]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/shmem.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
853ac43a 37
95cc09d6
AA
38#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
853ac43a
MM
40static struct vfsmount *shm_mnt;
41
42#ifdef CONFIG_SHMEM
1da177e4
LT
43/*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
39f0247d 49#include <linux/xattr.h>
a5694255 50#include <linux/exportfs.h>
1c7c474c 51#include <linux/posix_acl.h>
feda821e 52#include <linux/posix_acl_xattr.h>
1da177e4 53#include <linux/mman.h>
1da177e4
LT
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <linux/backing-dev.h>
57#include <linux/shmem_fs.h>
1da177e4 58#include <linux/writeback.h>
1da177e4 59#include <linux/blkdev.h>
bda97eab 60#include <linux/pagevec.h>
41ffe5d5 61#include <linux/percpu_counter.h>
83e4fa9c 62#include <linux/falloc.h>
708e3508 63#include <linux/splice.h>
1da177e4
LT
64#include <linux/security.h>
65#include <linux/swapops.h>
66#include <linux/mempolicy.h>
67#include <linux/namei.h>
b00dc3ad 68#include <linux/ctype.h>
304dbdb7 69#include <linux/migrate.h>
c1f60a5a 70#include <linux/highmem.h>
680d794b 71#include <linux/seq_file.h>
92562927 72#include <linux/magic.h>
9183df25 73#include <linux/syscalls.h>
40e041a2 74#include <linux/fcntl.h>
9183df25 75#include <uapi/linux/memfd.h>
cfda0526 76#include <linux/userfaultfd_k.h>
4c27fe4c 77#include <linux/rmap.h>
304dbdb7 78
7c0f6ba6 79#include <linux/uaccess.h>
1da177e4
LT
80#include <asm/pgtable.h>
81
dd56b046
MG
82#include "internal.h"
83
09cbfeaf
KS
84#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
85#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 86
1da177e4
LT
87/* Pretend that each entry is of this size in directory's i_size */
88#define BOGO_DIRENT_SIZE 20
89
69f07ec9
HD
90/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
91#define SHORT_SYMLINK_LEN 128
92
1aac1400 93/*
f00cdc6d
HD
94 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
95 * inode->i_private (with i_mutex making sure that it has only one user at
96 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
97 */
98struct shmem_falloc {
8e205f77 99 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
100 pgoff_t start; /* start of range currently being fallocated */
101 pgoff_t next; /* the next page offset to be fallocated */
102 pgoff_t nr_falloced; /* how many new pages have been fallocated */
103 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
104};
105
b76db735 106#ifdef CONFIG_TMPFS
680d794b
AM
107static unsigned long shmem_default_max_blocks(void)
108{
109 return totalram_pages / 2;
110}
111
112static unsigned long shmem_default_max_inodes(void)
113{
114 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
115}
b76db735 116#endif
680d794b 117
bde05d1c
HD
118static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
119static int shmem_replace_page(struct page **pagep, gfp_t gfp,
120 struct shmem_inode_info *info, pgoff_t index);
68da9f05 121static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 122 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
123 gfp_t gfp, struct vm_area_struct *vma,
124 struct vm_fault *vmf, int *fault_type);
68da9f05 125
f3f0e1d2 126int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 127 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
128{
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 130 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 131}
1da177e4 132
1da177e4
LT
133static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134{
135 return sb->s_fs_info;
136}
137
138/*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144static inline int shmem_acct_size(unsigned long flags, loff_t size)
145{
0b0a0806 146 return (flags & VM_NORESERVE) ?
191c5424 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
148}
149
150static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151{
0b0a0806 152 if (!(flags & VM_NORESERVE))
1da177e4
LT
153 vm_unacct_memory(VM_ACCT(size));
154}
155
77142517
KK
156static inline int shmem_reacct_size(unsigned long flags,
157 loff_t oldsize, loff_t newsize)
158{
159 if (!(flags & VM_NORESERVE)) {
160 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
161 return security_vm_enough_memory_mm(current->mm,
162 VM_ACCT(newsize) - VM_ACCT(oldsize));
163 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
164 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
165 }
166 return 0;
167}
168
1da177e4
LT
169/*
170 * ... whereas tmpfs objects are accounted incrementally as
75edd345 171 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
172 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
173 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
174 */
800d8c63 175static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 176{
800d8c63
KS
177 if (!(flags & VM_NORESERVE))
178 return 0;
179
180 return security_vm_enough_memory_mm(current->mm,
181 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
182}
183
184static inline void shmem_unacct_blocks(unsigned long flags, long pages)
185{
0b0a0806 186 if (flags & VM_NORESERVE)
09cbfeaf 187 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
188}
189
759b9775 190static const struct super_operations shmem_ops;
f5e54d6e 191static const struct address_space_operations shmem_aops;
15ad7cdc 192static const struct file_operations shmem_file_operations;
92e1d5be
AV
193static const struct inode_operations shmem_inode_operations;
194static const struct inode_operations shmem_dir_inode_operations;
195static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 196static const struct vm_operations_struct shmem_vm_ops;
779750d2 197static struct file_system_type shmem_fs_type;
1da177e4 198
b0506e48
MR
199bool vma_is_shmem(struct vm_area_struct *vma)
200{
201 return vma->vm_ops == &shmem_vm_ops;
202}
203
1da177e4 204static LIST_HEAD(shmem_swaplist);
cb5f7b9a 205static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 206
5b04c689
PE
207static int shmem_reserve_inode(struct super_block *sb)
208{
209 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
210 if (sbinfo->max_inodes) {
211 spin_lock(&sbinfo->stat_lock);
212 if (!sbinfo->free_inodes) {
213 spin_unlock(&sbinfo->stat_lock);
214 return -ENOSPC;
215 }
216 sbinfo->free_inodes--;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219 return 0;
220}
221
222static void shmem_free_inode(struct super_block *sb)
223{
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock);
227 sbinfo->free_inodes++;
228 spin_unlock(&sbinfo->stat_lock);
229 }
230}
231
46711810 232/**
41ffe5d5 233 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
234 * @inode: inode to recalc
235 *
236 * We have to calculate the free blocks since the mm can drop
237 * undirtied hole pages behind our back.
238 *
239 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
240 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
241 *
242 * It has to be called with the spinlock held.
243 */
244static void shmem_recalc_inode(struct inode *inode)
245{
246 struct shmem_inode_info *info = SHMEM_I(inode);
247 long freed;
248
249 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
250 if (freed > 0) {
54af6042
HD
251 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
252 if (sbinfo->max_blocks)
253 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 254 info->alloced -= freed;
54af6042 255 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 256 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
257 }
258}
259
800d8c63
KS
260bool shmem_charge(struct inode *inode, long pages)
261{
262 struct shmem_inode_info *info = SHMEM_I(inode);
263 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 264 unsigned long flags;
800d8c63
KS
265
266 if (shmem_acct_block(info->flags, pages))
267 return false;
4595ef88 268 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
269 info->alloced += pages;
270 inode->i_blocks += pages * BLOCKS_PER_PAGE;
271 shmem_recalc_inode(inode);
4595ef88 272 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
273 inode->i_mapping->nrpages += pages;
274
275 if (!sbinfo->max_blocks)
276 return true;
277 if (percpu_counter_compare(&sbinfo->used_blocks,
278 sbinfo->max_blocks - pages) > 0) {
279 inode->i_mapping->nrpages -= pages;
4595ef88 280 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
281 info->alloced -= pages;
282 shmem_recalc_inode(inode);
4595ef88 283 spin_unlock_irqrestore(&info->lock, flags);
71664665 284 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
285 return false;
286 }
287 percpu_counter_add(&sbinfo->used_blocks, pages);
288 return true;
289}
290
291void shmem_uncharge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 295 unsigned long flags;
800d8c63 296
4595ef88 297 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
298 info->alloced -= pages;
299 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
300 shmem_recalc_inode(inode);
4595ef88 301 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
302
303 if (sbinfo->max_blocks)
304 percpu_counter_sub(&sbinfo->used_blocks, pages);
71664665 305 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
306}
307
7a5d0fbb
HD
308/*
309 * Replace item expected in radix tree by a new item, while holding tree lock.
310 */
311static int shmem_radix_tree_replace(struct address_space *mapping,
312 pgoff_t index, void *expected, void *replacement)
313{
f7942430 314 struct radix_tree_node *node;
7a5d0fbb 315 void **pslot;
6dbaf22c 316 void *item;
7a5d0fbb
HD
317
318 VM_BUG_ON(!expected);
6dbaf22c 319 VM_BUG_ON(!replacement);
f7942430
JW
320 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
321 if (!item)
6dbaf22c 322 return -ENOENT;
7a5d0fbb
HD
323 if (item != expected)
324 return -ENOENT;
4d693d08
JW
325 __radix_tree_replace(&mapping->page_tree, node, pslot,
326 replacement, NULL, NULL);
7a5d0fbb
HD
327 return 0;
328}
329
d1899228
HD
330/*
331 * Sometimes, before we decide whether to proceed or to fail, we must check
332 * that an entry was not already brought back from swap by a racing thread.
333 *
334 * Checking page is not enough: by the time a SwapCache page is locked, it
335 * might be reused, and again be SwapCache, using the same swap as before.
336 */
337static bool shmem_confirm_swap(struct address_space *mapping,
338 pgoff_t index, swp_entry_t swap)
339{
340 void *item;
341
342 rcu_read_lock();
343 item = radix_tree_lookup(&mapping->page_tree, index);
344 rcu_read_unlock();
345 return item == swp_to_radix_entry(swap);
346}
347
5a6e75f8
KS
348/*
349 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
350 *
351 * SHMEM_HUGE_NEVER:
352 * disables huge pages for the mount;
353 * SHMEM_HUGE_ALWAYS:
354 * enables huge pages for the mount;
355 * SHMEM_HUGE_WITHIN_SIZE:
356 * only allocate huge pages if the page will be fully within i_size,
357 * also respect fadvise()/madvise() hints;
358 * SHMEM_HUGE_ADVISE:
359 * only allocate huge pages if requested with fadvise()/madvise();
360 */
361
362#define SHMEM_HUGE_NEVER 0
363#define SHMEM_HUGE_ALWAYS 1
364#define SHMEM_HUGE_WITHIN_SIZE 2
365#define SHMEM_HUGE_ADVISE 3
366
367/*
368 * Special values.
369 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
370 *
371 * SHMEM_HUGE_DENY:
372 * disables huge on shm_mnt and all mounts, for emergency use;
373 * SHMEM_HUGE_FORCE:
374 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
375 *
376 */
377#define SHMEM_HUGE_DENY (-1)
378#define SHMEM_HUGE_FORCE (-2)
379
e496cf3d 380#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
381/* ifdef here to avoid bloating shmem.o when not necessary */
382
383int shmem_huge __read_mostly;
384
f1f5929c 385#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
386static int shmem_parse_huge(const char *str)
387{
388 if (!strcmp(str, "never"))
389 return SHMEM_HUGE_NEVER;
390 if (!strcmp(str, "always"))
391 return SHMEM_HUGE_ALWAYS;
392 if (!strcmp(str, "within_size"))
393 return SHMEM_HUGE_WITHIN_SIZE;
394 if (!strcmp(str, "advise"))
395 return SHMEM_HUGE_ADVISE;
396 if (!strcmp(str, "deny"))
397 return SHMEM_HUGE_DENY;
398 if (!strcmp(str, "force"))
399 return SHMEM_HUGE_FORCE;
400 return -EINVAL;
401}
402
403static const char *shmem_format_huge(int huge)
404{
405 switch (huge) {
406 case SHMEM_HUGE_NEVER:
407 return "never";
408 case SHMEM_HUGE_ALWAYS:
409 return "always";
410 case SHMEM_HUGE_WITHIN_SIZE:
411 return "within_size";
412 case SHMEM_HUGE_ADVISE:
413 return "advise";
414 case SHMEM_HUGE_DENY:
415 return "deny";
416 case SHMEM_HUGE_FORCE:
417 return "force";
418 default:
419 VM_BUG_ON(1);
420 return "bad_val";
421 }
422}
f1f5929c 423#endif
5a6e75f8 424
779750d2
KS
425static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
426 struct shrink_control *sc, unsigned long nr_to_split)
427{
428 LIST_HEAD(list), *pos, *next;
253fd0f0 429 LIST_HEAD(to_remove);
779750d2
KS
430 struct inode *inode;
431 struct shmem_inode_info *info;
432 struct page *page;
433 unsigned long batch = sc ? sc->nr_to_scan : 128;
434 int removed = 0, split = 0;
435
436 if (list_empty(&sbinfo->shrinklist))
437 return SHRINK_STOP;
438
439 spin_lock(&sbinfo->shrinklist_lock);
440 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
441 info = list_entry(pos, struct shmem_inode_info, shrinklist);
442
443 /* pin the inode */
444 inode = igrab(&info->vfs_inode);
445
446 /* inode is about to be evicted */
447 if (!inode) {
448 list_del_init(&info->shrinklist);
449 removed++;
450 goto next;
451 }
452
453 /* Check if there's anything to gain */
454 if (round_up(inode->i_size, PAGE_SIZE) ==
455 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 456 list_move(&info->shrinklist, &to_remove);
779750d2 457 removed++;
779750d2
KS
458 goto next;
459 }
460
461 list_move(&info->shrinklist, &list);
462next:
463 if (!--batch)
464 break;
465 }
466 spin_unlock(&sbinfo->shrinklist_lock);
467
253fd0f0
KS
468 list_for_each_safe(pos, next, &to_remove) {
469 info = list_entry(pos, struct shmem_inode_info, shrinklist);
470 inode = &info->vfs_inode;
471 list_del_init(&info->shrinklist);
472 iput(inode);
473 }
474
779750d2
KS
475 list_for_each_safe(pos, next, &list) {
476 int ret;
477
478 info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 inode = &info->vfs_inode;
480
481 if (nr_to_split && split >= nr_to_split) {
482 iput(inode);
483 continue;
484 }
485
486 page = find_lock_page(inode->i_mapping,
487 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
488 if (!page)
489 goto drop;
490
491 if (!PageTransHuge(page)) {
492 unlock_page(page);
493 put_page(page);
494 goto drop;
495 }
496
497 ret = split_huge_page(page);
498 unlock_page(page);
499 put_page(page);
500
501 if (ret) {
502 /* split failed: leave it on the list */
503 iput(inode);
504 continue;
505 }
506
507 split++;
508drop:
509 list_del_init(&info->shrinklist);
510 removed++;
511 iput(inode);
512 }
513
514 spin_lock(&sbinfo->shrinklist_lock);
515 list_splice_tail(&list, &sbinfo->shrinklist);
516 sbinfo->shrinklist_len -= removed;
517 spin_unlock(&sbinfo->shrinklist_lock);
518
519 return split;
520}
521
522static long shmem_unused_huge_scan(struct super_block *sb,
523 struct shrink_control *sc)
524{
525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
526
527 if (!READ_ONCE(sbinfo->shrinklist_len))
528 return SHRINK_STOP;
529
530 return shmem_unused_huge_shrink(sbinfo, sc, 0);
531}
532
533static long shmem_unused_huge_count(struct super_block *sb,
534 struct shrink_control *sc)
535{
536 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
537 return READ_ONCE(sbinfo->shrinklist_len);
538}
e496cf3d 539#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
540
541#define shmem_huge SHMEM_HUGE_DENY
542
779750d2
KS
543static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
544 struct shrink_control *sc, unsigned long nr_to_split)
545{
546 return 0;
547}
e496cf3d 548#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 549
46f65ec1
HD
550/*
551 * Like add_to_page_cache_locked, but error if expected item has gone.
552 */
553static int shmem_add_to_page_cache(struct page *page,
554 struct address_space *mapping,
fed400a1 555 pgoff_t index, void *expected)
46f65ec1 556{
800d8c63 557 int error, nr = hpage_nr_pages(page);
46f65ec1 558
800d8c63
KS
559 VM_BUG_ON_PAGE(PageTail(page), page);
560 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
561 VM_BUG_ON_PAGE(!PageLocked(page), page);
562 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 563 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 564
800d8c63 565 page_ref_add(page, nr);
b065b432
HD
566 page->mapping = mapping;
567 page->index = index;
568
569 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
570 if (PageTransHuge(page)) {
571 void __rcu **results;
572 pgoff_t idx;
573 int i;
574
575 error = 0;
576 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
577 &results, &idx, index, 1) &&
578 idx < index + HPAGE_PMD_NR) {
579 error = -EEXIST;
580 }
581
582 if (!error) {
583 for (i = 0; i < HPAGE_PMD_NR; i++) {
584 error = radix_tree_insert(&mapping->page_tree,
585 index + i, page + i);
586 VM_BUG_ON(error);
587 }
588 count_vm_event(THP_FILE_ALLOC);
589 }
590 } else if (!expected) {
b065b432 591 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 592 } else {
b065b432
HD
593 error = shmem_radix_tree_replace(mapping, index, expected,
594 page);
800d8c63
KS
595 }
596
46f65ec1 597 if (!error) {
800d8c63
KS
598 mapping->nrpages += nr;
599 if (PageTransHuge(page))
11fb9989
MG
600 __inc_node_page_state(page, NR_SHMEM_THPS);
601 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
602 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
603 spin_unlock_irq(&mapping->tree_lock);
604 } else {
605 page->mapping = NULL;
606 spin_unlock_irq(&mapping->tree_lock);
800d8c63 607 page_ref_sub(page, nr);
46f65ec1 608 }
46f65ec1
HD
609 return error;
610}
611
6922c0c7
HD
612/*
613 * Like delete_from_page_cache, but substitutes swap for page.
