]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/shmem.c
userfaultfd: shmem: lock the page before adding it to pagecache
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
f3f0e1d2 35#include <linux/khugepaged.h>
853ac43a 36
95cc09d6
AA
37#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
38
853ac43a
MM
39static struct vfsmount *shm_mnt;
40
41#ifdef CONFIG_SHMEM
1da177e4
LT
42/*
43 * This virtual memory filesystem is heavily based on the ramfs. It
44 * extends ramfs by the ability to use swap and honor resource limits
45 * which makes it a completely usable filesystem.
46 */
47
39f0247d 48#include <linux/xattr.h>
a5694255 49#include <linux/exportfs.h>
1c7c474c 50#include <linux/posix_acl.h>
feda821e 51#include <linux/posix_acl_xattr.h>
1da177e4 52#include <linux/mman.h>
1da177e4
LT
53#include <linux/string.h>
54#include <linux/slab.h>
55#include <linux/backing-dev.h>
56#include <linux/shmem_fs.h>
1da177e4 57#include <linux/writeback.h>
1da177e4 58#include <linux/blkdev.h>
bda97eab 59#include <linux/pagevec.h>
41ffe5d5 60#include <linux/percpu_counter.h>
83e4fa9c 61#include <linux/falloc.h>
708e3508 62#include <linux/splice.h>
1da177e4
LT
63#include <linux/security.h>
64#include <linux/swapops.h>
65#include <linux/mempolicy.h>
66#include <linux/namei.h>
b00dc3ad 67#include <linux/ctype.h>
304dbdb7 68#include <linux/migrate.h>
c1f60a5a 69#include <linux/highmem.h>
680d794b 70#include <linux/seq_file.h>
92562927 71#include <linux/magic.h>
9183df25 72#include <linux/syscalls.h>
40e041a2 73#include <linux/fcntl.h>
9183df25 74#include <uapi/linux/memfd.h>
cfda0526 75#include <linux/userfaultfd_k.h>
4c27fe4c 76#include <linux/rmap.h>
304dbdb7 77
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/pgtable.h>
80
dd56b046
MG
81#include "internal.h"
82
09cbfeaf
KS
83#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
84#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 85
1da177e4
LT
86/* Pretend that each entry is of this size in directory's i_size */
87#define BOGO_DIRENT_SIZE 20
88
69f07ec9
HD
89/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
90#define SHORT_SYMLINK_LEN 128
91
1aac1400 92/*
f00cdc6d
HD
93 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
94 * inode->i_private (with i_mutex making sure that it has only one user at
95 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
96 */
97struct shmem_falloc {
8e205f77 98 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
99 pgoff_t start; /* start of range currently being fallocated */
100 pgoff_t next; /* the next page offset to be fallocated */
101 pgoff_t nr_falloced; /* how many new pages have been fallocated */
102 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
103};
104
b76db735 105#ifdef CONFIG_TMPFS
680d794b
AM
106static unsigned long shmem_default_max_blocks(void)
107{
108 return totalram_pages / 2;
109}
110
111static unsigned long shmem_default_max_inodes(void)
112{
113 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
114}
b76db735 115#endif
680d794b 116
bde05d1c
HD
117static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
118static int shmem_replace_page(struct page **pagep, gfp_t gfp,
119 struct shmem_inode_info *info, pgoff_t index);
68da9f05 120static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 121 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
122 gfp_t gfp, struct vm_area_struct *vma,
123 struct vm_fault *vmf, int *fault_type);
68da9f05 124
f3f0e1d2 125int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 126 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
127{
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 129 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 130}
1da177e4 131
1da177e4
LT
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134 return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
0b0a0806 145 return (flags & VM_NORESERVE) ?
