]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
mm: allow drivers to prevent new writable mappings
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400 82/*
f00cdc6d
HD
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
86 */
87struct shmem_falloc {
8e205f77 88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93};
94
285b2c4f 95/* Flag allocation requirements to shmem_getpage */
1da177e4 96enum sgp_type {
1da177e4
LT
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
102};
103
b76db735 104#ifdef CONFIG_TMPFS
680d794b
AM
105static unsigned long shmem_default_max_blocks(void)
106{
107 return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
b76db735 114#endif
680d794b 115
bde05d1c
HD
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127}
1da177e4 128
1da177e4
LT
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131 return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
0b0a0806 142 return (flags & VM_NORESERVE) ?
191c5424 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 if (!(flags & VM_NORESERVE))
1da177e4
LT
149 vm_unacct_memory(VM_ACCT(size));
150}
151
77142517
KK
152static inline int shmem_reacct_size(unsigned long flags,
153 loff_t oldsize, loff_t newsize)
154{
155 if (!(flags & VM_NORESERVE)) {
156 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157 return security_vm_enough_memory_mm(current->mm,
158 VM_ACCT(newsize) - VM_ACCT(oldsize));
159 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161 }
162 return 0;
163}
164
1da177e4
LT
165/*
166 * ... whereas tmpfs objects are accounted incrementally as
167 * pages are allocated, in order to allow huge sparse files.
168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 */
171static inline int shmem_acct_block(unsigned long flags)
172{
0b0a0806 173 return (flags & VM_NORESERVE) ?
191c5424 174 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
175}
176
177static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178{
0b0a0806 179 if (flags & VM_NORESERVE)
1da177e4
LT
180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181}
182
759b9775 183static const struct super_operations shmem_ops;
f5e54d6e 184static const struct address_space_operations shmem_aops;
15ad7cdc 185static const struct file_operations shmem_file_operations;
92e1d5be
AV
186static const struct inode_operations shmem_inode_operations;
187static const struct inode_operations shmem_dir_inode_operations;
188static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 189static const struct vm_operations_struct shmem_vm_ops;
1da177e4 190
6c231b7b 191static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 192 .ra_pages = 0, /* No readahead */
4f98a2fe 193 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
194};
195
196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
24513264
HD
362/*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365void shmem_unlock_mapping(struct address_space *mapping)
366{
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
0cd6144a
JW
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
0cd6144a 385 pagevec_remove_exceptionals(&pvec);
24513264
HD
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
7a5d0fbb
HD
390}
391
392/*
393 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 395 */
1635f6a7
HD
396static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
1da177e4 398{
285b2c4f 399 struct address_space *mapping = inode->i_mapping;
1da177e4 400 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 405 struct pagevec pvec;
7a5d0fbb
HD
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
285b2c4f 408 pgoff_t index;
bda97eab
HD
409 int i;
410
83e4fa9c
HD
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
bda97eab
HD
413
414 pagevec_init(&pvec, 0);
415 index = start;
83e4fa9c 416 while (index < end) {
0cd6144a
JW
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
7a5d0fbb
HD
420 if (!pvec.nr)
421 break;
bda97eab
HD
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
7a5d0fbb 425 index = indices[i];
83e4fa9c 426 if (index >= end)
bda97eab
HD
427 break;
428
7a5d0fbb 429 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
430 if (unfalloc)
431 continue;
7a5d0fbb
HD
432 nr_swaps_freed += !shmem_free_swap(mapping,
433 index, page);
bda97eab 434 continue;
7a5d0fbb
HD
435 }
436
437 if (!trylock_page(page))
bda97eab 438 continue;
1635f6a7
HD
439 if (!unfalloc || !PageUptodate(page)) {
440 if (page->mapping == mapping) {
309381fe 441 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
442 truncate_inode_page(mapping, page);
443 }
bda97eab 444 }
bda97eab
HD
445 unlock_page(page);
446 }
0cd6144a 447 pagevec_remove_exceptionals(&pvec);
24513264 448 pagevec_release(&pvec);
bda97eab
HD
449 cond_resched();
450 index++;
451 }
1da177e4 452
83e4fa9c 453 if (partial_start) {
bda97eab
HD
454 struct page *page = NULL;
455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 if (page) {
83e4fa9c
HD
457 unsigned int top = PAGE_CACHE_SIZE;
458 if (start > end) {
459 top = partial_end;
460 partial_end = 0;
461 }
462 zero_user_segment(page, partial_start, top);
463 set_page_dirty(page);
464 unlock_page(page);
465 page_cache_release(page);
466 }
467 }
468 if (partial_end) {
469 struct page *page = NULL;
470 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 if (page) {
472 zero_user_segment(page, 0, partial_end);
bda97eab
HD
473 set_page_dirty(page);
474 unlock_page(page);
475 page_cache_release(page);
476 }
477 }
83e4fa9c
HD
478 if (start >= end)
479 return;
bda97eab
HD
480
481 index = start;
b1a36650 482 while (index < end) {
bda97eab 483 cond_resched();
0cd6144a
JW
484
485 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 486 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 487 pvec.pages, indices);
7a5d0fbb 488 if (!pvec.nr) {
b1a36650
HD
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index == start || end != -1)
bda97eab 491 break;
b1a36650 492 /* But if truncating, restart to make sure all gone */
bda97eab
HD
493 index = start;
494 continue;
495 }
bda97eab
HD
496 for (i = 0; i < pagevec_count(&pvec); i++) {
497 struct page *page = pvec.pages[i];
498
7a5d0fbb 499 index = indices[i];
83e4fa9c 500 if (index >= end)
bda97eab
HD
501 break;
502
7a5d0fbb 503 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
504 if (unfalloc)
505 continue;
b1a36650
HD
506 if (shmem_free_swap(mapping, index, page)) {
507 /* Swap was replaced by page: retry */
508 index--;
509 break;
510 }
511 nr_swaps_freed++;
7a5d0fbb
HD
512 continue;
513 }
514
bda97eab 515 lock_page(page);
1635f6a7
HD
516 if (!unfalloc || !PageUptodate(page)) {
517 if (page->mapping == mapping) {
309381fe 518 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 519 truncate_inode_page(mapping, page);
b1a36650
HD
520 } else {
521 /* Page was replaced by swap: retry */
522 unlock_page(page);
523 index--;
524 break;
1635f6a7 525 }
7a5d0fbb 526 }
bda97eab
HD
527 unlock_page(page);
528 }
0cd6144a 529 pagevec_remove_exceptionals(&pvec);
24513264 530 pagevec_release(&pvec);
bda97eab
HD
531 index++;
532 }
94c1e62d 533
1da177e4 534 spin_lock(&info->lock);
7a5d0fbb 535 info->swapped -= nr_swaps_freed;
1da177e4
LT
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
1635f6a7 538}
1da177e4 539
1635f6a7
HD
540void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541{
542 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 544}
94c1e62d 545EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 546
94c1e62d 547static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
548{
549 struct inode *inode = dentry->d_inode;
1da177e4
LT
550 int error;
551
db78b877
CH
552 error = inode_change_ok(inode, attr);
553 if (error)
554 return error;
555
94c1e62d
HD
556 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
557 loff_t oldsize = inode->i_size;
558 loff_t newsize = attr->ia_size;
3889e6e7 559
94c1e62d 560 if (newsize != oldsize) {
77142517
KK
561 error = shmem_reacct_size(SHMEM_I(inode)->flags,
562 oldsize, newsize);
563 if (error)
564 return error;
94c1e62d
HD
565 i_size_write(inode, newsize);
566 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
567 }
568 if (newsize < oldsize) {
569 loff_t holebegin = round_up(newsize, PAGE_SIZE);
570 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
571 shmem_truncate_range(inode, newsize, (loff_t)-1);
572 /* unmap again to remove racily COWed private pages */
573 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
574 }
1da177e4
LT
575 }
576
db78b877 577 setattr_copy(inode, attr);
db78b877 578 if (attr->ia_valid & ATTR_MODE)
feda821e 579 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
580 return error;
581}
582
1f895f75 583static void shmem_evict_inode(struct inode *inode)
1da177e4 584{
1da177e4
LT
585 struct shmem_inode_info *info = SHMEM_I(inode);
586
3889e6e7 587 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
588 shmem_unacct_size(info->flags, inode->i_size);
589 inode->i_size = 0;
3889e6e7 590 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 591 if (!list_empty(&info->swaplist)) {
cb5f7b9a 592 mutex_lock(&shmem_swaplist_mutex);
1da177e4 593 list_del_init(&info->swaplist);
cb5f7b9a 594 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 595 }
69f07ec9
HD
596 } else
597 kfree(info->symlink);
b09e0fa4 598
38f38657 599 simple_xattrs_free(&info->xattrs);
0f3c42f5 600 WARN_ON(inode->i_blocks);
5b04c689 601 shmem_free_inode(inode->i_sb);
dbd5768f 602 clear_inode(inode);
1da177e4
LT
603}
604
46f65ec1
HD
605/*
606 * If swap found in inode, free it and move page from swapcache to filecache.
607 */
41ffe5d5 608static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 609 swp_entry_t swap, struct page **pagep)
1da177e4 610{
285b2c4f 611 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 612 void *radswap;
41ffe5d5 613 pgoff_t index;
bde05d1c
HD
614 gfp_t gfp;
615 int error = 0;
1da177e4 616
46f65ec1 617 radswap = swp_to_radix_entry(swap);
e504f3fd 618 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 619 if (index == -1)
00501b53 620 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 621
1b1b32f2
HD
622 /*
623 * Move _head_ to start search for next from here.
1f895f75 624 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 625 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 626 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
627 */
628 if (shmem_swaplist.next != &info->swaplist)
629 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 630
bde05d1c
HD
631 gfp = mapping_gfp_mask(mapping);
632 if (shmem_should_replace_page(*pagep, gfp)) {
633 mutex_unlock(&shmem_swaplist_mutex);
634 error = shmem_replace_page(pagep, gfp, info, index);
635 mutex_lock(&shmem_swaplist_mutex);
636 /*
637 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
638 * allocation, but the inode might have been freed while we
639 * dropped it: although a racing shmem_evict_inode() cannot
640 * complete without emptying the radix_tree, our page lock
641 * on this swapcache page is not enough to prevent that -
642 * free_swap_and_cache() of our swap entry will only
643 * trylock_page(), removing swap from radix_tree whatever.
644 *
645 * We must not proceed to shmem_add_to_page_cache() if the
646 * inode has been freed, but of course we cannot rely on
647 * inode or mapping or info to check that. However, we can
648 * safely check if our swap entry is still in use (and here
649 * it can't have got reused for another page): if it's still
650 * in use, then the inode cannot have been freed yet, and we
651 * can safely proceed (if it's no longer in use, that tells
652 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
653 */
654 if (!page_swapcount(*pagep))
655 error = -ENOENT;
656 }
657
d13d1443 658 /*
778dd893
HD
659 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
660 * but also to hold up shmem_evict_inode(): so inode cannot be freed
661 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 662 */
bde05d1c
HD
663 if (!error)
664 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 665 radswap);
48f170fb 666 if (error != -ENOMEM) {
46f65ec1
HD
667 /*
668 * Truncation and eviction use free_swap_and_cache(), which
669 * only does trylock page: if we raced, best clean up here.
