]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
mm, rmap: account shmem thp pages
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
dd56b046
MG
76#include "internal.h"
77
09cbfeaf
KS
78#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
79#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 80
1da177e4
LT
81/* Pretend that each entry is of this size in directory's i_size */
82#define BOGO_DIRENT_SIZE 20
83
69f07ec9
HD
84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85#define SHORT_SYMLINK_LEN 128
86
1aac1400 87/*
f00cdc6d
HD
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
91 */
92struct shmem_falloc {
8e205f77 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98};
99
285b2c4f 100/* Flag allocation requirements to shmem_getpage */
1da177e4 101enum sgp_type {
1da177e4
LT
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
1635f6a7
HD
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b
AM
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
68da9f05
HD
126
127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 128 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
9e18eb29 131 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
68da9f05 132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
75edd345 172 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176static inline int shmem_acct_block(unsigned long flags)
177{
0b0a0806 178 return (flags & VM_NORESERVE) ?
09cbfeaf 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
1da177e4
LT
180}
181
182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183{
0b0a0806 184 if (flags & VM_NORESERVE)
09cbfeaf 185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
186}
187
759b9775 188static const struct super_operations shmem_ops;
f5e54d6e 189static const struct address_space_operations shmem_aops;
15ad7cdc 190static const struct file_operations shmem_file_operations;
92e1d5be
AV
191static const struct inode_operations shmem_inode_operations;
192static const struct inode_operations shmem_dir_inode_operations;
193static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 194static const struct vm_operations_struct shmem_vm_ops;
1da177e4 195
1da177e4 196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
09cbfeaf 303 get_page(page);
b065b432
HD
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 321 put_page(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 341 put_page(page);
6922c0c7
HD
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
6a15a370
VB
362/*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 364 * given offsets are swapped out.
6a15a370
VB
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
48131e03
VB
369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
6a15a370 371{
6a15a370
VB
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
48131e03 375 unsigned long swapped = 0;
6a15a370
VB
376
377 rcu_read_lock();
378
6a15a370
VB
379 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
380 if (iter.index >= end)
381 break;
382
383 page = radix_tree_deref_slot(slot);
384
2cf938aa
MW
385 if (radix_tree_deref_retry(page)) {
386 slot = radix_tree_iter_retry(&iter);
387 continue;
388 }
6a15a370
VB
389
390 if (radix_tree_exceptional_entry(page))
391 swapped++;
392
393 if (need_resched()) {
394 cond_resched_rcu();
7165092f 395 slot = radix_tree_iter_next(&iter);
6a15a370
VB
396 }
397 }
398
399 rcu_read_unlock();
400
401 return swapped << PAGE_SHIFT;
402}
403
48131e03
VB
404/*
405 * Determine (in bytes) how many of the shmem object's pages mapped by the
406 * given vma is swapped out.
407 *
408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
409 * as long as the inode doesn't go away and racy results are not a problem.
410 */
411unsigned long shmem_swap_usage(struct vm_area_struct *vma)
412{
413 struct inode *inode = file_inode(vma->vm_file);
414 struct shmem_inode_info *info = SHMEM_I(inode);
415 struct address_space *mapping = inode->i_mapping;
416 unsigned long swapped;
417
418 /* Be careful as we don't hold info->lock */
419 swapped = READ_ONCE(info->swapped);
420
421 /*
422 * The easier cases are when the shmem object has nothing in swap, or
423 * the vma maps it whole. Then we can simply use the stats that we
424 * already track.
425 */
426 if (!swapped)
427 return 0;
428
429 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
430 return swapped << PAGE_SHIFT;
431
432 /* Here comes the more involved part */
433 return shmem_partial_swap_usage(mapping,
434 linear_page_index(vma, vma->vm_start),
435 linear_page_index(vma, vma->vm_end));
436}
437
24513264
HD
438/*
439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
440 */
441void shmem_unlock_mapping(struct address_space *mapping)
442{
443 struct pagevec pvec;
444 pgoff_t indices[PAGEVEC_SIZE];
445 pgoff_t index = 0;
446
447 pagevec_init(&pvec, 0);
448 /*
449 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
450 */
451 while (!mapping_unevictable(mapping)) {
452 /*
453 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
454 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
455 */
0cd6144a
JW
456 pvec.nr = find_get_entries(mapping, index,
457 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
458 if (!pvec.nr)
459 break;
460 index = indices[pvec.nr - 1] + 1;
0cd6144a 461 pagevec_remove_exceptionals(&pvec);
24513264
HD
462 check_move_unevictable_pages(pvec.pages, pvec.nr);
463 pagevec_release(&pvec);
464 cond_resched();
465 }
7a5d0fbb
HD
466}
467
468/*
469 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 471 */
1635f6a7
HD
472static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
473 bool unfalloc)
1da177e4 474{
285b2c4f 475 struct address_space *mapping = inode->i_mapping;
1da177e4 476 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
477 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
478 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
479 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
480 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 481 struct pagevec pvec;
7a5d0fbb
HD
482 pgoff_t indices[PAGEVEC_SIZE];
483 long nr_swaps_freed = 0;
285b2c4f 484 pgoff_t index;
bda97eab
HD
485 int i;
486
83e4fa9c
HD
487 if (lend == -1)
488 end = -1; /* unsigned, so actually very big */
bda97eab
HD
489
490 pagevec_init(&pvec, 0);
491 index = start;
83e4fa9c 492 while (index < end) {
0cd6144a
JW
493 pvec.nr = find_get_entries(mapping, index,
494 min(end - index, (pgoff_t)PAGEVEC_SIZE),
495 pvec.pages, indices);
7a5d0fbb
HD
496 if (!pvec.nr)
497 break;
bda97eab
HD
498 for (i = 0; i < pagevec_count(&pvec); i++) {
499 struct page *page = pvec.pages[i];
500
7a5d0fbb 501 index = indices[i];
83e4fa9c 502 if (index >= end)
bda97eab
HD
503 break;
504
7a5d0fbb 505 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
506 if (unfalloc)
507 continue;
7a5d0fbb
HD
508 nr_swaps_freed += !shmem_free_swap(mapping,
509 index, page);
bda97eab 510 continue;
7a5d0fbb
HD
511 }
512
513 if (!trylock_page(page))
bda97eab 514 continue;
1635f6a7
HD
515 if (!unfalloc || !PageUptodate(page)) {
516 if (page->mapping == mapping) {
309381fe 517 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
518 truncate_inode_page(mapping, page);
519 }
bda97eab 520 }
bda97eab
HD
521 unlock_page(page);
522 }
0cd6144a 523 pagevec_remove_exceptionals(&pvec);
24513264 524 pagevec_release(&pvec);
bda97eab
HD
525 cond_resched();
526 index++;
527 }
1da177e4 528
83e4fa9c 529 if (partial_start) {
bda97eab 530 struct page *page = NULL;
9e18eb29 531 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 532 if (page) {
09cbfeaf 533 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
534 if (start > end) {
535 top = partial_end;
536 partial_end = 0;
537 }
538 zero_user_segment(page, partial_start, top);
539 set_page_dirty(page);
540 unlock_page(page);
09cbfeaf 541 put_page(page);
83e4fa9c
HD
542 }
543 }
544 if (partial_end) {
545 struct page *page = NULL;
9e18eb29 546 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
547 if (page) {
548 zero_user_segment(page, 0, partial_end);
bda97eab
HD
549 set_page_dirty(page);
550 unlock_page(page);
09cbfeaf 551 put_page(page);
bda97eab
HD
552 }
553 }
83e4fa9c
HD
554 if (start >= end)
555 return;
bda97eab
HD
556
557 index = start;
b1a36650 558 while (index < end) {
bda97eab 559 cond_resched();
0cd6144a
JW
560
561 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 562 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 563 pvec.pages, indices);
7a5d0fbb 564 if (!pvec.nr) {
b1a36650
HD
565 /* If all gone or hole-punch or unfalloc, we're done */
566 if (index == start || end != -1)
bda97eab 567 break;
b1a36650 568 /* But if truncating, restart to make sure all gone */
bda97eab
HD
569 index = start;
570 continue;
571 }
bda97eab
HD
572 for (i = 0; i < pagevec_count(&pvec); i++) {
573 struct page *page = pvec.pages[i];
574
7a5d0fbb 575 index = indices[i];
83e4fa9c 576 if (index >= end)
bda97eab
HD
577 break;
578
7a5d0fbb 579 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
580 if (unfalloc)
581 continue;
b1a36650
HD
582 if (shmem_free_swap(mapping, index, page)) {
583 /* Swap was replaced by page: retry */
584 index--;
585 break;
586 }
587 nr_swaps_freed++;
7a5d0fbb
HD
588 continue;
589 }
590
bda97eab 591 lock_page(page);
1635f6a7
HD
592 if (!unfalloc || !PageUptodate(page)) {
593 if (page->mapping == mapping) {
309381fe 594 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 595 truncate_inode_page(mapping, page);
b1a36650
HD
596 } else {
597 /* Page was replaced by swap: retry */
598 unlock_page(page);
599 index--;
600 break;
1635f6a7 601 }
7a5d0fbb 602 }
bda97eab
HD
603 unlock_page(page);
604 }
0cd6144a 605 pagevec_remove_exceptionals(&pvec);
24513264 606 pagevec_release(&pvec);
bda97eab
HD
607 index++;
608 }
94c1e62d 609
1da177e4 610 spin_lock(&info->lock);
7a5d0fbb 611 info->swapped -= nr_swaps_freed;
1da177e4
LT
612 shmem_recalc_inode(inode);
613 spin_unlock(&info->lock);
1635f6a7 614}
1da177e4 615
1635f6a7
HD
616void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
617{
618 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 619 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 620}
94c1e62d 621EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 622
44a30220
YZ
623static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
624 struct kstat *stat)
625{
626 struct inode *inode = dentry->d_inode;
627 struct shmem_inode_info *info = SHMEM_I(inode);
628
d0424c42
HD
629 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
630 spin_lock(&info->lock);
631 shmem_recalc_inode(inode);
632 spin_unlock(&info->lock);
633 }
44a30220 634 generic_fillattr(inode, stat);
44a30220
YZ
635 return 0;
636}
637
94c1e62d 638static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 639{
75c3cfa8 640 struct inode *inode = d_inode(dentry);
40e041a2 641 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
642 int error;
643
db78b877
CH
644 error = inode_change_ok(inode, attr);
645 if (error)
646 return error;
647
94c1e62d
HD
648 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
649 loff_t oldsize = inode->i_size;
650 loff_t newsize = attr->ia_size;
3889e6e7 651
40e041a2
DH
652 /* protected by i_mutex */
653 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
654 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
655 return -EPERM;
656
94c1e62d 657 if (newsize != oldsize) {
77142517
KK
658 error = shmem_reacct_size(SHMEM_I(inode)->flags,
659 oldsize, newsize);
660 if (error)
661 return error;
94c1e62d
HD
662 i_size_write(inode, newsize);
663 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
664 }
afa2db2f 665 if (newsize <= oldsize) {
94c1e62d 666 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
667 if (oldsize > holebegin)
668 unmap_mapping_range(inode->i_mapping,
669 holebegin, 0, 1);
670 if (info->alloced)
671 shmem_truncate_range(inode,
672 newsize, (loff_t)-1);
94c1e62d 673 /* unmap again to remove racily COWed private pages */
d0424c42
HD
674 if (oldsize > holebegin)
675 unmap_mapping_range(inode->i_mapping,
676 holebegin, 0, 1);
94c1e62d 677 }
1da177e4
LT
678 }
679
db78b877 680 setattr_copy(inode, attr);
db78b877 681 if (attr->ia_valid & ATTR_MODE)
feda821e 682 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
683 return error;
684}
685
1f895f75 686static void shmem_evict_inode(struct inode *inode)
1da177e4 687{
1da177e4
LT
688 struct shmem_inode_info *info = SHMEM_I(inode);
689
3889e6e7 690 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
691 shmem_unacct_size(info->flags, inode->i_size);
692 inode->i_size = 0;
3889e6e7 693 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 694 if (!list_empty(&info->swaplist)) {
cb5f7b9a 695 mutex_lock(&shmem_swaplist_mutex);
1da177e4 696 list_del_init(&info->swaplist);
cb5f7b9a 697 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 698 }
3ed47db3 699 }
b09e0fa4 700
38f38657 701 simple_xattrs_free(&info->xattrs);
0f3c42f5 702 WARN_ON(inode->i_blocks);
5b04c689 703 shmem_free_inode(inode->i_sb);
dbd5768f 704 clear_inode(inode);
1da177e4
LT
705}
706
46f65ec1
HD
707/*
708 * If swap found in inode, free it and move page from swapcache to filecache.
709 */
41ffe5d5 710static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 711 swp_entry_t swap, struct page **pagep)
1da177e4 712{
285b2c4f 713 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 714 void *radswap;
41ffe5d5 715 pgoff_t index;
bde05d1c
HD
716 gfp_t gfp;
717 int error = 0;
1da177e4 718
46f65ec1 719 radswap = swp_to_radix_entry(swap);
e504f3fd 720 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 721 if (index == -1)
00501b53 722 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 723
1b1b32f2
HD
724 /*
725 * Move _head_ to start search for next from here.
