj_attribute *attr, char *buf)
3928{
3929 int values[] = {
3930 SHMEM_HUGE_ALWAYS,
3931 SHMEM_HUGE_WITHIN_SIZE,
3932 SHMEM_HUGE_ADVISE,
3933 SHMEM_HUGE_NEVER,
3934 SHMEM_HUGE_DENY,
3935 SHMEM_HUGE_FORCE,
3936 };
3937 int i, count;
3938
3939 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3940 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3941
3942 count += sprintf(buf + count, fmt,
3943 shmem_format_huge(values[i]));
3944 }
3945 buf[count - 1] = '\n';
3946 return count;
3947}
3948
3949static ssize_t shmem_enabled_store(struct kobject *kobj,
3950 struct kobj_attribute *attr, const char *buf, size_t count)
3951{
3952 char tmp[16];
3953 int huge;
3954
3955 if (count + 1 > sizeof(tmp))
3956 return -EINVAL;
3957 memcpy(tmp, buf, count);
3958 tmp[count] = '\0';
3959 if (count && tmp[count - 1] == '\n')
3960 tmp[count - 1] = '\0';
3961
3962 huge = shmem_parse_huge(tmp);
3963 if (huge == -EINVAL)
3964 return -EINVAL;
3965 if (!has_transparent_hugepage() &&
3966 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967 return -EINVAL;
3968
3969 shmem_huge = huge;
3970 if (shmem_huge < SHMEM_HUGE_DENY)
3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 return count;
3973}
3974
3975struct kobj_attribute shmem_enabled_attr =
3976 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
f3f0e1d2
KS
3977
3978bool shmem_huge_enabled(struct vm_area_struct *vma)
3979{
3980 struct inode *inode = file_inode(vma->vm_file);
3981 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3982 loff_t i_size;
3983 pgoff_t off;
3984
3985 if (shmem_huge == SHMEM_HUGE_FORCE)
3986 return true;
3987 if (shmem_huge == SHMEM_HUGE_DENY)
3988 return false;
3989 switch (sbinfo->huge) {
3990 case SHMEM_HUGE_NEVER:
3991 return false;
3992 case SHMEM_HUGE_ALWAYS:
3993 return true;
3994 case SHMEM_HUGE_WITHIN_SIZE:
3995 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3996 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3997 if (i_size >= HPAGE_PMD_SIZE &&
3998 i_size >> PAGE_SHIFT >= off)
3999 return true;
4000 case SHMEM_HUGE_ADVISE:
4001 /* TODO: implement fadvise() hints */
4002 return (vma->vm_flags & VM_HUGEPAGE);
4003 default:
4004 VM_BUG_ON(1);
4005 return false;
4006 }
4007}
e496cf3d 4008#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
5a6e75f8 4009
853ac43a
MM
4010#else /* !CONFIG_SHMEM */
4011
4012/*
4013 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014 *
4015 * This is intended for small system where the benefits of the full
4016 * shmem code (swap-backed and resource-limited) are outweighed by
4017 * their complexity. On systems without swap this code should be
4018 * effectively equivalent, but much lighter weight.
4019 */
4020
41ffe5d5 4021static struct file_system_type shmem_fs_type = {
853ac43a 4022 .name = "tmpfs",
3c26ff6e 4023 .mount = ramfs_mount,
853ac43a 4024 .kill_sb = kill_litter_super,
2b8576cb 4025 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4026};
4027
41ffe5d5 4028int __init shmem_init(void)
853ac43a 4029{
41ffe5d5 4030 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4031
41ffe5d5 4032 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4033 BUG_ON(IS_ERR(shm_mnt));
4034
4035 return 0;
4036}
4037
41ffe5d5 4038int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4039{
4040 return 0;
4041}
4042
3f96b79a
HD
4043int shmem_lock(struct file *file, int lock, struct user_struct *user)
4044{
4045 return 0;
4046}
4047
24513264
HD
4048void shmem_unlock_mapping(struct address_space *mapping)
4049{
4050}
4051
c01d5b30
HD
4052#ifdef CONFIG_MMU
4053unsigned long shmem_get_unmapped_area(struct file *file,
4054 unsigned long addr, unsigned long len,
4055 unsigned long pgoff, unsigned long flags)
4056{
4057 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4058}
4059#endif
4060
41ffe5d5 4061void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4062{
41ffe5d5 4063 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4064}
4065EXPORT_SYMBOL_GPL(shmem_truncate_range);
4066
0b0a0806
HD
4067#define shmem_vm_ops generic_file_vm_ops
4068#define shmem_file_operations ramfs_file_operations
454abafe 4069#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4070#define shmem_acct_size(flags, size) 0
4071#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4072
4073#endif /* CONFIG_SHMEM */
4074
4075/* common code */
1da177e4 4076
3451538a 4077static struct dentry_operations anon_ops = {
118b2302 4078 .d_dname = simple_dname
3451538a
AV
4079};
4080
c7277090
EP
4081static struct file *__shmem_file_setup(const char *name, loff_t size,
4082 unsigned long flags, unsigned int i_flags)
1da177e4 4083{
6b4d0b27 4084 struct file *res;
1da177e4 4085 struct inode *inode;
2c48b9c4 4086 struct path path;
3451538a 4087 struct super_block *sb;
1da177e4
LT
4088 struct qstr this;
4089
4090 if (IS_ERR(shm_mnt))
6b4d0b27 4091 return ERR_CAST(shm_mnt);
1da177e4 4092
285b2c4f 4093 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4094 return ERR_PTR(-EINVAL);