614 */
615static void shmem_delete_from_page_cache(struct page *page, void *radswap)
616{
617 struct address_space *mapping = page->mapping;
618 int error;
619
800d8c63
KS
620 VM_BUG_ON_PAGE(PageCompound(page), page);
621
6922c0c7
HD
622 spin_lock_irq(&mapping->tree_lock);
623 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
624 page->mapping = NULL;
625 mapping->nrpages--;
11fb9989
MG
626 __dec_node_page_state(page, NR_FILE_PAGES);
627 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 628 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 629 put_page(page);
6922c0c7
HD
630 BUG_ON(error);
631}
632
7a5d0fbb
HD
633/*
634 * Remove swap entry from radix tree, free the swap and its page cache.
635 */
636static int shmem_free_swap(struct address_space *mapping,
637 pgoff_t index, void *radswap)
638{
6dbaf22c 639 void *old;
7a5d0fbb
HD
640
641 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 642 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 643 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
644 if (old != radswap)
645 return -ENOENT;
646 free_swap_and_cache(radix_to_swp_entry(radswap));
647 return 0;
7a5d0fbb
HD
648}
649
6a15a370
VB
650/*
651 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 652 * given offsets are swapped out.
6a15a370
VB
653 *
654 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
655 * as long as the inode doesn't go away and racy results are not a problem.
656 */
48131e03
VB
657unsigned long shmem_partial_swap_usage(struct address_space *mapping,
658 pgoff_t start, pgoff_t end)
6a15a370 659{
6a15a370
VB
660 struct radix_tree_iter iter;
661 void **slot;
662 struct page *page;
48131e03 663 unsigned long swapped = 0;
6a15a370
VB
664
665 rcu_read_lock();
666
6a15a370
VB
667 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
668 if (iter.index >= end)
669 break;
670
671 page = radix_tree_deref_slot(slot);
672
2cf938aa
MW
673 if (radix_tree_deref_retry(page)) {
674 slot = radix_tree_iter_retry(&iter);
675 continue;
676 }
6a15a370
VB
677
678 if (radix_tree_exceptional_entry(page))
679 swapped++;
680
681 if (need_resched()) {
148deab2 682 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 683 cond_resched_rcu();
6a15a370
VB
684 }
685 }
686
687 rcu_read_unlock();
688
689 return swapped << PAGE_SHIFT;
690}
691
48131e03
VB
692/*
693 * Determine (in bytes) how many of the shmem object's pages mapped by the
694 * given vma is swapped out.
695 *
696 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
697 * as long as the inode doesn't go away and racy results are not a problem.
698 */
699unsigned long shmem_swap_usage(struct vm_area_struct *vma)
700{
701 struct inode *inode = file_inode(vma->vm_file);
702 struct shmem_inode_info *info = SHMEM_I(inode);
703 struct address_space *mapping = inode->i_mapping;
704 unsigned long swapped;
705
706 /* Be careful as we don't hold info->lock */
707 swapped = READ_ONCE(info->swapped);
708
709 /*
710 * The easier cases are when the shmem object has nothing in swap, or
711 * the vma maps it whole. Then we can simply use the stats that we
712 * already track.
713 */
714 if (!swapped)
715 return 0;
716
717 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
718 return swapped << PAGE_SHIFT;
719
720 /* Here comes the more involved part */
721 return shmem_partial_swap_usage(mapping,
722 linear_page_index(vma, vma->vm_start),
723 linear_page_index(vma, vma->vm_end));
724}
725
24513264
HD
726/*
727 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
728 */
729void shmem_unlock_mapping(struct address_space *mapping)
730{
731 struct pagevec pvec;
732 pgoff_t indices[PAGEVEC_SIZE];
733 pgoff_t index = 0;
734
735 pagevec_init(&pvec, 0);
736 /*
737 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
738 */
739 while (!mapping_unevictable(mapping)) {
740 /*
741 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
742 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
743 */
0cd6144a
JW
744 pvec.nr = find_get_entries(mapping, index,
745 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
746 if (!pvec.nr)
747 break;
748 index = indices[pvec.nr - 1] + 1;
0cd6144a 749 pagevec_remove_exceptionals(&pvec);
24513264
HD
750 check_move_unevictable_pages(pvec.pages, pvec.nr);
751 pagevec_release(&pvec);
752 cond_resched();
753 }
7a5d0fbb
HD
754}
755
756/*
757 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 758 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 759 */
1635f6a7
HD
760static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
761 bool unfalloc)
1da177e4 762{
285b2c4f 763 struct address_space *mapping = inode->i_mapping;
1da177e4 764 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
765 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
766 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
767 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
768 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 769 struct pagevec pvec;
7a5d0fbb
HD
770 pgoff_t indices[PAGEVEC_SIZE];
771 long nr_swaps_freed = 0;
285b2c4f 772 pgoff_t index;
bda97eab
HD
773 int i;
774
83e4fa9c
HD
775 if (lend == -1)
776 end = -1; /* unsigned, so actually very big */
bda97eab
HD
777
778 pagevec_init(&pvec, 0);
779 index = start;
83e4fa9c 780 while (index < end) {
0cd6144a
JW
781 pvec.nr = find_get_entries(mapping, index,
782 min(end - index, (pgoff_t)PAGEVEC_SIZE),
783 pvec.pages, indices);
7a5d0fbb
HD
784 if (!pvec.nr)
785 break;
bda97eab
HD
786 for (i = 0; i < pagevec_count(&pvec); i++) {
787 struct page *page = pvec.pages[i];
788
7a5d0fbb 789 index = indices[i];
83e4fa9c 790 if (index >= end)
bda97eab
HD
791 break;
792
7a5d0fbb 793 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
794 if (unfalloc)
795 continue;
7a5d0fbb
HD
796 nr_swaps_freed += !shmem_free_swap(mapping,
797 index, page);
bda97eab 798 continue;
7a5d0fbb
HD
799 }
800
800d8c63
KS
801 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
802
7a5d0fbb 803 if (!trylock_page(page))
bda97eab 804 continue;
800d8c63
KS
805
806 if (PageTransTail(page)) {
807 /* Middle of THP: zero out the page */
808 clear_highpage(page);
809 unlock_page(page);
810 continue;
811 } else if (PageTransHuge(page)) {
812 if (index == round_down(end, HPAGE_PMD_NR)) {
813 /*
814 * Range ends in the middle of THP:
815 * zero out the page
816 */
817 clear_highpage(page);
818 unlock_page(page);
819 continue;
820 }
821 index += HPAGE_PMD_NR - 1;
822 i += HPAGE_PMD_NR - 1;
823 }
824
1635f6a7 825 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
826 VM_BUG_ON_PAGE(PageTail(page), page);
827 if (page_mapping(page) == mapping) {
309381fe 828 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
829 truncate_inode_page(mapping, page);
830 }
bda97eab 831 }
bda97eab
HD
832 unlock_page(page);
833 }
0cd6144a 834 pagevec_remove_exceptionals(&pvec);
24513264 835 pagevec_release(&pvec);
bda97eab
HD
836 cond_resched();
837 index++;
838 }
1da177e4 839
83e4fa9c 840 if (partial_start) {
bda97eab 841 struct page *page = NULL;
9e18eb29 842 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 843 if (page) {
09cbfeaf 844 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
845 if (start > end) {
846 top = partial_end;
847 partial_end = 0;
848 }
849 zero_user_segment(page, partial_start, top);
850 set_page_dirty(page);
851 unlock_page(page);
09cbfeaf 852 put_page(page);
83e4fa9c
HD
853 }
854 }
855 if (partial_end) {
856 struct page *page = NULL;
9e18eb29 857 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
858 if (page) {
859 zero_user_segment(page, 0, partial_end);
bda97eab
HD
860 set_page_dirty(page);
861 unlock_page(page);
09cbfeaf 862 put_page(page);
bda97eab
HD
863 }
864 }
83e4fa9c
HD
865 if (start >= end)
866 return;
bda97eab
HD
867
868 index = start;
b1a36650 869 while (index < end) {
bda97eab 870 cond_resched();
0cd6144a
JW
871
872 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 873 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 874 pvec.pages, indices);
7a5d0fbb 875 if (!pvec.nr) {
b1a36650
HD
876 /* If all gone or hole-punch or unfalloc, we're done */
877 if (index == start || end != -1)
bda97eab 878 break;
b1a36650 879 /* But if truncating, restart to make sure all gone */
bda97eab
HD
880 index = start;
881 continue;
882 }
bda97eab
HD
883 for (i = 0; i < pagevec_count(&pvec); i++) {
884 struct page *page = pvec.pages[i];
885
7a5d0fbb 886 index = indices[i];
83e4fa9c 887 if (index >= end)
bda97eab
HD
888 break;
889
7a5d0fbb 890 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
891 if (unfalloc)
892 continue;
b1a36650
HD
893 if (shmem_free_swap(mapping, index, page)) {
894 /* Swap was replaced by page: retry */
895 index--;
896 break;
897 }
898 nr_swaps_freed++;
7a5d0fbb
HD
899 continue;
900 }
901
bda97eab 902 lock_page(page);
800d8c63
KS
903
904 if (PageTransTail(page)) {
905 /* Middle of THP: zero out the page */
906 clear_highpage(page);
907 unlock_page(page);
908 /*
909 * Partial thp truncate due 'start' in middle
910 * of THP: don't need to look on these pages
911 * again on !pvec.nr restart.
912 */
913 if (index != round_down(end, HPAGE_PMD_NR))
914 start++;
915 continue;
916 } else if (PageTransHuge(page)) {
917 if (index == round_down(end, HPAGE_PMD_NR)) {
918 /*
919 * Range ends in the middle of THP:
920 * zero out the page
921 */
922 clear_highpage(page);
923 unlock_page(page);
924 continue;
925 }
926 index += HPAGE_PMD_NR - 1;
927 i += HPAGE_PMD_NR - 1;
928 }
929
1635f6a7 930 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
931 VM_BUG_ON_PAGE(PageTail(page), page);
932 if (page_mapping(page) == mapping) {
309381fe 933 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 934 truncate_inode_page(mapping, page);
b1a36650
HD
935 } else {
936 /* Page was replaced by swap: retry */
937 unlock_page(page);
938 index--;
939 break;
1635f6a7 940 }
7a5d0fbb 941 }
bda97eab
HD
942 unlock_page(page);
943 }
0cd6144a 944 pagevec_remove_exceptionals(&pvec);
24513264 945 pagevec_release(&pvec);
bda97eab
HD
946 index++;
947 }
94c1e62d 948
4595ef88 949 spin_lock_irq(&info->lock);
7a5d0fbb 950 info->swapped -= nr_swaps_freed;
1da177e4 951 shmem_recalc_inode(inode);
4595ef88 952 spin_unlock_irq(&info->lock);
1635f6a7 953}
1da177e4 954
1635f6a7
HD
955void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
956{
957 shmem_undo_range(inode, lstart, lend, false);
078cd827 958 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 959}
94c1e62d 960EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 961
a528d35e
DH
962static int shmem_getattr(const struct path *path, struct kstat *stat,
963 u32 request_mask, unsigned int query_flags)
44a30220 964{
a528d35e 965 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
966 struct shmem_inode_info *info = SHMEM_I(inode);
967
d0424c42 968 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 969 spin_lock_irq(&info->lock);
d0424c42 970 shmem_recalc_inode(inode);
4595ef88 971 spin_unlock_irq(&info->lock);
d0424c42 972 }
44a30220 973 generic_fillattr(inode, stat);
44a30220
YZ
974 return 0;
975}
976
94c1e62d 977static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 978{
75c3cfa8 979 struct inode *inode = d_inode(dentry);
40e041a2 980 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 981 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
982 int error;
983
31051c85 984 error = setattr_prepare(dentry, attr);
db78b877
CH
985 if (error)
986 return error;
987
94c1e62d
HD
988 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
989 loff_t oldsize = inode->i_size;
990 loff_t newsize = attr->ia_size;
3889e6e7 991
40e041a2
DH
992 /* protected by i_mutex */
993 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
994 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
995 return -EPERM;
996
94c1e62d 997 if (newsize != oldsize) {
77142517
KK
998 error = shmem_reacct_size(SHMEM_I(inode)->flags,
999 oldsize, newsize);
1000 if (error)
1001 return error;
94c1e62d 1002 i_size_write(inode, newsize);
078cd827 1003 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1004 }
afa2db2f 1005 if (newsize <= oldsize) {
94c1e62d 1006 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1007 if (oldsize > holebegin)
1008 unmap_mapping_range(inode->i_mapping,
1009 holebegin, 0, 1);
1010 if (info->alloced)
1011 shmem_truncate_range(inode,
1012 newsize, (loff_t)-1);
94c1e62d 1013 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1014 if (oldsize > holebegin)
1015 unmap_mapping_range(inode->i_mapping,
1016 holebegin, 0, 1);
779750d2
KS
1017
1018 /*
1019 * Part of the huge page can be beyond i_size: subject
1020 * to shrink under memory pressure.
1021 */
1022 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1023 spin_lock(&sbinfo->shrinklist_lock);
1024 if (list_empty(&info->shrinklist)) {
1025 list_add_tail(&info->shrinklist,
1026 &sbinfo->shrinklist);
1027 sbinfo->shrinklist_len++;
1028 }
1029 spin_unlock(&sbinfo->shrinklist_lock);
1030 }
94c1e62d 1031 }
1da177e4
LT
1032 }
1033
db78b877 1034 setattr_copy(inode, attr);
db78b877 1035 if (attr->ia_valid & ATTR_MODE)
feda821e 1036 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1037 return error;
1038}
1039
1f895f75 1040static void shmem_evict_inode(struct inode *inode)
1da177e4 1041{
1da177e4 1042 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1043 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1044
3889e6e7 1045 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1046 shmem_unacct_size(info->flags, inode->i_size);
1047 inode->i_size = 0;
3889e6e7 1048 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1049 if (!list_empty(&info->shrinklist)) {
1050 spin_lock(&sbinfo->shrinklist_lock);
1051 if (!list_empty(&info->shrinklist)) {
1052 list_del_init(&info->shrinklist);
1053 sbinfo->shrinklist_len--;
1054 }
1055 spin_unlock(&sbinfo->shrinklist_lock);
1056 }
1da177e4 1057 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1058 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1059 list_del_init(&info->swaplist);
cb5f7b9a 1060 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1061 }
3ed47db3 1062 }
b09e0fa4 1063
38f38657 1064 simple_xattrs_free(&info->xattrs);
0f3c42f5 1065 WARN_ON(inode->i_blocks);
5b04c689 1066 shmem_free_inode(inode->i_sb);
dbd5768f 1067 clear_inode(inode);
1da177e4
LT
1068}
1069
478922e2
MW
1070static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1071{
1072 struct radix_tree_iter iter;
1073 void **slot;
1074 unsigned long found = -1;
1075 unsigned int checked = 0;
1076
1077 rcu_read_lock();
1078 radix_tree_for_each_slot(slot, root, &iter, 0) {
1079 if (*slot == item) {
1080 found = iter.index;
1081 break;
1082 }
1083 checked++;
1084 if ((checked % 4096) != 0)
1085 continue;
1086 slot = radix_tree_iter_resume(slot, &iter);
1087 cond_resched_rcu();
1088 }
1089
1090 rcu_read_unlock();
1091 return found;
1092}
1093
46f65ec1
HD
1094/*
1095 * If swap found in inode, free it and move page from swapcache to filecache.
1096 */
41ffe5d5 1097static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1098 swp_entry_t swap, struct page **pagep)
1da177e4 1099{
285b2c4f 1100 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1101 void *radswap;
41ffe5d5 1102 pgoff_t index;
bde05d1c
HD
1103 gfp_t gfp;
1104 int error = 0;
1da177e4 1105
46f65ec1 1106 radswap = swp_to_radix_entry(swap);
478922e2 1107 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1108 if (index == -1)
00501b53 1109 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1110
1b1b32f2
HD
1111 /*
1112 * Move _head_ to start search for next from here.
1f895f75 1113 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1114 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1115 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1116 */
1117 if (shmem_swaplist.next != &info->swaplist)
1118 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1119
bde05d1c
HD
1120 gfp = mapping_gfp_mask(mapping);
1121 if (shmem_should_replace_page(*pagep, gfp)) {
1122 mutex_unlock(&shmem_swaplist_mutex);
1123 error = shmem_replace_page(pagep, gfp, info, index);
1124 mutex_lock(&shmem_swaplist_mutex);
1125 /*
1126 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1127 * allocation, but the inode might have been freed while we
1128 * dropped it: although a racing shmem_evict_inode() cannot
1129 * complete without emptying the radix_tree, our page lock
1130 * on this swapcache page is not enough to prevent that -
1131 * free_swap_and_cache() of our swap entry will only
1132 * trylock_page(), removing swap from radix_tree whatever.