1f895f75 726 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 727 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 728 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
729 */
730 if (shmem_swaplist.next != &info->swaplist)
731 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 732
bde05d1c
HD
733 gfp = mapping_gfp_mask(mapping);
734 if (shmem_should_replace_page(*pagep, gfp)) {
735 mutex_unlock(&shmem_swaplist_mutex);
736 error = shmem_replace_page(pagep, gfp, info, index);
737 mutex_lock(&shmem_swaplist_mutex);
738 /*
739 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
740 * allocation, but the inode might have been freed while we
741 * dropped it: although a racing shmem_evict_inode() cannot
742 * complete without emptying the radix_tree, our page lock
743 * on this swapcache page is not enough to prevent that -
744 * free_swap_and_cache() of our swap entry will only
745 * trylock_page(), removing swap from radix_tree whatever.
746 *
747 * We must not proceed to shmem_add_to_page_cache() if the
748 * inode has been freed, but of course we cannot rely on
749 * inode or mapping or info to check that. However, we can
750 * safely check if our swap entry is still in use (and here
751 * it can't have got reused for another page): if it's still
752 * in use, then the inode cannot have been freed yet, and we
753 * can safely proceed (if it's no longer in use, that tells
754 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
755 */
756 if (!page_swapcount(*pagep))
757 error = -ENOENT;
758 }
759
d13d1443 760 /*
778dd893
HD
761 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
762 * but also to hold up shmem_evict_inode(): so inode cannot be freed
763 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 764 */
bde05d1c
HD
765 if (!error)
766 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 767 radswap);
48f170fb 768 if (error != -ENOMEM) {
46f65ec1
HD
769 /*
770 * Truncation and eviction use free_swap_and_cache(), which
771 * only does trylock page: if we raced, best clean up here.
772 */
bde05d1c
HD
773 delete_from_swap_cache(*pagep);
774 set_page_dirty(*pagep);
46f65ec1
HD
775 if (!error) {
776 spin_lock(&info->lock);
777 info->swapped--;
778 spin_unlock(&info->lock);
779 swap_free(swap);
780 }
1da177e4 781 }
2e0e26c7 782 return error;
1da177e4
LT
783}
784
785/*
46f65ec1 786 * Search through swapped inodes to find and replace swap by page.
1da177e4 787 */
41ffe5d5 788int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 789{
41ffe5d5 790 struct list_head *this, *next;
1da177e4 791 struct shmem_inode_info *info;
00501b53 792 struct mem_cgroup *memcg;
bde05d1c
HD
793 int error = 0;
794
795 /*
796 * There's a faint possibility that swap page was replaced before
0142ef6c 797 * caller locked it: caller will come back later with the right page.
bde05d1c 798 */
0142ef6c 799 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 800 goto out;
778dd893
HD
801
802 /*
803 * Charge page using GFP_KERNEL while we can wait, before taking
804 * the shmem_swaplist_mutex which might hold up shmem_writepage().
805 * Charged back to the user (not to caller) when swap account is used.
778dd893 806 */
f627c2f5
KS
807 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
808 false);
778dd893
HD
809 if (error)
810 goto out;
46f65ec1 811 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 812 error = -EAGAIN;
1da177e4 813
cb5f7b9a 814 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
815 list_for_each_safe(this, next, &shmem_swaplist) {
816 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 817 if (info->swapped)
00501b53 818 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
819 else
820 list_del_init(&info->swaplist);
cb5f7b9a 821 cond_resched();
00501b53 822 if (error != -EAGAIN)
778dd893 823 break;
00501b53 824 /* found nothing in this: move on to search the next */
1da177e4 825 }
cb5f7b9a 826 mutex_unlock(&shmem_swaplist_mutex);
778dd893 827
00501b53
JW
828 if (error) {
829 if (error != -ENOMEM)
830 error = 0;
f627c2f5 831 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 832 } else
f627c2f5 833 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 834out:
aaa46865 835 unlock_page(page);
09cbfeaf 836 put_page(page);
778dd893 837 return error;
1da177e4
LT
838}
839
840/*
841 * Move the page from the page cache to the swap cache.
842 */
843static int shmem_writepage(struct page *page, struct writeback_control *wbc)
844{
845 struct shmem_inode_info *info;
1da177e4 846 struct address_space *mapping;
1da177e4 847 struct inode *inode;
6922c0c7
HD
848 swp_entry_t swap;
849 pgoff_t index;
1da177e4
LT
850
851 BUG_ON(!PageLocked(page));
1da177e4
LT
852 mapping = page->mapping;
853 index = page->index;
854 inode = mapping->host;
855 info = SHMEM_I(inode);
856 if (info->flags & VM_LOCKED)
857 goto redirty;
d9fe526a 858 if (!total_swap_pages)
1da177e4
LT
859 goto redirty;
860
d9fe526a 861 /*
97b713ba
CH
862 * Our capabilities prevent regular writeback or sync from ever calling
863 * shmem_writepage; but a stacking filesystem might use ->writepage of
864 * its underlying filesystem, in which case tmpfs should write out to
865 * swap only in response to memory pressure, and not for the writeback
866 * threads or sync.
d9fe526a 867 */
48f170fb
HD
868 if (!wbc->for_reclaim) {
869 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
870 goto redirty;
871 }
1635f6a7
HD
872
873 /*
874 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
875 * value into swapfile.c, the only way we can correctly account for a
876 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
877 *
878 * That's okay for a page already fallocated earlier, but if we have
879 * not yet completed the fallocation, then (a) we want to keep track
880 * of this page in case we have to undo it, and (b) it may not be a
881 * good idea to continue anyway, once we're pushing into swap. So
882 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
883 */
884 if (!PageUptodate(page)) {
1aac1400
HD
885 if (inode->i_private) {
886 struct shmem_falloc *shmem_falloc;
887 spin_lock(&inode->i_lock);
888 shmem_falloc = inode->i_private;
889 if (shmem_falloc &&
8e205f77 890 !shmem_falloc->waitq &&
1aac1400
HD
891 index >= shmem_falloc->start &&
892 index < shmem_falloc->next)
893 shmem_falloc->nr_unswapped++;
894 else
895 shmem_falloc = NULL;
896 spin_unlock(&inode->i_lock);
897 if (shmem_falloc)
898 goto redirty;
899 }
1635f6a7
HD
900 clear_highpage(page);
901 flush_dcache_page(page);
902 SetPageUptodate(page);
903 }
904
48f170fb
HD
905 swap = get_swap_page();
906 if (!swap.val)
907 goto redirty;
d9fe526a 908
37e84351
VD
909 if (mem_cgroup_try_charge_swap(page, swap))
910 goto free_swap;
911
b1dea800
HD
912 /*
913 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
914 * if it's not already there. Do it now before the page is
915 * moved to swap cache, when its pagelock no longer protects
b1dea800 916 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
917 * we've incremented swapped, because shmem_unuse_inode() will
918 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 919 */
48f170fb
HD
920 mutex_lock(&shmem_swaplist_mutex);
921 if (list_empty(&info->swaplist))
922 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 923
48f170fb 924 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
6922c0c7 925 spin_lock(&info->lock);
6922c0c7 926 shmem_recalc_inode(inode);
267a4c76 927 info->swapped++;
826267cf 928 spin_unlock(&info->lock);
6922c0c7 929
267a4c76
HD
930 swap_shmem_alloc(swap);
931 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
932
6922c0c7 933 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 934 BUG_ON(page_mapped(page));
9fab5619 935 swap_writepage(page, wbc);
1da177e4
LT
936 return 0;
937 }
938
6922c0c7 939 mutex_unlock(&shmem_swaplist_mutex);
37e84351 940free_swap:
0a31bc97 941 swapcache_free(swap);
1da177e4
LT
942redirty:
943 set_page_dirty(page);
d9fe526a
HD
944 if (wbc->for_reclaim)
945 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
946 unlock_page(page);
947 return 0;
1da177e4
LT
948}
949
75edd345 950#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 951static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 952{
095f1fc4 953 char buffer[64];
680d794b 954
71fe804b 955 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 956 return; /* show nothing */
680d794b 957
a7a88b23 958 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
959
960 seq_printf(seq, ",mpol=%s", buffer);
680d794b 961}
71fe804b
LS
962
963static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
964{
965 struct mempolicy *mpol = NULL;
966 if (sbinfo->mpol) {
967 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
968 mpol = sbinfo->mpol;
969 mpol_get(mpol);
970 spin_unlock(&sbinfo->stat_lock);
971 }
972 return mpol;
973}
75edd345
HD
974#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
975static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
976{
977}
978static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
979{
980 return NULL;
981}
982#endif /* CONFIG_NUMA && CONFIG_TMPFS */
983#ifndef CONFIG_NUMA
984#define vm_policy vm_private_data
985#endif
680d794b 986
41ffe5d5
HD
987static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
988 struct shmem_inode_info *info, pgoff_t index)
1da177e4 989{
1da177e4 990 struct vm_area_struct pvma;
18a2f371 991 struct page *page;
52cd3b07 992
1da177e4 993 /* Create a pseudo vma that just contains the policy */
c4cc6d07 994 pvma.vm_start = 0;
09c231cb
NZ
995 /* Bias interleave by inode number to distribute better across nodes */
996 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 997 pvma.vm_ops = NULL;
18a2f371
MG
998 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
999
1000 page = swapin_readahead(swap, gfp, &pvma, 0);
1001
1002 /* Drop reference taken by mpol_shared_policy_lookup() */
1003 mpol_cond_put(pvma.vm_policy);
1004
1005 return page;
1da177e4
LT
1006}
1007
02098fea 1008static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1009 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1010{
1011 struct vm_area_struct pvma;
18a2f371 1012 struct page *page;
1da177e4 1013
c4cc6d07
HD
1014 /* Create a pseudo vma that just contains the policy */
1015 pvma.vm_start = 0;
09c231cb
NZ
1016 /* Bias interleave by inode number to distribute better across nodes */
1017 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 1018 pvma.vm_ops = NULL;
41ffe5d5 1019 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 1020
75edd345
HD
1021 page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1022 if (page) {
1023 __SetPageLocked(page);
1024 __SetPageSwapBacked(page);
1025 }
18a2f371
MG
1026
1027 /* Drop reference taken by mpol_shared_policy_lookup() */
1028 mpol_cond_put(pvma.vm_policy);
1029
1030 return page;
1da177e4 1031}
71fe804b 1032
bde05d1c
HD
1033/*
1034 * When a page is moved from swapcache to shmem filecache (either by the
1035 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1036 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1037 * ignorance of the mapping it belongs to. If that mapping has special
1038 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1039 * we may need to copy to a suitable page before moving to filecache.
1040 *
1041 * In a future release, this may well be extended to respect cpuset and
1042 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1043 * but for now it is a simple matter of zone.
1044 */
1045static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1046{
1047 return page_zonenum(page) > gfp_zone(gfp);
1048}
1049
1050static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1051 struct shmem_inode_info *info, pgoff_t index)
1052{
1053 struct page *oldpage, *newpage;
1054 struct address_space *swap_mapping;
1055 pgoff_t swap_index;
1056 int error;
1057
1058 oldpage = *pagep;
1059 swap_index = page_private(oldpage);
1060 swap_mapping = page_mapping(oldpage);
1061
1062 /*
1063 * We have arrived here because our zones are constrained, so don't
1064 * limit chance of success by further cpuset and node constraints.
1065 */
1066 gfp &= ~GFP_CONSTRAINT_MASK;
1067 newpage = shmem_alloc_page(gfp, info, index);
1068 if (!newpage)
1069 return -ENOMEM;
bde05d1c 1070
09cbfeaf 1071 get_page(newpage);
bde05d1c 1072 copy_highpage(newpage, oldpage);
0142ef6c 1073 flush_dcache_page(newpage);
bde05d1c 1074
bde05d1c 1075 SetPageUptodate(newpage);
bde05d1c 1076 set_page_private(newpage, swap_index);
bde05d1c
HD
1077 SetPageSwapCache(newpage);
1078
1079 /*
1080 * Our caller will very soon move newpage out of swapcache, but it's
1081 * a nice clean interface for us to replace oldpage by newpage there.
1082 */
1083 spin_lock_irq(&swap_mapping->tree_lock);
1084 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1085 newpage);
0142ef6c
HD
1086 if (!error) {
1087 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1088 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1089 }
bde05d1c 1090 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1091
0142ef6c
HD
1092 if (unlikely(error)) {
1093 /*
1094 * Is this possible? I think not, now that our callers check
1095 * both PageSwapCache and page_private after getting page lock;
1096 * but be defensive. Reverse old to newpage for clear and free.
1097 */
1098 oldpage = newpage;
1099 } else {
6a93ca8f 1100 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1101 lru_cache_add_anon(newpage);
1102 *pagep = newpage;
1103 }
bde05d1c
HD
1104
1105 ClearPageSwapCache(oldpage);
1106 set_page_private(oldpage, 0);
1107
1108 unlock_page(oldpage);
09cbfeaf
KS
1109 put_page(oldpage);
1110 put_page(oldpage);
0142ef6c 1111 return error;
bde05d1c
HD
1112}
1113
1da177e4 1114/*
68da9f05 1115 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1116 *
1117 * If we allocate a new one we do not mark it dirty. That's up to the
1118 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1119 * entry since a page cannot live in both the swap and page cache.
1120 *
1121 * fault_mm and fault_type are only supplied by shmem_fault:
1122 * otherwise they are NULL.