191c5424 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
0b0a0806 151 if (!(flags & VM_NORESERVE))
1da177e4
LT
152 vm_unacct_memory(VM_ACCT(size));
153}
154
77142517
KK
155static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157{
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166}
167
1da177e4
LT
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
75edd345 170 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
800d8c63 174static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 175{
800d8c63
KS
176 if (!(flags & VM_NORESERVE))
177 return 0;
178
179 return security_vm_enough_memory_mm(current->mm,
180 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
181}
182
183static inline void shmem_unacct_blocks(unsigned long flags, long pages)
184{
0b0a0806 185 if (flags & VM_NORESERVE)
09cbfeaf 186 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
187}
188
759b9775 189static const struct super_operations shmem_ops;
f5e54d6e 190static const struct address_space_operations shmem_aops;
15ad7cdc 191static const struct file_operations shmem_file_operations;
92e1d5be
AV
192static const struct inode_operations shmem_inode_operations;
193static const struct inode_operations shmem_dir_inode_operations;
194static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 195static const struct vm_operations_struct shmem_vm_ops;
779750d2 196static struct file_system_type shmem_fs_type;
1da177e4 197
b0506e48
MR
198bool vma_is_shmem(struct vm_area_struct *vma)
199{
200 return vma->vm_ops == &shmem_vm_ops;
201}
202
1da177e4 203static LIST_HEAD(shmem_swaplist);
cb5f7b9a 204static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 205
5b04c689
PE
206static int shmem_reserve_inode(struct super_block *sb)
207{
208 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
209 if (sbinfo->max_inodes) {
210 spin_lock(&sbinfo->stat_lock);
211 if (!sbinfo->free_inodes) {
212 spin_unlock(&sbinfo->stat_lock);
213 return -ENOSPC;
214 }
215 sbinfo->free_inodes--;
216 spin_unlock(&sbinfo->stat_lock);
217 }
218 return 0;
219}
220
221static void shmem_free_inode(struct super_block *sb)
222{
223 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
224 if (sbinfo->max_inodes) {
225 spin_lock(&sbinfo->stat_lock);
226 sbinfo->free_inodes++;
227 spin_unlock(&sbinfo->stat_lock);
228 }
229}
230
46711810 231/**
41ffe5d5 232 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
233 * @inode: inode to recalc
234 *
235 * We have to calculate the free blocks since the mm can drop
236 * undirtied hole pages behind our back.
237 *
238 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
239 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
240 *
241 * It has to be called with the spinlock held.
242 */
243static void shmem_recalc_inode(struct inode *inode)
244{
245 struct shmem_inode_info *info = SHMEM_I(inode);
246 long freed;
247
248 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
249 if (freed > 0) {
54af6042
HD
250 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
251 if (sbinfo->max_blocks)
252 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 253 info->alloced -= freed;
54af6042 254 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 255 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
256 }
257}
258
800d8c63
KS
259bool shmem_charge(struct inode *inode, long pages)
260{
261 struct shmem_inode_info *info = SHMEM_I(inode);
262 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 263 unsigned long flags;
800d8c63
KS
264
265 if (shmem_acct_block(info->flags, pages))
266 return false;
4595ef88 267 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
268 info->alloced += pages;
269 inode->i_blocks += pages * BLOCKS_PER_PAGE;
270 shmem_recalc_inode(inode);
4595ef88 271 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
272 inode->i_mapping->nrpages += pages;
273
274 if (!sbinfo->max_blocks)
275 return true;
276 if (percpu_counter_compare(&sbinfo->used_blocks,
277 sbinfo->max_blocks - pages) > 0) {
278 inode->i_mapping->nrpages -= pages;
4595ef88 279 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
280 info->alloced -= pages;
281 shmem_recalc_inode(inode);
4595ef88 282 spin_unlock_irqrestore(&info->lock, flags);
71664665 283 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
284 return false;
285 }
286 percpu_counter_add(&sbinfo->used_blocks, pages);
287 return true;
288}
289
290void shmem_uncharge(struct inode *inode, long pages)
291{
292 struct shmem_inode_info *info = SHMEM_I(inode);
293 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 294 unsigned long flags;
800d8c63 295
4595ef88 296 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
297 info->alloced -= pages;
298 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
299 shmem_recalc_inode(inode);
4595ef88 300 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
301
302 if (sbinfo->max_blocks)
303 percpu_counter_sub(&sbinfo->used_blocks, pages);
71664665 304 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
305}
306
7a5d0fbb
HD
307/*
308 * Replace item expected in radix tree by a new item, while holding tree lock.