1133 *
1134 * We must not proceed to shmem_add_to_page_cache() if the
1135 * inode has been freed, but of course we cannot rely on
1136 * inode or mapping or info to check that. However, we can
1137 * safely check if our swap entry is still in use (and here
1138 * it can't have got reused for another page): if it's still
1139 * in use, then the inode cannot have been freed yet, and we
1140 * can safely proceed (if it's no longer in use, that tells
1141 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1142 */
1143 if (!page_swapcount(*pagep))
1144 error = -ENOENT;
1145 }
1146
d13d1443 1147 /*
778dd893
HD
1148 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1149 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1150 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1151 */
bde05d1c
HD
1152 if (!error)
1153 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1154 radswap);
48f170fb 1155 if (error != -ENOMEM) {
46f65ec1
HD
1156 /*
1157 * Truncation and eviction use free_swap_and_cache(), which
1158 * only does trylock page: if we raced, best clean up here.
1159 */
bde05d1c
HD
1160 delete_from_swap_cache(*pagep);
1161 set_page_dirty(*pagep);
46f65ec1 1162 if (!error) {
4595ef88 1163 spin_lock_irq(&info->lock);
46f65ec1 1164 info->swapped--;
4595ef88 1165 spin_unlock_irq(&info->lock);
46f65ec1
HD
1166 swap_free(swap);
1167 }
1da177e4 1168 }
2e0e26c7 1169 return error;
1da177e4
LT
1170}
1171
1172/*
46f65ec1 1173 * Search through swapped inodes to find and replace swap by page.
1da177e4 1174 */
41ffe5d5 1175int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1176{
41ffe5d5 1177 struct list_head *this, *next;
1da177e4 1178 struct shmem_inode_info *info;
00501b53 1179 struct mem_cgroup *memcg;
bde05d1c
HD
1180 int error = 0;
1181
1182 /*
1183 * There's a faint possibility that swap page was replaced before
0142ef6c 1184 * caller locked it: caller will come back later with the right page.
bde05d1c 1185 */
0142ef6c 1186 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1187 goto out;
778dd893
HD
1188
1189 /*
1190 * Charge page using GFP_KERNEL while we can wait, before taking
1191 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1192 * Charged back to the user (not to caller) when swap account is used.
778dd893 1193 */
f627c2f5
KS
1194 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1195 false);
778dd893
HD
1196 if (error)
1197 goto out;
46f65ec1 1198 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1199 error = -EAGAIN;
1da177e4 1200
cb5f7b9a 1201 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1202 list_for_each_safe(this, next, &shmem_swaplist) {
1203 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1204 if (info->swapped)
00501b53 1205 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1206 else
1207 list_del_init(&info->swaplist);
cb5f7b9a 1208 cond_resched();
00501b53 1209 if (error != -EAGAIN)
778dd893 1210 break;
00501b53 1211 /* found nothing in this: move on to search the next */
1da177e4 1212 }
cb5f7b9a 1213 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1214
00501b53
JW
1215 if (error) {
1216 if (error != -ENOMEM)
1217 error = 0;
f627c2f5 1218 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1219 } else
f627c2f5 1220 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1221out:
aaa46865 1222 unlock_page(page);
09cbfeaf 1223 put_page(page);
778dd893 1224 return error;
1da177e4
LT
1225}
1226
1227/*
1228 * Move the page from the page cache to the swap cache.
1229 */
1230static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1231{
1232 struct shmem_inode_info *info;
1da177e4 1233 struct address_space *mapping;
1da177e4 1234 struct inode *inode;
6922c0c7
HD
1235 swp_entry_t swap;
1236 pgoff_t index;
1da177e4 1237
800d8c63 1238 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1239 BUG_ON(!PageLocked(page));
1da177e4
LT
1240 mapping = page->mapping;
1241 index = page->index;
1242 inode = mapping->host;
1243 info = SHMEM_I(inode);
1244 if (info->flags & VM_LOCKED)
1245 goto redirty;
d9fe526a 1246 if (!total_swap_pages)
1da177e4
LT
1247 goto redirty;
1248
d9fe526a 1249 /*
97b713ba
CH
1250 * Our capabilities prevent regular writeback or sync from ever calling
1251 * shmem_writepage; but a stacking filesystem might use ->writepage of
1252 * its underlying filesystem, in which case tmpfs should write out to
1253 * swap only in response to memory pressure, and not for the writeback
1254 * threads or sync.
d9fe526a 1255 */
48f170fb
HD
1256 if (!wbc->for_reclaim) {
1257 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1258 goto redirty;
1259 }
1635f6a7
HD
1260
1261 /*
1262 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1263 * value into swapfile.c, the only way we can correctly account for a
1264 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1265 *
1266 * That's okay for a page already fallocated earlier, but if we have
1267 * not yet completed the fallocation, then (a) we want to keep track
1268 * of this page in case we have to undo it, and (b) it may not be a
1269 * good idea to continue anyway, once we're pushing into swap. So
1270 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1271 */
1272 if (!PageUptodate(page)) {
1aac1400
HD
1273 if (inode->i_private) {
1274 struct shmem_falloc *shmem_falloc;
1275 spin_lock(&inode->i_lock);
1276 shmem_falloc = inode->i_private;
1277 if (shmem_falloc &&
8e205f77 1278 !shmem_falloc->waitq &&
1aac1400
HD
1279 index >= shmem_falloc->start &&
1280 index < shmem_falloc->next)
1281 shmem_falloc->nr_unswapped++;
1282 else
1283 shmem_falloc = NULL;
1284 spin_unlock(&inode->i_lock);
1285 if (shmem_falloc)
1286 goto redirty;
1287 }
1635f6a7
HD
1288 clear_highpage(page);
1289 flush_dcache_page(page);
1290 SetPageUptodate(page);
1291 }
1292
48f170fb
HD
1293 swap = get_swap_page();
1294 if (!swap.val)
1295 goto redirty;
d9fe526a 1296
37e84351
VD
1297 if (mem_cgroup_try_charge_swap(page, swap))
1298 goto free_swap;
1299
b1dea800
HD
1300 /*
1301 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1302 * if it's not already there. Do it now before the page is
1303 * moved to swap cache, when its pagelock no longer protects
b1dea800 1304 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1305 * we've incremented swapped, because shmem_unuse_inode() will
1306 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1307 */
48f170fb
HD
1308 mutex_lock(&shmem_swaplist_mutex);
1309 if (list_empty(&info->swaplist))
1310 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1311
48f170fb 1312 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1313 spin_lock_irq(&info->lock);
6922c0c7 1314 shmem_recalc_inode(inode);
267a4c76 1315 info->swapped++;
4595ef88 1316 spin_unlock_irq(&info->lock);
6922c0c7 1317
267a4c76
HD
1318 swap_shmem_alloc(swap);
1319 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1320
6922c0c7 1321 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1322 BUG_ON(page_mapped(page));
9fab5619 1323 swap_writepage(page, wbc);
1da177e4
LT
1324 return 0;
1325 }
1326
6922c0c7 1327 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1328free_swap:
0a31bc97 1329 swapcache_free(swap);
1da177e4
LT
1330redirty:
1331 set_page_dirty(page);
d9fe526a
HD
1332 if (wbc->for_reclaim)
1333 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1334 unlock_page(page);
1335 return 0;
1da177e4
LT
1336}
1337
75edd345 1338#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1339static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1340{
095f1fc4 1341 char buffer[64];
680d794b 1342
71fe804b 1343 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1344 return; /* show nothing */
680d794b 1345
a7a88b23 1346 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1347
1348 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1349}
71fe804b
LS
1350
1351static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1352{
1353 struct mempolicy *mpol = NULL;
1354 if (sbinfo->mpol) {
1355 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1356 mpol = sbinfo->mpol;
1357 mpol_get(mpol);
1358 spin_unlock(&sbinfo->stat_lock);
1359 }
1360 return mpol;
1361}
75edd345
HD
1362#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1363static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1364{
1365}
1366static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1367{
1368 return NULL;
1369}
1370#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1371#ifndef CONFIG_NUMA
1372#define vm_policy vm_private_data
1373#endif
680d794b 1374
800d8c63
KS
1375static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1376 struct shmem_inode_info *info, pgoff_t index)
1377{
1378 /* Create a pseudo vma that just contains the policy */
1379 vma->vm_start = 0;
1380 /* Bias interleave by inode number to distribute better across nodes */
1381 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1382 vma->vm_ops = NULL;
1383 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1384}
1385
1386static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1387{
1388 /* Drop reference taken by mpol_shared_policy_lookup() */
1389 mpol_cond_put(vma->vm_policy);
1390}
1391
41ffe5d5
HD
1392static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1393 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1394{
1da177e4 1395 struct vm_area_struct pvma;
18a2f371 1396 struct page *page;
52cd3b07 1397
800d8c63 1398 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1399 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1400 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1401
800d8c63
KS
1402 return page;
1403}
1404
1405static struct page *shmem_alloc_hugepage(gfp_t gfp,
1406 struct shmem_inode_info *info, pgoff_t index)
1407{
1408 struct vm_area_struct pvma;
1409 struct inode *inode = &info->vfs_inode;
1410 struct address_space *mapping = inode->i_mapping;
4620a06e 1411 pgoff_t idx, hindex;
800d8c63
KS
1412 void __rcu **results;
1413 struct page *page;
1414
e496cf3d 1415 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1416 return NULL;
1417
4620a06e 1418 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1419 rcu_read_lock();
1420 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1421 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1422 rcu_read_unlock();
1423 return NULL;
1424 }
1425 rcu_read_unlock();
18a2f371 1426
800d8c63
KS
1427 shmem_pseudo_vma_init(&pvma, info, hindex);
1428 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1429 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1430 shmem_pseudo_vma_destroy(&pvma);
1431 if (page)
1432 prep_transhuge_page(page);
18a2f371 1433 return page;
1da177e4
LT
1434}
1435
02098fea 1436static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1437 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1438{
1439 struct vm_area_struct pvma;
18a2f371 1440 struct page *page;
1da177e4 1441
800d8c63
KS
1442 shmem_pseudo_vma_init(&pvma, info, index);
1443 page = alloc_page_vma(gfp, &pvma, 0);
1444 shmem_pseudo_vma_destroy(&pvma);
1445
1446 return page;
1447}
1448
1449static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1450 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1451 pgoff_t index, bool huge)
1452{
1453 struct page *page;
1454 int nr;
1455 int err = -ENOSPC;
52cd3b07 1456
e496cf3d 1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1458 huge = false;
1459 nr = huge ? HPAGE_PMD_NR : 1;
1460
1461 if (shmem_acct_block(info->flags, nr))
1462 goto failed;
1463 if (sbinfo->max_blocks) {
1464 if (percpu_counter_compare(&sbinfo->used_blocks,
1465 sbinfo->max_blocks - nr) > 0)
1466 goto unacct;
1467 percpu_counter_add(&sbinfo->used_blocks, nr);
1468 }
1469
1470 if (huge)
1471 page = shmem_alloc_hugepage(gfp, info, index);
1472 else
1473 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1474 if (page) {
1475 __SetPageLocked(page);
1476 __SetPageSwapBacked(page);
800d8c63 1477 return page;
75edd345 1478 }
18a2f371 1479
800d8c63
KS
1480 err = -ENOMEM;
1481 if (sbinfo->max_blocks)
1482 percpu_counter_add(&sbinfo->used_blocks, -nr);
1483unacct:
1484 shmem_unacct_blocks(info->flags, nr);
1485failed:
1486 return ERR_PTR(err);
1da177e4 1487}
71fe804b 1488
bde05d1c
HD
1489/*
1490 * When a page is moved from swapcache to shmem filecache (either by the
1491 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1492 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1493 * ignorance of the mapping it belongs to. If that mapping has special
1494 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1495 * we may need to copy to a suitable page before moving to filecache.
1496 *
1497 * In a future release, this may well be extended to respect cpuset and
1498 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1499 * but for now it is a simple matter of zone.
1500 */
1501static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1502{
1503 return page_zonenum(page) > gfp_zone(gfp);
1504}
1505
1506static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1507 struct shmem_inode_info *info, pgoff_t index)
1508{
1509 struct page *oldpage, *newpage;
1510 struct address_space *swap_mapping;
1511 pgoff_t swap_index;
1512 int error;
1513
1514 oldpage = *pagep;
1515 swap_index = page_private(oldpage);
1516 swap_mapping = page_mapping(oldpage);
1517
1518 /*
1519 * We have arrived here because our zones are constrained, so don't
1520 * limit chance of success by further cpuset and node constraints.
1521 */
1522 gfp &= ~GFP_CONSTRAINT_MASK;
1523 newpage = shmem_alloc_page(gfp, info, index);
1524 if (!newpage)
1525 return -ENOMEM;
bde05d1c 1526
09cbfeaf 1527 get_page(newpage);
bde05d1c 1528 copy_highpage(newpage, oldpage);
0142ef6c 1529 flush_dcache_page(newpage);
bde05d1c 1530
9956edf3
HD
1531 __SetPageLocked(newpage);
1532 __SetPageSwapBacked(newpage);
bde05d1c 1533 SetPageUptodate(newpage);
bde05d1c 1534 set_page_private(newpage, swap_index);
bde05d1c
HD
1535 SetPageSwapCache(newpage);
1536
1537 /*
1538 * Our caller will very soon move newpage out of swapcache, but it's
1539 * a nice clean interface for us to replace oldpage by newpage there.
1540 */
1541 spin_lock_irq(&swap_mapping->tree_lock);
1542 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1543 newpage);
0142ef6c 1544 if (!error) {
11fb9989
MG
1545 __inc_node_page_state(newpage, NR_FILE_PAGES);
1546 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1547 }
bde05d1c 1548 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1549
0142ef6c
HD
1550 if (unlikely(error)) {
1551 /*
1552 * Is this possible? I think not, now that our callers check
1553 * both PageSwapCache and page_private after getting page lock;
1554 * but be defensive. Reverse old to newpage for clear and free.
1555 */
1556 oldpage = newpage;
1557 } else {
6a93ca8f 1558 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1559 lru_cache_add_anon(newpage);
1560 *pagep = newpage;
1561 }
bde05d1c
HD
1562
1563 ClearPageSwapCache(oldpage);
1564 set_page_private(oldpage, 0);
1565
1566 unlock_page(oldpage);
09cbfeaf
KS
1567 put_page(oldpage);
1568 put_page(oldpage);
0142ef6c 1569 return error;
bde05d1c
HD
1570}
1571
1da177e4 1572/*
68da9f05 1573 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1574 *
1575 * If we allocate a new one we do not mark it dirty. That's up to the
1576 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1577 * entry since a page cannot live in both the swap and page cache.
1578 *
1579 * fault_mm and fault_type are only supplied by shmem_fault:
1580 * otherwise they are NULL.
1da177e4 1581 */
41ffe5d5 1582static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1583 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1584 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1585{
1586 struct address_space *mapping = inode->i_mapping;
23f919d4 1587 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1588 struct shmem_sb_info *sbinfo;
9e18eb29 1589 struct mm_struct *charge_mm;
00501b53 1590 struct mem_cgroup *memcg;
27ab7006 1591 struct page *page;
1da177e4 1592 swp_entry_t swap;
657e3038 1593 enum sgp_type sgp_huge = sgp;
800d8c63 1594 pgoff_t hindex = index;
1da177e4 1595 int error;
54af6042 1596 int once = 0;
1635f6a7 1597 int alloced = 0;
1da177e4 1598
09cbfeaf 1599 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1600 return -EFBIG;
657e3038
KS
1601 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1602 sgp = SGP_CACHE;
1da177e4 1603repeat:
54af6042 1604 swap.val = 0;
0cd6144a 1605 page = find_lock_entry(mapping, index);
54af6042
HD
1606 if (radix_tree_exceptional_entry(page)) {
1607 swap = radix_to_swp_entry(page);
1608 page = NULL;
1609 }
1610
75edd345 1611 if (sgp <= SGP_CACHE &&
09cbfeaf 1612 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1613 error = -EINVAL;
267a4c76 1614 goto unlock;
54af6042
HD
1615 }
1616
66d2f4d2
HD
1617 if (page && sgp == SGP_WRITE)
1618 mark_page_accessed(page);
1619
1635f6a7
HD
1620 /* fallocated page? */
1621 if (page && !PageUptodate(page)) {
1622 if (sgp != SGP_READ)
1623 goto clear;
1624 unlock_page(page);
09cbfeaf 1625 put_page(page);
1635f6a7
HD
1626 page = NULL;
1627 }
54af6042 1628 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1629 *pagep = page;
1630 return 0;
27ab7006
HD
1631 }
1632
1633 /*
54af6042
HD
1634 * Fast cache lookup did not find it:
1635 * bring it back from swap or allocate.