1da177e4 1123 */
41ffe5d5 1124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
1125 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1126 struct mm_struct *fault_mm, int *fault_type)
1da177e4
LT
1127{
1128 struct address_space *mapping = inode->i_mapping;
54af6042 1129 struct shmem_inode_info *info;
1da177e4 1130 struct shmem_sb_info *sbinfo;
9e18eb29 1131 struct mm_struct *charge_mm;
00501b53 1132 struct mem_cgroup *memcg;
27ab7006 1133 struct page *page;
1da177e4
LT
1134 swp_entry_t swap;
1135 int error;
54af6042 1136 int once = 0;
1635f6a7 1137 int alloced = 0;
1da177e4 1138
09cbfeaf 1139 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1140 return -EFBIG;
1da177e4 1141repeat:
54af6042 1142 swap.val = 0;
0cd6144a 1143 page = find_lock_entry(mapping, index);
54af6042
HD
1144 if (radix_tree_exceptional_entry(page)) {
1145 swap = radix_to_swp_entry(page);
1146 page = NULL;
1147 }
1148
75edd345 1149 if (sgp <= SGP_CACHE &&
09cbfeaf 1150 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1151 error = -EINVAL;
267a4c76 1152 goto unlock;
54af6042
HD
1153 }
1154
66d2f4d2
HD
1155 if (page && sgp == SGP_WRITE)
1156 mark_page_accessed(page);
1157
1635f6a7
HD
1158 /* fallocated page? */
1159 if (page && !PageUptodate(page)) {
1160 if (sgp != SGP_READ)
1161 goto clear;
1162 unlock_page(page);
09cbfeaf 1163 put_page(page);
1635f6a7
HD
1164 page = NULL;
1165 }
54af6042 1166 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1167 *pagep = page;
1168 return 0;
27ab7006
HD
1169 }
1170
1171 /*
54af6042
HD
1172 * Fast cache lookup did not find it:
1173 * bring it back from swap or allocate.
27ab7006 1174 */
54af6042
HD
1175 info = SHMEM_I(inode);
1176 sbinfo = SHMEM_SB(inode->i_sb);
9e18eb29 1177 charge_mm = fault_mm ? : current->mm;
1da177e4 1178
1da177e4
LT
1179 if (swap.val) {
1180 /* Look it up and read it in.. */
27ab7006
HD
1181 page = lookup_swap_cache(swap);
1182 if (!page) {
9e18eb29
ALC
1183 /* Or update major stats only when swapin succeeds?? */
1184 if (fault_type) {
68da9f05 1185 *fault_type |= VM_FAULT_MAJOR;
9e18eb29
ALC
1186 count_vm_event(PGMAJFAULT);
1187 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1188 }
1189 /* Here we actually start the io */
41ffe5d5 1190 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1191 if (!page) {
54af6042
HD
1192 error = -ENOMEM;
1193 goto failed;
1da177e4 1194 }
1da177e4
LT
1195 }
1196
1197 /* We have to do this with page locked to prevent races */
54af6042 1198 lock_page(page);
0142ef6c 1199 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1200 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1201 error = -EEXIST; /* try again */
d1899228 1202 goto unlock;
bde05d1c 1203 }
27ab7006 1204 if (!PageUptodate(page)) {
1da177e4 1205 error = -EIO;
54af6042 1206 goto failed;
1da177e4 1207 }
54af6042
HD
1208 wait_on_page_writeback(page);
1209
bde05d1c
HD
1210 if (shmem_should_replace_page(page, gfp)) {
1211 error = shmem_replace_page(&page, gfp, info, index);
1212 if (error)
1213 goto failed;
1da177e4 1214 }
27ab7006 1215
9e18eb29 1216 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1217 false);
d1899228 1218 if (!error) {
aa3b1895 1219 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1220 swp_to_radix_entry(swap));
215c02bc
HD
1221 /*
1222 * We already confirmed swap under page lock, and make
1223 * no memory allocation here, so usually no possibility
1224 * of error; but free_swap_and_cache() only trylocks a
1225 * page, so it is just possible that the entry has been
1226 * truncated or holepunched since swap was confirmed.
1227 * shmem_undo_range() will have done some of the
1228 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1229 * the rest.
215c02bc
HD
1230 * Reset swap.val? No, leave it so "failed" goes back to
1231 * "repeat": reading a hole and writing should succeed.
1232 */
00501b53 1233 if (error) {
f627c2f5 1234 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1235 delete_from_swap_cache(page);
00501b53 1236 }
d1899228 1237 }
54af6042
HD
1238 if (error)
1239 goto failed;
1240
f627c2f5 1241 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1242
54af6042 1243 spin_lock(&info->lock);
285b2c4f 1244 info->swapped--;
54af6042 1245 shmem_recalc_inode(inode);
27ab7006 1246 spin_unlock(&info->lock);
54af6042 1247
66d2f4d2
HD
1248 if (sgp == SGP_WRITE)
1249 mark_page_accessed(page);
1250
54af6042 1251 delete_from_swap_cache(page);
27ab7006
HD
1252 set_page_dirty(page);
1253 swap_free(swap);
1254
54af6042
HD
1255 } else {
1256 if (shmem_acct_block(info->flags)) {
1257 error = -ENOSPC;
1258 goto failed;
1da177e4 1259 }
0edd73b3 1260 if (sbinfo->max_blocks) {
fc5da22a 1261 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1262 sbinfo->max_blocks) >= 0) {
1263 error = -ENOSPC;
1264 goto unacct;
1265 }
7e496299 1266 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1267 }
1da177e4 1268
54af6042
HD
1269 page = shmem_alloc_page(gfp, info, index);
1270 if (!page) {
1271 error = -ENOMEM;
1272 goto decused;
1da177e4 1273 }
66d2f4d2 1274 if (sgp == SGP_WRITE)
eb39d618 1275 __SetPageReferenced(page);
66d2f4d2 1276
9e18eb29 1277 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1278 false);
54af6042
HD
1279 if (error)
1280 goto decused;
5e4c0d97 1281 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1282 if (!error) {
1283 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1284 NULL);
b065b432
HD
1285 radix_tree_preload_end();
1286 }
1287 if (error) {
f627c2f5 1288 mem_cgroup_cancel_charge(page, memcg, false);
b065b432
HD
1289 goto decused;
1290 }
f627c2f5 1291 mem_cgroup_commit_charge(page, memcg, false, false);
54af6042
HD
1292 lru_cache_add_anon(page);
1293
1294 spin_lock(&info->lock);
1da177e4 1295 info->alloced++;
54af6042
HD
1296 inode->i_blocks += BLOCKS_PER_PAGE;
1297 shmem_recalc_inode(inode);
1da177e4 1298 spin_unlock(&info->lock);
1635f6a7 1299 alloced = true;
54af6042 1300
ec9516fb 1301 /*
1635f6a7
HD
1302 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1303 */
1304 if (sgp == SGP_FALLOC)
1305 sgp = SGP_WRITE;
1306clear:
1307 /*
1308 * Let SGP_WRITE caller clear ends if write does not fill page;
1309 * but SGP_FALLOC on a page fallocated earlier must initialize
1310 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1311 */
1312 if (sgp != SGP_WRITE) {
1313 clear_highpage(page);
1314 flush_dcache_page(page);
1315 SetPageUptodate(page);
1316 }
1da177e4 1317 }
bde05d1c 1318
54af6042 1319 /* Perhaps the file has been truncated since we checked */
75edd345 1320 if (sgp <= SGP_CACHE &&
09cbfeaf 1321 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1322 if (alloced) {
1323 ClearPageDirty(page);
1324 delete_from_page_cache(page);
1325 spin_lock(&info->lock);
1326 shmem_recalc_inode(inode);
1327 spin_unlock(&info->lock);
1328 }
54af6042 1329 error = -EINVAL;
267a4c76 1330 goto unlock;
e83c32e8 1331 }
54af6042
HD
1332 *pagep = page;
1333 return 0;
1da177e4 1334
59a16ead 1335 /*
54af6042 1336 * Error recovery.
59a16ead 1337 */
54af6042
HD
1338decused:
1339 if (sbinfo->max_blocks)
1340 percpu_counter_add(&sbinfo->used_blocks, -1);
1341unacct:
1342 shmem_unacct_blocks(info->flags, 1);
1343failed:
267a4c76 1344 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1345 error = -EEXIST;
1346unlock:
27ab7006 1347 if (page) {
54af6042 1348 unlock_page(page);
09cbfeaf 1349 put_page(page);
54af6042
HD
1350 }
1351 if (error == -ENOSPC && !once++) {
1352 info = SHMEM_I(inode);
1353 spin_lock(&info->lock);
1354 shmem_recalc_inode(inode);
1355 spin_unlock(&info->lock);
27ab7006 1356 goto repeat;
ff36b801 1357 }
d1899228 1358 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1359 goto repeat;
1360 return error;
1da177e4
LT
1361}
1362
d0217ac0 1363static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1364{
496ad9aa 1365 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1366 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1da177e4 1367 int error;
68da9f05 1368 int ret = VM_FAULT_LOCKED;
1da177e4 1369
f00cdc6d
HD
1370 /*
1371 * Trinity finds that probing a hole which tmpfs is punching can
1372 * prevent the hole-punch from ever completing: which in turn
1373 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1374 * faulting pages into the hole while it's being punched. Although
1375 * shmem_undo_range() does remove the additions, it may be unable to
1376 * keep up, as each new page needs its own unmap_mapping_range() call,
1377 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1378 *
1379 * It does not matter if we sometimes reach this check just before the
1380 * hole-punch begins, so that one fault then races with the punch:
1381 * we just need to make racing faults a rare case.
1382 *
1383 * The implementation below would be much simpler if we just used a
1384 * standard mutex or completion: but we cannot take i_mutex in fault,
1385 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1386 */
1387 if (unlikely(inode->i_private)) {
1388 struct shmem_falloc *shmem_falloc;
1389
1390 spin_lock(&inode->i_lock);
1391 shmem_falloc = inode->i_private;
8e205f77
HD
1392 if (shmem_falloc &&
1393 shmem_falloc->waitq &&
1394 vmf->pgoff >= shmem_falloc->start &&
1395 vmf->pgoff < shmem_falloc->next) {
1396 wait_queue_head_t *shmem_falloc_waitq;
1397 DEFINE_WAIT(shmem_fault_wait);
1398
1399 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1400 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1401 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1402 /* It's polite to up mmap_sem if we can */
f00cdc6d 1403 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1404 ret = VM_FAULT_RETRY;
f00cdc6d 1405 }
8e205f77
HD
1406
1407 shmem_falloc_waitq = shmem_falloc->waitq;
1408 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1409 TASK_UNINTERRUPTIBLE);
1410 spin_unlock(&inode->i_lock);
1411 schedule();
1412
1413 /*
1414 * shmem_falloc_waitq points into the shmem_fallocate()
1415 * stack of the hole-punching task: shmem_falloc_waitq
1416 * is usually invalid by the time we reach here, but
1417 * finish_wait() does not dereference it in that case;
1418 * though i_lock needed lest racing with wake_up_all().
1419 */
1420 spin_lock(&inode->i_lock);
1421 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1422 spin_unlock(&inode->i_lock);
1423 return ret;
f00cdc6d 1424 }
8e205f77 1425 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1426 }
1427
9e18eb29
ALC
1428 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1429 gfp, vma->vm_mm, &ret);
d0217ac0
NP
1430 if (error)
1431 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1432 return ret;
1da177e4
LT
1433}
1434
1da177e4 1435#ifdef CONFIG_NUMA
41ffe5d5 1436static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1437{
496ad9aa 1438 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1439 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1440}
1441
d8dc74f2
AB
1442static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1443 unsigned long addr)
1da177e4 1444{
496ad9aa 1445 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1446 pgoff_t index;
1da177e4 1447
41ffe5d5
HD
1448 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1449 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1450}
1451#endif
1452
1453int shmem_lock(struct file *file, int lock, struct user_struct *user)
1454{
496ad9aa 1455 struct inode *inode = file_inode(file);
1da177e4
LT
1456 struct shmem_inode_info *info = SHMEM_I(inode);
1457 int retval = -ENOMEM;
1458
1459 spin_lock(&info->lock);
1460 if (lock && !(info->flags & VM_LOCKED)) {
1461 if (!user_shm_lock(inode->i_size, user))
1462 goto out_nomem;
1463 info->flags |= VM_LOCKED;
89e004ea 1464 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1465 }
1466 if (!lock && (info->flags & VM_LOCKED) && user) {
1467 user_shm_unlock(inode->i_size, user);
1468 info->flags &= ~VM_LOCKED;
89e004ea 1469 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1470 }
1471 retval = 0;
89e004ea 1472
1da177e4
LT
1473out_nomem:
1474 spin_unlock(&info->lock);
1475 return retval;
1476}
1477
9b83a6a8 1478static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1479{
1480 file_accessed(file);
1481 vma->vm_ops = &shmem_vm_ops;
1482 return 0;
1483}
1484
454abafe 1485static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1486 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1487{
1488 struct inode *inode;
1489 struct shmem_inode_info *info;
1490 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1491
5b04c689
PE
1492 if (shmem_reserve_inode(sb))
1493 return NULL;
1da177e4
LT
1494
1495 inode = new_inode(sb);
1496 if (inode) {
85fe4025 1497 inode->i_ino = get_next_ino();
454abafe 1498 inode_init_owner(inode, dir, mode);
1da177e4 1499 inode->i_blocks = 0;
1da177e4 1500 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1501 inode->i_generation = get_seconds();
1da177e4
LT
1502 info = SHMEM_I(inode);
1503 memset(info, 0, (char *)inode - (char *)info);
1504 spin_lock_init(&info->lock);
40e041a2 1505 info->seals = F_SEAL_SEAL;
0b0a0806 1506 info->flags = flags & VM_NORESERVE;
1da177e4 1507 INIT_LIST_HEAD(&info->swaplist);
38f38657 1508 simple_xattrs_init(&info->xattrs);
72c04902 1509 cache_no_acl(inode);
1da177e4
LT
1510
1511 switch (mode & S_IFMT) {
1512 default:
39f0247d 1513 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1514 init_special_inode(inode, mode, dev);
1515 break;
1516 case S_IFREG:
14fcc23f 1517 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1518 inode->i_op = &shmem_inode_operations;
1519 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1520 mpol_shared_policy_init(&info->policy,
1521 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1522 break;
1523 case S_IFDIR:
d8c76e6f 1524 inc_nlink(inode);
1da177e4
LT
1525 /* Some things misbehave if size == 0 on a directory */
1526 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1527 inode->i_op = &shmem_dir_inode_operations;
1528 inode->i_fop = &simple_dir_operations;
1529 break;
1530 case S_IFLNK:
1531 /*
1532 * Must not load anything in the rbtree,
1533 * mpol_free_shared_policy will not be called.