670 */
bde05d1c
HD
671 delete_from_swap_cache(*pagep);
672 set_page_dirty(*pagep);
46f65ec1
HD
673 if (!error) {
674 spin_lock(&info->lock);
675 info->swapped--;
676 spin_unlock(&info->lock);
677 swap_free(swap);
678 }
1da177e4 679 }
2e0e26c7 680 return error;
1da177e4
LT
681}
682
683/*
46f65ec1 684 * Search through swapped inodes to find and replace swap by page.
1da177e4 685 */
41ffe5d5 686int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 687{
41ffe5d5 688 struct list_head *this, *next;
1da177e4 689 struct shmem_inode_info *info;
00501b53 690 struct mem_cgroup *memcg;
bde05d1c
HD
691 int error = 0;
692
693 /*
694 * There's a faint possibility that swap page was replaced before
0142ef6c 695 * caller locked it: caller will come back later with the right page.
bde05d1c 696 */
0142ef6c 697 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 698 goto out;
778dd893
HD
699
700 /*
701 * Charge page using GFP_KERNEL while we can wait, before taking
702 * the shmem_swaplist_mutex which might hold up shmem_writepage().
703 * Charged back to the user (not to caller) when swap account is used.
778dd893 704 */
00501b53 705 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
706 if (error)
707 goto out;
46f65ec1 708 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 709 error = -EAGAIN;
1da177e4 710
cb5f7b9a 711 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
712 list_for_each_safe(this, next, &shmem_swaplist) {
713 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 714 if (info->swapped)
00501b53 715 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
716 else
717 list_del_init(&info->swaplist);
cb5f7b9a 718 cond_resched();
00501b53 719 if (error != -EAGAIN)
778dd893 720 break;
00501b53 721 /* found nothing in this: move on to search the next */
1da177e4 722 }
cb5f7b9a 723 mutex_unlock(&shmem_swaplist_mutex);
778dd893 724
00501b53
JW
725 if (error) {
726 if (error != -ENOMEM)
727 error = 0;
728 mem_cgroup_cancel_charge(page, memcg);
729 } else
730 mem_cgroup_commit_charge(page, memcg, true);
778dd893 731out:
aaa46865
HD
732 unlock_page(page);
733 page_cache_release(page);
778dd893 734 return error;
1da177e4
LT
735}
736
737/*
738 * Move the page from the page cache to the swap cache.
739 */
740static int shmem_writepage(struct page *page, struct writeback_control *wbc)
741{
742 struct shmem_inode_info *info;
1da177e4 743 struct address_space *mapping;
1da177e4 744 struct inode *inode;
6922c0c7
HD
745 swp_entry_t swap;
746 pgoff_t index;
1da177e4
LT
747
748 BUG_ON(!PageLocked(page));
1da177e4
LT
749 mapping = page->mapping;
750 index = page->index;
751 inode = mapping->host;
752 info = SHMEM_I(inode);
753 if (info->flags & VM_LOCKED)
754 goto redirty;
d9fe526a 755 if (!total_swap_pages)
1da177e4
LT
756 goto redirty;
757
d9fe526a
HD
758 /*
759 * shmem_backing_dev_info's capabilities prevent regular writeback or
760 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 761 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 762 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 763 * and not for the writeback threads or sync.
d9fe526a 764 */
48f170fb
HD
765 if (!wbc->for_reclaim) {
766 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
767 goto redirty;
768 }
1635f6a7
HD
769
770 /*
771 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
772 * value into swapfile.c, the only way we can correctly account for a
773 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
774 *
775 * That's okay for a page already fallocated earlier, but if we have
776 * not yet completed the fallocation, then (a) we want to keep track
777 * of this page in case we have to undo it, and (b) it may not be a
778 * good idea to continue anyway, once we're pushing into swap. So
779 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
780 */
781 if (!PageUptodate(page)) {
1aac1400
HD
782 if (inode->i_private) {
783 struct shmem_falloc *shmem_falloc;
784 spin_lock(&inode->i_lock);
785 shmem_falloc = inode->i_private;
786 if (shmem_falloc &&
8e205f77 787 !shmem_falloc->waitq &&
1aac1400
HD
788 index >= shmem_falloc->start &&
789 index < shmem_falloc->next)
790 shmem_falloc->nr_unswapped++;
791 else
792 shmem_falloc = NULL;
793 spin_unlock(&inode->i_lock);
794 if (shmem_falloc)
795 goto redirty;
796 }
1635f6a7
HD
797 clear_highpage(page);
798 flush_dcache_page(page);
799 SetPageUptodate(page);
800 }
801
48f170fb
HD
802 swap = get_swap_page();
803 if (!swap.val)
804 goto redirty;
d9fe526a 805
b1dea800
HD
806 /*
807 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
808 * if it's not already there. Do it now before the page is
809 * moved to swap cache, when its pagelock no longer protects
b1dea800 810 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
811 * we've incremented swapped, because shmem_unuse_inode() will
812 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 813 */
48f170fb
HD
814 mutex_lock(&shmem_swaplist_mutex);
815 if (list_empty(&info->swaplist))
816 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 817
48f170fb 818 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 819 swap_shmem_alloc(swap);
6922c0c7
HD
820 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
821
822 spin_lock(&info->lock);
823 info->swapped++;
824 shmem_recalc_inode(inode);
826267cf 825 spin_unlock(&info->lock);
6922c0c7
HD
826
827 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 828 BUG_ON(page_mapped(page));
9fab5619 829 swap_writepage(page, wbc);
1da177e4
LT
830 return 0;
831 }
832
6922c0c7 833 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 834 swapcache_free(swap);
1da177e4
LT
835redirty:
836 set_page_dirty(page);
d9fe526a
HD
837 if (wbc->for_reclaim)
838 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
839 unlock_page(page);
840 return 0;
1da177e4
LT
841}
842
843#ifdef CONFIG_NUMA
680d794b 844#ifdef CONFIG_TMPFS
71fe804b 845static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 846{
095f1fc4 847 char buffer[64];
680d794b 848
71fe804b 849 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 850 return; /* show nothing */
680d794b 851
a7a88b23 852 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
853
854 seq_printf(seq, ",mpol=%s", buffer);
680d794b 855}
71fe804b
LS
856
857static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
858{
859 struct mempolicy *mpol = NULL;
860 if (sbinfo->mpol) {
861 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
862 mpol = sbinfo->mpol;
863 mpol_get(mpol);
864 spin_unlock(&sbinfo->stat_lock);
865 }
866 return mpol;
867}
680d794b
AM
868#endif /* CONFIG_TMPFS */
869
41ffe5d5
HD
870static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
871 struct shmem_inode_info *info, pgoff_t index)
1da177e4 872{
1da177e4 873 struct vm_area_struct pvma;
18a2f371 874 struct page *page;
52cd3b07 875
1da177e4 876 /* Create a pseudo vma that just contains the policy */
c4cc6d07 877 pvma.vm_start = 0;
09c231cb
NZ
878 /* Bias interleave by inode number to distribute better across nodes */
879 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 880 pvma.vm_ops = NULL;
18a2f371
MG
881 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
882
883 page = swapin_readahead(swap, gfp, &pvma, 0);
884
885 /* Drop reference taken by mpol_shared_policy_lookup() */
886 mpol_cond_put(pvma.vm_policy);
887
888 return page;
1da177e4
LT
889}
890
02098fea 891static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 892 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
893{
894 struct vm_area_struct pvma;
18a2f371 895 struct page *page;
1da177e4 896
c4cc6d07
HD
897 /* Create a pseudo vma that just contains the policy */
898 pvma.vm_start = 0;
09c231cb
NZ
899 /* Bias interleave by inode number to distribute better across nodes */
900 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 901 pvma.vm_ops = NULL;
41ffe5d5 902 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 903
18a2f371
MG
904 page = alloc_page_vma(gfp, &pvma, 0);
905
906 /* Drop reference taken by mpol_shared_policy_lookup() */
907 mpol_cond_put(pvma.vm_policy);
908
909 return page;
1da177e4 910}
680d794b
AM
911#else /* !CONFIG_NUMA */
912#ifdef CONFIG_TMPFS
41ffe5d5 913static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
914{
915}
916#endif /* CONFIG_TMPFS */
917
41ffe5d5
HD
918static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
1da177e4 920{
41ffe5d5 921 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
922}
923
02098fea 924static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 925 struct shmem_inode_info *info, pgoff_t index)
1da177e4 926{
e84e2e13 927 return alloc_page(gfp);
1da177e4 928}
680d794b 929#endif /* CONFIG_NUMA */
1da177e4 930
71fe804b
LS
931#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
932static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
933{
934 return NULL;
935}
936#endif
937
bde05d1c
HD
938/*
939 * When a page is moved from swapcache to shmem filecache (either by the
940 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
941 * shmem_unuse_inode()), it may have been read in earlier from swap, in
942 * ignorance of the mapping it belongs to. If that mapping has special
943 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
944 * we may need to copy to a suitable page before moving to filecache.
945 *
946 * In a future release, this may well be extended to respect cpuset and
947 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
948 * but for now it is a simple matter of zone.
949 */
950static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
951{
952 return page_zonenum(page) > gfp_zone(gfp);
953}
954
955static int shmem_replace_page(struct page **pagep, gfp_t gfp,
956 struct shmem_inode_info *info, pgoff_t index)
957{
958 struct page *oldpage, *newpage;
959 struct address_space *swap_mapping;
960 pgoff_t swap_index;
961 int error;
962
963 oldpage = *pagep;
964 swap_index = page_private(oldpage);
965 swap_mapping = page_mapping(oldpage);
966
967 /*
968 * We have arrived here because our zones are constrained, so don't
969 * limit chance of success by further cpuset and node constraints.
970 */
971 gfp &= ~GFP_CONSTRAINT_MASK;
972 newpage = shmem_alloc_page(gfp, info, index);
973 if (!newpage)
974 return -ENOMEM;
bde05d1c 975
bde05d1c
HD
976 page_cache_get(newpage);
977 copy_highpage(newpage, oldpage);
0142ef6c 978 flush_dcache_page(newpage);
bde05d1c 979
bde05d1c 980 __set_page_locked(newpage);
bde05d1c 981 SetPageUptodate(newpage);
bde05d1c 982 SetPageSwapBacked(newpage);
bde05d1c 983 set_page_private(newpage, swap_index);
bde05d1c
HD
984 SetPageSwapCache(newpage);
985
986 /*
987 * Our caller will very soon move newpage out of swapcache, but it's
988 * a nice clean interface for us to replace oldpage by newpage there.
989 */
990 spin_lock_irq(&swap_mapping->tree_lock);
991 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
992 newpage);
0142ef6c
HD
993 if (!error) {
994 __inc_zone_page_state(newpage, NR_FILE_PAGES);
995 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
996 }
bde05d1c 997 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 998
0142ef6c
HD
999 if (unlikely(error)) {
1000 /*
1001 * Is this possible? I think not, now that our callers check
1002 * both PageSwapCache and page_private after getting page lock;
1003 * but be defensive. Reverse old to newpage for clear and free.