309 */
310static int shmem_radix_tree_replace(struct address_space *mapping,
311 pgoff_t index, void *expected, void *replacement)
312{
f7942430 313 struct radix_tree_node *node;
7a5d0fbb 314 void **pslot;
6dbaf22c 315 void *item;
7a5d0fbb
HD
316
317 VM_BUG_ON(!expected);
6dbaf22c 318 VM_BUG_ON(!replacement);
f7942430
JW
319 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
320 if (!item)
6dbaf22c 321 return -ENOENT;
7a5d0fbb
HD
322 if (item != expected)
323 return -ENOENT;
4d693d08
JW
324 __radix_tree_replace(&mapping->page_tree, node, pslot,
325 replacement, NULL, NULL);
7a5d0fbb
HD
326 return 0;
327}
328
d1899228
HD
329/*
330 * Sometimes, before we decide whether to proceed or to fail, we must check
331 * that an entry was not already brought back from swap by a racing thread.
332 *
333 * Checking page is not enough: by the time a SwapCache page is locked, it
334 * might be reused, and again be SwapCache, using the same swap as before.
335 */
336static bool shmem_confirm_swap(struct address_space *mapping,
337 pgoff_t index, swp_entry_t swap)
338{
339 void *item;
340
341 rcu_read_lock();
342 item = radix_tree_lookup(&mapping->page_tree, index);
343 rcu_read_unlock();
344 return item == swp_to_radix_entry(swap);
345}
346
5a6e75f8
KS
347/*
348 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
349 *
350 * SHMEM_HUGE_NEVER:
351 * disables huge pages for the mount;
352 * SHMEM_HUGE_ALWAYS:
353 * enables huge pages for the mount;
354 * SHMEM_HUGE_WITHIN_SIZE:
355 * only allocate huge pages if the page will be fully within i_size,
356 * also respect fadvise()/madvise() hints;
357 * SHMEM_HUGE_ADVISE:
358 * only allocate huge pages if requested with fadvise()/madvise();
359 */
360
361#define SHMEM_HUGE_NEVER 0
362#define SHMEM_HUGE_ALWAYS 1
363#define SHMEM_HUGE_WITHIN_SIZE 2
364#define SHMEM_HUGE_ADVISE 3
365
366/*
367 * Special values.
368 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
369 *
370 * SHMEM_HUGE_DENY:
371 * disables huge on shm_mnt and all mounts, for emergency use;
372 * SHMEM_HUGE_FORCE:
373 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
374 *
375 */
376#define SHMEM_HUGE_DENY (-1)
377#define SHMEM_HUGE_FORCE (-2)
378
e496cf3d 379#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
380/* ifdef here to avoid bloating shmem.o when not necessary */
381
382int shmem_huge __read_mostly;
383
f1f5929c 384#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
385static int shmem_parse_huge(const char *str)
386{
387 if (!strcmp(str, "never"))
388 return SHMEM_HUGE_NEVER;
389 if (!strcmp(str, "always"))
390 return SHMEM_HUGE_ALWAYS;
391 if (!strcmp(str, "within_size"))
392 return SHMEM_HUGE_WITHIN_SIZE;
393 if (!strcmp(str, "advise"))
394 return SHMEM_HUGE_ADVISE;
395 if (!strcmp(str, "deny"))
396 return SHMEM_HUGE_DENY;
397 if (!strcmp(str, "force"))
398 return SHMEM_HUGE_FORCE;
399 return -EINVAL;
400}
401
402static const char *shmem_format_huge(int huge)
403{
404 switch (huge) {
405 case SHMEM_HUGE_NEVER:
406 return "never";
407 case SHMEM_HUGE_ALWAYS:
408 return "always";
409 case SHMEM_HUGE_WITHIN_SIZE:
410 return "within_size";
411 case SHMEM_HUGE_ADVISE:
412 return "advise";
413 case SHMEM_HUGE_DENY:
414 return "deny";
415 case SHMEM_HUGE_FORCE:
416 return "force";
417 default:
418 VM_BUG_ON(1);
419 return "bad_val";
420 }
421}
f1f5929c 422#endif
5a6e75f8 423