1534 */
71fe804b 1535 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1536 break;
1537 }
5b04c689
PE
1538 } else
1539 shmem_free_inode(sb);
1da177e4
LT
1540 return inode;
1541}
1542
0cd6144a
JW
1543bool shmem_mapping(struct address_space *mapping)
1544{
f0774d88
SL
1545 if (!mapping->host)
1546 return false;
1547
97b713ba 1548 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1549}
1550
1da177e4 1551#ifdef CONFIG_TMPFS
92e1d5be 1552static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1553static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1554
6d9d88d0
JS
1555#ifdef CONFIG_TMPFS_XATTR
1556static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1557#else
1558#define shmem_initxattrs NULL
1559#endif
1560
1da177e4 1561static int
800d15a5
NP
1562shmem_write_begin(struct file *file, struct address_space *mapping,
1563 loff_t pos, unsigned len, unsigned flags,
1564 struct page **pagep, void **fsdata)
1da177e4 1565{
800d15a5 1566 struct inode *inode = mapping->host;
40e041a2 1567 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 1568 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
1569
1570 /* i_mutex is held by caller */
1571 if (unlikely(info->seals)) {
1572 if (info->seals & F_SEAL_WRITE)
1573 return -EPERM;
1574 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1575 return -EPERM;
1576 }
1577
9e18eb29 1578 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
1579}
1580
1581static int
1582shmem_write_end(struct file *file, struct address_space *mapping,
1583 loff_t pos, unsigned len, unsigned copied,
1584 struct page *page, void *fsdata)
1585{
1586 struct inode *inode = mapping->host;
1587
d3602444
HD
1588 if (pos + copied > inode->i_size)
1589 i_size_write(inode, pos + copied);
1590
ec9516fb 1591 if (!PageUptodate(page)) {
09cbfeaf
KS
1592 if (copied < PAGE_SIZE) {
1593 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 1594 zero_user_segments(page, 0, from,
09cbfeaf 1595 from + copied, PAGE_SIZE);
ec9516fb
HD
1596 }
1597 SetPageUptodate(page);
1598 }
800d15a5 1599 set_page_dirty(page);
6746aff7 1600 unlock_page(page);
09cbfeaf 1601 put_page(page);
800d15a5 1602
800d15a5 1603 return copied;
1da177e4
LT
1604}
1605
2ba5bbed 1606static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1607{
6e58e79d
AV
1608 struct file *file = iocb->ki_filp;
1609 struct inode *inode = file_inode(file);
1da177e4 1610 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1611 pgoff_t index;
1612 unsigned long offset;
a0ee5ec5 1613 enum sgp_type sgp = SGP_READ;
f7c1d074 1614 int error = 0;
cb66a7a1 1615 ssize_t retval = 0;
6e58e79d 1616 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1617
1618 /*
1619 * Might this read be for a stacking filesystem? Then when reading
1620 * holes of a sparse file, we actually need to allocate those pages,
1621 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1622 */
777eda2c 1623 if (!iter_is_iovec(to))
75edd345 1624 sgp = SGP_CACHE;
1da177e4 1625
09cbfeaf
KS
1626 index = *ppos >> PAGE_SHIFT;
1627 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
1628
1629 for (;;) {
1630 struct page *page = NULL;
41ffe5d5
HD
1631 pgoff_t end_index;
1632 unsigned long nr, ret;
1da177e4
LT
1633 loff_t i_size = i_size_read(inode);
1634
09cbfeaf 1635 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
1636 if (index > end_index)
1637 break;
1638 if (index == end_index) {
09cbfeaf 1639 nr = i_size & ~PAGE_MASK;
1da177e4
LT
1640 if (nr <= offset)
1641 break;
1642 }
1643
9e18eb29 1644 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
1645 if (error) {
1646 if (error == -EINVAL)
1647 error = 0;
1da177e4
LT
1648 break;
1649 }
75edd345
HD
1650 if (page) {
1651 if (sgp == SGP_CACHE)
1652 set_page_dirty(page);
d3602444 1653 unlock_page(page);
75edd345 1654 }
1da177e4
LT
1655
1656 /*
1657 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1658 * are called without i_mutex protection against truncate
1da177e4 1659 */
09cbfeaf 1660 nr = PAGE_SIZE;
1da177e4 1661 i_size = i_size_read(inode);
09cbfeaf 1662 end_index = i_size >> PAGE_SHIFT;
1da177e4 1663 if (index == end_index) {
09cbfeaf 1664 nr = i_size & ~PAGE_MASK;
1da177e4
LT
1665 if (nr <= offset) {
1666 if (page)
09cbfeaf 1667 put_page(page);
1da177e4
LT
1668 break;
1669 }
1670 }
1671 nr -= offset;
1672
1673 if (page) {
1674 /*
1675 * If users can be writing to this page using arbitrary
1676 * virtual addresses, take care about potential aliasing
1677 * before reading the page on the kernel side.
1678 */
1679 if (mapping_writably_mapped(mapping))
1680 flush_dcache_page(page);
1681 /*
1682 * Mark the page accessed if we read the beginning.
1683 */
1684 if (!offset)
1685 mark_page_accessed(page);
b5810039 1686 } else {
1da177e4 1687 page = ZERO_PAGE(0);
09cbfeaf 1688 get_page(page);
b5810039 1689 }
1da177e4
LT
1690
1691 /*
1692 * Ok, we have the page, and it's up-to-date, so
1693 * now we can copy it to user space...
1da177e4 1694 */
2ba5bbed 1695 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1696 retval += ret;
1da177e4 1697 offset += ret;
09cbfeaf
KS
1698 index += offset >> PAGE_SHIFT;
1699 offset &= ~PAGE_MASK;
1da177e4 1700
09cbfeaf 1701 put_page(page);
2ba5bbed 1702 if (!iov_iter_count(to))
1da177e4 1703 break;
6e58e79d
AV
1704 if (ret < nr) {
1705 error = -EFAULT;
1706 break;
1707 }
1da177e4
LT
1708 cond_resched();
1709 }
1710
09cbfeaf 1711 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
1712 file_accessed(file);
1713 return retval ? retval : error;
1da177e4
LT
1714}
1715
708e3508
HD
1716static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1717 struct pipe_inode_info *pipe, size_t len,
1718 unsigned int flags)
1719{
1720 struct address_space *mapping = in->f_mapping;
71f0e07a 1721 struct inode *inode = mapping->host;
708e3508
HD
1722 unsigned int loff, nr_pages, req_pages;
1723 struct page *pages[PIPE_DEF_BUFFERS];
1724 struct partial_page partial[PIPE_DEF_BUFFERS];
1725 struct page *page;
1726 pgoff_t index, end_index;
1727 loff_t isize, left;
1728 int error, page_nr;
1729 struct splice_pipe_desc spd = {
1730 .pages = pages,
1731 .partial = partial,
047fe360 1732 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1733 .flags = flags,
1734 .ops = &page_cache_pipe_buf_ops,
1735 .spd_release = spd_release_page,
1736 };
1737
71f0e07a 1738 isize = i_size_read(inode);
708e3508
HD
1739 if (unlikely(*ppos >= isize))
1740 return 0;
1741
1742 left = isize - *ppos;
1743 if (unlikely(left < len))
1744 len = left;
1745
1746 if (splice_grow_spd(pipe, &spd))
1747 return -ENOMEM;
1748
09cbfeaf
KS
1749 index = *ppos >> PAGE_SHIFT;
1750 loff = *ppos & ~PAGE_MASK;
1751 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
a786c06d 1752 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1753
708e3508
HD
1754 spd.nr_pages = find_get_pages_contig(mapping, index,
1755 nr_pages, spd.pages);
1756 index += spd.nr_pages;
708e3508 1757 error = 0;
708e3508 1758
71f0e07a 1759 while (spd.nr_pages < nr_pages) {
9e18eb29 1760 error = shmem_getpage(inode, index, &page, SGP_CACHE);
71f0e07a
HD
1761 if (error)
1762 break;
1763 unlock_page(page);
708e3508
HD
1764 spd.pages[spd.nr_pages++] = page;
1765 index++;
1766 }
1767
09cbfeaf 1768 index = *ppos >> PAGE_SHIFT;
708e3508
HD
1769 nr_pages = spd.nr_pages;
1770 spd.nr_pages = 0;
71f0e07a 1771
708e3508
HD
1772 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1773 unsigned int this_len;
1774
1775 if (!len)
1776 break;
1777
09cbfeaf 1778 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
708e3508
HD
1779 page = spd.pages[page_nr];
1780
71f0e07a 1781 if (!PageUptodate(page) || page->mapping != mapping) {
9e18eb29 1782 error = shmem_getpage(inode, index, &page, SGP_CACHE);
71f0e07a 1783 if (error)
708e3508 1784 break;
71f0e07a 1785 unlock_page(page);
09cbfeaf 1786 put_page(spd.pages[page_nr]);
71f0e07a 1787 spd.pages[page_nr] = page;
708e3508 1788 }
71f0e07a
HD
1789
1790 isize = i_size_read(inode);
09cbfeaf 1791 end_index = (isize - 1) >> PAGE_SHIFT;
708e3508
HD
1792 if (unlikely(!isize || index > end_index))
1793 break;
1794
708e3508
HD
1795 if (end_index == index) {
1796 unsigned int plen;
1797
09cbfeaf 1798 plen = ((isize - 1) & ~PAGE_MASK) + 1;
708e3508
HD
1799 if (plen <= loff)
1800 break;
1801
708e3508
HD
1802 this_len = min(this_len, plen - loff);
1803 len = this_len;
1804 }
1805
1806 spd.partial[page_nr].offset = loff;
1807 spd.partial[page_nr].len = this_len;
1808 len -= this_len;
1809 loff = 0;
1810 spd.nr_pages++;
1811 index++;
1812 }
1813
708e3508 1814 while (page_nr < nr_pages)
09cbfeaf 1815 put_page(spd.pages[page_nr++]);
708e3508
HD
1816
1817 if (spd.nr_pages)
1818 error = splice_to_pipe(pipe, &spd);
1819
047fe360 1820 splice_shrink_spd(&spd);
708e3508
HD
1821
1822 if (error > 0) {
1823 *ppos += error;
1824 file_accessed(in);
1825 }
1826 return error;
1827}
1828
220f2ac9
HD
1829/*
1830 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1831 */
1832static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1833 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1834{
1835 struct page *page;
1836 struct pagevec pvec;
1837 pgoff_t indices[PAGEVEC_SIZE];
1838 bool done = false;
1839 int i;
1840
1841 pagevec_init(&pvec, 0);
1842 pvec.nr = 1; /* start small: we may be there already */
1843 while (!done) {
0cd6144a 1844 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1845 pvec.nr, pvec.pages, indices);
1846 if (!pvec.nr) {
965c8e59 1847 if (whence == SEEK_DATA)
220f2ac9
HD
1848 index = end;
1849 break;
1850 }
1851 for (i = 0; i < pvec.nr; i++, index++) {
1852 if (index < indices[i]) {
965c8e59 1853 if (whence == SEEK_HOLE) {
220f2ac9
HD
1854 done = true;
1855 break;
1856 }
1857 index = indices[i];
1858 }
1859 page = pvec.pages[i];
1860 if (page && !radix_tree_exceptional_entry(page)) {
1861 if (!PageUptodate(page))
1862 page = NULL;
1863 }
1864 if (index >= end ||
965c8e59
AM
1865 (page && whence == SEEK_DATA) ||
1866 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1867 done = true;
1868 break;
1869 }
1870 }
0cd6144a 1871 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1872 pagevec_release(&pvec);
1873 pvec.nr = PAGEVEC_SIZE;
1874 cond_resched();
1875 }
1876 return index;
1877}
1878
965c8e59 1879static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1880{
1881 struct address_space *mapping = file->f_mapping;
1882 struct inode *inode = mapping->host;
1883 pgoff_t start, end;
1884 loff_t new_offset;
1885
965c8e59
AM
1886 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1887 return generic_file_llseek_size(file, offset, whence,
220f2ac9 1888 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 1889 inode_lock(inode);
220f2ac9
HD
1890 /* We're holding i_mutex so we can access i_size directly */
1891
1892 if (offset < 0)
1893 offset = -EINVAL;
1894 else if (offset >= inode->i_size)
1895 offset = -ENXIO;
1896 else {
09cbfeaf
KS
1897 start = offset >> PAGE_SHIFT;
1898 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 1899 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 1900 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
1901 if (new_offset > offset) {
1902 if (new_offset < inode->i_size)
1903 offset = new_offset;
965c8e59 1904 else if (whence == SEEK_DATA)
220f2ac9
HD
1905 offset = -ENXIO;
1906 else
1907 offset = inode->i_size;
1908 }
1909 }
1910
387aae6f
HD
1911 if (offset >= 0)
1912 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 1913 inode_unlock(inode);
220f2ac9
HD
1914 return offset;
1915}
1916
05f65b5c
DH
1917/*
1918 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1919 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1920 */
1921#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1922#define LAST_SCAN 4 /* about 150ms max */
1923
1924static void shmem_tag_pins(struct address_space *mapping)
1925{
1926 struct radix_tree_iter iter;
1927 void **slot;
1928 pgoff_t start;
1929 struct page *page;
1930
1931 lru_add_drain();
1932 start = 0;
1933 rcu_read_lock();
1934
05f65b5c
DH
1935 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1936 page = radix_tree_deref_slot(slot);
1937 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
1938 if (radix_tree_deref_retry(page)) {
1939 slot = radix_tree_iter_retry(&iter);
1940 continue;
1941 }
05f65b5c
DH
1942 } else if (page_count(page) - page_mapcount(page) > 1) {
1943 spin_lock_irq(&mapping->tree_lock);
1944 radix_tree_tag_set(&mapping->page_tree, iter.index,
1945 SHMEM_TAG_PINNED);
1946 spin_unlock_irq(&mapping->tree_lock);
1947 }
1948
1949 if (need_resched()) {
1950 cond_resched_rcu();
7165092f 1951 slot = radix_tree_iter_next(&iter);
05f65b5c
DH
1952 }
1953 }
1954 rcu_read_unlock();
1955}
1956
1957/*
1958 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1959 * via get_user_pages(), drivers might have some pending I/O without any active
1960 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1961 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1962 * them to be dropped.