1004 */
1005 oldpage = newpage;
1006 } else {
0a31bc97 1007 mem_cgroup_migrate(oldpage, newpage, false);
0142ef6c
HD
1008 lru_cache_add_anon(newpage);
1009 *pagep = newpage;
1010 }
bde05d1c
HD
1011
1012 ClearPageSwapCache(oldpage);
1013 set_page_private(oldpage, 0);
1014
1015 unlock_page(oldpage);
1016 page_cache_release(oldpage);
1017 page_cache_release(oldpage);
0142ef6c 1018 return error;
bde05d1c
HD
1019}
1020
1da177e4 1021/*
68da9f05 1022 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1023 *
1024 * If we allocate a new one we do not mark it dirty. That's up to the
1025 * vm. If we swap it in we mark it dirty since we also free the swap
1026 * entry since a page cannot live in both the swap and page cache
1027 */
41ffe5d5 1028static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1029 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1030{
1031 struct address_space *mapping = inode->i_mapping;
54af6042 1032 struct shmem_inode_info *info;
1da177e4 1033 struct shmem_sb_info *sbinfo;
00501b53 1034 struct mem_cgroup *memcg;
27ab7006 1035 struct page *page;
1da177e4
LT
1036 swp_entry_t swap;
1037 int error;
54af6042 1038 int once = 0;
1635f6a7 1039 int alloced = 0;
1da177e4 1040
41ffe5d5 1041 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1042 return -EFBIG;
1da177e4 1043repeat:
54af6042 1044 swap.val = 0;
0cd6144a 1045 page = find_lock_entry(mapping, index);
54af6042
HD
1046 if (radix_tree_exceptional_entry(page)) {
1047 swap = radix_to_swp_entry(page);
1048 page = NULL;
1049 }
1050
1635f6a7 1051 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1052 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1053 error = -EINVAL;
1054 goto failed;
1055 }
1056
66d2f4d2
HD
1057 if (page && sgp == SGP_WRITE)
1058 mark_page_accessed(page);
1059
1635f6a7
HD
1060 /* fallocated page? */
1061 if (page && !PageUptodate(page)) {
1062 if (sgp != SGP_READ)
1063 goto clear;
1064 unlock_page(page);
1065 page_cache_release(page);
1066 page = NULL;
1067 }
54af6042 1068 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1069 *pagep = page;
1070 return 0;
27ab7006
HD
1071 }
1072
1073 /*
54af6042
HD
1074 * Fast cache lookup did not find it:
1075 * bring it back from swap or allocate.
27ab7006 1076 */
54af6042
HD
1077 info = SHMEM_I(inode);
1078 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1079
1da177e4
LT
1080 if (swap.val) {
1081 /* Look it up and read it in.. */
27ab7006
HD
1082 page = lookup_swap_cache(swap);
1083 if (!page) {
1da177e4 1084 /* here we actually do the io */
68da9f05
HD
1085 if (fault_type)
1086 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1087 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1088 if (!page) {
54af6042
HD
1089 error = -ENOMEM;
1090 goto failed;
1da177e4 1091 }
1da177e4
LT
1092 }
1093
1094 /* We have to do this with page locked to prevent races */
54af6042 1095 lock_page(page);
0142ef6c 1096 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1097 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1098 error = -EEXIST; /* try again */
d1899228 1099 goto unlock;
bde05d1c 1100 }
27ab7006 1101 if (!PageUptodate(page)) {
1da177e4 1102 error = -EIO;
54af6042 1103 goto failed;
1da177e4 1104 }
54af6042
HD
1105 wait_on_page_writeback(page);
1106
bde05d1c
HD
1107 if (shmem_should_replace_page(page, gfp)) {
1108 error = shmem_replace_page(&page, gfp, info, index);
1109 if (error)
1110 goto failed;
1da177e4 1111 }
27ab7006 1112
00501b53 1113 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1114 if (!error) {
aa3b1895 1115 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1116 swp_to_radix_entry(swap));
215c02bc
HD
1117 /*
1118 * We already confirmed swap under page lock, and make
1119 * no memory allocation here, so usually no possibility
1120 * of error; but free_swap_and_cache() only trylocks a
1121 * page, so it is just possible that the entry has been
1122 * truncated or holepunched since swap was confirmed.
1123 * shmem_undo_range() will have done some of the
1124 * unaccounting, now delete_from_swap_cache() will do
1125 * the rest (including mem_cgroup_uncharge_swapcache).
1126 * Reset swap.val? No, leave it so "failed" goes back to
1127 * "repeat": reading a hole and writing should succeed.
1128 */
00501b53
JW
1129 if (error) {
1130 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1131 delete_from_swap_cache(page);
00501b53 1132 }
d1899228 1133 }
54af6042
HD
1134 if (error)
1135 goto failed;
1136
00501b53
JW
1137 mem_cgroup_commit_charge(page, memcg, true);
1138
54af6042 1139 spin_lock(&info->lock);
285b2c4f 1140 info->swapped--;
54af6042 1141 shmem_recalc_inode(inode);
27ab7006 1142 spin_unlock(&info->lock);
54af6042 1143
66d2f4d2
HD
1144 if (sgp == SGP_WRITE)
1145 mark_page_accessed(page);
1146
54af6042 1147 delete_from_swap_cache(page);
27ab7006
HD
1148 set_page_dirty(page);
1149 swap_free(swap);
1150
54af6042
HD
1151 } else {
1152 if (shmem_acct_block(info->flags)) {
1153 error = -ENOSPC;
1154 goto failed;
1da177e4 1155 }
0edd73b3 1156 if (sbinfo->max_blocks) {
fc5da22a 1157 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1158 sbinfo->max_blocks) >= 0) {
1159 error = -ENOSPC;
1160 goto unacct;
1161 }
7e496299 1162 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1163 }
1da177e4 1164
54af6042
HD
1165 page = shmem_alloc_page(gfp, info, index);
1166 if (!page) {
1167 error = -ENOMEM;
1168 goto decused;
1da177e4
LT
1169 }
1170
07a42788 1171 __SetPageSwapBacked(page);
54af6042 1172 __set_page_locked(page);
66d2f4d2 1173 if (sgp == SGP_WRITE)
eb39d618 1174 __SetPageReferenced(page);
66d2f4d2 1175
00501b53 1176 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1177 if (error)
1178 goto decused;
5e4c0d97 1179 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1180 if (!error) {
1181 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1182 NULL);
b065b432
HD
1183 radix_tree_preload_end();
1184 }
1185 if (error) {
00501b53 1186 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1187 goto decused;
1188 }
00501b53 1189 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1190 lru_cache_add_anon(page);
1191
1192 spin_lock(&info->lock);
1da177e4 1193 info->alloced++;
54af6042
HD
1194 inode->i_blocks += BLOCKS_PER_PAGE;
1195 shmem_recalc_inode(inode);
1da177e4 1196 spin_unlock(&info->lock);
1635f6a7 1197 alloced = true;
54af6042 1198
ec9516fb 1199 /*
1635f6a7
HD
1200 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1201 */
1202 if (sgp == SGP_FALLOC)
1203 sgp = SGP_WRITE;
1204clear:
1205 /*
1206 * Let SGP_WRITE caller clear ends if write does not fill page;
1207 * but SGP_FALLOC on a page fallocated earlier must initialize
1208 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1209 */
1210 if (sgp != SGP_WRITE) {
1211 clear_highpage(page);
1212 flush_dcache_page(page);
1213 SetPageUptodate(page);
1214 }
a0ee5ec5 1215 if (sgp == SGP_DIRTY)
27ab7006 1216 set_page_dirty(page);
1da177e4 1217 }
bde05d1c 1218
54af6042 1219 /* Perhaps the file has been truncated since we checked */
1635f6a7 1220 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1221 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1222 error = -EINVAL;
1635f6a7
HD
1223 if (alloced)
1224 goto trunc;
1225 else
1226 goto failed;
e83c32e8 1227 }
54af6042
HD
1228 *pagep = page;
1229 return 0;
1da177e4 1230
59a16ead 1231 /*
54af6042 1232 * Error recovery.
59a16ead 1233 */
54af6042 1234trunc:
1635f6a7 1235 info = SHMEM_I(inode);
54af6042
HD
1236 ClearPageDirty(page);
1237 delete_from_page_cache(page);
1238 spin_lock(&info->lock);
1239 info->alloced--;
1240 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1241 spin_unlock(&info->lock);
54af6042 1242decused:
1635f6a7 1243 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1244 if (sbinfo->max_blocks)
1245 percpu_counter_add(&sbinfo->used_blocks, -1);
1246unacct:
1247 shmem_unacct_blocks(info->flags, 1);
1248failed:
d1899228
HD
1249 if (swap.val && error != -EINVAL &&
1250 !shmem_confirm_swap(mapping, index, swap))
1251 error = -EEXIST;
1252unlock:
27ab7006 1253 if (page) {
54af6042 1254 unlock_page(page);
27ab7006 1255 page_cache_release(page);
54af6042
HD
1256 }
1257 if (error == -ENOSPC && !once++) {
1258 info = SHMEM_I(inode);
1259 spin_lock(&info->lock);
1260 shmem_recalc_inode(inode);
1261 spin_unlock(&info->lock);
27ab7006 1262 goto repeat;
ff36b801 1263 }
d1899228 1264 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1265 goto repeat;
1266 return error;
1da177e4
LT
1267}
1268
d0217ac0 1269static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1270{
496ad9aa 1271 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1272 int error;
68da9f05 1273 int ret = VM_FAULT_LOCKED;
1da177e4 1274
f00cdc6d
HD
1275 /*
1276 * Trinity finds that probing a hole which tmpfs is punching can
1277 * prevent the hole-punch from ever completing: which in turn
1278 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1279 * faulting pages into the hole while it's being punched. Although
1280 * shmem_undo_range() does remove the additions, it may be unable to
1281 * keep up, as each new page needs its own unmap_mapping_range() call,
1282 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1283 *
1284 * It does not matter if we sometimes reach this check just before the
1285 * hole-punch begins, so that one fault then races with the punch:
1286 * we just need to make racing faults a rare case.
1287 *
1288 * The implementation below would be much simpler if we just used a
1289 * standard mutex or completion: but we cannot take i_mutex in fault,
1290 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1291 */
1292 if (unlikely(inode->i_private)) {
1293 struct shmem_falloc *shmem_falloc;
1294
1295 spin_lock(&inode->i_lock);
1296 shmem_falloc = inode->i_private;
8e205f77
HD
1297 if (shmem_falloc &&
1298 shmem_falloc->waitq &&
1299 vmf->pgoff >= shmem_falloc->start &&
1300 vmf->pgoff < shmem_falloc->next) {
1301 wait_queue_head_t *shmem_falloc_waitq;
1302 DEFINE_WAIT(shmem_fault_wait);
1303
1304 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1305 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1306 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1307 /* It's polite to up mmap_sem if we can */
f00cdc6d 1308 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1309 ret = VM_FAULT_RETRY;
f00cdc6d 1310 }
8e205f77
HD
1311
1312 shmem_falloc_waitq = shmem_falloc->waitq;
1313 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1314 TASK_UNINTERRUPTIBLE);
1315 spin_unlock(&inode->i_lock);
1316 schedule();
1317
1318 /*
1319 * shmem_falloc_waitq points into the shmem_fallocate()
1320 * stack of the hole-punching task: shmem_falloc_waitq
1321 * is usually invalid by the time we reach here, but
1322 * finish_wait() does not dereference it in that case;
1323 * though i_lock needed lest racing with wake_up_all().