779750d2
KS
424static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
425 struct shrink_control *sc, unsigned long nr_to_split)
426{
427 LIST_HEAD(list), *pos, *next;
253fd0f0 428 LIST_HEAD(to_remove);
779750d2
KS
429 struct inode *inode;
430 struct shmem_inode_info *info;
431 struct page *page;
432 unsigned long batch = sc ? sc->nr_to_scan : 128;
433 int removed = 0, split = 0;
434
435 if (list_empty(&sbinfo->shrinklist))
436 return SHRINK_STOP;
437
438 spin_lock(&sbinfo->shrinklist_lock);
439 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
440 info = list_entry(pos, struct shmem_inode_info, shrinklist);
441
442 /* pin the inode */
443 inode = igrab(&info->vfs_inode);
444
445 /* inode is about to be evicted */
446 if (!inode) {
447 list_del_init(&info->shrinklist);
448 removed++;
449 goto next;
450 }
451
452 /* Check if there's anything to gain */
453 if (round_up(inode->i_size, PAGE_SIZE) ==
454 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 455 list_move(&info->shrinklist, &to_remove);
779750d2 456 removed++;
779750d2
KS
457 goto next;
458 }
459
460 list_move(&info->shrinklist, &list);
461next:
462 if (!--batch)
463 break;
464 }
465 spin_unlock(&sbinfo->shrinklist_lock);
466
253fd0f0
KS
467 list_for_each_safe(pos, next, &to_remove) {
468 info = list_entry(pos, struct shmem_inode_info, shrinklist);
469 inode = &info->vfs_inode;
470 list_del_init(&info->shrinklist);
471 iput(inode);
472 }
473
779750d2
KS
474 list_for_each_safe(pos, next, &list) {
475 int ret;
476
477 info = list_entry(pos, struct shmem_inode_info, shrinklist);
478 inode = &info->vfs_inode;
479
480 if (nr_to_split && split >= nr_to_split) {
481 iput(inode);
482 continue;
483 }
484
485 page = find_lock_page(inode->i_mapping,
486 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
487 if (!page)
488 goto drop;
489
490 if (!PageTransHuge(page)) {
491 unlock_page(page);
492 put_page(page);
493 goto drop;
494 }
495
496 ret = split_huge_page(page);
497 unlock_page(page);
498 put_page(page);
499
500 if (ret) {
501 /* split failed: leave it on the list */
502 iput(inode);
503 continue;
504 }
505
506 split++;
507drop:
508 list_del_init(&info->shrinklist);
509 removed++;
510 iput(inode);
511 }
512
513 spin_lock(&sbinfo->shrinklist_lock);
514 list_splice_tail(&list, &sbinfo->shrinklist);
515 sbinfo->shrinklist_len -= removed;
516 spin_unlock(&sbinfo->shrinklist_lock);
517
518 return split;
519}
520
521static long shmem_unused_huge_scan(struct super_block *sb,
522 struct shrink_control *sc)
523{
524 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
525
526 if (!READ_ONCE(sbinfo->shrinklist_len))
527 return SHRINK_STOP;
528
529 return shmem_unused_huge_shrink(sbinfo, sc, 0);
530}
531
532static long shmem_unused_huge_count(struct super_block *sb,
533 struct shrink_control *sc)
534{
535 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
536 return READ_ONCE(sbinfo->shrinklist_len);
537}
e496cf3d 538#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
539
540#define shmem_huge SHMEM_HUGE_DENY
541
779750d2
KS
542static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
543 struct shrink_control *sc, unsigned long nr_to_split)
544{
545 return 0;
546}
e496cf3d 547#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 548
46f65ec1
HD
549/*
550 * Like add_to_page_cache_locked, but error if expected item has gone.