1963 * The caller must guarantee that no new user will acquire writable references
1964 * to those pages to avoid races.
1965 */
40e041a2
DH
1966static int shmem_wait_for_pins(struct address_space *mapping)
1967{
05f65b5c
DH
1968 struct radix_tree_iter iter;
1969 void **slot;
1970 pgoff_t start;
1971 struct page *page;
1972 int error, scan;
1973
1974 shmem_tag_pins(mapping);
1975
1976 error = 0;
1977 for (scan = 0; scan <= LAST_SCAN; scan++) {
1978 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1979 break;
1980
1981 if (!scan)
1982 lru_add_drain_all();
1983 else if (schedule_timeout_killable((HZ << scan) / 200))
1984 scan = LAST_SCAN;
1985
1986 start = 0;
1987 rcu_read_lock();
05f65b5c
DH
1988 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1989 start, SHMEM_TAG_PINNED) {
1990
1991 page = radix_tree_deref_slot(slot);
1992 if (radix_tree_exception(page)) {
2cf938aa
MW
1993 if (radix_tree_deref_retry(page)) {
1994 slot = radix_tree_iter_retry(&iter);
1995 continue;
1996 }
05f65b5c
DH
1997
1998 page = NULL;
1999 }
2000
2001 if (page &&
2002 page_count(page) - page_mapcount(page) != 1) {
2003 if (scan < LAST_SCAN)
2004 goto continue_resched;
2005
2006 /*
2007 * On the last scan, we clean up all those tags
2008 * we inserted; but make a note that we still
2009 * found pages pinned.
2010 */
2011 error = -EBUSY;
2012 }
2013
2014 spin_lock_irq(&mapping->tree_lock);
2015 radix_tree_tag_clear(&mapping->page_tree,
2016 iter.index, SHMEM_TAG_PINNED);
2017 spin_unlock_irq(&mapping->tree_lock);
2018continue_resched:
2019 if (need_resched()) {
2020 cond_resched_rcu();
7165092f 2021 slot = radix_tree_iter_next(&iter);
05f65b5c
DH
2022 }
2023 }
2024 rcu_read_unlock();
2025 }
2026
2027 return error;
40e041a2
DH
2028}
2029
2030#define F_ALL_SEALS (F_SEAL_SEAL | \
2031 F_SEAL_SHRINK | \
2032 F_SEAL_GROW | \
2033 F_SEAL_WRITE)
2034
2035int shmem_add_seals(struct file *file, unsigned int seals)
2036{
2037 struct inode *inode = file_inode(file);
2038 struct shmem_inode_info *info = SHMEM_I(inode);
2039 int error;
2040
2041 /*
2042 * SEALING
2043 * Sealing allows multiple parties to share a shmem-file but restrict
2044 * access to a specific subset of file operations. Seals can only be
2045 * added, but never removed. This way, mutually untrusted parties can
2046 * share common memory regions with a well-defined policy. A malicious
2047 * peer can thus never perform unwanted operations on a shared object.
2048 *
2049 * Seals are only supported on special shmem-files and always affect
2050 * the whole underlying inode. Once a seal is set, it may prevent some
2051 * kinds of access to the file. Currently, the following seals are
2052 * defined:
2053 * SEAL_SEAL: Prevent further seals from being set on this file
2054 * SEAL_SHRINK: Prevent the file from shrinking
2055 * SEAL_GROW: Prevent the file from growing
2056 * SEAL_WRITE: Prevent write access to the file
2057 *
2058 * As we don't require any trust relationship between two parties, we
2059 * must prevent seals from being removed. Therefore, sealing a file
2060 * only adds a given set of seals to the file, it never touches
2061 * existing seals. Furthermore, the "setting seals"-operation can be
2062 * sealed itself, which basically prevents any further seal from being
2063 * added.
2064 *
2065 * Semantics of sealing are only defined on volatile files. Only
2066 * anonymous shmem files support sealing. More importantly, seals are
2067 * never written to disk. Therefore, there's no plan to support it on
2068 * other file types.
2069 */
2070
2071 if (file->f_op != &shmem_file_operations)
2072 return -EINVAL;
2073 if (!(file->f_mode & FMODE_WRITE))
2074 return -EPERM;
2075 if (seals & ~(unsigned int)F_ALL_SEALS)
2076 return -EINVAL;
2077
5955102c 2078 inode_lock(inode);
40e041a2
DH
2079
2080 if (info->seals & F_SEAL_SEAL) {
2081 error = -EPERM;
2082 goto unlock;
2083 }
2084
2085 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2086 error = mapping_deny_writable(file->f_mapping);
2087 if (error)
2088 goto unlock;
2089
2090 error = shmem_wait_for_pins(file->f_mapping);
2091 if (error) {
2092 mapping_allow_writable(file->f_mapping);
2093 goto unlock;
2094 }
2095 }
2096
2097 info->seals |= seals;
2098 error = 0;
2099
2100unlock:
5955102c 2101 inode_unlock(inode);
40e041a2
DH
2102 return error;
2103}
2104EXPORT_SYMBOL_GPL(shmem_add_seals);
2105
2106int shmem_get_seals(struct file *file)
2107{
2108 if (file->f_op != &shmem_file_operations)
2109 return -EINVAL;
2110
2111 return SHMEM_I(file_inode(file))->seals;
2112}
2113EXPORT_SYMBOL_GPL(shmem_get_seals);
2114
2115long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2116{
2117 long error;
2118
2119 switch (cmd) {
2120 case F_ADD_SEALS:
2121 /* disallow upper 32bit */
2122 if (arg > UINT_MAX)
2123 return -EINVAL;
2124
2125 error = shmem_add_seals(file, arg);
2126 break;
2127 case F_GET_SEALS:
2128 error = shmem_get_seals(file);
2129 break;
2130 default:
2131 error = -EINVAL;
2132 break;
2133 }
2134
2135 return error;
2136}
2137
83e4fa9c
HD
2138static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2139 loff_t len)
2140{
496ad9aa 2141 struct inode *inode = file_inode(file);
e2d12e22 2142 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2143 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2144 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2145 pgoff_t start, index, end;
2146 int error;
83e4fa9c 2147
13ace4d0
HD
2148 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2149 return -EOPNOTSUPP;
2150
5955102c 2151 inode_lock(inode);
83e4fa9c
HD
2152
2153 if (mode & FALLOC_FL_PUNCH_HOLE) {
2154 struct address_space *mapping = file->f_mapping;
2155 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2156 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2157 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2158
40e041a2
DH
2159 /* protected by i_mutex */
2160 if (info->seals & F_SEAL_WRITE) {
2161 error = -EPERM;
2162 goto out;
2163 }
2164
8e205f77 2165 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2166 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2167 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2168 spin_lock(&inode->i_lock);
2169 inode->i_private = &shmem_falloc;
2170 spin_unlock(&inode->i_lock);
2171
83e4fa9c
HD
2172 if ((u64)unmap_end > (u64)unmap_start)
2173 unmap_mapping_range(mapping, unmap_start,
2174 1 + unmap_end - unmap_start, 0);
2175 shmem_truncate_range(inode, offset, offset + len - 1);
2176 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2177
2178 spin_lock(&inode->i_lock);
2179 inode->i_private = NULL;
2180 wake_up_all(&shmem_falloc_waitq);
2181 spin_unlock(&inode->i_lock);
83e4fa9c 2182 error = 0;
8e205f77 2183 goto out;
e2d12e22
HD
2184 }
2185
2186 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2187 error = inode_newsize_ok(inode, offset + len);
2188 if (error)
2189 goto out;
2190
40e041a2
DH
2191 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2192 error = -EPERM;
2193 goto out;
2194 }
2195
09cbfeaf
KS
2196 start = offset >> PAGE_SHIFT;
2197 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2198 /* Try to avoid a swapstorm if len is impossible to satisfy */
2199 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2200 error = -ENOSPC;
2201 goto out;
83e4fa9c
HD
2202 }
2203
8e205f77 2204 shmem_falloc.waitq = NULL;
1aac1400
HD
2205 shmem_falloc.start = start;
2206 shmem_falloc.next = start;
2207 shmem_falloc.nr_falloced = 0;
2208 shmem_falloc.nr_unswapped = 0;
2209 spin_lock(&inode->i_lock);
2210 inode->i_private = &shmem_falloc;
2211 spin_unlock(&inode->i_lock);
2212
e2d12e22
HD
2213 for (index = start; index < end; index++) {
2214 struct page *page;
2215
2216 /*
2217 * Good, the fallocate(2) manpage permits EINTR: we may have
2218 * been interrupted because we are using up too much memory.
2219 */
2220 if (signal_pending(current))
2221 error = -EINTR;
1aac1400
HD
2222 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2223 error = -ENOMEM;
e2d12e22 2224 else
9e18eb29 2225 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2226 if (error) {
1635f6a7 2227 /* Remove the !PageUptodate pages we added */
7f556567
HD
2228 if (index > start) {
2229 shmem_undo_range(inode,
2230 (loff_t)start << PAGE_SHIFT,
2231 ((loff_t)index << PAGE_SHIFT) - 1, true);
2232 }
1aac1400 2233 goto undone;
e2d12e22
HD
2234 }
2235
1aac1400
HD
2236 /*
2237 * Inform shmem_writepage() how far we have reached.
2238 * No need for lock or barrier: we have the page lock.
2239 */
2240 shmem_falloc.next++;
2241 if (!PageUptodate(page))
2242 shmem_falloc.nr_falloced++;
2243
e2d12e22 2244 /*
1635f6a7
HD
2245 * If !PageUptodate, leave it that way so that freeable pages
2246 * can be recognized if we need to rollback on error later.
2247 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2248 * than free the pages we are allocating (and SGP_CACHE pages
2249 * might still be clean: we now need to mark those dirty too).
2250 */
2251 set_page_dirty(page);
2252 unlock_page(page);
09cbfeaf 2253 put_page(page);
e2d12e22
HD
2254 cond_resched();
2255 }
2256
2257 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2258 i_size_write(inode, offset + len);
e2d12e22 2259 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2260undone:
2261 spin_lock(&inode->i_lock);
2262 inode->i_private = NULL;
2263 spin_unlock(&inode->i_lock);
e2d12e22 2264out:
5955102c 2265 inode_unlock(inode);
83e4fa9c
HD
2266 return error;
2267}
2268
726c3342 2269static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2270{
726c3342 2271 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2272
2273 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2274 buf->f_bsize = PAGE_SIZE;
1da177e4 2275 buf->f_namelen = NAME_MAX;
0edd73b3 2276 if (sbinfo->max_blocks) {
1da177e4 2277 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2278 buf->f_bavail =
2279 buf->f_bfree = sbinfo->max_blocks -
2280 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2281 }
2282 if (sbinfo->max_inodes) {
1da177e4
LT
2283 buf->f_files = sbinfo->max_inodes;
2284 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2285 }
2286 /* else leave those fields 0 like simple_statfs */
2287 return 0;
2288}
2289
2290/*
2291 * File creation. Allocate an inode, and we're done..