4095
4096 if (shmem_acct_size(flags, size))
4097 return ERR_PTR(-ENOMEM);
4098
6b4d0b27 4099 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4100 this.name = name;
4101 this.len = strlen(name);
4102 this.hash = 0; /* will go */
3451538a 4103 sb = shm_mnt->mnt_sb;
66ee4b88 4104 path.mnt = mntget(shm_mnt);
3451538a 4105 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4106 if (!path.dentry)
1da177e4 4107 goto put_memory;
3451538a 4108 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4109
6b4d0b27 4110 res = ERR_PTR(-ENOSPC);
3451538a 4111 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4112 if (!inode)
66ee4b88 4113 goto put_memory;
1da177e4 4114
c7277090 4115 inode->i_flags |= i_flags;
2c48b9c4 4116 d_instantiate(path.dentry, inode);
1da177e4 4117 inode->i_size = size;
6d6b77f1 4118 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4119 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4120 if (IS_ERR(res))
66ee4b88 4121 goto put_path;
4b42af81 4122
6b4d0b27 4123 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4124 &shmem_file_operations);
6b4d0b27 4125 if (IS_ERR(res))
66ee4b88 4126 goto put_path;
4b42af81 4127
6b4d0b27 4128 return res;
1da177e4 4129
1da177e4
LT
4130put_memory:
4131 shmem_unacct_size(flags, size);
66ee4b88
KK
4132put_path:
4133 path_put(&path);
6b4d0b27 4134 return res;
1da177e4 4135}
c7277090
EP
4136
4137/**
4138 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4139 * kernel internal. There will be NO LSM permission checks against the
4140 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4141 * higher layer. The users are the big_key and shm implementations. LSM
4142 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4143 * @name: name for dentry (to be seen in /proc/<pid>/maps
4144 * @size: size to be set for the file
4145 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4146 */
4147struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4148{
4149 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4150}
4151
4152/**
4153 * shmem_file_setup - get an unlinked file living in tmpfs
4154 * @name: name for dentry (to be seen in /proc/<pid>/maps
4155 * @size: size to be set for the file
4156 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157 */
4158struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4159{
4160 return __shmem_file_setup(name, size, flags, 0);
4161}
395e0ddc 4162EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4163
46711810 4164/**
1da177e4 4165 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4166 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4167 */
4168int shmem_zero_setup(struct vm_area_struct *vma)
4169{
4170 struct file *file;
4171 loff_t size = vma->vm_end - vma->vm_start;
4172
66fc1303
HD
4173 /*
4174 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4175 * between XFS directory reading and selinux: since this file is only
4176 * accessible to the user through its mapping, use S_PRIVATE flag to
4177 * bypass file security, in the same way as shmem_kernel_file_setup().
4178 */
4179 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4180 if (IS_ERR(file))
4181 return PTR_ERR(file);
4182
4183 if (vma->vm_file)
4184 fput(vma->vm_file);
4185 vma->vm_file = file;
4186 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4187
e496cf3d 4188 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4189 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4190 (vma->vm_end & HPAGE_PMD_MASK)) {
4191 khugepaged_enter(vma, vma->vm_flags);
4192 }
4193
1da177e4
LT
4194 return 0;
4195}
d9d90e5e
HD
4196
4197/**
4198 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4199 * @mapping: the page's address_space
4200 * @index: the page index
4201 * @gfp: the page allocator flags to use if allocating
4202 *
4203 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4204 * with any new page allocations done using the specified allocation flags.
4205 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4206 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4207 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4208 *
68da9f05
HD
4209 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4210 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4211 */
4212struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4213 pgoff_t index, gfp_t gfp)
4214{
68da9f05
HD
4215#ifdef CONFIG_SHMEM
4216 struct inode *inode = mapping->host;
9276aad6 4217 struct page *page;
68da9f05
HD
4218 int error;
4219
4220 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29
ALC
4221 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4222 gfp, NULL, NULL);
68da9f05
HD
4223 if (error)
4224 page = ERR_PTR(error);
4225 else
4226 unlock_page(page);
4227 return page;
4228#else
4229 /*
4230 * The tiny !SHMEM case uses ramfs without swap
4231 */
d9d90e5e 4232 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4233#endif
d9d90e5e
HD
4234}
4235EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);