27ab7006 1636 */
54af6042 1637 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1638 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1639
1da177e4
LT
1640 if (swap.val) {
1641 /* Look it up and read it in.. */
27ab7006
HD
1642 page = lookup_swap_cache(swap);
1643 if (!page) {
9e18eb29
ALC
1644 /* Or update major stats only when swapin succeeds?? */
1645 if (fault_type) {
68da9f05 1646 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1647 count_vm_event(PGMAJFAULT);
cfda0526
MR
1648 mem_cgroup_count_vm_event(charge_mm,
1649 PGMAJFAULT);
9e18eb29
ALC
1650 }
1651 /* Here we actually start the io */
41ffe5d5 1652 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1653 if (!page) {
54af6042
HD
1654 error = -ENOMEM;
1655 goto failed;
1da177e4 1656 }
1da177e4
LT
1657 }
1658
1659 /* We have to do this with page locked to prevent races */
54af6042 1660 lock_page(page);
0142ef6c 1661 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1662 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1663 error = -EEXIST; /* try again */
d1899228 1664 goto unlock;
bde05d1c 1665 }
27ab7006 1666 if (!PageUptodate(page)) {
1da177e4 1667 error = -EIO;
54af6042 1668 goto failed;
1da177e4 1669 }
54af6042
HD
1670 wait_on_page_writeback(page);
1671
bde05d1c
HD
1672 if (shmem_should_replace_page(page, gfp)) {
1673 error = shmem_replace_page(&page, gfp, info, index);
1674 if (error)
1675 goto failed;
1da177e4 1676 }
27ab7006 1677
9e18eb29 1678 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1679 false);
d1899228 1680 if (!error) {
aa3b1895 1681 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1682 swp_to_radix_entry(swap));
215c02bc
HD
1683 /*
1684 * We already confirmed swap under page lock, and make
1685 * no memory allocation here, so usually no possibility
1686 * of error; but free_swap_and_cache() only trylocks a
1687 * page, so it is just possible that the entry has been
1688 * truncated or holepunched since swap was confirmed.
1689 * shmem_undo_range() will have done some of the
1690 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1691 * the rest.
215c02bc
HD
1692 * Reset swap.val? No, leave it so "failed" goes back to
1693 * "repeat": reading a hole and writing should succeed.
1694 */
00501b53 1695 if (error) {
f627c2f5 1696 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1697 delete_from_swap_cache(page);
00501b53 1698 }
d1899228 1699 }
54af6042
HD
1700 if (error)
1701 goto failed;
1702
f627c2f5 1703 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1704
4595ef88 1705 spin_lock_irq(&info->lock);
285b2c4f 1706 info->swapped--;
54af6042 1707 shmem_recalc_inode(inode);
4595ef88 1708 spin_unlock_irq(&info->lock);
54af6042 1709
66d2f4d2
HD
1710 if (sgp == SGP_WRITE)
1711 mark_page_accessed(page);
1712
54af6042 1713 delete_from_swap_cache(page);
27ab7006
HD
1714 set_page_dirty(page);
1715 swap_free(swap);
1716
54af6042 1717 } else {
cfda0526
MR
1718 if (vma && userfaultfd_missing(vma)) {
1719 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1720 return 0;
1721 }
1722
800d8c63
KS
1723 /* shmem_symlink() */
1724 if (mapping->a_ops != &shmem_aops)
1725 goto alloc_nohuge;
657e3038 1726 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1727 goto alloc_nohuge;
1728 if (shmem_huge == SHMEM_HUGE_FORCE)
1729 goto alloc_huge;
1730 switch (sbinfo->huge) {
1731 loff_t i_size;
1732 pgoff_t off;
1733 case SHMEM_HUGE_NEVER:
1734 goto alloc_nohuge;
1735 case SHMEM_HUGE_WITHIN_SIZE:
1736 off = round_up(index, HPAGE_PMD_NR);
1737 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1738 if (i_size >= HPAGE_PMD_SIZE &&
1739 i_size >> PAGE_SHIFT >= off)
1740 goto alloc_huge;
1741 /* fallthrough */
1742 case SHMEM_HUGE_ADVISE:
657e3038
KS
1743 if (sgp_huge == SGP_HUGE)
1744 goto alloc_huge;
1745 /* TODO: implement fadvise() hints */
800d8c63 1746 goto alloc_nohuge;
54af6042 1747 }
1da177e4 1748
800d8c63
KS
1749alloc_huge:
1750 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1751 index, true);
1752 if (IS_ERR(page)) {
1753alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 index, false);
1da177e4 1755 }
800d8c63 1756 if (IS_ERR(page)) {
779750d2 1757 int retry = 5;
800d8c63
KS
1758 error = PTR_ERR(page);
1759 page = NULL;
779750d2
KS
1760 if (error != -ENOSPC)
1761 goto failed;
1762 /*
1763 * Try to reclaim some spece by splitting a huge page
1764 * beyond i_size on the filesystem.
1765 */
1766 while (retry--) {
1767 int ret;
1768 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1769 if (ret == SHRINK_STOP)
1770 break;
1771 if (ret)
1772 goto alloc_nohuge;
1773 }
800d8c63
KS
1774 goto failed;
1775 }
1776
1777 if (PageTransHuge(page))
1778 hindex = round_down(index, HPAGE_PMD_NR);
1779 else
1780 hindex = index;
1781
66d2f4d2 1782 if (sgp == SGP_WRITE)
eb39d618 1783 __SetPageReferenced(page);
66d2f4d2 1784
9e18eb29 1785 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1786 PageTransHuge(page));
54af6042 1787 if (error)
800d8c63
KS
1788 goto unacct;
1789 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1790 compound_order(page));
b065b432 1791 if (!error) {
800d8c63 1792 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1793 NULL);
b065b432
HD
1794 radix_tree_preload_end();
1795 }
1796 if (error) {
800d8c63
KS
1797 mem_cgroup_cancel_charge(page, memcg,
1798 PageTransHuge(page));
1799 goto unacct;
b065b432 1800 }
800d8c63
KS
1801 mem_cgroup_commit_charge(page, memcg, false,
1802 PageTransHuge(page));
54af6042
HD
1803 lru_cache_add_anon(page);
1804
4595ef88 1805 spin_lock_irq(&info->lock);
800d8c63
KS
1806 info->alloced += 1 << compound_order(page);
1807 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1808 shmem_recalc_inode(inode);
4595ef88 1809 spin_unlock_irq(&info->lock);
1635f6a7 1810 alloced = true;
54af6042 1811
779750d2
KS
1812 if (PageTransHuge(page) &&
1813 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1814 hindex + HPAGE_PMD_NR - 1) {
1815 /*
1816 * Part of the huge page is beyond i_size: subject
1817 * to shrink under memory pressure.
1818 */
1819 spin_lock(&sbinfo->shrinklist_lock);
1820 if (list_empty(&info->shrinklist)) {
1821 list_add_tail(&info->shrinklist,
1822 &sbinfo->shrinklist);
1823 sbinfo->shrinklist_len++;
1824 }
1825 spin_unlock(&sbinfo->shrinklist_lock);
1826 }
1827
ec9516fb 1828 /*
1635f6a7
HD
1829 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1830 */
1831 if (sgp == SGP_FALLOC)
1832 sgp = SGP_WRITE;
1833clear:
1834 /*
1835 * Let SGP_WRITE caller clear ends if write does not fill page;
1836 * but SGP_FALLOC on a page fallocated earlier must initialize
1837 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1838 */
800d8c63
KS
1839 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1840 struct page *head = compound_head(page);
1841 int i;
1842
1843 for (i = 0; i < (1 << compound_order(head)); i++) {
1844 clear_highpage(head + i);
1845 flush_dcache_page(head + i);
1846 }
1847 SetPageUptodate(head);
ec9516fb 1848 }
1da177e4 1849 }
bde05d1c 1850
54af6042 1851 /* Perhaps the file has been truncated since we checked */
75edd345 1852 if (sgp <= SGP_CACHE &&
09cbfeaf 1853 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1854 if (alloced) {
1855 ClearPageDirty(page);
1856 delete_from_page_cache(page);
4595ef88 1857 spin_lock_irq(&info->lock);
267a4c76 1858 shmem_recalc_inode(inode);
4595ef88 1859 spin_unlock_irq(&info->lock);
267a4c76 1860 }
54af6042 1861 error = -EINVAL;
267a4c76 1862 goto unlock;
e83c32e8 1863 }
800d8c63 1864 *pagep = page + index - hindex;
54af6042 1865 return 0;
1da177e4 1866
59a16ead 1867 /*
54af6042 1868 * Error recovery.
59a16ead 1869 */
54af6042 1870unacct:
800d8c63
KS
1871 if (sbinfo->max_blocks)
1872 percpu_counter_sub(&sbinfo->used_blocks,
1873 1 << compound_order(page));
1874 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1875
1876 if (PageTransHuge(page)) {
1877 unlock_page(page);
1878 put_page(page);
1879 goto alloc_nohuge;
1880 }
54af6042 1881failed:
267a4c76 1882 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1883 error = -EEXIST;
1884unlock:
27ab7006 1885 if (page) {
54af6042 1886 unlock_page(page);
09cbfeaf 1887 put_page(page);
54af6042
HD
1888 }
1889 if (error == -ENOSPC && !once++) {
4595ef88 1890 spin_lock_irq(&info->lock);
54af6042 1891 shmem_recalc_inode(inode);
4595ef88 1892 spin_unlock_irq(&info->lock);
27ab7006 1893 goto repeat;
ff36b801 1894 }
d1899228 1895 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1896 goto repeat;
1897 return error;
1da177e4
LT
1898}
1899
10d20bd2
LT
1900/*
1901 * This is like autoremove_wake_function, but it removes the wait queue
1902 * entry unconditionally - even if something else had already woken the
1903 * target.
1904 */
1905static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1906{
1907 int ret = default_wake_function(wait, mode, sync, key);
1908 list_del_init(&wait->task_list);
1909 return ret;
1910}
1911
11bac800 1912static int shmem_fault(struct vm_fault *vmf)
1da177e4 1913{
11bac800 1914 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1915 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1916 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1917 enum sgp_type sgp;
1da177e4 1918 int error;
68da9f05 1919 int ret = VM_FAULT_LOCKED;
1da177e4 1920
f00cdc6d
HD
1921 /*
1922 * Trinity finds that probing a hole which tmpfs is punching can
1923 * prevent the hole-punch from ever completing: which in turn
1924 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1925 * faulting pages into the hole while it's being punched. Although
1926 * shmem_undo_range() does remove the additions, it may be unable to
1927 * keep up, as each new page needs its own unmap_mapping_range() call,
1928 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1929 *
1930 * It does not matter if we sometimes reach this check just before the
1931 * hole-punch begins, so that one fault then races with the punch:
1932 * we just need to make racing faults a rare case.
1933 *
1934 * The implementation below would be much simpler if we just used a
1935 * standard mutex or completion: but we cannot take i_mutex in fault,
1936 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1937 */
1938 if (unlikely(inode->i_private)) {
1939 struct shmem_falloc *shmem_falloc;
1940
1941 spin_lock(&inode->i_lock);
1942 shmem_falloc = inode->i_private;
8e205f77
HD
1943 if (shmem_falloc &&
1944 shmem_falloc->waitq &&
1945 vmf->pgoff >= shmem_falloc->start &&
1946 vmf->pgoff < shmem_falloc->next) {
1947 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1948 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1949
1950 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1951 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1952 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1953 /* It's polite to up mmap_sem if we can */
f00cdc6d 1954 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1955 ret = VM_FAULT_RETRY;
f00cdc6d 1956 }
8e205f77
HD
1957
1958 shmem_falloc_waitq = shmem_falloc->waitq;
1959 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1960 TASK_UNINTERRUPTIBLE);
1961 spin_unlock(&inode->i_lock);
1962 schedule();
1963
1964 /*
1965 * shmem_falloc_waitq points into the shmem_fallocate()
1966 * stack of the hole-punching task: shmem_falloc_waitq
1967 * is usually invalid by the time we reach here, but
1968 * finish_wait() does not dereference it in that case;
1969 * though i_lock needed lest racing with wake_up_all().
1970 */
1971 spin_lock(&inode->i_lock);
1972 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1973 spin_unlock(&inode->i_lock);
1974 return ret;
f00cdc6d 1975 }
8e205f77 1976 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1977 }
1978
657e3038
KS
1979 sgp = SGP_CACHE;
1980 if (vma->vm_flags & VM_HUGEPAGE)
1981 sgp = SGP_HUGE;
1982 else if (vma->vm_flags & VM_NOHUGEPAGE)
1983 sgp = SGP_NOHUGE;
1984
1985 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 1986 gfp, vma, vmf, &ret);
d0217ac0
NP
1987 if (error)
1988 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1989 return ret;
1da177e4
LT
1990}
1991
c01d5b30
HD
1992unsigned long shmem_get_unmapped_area(struct file *file,
1993 unsigned long uaddr, unsigned long len,
1994 unsigned long pgoff, unsigned long flags)
1995{
1996 unsigned long (*get_area)(struct file *,
1997 unsigned long, unsigned long, unsigned long, unsigned long);
1998 unsigned long addr;
1999 unsigned long offset;
2000 unsigned long inflated_len;
2001 unsigned long inflated_addr;
2002 unsigned long inflated_offset;
2003
2004 if (len > TASK_SIZE)
2005 return -ENOMEM;
2006
2007 get_area = current->mm->get_unmapped_area;
2008 addr = get_area(file, uaddr, len, pgoff, flags);
2009
e496cf3d 2010 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2011 return addr;
2012 if (IS_ERR_VALUE(addr))
2013 return addr;
2014 if (addr & ~PAGE_MASK)
2015 return addr;
2016 if (addr > TASK_SIZE - len)
2017 return addr;
2018
2019 if (shmem_huge == SHMEM_HUGE_DENY)
2020 return addr;
2021 if (len < HPAGE_PMD_SIZE)
2022 return addr;
2023 if (flags & MAP_FIXED)
2024 return addr;
2025 /*
2026 * Our priority is to support MAP_SHARED mapped hugely;
2027 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2028 * But if caller specified an address hint, respect that as before.
2029 */
2030 if (uaddr)
2031 return addr;
2032
2033 if (shmem_huge != SHMEM_HUGE_FORCE) {
2034 struct super_block *sb;
2035
2036 if (file) {
2037 VM_BUG_ON(file->f_op != &shmem_file_operations);
2038 sb = file_inode(file)->i_sb;
2039 } else {
2040 /*
2041 * Called directly from mm/mmap.c, or drivers/char/mem.c
2042 * for "/dev/zero", to create a shared anonymous object.
2043 */
2044 if (IS_ERR(shm_mnt))
2045 return addr;
2046 sb = shm_mnt->mnt_sb;
2047 }
3089bf61 2048 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2049 return addr;
2050 }
2051
2052 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2053 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2054 return addr;
2055 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2056 return addr;
2057
2058 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2059 if (inflated_len > TASK_SIZE)
2060 return addr;
2061 if (inflated_len < len)
2062 return addr;
2063
2064 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2065 if (IS_ERR_VALUE(inflated_addr))
2066 return addr;
2067 if (inflated_addr & ~PAGE_MASK)
2068 return addr;
2069
2070 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2071 inflated_addr += offset - inflated_offset;
2072 if (inflated_offset > offset)
2073 inflated_addr += HPAGE_PMD_SIZE;
2074
2075 if (inflated_addr > TASK_SIZE - len)
2076 return addr;
2077 return inflated_addr;
2078}
2079
1da177e4 2080#ifdef CONFIG_NUMA
41ffe5d5 2081static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2082{
496ad9aa 2083 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2084 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2085}
2086
d8dc74f2
AB
2087static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2088 unsigned long addr)
1da177e4 2089{
496ad9aa 2090 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2091 pgoff_t index;
1da177e4 2092
41ffe5d5
HD
2093 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2094 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2095}
2096#endif
2097
2098int shmem_lock(struct file *file, int lock, struct user_struct *user)
2099{
496ad9aa 2100 struct inode *inode = file_inode(file);
1da177e4
LT
2101 struct shmem_inode_info *info = SHMEM_I(inode);
2102 int retval = -ENOMEM;
2103
4595ef88 2104 spin_lock_irq(&info->lock);
1da177e4
LT
2105 if (lock && !(info->flags & VM_LOCKED)) {
2106 if (!user_shm_lock(inode->i_size, user))
2107 goto out_nomem;
2108 info->flags |= VM_LOCKED;
89e004ea 2109 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2110 }
2111 if (!lock && (info->flags & VM_LOCKED) && user) {
2112 user_shm_unlock(inode->i_size, user);
2113 info->flags &= ~VM_LOCKED;
89e004ea 2114 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2115 }
2116 retval = 0;
89e004ea 2117
1da177e4 2118out_nomem:
4595ef88 2119 spin_unlock_irq(&info->lock);
1da177e4
LT
2120 return retval;
2121}
2122
9b83a6a8 2123static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2124{
2125 file_accessed(file);
2126 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2127 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2128 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2129 (vma->vm_end & HPAGE_PMD_MASK)) {
2130 khugepaged_enter(vma, vma->vm_flags);
2131 }
1da177e4
LT
2132 return 0;
2133}
2134
454abafe 2135static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2136 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2137{
2138 struct inode *inode;
2139 struct shmem_inode_info *info;
2140 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2141
5b04c689
PE
2142 if (shmem_reserve_inode(sb))
2143 return NULL;
1da177e4
LT
2144
2145 inode = new_inode(sb);
2146 if (inode) {
85fe4025 2147 inode->i_ino = get_next_ino();
454abafe 2148 inode_init_owner(inode, dir, mode);
1da177e4 2149 inode->i_blocks = 0;
078cd827 2150 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2151 inode->i_generation = get_seconds();
1da177e4
LT
2152 info = SHMEM_I(inode);
2153 memset(info, 0, (char *)inode - (char *)info);
2154 spin_lock_init(&info->lock);
40e041a2 2155 info->seals = F_SEAL_SEAL;
0b0a0806 2156 info->flags = flags & VM_NORESERVE;
779750d2 2157 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2158 INIT_LIST_HEAD(&info->swaplist);
38f38657 2159 simple_xattrs_init(&info->xattrs);
72c04902 2160 cache_no_acl(inode);
1da177e4
LT
2161
2162 switch (mode & S_IFMT) {
2163 default:
39f0247d 2164 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2165 init_special_inode(inode, mode, dev);
2166 break;
2167 case S_IFREG:
14fcc23f 2168 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2169 inode->i_op = &shmem_inode_operations;
2170 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2171 mpol_shared_policy_init(&info->policy,
2172 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2173 break;
2174 case S_IFDIR:
d8c76e6f 2175 inc_nlink(inode);
1da177e4
LT
2176 /* Some things misbehave if size == 0 on a directory */
2177 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2178 inode->i_op = &shmem_dir_inode_operations;
2179 inode->i_fop = &simple_dir_operations;
2180 break;
2181 case S_IFLNK:
2182 /*
2183 * Must not load anything in the rbtree,
2184 * mpol_free_shared_policy will not be called.