2292 */
2293static int
1a67aafb 2294shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2295{
0b0a0806 2296 struct inode *inode;
1da177e4
LT
2297 int error = -ENOSPC;
2298
454abafe 2299 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2300 if (inode) {
feda821e
CH
2301 error = simple_acl_create(dir, inode);
2302 if (error)
2303 goto out_iput;
2a7dba39 2304 error = security_inode_init_security(inode, dir,
9d8f13ba 2305 &dentry->d_name,
6d9d88d0 2306 shmem_initxattrs, NULL);
feda821e
CH
2307 if (error && error != -EOPNOTSUPP)
2308 goto out_iput;
37ec43cd 2309
718deb6b 2310 error = 0;
1da177e4
LT
2311 dir->i_size += BOGO_DIRENT_SIZE;
2312 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2313 d_instantiate(dentry, inode);
2314 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2315 }
2316 return error;
feda821e
CH
2317out_iput:
2318 iput(inode);
2319 return error;
1da177e4
LT
2320}
2321
60545d0d
AV
2322static int
2323shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2324{
2325 struct inode *inode;
2326 int error = -ENOSPC;
2327
2328 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2329 if (inode) {
2330 error = security_inode_init_security(inode, dir,
2331 NULL,
2332 shmem_initxattrs, NULL);
feda821e
CH
2333 if (error && error != -EOPNOTSUPP)
2334 goto out_iput;
2335 error = simple_acl_create(dir, inode);
2336 if (error)
2337 goto out_iput;
60545d0d
AV
2338 d_tmpfile(dentry, inode);
2339 }
2340 return error;
feda821e
CH
2341out_iput:
2342 iput(inode);
2343 return error;
60545d0d
AV
2344}
2345
18bb1db3 2346static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2347{
2348 int error;
2349
2350 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2351 return error;
d8c76e6f 2352 inc_nlink(dir);
1da177e4
LT
2353 return 0;
2354}
2355
4acdaf27 2356static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2357 bool excl)
1da177e4
LT
2358{
2359 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2360}
2361
2362/*
2363 * Link a file..
2364 */
2365static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2366{
75c3cfa8 2367 struct inode *inode = d_inode(old_dentry);
5b04c689 2368 int ret;
1da177e4
LT
2369
2370 /*
2371 * No ordinary (disk based) filesystem counts links as inodes;
2372 * but each new link needs a new dentry, pinning lowmem, and
2373 * tmpfs dentries cannot be pruned until they are unlinked.
2374 */
5b04c689
PE
2375 ret = shmem_reserve_inode(inode->i_sb);
2376 if (ret)
2377 goto out;
1da177e4
LT
2378
2379 dir->i_size += BOGO_DIRENT_SIZE;
2380 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2381 inc_nlink(inode);
7de9c6ee 2382 ihold(inode); /* New dentry reference */
1da177e4
LT
2383 dget(dentry); /* Extra pinning count for the created dentry */
2384 d_instantiate(dentry, inode);
5b04c689
PE
2385out:
2386 return ret;
1da177e4
LT
2387}
2388
2389static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2390{
75c3cfa8 2391 struct inode *inode = d_inode(dentry);
1da177e4 2392
5b04c689
PE
2393 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2394 shmem_free_inode(inode->i_sb);
1da177e4
LT
2395
2396 dir->i_size -= BOGO_DIRENT_SIZE;
2397 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2398 drop_nlink(inode);
1da177e4
LT
2399 dput(dentry); /* Undo the count from "create" - this does all the work */
2400 return 0;
2401}
2402
2403static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2404{
2405 if (!simple_empty(dentry))
2406 return -ENOTEMPTY;
2407
75c3cfa8 2408 drop_nlink(d_inode(dentry));
9a53c3a7 2409 drop_nlink(dir);
1da177e4
LT
2410 return shmem_unlink(dir, dentry);
2411}
2412
37456771
MS
2413static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2414{
e36cb0b8
DH
2415 bool old_is_dir = d_is_dir(old_dentry);
2416 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2417
2418 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2419 if (old_is_dir) {
2420 drop_nlink(old_dir);
2421 inc_nlink(new_dir);
2422 } else {
2423 drop_nlink(new_dir);
2424 inc_nlink(old_dir);
2425 }
2426 }
2427 old_dir->i_ctime = old_dir->i_mtime =
2428 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2429 d_inode(old_dentry)->i_ctime =
2430 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2431
2432 return 0;
2433}
2434
46fdb794
MS
2435static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2436{
2437 struct dentry *whiteout;
2438 int error;
2439
2440 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2441 if (!whiteout)
2442 return -ENOMEM;
2443
2444 error = shmem_mknod(old_dir, whiteout,
2445 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2446 dput(whiteout);
2447 if (error)
2448 return error;
2449
2450 /*
2451 * Cheat and hash the whiteout while the old dentry is still in
2452 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2453 *
2454 * d_lookup() will consistently find one of them at this point,
2455 * not sure which one, but that isn't even important.
2456 */
2457 d_rehash(whiteout);
2458 return 0;
2459}
2460
1da177e4
LT
2461/*
2462 * The VFS layer already does all the dentry stuff for rename,
2463 * we just have to decrement the usage count for the target if
2464 * it exists so that the VFS layer correctly free's it when it
2465 * gets overwritten.
2466 */
3b69ff51 2467static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2468{
75c3cfa8 2469 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2470 int they_are_dirs = S_ISDIR(inode->i_mode);
2471
46fdb794 2472 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2473 return -EINVAL;
2474
37456771
MS
2475 if (flags & RENAME_EXCHANGE)
2476 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2477
1da177e4
LT
2478 if (!simple_empty(new_dentry))
2479 return -ENOTEMPTY;
2480
46fdb794
MS
2481 if (flags & RENAME_WHITEOUT) {
2482 int error;
2483
2484 error = shmem_whiteout(old_dir, old_dentry);
2485 if (error)
2486 return error;
2487 }
2488
75c3cfa8 2489 if (d_really_is_positive(new_dentry)) {
1da177e4 2490 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2491 if (they_are_dirs) {
75c3cfa8 2492 drop_nlink(d_inode(new_dentry));
9a53c3a7 2493 drop_nlink(old_dir);
b928095b 2494 }
1da177e4 2495 } else if (they_are_dirs) {
9a53c3a7 2496 drop_nlink(old_dir);
d8c76e6f 2497 inc_nlink(new_dir);
1da177e4
LT
2498 }
2499
2500 old_dir->i_size -= BOGO_DIRENT_SIZE;
2501 new_dir->i_size += BOGO_DIRENT_SIZE;
2502 old_dir->i_ctime = old_dir->i_mtime =
2503 new_dir->i_ctime = new_dir->i_mtime =
2504 inode->i_ctime = CURRENT_TIME;
2505 return 0;
2506}
2507
2508static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2509{
2510 int error;
2511 int len;
2512 struct inode *inode;
9276aad6 2513 struct page *page;
1da177e4
LT
2514 struct shmem_inode_info *info;
2515
2516 len = strlen(symname) + 1;
09cbfeaf 2517 if (len > PAGE_SIZE)
1da177e4
LT
2518 return -ENAMETOOLONG;
2519
454abafe 2520 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2521 if (!inode)
2522 return -ENOSPC;
2523
9d8f13ba 2524 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2525 shmem_initxattrs, NULL);
570bc1c2
SS
2526 if (error) {
2527 if (error != -EOPNOTSUPP) {
2528 iput(inode);
2529 return error;
2530 }
2531 error = 0;
2532 }
2533
1da177e4
LT
2534 info = SHMEM_I(inode);
2535 inode->i_size = len-1;
69f07ec9 2536 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
2537 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2538 if (!inode->i_link) {
69f07ec9
HD
2539 iput(inode);
2540 return -ENOMEM;
2541 }
2542 inode->i_op = &shmem_short_symlink_operations;
1da177e4 2543 } else {
e8ecde25 2544 inode_nohighmem(inode);
9e18eb29 2545 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
2546 if (error) {
2547 iput(inode);
2548 return error;
2549 }
14fcc23f 2550 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2551 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 2552 memcpy(page_address(page), symname, len);
ec9516fb 2553 SetPageUptodate(page);
1da177e4 2554 set_page_dirty(page);
6746aff7 2555 unlock_page(page);
09cbfeaf 2556 put_page(page);
1da177e4 2557 }
1da177e4
LT
2558 dir->i_size += BOGO_DIRENT_SIZE;
2559 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2560 d_instantiate(dentry, inode);
2561 dget(dentry);
2562 return 0;
2563}
2564
fceef393 2565static void shmem_put_link(void *arg)
1da177e4 2566{
fceef393
AV
2567 mark_page_accessed(arg);
2568 put_page(arg);
1da177e4
LT
2569}
2570
6b255391 2571static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
2572 struct inode *inode,
2573 struct delayed_call *done)
1da177e4 2574{
1da177e4 2575 struct page *page = NULL;
6b255391 2576 int error;
6a6c9904
AV
2577 if (!dentry) {
2578 page = find_get_page(inode->i_mapping, 0);
2579 if (!page)
2580 return ERR_PTR(-ECHILD);
2581 if (!PageUptodate(page)) {
2582 put_page(page);
2583 return ERR_PTR(-ECHILD);
2584 }
2585 } else {
9e18eb29 2586 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
2587 if (error)
2588 return ERR_PTR(error);
2589 unlock_page(page);
2590 }
fceef393 2591 set_delayed_call(done, shmem_put_link, page);
21fc61c7 2592 return page_address(page);
1da177e4
LT
2593}
2594
b09e0fa4 2595#ifdef CONFIG_TMPFS_XATTR
46711810 2596/*
b09e0fa4
EP
2597 * Superblocks without xattr inode operations may get some security.* xattr
2598 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2599 * like ACLs, we also need to implement the security.* handlers at
2600 * filesystem level, though.
2601 */
2602
6d9d88d0
JS
2603/*
2604 * Callback for security_inode_init_security() for acquiring xattrs.