1324 */
1325 spin_lock(&inode->i_lock);
1326 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1327 spin_unlock(&inode->i_lock);
1328 return ret;
f00cdc6d 1329 }
8e205f77 1330 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1331 }
1332
27d54b39 1333 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1334 if (error)
1335 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1336
456f998e
YH
1337 if (ret & VM_FAULT_MAJOR) {
1338 count_vm_event(PGMAJFAULT);
1339 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1340 }
68da9f05 1341 return ret;
1da177e4
LT
1342}
1343
1da177e4 1344#ifdef CONFIG_NUMA
41ffe5d5 1345static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1346{
496ad9aa 1347 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1348 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1349}
1350
d8dc74f2
AB
1351static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1352 unsigned long addr)
1da177e4 1353{
496ad9aa 1354 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1355 pgoff_t index;
1da177e4 1356
41ffe5d5
HD
1357 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1358 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1359}
1360#endif
1361
1362int shmem_lock(struct file *file, int lock, struct user_struct *user)
1363{
496ad9aa 1364 struct inode *inode = file_inode(file);
1da177e4
LT
1365 struct shmem_inode_info *info = SHMEM_I(inode);
1366 int retval = -ENOMEM;
1367
1368 spin_lock(&info->lock);
1369 if (lock && !(info->flags & VM_LOCKED)) {
1370 if (!user_shm_lock(inode->i_size, user))
1371 goto out_nomem;
1372 info->flags |= VM_LOCKED;
89e004ea 1373 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1374 }
1375 if (!lock && (info->flags & VM_LOCKED) && user) {
1376 user_shm_unlock(inode->i_size, user);
1377 info->flags &= ~VM_LOCKED;
89e004ea 1378 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1379 }
1380 retval = 0;
89e004ea 1381
1da177e4
LT
1382out_nomem:
1383 spin_unlock(&info->lock);
1384 return retval;
1385}
1386
9b83a6a8 1387static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1388{
1389 file_accessed(file);
1390 vma->vm_ops = &shmem_vm_ops;
1391 return 0;
1392}
1393
454abafe 1394static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1395 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1396{
1397 struct inode *inode;
1398 struct shmem_inode_info *info;
1399 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1400
5b04c689
PE
1401 if (shmem_reserve_inode(sb))
1402 return NULL;
1da177e4
LT
1403
1404 inode = new_inode(sb);
1405 if (inode) {
85fe4025 1406 inode->i_ino = get_next_ino();
454abafe 1407 inode_init_owner(inode, dir, mode);
1da177e4 1408 inode->i_blocks = 0;
1da177e4
LT
1409 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1410 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1411 inode->i_generation = get_seconds();
1da177e4
LT
1412 info = SHMEM_I(inode);
1413 memset(info, 0, (char *)inode - (char *)info);
1414 spin_lock_init(&info->lock);
0b0a0806 1415 info->flags = flags & VM_NORESERVE;
1da177e4 1416 INIT_LIST_HEAD(&info->swaplist);
38f38657 1417 simple_xattrs_init(&info->xattrs);
72c04902 1418 cache_no_acl(inode);
1da177e4
LT
1419
1420 switch (mode & S_IFMT) {
1421 default:
39f0247d 1422 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1423 init_special_inode(inode, mode, dev);
1424 break;
1425 case S_IFREG:
14fcc23f 1426 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1427 inode->i_op = &shmem_inode_operations;
1428 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1429 mpol_shared_policy_init(&info->policy,
1430 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1431 break;
1432 case S_IFDIR:
d8c76e6f 1433 inc_nlink(inode);
1da177e4
LT
1434 /* Some things misbehave if size == 0 on a directory */
1435 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1436 inode->i_op = &shmem_dir_inode_operations;
1437 inode->i_fop = &simple_dir_operations;
1438 break;
1439 case S_IFLNK:
1440 /*
1441 * Must not load anything in the rbtree,
1442 * mpol_free_shared_policy will not be called.
1443 */
71fe804b 1444 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1445 break;
1446 }
5b04c689
PE
1447 } else
1448 shmem_free_inode(sb);
1da177e4
LT
1449 return inode;
1450}
1451
0cd6144a
JW
1452bool shmem_mapping(struct address_space *mapping)
1453{
1454 return mapping->backing_dev_info == &shmem_backing_dev_info;
1455}
1456
1da177e4 1457#ifdef CONFIG_TMPFS
92e1d5be 1458static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1459static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1460
6d9d88d0
JS
1461#ifdef CONFIG_TMPFS_XATTR
1462static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1463#else
1464#define shmem_initxattrs NULL
1465#endif
1466
1da177e4 1467static int
800d15a5
NP
1468shmem_write_begin(struct file *file, struct address_space *mapping,
1469 loff_t pos, unsigned len, unsigned flags,
1470 struct page **pagep, void **fsdata)
1da177e4 1471{
800d15a5
NP
1472 struct inode *inode = mapping->host;
1473 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
66d2f4d2 1474 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1475}
1476
1477static int
1478shmem_write_end(struct file *file, struct address_space *mapping,
1479 loff_t pos, unsigned len, unsigned copied,
1480 struct page *page, void *fsdata)
1481{
1482 struct inode *inode = mapping->host;
1483
d3602444
HD
1484 if (pos + copied > inode->i_size)
1485 i_size_write(inode, pos + copied);
1486
ec9516fb
HD
1487 if (!PageUptodate(page)) {
1488 if (copied < PAGE_CACHE_SIZE) {
1489 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1490 zero_user_segments(page, 0, from,
1491 from + copied, PAGE_CACHE_SIZE);
1492 }
1493 SetPageUptodate(page);
1494 }
800d15a5 1495 set_page_dirty(page);
6746aff7 1496 unlock_page(page);
800d15a5
NP
1497 page_cache_release(page);
1498
800d15a5 1499 return copied;
1da177e4
LT
1500}
1501
2ba5bbed 1502static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1503{
6e58e79d
AV
1504 struct file *file = iocb->ki_filp;
1505 struct inode *inode = file_inode(file);
1da177e4 1506 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1507 pgoff_t index;
1508 unsigned long offset;
a0ee5ec5 1509 enum sgp_type sgp = SGP_READ;
f7c1d074 1510 int error = 0;
cb66a7a1 1511 ssize_t retval = 0;
6e58e79d 1512 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1513
1514 /*
1515 * Might this read be for a stacking filesystem? Then when reading
1516 * holes of a sparse file, we actually need to allocate those pages,
1517 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1518 */
1519 if (segment_eq(get_fs(), KERNEL_DS))
1520 sgp = SGP_DIRTY;
1da177e4
LT
1521
1522 index = *ppos >> PAGE_CACHE_SHIFT;
1523 offset = *ppos & ~PAGE_CACHE_MASK;
1524
1525 for (;;) {
1526 struct page *page = NULL;
41ffe5d5
HD
1527 pgoff_t end_index;
1528 unsigned long nr, ret;
1da177e4
LT
1529 loff_t i_size = i_size_read(inode);
1530
1531 end_index = i_size >> PAGE_CACHE_SHIFT;
1532 if (index > end_index)
1533 break;
1534 if (index == end_index) {
1535 nr = i_size & ~PAGE_CACHE_MASK;
1536 if (nr <= offset)
1537 break;
1538 }
1539
6e58e79d
AV
1540 error = shmem_getpage(inode, index, &page, sgp, NULL);
1541 if (error) {
1542 if (error == -EINVAL)
1543 error = 0;
1da177e4
LT
1544 break;
1545 }
d3602444
HD
1546 if (page)
1547 unlock_page(page);
1da177e4
LT
1548
1549 /*
1550 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1551 * are called without i_mutex protection against truncate
1da177e4
LT
1552 */
1553 nr = PAGE_CACHE_SIZE;
1554 i_size = i_size_read(inode);
1555 end_index = i_size >> PAGE_CACHE_SHIFT;
1556 if (index == end_index) {
1557 nr = i_size & ~PAGE_CACHE_MASK;
1558 if (nr <= offset) {
1559 if (page)
1560 page_cache_release(page);
1561 break;
1562 }
1563 }
1564 nr -= offset;
1565
1566 if (page) {
1567 /*
1568 * If users can be writing to this page using arbitrary
1569 * virtual addresses, take care about potential aliasing
1570 * before reading the page on the kernel side.
1571 */
1572 if (mapping_writably_mapped(mapping))
1573 flush_dcache_page(page);
1574 /*
1575 * Mark the page accessed if we read the beginning.
1576 */
1577 if (!offset)
1578 mark_page_accessed(page);
b5810039 1579 } else {
1da177e4 1580 page = ZERO_PAGE(0);
b5810039
NP
1581 page_cache_get(page);
1582 }
1da177e4
LT
1583
1584 /*
1585 * Ok, we have the page, and it's up-to-date, so
1586 * now we can copy it to user space...