2185 */
71fe804b 2186 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2187 break;
2188 }
5b04c689
PE
2189 } else
2190 shmem_free_inode(sb);
1da177e4
LT
2191 return inode;
2192}
2193
0cd6144a
JW
2194bool shmem_mapping(struct address_space *mapping)
2195{
f8005451 2196 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2197}
2198
4c27fe4c
MR
2199int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2200 pmd_t *dst_pmd,
2201 struct vm_area_struct *dst_vma,
2202 unsigned long dst_addr,
2203 unsigned long src_addr,
2204 struct page **pagep)
2205{
2206 struct inode *inode = file_inode(dst_vma->vm_file);
2207 struct shmem_inode_info *info = SHMEM_I(inode);
2208 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2209 struct address_space *mapping = inode->i_mapping;
2210 gfp_t gfp = mapping_gfp_mask(mapping);
2211 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2212 struct mem_cgroup *memcg;
2213 spinlock_t *ptl;
2214 void *page_kaddr;
2215 struct page *page;
2216 pte_t _dst_pte, *dst_pte;
2217 int ret;
2218
cb658a45
AA
2219 ret = -ENOMEM;
2220 if (shmem_acct_block(info->flags, 1))
2221 goto out;
2222 if (sbinfo->max_blocks) {
2223 if (percpu_counter_compare(&sbinfo->used_blocks,
2224 sbinfo->max_blocks) >= 0)
2225 goto out_unacct_blocks;
2226 percpu_counter_inc(&sbinfo->used_blocks);
2227 }
4c27fe4c 2228
cb658a45 2229 if (!*pagep) {
4c27fe4c
MR
2230 page = shmem_alloc_page(gfp, info, pgoff);
2231 if (!page)
2232 goto out_dec_used_blocks;
2233
2234 page_kaddr = kmap_atomic(page);
2235 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2236 PAGE_SIZE);
2237 kunmap_atomic(page_kaddr);
2238
2239 /* fallback to copy_from_user outside mmap_sem */
2240 if (unlikely(ret)) {
2241 *pagep = page;
cb658a45
AA
2242 if (sbinfo->max_blocks)
2243 percpu_counter_add(&sbinfo->used_blocks, -1);
2244 shmem_unacct_blocks(info->flags, 1);
4c27fe4c
MR
2245 /* don't free the page */
2246 return -EFAULT;
2247 }
2248 } else {
2249 page = *pagep;
2250 *pagep = NULL;
2251 }
2252
9cc90c66
AA
2253 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2254 __SetPageLocked(page);
2255 __SetPageSwapBacked(page);
a425d358 2256 __SetPageUptodate(page);
9cc90c66 2257
4c27fe4c
MR
2258 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2259 if (ret)
2260 goto out_release;
2261
2262 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2263 if (!ret) {
2264 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2265 radix_tree_preload_end();
2266 }
2267 if (ret)
2268 goto out_release_uncharge;
2269
2270 mem_cgroup_commit_charge(page, memcg, false, false);
2271
2272 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2273 if (dst_vma->vm_flags & VM_WRITE)
2274 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2275
2276 ret = -EEXIST;
2277 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2278 if (!pte_none(*dst_pte))
2279 goto out_release_uncharge_unlock;
2280
4c27fe4c
MR
2281 lru_cache_add_anon(page);
2282
2283 spin_lock(&info->lock);
2284 info->alloced++;
2285 inode->i_blocks += BLOCKS_PER_PAGE;
2286 shmem_recalc_inode(inode);
2287 spin_unlock(&info->lock);
2288
2289 inc_mm_counter(dst_mm, mm_counter_file(page));
2290 page_add_file_rmap(page, false);
2291 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2292
2293 /* No need to invalidate - it was non-present before */
2294 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2295 unlock_page(page);
2296 pte_unmap_unlock(dst_pte, ptl);
2297 ret = 0;
2298out:
2299 return ret;
2300out_release_uncharge_unlock:
2301 pte_unmap_unlock(dst_pte, ptl);
2302out_release_uncharge:
2303 mem_cgroup_cancel_charge(page, memcg, false);
2304out_release:
9cc90c66 2305 unlock_page(page);
4c27fe4c
MR
2306 put_page(page);
2307out_dec_used_blocks:
2308 if (sbinfo->max_blocks)
2309 percpu_counter_add(&sbinfo->used_blocks, -1);
2310out_unacct_blocks:
2311 shmem_unacct_blocks(info->flags, 1);
2312 goto out;
2313}
2314
1da177e4 2315#ifdef CONFIG_TMPFS
92e1d5be 2316static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2317static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2318
6d9d88d0
JS
2319#ifdef CONFIG_TMPFS_XATTR
2320static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2321#else
2322#define shmem_initxattrs NULL
2323#endif
2324
1da177e4 2325static int
800d15a5
NP
2326shmem_write_begin(struct file *file, struct address_space *mapping,
2327 loff_t pos, unsigned len, unsigned flags,
2328 struct page **pagep, void **fsdata)
1da177e4 2329{
800d15a5 2330 struct inode *inode = mapping->host;
40e041a2 2331 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2332 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2333
2334 /* i_mutex is held by caller */
3f472cc9 2335 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2336 if (info->seals & F_SEAL_WRITE)
2337 return -EPERM;
2338 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2339 return -EPERM;
2340 }
2341
9e18eb29 2342 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2343}
2344
2345static int
2346shmem_write_end(struct file *file, struct address_space *mapping,
2347 loff_t pos, unsigned len, unsigned copied,
2348 struct page *page, void *fsdata)
2349{
2350 struct inode *inode = mapping->host;
2351
d3602444
HD
2352 if (pos + copied > inode->i_size)
2353 i_size_write(inode, pos + copied);
2354
ec9516fb 2355 if (!PageUptodate(page)) {
800d8c63
KS
2356 struct page *head = compound_head(page);
2357 if (PageTransCompound(page)) {
2358 int i;
2359
2360 for (i = 0; i < HPAGE_PMD_NR; i++) {
2361 if (head + i == page)
2362 continue;
2363 clear_highpage(head + i);
2364 flush_dcache_page(head + i);
2365 }
2366 }
09cbfeaf
KS
2367 if (copied < PAGE_SIZE) {
2368 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2369 zero_user_segments(page, 0, from,
09cbfeaf 2370 from + copied, PAGE_SIZE);
ec9516fb 2371 }
800d8c63 2372 SetPageUptodate(head);
ec9516fb 2373 }
800d15a5 2374 set_page_dirty(page);
6746aff7 2375 unlock_page(page);
09cbfeaf 2376 put_page(page);
800d15a5 2377
800d15a5 2378 return copied;
1da177e4
LT
2379}
2380
2ba5bbed 2381static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2382{
6e58e79d
AV
2383 struct file *file = iocb->ki_filp;
2384 struct inode *inode = file_inode(file);
1da177e4 2385 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2386 pgoff_t index;
2387 unsigned long offset;
a0ee5ec5 2388 enum sgp_type sgp = SGP_READ;
f7c1d074 2389 int error = 0;
cb66a7a1 2390 ssize_t retval = 0;
6e58e79d 2391 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2392
2393 /*
2394 * Might this read be for a stacking filesystem? Then when reading
2395 * holes of a sparse file, we actually need to allocate those pages,
2396 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2397 */
777eda2c 2398 if (!iter_is_iovec(to))
75edd345 2399 sgp = SGP_CACHE;
1da177e4 2400
09cbfeaf
KS
2401 index = *ppos >> PAGE_SHIFT;
2402 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2403
2404 for (;;) {
2405 struct page *page = NULL;
41ffe5d5
HD
2406 pgoff_t end_index;
2407 unsigned long nr, ret;
1da177e4
LT
2408 loff_t i_size = i_size_read(inode);
2409
09cbfeaf 2410 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2411 if (index > end_index)
2412 break;
2413 if (index == end_index) {
09cbfeaf 2414 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2415 if (nr <= offset)
2416 break;
2417 }
2418
9e18eb29 2419 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2420 if (error) {
2421 if (error == -EINVAL)
2422 error = 0;
1da177e4
LT
2423 break;
2424 }
75edd345
HD
2425 if (page) {
2426 if (sgp == SGP_CACHE)
2427 set_page_dirty(page);
d3602444 2428 unlock_page(page);
75edd345 2429 }
1da177e4
LT
2430
2431 /*
2432 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2433 * are called without i_mutex protection against truncate
1da177e4 2434 */
09cbfeaf 2435 nr = PAGE_SIZE;
1da177e4 2436 i_size = i_size_read(inode);
09cbfeaf 2437 end_index = i_size >> PAGE_SHIFT;
1da177e4 2438 if (index == end_index) {
09cbfeaf 2439 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2440 if (nr <= offset) {
2441 if (page)
09cbfeaf 2442 put_page(page);
1da177e4
LT
2443 break;
2444 }
2445 }
2446 nr -= offset;
2447
2448 if (page) {
2449 /*
2450 * If users can be writing to this page using arbitrary
2451 * virtual addresses, take care about potential aliasing
2452 * before reading the page on the kernel side.
2453 */
2454 if (mapping_writably_mapped(mapping))
2455 flush_dcache_page(page);
2456 /*
2457 * Mark the page accessed if we read the beginning.
2458 */
2459 if (!offset)
2460 mark_page_accessed(page);
b5810039 2461 } else {
1da177e4 2462 page = ZERO_PAGE(0);
09cbfeaf 2463 get_page(page);
b5810039 2464 }
1da177e4
LT
2465
2466 /*
2467 * Ok, we have the page, and it's up-to-date, so
2468 * now we can copy it to user space...
1da177e4 2469 */
2ba5bbed 2470 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2471 retval += ret;
1da177e4 2472 offset += ret;
09cbfeaf
KS
2473 index += offset >> PAGE_SHIFT;
2474 offset &= ~PAGE_MASK;
1da177e4 2475
09cbfeaf 2476 put_page(page);
2ba5bbed 2477 if (!iov_iter_count(to))
1da177e4 2478 break;
6e58e79d
AV
2479 if (ret < nr) {
2480 error = -EFAULT;
2481 break;
2482 }
1da177e4
LT
2483 cond_resched();
2484 }
2485
09cbfeaf 2486 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2487 file_accessed(file);
2488 return retval ? retval : error;
1da177e4
LT
2489}
2490
220f2ac9
HD
2491/*
2492 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2493 */
2494static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2495 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2496{
2497 struct page *page;
2498 struct pagevec pvec;
2499 pgoff_t indices[PAGEVEC_SIZE];
2500 bool done = false;
2501 int i;
2502
2503 pagevec_init(&pvec, 0);
2504 pvec.nr = 1; /* start small: we may be there already */
2505 while (!done) {
0cd6144a 2506 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2507 pvec.nr, pvec.pages, indices);
2508 if (!pvec.nr) {
965c8e59 2509 if (whence == SEEK_DATA)
220f2ac9
HD
2510 index = end;
2511 break;
2512 }
2513 for (i = 0; i < pvec.nr; i++, index++) {
2514 if (index < indices[i]) {
965c8e59 2515 if (whence == SEEK_HOLE) {
220f2ac9
HD
2516 done = true;
2517 break;
2518 }
2519 index = indices[i];
2520 }
2521 page = pvec.pages[i];
2522 if (page && !radix_tree_exceptional_entry(page)) {
2523 if (!PageUptodate(page))
2524 page = NULL;
2525 }
2526 if (index >= end ||
965c8e59
AM
2527 (page && whence == SEEK_DATA) ||
2528 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2529 done = true;
2530 break;
2531 }
2532 }
0cd6144a 2533 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2534 pagevec_release(&pvec);
2535 pvec.nr = PAGEVEC_SIZE;
2536 cond_resched();
2537 }
2538 return index;
2539}
2540
965c8e59 2541static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2542{
2543 struct address_space *mapping = file->f_mapping;
2544 struct inode *inode = mapping->host;
2545 pgoff_t start, end;
2546 loff_t new_offset;
2547
965c8e59
AM
2548 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2549 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2550 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2551 inode_lock(inode);
220f2ac9
HD
2552 /* We're holding i_mutex so we can access i_size directly */
2553
2554 if (offset < 0)
2555 offset = -EINVAL;
2556 else if (offset >= inode->i_size)
2557 offset = -ENXIO;
2558 else {
09cbfeaf
KS
2559 start = offset >> PAGE_SHIFT;
2560 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2561 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2562 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2563 if (new_offset > offset) {
2564 if (new_offset < inode->i_size)
2565 offset = new_offset;
965c8e59 2566 else if (whence == SEEK_DATA)
220f2ac9
HD
2567 offset = -ENXIO;
2568 else
2569 offset = inode->i_size;
2570 }
2571 }
2572
387aae6f
HD
2573 if (offset >= 0)
2574 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2575 inode_unlock(inode);
220f2ac9
HD
2576 return offset;
2577}
2578
05f65b5c
DH
2579/*
2580 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2581 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2582 */
2583#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2584#define LAST_SCAN 4 /* about 150ms max */
2585
2586static void shmem_tag_pins(struct address_space *mapping)
2587{
2588 struct radix_tree_iter iter;
2589 void **slot;
2590 pgoff_t start;
2591 struct page *page;
2592
2593 lru_add_drain();
2594 start = 0;
2595 rcu_read_lock();
2596
05f65b5c
DH
2597 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2598 page = radix_tree_deref_slot(slot);
2599 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2600 if (radix_tree_deref_retry(page)) {
2601 slot = radix_tree_iter_retry(&iter);
2602 continue;
2603 }
05f65b5c
DH
2604 } else if (page_count(page) - page_mapcount(page) > 1) {
2605 spin_lock_irq(&mapping->tree_lock);
2606 radix_tree_tag_set(&mapping->page_tree, iter.index,
2607 SHMEM_TAG_PINNED);
2608 spin_unlock_irq(&mapping->tree_lock);
2609 }
2610
2611 if (need_resched()) {
148deab2 2612 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2613 cond_resched_rcu();
05f65b5c
DH
2614 }
2615 }
2616 rcu_read_unlock();
2617}
2618
2619/*
2620 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2621 * via get_user_pages(), drivers might have some pending I/O without any active
2622 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2623 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2624 * them to be dropped.
2625 * The caller must guarantee that no new user will acquire writable references
2626 * to those pages to avoid races.
2627 */
40e041a2
DH
2628static int shmem_wait_for_pins(struct address_space *mapping)
2629{
05f65b5c
DH
2630 struct radix_tree_iter iter;
2631 void **slot;
2632 pgoff_t start;
2633 struct page *page;
2634 int error, scan;
2635
2636 shmem_tag_pins(mapping);
2637
2638 error = 0;
2639 for (scan = 0; scan <= LAST_SCAN; scan++) {
2640 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2641 break;
2642
2643 if (!scan)
2644 lru_add_drain_all();
2645 else if (schedule_timeout_killable((HZ << scan) / 200))
2646 scan = LAST_SCAN;
2647
2648 start = 0;
2649 rcu_read_lock();
05f65b5c
DH
2650 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2651 start, SHMEM_TAG_PINNED) {
2652
2653 page = radix_tree_deref_slot(slot);
2654 if (radix_tree_exception(page)) {
2cf938aa
MW
2655 if (radix_tree_deref_retry(page)) {
2656 slot = radix_tree_iter_retry(&iter);
2657 continue;
2658 }
05f65b5c
DH
2659
2660 page = NULL;
2661 }
2662
2663 if (page &&
2664 page_count(page) - page_mapcount(page) != 1) {
2665 if (scan < LAST_SCAN)
2666 goto continue_resched;
2667
2668 /*
2669 * On the last scan, we clean up all those tags
2670 * we inserted; but make a note that we still
2671 * found pages pinned.