2605 */
2606static int shmem_initxattrs(struct inode *inode,
2607 const struct xattr *xattr_array,
2608 void *fs_info)
2609{
2610 struct shmem_inode_info *info = SHMEM_I(inode);
2611 const struct xattr *xattr;
38f38657 2612 struct simple_xattr *new_xattr;
6d9d88d0
JS
2613 size_t len;
2614
2615 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2616 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2617 if (!new_xattr)
2618 return -ENOMEM;
2619
2620 len = strlen(xattr->name) + 1;
2621 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2622 GFP_KERNEL);
2623 if (!new_xattr->name) {
2624 kfree(new_xattr);
2625 return -ENOMEM;
2626 }
2627
2628 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2629 XATTR_SECURITY_PREFIX_LEN);
2630 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2631 xattr->name, len);
2632
38f38657 2633 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2634 }
2635
2636 return 0;
2637}
2638
aa7c5241 2639static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
2640 struct dentry *unused, struct inode *inode,
2641 const char *name, void *buffer, size_t size)
b09e0fa4 2642{
b296821a 2643 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 2644
aa7c5241 2645 name = xattr_full_name(handler, name);
38f38657 2646 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2647}
2648
aa7c5241 2649static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
2650 struct dentry *unused, struct inode *inode,
2651 const char *name, const void *value,
2652 size_t size, int flags)
b09e0fa4 2653{
59301226 2654 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 2655
aa7c5241 2656 name = xattr_full_name(handler, name);
38f38657 2657 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2658}
2659
aa7c5241
AG
2660static const struct xattr_handler shmem_security_xattr_handler = {
2661 .prefix = XATTR_SECURITY_PREFIX,
2662 .get = shmem_xattr_handler_get,
2663 .set = shmem_xattr_handler_set,
2664};
b09e0fa4 2665
aa7c5241
AG
2666static const struct xattr_handler shmem_trusted_xattr_handler = {
2667 .prefix = XATTR_TRUSTED_PREFIX,
2668 .get = shmem_xattr_handler_get,
2669 .set = shmem_xattr_handler_set,
2670};
b09e0fa4 2671
aa7c5241
AG
2672static const struct xattr_handler *shmem_xattr_handlers[] = {
2673#ifdef CONFIG_TMPFS_POSIX_ACL
2674 &posix_acl_access_xattr_handler,
2675 &posix_acl_default_xattr_handler,
2676#endif
2677 &shmem_security_xattr_handler,
2678 &shmem_trusted_xattr_handler,
2679 NULL
2680};
b09e0fa4
EP
2681
2682static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2683{
75c3cfa8 2684 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 2685 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
2686}
2687#endif /* CONFIG_TMPFS_XATTR */
2688
69f07ec9 2689static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2690 .readlink = generic_readlink,
6b255391 2691 .get_link = simple_get_link,
b09e0fa4 2692#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2693 .setxattr = generic_setxattr,
2694 .getxattr = generic_getxattr,
b09e0fa4 2695 .listxattr = shmem_listxattr,
aa7c5241 2696 .removexattr = generic_removexattr,
b09e0fa4
EP
2697#endif
2698};
2699
2700static const struct inode_operations shmem_symlink_inode_operations = {
2701 .readlink = generic_readlink,
6b255391 2702 .get_link = shmem_get_link,
b09e0fa4 2703#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2704 .setxattr = generic_setxattr,
2705 .getxattr = generic_getxattr,
b09e0fa4 2706 .listxattr = shmem_listxattr,
aa7c5241 2707 .removexattr = generic_removexattr,
39f0247d 2708#endif
b09e0fa4 2709};
39f0247d 2710
91828a40
DG
2711static struct dentry *shmem_get_parent(struct dentry *child)
2712{
2713 return ERR_PTR(-ESTALE);
2714}
2715
2716static int shmem_match(struct inode *ino, void *vfh)
2717{
2718 __u32 *fh = vfh;
2719 __u64 inum = fh[2];
2720 inum = (inum << 32) | fh[1];
2721 return ino->i_ino == inum && fh[0] == ino->i_generation;
2722}
2723
480b116c
CH
2724static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2725 struct fid *fid, int fh_len, int fh_type)
91828a40 2726{
91828a40 2727 struct inode *inode;
480b116c 2728 struct dentry *dentry = NULL;
35c2a7f4 2729 u64 inum;
480b116c
CH
2730
2731 if (fh_len < 3)
2732 return NULL;
91828a40 2733
35c2a7f4
HD
2734 inum = fid->raw[2];
2735 inum = (inum << 32) | fid->raw[1];
2736
480b116c
CH
2737 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2738 shmem_match, fid->raw);
91828a40 2739 if (inode) {
480b116c 2740 dentry = d_find_alias(inode);
91828a40
DG
2741 iput(inode);
2742 }
2743
480b116c 2744 return dentry;
91828a40
DG
2745}
2746
b0b0382b
AV
2747static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2748 struct inode *parent)
91828a40 2749{
5fe0c237
AK
2750 if (*len < 3) {
2751 *len = 3;
94e07a75 2752 return FILEID_INVALID;
5fe0c237 2753 }
91828a40 2754
1d3382cb 2755 if (inode_unhashed(inode)) {
91828a40
DG
2756 /* Unfortunately insert_inode_hash is not idempotent,
2757 * so as we hash inodes here rather than at creation
2758 * time, we need a lock to ensure we only try
2759 * to do it once
2760 */
2761 static DEFINE_SPINLOCK(lock);
2762 spin_lock(&lock);
1d3382cb 2763 if (inode_unhashed(inode))
91828a40
DG
2764 __insert_inode_hash(inode,
2765 inode->i_ino + inode->i_generation);
2766 spin_unlock(&lock);
2767 }
2768
2769 fh[0] = inode->i_generation;
2770 fh[1] = inode->i_ino;
2771 fh[2] = ((__u64)inode->i_ino) >> 32;
2772
2773 *len = 3;
2774 return 1;
2775}
2776
39655164 2777static const struct export_operations shmem_export_ops = {
91828a40 2778 .get_parent = shmem_get_parent,
91828a40 2779 .encode_fh = shmem_encode_fh,
480b116c 2780 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2781};
2782
680d794b
AM
2783static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2784 bool remount)
1da177e4
LT
2785{
2786 char *this_char, *value, *rest;
49cd0a5c 2787 struct mempolicy *mpol = NULL;
8751e039
EB
2788 uid_t uid;
2789 gid_t gid;
1da177e4 2790
b00dc3ad
HD
2791 while (options != NULL) {
2792 this_char = options;
2793 for (;;) {
2794 /*
2795 * NUL-terminate this option: unfortunately,
2796 * mount options form a comma-separated list,
2797 * but mpol's nodelist may also contain commas.
2798 */
2799 options = strchr(options, ',');
2800 if (options == NULL)
2801 break;
2802 options++;
2803 if (!isdigit(*options)) {
2804 options[-1] = '\0';
2805 break;
2806 }
2807 }
1da177e4
LT
2808 if (!*this_char)
2809 continue;
2810 if ((value = strchr(this_char,'=')) != NULL) {
2811 *value++ = 0;
2812 } else {
1170532b
JP
2813 pr_err("tmpfs: No value for mount option '%s'\n",
2814 this_char);
49cd0a5c 2815 goto error;
1da177e4
LT
2816 }
2817
2818 if (!strcmp(this_char,"size")) {
2819 unsigned long long size;
2820 size = memparse(value,&rest);
2821 if (*rest == '%') {
2822 size <<= PAGE_SHIFT;
2823 size *= totalram_pages;
2824 do_div(size, 100);
2825 rest++;
2826 }
2827 if (*rest)
2828 goto bad_val;
680d794b 2829 sbinfo->max_blocks =
09cbfeaf 2830 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 2831 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2832 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2833 if (*rest)
2834 goto bad_val;
2835 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2836 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2837 if (*rest)
2838 goto bad_val;
2839 } else if (!strcmp(this_char,"mode")) {
680d794b 2840 if (remount)
1da177e4 2841 continue;
680d794b 2842 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2843 if (*rest)
2844 goto bad_val;
2845 } else if (!strcmp(this_char,"uid")) {
680d794b 2846 if (remount)
1da177e4 2847 continue;
8751e039 2848 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2849 if (*rest)
2850 goto bad_val;
8751e039
EB
2851 sbinfo->uid = make_kuid(current_user_ns(), uid);
2852 if (!uid_valid(sbinfo->uid))
2853 goto bad_val;
1da177e4 2854 } else if (!strcmp(this_char,"gid")) {
680d794b 2855 if (remount)
1da177e4 2856 continue;
8751e039 2857 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2858 if (*rest)
2859 goto bad_val;
8751e039
EB
2860 sbinfo->gid = make_kgid(current_user_ns(), gid);
2861 if (!gid_valid(sbinfo->gid))
2862 goto bad_val;
7339ff83 2863 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2864 mpol_put(mpol);
2865 mpol = NULL;
2866 if (mpol_parse_str(value, &mpol))
7339ff83 2867 goto bad_val;
1da177e4 2868 } else {
1170532b 2869 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 2870 goto error;
1da177e4
LT
2871 }
2872 }
49cd0a5c 2873 sbinfo->mpol = mpol;
1da177e4
LT
2874 return 0;
2875
2876bad_val:
1170532b 2877 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 2878 value, this_char);
49cd0a5c
GT
2879error:
2880 mpol_put(mpol);
1da177e4
LT
2881 return 1;
2882
2883}
2884
2885static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2886{
2887 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2888 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2889 unsigned long inodes;
2890 int error = -EINVAL;
2891
5f00110f 2892 config.mpol = NULL;
680d794b 2893 if (shmem_parse_options(data, &config, true))
0edd73b3 2894 return error;
1da177e4 2895
0edd73b3 2896 spin_lock(&sbinfo->stat_lock);
0edd73b3 2897 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2898 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2899 goto out;
680d794b 2900 if (config.max_inodes < inodes)
0edd73b3
HD
2901 goto out;
2902 /*
54af6042 2903 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2904 * but we must separately disallow unlimited->limited, because
2905 * in that case we have no record of how much is already in use.
2906 */
680d794b 2907 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2908 goto out;
680d794b 2909 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2910 goto out;
2911
2912 error = 0;
680d794b 2913 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2914 sbinfo->max_inodes = config.max_inodes;
2915 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2916
5f00110f
GT
2917 /*
2918 * Preserve previous mempolicy unless mpol remount option was specified.
2919 */
2920 if (config.mpol) {
2921 mpol_put(sbinfo->mpol);
2922 sbinfo->mpol = config.mpol; /* transfers initial ref */
2923 }
0edd73b3
HD
2924out:
2925 spin_unlock(&sbinfo->stat_lock);
2926 return error;
1da177e4 2927}
680d794b 2928
34c80b1d 2929static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2930{
34c80b1d 2931 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2932
2933 if (sbinfo->max_blocks != shmem_default_max_blocks())
2934 seq_printf(seq, ",size=%luk",
09cbfeaf 2935 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
2936 if (sbinfo->max_inodes != shmem_default_max_inodes())
2937 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2938 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2939 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2940 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2941 seq_printf(seq, ",uid=%u",
2942 from_kuid_munged(&init_user_ns, sbinfo->uid));
2943 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2944 seq_printf(seq, ",gid=%u",
2945 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2946 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2947 return 0;
2948}
9183df25
DH
2949
2950#define MFD_NAME_PREFIX "memfd:"
2951#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2952#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2953
2954#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2955
2956SYSCALL_DEFINE2(memfd_create,
2957 const char __user *, uname,
2958 unsigned int, flags)
2959{
2960 struct shmem_inode_info *info;
2961 struct file *file;
2962 int fd, error;
2963 char *name;
2964 long len;
2965
2966 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2967 return -EINVAL;
2968
2969 /* length includes terminating zero */
2970 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2971 if (len <= 0)
2972 return -EFAULT;
2973 if (len > MFD_NAME_MAX_LEN + 1)
2974 return -EINVAL;
2975
2976 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2977 if (!name)
2978 return -ENOMEM;
2979
2980 strcpy(name, MFD_NAME_PREFIX);
2981 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2982 error = -EFAULT;
2983 goto err_name;
2984 }
2985
2986 /* terminating-zero may have changed after strnlen_user() returned */
2987 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2988 error = -EFAULT;
2989 goto err_name;
2990 }
2991
2992 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2993 if (fd < 0) {
2994 error = fd;
2995 goto err_name;
2996 }
2997
2998 file = shmem_file_setup(name, 0, VM_NORESERVE);
2999 if (IS_ERR(file)) {
3000 error = PTR_ERR(file);
3001 goto err_fd;
3002 }
3003 info = SHMEM_I(file_inode(file));
3004 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3005 file->f_flags |= O_RDWR | O_LARGEFILE;
3006 if (flags & MFD_ALLOW_SEALING)
3007 info->seals &= ~F_SEAL_SEAL;
3008
3009 fd_install(fd, file);
3010 kfree(name);
3011 return fd;
3012
3013err_fd:
3014 put_unused_fd(fd);
3015err_name:
3016 kfree(name);
3017 return error;
3018}
3019
680d794b 3020#endif /* CONFIG_TMPFS */
1da177e4
LT
3021
3022static void shmem_put_super(struct super_block *sb)
3023{
602586a8
HD
3024 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3025
3026 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3027 mpol_put(sbinfo->mpol);
602586a8 3028 kfree(sbinfo);
1da177e4
LT
3029 sb->s_fs_info = NULL;
3030}
3031
2b2af54a 3032int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3033{
3034 struct inode *inode;
0edd73b3 3035 struct shmem_sb_info *sbinfo;
680d794b
AM
3036 int err = -ENOMEM;
3037
3038 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3039 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3040 L1_CACHE_BYTES), GFP_KERNEL);
3041 if (!sbinfo)
3042 return -ENOMEM;
3043
680d794b 3044 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3045 sbinfo->uid = current_fsuid();
3046 sbinfo->gid = current_fsgid();
680d794b 3047 sb->s_fs_info = sbinfo;
1da177e4 3048
0edd73b3 3049#ifdef CONFIG_TMPFS
1da177e4
LT
3050 /*
3051 * Per default we only allow half of the physical ram per
3052 * tmpfs instance, limiting inodes to one per page of lowmem;
3053 * but the internal instance is left unlimited.