1da177e4 1587 */
2ba5bbed 1588 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1589 retval += ret;
1da177e4
LT
1590 offset += ret;
1591 index += offset >> PAGE_CACHE_SHIFT;
1592 offset &= ~PAGE_CACHE_MASK;
1593
1594 page_cache_release(page);
2ba5bbed 1595 if (!iov_iter_count(to))
1da177e4 1596 break;
6e58e79d
AV
1597 if (ret < nr) {
1598 error = -EFAULT;
1599 break;
1600 }
1da177e4
LT
1601 cond_resched();
1602 }
1603
1604 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1605 file_accessed(file);
1606 return retval ? retval : error;
1da177e4
LT
1607}
1608
708e3508
HD
1609static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1610 struct pipe_inode_info *pipe, size_t len,
1611 unsigned int flags)
1612{
1613 struct address_space *mapping = in->f_mapping;
71f0e07a 1614 struct inode *inode = mapping->host;
708e3508
HD
1615 unsigned int loff, nr_pages, req_pages;
1616 struct page *pages[PIPE_DEF_BUFFERS];
1617 struct partial_page partial[PIPE_DEF_BUFFERS];
1618 struct page *page;
1619 pgoff_t index, end_index;
1620 loff_t isize, left;
1621 int error, page_nr;
1622 struct splice_pipe_desc spd = {
1623 .pages = pages,
1624 .partial = partial,
047fe360 1625 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1626 .flags = flags,
1627 .ops = &page_cache_pipe_buf_ops,
1628 .spd_release = spd_release_page,
1629 };
1630
71f0e07a 1631 isize = i_size_read(inode);
708e3508
HD
1632 if (unlikely(*ppos >= isize))
1633 return 0;
1634
1635 left = isize - *ppos;
1636 if (unlikely(left < len))
1637 len = left;
1638
1639 if (splice_grow_spd(pipe, &spd))
1640 return -ENOMEM;
1641
1642 index = *ppos >> PAGE_CACHE_SHIFT;
1643 loff = *ppos & ~PAGE_CACHE_MASK;
1644 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1645 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1646
708e3508
HD
1647 spd.nr_pages = find_get_pages_contig(mapping, index,
1648 nr_pages, spd.pages);
1649 index += spd.nr_pages;
708e3508 1650 error = 0;
708e3508 1651
71f0e07a 1652 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1653 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1654 if (error)
1655 break;
1656 unlock_page(page);
708e3508
HD
1657 spd.pages[spd.nr_pages++] = page;
1658 index++;
1659 }
1660
708e3508
HD
1661 index = *ppos >> PAGE_CACHE_SHIFT;
1662 nr_pages = spd.nr_pages;
1663 spd.nr_pages = 0;
71f0e07a 1664
708e3508
HD
1665 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1666 unsigned int this_len;
1667
1668 if (!len)
1669 break;
1670
708e3508
HD
1671 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1672 page = spd.pages[page_nr];
1673
71f0e07a 1674 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1675 error = shmem_getpage(inode, index, &page,
1676 SGP_CACHE, NULL);
1677 if (error)
708e3508 1678 break;
71f0e07a
HD
1679 unlock_page(page);
1680 page_cache_release(spd.pages[page_nr]);
1681 spd.pages[page_nr] = page;
708e3508 1682 }
71f0e07a
HD
1683
1684 isize = i_size_read(inode);
708e3508
HD
1685 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1686 if (unlikely(!isize || index > end_index))
1687 break;
1688
708e3508
HD
1689 if (end_index == index) {
1690 unsigned int plen;
1691
708e3508
HD
1692 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1693 if (plen <= loff)
1694 break;
1695
708e3508
HD
1696 this_len = min(this_len, plen - loff);
1697 len = this_len;
1698 }
1699
1700 spd.partial[page_nr].offset = loff;
1701 spd.partial[page_nr].len = this_len;
1702 len -= this_len;
1703 loff = 0;
1704 spd.nr_pages++;
1705 index++;
1706 }
1707
708e3508
HD
1708 while (page_nr < nr_pages)
1709 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1710
1711 if (spd.nr_pages)
1712 error = splice_to_pipe(pipe, &spd);
1713
047fe360 1714 splice_shrink_spd(&spd);
708e3508
HD
1715
1716 if (error > 0) {
1717 *ppos += error;
1718 file_accessed(in);
1719 }
1720 return error;
1721}
1722
220f2ac9
HD
1723/*
1724 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1725 */
1726static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1727 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1728{
1729 struct page *page;
1730 struct pagevec pvec;
1731 pgoff_t indices[PAGEVEC_SIZE];
1732 bool done = false;
1733 int i;
1734
1735 pagevec_init(&pvec, 0);
1736 pvec.nr = 1; /* start small: we may be there already */
1737 while (!done) {
0cd6144a 1738 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1739 pvec.nr, pvec.pages, indices);
1740 if (!pvec.nr) {
965c8e59 1741 if (whence == SEEK_DATA)
220f2ac9
HD
1742 index = end;
1743 break;
1744 }
1745 for (i = 0; i < pvec.nr; i++, index++) {
1746 if (index < indices[i]) {
965c8e59 1747 if (whence == SEEK_HOLE) {
220f2ac9
HD
1748 done = true;
1749 break;
1750 }
1751 index = indices[i];
1752 }
1753 page = pvec.pages[i];
1754 if (page && !radix_tree_exceptional_entry(page)) {
1755 if (!PageUptodate(page))
1756 page = NULL;
1757 }
1758 if (index >= end ||
965c8e59
AM
1759 (page && whence == SEEK_DATA) ||
1760 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1761 done = true;
1762 break;
1763 }
1764 }
0cd6144a 1765 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1766 pagevec_release(&pvec);
1767 pvec.nr = PAGEVEC_SIZE;
1768 cond_resched();
1769 }
1770 return index;
1771}
1772
965c8e59 1773static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1774{
1775 struct address_space *mapping = file->f_mapping;
1776 struct inode *inode = mapping->host;
1777 pgoff_t start, end;
1778 loff_t new_offset;
1779
965c8e59
AM
1780 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1781 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1782 MAX_LFS_FILESIZE, i_size_read(inode));
1783 mutex_lock(&inode->i_mutex);
1784 /* We're holding i_mutex so we can access i_size directly */
1785
1786 if (offset < 0)
1787 offset = -EINVAL;
1788 else if (offset >= inode->i_size)
1789 offset = -ENXIO;
1790 else {
1791 start = offset >> PAGE_CACHE_SHIFT;
1792 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1793 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1794 new_offset <<= PAGE_CACHE_SHIFT;
1795 if (new_offset > offset) {
1796 if (new_offset < inode->i_size)
1797 offset = new_offset;
965c8e59 1798 else if (whence == SEEK_DATA)
220f2ac9
HD
1799 offset = -ENXIO;
1800 else
1801 offset = inode->i_size;
1802 }
1803 }
1804
387aae6f
HD
1805 if (offset >= 0)
1806 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1807 mutex_unlock(&inode->i_mutex);
1808 return offset;
1809}
1810
83e4fa9c
HD
1811static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1812 loff_t len)
1813{
496ad9aa 1814 struct inode *inode = file_inode(file);
e2d12e22 1815 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1816 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1817 pgoff_t start, index, end;
1818 int error;
83e4fa9c 1819
13ace4d0
HD
1820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1821 return -EOPNOTSUPP;
1822
83e4fa9c
HD
1823 mutex_lock(&inode->i_mutex);
1824
1825 if (mode & FALLOC_FL_PUNCH_HOLE) {
1826 struct address_space *mapping = file->f_mapping;
1827 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1828 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 1829 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 1830
8e205f77 1831 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
1832 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1833 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1834 spin_lock(&inode->i_lock);
1835 inode->i_private = &shmem_falloc;
1836 spin_unlock(&inode->i_lock);
1837
83e4fa9c
HD
1838 if ((u64)unmap_end > (u64)unmap_start)
1839 unmap_mapping_range(mapping, unmap_start,
1840 1 + unmap_end - unmap_start, 0);
1841 shmem_truncate_range(inode, offset, offset + len - 1);
1842 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
1843
1844 spin_lock(&inode->i_lock);
1845 inode->i_private = NULL;
1846 wake_up_all(&shmem_falloc_waitq);
1847 spin_unlock(&inode->i_lock);
83e4fa9c 1848 error = 0;
8e205f77 1849 goto out;
e2d12e22
HD
1850 }
1851
1852 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1853 error = inode_newsize_ok(inode, offset + len);
1854 if (error)
1855 goto out;
1856
1857 start = offset >> PAGE_CACHE_SHIFT;
1858 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1859 /* Try to avoid a swapstorm if len is impossible to satisfy */
1860 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1861 error = -ENOSPC;
1862 goto out;
83e4fa9c
HD
1863 }
1864
8e205f77 1865 shmem_falloc.waitq = NULL;
1aac1400
HD
1866 shmem_falloc.start = start;
1867 shmem_falloc.next = start;
1868 shmem_falloc.nr_falloced = 0;
1869 shmem_falloc.nr_unswapped = 0;
1870 spin_lock(&inode->i_lock);
1871 inode->i_private = &shmem_falloc;
1872 spin_unlock(&inode->i_lock);
1873
e2d12e22
HD
1874 for (index = start; index < end; index++) {
1875 struct page *page;
1876
1877 /*
1878 * Good, the fallocate(2) manpage permits EINTR: we may have
1879 * been interrupted because we are using up too much memory.
1880 */
1881 if (signal_pending(current))
1882 error = -EINTR;
1aac1400
HD
1883 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1884 error = -ENOMEM;
e2d12e22 1885 else
1635f6a7 1886 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1887 NULL);
1888 if (error) {
1635f6a7
HD
1889 /* Remove the !PageUptodate pages we added */
1890 shmem_undo_range(inode,
1891 (loff_t)start << PAGE_CACHE_SHIFT,
1892 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1893 goto undone;
e2d12e22
HD
1894 }
1895
1aac1400
HD
1896 /*
1897 * Inform shmem_writepage() how far we have reached.
1898 * No need for lock or barrier: we have the page lock.
1899 */
1900 shmem_falloc.next++;
1901 if (!PageUptodate(page))
1902 shmem_falloc.nr_falloced++;
1903
e2d12e22 1904 /*
1635f6a7
HD
1905 * If !PageUptodate, leave it that way so that freeable pages
1906 * can be recognized if we need to rollback on error later.
1907 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1908 * than free the pages we are allocating (and SGP_CACHE pages
1909 * might still be clean: we now need to mark those dirty too).
1910 */
1911 set_page_dirty(page);
1912 unlock_page(page);
1913 page_cache_release(page);
1914 cond_resched();
1915 }
1916
1917 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1918 i_size_write(inode, offset + len);
e2d12e22 1919 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1920undone:
1921 spin_lock(&inode->i_lock);
1922 inode->i_private = NULL;
1923 spin_unlock(&inode->i_lock);
e2d12e22 1924out:
83e4fa9c
HD
1925 mutex_unlock(&inode->i_mutex);
1926 return error;
1927}
1928
726c3342 1929static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1930{
726c3342 1931 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1932
1933 buf->f_type = TMPFS_MAGIC;
1934 buf->f_bsize = PAGE_CACHE_SIZE;
1935 buf->f_namelen = NAME_MAX;
0edd73b3 1936 if (sbinfo->max_blocks) {
1da177e4 1937 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1938 buf->f_bavail =
1939 buf->f_bfree = sbinfo->max_blocks -
1940 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1941 }
1942 if (sbinfo->max_inodes) {
1da177e4
LT
1943 buf->f_files = sbinfo->max_inodes;
1944 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1945 }
1946 /* else leave those fields 0 like simple_statfs */
1947 return 0;
1948}
1949
1950/*
1951 * File creation. Allocate an inode, and we're done..
1952 */
1953static int
1a67aafb 1954shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1955{
0b0a0806 1956 struct inode *inode;
1da177e4
LT
1957 int error = -ENOSPC;
1958
454abafe 1959 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1960 if (inode) {
feda821e
CH
1961 error = simple_acl_create(dir, inode);
1962 if (error)
1963 goto out_iput;
2a7dba39 1964 error = security_inode_init_security(inode, dir,
9d8f13ba 1965 &dentry->d_name,
6d9d88d0 1966 shmem_initxattrs, NULL);
feda821e
CH
1967 if (error && error != -EOPNOTSUPP)
1968 goto out_iput;
37ec43cd 1969
718deb6b 1970 error = 0;
1da177e4
LT
1971 dir->i_size += BOGO_DIRENT_SIZE;
1972 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1973 d_instantiate(dentry, inode);
1974 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1975 }
1976 return error;
feda821e
CH
1977out_iput:
1978 iput(inode);
1979 return error;
1da177e4
LT
1980}
1981
60545d0d
AV
1982static int
1983shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1984{
1985 struct inode *inode;
1986 int error = -ENOSPC;
1987
1988 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1989 if (inode) {
1990 error = security_inode_init_security(inode, dir,
1991 NULL,
1992 shmem_initxattrs, NULL);
feda821e
CH
1993 if (error && error != -EOPNOTSUPP)
1994 goto out_iput;
1995 error = simple_acl_create(dir, inode);
1996 if (error)
1997 goto out_iput;
60545d0d
AV
1998 d_tmpfile(dentry, inode);
1999 }
2000 return error;
feda821e
CH
2001out_iput:
2002 iput(inode);
2003 return error;
60545d0d
AV
2004}
2005
18bb1db3 2006static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2007{
2008 int error;
2009
2010 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2011 return error;
d8c76e6f 2012 inc_nlink(dir);
1da177e4
LT
2013 return 0;
2014}
2015
4acdaf27 2016static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2017 bool excl)
1da177e4
LT
2018{
2019 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2020}
2021
2022/*
2023 * Link a file..
2024 */
2025static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2026{
2027 struct inode *inode = old_dentry->d_inode;
5b04c689 2028 int ret;
1da177e4
LT
2029
2030 /*
2031 * No ordinary (disk based) filesystem counts links as inodes;
2032 * but each new link needs a new dentry, pinning lowmem, and
2033 * tmpfs dentries cannot be pruned until they are unlinked.