2672 */
2673 error = -EBUSY;
2674 }
2675
2676 spin_lock_irq(&mapping->tree_lock);
2677 radix_tree_tag_clear(&mapping->page_tree,
2678 iter.index, SHMEM_TAG_PINNED);
2679 spin_unlock_irq(&mapping->tree_lock);
2680continue_resched:
2681 if (need_resched()) {
148deab2 2682 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2683 cond_resched_rcu();
05f65b5c
DH
2684 }
2685 }
2686 rcu_read_unlock();
2687 }
2688
2689 return error;
40e041a2
DH
2690}
2691
2692#define F_ALL_SEALS (F_SEAL_SEAL | \
2693 F_SEAL_SHRINK | \
2694 F_SEAL_GROW | \
2695 F_SEAL_WRITE)
2696
2697int shmem_add_seals(struct file *file, unsigned int seals)
2698{
2699 struct inode *inode = file_inode(file);
2700 struct shmem_inode_info *info = SHMEM_I(inode);
2701 int error;
2702
2703 /*
2704 * SEALING
2705 * Sealing allows multiple parties to share a shmem-file but restrict
2706 * access to a specific subset of file operations. Seals can only be
2707 * added, but never removed. This way, mutually untrusted parties can
2708 * share common memory regions with a well-defined policy. A malicious
2709 * peer can thus never perform unwanted operations on a shared object.
2710 *
2711 * Seals are only supported on special shmem-files and always affect
2712 * the whole underlying inode. Once a seal is set, it may prevent some
2713 * kinds of access to the file. Currently, the following seals are
2714 * defined:
2715 * SEAL_SEAL: Prevent further seals from being set on this file
2716 * SEAL_SHRINK: Prevent the file from shrinking
2717 * SEAL_GROW: Prevent the file from growing
2718 * SEAL_WRITE: Prevent write access to the file
2719 *
2720 * As we don't require any trust relationship between two parties, we
2721 * must prevent seals from being removed. Therefore, sealing a file
2722 * only adds a given set of seals to the file, it never touches
2723 * existing seals. Furthermore, the "setting seals"-operation can be
2724 * sealed itself, which basically prevents any further seal from being
2725 * added.
2726 *
2727 * Semantics of sealing are only defined on volatile files. Only
2728 * anonymous shmem files support sealing. More importantly, seals are
2729 * never written to disk. Therefore, there's no plan to support it on
2730 * other file types.
2731 */
2732
2733 if (file->f_op != &shmem_file_operations)
2734 return -EINVAL;
2735 if (!(file->f_mode & FMODE_WRITE))
2736 return -EPERM;
2737 if (seals & ~(unsigned int)F_ALL_SEALS)
2738 return -EINVAL;
2739
5955102c 2740 inode_lock(inode);
40e041a2
DH
2741
2742 if (info->seals & F_SEAL_SEAL) {
2743 error = -EPERM;
2744 goto unlock;
2745 }
2746
2747 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2748 error = mapping_deny_writable(file->f_mapping);
2749 if (error)
2750 goto unlock;
2751
2752 error = shmem_wait_for_pins(file->f_mapping);
2753 if (error) {
2754 mapping_allow_writable(file->f_mapping);
2755 goto unlock;
2756 }
2757 }
2758
2759 info->seals |= seals;
2760 error = 0;
2761
2762unlock:
5955102c 2763 inode_unlock(inode);
40e041a2
DH
2764 return error;
2765}
2766EXPORT_SYMBOL_GPL(shmem_add_seals);
2767
2768int shmem_get_seals(struct file *file)
2769{
2770 if (file->f_op != &shmem_file_operations)
2771 return -EINVAL;
2772
2773 return SHMEM_I(file_inode(file))->seals;
2774}
2775EXPORT_SYMBOL_GPL(shmem_get_seals);
2776
2777long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2778{
2779 long error;
2780
2781 switch (cmd) {
2782 case F_ADD_SEALS:
2783 /* disallow upper 32bit */
2784 if (arg > UINT_MAX)
2785 return -EINVAL;
2786
2787 error = shmem_add_seals(file, arg);
2788 break;
2789 case F_GET_SEALS:
2790 error = shmem_get_seals(file);
2791 break;
2792 default:
2793 error = -EINVAL;
2794 break;
2795 }
2796
2797 return error;
2798}
2799
83e4fa9c
HD
2800static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2801 loff_t len)
2802{
496ad9aa 2803 struct inode *inode = file_inode(file);
e2d12e22 2804 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2805 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2806 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2807 pgoff_t start, index, end;
2808 int error;
83e4fa9c 2809
13ace4d0
HD
2810 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2811 return -EOPNOTSUPP;
2812
5955102c 2813 inode_lock(inode);
83e4fa9c
HD
2814
2815 if (mode & FALLOC_FL_PUNCH_HOLE) {
2816 struct address_space *mapping = file->f_mapping;
2817 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2818 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2819 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2820
40e041a2
DH
2821 /* protected by i_mutex */
2822 if (info->seals & F_SEAL_WRITE) {
2823 error = -EPERM;
2824 goto out;
2825 }
2826
8e205f77 2827 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2828 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2829 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2830 spin_lock(&inode->i_lock);
2831 inode->i_private = &shmem_falloc;
2832 spin_unlock(&inode->i_lock);
2833
83e4fa9c
HD
2834 if ((u64)unmap_end > (u64)unmap_start)
2835 unmap_mapping_range(mapping, unmap_start,
2836 1 + unmap_end - unmap_start, 0);
2837 shmem_truncate_range(inode, offset, offset + len - 1);
2838 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2839
2840 spin_lock(&inode->i_lock);
2841 inode->i_private = NULL;
2842 wake_up_all(&shmem_falloc_waitq);
10d20bd2 2843 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
8e205f77 2844 spin_unlock(&inode->i_lock);
83e4fa9c 2845 error = 0;
8e205f77 2846 goto out;
e2d12e22
HD
2847 }
2848
2849 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2850 error = inode_newsize_ok(inode, offset + len);
2851 if (error)
2852 goto out;
2853
40e041a2
DH
2854 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2855 error = -EPERM;
2856 goto out;
2857 }
2858
09cbfeaf
KS
2859 start = offset >> PAGE_SHIFT;
2860 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2861 /* Try to avoid a swapstorm if len is impossible to satisfy */
2862 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2863 error = -ENOSPC;
2864 goto out;
83e4fa9c
HD
2865 }
2866
8e205f77 2867 shmem_falloc.waitq = NULL;
1aac1400
HD
2868 shmem_falloc.start = start;
2869 shmem_falloc.next = start;
2870 shmem_falloc.nr_falloced = 0;
2871 shmem_falloc.nr_unswapped = 0;
2872 spin_lock(&inode->i_lock);
2873 inode->i_private = &shmem_falloc;
2874 spin_unlock(&inode->i_lock);
2875
e2d12e22
HD
2876 for (index = start; index < end; index++) {
2877 struct page *page;
2878
2879 /*
2880 * Good, the fallocate(2) manpage permits EINTR: we may have
2881 * been interrupted because we are using up too much memory.
2882 */
2883 if (signal_pending(current))
2884 error = -EINTR;
1aac1400
HD
2885 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2886 error = -ENOMEM;
e2d12e22 2887 else
9e18eb29 2888 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2889 if (error) {
1635f6a7 2890 /* Remove the !PageUptodate pages we added */
7f556567
HD
2891 if (index > start) {
2892 shmem_undo_range(inode,
2893 (loff_t)start << PAGE_SHIFT,
2894 ((loff_t)index << PAGE_SHIFT) - 1, true);
2895 }
1aac1400 2896 goto undone;
e2d12e22
HD
2897 }
2898
1aac1400
HD
2899 /*
2900 * Inform shmem_writepage() how far we have reached.
2901 * No need for lock or barrier: we have the page lock.
2902 */
2903 shmem_falloc.next++;
2904 if (!PageUptodate(page))
2905 shmem_falloc.nr_falloced++;
2906
e2d12e22 2907 /*
1635f6a7
HD
2908 * If !PageUptodate, leave it that way so that freeable pages
2909 * can be recognized if we need to rollback on error later.
2910 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2911 * than free the pages we are allocating (and SGP_CACHE pages
2912 * might still be clean: we now need to mark those dirty too).
2913 */
2914 set_page_dirty(page);
2915 unlock_page(page);
09cbfeaf 2916 put_page(page);
e2d12e22
HD
2917 cond_resched();
2918 }
2919
2920 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2921 i_size_write(inode, offset + len);
078cd827 2922 inode->i_ctime = current_time(inode);
1aac1400
HD
2923undone:
2924 spin_lock(&inode->i_lock);
2925 inode->i_private = NULL;
2926 spin_unlock(&inode->i_lock);
e2d12e22 2927out:
5955102c 2928 inode_unlock(inode);
83e4fa9c
HD
2929 return error;
2930}
2931
726c3342 2932static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2933{
726c3342 2934 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2935
2936 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2937 buf->f_bsize = PAGE_SIZE;
1da177e4 2938 buf->f_namelen = NAME_MAX;
0edd73b3 2939 if (sbinfo->max_blocks) {
1da177e4 2940 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2941 buf->f_bavail =
2942 buf->f_bfree = sbinfo->max_blocks -
2943 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2944 }
2945 if (sbinfo->max_inodes) {
1da177e4
LT
2946 buf->f_files = sbinfo->max_inodes;
2947 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2948 }
2949 /* else leave those fields 0 like simple_statfs */
2950 return 0;
2951}
2952
2953/*
2954 * File creation. Allocate an inode, and we're done..
2955 */
2956static int
1a67aafb 2957shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2958{
0b0a0806 2959 struct inode *inode;
1da177e4
LT
2960 int error = -ENOSPC;
2961
454abafe 2962 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2963 if (inode) {
feda821e
CH
2964 error = simple_acl_create(dir, inode);
2965 if (error)
2966 goto out_iput;
2a7dba39 2967 error = security_inode_init_security(inode, dir,
9d8f13ba 2968 &dentry->d_name,
6d9d88d0 2969 shmem_initxattrs, NULL);
feda821e
CH
2970 if (error && error != -EOPNOTSUPP)
2971 goto out_iput;
37ec43cd 2972
718deb6b 2973 error = 0;
1da177e4 2974 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2975 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2976 d_instantiate(dentry, inode);
2977 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2978 }
2979 return error;
feda821e
CH
2980out_iput:
2981 iput(inode);
2982 return error;
1da177e4
LT
2983}
2984
60545d0d
AV
2985static int
2986shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2987{
2988 struct inode *inode;
2989 int error = -ENOSPC;
2990
2991 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2992 if (inode) {
2993 error = security_inode_init_security(inode, dir,
2994 NULL,
2995 shmem_initxattrs, NULL);
feda821e
CH
2996 if (error && error != -EOPNOTSUPP)
2997 goto out_iput;
2998 error = simple_acl_create(dir, inode);
2999 if (error)
3000 goto out_iput;
60545d0d
AV
3001 d_tmpfile(dentry, inode);
3002 }
3003 return error;
feda821e
CH
3004out_iput:
3005 iput(inode);
3006 return error;
60545d0d
AV
3007}
3008
18bb1db3 3009static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3010{
3011 int error;
3012
3013 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3014 return error;
d8c76e6f 3015 inc_nlink(dir);
1da177e4
LT
3016 return 0;
3017}
3018
4acdaf27 3019static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3020 bool excl)
1da177e4
LT
3021{
3022 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3023}
3024
3025/*
3026 * Link a file..
3027 */
3028static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3029{
75c3cfa8 3030 struct inode *inode = d_inode(old_dentry);
5b04c689 3031 int ret;
1da177e4
LT
3032
3033 /*
3034 * No ordinary (disk based) filesystem counts links as inodes;
3035 * but each new link needs a new dentry, pinning lowmem, and
3036 * tmpfs dentries cannot be pruned until they are unlinked.
3037 */
5b04c689
PE
3038 ret = shmem_reserve_inode(inode->i_sb);
3039 if (ret)
3040 goto out;
1da177e4
LT
3041
3042 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3043 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3044 inc_nlink(inode);
7de9c6ee 3045 ihold(inode); /* New dentry reference */
1da177e4
LT
3046 dget(dentry); /* Extra pinning count for the created dentry */
3047 d_instantiate(dentry, inode);
5b04c689
PE
3048out:
3049 return ret;
1da177e4
LT
3050}
3051
3052static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3053{
75c3cfa8 3054 struct inode *inode = d_inode(dentry);
1da177e4 3055
5b04c689
PE
3056 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3057 shmem_free_inode(inode->i_sb);
1da177e4
LT
3058
3059 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3060 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3061 drop_nlink(inode);
1da177e4
LT
3062 dput(dentry); /* Undo the count from "create" - this does all the work */
3063 return 0;
3064}
3065
3066static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3067{
3068 if (!simple_empty(dentry))
3069 return -ENOTEMPTY;
3070
75c3cfa8 3071 drop_nlink(d_inode(dentry));
9a53c3a7 3072 drop_nlink(dir);
1da177e4
LT
3073 return shmem_unlink(dir, dentry);
3074}
3075
37456771
MS
3076static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3077{
e36cb0b8
DH
3078 bool old_is_dir = d_is_dir(old_dentry);
3079 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3080
3081 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3082 if (old_is_dir) {
3083 drop_nlink(old_dir);
3084 inc_nlink(new_dir);
3085 } else {
3086 drop_nlink(new_dir);
3087 inc_nlink(old_dir);
3088 }
3089 }
3090 old_dir->i_ctime = old_dir->i_mtime =
3091 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3092 d_inode(old_dentry)->i_ctime =
078cd827 3093 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3094
3095 return 0;
3096}
3097
46fdb794
MS
3098static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3099{
3100 struct dentry *whiteout;
3101 int error;
3102
3103 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3104 if (!whiteout)
3105 return -ENOMEM;
3106
3107 error = shmem_mknod(old_dir, whiteout,
3108 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3109 dput(whiteout);
3110 if (error)
3111 return error;
3112
3113 /*
3114 * Cheat and hash the whiteout while the old dentry is still in
3115 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3116 *
3117 * d_lookup() will consistently find one of them at this point,
3118 * not sure which one, but that isn't even important.
3119 */
3120 d_rehash(whiteout);
3121 return 0;
3122}
3123
1da177e4
LT
3124/*
3125 * The VFS layer already does all the dentry stuff for rename,
3126 * we just have to decrement the usage count for the target if
3127 * it exists so that the VFS layer correctly free's it when it
3128 * gets overwritten.
3129 */
3b69ff51 3130static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3131{
75c3cfa8 3132 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3133 int they_are_dirs = S_ISDIR(inode->i_mode);
3134
46fdb794 3135 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3136 return -EINVAL;
3137
37456771
MS
3138 if (flags & RENAME_EXCHANGE)
3139 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3140
1da177e4
LT
3141 if (!simple_empty(new_dentry))
3142 return -ENOTEMPTY;
3143
46fdb794
MS
3144 if (flags & RENAME_WHITEOUT) {
3145 int error;
3146
3147 error = shmem_whiteout(old_dir, old_dentry);
3148 if (error)
3149 return error;
3150 }
3151
75c3cfa8 3152 if (d_really_is_positive(new_dentry)) {
1da177e4 3153 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3154 if (they_are_dirs) {
75c3cfa8 3155 drop_nlink(d_inode(new_dentry));
9a53c3a7 3156 drop_nlink(old_dir);
b928095b 3157 }
1da177e4 3158 } else if (they_are_dirs) {
9a53c3a7 3159 drop_nlink(old_dir);
d8c76e6f 3160 inc_nlink(new_dir);
1da177e4
LT
3161 }
3162
3163 old_dir->i_size -= BOGO_DIRENT_SIZE;
3164 new_dir->i_size += BOGO_DIRENT_SIZE;
3165 old_dir->i_ctime = old_dir->i_mtime =
3166 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3167 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3168 return 0;
3169}
3170
3171static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3172{
3173 int error;
3174 int len;
3175 struct inode *inode;
9276aad6 3176 struct page *page;
1da177e4
LT
3177 struct shmem_inode_info *info;
3178
3179 len = strlen(symname) + 1;
09cbfeaf 3180 if (len > PAGE_SIZE)
1da177e4
LT
3181 return -ENAMETOOLONG;
3182
454abafe 3183 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3184 if (!inode)
3185 return -ENOSPC;
3186
9d8f13ba 3187 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3188 shmem_initxattrs, NULL);
570bc1c2
SS
3189 if (error) {
3190 if (error != -EOPNOTSUPP) {
3191 iput(inode);
3192 return error;
3193 }
3194 error = 0;
3195 }
3196
1da177e4
LT
3197 info = SHMEM_I(inode);
3198 inode->i_size = len-1;
69f07ec9 3199 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3200 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3201 if (!inode->i_link) {
69f07ec9
HD
3202 iput(inode);
3203 return -ENOMEM;
3204 }
3205 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3206 } else {
e8ecde25 3207 inode_nohighmem(inode);
9e18eb29 3208 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3209 if (error) {
3210 iput(inode);
3211 return error;
3212 }
14fcc23f 3213 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3214 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3215 memcpy(page_address(page), symname, len);
ec9516fb 3216 SetPageUptodate(page);
1da177e4 3217 set_page_dirty(page);
6746aff7 3218 unlock_page(page);
09cbfeaf 3219 put_page(page);
1da177e4 3220 }
1da177e4 3221 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3222 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3223 d_instantiate(dentry, inode);
3224 dget(dentry);
3225 return 0;
3226}
3227
fceef393 3228static void shmem_put_link(void *arg)
1da177e4 3229{
fceef393
AV
3230 mark_page_accessed(arg);
3231 put_page(arg);
1da177e4
LT
3232}
3233
6b255391 3234static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3235 struct inode *inode,
3236 struct delayed_call *done)
1da177e4 3237{
1da177e4 3238 struct page *page = NULL;
6b255391 3239 int error;
6a6c9904
AV
3240 if (!dentry) {
3241 page = find_get_page(inode->i_mapping, 0);
3242 if (!page)
3243 return ERR_PTR(-ECHILD);
3244 if (!PageUptodate(page)) {
3245 put_page(page);
3246 return ERR_PTR(-ECHILD);
3247 }
3248 } else {
9e18eb29 3249 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3250 if (error)
3251 return ERR_PTR(error);
3252 unlock_page(page);
3253 }
fceef393 3254 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3255 return page_address(page);
1da177e4
LT
3256}
3257
b09e0fa4 3258#ifdef CONFIG_TMPFS_XATTR
46711810 3259/*
b09e0fa4
EP
3260 * Superblocks without xattr inode operations may get some security.* xattr
3261 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3262 * like ACLs, we also need to implement the security.* handlers at
3263 * filesystem level, though.