3054 */
ca4e0519 3055 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3056 sbinfo->max_blocks = shmem_default_max_blocks();
3057 sbinfo->max_inodes = shmem_default_max_inodes();
3058 if (shmem_parse_options(data, sbinfo, false)) {
3059 err = -EINVAL;
3060 goto failed;
3061 }
ca4e0519
AV
3062 } else {
3063 sb->s_flags |= MS_NOUSER;
1da177e4 3064 }
91828a40 3065 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3066 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3067#else
3068 sb->s_flags |= MS_NOUSER;
3069#endif
3070
0edd73b3 3071 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3072 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3073 goto failed;
680d794b 3074 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3075
285b2c4f 3076 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3077 sb->s_blocksize = PAGE_SIZE;
3078 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3079 sb->s_magic = TMPFS_MAGIC;
3080 sb->s_op = &shmem_ops;
cfd95a9c 3081 sb->s_time_gran = 1;
b09e0fa4 3082#ifdef CONFIG_TMPFS_XATTR
39f0247d 3083 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3084#endif
3085#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3086 sb->s_flags |= MS_POSIXACL;
3087#endif
0edd73b3 3088
454abafe 3089 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3090 if (!inode)
3091 goto failed;
680d794b
AM
3092 inode->i_uid = sbinfo->uid;
3093 inode->i_gid = sbinfo->gid;
318ceed0
AV
3094 sb->s_root = d_make_root(inode);
3095 if (!sb->s_root)
48fde701 3096 goto failed;
1da177e4
LT
3097 return 0;
3098
1da177e4
LT
3099failed:
3100 shmem_put_super(sb);
3101 return err;
3102}
3103
fcc234f8 3104static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3105
3106static struct inode *shmem_alloc_inode(struct super_block *sb)
3107{
41ffe5d5
HD
3108 struct shmem_inode_info *info;
3109 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3110 if (!info)
1da177e4 3111 return NULL;
41ffe5d5 3112 return &info->vfs_inode;
1da177e4
LT
3113}
3114
41ffe5d5 3115static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3116{
3117 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3118 if (S_ISLNK(inode->i_mode))
3119 kfree(inode->i_link);
fa0d7e3d
NP
3120 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3121}
3122
1da177e4
LT
3123static void shmem_destroy_inode(struct inode *inode)
3124{
09208d15 3125 if (S_ISREG(inode->i_mode))
1da177e4 3126 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3127 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3128}
3129
41ffe5d5 3130static void shmem_init_inode(void *foo)
1da177e4 3131{
41ffe5d5
HD
3132 struct shmem_inode_info *info = foo;
3133 inode_init_once(&info->vfs_inode);
1da177e4
LT
3134}
3135
41ffe5d5 3136static int shmem_init_inodecache(void)
1da177e4
LT
3137{
3138 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3139 sizeof(struct shmem_inode_info),
5d097056 3140 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3141 return 0;
3142}
3143
41ffe5d5 3144static void shmem_destroy_inodecache(void)
1da177e4 3145{
1a1d92c1 3146 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3147}
3148
f5e54d6e 3149static const struct address_space_operations shmem_aops = {
1da177e4 3150 .writepage = shmem_writepage,
76719325 3151 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3152#ifdef CONFIG_TMPFS
800d15a5
NP
3153 .write_begin = shmem_write_begin,
3154 .write_end = shmem_write_end,
1da177e4 3155#endif
1c93923c 3156#ifdef CONFIG_MIGRATION
304dbdb7 3157 .migratepage = migrate_page,
1c93923c 3158#endif
aa261f54 3159 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3160};
3161
15ad7cdc 3162static const struct file_operations shmem_file_operations = {
1da177e4
LT
3163 .mmap = shmem_mmap,
3164#ifdef CONFIG_TMPFS
220f2ac9 3165 .llseek = shmem_file_llseek,
2ba5bbed 3166 .read_iter = shmem_file_read_iter,
8174202b 3167 .write_iter = generic_file_write_iter,
1b061d92 3168 .fsync = noop_fsync,
708e3508 3169 .splice_read = shmem_file_splice_read,
f6cb85d0 3170 .splice_write = iter_file_splice_write,
83e4fa9c 3171 .fallocate = shmem_fallocate,
1da177e4
LT
3172#endif
3173};
3174
92e1d5be 3175static const struct inode_operations shmem_inode_operations = {
44a30220 3176 .getattr = shmem_getattr,
94c1e62d 3177 .setattr = shmem_setattr,
b09e0fa4 3178#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3179 .setxattr = generic_setxattr,
3180 .getxattr = generic_getxattr,
b09e0fa4 3181 .listxattr = shmem_listxattr,
aa7c5241 3182 .removexattr = generic_removexattr,
feda821e 3183 .set_acl = simple_set_acl,
b09e0fa4 3184#endif
1da177e4
LT
3185};
3186
92e1d5be 3187static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3188#ifdef CONFIG_TMPFS
3189 .create = shmem_create,
3190 .lookup = simple_lookup,
3191 .link = shmem_link,
3192 .unlink = shmem_unlink,
3193 .symlink = shmem_symlink,
3194 .mkdir = shmem_mkdir,
3195 .rmdir = shmem_rmdir,
3196 .mknod = shmem_mknod,
3b69ff51 3197 .rename2 = shmem_rename2,
60545d0d 3198 .tmpfile = shmem_tmpfile,
1da177e4 3199#endif
b09e0fa4 3200#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3201 .setxattr = generic_setxattr,
3202 .getxattr = generic_getxattr,
b09e0fa4 3203 .listxattr = shmem_listxattr,
aa7c5241 3204 .removexattr = generic_removexattr,
b09e0fa4 3205#endif
39f0247d 3206#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3207 .setattr = shmem_setattr,
feda821e 3208 .set_acl = simple_set_acl,
39f0247d
AG
3209#endif
3210};
3211
92e1d5be 3212static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3213#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3214 .setxattr = generic_setxattr,
3215 .getxattr = generic_getxattr,
b09e0fa4 3216 .listxattr = shmem_listxattr,
aa7c5241 3217 .removexattr = generic_removexattr,
b09e0fa4 3218#endif
39f0247d 3219#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3220 .setattr = shmem_setattr,
feda821e 3221 .set_acl = simple_set_acl,
39f0247d 3222#endif
1da177e4
LT
3223};
3224
759b9775 3225static const struct super_operations shmem_ops = {
1da177e4
LT
3226 .alloc_inode = shmem_alloc_inode,
3227 .destroy_inode = shmem_destroy_inode,
3228#ifdef CONFIG_TMPFS
3229 .statfs = shmem_statfs,
3230 .remount_fs = shmem_remount_fs,
680d794b 3231 .show_options = shmem_show_options,
1da177e4 3232#endif
1f895f75 3233 .evict_inode = shmem_evict_inode,
1da177e4
LT
3234 .drop_inode = generic_delete_inode,
3235 .put_super = shmem_put_super,
3236};
3237
f0f37e2f 3238static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3239 .fault = shmem_fault,
d7c17551 3240 .map_pages = filemap_map_pages,
1da177e4
LT
3241#ifdef CONFIG_NUMA
3242 .set_policy = shmem_set_policy,
3243 .get_policy = shmem_get_policy,
3244#endif
3245};
3246
3c26ff6e
AV
3247static struct dentry *shmem_mount(struct file_system_type *fs_type,
3248 int flags, const char *dev_name, void *data)
1da177e4 3249{
3c26ff6e 3250 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3251}
3252
41ffe5d5 3253static struct file_system_type shmem_fs_type = {
1da177e4
LT
3254 .owner = THIS_MODULE,
3255 .name = "tmpfs",
3c26ff6e 3256 .mount = shmem_mount,
1da177e4 3257 .kill_sb = kill_litter_super,
2b8576cb 3258 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3259};
1da177e4 3260
41ffe5d5 3261int __init shmem_init(void)
1da177e4
LT
3262{
3263 int error;
3264
16203a7a
RL
3265 /* If rootfs called this, don't re-init */
3266 if (shmem_inode_cachep)
3267 return 0;
3268
41ffe5d5 3269 error = shmem_init_inodecache();
1da177e4
LT
3270 if (error)
3271 goto out3;
3272
41ffe5d5 3273 error = register_filesystem(&shmem_fs_type);
1da177e4 3274 if (error) {
1170532b 3275 pr_err("Could not register tmpfs\n");
1da177e4
LT
3276 goto out2;
3277 }
95dc112a 3278
ca4e0519 3279 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3280 if (IS_ERR(shm_mnt)) {
3281 error = PTR_ERR(shm_mnt);
1170532b 3282 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3283 goto out1;
3284 }
3285 return 0;
3286
3287out1:
41ffe5d5 3288 unregister_filesystem(&shmem_fs_type);
1da177e4 3289out2:
41ffe5d5 3290 shmem_destroy_inodecache();
1da177e4
LT
3291out3:
3292 shm_mnt = ERR_PTR(error);
3293 return error;
3294}
853ac43a
MM
3295
3296#else /* !CONFIG_SHMEM */
3297
3298/*
3299 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3300 *
3301 * This is intended for small system where the benefits of the full
3302 * shmem code (swap-backed and resource-limited) are outweighed by
3303 * their complexity. On systems without swap this code should be
3304 * effectively equivalent, but much lighter weight.
3305 */
3306
41ffe5d5 3307static struct file_system_type shmem_fs_type = {
853ac43a 3308 .name = "tmpfs",
3c26ff6e 3309 .mount = ramfs_mount,
853ac43a 3310 .kill_sb = kill_litter_super,
2b8576cb 3311 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3312};
3313
41ffe5d5 3314int __init shmem_init(void)
853ac43a 3315{
41ffe5d5 3316 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3317
41ffe5d5 3318 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3319 BUG_ON(IS_ERR(shm_mnt));
3320
3321 return 0;
3322}
3323
41ffe5d5 3324int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3325{
3326 return 0;
3327}
3328
3f96b79a
HD
3329int shmem_lock(struct file *file, int lock, struct user_struct *user)
3330{
3331 return 0;
3332}
3333
24513264
HD
3334void shmem_unlock_mapping(struct address_space *mapping)
3335{
3336}
3337
41ffe5d5 3338void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3339{
41ffe5d5 3340 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3341}
3342EXPORT_SYMBOL_GPL(shmem_truncate_range);
3343
0b0a0806
HD
3344#define shmem_vm_ops generic_file_vm_ops
3345#define shmem_file_operations ramfs_file_operations
454abafe 3346#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3347#define shmem_acct_size(flags, size) 0
3348#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3349
3350#endif /* CONFIG_SHMEM */
3351
3352/* common code */
1da177e4 3353
3451538a 3354static struct dentry_operations anon_ops = {
118b2302 3355 .d_dname = simple_dname
3451538a
AV
3356};
3357
c7277090
EP
3358static struct file *__shmem_file_setup(const char *name, loff_t size,
3359 unsigned long flags, unsigned int i_flags)
1da177e4 3360{
6b4d0b27 3361 struct file *res;
1da177e4 3362 struct inode *inode;
2c48b9c4 3363 struct path path;
3451538a 3364 struct super_block *sb;
1da177e4
LT
3365 struct qstr this;
3366
3367 if (IS_ERR(shm_mnt))
6b4d0b27 3368 return ERR_CAST(shm_mnt);
1da177e4 3369
285b2c4f 3370 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3371 return ERR_PTR(-EINVAL);
3372
3373 if (shmem_acct_size(flags, size))
3374 return ERR_PTR(-ENOMEM);
3375
6b4d0b27 3376 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3377 this.name = name;
3378 this.len = strlen(name);
3379 this.hash = 0; /* will go */
3451538a 3380 sb = shm_mnt->mnt_sb;
66ee4b88 3381 path.mnt = mntget(shm_mnt);
3451538a 3382 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3383 if (!path.dentry)
1da177e4 3384 goto put_memory;
3451538a 3385 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3386
6b4d0b27 3387 res = ERR_PTR(-ENOSPC);
3451538a 3388 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3389 if (!inode)
66ee4b88 3390 goto put_memory;
1da177e4 3391
c7277090 3392 inode->i_flags |= i_flags;
2c48b9c4 3393 d_instantiate(path.dentry, inode);
1da177e4 3394 inode->i_size = size;
6d6b77f1 3395 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3396 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3397 if (IS_ERR(res))
66ee4b88 3398 goto put_path;
4b42af81 3399
6b4d0b27 3400 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3401 &shmem_file_operations);
6b4d0b27 3402 if (IS_ERR(res))
66ee4b88 3403 goto put_path;
4b42af81 3404
6b4d0b27 3405 return res;
1da177e4 3406
1da177e4
LT
3407put_memory:
3408 shmem_unacct_size(flags, size);
66ee4b88
KK
3409put_path:
3410 path_put(&path);
6b4d0b27 3411 return res;
1da177e4 3412}
c7277090
EP
3413
3414/**
3415 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3416 * kernel internal. There will be NO LSM permission checks against the
3417 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3418 * higher layer. The users are the big_key and shm implementations. LSM
3419 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3420 * @name: name for dentry (to be seen in /proc/<pid>/maps
3421 * @size: size to be set for the file
3422 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3423 */
3424struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3425{
3426 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3427}
3428
3429/**
3430 * shmem_file_setup - get an unlinked file living in tmpfs
3431 * @name: name for dentry (to be seen in /proc/<pid>/maps
3432 * @size: size to be set for the file
3433 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3434 */
3435struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3436{
3437 return __shmem_file_setup(name, size, flags, 0);
3438}
395e0ddc 3439EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3440
46711810 3441/**
1da177e4 3442 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3443 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3444 */
3445int shmem_zero_setup(struct vm_area_struct *vma)
3446{
3447 struct file *file;
3448 loff_t size = vma->vm_end - vma->vm_start;
3449
66fc1303
HD
3450 /*
3451 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3452 * between XFS directory reading and selinux: since this file is only
3453 * accessible to the user through its mapping, use S_PRIVATE flag to
3454 * bypass file security, in the same way as shmem_kernel_file_setup().
3455 */
3456 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3457 if (IS_ERR(file))
3458 return PTR_ERR(file);
3459
3460 if (vma->vm_file)
3461 fput(vma->vm_file);
3462 vma->vm_file = file;
3463 vma->vm_ops = &shmem_vm_ops;
3464 return 0;
3465}
d9d90e5e
HD
3466
3467/**
3468 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3469 * @mapping: the page's address_space
3470 * @index: the page index
3471 * @gfp: the page allocator flags to use if allocating
3472 *
3473 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3474 * with any new page allocations done using the specified allocation flags.
3475 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3476 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3477 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3478 *
68da9f05
HD
3479 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3480 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3481 */
3482struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3483 pgoff_t index, gfp_t gfp)
3484{
68da9f05
HD
3485#ifdef CONFIG_SHMEM
3486 struct inode *inode = mapping->host;
9276aad6 3487 struct page *page;
68da9f05
HD
3488 int error;
3489
3490 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29
ALC
3491 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3492 gfp, NULL, NULL);
68da9f05
HD
3493 if (error)
3494 page = ERR_PTR(error);
3495 else
3496 unlock_page(page);
3497 return page;
3498#else
3499 /*
3500 * The tiny !SHMEM case uses ramfs without swap
3501 */
d9d90e5e 3502 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3503#endif
d9d90e5e
HD
3504}
3505EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);