2034 */
5b04c689
PE
2035 ret = shmem_reserve_inode(inode->i_sb);
2036 if (ret)
2037 goto out;
1da177e4
LT
2038
2039 dir->i_size += BOGO_DIRENT_SIZE;
2040 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2041 inc_nlink(inode);
7de9c6ee 2042 ihold(inode); /* New dentry reference */
1da177e4
LT
2043 dget(dentry); /* Extra pinning count for the created dentry */
2044 d_instantiate(dentry, inode);
5b04c689
PE
2045out:
2046 return ret;
1da177e4
LT
2047}
2048
2049static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2050{
2051 struct inode *inode = dentry->d_inode;
2052
5b04c689
PE
2053 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2054 shmem_free_inode(inode->i_sb);
1da177e4
LT
2055
2056 dir->i_size -= BOGO_DIRENT_SIZE;
2057 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2058 drop_nlink(inode);
1da177e4
LT
2059 dput(dentry); /* Undo the count from "create" - this does all the work */
2060 return 0;
2061}
2062
2063static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2064{
2065 if (!simple_empty(dentry))
2066 return -ENOTEMPTY;
2067
9a53c3a7
DH
2068 drop_nlink(dentry->d_inode);
2069 drop_nlink(dir);
1da177e4
LT
2070 return shmem_unlink(dir, dentry);
2071}
2072
2073/*
2074 * The VFS layer already does all the dentry stuff for rename,
2075 * we just have to decrement the usage count for the target if
2076 * it exists so that the VFS layer correctly free's it when it
2077 * gets overwritten.
2078 */
2079static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2080{
2081 struct inode *inode = old_dentry->d_inode;
2082 int they_are_dirs = S_ISDIR(inode->i_mode);
2083
2084 if (!simple_empty(new_dentry))
2085 return -ENOTEMPTY;
2086
2087 if (new_dentry->d_inode) {
2088 (void) shmem_unlink(new_dir, new_dentry);
2089 if (they_are_dirs)
9a53c3a7 2090 drop_nlink(old_dir);
1da177e4 2091 } else if (they_are_dirs) {
9a53c3a7 2092 drop_nlink(old_dir);
d8c76e6f 2093 inc_nlink(new_dir);
1da177e4
LT
2094 }
2095
2096 old_dir->i_size -= BOGO_DIRENT_SIZE;
2097 new_dir->i_size += BOGO_DIRENT_SIZE;
2098 old_dir->i_ctime = old_dir->i_mtime =
2099 new_dir->i_ctime = new_dir->i_mtime =
2100 inode->i_ctime = CURRENT_TIME;
2101 return 0;
2102}
2103
2104static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2105{
2106 int error;
2107 int len;
2108 struct inode *inode;
9276aad6 2109 struct page *page;
1da177e4
LT
2110 char *kaddr;
2111 struct shmem_inode_info *info;
2112
2113 len = strlen(symname) + 1;
2114 if (len > PAGE_CACHE_SIZE)
2115 return -ENAMETOOLONG;
2116
454abafe 2117 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2118 if (!inode)
2119 return -ENOSPC;
2120
9d8f13ba 2121 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2122 shmem_initxattrs, NULL);
570bc1c2
SS
2123 if (error) {
2124 if (error != -EOPNOTSUPP) {
2125 iput(inode);
2126 return error;
2127 }
2128 error = 0;
2129 }
2130
1da177e4
LT
2131 info = SHMEM_I(inode);
2132 inode->i_size = len-1;
69f07ec9
HD
2133 if (len <= SHORT_SYMLINK_LEN) {
2134 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2135 if (!info->symlink) {
2136 iput(inode);
2137 return -ENOMEM;
2138 }
2139 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2140 } else {
2141 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2142 if (error) {
2143 iput(inode);
2144 return error;
2145 }
14fcc23f 2146 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2147 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2148 kaddr = kmap_atomic(page);
1da177e4 2149 memcpy(kaddr, symname, len);
9b04c5fe 2150 kunmap_atomic(kaddr);
ec9516fb 2151 SetPageUptodate(page);
1da177e4 2152 set_page_dirty(page);
6746aff7 2153 unlock_page(page);
1da177e4
LT
2154 page_cache_release(page);
2155 }
1da177e4
LT
2156 dir->i_size += BOGO_DIRENT_SIZE;
2157 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2158 d_instantiate(dentry, inode);
2159 dget(dentry);
2160 return 0;
2161}
2162
69f07ec9 2163static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2164{
69f07ec9 2165 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2166 return NULL;
1da177e4
LT
2167}
2168
cc314eef 2169static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2170{
2171 struct page *page = NULL;
41ffe5d5
HD
2172 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2173 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2174 if (page)
2175 unlock_page(page);
cc314eef 2176 return page;
1da177e4
LT
2177}
2178
cc314eef 2179static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2180{
2181 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2182 struct page *page = cookie;
1da177e4
LT
2183 kunmap(page);
2184 mark_page_accessed(page);
2185 page_cache_release(page);
1da177e4
LT
2186 }
2187}
2188
b09e0fa4 2189#ifdef CONFIG_TMPFS_XATTR
46711810 2190/*
b09e0fa4
EP
2191 * Superblocks without xattr inode operations may get some security.* xattr
2192 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2193 * like ACLs, we also need to implement the security.* handlers at
2194 * filesystem level, though.
2195 */
2196
6d9d88d0
JS
2197/*
2198 * Callback for security_inode_init_security() for acquiring xattrs.
2199 */
2200static int shmem_initxattrs(struct inode *inode,
2201 const struct xattr *xattr_array,
2202 void *fs_info)
2203{
2204 struct shmem_inode_info *info = SHMEM_I(inode);
2205 const struct xattr *xattr;
38f38657 2206 struct simple_xattr *new_xattr;
6d9d88d0
JS
2207 size_t len;
2208
2209 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2210 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2211 if (!new_xattr)
2212 return -ENOMEM;
2213
2214 len = strlen(xattr->name) + 1;
2215 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2216 GFP_KERNEL);
2217 if (!new_xattr->name) {
2218 kfree(new_xattr);
2219 return -ENOMEM;
2220 }
2221
2222 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2223 XATTR_SECURITY_PREFIX_LEN);
2224 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2225 xattr->name, len);
2226
38f38657 2227 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2228 }
2229
2230 return 0;
2231}
2232
bb435453 2233static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2234#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2235 &posix_acl_access_xattr_handler,
2236 &posix_acl_default_xattr_handler,
b09e0fa4 2237#endif
39f0247d
AG
2238 NULL
2239};
b09e0fa4
EP
2240
2241static int shmem_xattr_validate(const char *name)
2242{
2243 struct { const char *prefix; size_t len; } arr[] = {
2244 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2245 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2246 };
2247 int i;
2248
2249 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250 size_t preflen = arr[i].len;
2251 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2252 if (!name[preflen])
2253 return -EINVAL;
2254 return 0;
2255 }
2256 }
2257 return -EOPNOTSUPP;
2258}
2259
2260static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2261 void *buffer, size_t size)
2262{
38f38657 2263 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2264 int err;
2265
2266 /*
2267 * If this is a request for a synthetic attribute in the system.*
2268 * namespace use the generic infrastructure to resolve a handler
2269 * for it via sb->s_xattr.
2270 */
2271 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2272 return generic_getxattr(dentry, name, buffer, size);
2273
2274 err = shmem_xattr_validate(name);
2275 if (err)
2276 return err;
2277
38f38657 2278 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2279}
2280
2281static int shmem_setxattr(struct dentry *dentry, const char *name,
2282 const void *value, size_t size, int flags)
2283{
38f38657 2284 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2285 int err;
2286
2287 /*
2288 * If this is a request for a synthetic attribute in the system.*
2289 * namespace use the generic infrastructure to resolve a handler
2290 * for it via sb->s_xattr.
2291 */
2292 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2293 return generic_setxattr(dentry, name, value, size, flags);
2294
2295 err = shmem_xattr_validate(name);
2296 if (err)
2297 return err;
2298
38f38657 2299 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2300}
2301
2302static int shmem_removexattr(struct dentry *dentry, const char *name)
2303{
38f38657 2304 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2305 int err;
2306
2307 /*
2308 * If this is a request for a synthetic attribute in the system.*
2309 * namespace use the generic infrastructure to resolve a handler
2310 * for it via sb->s_xattr.
2311 */
2312 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2313 return generic_removexattr(dentry, name);
2314
2315 err = shmem_xattr_validate(name);
2316 if (err)
2317 return err;
2318
38f38657 2319 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2320}
2321
2322static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2323{
38f38657
AR
2324 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2325 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2326}
2327#endif /* CONFIG_TMPFS_XATTR */
2328
69f07ec9 2329static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2330 .readlink = generic_readlink,
69f07ec9 2331 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2332#ifdef CONFIG_TMPFS_XATTR
2333 .setxattr = shmem_setxattr,
2334 .getxattr = shmem_getxattr,
2335 .listxattr = shmem_listxattr,
2336 .removexattr = shmem_removexattr,
2337#endif
2338};
2339
2340static const struct inode_operations shmem_symlink_inode_operations = {
2341 .readlink = generic_readlink,
2342 .follow_link = shmem_follow_link,
2343 .put_link = shmem_put_link,
2344#ifdef CONFIG_TMPFS_XATTR
2345 .setxattr = shmem_setxattr,
2346 .getxattr = shmem_getxattr,
2347 .listxattr = shmem_listxattr,
2348 .removexattr = shmem_removexattr,
39f0247d 2349#endif
b09e0fa4 2350};
39f0247d 2351
91828a40
DG
2352static struct dentry *shmem_get_parent(struct dentry *child)
2353{
2354 return ERR_PTR(-ESTALE);
2355}
2356
2357static int shmem_match(struct inode *ino, void *vfh)
2358{
2359 __u32 *fh = vfh;
2360 __u64 inum = fh[2];
2361 inum = (inum << 32) | fh[1];
2362 return ino->i_ino == inum && fh[0] == ino->i_generation;
2363}
2364
480b116c
CH
2365static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2366 struct fid *fid, int fh_len, int fh_type)
91828a40 2367{
91828a40 2368 struct inode *inode;
480b116c 2369 struct dentry *dentry = NULL;
35c2a7f4 2370 u64 inum;
480b116c
CH
2371
2372 if (fh_len < 3)
2373 return NULL;
91828a40 2374
35c2a7f4
HD
2375 inum = fid->raw[2];
2376 inum = (inum << 32) | fid->raw[1];
2377
480b116c
CH
2378 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2379 shmem_match, fid->raw);
91828a40 2380 if (inode) {
480b116c 2381 dentry = d_find_alias(inode);
91828a40
DG
2382 iput(inode);
2383 }
2384
480b116c 2385 return dentry;
91828a40
DG
2386}
2387
b0b0382b
AV
2388static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2389 struct inode *parent)
91828a40 2390{
5fe0c237
AK
2391 if (*len < 3) {
2392 *len = 3;
94e07a75 2393 return FILEID_INVALID;
5fe0c237 2394 }
91828a40 2395
1d3382cb 2396 if (inode_unhashed(inode)) {
91828a40
DG
2397 /* Unfortunately insert_inode_hash is not idempotent,
2398 * so as we hash inodes here rather than at creation
2399 * time, we need a lock to ensure we only try
2400 * to do it once
2401 */
2402 static DEFINE_SPINLOCK(lock);
2403 spin_lock(&lock);
1d3382cb 2404 if (inode_unhashed(inode))
91828a40
DG
2405 __insert_inode_hash(inode,
2406 inode->i_ino + inode->i_generation);
2407 spin_unlock(&lock);
2408 }
2409
2410 fh[0] = inode->i_generation;
2411 fh[1] = inode->i_ino;
2412 fh[2] = ((__u64)inode->i_ino) >> 32;
2413
2414 *len = 3;
2415 return 1;
2416}
2417
39655164 2418static const struct export_operations shmem_export_ops = {
91828a40 2419 .get_parent = shmem_get_parent,
91828a40 2420 .encode_fh = shmem_encode_fh,
480b116c 2421 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2422};
2423
680d794b
AM
2424static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2425 bool remount)
1da177e4
LT
2426{
2427 char *this_char, *value, *rest;
49cd0a5c 2428 struct mempolicy *mpol = NULL;
8751e039
EB
2429 uid_t uid;
2430 gid_t gid;
1da177e4 2431
b00dc3ad
HD
2432 while (options != NULL) {
2433 this_char = options;
2434 for (;;) {
2435 /*
2436 * NUL-terminate this option: unfortunately,
2437 * mount options form a comma-separated list,
2438 * but mpol's nodelist may also contain commas.