3264 */
3265
6d9d88d0
JS
3266/*
3267 * Callback for security_inode_init_security() for acquiring xattrs.
3268 */
3269static int shmem_initxattrs(struct inode *inode,
3270 const struct xattr *xattr_array,
3271 void *fs_info)
3272{
3273 struct shmem_inode_info *info = SHMEM_I(inode);
3274 const struct xattr *xattr;
38f38657 3275 struct simple_xattr *new_xattr;
6d9d88d0
JS
3276 size_t len;
3277
3278 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3279 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3280 if (!new_xattr)
3281 return -ENOMEM;
3282
3283 len = strlen(xattr->name) + 1;
3284 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3285 GFP_KERNEL);
3286 if (!new_xattr->name) {
3287 kfree(new_xattr);
3288 return -ENOMEM;
3289 }
3290
3291 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3292 XATTR_SECURITY_PREFIX_LEN);
3293 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3294 xattr->name, len);
3295
38f38657 3296 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3297 }
3298
3299 return 0;
3300}
3301
aa7c5241 3302static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3303 struct dentry *unused, struct inode *inode,
3304 const char *name, void *buffer, size_t size)
b09e0fa4 3305{
b296821a 3306 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3307
aa7c5241 3308 name = xattr_full_name(handler, name);
38f38657 3309 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3310}
3311
aa7c5241 3312static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3313 struct dentry *unused, struct inode *inode,
3314 const char *name, const void *value,
3315 size_t size, int flags)
b09e0fa4 3316{
59301226 3317 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3318
aa7c5241 3319 name = xattr_full_name(handler, name);
38f38657 3320 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3321}
3322
aa7c5241
AG
3323static const struct xattr_handler shmem_security_xattr_handler = {
3324 .prefix = XATTR_SECURITY_PREFIX,
3325 .get = shmem_xattr_handler_get,
3326 .set = shmem_xattr_handler_set,
3327};
b09e0fa4 3328
aa7c5241
AG
3329static const struct xattr_handler shmem_trusted_xattr_handler = {
3330 .prefix = XATTR_TRUSTED_PREFIX,
3331 .get = shmem_xattr_handler_get,
3332 .set = shmem_xattr_handler_set,
3333};
b09e0fa4 3334
aa7c5241
AG
3335static const struct xattr_handler *shmem_xattr_handlers[] = {
3336#ifdef CONFIG_TMPFS_POSIX_ACL
3337 &posix_acl_access_xattr_handler,
3338 &posix_acl_default_xattr_handler,
3339#endif
3340 &shmem_security_xattr_handler,
3341 &shmem_trusted_xattr_handler,
3342 NULL
3343};
b09e0fa4
EP
3344
3345static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3346{
75c3cfa8 3347 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3348 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3349}
3350#endif /* CONFIG_TMPFS_XATTR */
3351
69f07ec9 3352static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3353 .get_link = simple_get_link,
b09e0fa4 3354#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3355 .listxattr = shmem_listxattr,
b09e0fa4
EP
3356#endif
3357};
3358
3359static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3360 .get_link = shmem_get_link,
b09e0fa4 3361#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3362 .listxattr = shmem_listxattr,
39f0247d 3363#endif
b09e0fa4 3364};
39f0247d 3365
91828a40
DG
3366static struct dentry *shmem_get_parent(struct dentry *child)
3367{
3368 return ERR_PTR(-ESTALE);
3369}
3370
3371static int shmem_match(struct inode *ino, void *vfh)
3372{
3373 __u32 *fh = vfh;
3374 __u64 inum = fh[2];
3375 inum = (inum << 32) | fh[1];
3376 return ino->i_ino == inum && fh[0] == ino->i_generation;
3377}
3378
480b116c
CH
3379static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3380 struct fid *fid, int fh_len, int fh_type)
91828a40 3381{
91828a40 3382 struct inode *inode;
480b116c 3383 struct dentry *dentry = NULL;
35c2a7f4 3384 u64 inum;
480b116c
CH
3385
3386 if (fh_len < 3)
3387 return NULL;
91828a40 3388
35c2a7f4
HD
3389 inum = fid->raw[2];
3390 inum = (inum << 32) | fid->raw[1];
3391
480b116c
CH
3392 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3393 shmem_match, fid->raw);
91828a40 3394 if (inode) {
480b116c 3395 dentry = d_find_alias(inode);
91828a40
DG
3396 iput(inode);
3397 }
3398
480b116c 3399 return dentry;
91828a40
DG
3400}
3401
b0b0382b
AV
3402static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3403 struct inode *parent)
91828a40 3404{
5fe0c237
AK
3405 if (*len < 3) {
3406 *len = 3;
94e07a75 3407 return FILEID_INVALID;
5fe0c237 3408 }
91828a40 3409
1d3382cb 3410 if (inode_unhashed(inode)) {
91828a40
DG
3411 /* Unfortunately insert_inode_hash is not idempotent,
3412 * so as we hash inodes here rather than at creation
3413 * time, we need a lock to ensure we only try
3414 * to do it once
3415 */
3416 static DEFINE_SPINLOCK(lock);
3417 spin_lock(&lock);
1d3382cb 3418 if (inode_unhashed(inode))
91828a40
DG
3419 __insert_inode_hash(inode,
3420 inode->i_ino + inode->i_generation);
3421 spin_unlock(&lock);
3422 }
3423
3424 fh[0] = inode->i_generation;
3425 fh[1] = inode->i_ino;
3426 fh[2] = ((__u64)inode->i_ino) >> 32;
3427
3428 *len = 3;
3429 return 1;
3430}
3431
39655164 3432static const struct export_operations shmem_export_ops = {
91828a40 3433 .get_parent = shmem_get_parent,
91828a40 3434 .encode_fh = shmem_encode_fh,
480b116c 3435 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3436};
3437
680d794b
AM
3438static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3439 bool remount)
1da177e4
LT
3440{
3441 char *this_char, *value, *rest;
49cd0a5c 3442 struct mempolicy *mpol = NULL;
8751e039
EB
3443 uid_t uid;
3444 gid_t gid;
1da177e4 3445
b00dc3ad
HD
3446 while (options != NULL) {
3447 this_char = options;
3448 for (;;) {
3449 /*
3450 * NUL-terminate this option: unfortunately,
3451 * mount options form a comma-separated list,
3452 * but mpol's nodelist may also contain commas.
3453 */
3454 options = strchr(options, ',');
3455 if (options == NULL)
3456 break;
3457 options++;
3458 if (!isdigit(*options)) {
3459 options[-1] = '\0';
3460 break;
3461 }
3462 }
1da177e4
LT
3463 if (!*this_char)
3464 continue;
3465 if ((value = strchr(this_char,'=')) != NULL) {
3466 *value++ = 0;
3467 } else {
1170532b
JP
3468 pr_err("tmpfs: No value for mount option '%s'\n",
3469 this_char);
49cd0a5c 3470 goto error;
1da177e4
LT
3471 }
3472
3473 if (!strcmp(this_char,"size")) {
3474 unsigned long long size;
3475 size = memparse(value,&rest);
3476 if (*rest == '%') {
3477 size <<= PAGE_SHIFT;
3478 size *= totalram_pages;
3479 do_div(size, 100);
3480 rest++;
3481 }
3482 if (*rest)
3483 goto bad_val;
680d794b 3484 sbinfo->max_blocks =
09cbfeaf 3485 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3486 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3487 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3488 if (*rest)
3489 goto bad_val;
3490 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3491 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3492 if (*rest)
3493 goto bad_val;
3494 } else if (!strcmp(this_char,"mode")) {
680d794b 3495 if (remount)
1da177e4 3496 continue;
680d794b 3497 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3498 if (*rest)
3499 goto bad_val;
3500 } else if (!strcmp(this_char,"uid")) {
680d794b 3501 if (remount)
1da177e4 3502 continue;
8751e039 3503 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3504 if (*rest)
3505 goto bad_val;
8751e039
EB
3506 sbinfo->uid = make_kuid(current_user_ns(), uid);
3507 if (!uid_valid(sbinfo->uid))
3508 goto bad_val;
1da177e4 3509 } else if (!strcmp(this_char,"gid")) {
680d794b 3510 if (remount)
1da177e4 3511 continue;
8751e039 3512 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3513 if (*rest)
3514 goto bad_val;
8751e039
EB
3515 sbinfo->gid = make_kgid(current_user_ns(), gid);
3516 if (!gid_valid(sbinfo->gid))
3517 goto bad_val;
e496cf3d 3518#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3519 } else if (!strcmp(this_char, "huge")) {
3520 int huge;
3521 huge = shmem_parse_huge(value);
3522 if (huge < 0)
3523 goto bad_val;
3524 if (!has_transparent_hugepage() &&
3525 huge != SHMEM_HUGE_NEVER)
3526 goto bad_val;
3527 sbinfo->huge = huge;
3528#endif
3529#ifdef CONFIG_NUMA
7339ff83 3530 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3531 mpol_put(mpol);
3532 mpol = NULL;
3533 if (mpol_parse_str(value, &mpol))
7339ff83 3534 goto bad_val;
5a6e75f8 3535#endif
1da177e4 3536 } else {
1170532b 3537 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3538 goto error;
1da177e4
LT
3539 }
3540 }
49cd0a5c 3541 sbinfo->mpol = mpol;
1da177e4
LT
3542 return 0;
3543
3544bad_val:
1170532b 3545 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3546 value, this_char);
49cd0a5c
GT
3547error:
3548 mpol_put(mpol);
1da177e4
LT
3549 return 1;
3550
3551}
3552
3553static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3554{
3555 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3556 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3557 unsigned long inodes;
3558 int error = -EINVAL;
3559
5f00110f 3560 config.mpol = NULL;
680d794b 3561 if (shmem_parse_options(data, &config, true))
0edd73b3 3562 return error;
1da177e4 3563
0edd73b3 3564 spin_lock(&sbinfo->stat_lock);
0edd73b3 3565 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3566 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3567 goto out;
680d794b 3568 if (config.max_inodes < inodes)
0edd73b3
HD
3569 goto out;
3570 /*
54af6042 3571 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3572 * but we must separately disallow unlimited->limited, because
3573 * in that case we have no record of how much is already in use.
3574 */
680d794b 3575 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3576 goto out;
680d794b 3577 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3578 goto out;
3579
3580 error = 0;
5a6e75f8 3581 sbinfo->huge = config.huge;
680d794b 3582 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3583 sbinfo->max_inodes = config.max_inodes;
3584 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3585
5f00110f
GT
3586 /*
3587 * Preserve previous mempolicy unless mpol remount option was specified.
3588 */
3589 if (config.mpol) {
3590 mpol_put(sbinfo->mpol);
3591 sbinfo->mpol = config.mpol; /* transfers initial ref */
3592 }
0edd73b3
HD
3593out:
3594 spin_unlock(&sbinfo->stat_lock);
3595 return error;
1da177e4 3596}
680d794b 3597
34c80b1d 3598static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3599{
34c80b1d 3600 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3601
3602 if (sbinfo->max_blocks != shmem_default_max_blocks())
3603 seq_printf(seq, ",size=%luk",
09cbfeaf 3604 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3605 if (sbinfo->max_inodes != shmem_default_max_inodes())
3606 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3607 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3608 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3609 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3610 seq_printf(seq, ",uid=%u",
3611 from_kuid_munged(&init_user_ns, sbinfo->uid));
3612 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3613 seq_printf(seq, ",gid=%u",
3614 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3615#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3616 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3617 if (sbinfo->huge)
3618 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3619#endif
71fe804b 3620 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3621 return 0;
3622}
9183df25
DH
3623
3624#define MFD_NAME_PREFIX "memfd:"
3625#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3626#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3627
3628#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3629
3630SYSCALL_DEFINE2(memfd_create,
3631 const char __user *, uname,
3632 unsigned int, flags)
3633{
3634 struct shmem_inode_info *info;
3635 struct file *file;
3636 int fd, error;
3637 char *name;
3638 long len;
3639
3640 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3641 return -EINVAL;
3642
3643 /* length includes terminating zero */
3644 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3645 if (len <= 0)
3646 return -EFAULT;
3647 if (len > MFD_NAME_MAX_LEN + 1)
3648 return -EINVAL;
3649
3650 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3651 if (!name)
3652 return -ENOMEM;
3653
3654 strcpy(name, MFD_NAME_PREFIX);
3655 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3656 error = -EFAULT;
3657 goto err_name;
3658 }
3659
3660 /* terminating-zero may have changed after strnlen_user() returned */
3661 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3662 error = -EFAULT;
3663 goto err_name;
3664 }
3665
3666 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3667 if (fd < 0) {
3668 error = fd;
3669 goto err_name;
3670 }
3671
3672 file = shmem_file_setup(name, 0, VM_NORESERVE);
3673 if (IS_ERR(file)) {
3674 error = PTR_ERR(file);
3675 goto err_fd;
3676 }
3677 info = SHMEM_I(file_inode(file));
3678 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3679 file->f_flags |= O_RDWR | O_LARGEFILE;
3680 if (flags & MFD_ALLOW_SEALING)
3681 info->seals &= ~F_SEAL_SEAL;
3682
3683 fd_install(fd, file);
3684 kfree(name);
3685 return fd;
3686
3687err_fd:
3688 put_unused_fd(fd);
3689err_name:
3690 kfree(name);
3691 return error;
3692}
3693
680d794b 3694#endif /* CONFIG_TMPFS */
1da177e4
LT
3695
3696static void shmem_put_super(struct super_block *sb)
3697{
602586a8
HD
3698 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3699
3700 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3701 mpol_put(sbinfo->mpol);
602586a8 3702 kfree(sbinfo);
1da177e4
LT
3703 sb->s_fs_info = NULL;
3704}
3705
2b2af54a 3706int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3707{
3708 struct inode *inode;
0edd73b3 3709 struct shmem_sb_info *sbinfo;
680d794b
AM
3710 int err = -ENOMEM;
3711
3712 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3713 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3714 L1_CACHE_BYTES), GFP_KERNEL);
3715 if (!sbinfo)
3716 return -ENOMEM;
3717
680d794b 3718 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3719 sbinfo->uid = current_fsuid();
3720 sbinfo->gid = current_fsgid();
680d794b 3721 sb->s_fs_info = sbinfo;
1da177e4 3722
0edd73b3 3723#ifdef CONFIG_TMPFS
1da177e4
LT
3724 /*
3725 * Per default we only allow half of the physical ram per
3726 * tmpfs instance, limiting inodes to one per page of lowmem;
3727 * but the internal instance is left unlimited.