2439 */
2440 options = strchr(options, ',');
2441 if (options == NULL)
2442 break;
2443 options++;
2444 if (!isdigit(*options)) {
2445 options[-1] = '\0';
2446 break;
2447 }
2448 }
1da177e4
LT
2449 if (!*this_char)
2450 continue;
2451 if ((value = strchr(this_char,'=')) != NULL) {
2452 *value++ = 0;
2453 } else {
2454 printk(KERN_ERR
2455 "tmpfs: No value for mount option '%s'\n",
2456 this_char);
49cd0a5c 2457 goto error;
1da177e4
LT
2458 }
2459
2460 if (!strcmp(this_char,"size")) {
2461 unsigned long long size;
2462 size = memparse(value,&rest);
2463 if (*rest == '%') {
2464 size <<= PAGE_SHIFT;
2465 size *= totalram_pages;
2466 do_div(size, 100);
2467 rest++;
2468 }
2469 if (*rest)
2470 goto bad_val;
680d794b
AM
2471 sbinfo->max_blocks =
2472 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2473 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2474 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2475 if (*rest)
2476 goto bad_val;
2477 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2478 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2479 if (*rest)
2480 goto bad_val;
2481 } else if (!strcmp(this_char,"mode")) {
680d794b 2482 if (remount)
1da177e4 2483 continue;
680d794b 2484 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2485 if (*rest)
2486 goto bad_val;
2487 } else if (!strcmp(this_char,"uid")) {
680d794b 2488 if (remount)
1da177e4 2489 continue;
8751e039 2490 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2491 if (*rest)
2492 goto bad_val;
8751e039
EB
2493 sbinfo->uid = make_kuid(current_user_ns(), uid);
2494 if (!uid_valid(sbinfo->uid))
2495 goto bad_val;
1da177e4 2496 } else if (!strcmp(this_char,"gid")) {
680d794b 2497 if (remount)
1da177e4 2498 continue;
8751e039 2499 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2500 if (*rest)
2501 goto bad_val;
8751e039
EB
2502 sbinfo->gid = make_kgid(current_user_ns(), gid);
2503 if (!gid_valid(sbinfo->gid))
2504 goto bad_val;
7339ff83 2505 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2506 mpol_put(mpol);
2507 mpol = NULL;
2508 if (mpol_parse_str(value, &mpol))
7339ff83 2509 goto bad_val;
1da177e4
LT
2510 } else {
2511 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2512 this_char);
49cd0a5c 2513 goto error;
1da177e4
LT
2514 }
2515 }
49cd0a5c 2516 sbinfo->mpol = mpol;
1da177e4
LT
2517 return 0;
2518
2519bad_val:
2520 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2521 value, this_char);
49cd0a5c
GT
2522error:
2523 mpol_put(mpol);
1da177e4
LT
2524 return 1;
2525
2526}
2527
2528static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2529{
2530 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2531 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2532 unsigned long inodes;
2533 int error = -EINVAL;
2534
5f00110f 2535 config.mpol = NULL;
680d794b 2536 if (shmem_parse_options(data, &config, true))
0edd73b3 2537 return error;
1da177e4 2538
0edd73b3 2539 spin_lock(&sbinfo->stat_lock);
0edd73b3 2540 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2541 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2542 goto out;
680d794b 2543 if (config.max_inodes < inodes)
0edd73b3
HD
2544 goto out;
2545 /*
54af6042 2546 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2547 * but we must separately disallow unlimited->limited, because
2548 * in that case we have no record of how much is already in use.
2549 */
680d794b 2550 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2551 goto out;
680d794b 2552 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2553 goto out;
2554
2555 error = 0;
680d794b 2556 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2557 sbinfo->max_inodes = config.max_inodes;
2558 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2559
5f00110f
GT
2560 /*
2561 * Preserve previous mempolicy unless mpol remount option was specified.
2562 */
2563 if (config.mpol) {
2564 mpol_put(sbinfo->mpol);
2565 sbinfo->mpol = config.mpol; /* transfers initial ref */
2566 }
0edd73b3
HD
2567out:
2568 spin_unlock(&sbinfo->stat_lock);
2569 return error;
1da177e4 2570}
680d794b 2571
34c80b1d 2572static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2573{
34c80b1d 2574 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2575
2576 if (sbinfo->max_blocks != shmem_default_max_blocks())
2577 seq_printf(seq, ",size=%luk",
2578 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2579 if (sbinfo->max_inodes != shmem_default_max_inodes())
2580 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2581 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2582 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2583 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2584 seq_printf(seq, ",uid=%u",
2585 from_kuid_munged(&init_user_ns, sbinfo->uid));
2586 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2587 seq_printf(seq, ",gid=%u",
2588 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2589 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2590 return 0;
2591}
2592#endif /* CONFIG_TMPFS */
1da177e4
LT
2593
2594static void shmem_put_super(struct super_block *sb)
2595{
602586a8
HD
2596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597
2598 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2599 mpol_put(sbinfo->mpol);
602586a8 2600 kfree(sbinfo);
1da177e4
LT
2601 sb->s_fs_info = NULL;
2602}
2603
2b2af54a 2604int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2605{
2606 struct inode *inode;
0edd73b3 2607 struct shmem_sb_info *sbinfo;
680d794b
AM
2608 int err = -ENOMEM;
2609
2610 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2611 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2612 L1_CACHE_BYTES), GFP_KERNEL);
2613 if (!sbinfo)
2614 return -ENOMEM;
2615
680d794b 2616 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2617 sbinfo->uid = current_fsuid();
2618 sbinfo->gid = current_fsgid();
680d794b 2619 sb->s_fs_info = sbinfo;
1da177e4 2620
0edd73b3 2621#ifdef CONFIG_TMPFS
1da177e4
LT
2622 /*
2623 * Per default we only allow half of the physical ram per
2624 * tmpfs instance, limiting inodes to one per page of lowmem;
2625 * but the internal instance is left unlimited.
2626 */
ca4e0519 2627 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
2628 sbinfo->max_blocks = shmem_default_max_blocks();
2629 sbinfo->max_inodes = shmem_default_max_inodes();
2630 if (shmem_parse_options(data, sbinfo, false)) {
2631 err = -EINVAL;
2632 goto failed;
2633 }
ca4e0519
AV
2634 } else {
2635 sb->s_flags |= MS_NOUSER;
1da177e4 2636 }
91828a40 2637 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2638 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2639#else
2640 sb->s_flags |= MS_NOUSER;
2641#endif
2642
0edd73b3 2643 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2644 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2645 goto failed;
680d794b 2646 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2647
285b2c4f 2648 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2649 sb->s_blocksize = PAGE_CACHE_SIZE;
2650 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2651 sb->s_magic = TMPFS_MAGIC;
2652 sb->s_op = &shmem_ops;
cfd95a9c 2653 sb->s_time_gran = 1;
b09e0fa4 2654#ifdef CONFIG_TMPFS_XATTR
39f0247d 2655 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2656#endif
2657#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2658 sb->s_flags |= MS_POSIXACL;
2659#endif
0edd73b3 2660
454abafe 2661 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2662 if (!inode)
2663 goto failed;
680d794b
AM
2664 inode->i_uid = sbinfo->uid;
2665 inode->i_gid = sbinfo->gid;
318ceed0
AV
2666 sb->s_root = d_make_root(inode);
2667 if (!sb->s_root)
48fde701 2668 goto failed;
1da177e4
LT
2669 return 0;
2670
1da177e4
LT
2671failed:
2672 shmem_put_super(sb);
2673 return err;
2674}
2675
fcc234f8 2676static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2677
2678static struct inode *shmem_alloc_inode(struct super_block *sb)
2679{
41ffe5d5
HD
2680 struct shmem_inode_info *info;
2681 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2682 if (!info)
1da177e4 2683 return NULL;
41ffe5d5 2684 return &info->vfs_inode;
1da177e4
LT
2685}
2686
41ffe5d5 2687static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2688{
2689 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2690 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2691}
2692
1da177e4
LT
2693static void shmem_destroy_inode(struct inode *inode)
2694{
09208d15 2695 if (S_ISREG(inode->i_mode))
1da177e4 2696 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2697 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2698}
2699
41ffe5d5 2700static void shmem_init_inode(void *foo)
1da177e4 2701{
41ffe5d5
HD
2702 struct shmem_inode_info *info = foo;
2703 inode_init_once(&info->vfs_inode);
1da177e4
LT
2704}
2705
41ffe5d5 2706static int shmem_init_inodecache(void)
1da177e4
LT
2707{
2708 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2709 sizeof(struct shmem_inode_info),
41ffe5d5 2710 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2711 return 0;
2712}
2713
41ffe5d5 2714static void shmem_destroy_inodecache(void)
1da177e4 2715{
1a1d92c1 2716 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2717}
2718
f5e54d6e 2719static const struct address_space_operations shmem_aops = {
1da177e4 2720 .writepage = shmem_writepage,
76719325 2721 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2722#ifdef CONFIG_TMPFS
800d15a5
NP
2723 .write_begin = shmem_write_begin,
2724 .write_end = shmem_write_end,
1da177e4 2725#endif
304dbdb7 2726 .migratepage = migrate_page,
aa261f54 2727 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2728};
2729
15ad7cdc 2730static const struct file_operations shmem_file_operations = {
1da177e4
LT
2731 .mmap = shmem_mmap,
2732#ifdef CONFIG_TMPFS
220f2ac9 2733 .llseek = shmem_file_llseek,
2ba5bbed 2734 .read = new_sync_read,
8174202b 2735 .write = new_sync_write,
2ba5bbed 2736 .read_iter = shmem_file_read_iter,
8174202b 2737 .write_iter = generic_file_write_iter,
1b061d92 2738 .fsync = noop_fsync,
708e3508 2739 .splice_read = shmem_file_splice_read,
f6cb85d0 2740 .splice_write = iter_file_splice_write,
83e4fa9c 2741 .fallocate = shmem_fallocate,
1da177e4
LT
2742#endif
2743};
2744
92e1d5be 2745static const struct inode_operations shmem_inode_operations = {
94c1e62d 2746 .setattr = shmem_setattr,
b09e0fa4
EP
2747#ifdef CONFIG_TMPFS_XATTR
2748 .setxattr = shmem_setxattr,
2749 .getxattr = shmem_getxattr,
2750 .listxattr = shmem_listxattr,
2751 .removexattr = shmem_removexattr,
feda821e 2752 .set_acl = simple_set_acl,
b09e0fa4 2753#endif
1da177e4
LT
2754};
2755
92e1d5be 2756static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2757#ifdef CONFIG_TMPFS
2758 .create = shmem_create,
2759 .lookup = simple_lookup,
2760 .link = shmem_link,
2761 .unlink = shmem_unlink,
2762 .symlink = shmem_symlink,
2763 .mkdir = shmem_mkdir,
2764 .rmdir = shmem_rmdir,
2765 .mknod = shmem_mknod,
2766 .rename = shmem_rename,
60545d0d 2767 .tmpfile = shmem_tmpfile,
1da177e4 2768#endif
b09e0fa4
EP
2769#ifdef CONFIG_TMPFS_XATTR
2770 .setxattr = shmem_setxattr,
2771 .getxattr = shmem_getxattr,
2772 .listxattr = shmem_listxattr,
2773 .removexattr = shmem_removexattr,
2774#endif
39f0247d 2775#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2776 .setattr = shmem_setattr,
feda821e 2777 .set_acl = simple_set_acl,
39f0247d
AG
2778#endif
2779};
2780
92e1d5be 2781static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2782#ifdef CONFIG_TMPFS_XATTR
2783 .setxattr = shmem_setxattr,
2784 .getxattr = shmem_getxattr,
2785 .listxattr = shmem_listxattr,
2786 .removexattr = shmem_removexattr,
2787#endif
39f0247d 2788#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2789 .setattr = shmem_setattr,
feda821e 2790 .set_acl = simple_set_acl,
39f0247d 2791#endif
1da177e4
LT
2792};
2793
759b9775 2794static const struct super_operations shmem_ops = {
1da177e4
LT
2795 .alloc_inode = shmem_alloc_inode,
2796 .destroy_inode = shmem_destroy_inode,
2797#ifdef CONFIG_TMPFS
2798 .statfs = shmem_statfs,
2799 .remount_fs = shmem_remount_fs,
680d794b 2800 .show_options = shmem_show_options,
1da177e4 2801#endif
1f895f75 2802 .evict_inode = shmem_evict_inode,
1da177e4
LT
2803 .drop_inode = generic_delete_inode,
2804 .put_super = shmem_put_super,
2805};
2806
f0f37e2f 2807static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2808 .fault = shmem_fault,
d7c17551 2809 .map_pages = filemap_map_pages,
1da177e4
LT
2810#ifdef CONFIG_NUMA
2811 .set_policy = shmem_set_policy,
2812 .get_policy = shmem_get_policy,
2813#endif
0b173bc4 2814 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2815};
2816
3c26ff6e
AV
2817static struct dentry *shmem_mount(struct file_system_type *fs_type,
2818 int flags, const char *dev_name, void *data)
1da177e4 2819{
3c26ff6e 2820 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2821}
2822
41ffe5d5 2823static struct file_system_type shmem_fs_type = {
1da177e4
LT
2824 .owner = THIS_MODULE,
2825 .name = "tmpfs",
3c26ff6e 2826 .mount = shmem_mount,
1da177e4 2827 .kill_sb = kill_litter_super,
2b8576cb 2828 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2829};
1da177e4 2830
41ffe5d5 2831int __init shmem_init(void)
1da177e4
LT
2832{
2833 int error;
2834
16203a7a
RL
2835 /* If rootfs called this, don't re-init */
2836 if (shmem_inode_cachep)
2837 return 0;
2838
e0bf68dd
PZ
2839 error = bdi_init(&shmem_backing_dev_info);
2840 if (error)
2841 goto out4;
2842
41ffe5d5 2843 error = shmem_init_inodecache();
1da177e4
LT
2844 if (error)
2845 goto out3;
2846
41ffe5d5 2847 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2848 if (error) {
2849 printk(KERN_ERR "Could not register tmpfs\n");
2850 goto out2;
2851 }
95dc112a 2852
ca4e0519 2853 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
2854 if (IS_ERR(shm_mnt)) {
2855 error = PTR_ERR(shm_mnt);
2856 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2857 goto out1;
2858 }
2859 return 0;
2860
2861out1:
41ffe5d5 2862 unregister_filesystem(&shmem_fs_type);
1da177e4 2863out2:
41ffe5d5 2864 shmem_destroy_inodecache();
1da177e4 2865out3:
e0bf68dd
PZ
2866 bdi_destroy(&shmem_backing_dev_info);
2867out4:
1da177e4
LT
2868 shm_mnt = ERR_PTR(error);
2869 return error;
2870}
853ac43a
MM
2871
2872#else /* !CONFIG_SHMEM */
2873
2874/*
2875 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2876 *
2877 * This is intended for small system where the benefits of the full
2878 * shmem code (swap-backed and resource-limited) are outweighed by
2879 * their complexity. On systems without swap this code should be
2880 * effectively equivalent, but much lighter weight.
2881 */
2882
41ffe5d5 2883static struct file_system_type shmem_fs_type = {
853ac43a 2884 .name = "tmpfs",
3c26ff6e 2885 .mount = ramfs_mount,
853ac43a 2886 .kill_sb = kill_litter_super,
2b8576cb 2887 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2888};
2889
41ffe5d5 2890int __init shmem_init(void)
853ac43a 2891{
41ffe5d5 2892 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2893
41ffe5d5 2894 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2895 BUG_ON(IS_ERR(shm_mnt));
2896
2897 return 0;
2898}
2899
41ffe5d5 2900int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2901{
2902 return 0;
2903}
2904
3f96b79a
HD
2905int shmem_lock(struct file *file, int lock, struct user_struct *user)
2906{
2907 return 0;
2908}
2909
24513264
HD
2910void shmem_unlock_mapping(struct address_space *mapping)
2911{
2912}
2913
41ffe5d5 2914void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2915{
41ffe5d5 2916 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2917}
2918EXPORT_SYMBOL_GPL(shmem_truncate_range);
2919
0b0a0806
HD
2920#define shmem_vm_ops generic_file_vm_ops
2921#define shmem_file_operations ramfs_file_operations
454abafe 2922#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2923#define shmem_acct_size(flags, size) 0
2924#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2925
2926#endif /* CONFIG_SHMEM */
2927
2928/* common code */
1da177e4 2929
3451538a 2930static struct dentry_operations anon_ops = {
118b2302 2931 .d_dname = simple_dname
3451538a
AV
2932};
2933
c7277090
EP
2934static struct file *__shmem_file_setup(const char *name, loff_t size,
2935 unsigned long flags, unsigned int i_flags)
1da177e4 2936{
6b4d0b27 2937 struct file *res;
1da177e4 2938 struct inode *inode;
2c48b9c4 2939 struct path path;
3451538a 2940 struct super_block *sb;
1da177e4
LT
2941 struct qstr this;
2942
2943 if (IS_ERR(shm_mnt))
6b4d0b27 2944 return ERR_CAST(shm_mnt);
1da177e4 2945
285b2c4f 2946 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2947 return ERR_PTR(-EINVAL);
2948
2949 if (shmem_acct_size(flags, size))
2950 return ERR_PTR(-ENOMEM);
2951
6b4d0b27 2952 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2953 this.name = name;
2954 this.len = strlen(name);
2955 this.hash = 0; /* will go */
3451538a 2956 sb = shm_mnt->mnt_sb;
66ee4b88 2957 path.mnt = mntget(shm_mnt);
3451538a 2958 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2959 if (!path.dentry)
1da177e4 2960 goto put_memory;
3451538a 2961 d_set_d_op(path.dentry, &anon_ops);
1da177e4 2962
6b4d0b27 2963 res = ERR_PTR(-ENOSPC);
3451538a 2964 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2965 if (!inode)
66ee4b88 2966 goto put_memory;
1da177e4 2967
c7277090 2968 inode->i_flags |= i_flags;
2c48b9c4 2969 d_instantiate(path.dentry, inode);
1da177e4 2970 inode->i_size = size;
6d6b77f1 2971 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
2972 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2973 if (IS_ERR(res))
66ee4b88 2974 goto put_path;
4b42af81 2975
6b4d0b27 2976 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 2977 &shmem_file_operations);
6b4d0b27 2978 if (IS_ERR(res))
66ee4b88 2979 goto put_path;
4b42af81 2980
6b4d0b27 2981 return res;
1da177e4 2982
1da177e4
LT
2983put_memory:
2984 shmem_unacct_size(flags, size);
66ee4b88
KK
2985put_path:
2986 path_put(&path);
6b4d0b27 2987 return res;
1da177e4 2988}
c7277090
EP
2989
2990/**
2991 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2992 * kernel internal. There will be NO LSM permission checks against the
2993 * underlying inode. So users of this interface must do LSM checks at a
2994 * higher layer. The one user is the big_key implementation. LSM checks
2995 * are provided at the key level rather than the inode level.
2996 * @name: name for dentry (to be seen in /proc/<pid>/maps
2997 * @size: size to be set for the file
2998 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2999 */
3000struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3001{
3002 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3003}
3004
3005/**
3006 * shmem_file_setup - get an unlinked file living in tmpfs
3007 * @name: name for dentry (to be seen in /proc/<pid>/maps
3008 * @size: size to be set for the file
3009 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3010 */
3011struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3012{
3013 return __shmem_file_setup(name, size, flags, 0);
3014}
395e0ddc 3015EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3016
46711810 3017/**
1da177e4 3018 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3019 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3020 */
3021int shmem_zero_setup(struct vm_area_struct *vma)
3022{
3023 struct file *file;
3024 loff_t size = vma->vm_end - vma->vm_start;
3025
3026 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3027 if (IS_ERR(file))
3028 return PTR_ERR(file);
3029
3030 if (vma->vm_file)
3031 fput(vma->vm_file);
3032 vma->vm_file = file;
3033 vma->vm_ops = &shmem_vm_ops;
3034 return 0;
3035}
d9d90e5e
HD
3036
3037/**
3038 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3039 * @mapping: the page's address_space
3040 * @index: the page index
3041 * @gfp: the page allocator flags to use if allocating
3042 *
3043 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3044 * with any new page allocations done using the specified allocation flags.
3045 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3046 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3047 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3048 *
68da9f05
HD
3049 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3050 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3051 */
3052struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3053 pgoff_t index, gfp_t gfp)
3054{
68da9f05
HD
3055#ifdef CONFIG_SHMEM
3056 struct inode *inode = mapping->host;
9276aad6 3057 struct page *page;
68da9f05
HD
3058 int error;
3059
3060 BUG_ON(mapping->a_ops != &shmem_aops);
3061 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3062 if (error)
3063 page = ERR_PTR(error);
3064 else
3065 unlock_page(page);
3066 return page;
3067#else
3068 /*
3069 * The tiny !SHMEM case uses ramfs without swap
3070 */
d9d90e5e 3071 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3072#endif
d9d90e5e
HD
3073}
3074EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);