3728 */
ca4e0519 3729 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3730 sbinfo->max_blocks = shmem_default_max_blocks();
3731 sbinfo->max_inodes = shmem_default_max_inodes();
3732 if (shmem_parse_options(data, sbinfo, false)) {
3733 err = -EINVAL;
3734 goto failed;
3735 }
ca4e0519
AV
3736 } else {
3737 sb->s_flags |= MS_NOUSER;
1da177e4 3738 }
91828a40 3739 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3740 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3741#else
3742 sb->s_flags |= MS_NOUSER;
3743#endif
3744
0edd73b3 3745 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3746 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3747 goto failed;
680d794b 3748 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3749 spin_lock_init(&sbinfo->shrinklist_lock);
3750 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3751
285b2c4f 3752 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3753 sb->s_blocksize = PAGE_SIZE;
3754 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3755 sb->s_magic = TMPFS_MAGIC;
3756 sb->s_op = &shmem_ops;
cfd95a9c 3757 sb->s_time_gran = 1;
b09e0fa4 3758#ifdef CONFIG_TMPFS_XATTR
39f0247d 3759 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3760#endif
3761#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3762 sb->s_flags |= MS_POSIXACL;
3763#endif
0edd73b3 3764
454abafe 3765 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3766 if (!inode)
3767 goto failed;
680d794b
AM
3768 inode->i_uid = sbinfo->uid;
3769 inode->i_gid = sbinfo->gid;
318ceed0
AV
3770 sb->s_root = d_make_root(inode);
3771 if (!sb->s_root)
48fde701 3772 goto failed;
1da177e4
LT
3773 return 0;
3774
1da177e4
LT
3775failed:
3776 shmem_put_super(sb);
3777 return err;
3778}
3779
fcc234f8 3780static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3781
3782static struct inode *shmem_alloc_inode(struct super_block *sb)
3783{
41ffe5d5
HD
3784 struct shmem_inode_info *info;
3785 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3786 if (!info)
1da177e4 3787 return NULL;
41ffe5d5 3788 return &info->vfs_inode;
1da177e4
LT
3789}
3790
41ffe5d5 3791static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3792{
3793 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3794 if (S_ISLNK(inode->i_mode))
3795 kfree(inode->i_link);
fa0d7e3d
NP
3796 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3797}
3798
1da177e4
LT
3799static void shmem_destroy_inode(struct inode *inode)
3800{
09208d15 3801 if (S_ISREG(inode->i_mode))
1da177e4 3802 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3803 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3804}
3805
41ffe5d5 3806static void shmem_init_inode(void *foo)
1da177e4 3807{
41ffe5d5
HD
3808 struct shmem_inode_info *info = foo;
3809 inode_init_once(&info->vfs_inode);
1da177e4
LT
3810}
3811
41ffe5d5 3812static int shmem_init_inodecache(void)
1da177e4
LT
3813{
3814 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3815 sizeof(struct shmem_inode_info),
5d097056 3816 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3817 return 0;
3818}
3819
41ffe5d5 3820static void shmem_destroy_inodecache(void)
1da177e4 3821{
1a1d92c1 3822 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3823}
3824
f5e54d6e 3825static const struct address_space_operations shmem_aops = {
1da177e4 3826 .writepage = shmem_writepage,
76719325 3827 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3828#ifdef CONFIG_TMPFS
800d15a5
NP
3829 .write_begin = shmem_write_begin,
3830 .write_end = shmem_write_end,
1da177e4 3831#endif
1c93923c 3832#ifdef CONFIG_MIGRATION
304dbdb7 3833 .migratepage = migrate_page,
1c93923c 3834#endif
aa261f54 3835 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3836};
3837
15ad7cdc 3838static const struct file_operations shmem_file_operations = {
1da177e4 3839 .mmap = shmem_mmap,
c01d5b30 3840 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3841#ifdef CONFIG_TMPFS
220f2ac9 3842 .llseek = shmem_file_llseek,
2ba5bbed 3843 .read_iter = shmem_file_read_iter,
8174202b 3844 .write_iter = generic_file_write_iter,
1b061d92 3845 .fsync = noop_fsync,
82c156f8 3846 .splice_read = generic_file_splice_read,
f6cb85d0 3847 .splice_write = iter_file_splice_write,
83e4fa9c 3848 .fallocate = shmem_fallocate,
1da177e4
LT
3849#endif
3850};
3851
92e1d5be 3852static const struct inode_operations shmem_inode_operations = {
44a30220 3853 .getattr = shmem_getattr,
94c1e62d 3854 .setattr = shmem_setattr,
b09e0fa4 3855#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3856 .listxattr = shmem_listxattr,
feda821e 3857 .set_acl = simple_set_acl,
b09e0fa4 3858#endif
1da177e4
LT
3859};
3860
92e1d5be 3861static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3862#ifdef CONFIG_TMPFS
3863 .create = shmem_create,
3864 .lookup = simple_lookup,
3865 .link = shmem_link,
3866 .unlink = shmem_unlink,
3867 .symlink = shmem_symlink,
3868 .mkdir = shmem_mkdir,
3869 .rmdir = shmem_rmdir,
3870 .mknod = shmem_mknod,
2773bf00 3871 .rename = shmem_rename2,
60545d0d 3872 .tmpfile = shmem_tmpfile,
1da177e4 3873#endif
b09e0fa4 3874#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3875 .listxattr = shmem_listxattr,
b09e0fa4 3876#endif
39f0247d 3877#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3878 .setattr = shmem_setattr,
feda821e 3879 .set_acl = simple_set_acl,
39f0247d
AG
3880#endif
3881};
3882
92e1d5be 3883static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3884#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3885 .listxattr = shmem_listxattr,
b09e0fa4 3886#endif
39f0247d 3887#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3888 .setattr = shmem_setattr,
feda821e 3889 .set_acl = simple_set_acl,
39f0247d 3890#endif
1da177e4
LT
3891};
3892
759b9775 3893static const struct super_operations shmem_ops = {
1da177e4
LT
3894 .alloc_inode = shmem_alloc_inode,
3895 .destroy_inode = shmem_destroy_inode,
3896#ifdef CONFIG_TMPFS
3897 .statfs = shmem_statfs,
3898 .remount_fs = shmem_remount_fs,
680d794b 3899 .show_options = shmem_show_options,
1da177e4 3900#endif
1f895f75 3901 .evict_inode = shmem_evict_inode,
1da177e4
LT
3902 .drop_inode = generic_delete_inode,
3903 .put_super = shmem_put_super,
779750d2
KS
3904#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3905 .nr_cached_objects = shmem_unused_huge_count,
3906 .free_cached_objects = shmem_unused_huge_scan,
3907#endif
1da177e4
LT
3908};
3909
f0f37e2f 3910static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3911 .fault = shmem_fault,
d7c17551 3912 .map_pages = filemap_map_pages,
1da177e4
LT
3913#ifdef CONFIG_NUMA
3914 .set_policy = shmem_set_policy,
3915 .get_policy = shmem_get_policy,
3916#endif
3917};
3918
3c26ff6e
AV
3919static struct dentry *shmem_mount(struct file_system_type *fs_type,
3920 int flags, const char *dev_name, void *data)
1da177e4 3921{
3c26ff6e 3922 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3923}
3924
41ffe5d5 3925static struct file_system_type shmem_fs_type = {
1da177e4
LT
3926 .owner = THIS_MODULE,
3927 .name = "tmpfs",
3c26ff6e 3928 .mount = shmem_mount,
1da177e4 3929 .kill_sb = kill_litter_super,
2b8576cb 3930 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3931};
1da177e4 3932
41ffe5d5 3933int __init shmem_init(void)
1da177e4
LT
3934{
3935 int error;
3936
16203a7a
RL
3937 /* If rootfs called this, don't re-init */
3938 if (shmem_inode_cachep)
3939 return 0;
3940
41ffe5d5 3941 error = shmem_init_inodecache();
1da177e4
LT
3942 if (error)
3943 goto out3;
3944
41ffe5d5 3945 error = register_filesystem(&shmem_fs_type);
1da177e4 3946 if (error) {
1170532b 3947 pr_err("Could not register tmpfs\n");
1da177e4
LT
3948 goto out2;
3949 }
95dc112a 3950
ca4e0519 3951 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3952 if (IS_ERR(shm_mnt)) {
3953 error = PTR_ERR(shm_mnt);
1170532b 3954 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3955 goto out1;
3956 }
5a6e75f8 3957
e496cf3d 3958#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3959 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3960 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3961 else
3962 shmem_huge = 0; /* just in case it was patched */
3963#endif
1da177e4
LT
3964 return 0;
3965
3966out1:
41ffe5d5 3967 unregister_filesystem(&shmem_fs_type);
1da177e4 3968out2:
41ffe5d5 3969 shmem_destroy_inodecache();
1da177e4
LT
3970out3:
3971 shm_mnt = ERR_PTR(error);
3972 return error;
3973}
853ac43a 3974
e496cf3d 3975#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3976static ssize_t shmem_enabled_show(struct kobject *kobj,
3977 struct kobj_attribute *attr, char *buf)
3978{
3979 int values[] = {
3980 SHMEM_HUGE_ALWAYS,
3981 SHMEM_HUGE_WITHIN_SIZE,
3982 SHMEM_HUGE_ADVISE,
3983 SHMEM_HUGE_NEVER,
3984 SHMEM_HUGE_DENY,
3985 SHMEM_HUGE_FORCE,
3986 };
3987 int i, count;
3988
3989 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3990 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3991
3992 count += sprintf(buf + count, fmt,
3993 shmem_format_huge(values[i]));
3994 }
3995 buf[count - 1] = '\n';
3996 return count;
3997}
3998
3999static ssize_t shmem_enabled_store(struct kobject *kobj,
4000 struct kobj_attribute *attr, const char *buf, size_t count)
4001{
4002 char tmp[16];
4003 int huge;
4004
4005 if (count + 1 > sizeof(tmp))
4006 return -EINVAL;
4007 memcpy(tmp, buf, count);
4008 tmp[count] = '\0';
4009 if (count && tmp[count - 1] == '\n')
4010 tmp[count - 1] = '\0';
4011
4012 huge = shmem_parse_huge(tmp);
4013 if (huge == -EINVAL)
4014 return -EINVAL;
4015 if (!has_transparent_hugepage() &&
4016 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4017 return -EINVAL;
4018
4019 shmem_huge = huge;
4020 if (shmem_huge < SHMEM_HUGE_DENY)
4021 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4022 return count;
4023}
4024
4025struct kobj_attribute shmem_enabled_attr =
4026 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4027#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4028
3b33719c 4029#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4030bool shmem_huge_enabled(struct vm_area_struct *vma)
4031{
4032 struct inode *inode = file_inode(vma->vm_file);
4033 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4034 loff_t i_size;
4035 pgoff_t off;
4036
4037 if (shmem_huge == SHMEM_HUGE_FORCE)
4038 return true;
4039 if (shmem_huge == SHMEM_HUGE_DENY)
4040 return false;
4041 switch (sbinfo->huge) {
4042 case SHMEM_HUGE_NEVER:
4043 return false;
4044 case SHMEM_HUGE_ALWAYS:
4045 return true;
4046 case SHMEM_HUGE_WITHIN_SIZE:
4047 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4048 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4049 if (i_size >= HPAGE_PMD_SIZE &&
4050 i_size >> PAGE_SHIFT >= off)
4051 return true;
4052 case SHMEM_HUGE_ADVISE:
4053 /* TODO: implement fadvise() hints */
4054 return (vma->vm_flags & VM_HUGEPAGE);
4055 default:
4056 VM_BUG_ON(1);
4057 return false;
4058 }
4059}
3b33719c 4060#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4061
853ac43a
MM
4062#else /* !CONFIG_SHMEM */
4063
4064/*
4065 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4066 *
4067 * This is intended for small system where the benefits of the full
4068 * shmem code (swap-backed and resource-limited) are outweighed by
4069 * their complexity. On systems without swap this code should be
4070 * effectively equivalent, but much lighter weight.
4071 */
4072
41ffe5d5 4073static struct file_system_type shmem_fs_type = {
853ac43a 4074 .name = "tmpfs",
3c26ff6e 4075 .mount = ramfs_mount,
853ac43a 4076 .kill_sb = kill_litter_super,
2b8576cb 4077 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4078};
4079
41ffe5d5 4080int __init shmem_init(void)
853ac43a 4081{
41ffe5d5 4082 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4083
41ffe5d5 4084 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4085 BUG_ON(IS_ERR(shm_mnt));
4086
4087 return 0;
4088}
4089
41ffe5d5 4090int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4091{
4092 return 0;
4093}
4094
3f96b79a
HD
4095int shmem_lock(struct file *file, int lock, struct user_struct *user)
4096{
4097 return 0;
4098}
4099
24513264
HD
4100void shmem_unlock_mapping(struct address_space *mapping)
4101{
4102}
4103
c01d5b30
HD
4104#ifdef CONFIG_MMU
4105unsigned long shmem_get_unmapped_area(struct file *file,
4106 unsigned long addr, unsigned long len,
4107 unsigned long pgoff, unsigned long flags)
4108{
4109 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4110}
4111#endif
4112
41ffe5d5 4113void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4114{
41ffe5d5 4115 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4116}
4117EXPORT_SYMBOL_GPL(shmem_truncate_range);
4118
0b0a0806
HD
4119#define shmem_vm_ops generic_file_vm_ops
4120#define shmem_file_operations ramfs_file_operations
454abafe 4121#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4122#define shmem_acct_size(flags, size) 0
4123#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4124
4125#endif /* CONFIG_SHMEM */
4126
4127/* common code */
1da177e4 4128
19938e35 4129static const struct dentry_operations anon_ops = {
118b2302 4130 .d_dname = simple_dname
3451538a
AV
4131};
4132
c7277090
EP
4133static struct file *__shmem_file_setup(const char *name, loff_t size,
4134 unsigned long flags, unsigned int i_flags)
1da177e4 4135{
6b4d0b27 4136 struct file *res;
1da177e4 4137 struct inode *inode;
2c48b9c4 4138 struct path path;
3451538a 4139 struct super_block *sb;
1da177e4
LT
4140 struct qstr this;
4141
4142 if (IS_ERR(shm_mnt))
6b4d0b27 4143 return ERR_CAST(shm_mnt);
1da177e4 4144
285b2c4f 4145 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4146 return ERR_PTR(-EINVAL);
4147
4148 if (shmem_acct_size(flags, size))
4149 return ERR_PTR(-ENOMEM);
4150
6b4d0b27 4151 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4152 this.name = name;
4153 this.len = strlen(name);
4154 this.hash = 0; /* will go */
3451538a 4155 sb = shm_mnt->mnt_sb;
66ee4b88 4156 path.mnt = mntget(shm_mnt);
3451538a 4157 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4158 if (!path.dentry)
1da177e4 4159 goto put_memory;
3451538a 4160 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4161
6b4d0b27 4162 res = ERR_PTR(-ENOSPC);
3451538a 4163 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4164 if (!inode)
66ee4b88 4165 goto put_memory;
1da177e4 4166
c7277090 4167 inode->i_flags |= i_flags;
2c48b9c4 4168 d_instantiate(path.dentry, inode);
1da177e4 4169 inode->i_size = size;
6d6b77f1 4170 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4171 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4172 if (IS_ERR(res))
66ee4b88 4173 goto put_path;
4b42af81 4174
6b4d0b27 4175 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4176 &shmem_file_operations);
6b4d0b27 4177 if (IS_ERR(res))
66ee4b88 4178 goto put_path;
4b42af81 4179
6b4d0b27 4180 return res;
1da177e4 4181
1da177e4
LT
4182put_memory:
4183 shmem_unacct_size(flags, size);
66ee4b88
KK
4184put_path:
4185 path_put(&path);
6b4d0b27 4186 return res;
1da177e4 4187}
c7277090
EP
4188
4189/**
4190 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4191 * kernel internal. There will be NO LSM permission checks against the
4192 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4193 * higher layer. The users are the big_key and shm implementations. LSM
4194 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4195 * @name: name for dentry (to be seen in /proc/<pid>/maps
4196 * @size: size to be set for the file
4197 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4198 */
4199struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4200{
4201 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4202}
4203
4204/**
4205 * shmem_file_setup - get an unlinked file living in tmpfs
4206 * @name: name for dentry (to be seen in /proc/<pid>/maps
4207 * @size: size to be set for the file
4208 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4209 */
4210struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4211{
4212 return __shmem_file_setup(name, size, flags, 0);
4213}
395e0ddc 4214EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4215
46711810 4216/**
1da177e4 4217 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4218 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4219 */
4220int shmem_zero_setup(struct vm_area_struct *vma)
4221{
4222 struct file *file;
4223 loff_t size = vma->vm_end - vma->vm_start;
4224
66fc1303
HD
4225 /*
4226 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4227 * between XFS directory reading and selinux: since this file is only
4228 * accessible to the user through its mapping, use S_PRIVATE flag to
4229 * bypass file security, in the same way as shmem_kernel_file_setup().
4230 */
4231 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4232 if (IS_ERR(file))
4233 return PTR_ERR(file);
4234
4235 if (vma->vm_file)
4236 fput(vma->vm_file);
4237 vma->vm_file = file;
4238 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4239
e496cf3d 4240 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4241 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4242 (vma->vm_end & HPAGE_PMD_MASK)) {
4243 khugepaged_enter(vma, vma->vm_flags);
4244 }
4245
1da177e4
LT
4246 return 0;
4247}
d9d90e5e
HD
4248
4249/**
4250 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4251 * @mapping: the page's address_space
4252 * @index: the page index
4253 * @gfp: the page allocator flags to use if allocating
4254 *
4255 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4256 * with any new page allocations done using the specified allocation flags.
4257 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4258 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4259 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4260 *
68da9f05
HD
4261 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4262 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4263 */
4264struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4265 pgoff_t index, gfp_t gfp)
4266{
68da9f05
HD
4267#ifdef CONFIG_SHMEM
4268 struct inode *inode = mapping->host;
9276aad6 4269 struct page *page;
68da9f05
HD
4270 int error;
4271
4272 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4273 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4274 gfp, NULL, NULL, NULL);
68da9f05
HD
4275 if (error)
4276 page = ERR_PTR(error);
4277 else
4278 unlock_page(page);
4279 return page;
4280#else
4281 /*
4282 * The tiny !SHMEM case uses ramfs without swap
4283 */
d9d90e5e 4284 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4285#endif
d9d90e5e
HD
4286}
4287EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);