551 */
552static int shmem_add_to_page_cache(struct page *page,
553 struct address_space *mapping,
fed400a1 554 pgoff_t index, void *expected)
46f65ec1 555{
800d8c63 556 int error, nr = hpage_nr_pages(page);
46f65ec1 557
800d8c63
KS
558 VM_BUG_ON_PAGE(PageTail(page), page);
559 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
560 VM_BUG_ON_PAGE(!PageLocked(page), page);
561 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 562 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 563
800d8c63 564 page_ref_add(page, nr);
b065b432
HD
565 page->mapping = mapping;
566 page->index = index;
567
568 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
569 if (PageTransHuge(page)) {
570 void __rcu **results;
571 pgoff_t idx;
572 int i;
573
574 error = 0;
575 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
576 &results, &idx, index, 1) &&
577 idx < index + HPAGE_PMD_NR) {
578 error = -EEXIST;
579 }
580
581 if (!error) {
582 for (i = 0; i < HPAGE_PMD_NR; i++) {
583 error = radix_tree_insert(&mapping->page_tree,
584 index + i, page + i);
585 VM_BUG_ON(error);
586 }
587 count_vm_event(THP_FILE_ALLOC);
588 }
589 } else if (!expected) {
b065b432 590 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 591 } else {
b065b432
HD
592 error = shmem_radix_tree_replace(mapping, index, expected,
593 page);
800d8c63
KS
594 }
595
46f65ec1 596 if (!error) {
800d8c63
KS
597 mapping->nrpages += nr;
598 if (PageTransHuge(page))
11fb9989
MG
599 __inc_node_page_state(page, NR_SHMEM_THPS);
600 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
601 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
602 spin_unlock_irq(&mapping->tree_lock);
603 } else {
604 page->mapping = NULL;
605 spin_unlock_irq(&mapping->tree_lock);
800d8c63 606 page_ref_sub(page, nr);
46f65ec1 607 }
46f65ec1
HD
608 return error;
609}
610
6922c0c7
HD
611/*
612 * Like delete_from_page_cache, but substitutes swap for page.
613 */
614static void shmem_delete_from_page_cache(struct page *page, void *radswap)
615{
616 struct address_space *mapping = page->mapping;
617 int error;
618
800d8c63
KS
619 VM_BUG_ON_PAGE(PageCompound(page), page);
620
6922c0c7
HD
621 spin_lock_irq(&mapping->tree_lock);
622 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
623 page->mapping = NULL;
624 mapping->nrpages--;
11fb9989
MG
625 __dec_node_page_state(page, NR_FILE_PAGES);
626 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 627 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 628 put_page(page);
6922c0c7
HD
629 BUG_ON(error);
630}
631
7a5d0fbb
HD
632/*
633 * Remove swap entry from radix tree, free the swap and its page cache.
634 */
635static int shmem_free_swap(struct address_space *mapping,
636 pgoff_t index, void *radswap)
637{
6dbaf22c 638 void *old;
7a5d0fbb
HD
639
640 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 641 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 642 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
643 if (old != radswap)
644 return -ENOENT;
645 free_swap_and_cache(radix_to_swp_entry(radswap));
646 return 0;
7a5d0fbb
HD
647}
648
6a15a370
VB
649/*
650 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 651 * given offsets are swapped out.
6a15a370
VB
652 *
653 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
654 * as long as the inode doesn't go away and racy results are not a problem.
655 */
48131e03
VB
656unsigned long shmem_partial_swap_usage(struct address_space *mapping,
657 pgoff_t start, pgoff_t end)
6a15a370 658{
6a15a370
VB
659 struct radix_tree_iter iter;
660 void **slot;
661 struct page *page;
48131e03 662 unsigned long swapped = 0;
6a15a370
VB
663
664 rcu_read_lock();
665
6a15a370
VB
666 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
667 if (iter.index >= end)
668 break;
669
670 page = radix_tree_deref_slot(slot);
671
2cf938aa
MW
672 if (radix_tree_deref_retry(page)) {
673 slot = radix_tree_iter_retry(&iter);
674 continue;
675 }
6a15a370
VB
676
677 if (radix_tree_exceptional_entry(page))
678 swapped++;
679
680 if (need_resched()) {
148deab2 681 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 682 cond_resched_rcu();
6a15a370
VB
683 }
684 }
685
686 rcu_read_unlock();
687
688 return swapped << PAGE_SHIFT;
689}
690
48131e03
VB
691/*
692 * Determine (in bytes) how many of the shmem object's pages mapped by the
693 * given vma is swapped out.
694 *
695 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
696 * as long as the inode doesn't go away and racy results are not a problem.
697 */
698unsigned long shmem_swap_usage(struct vm_area_struct *vma)
699{
700 struct inode *inode = file_inode(vma->vm_file);
701 struct shmem_inode_info *info = SHMEM_I(inode);
702 struct address_space *mapping = inode->i_mapping;
703 unsigned long swapped;
704
705 /* Be careful as we don't hold info->lock */
706 swapped = READ_ONCE(info->swapped);
707
708 /*
709 * The easier cases are when the shmem object has nothing in swap, or
710 * the vma maps it whole. Then we can simply use the stats that we
711 * already track.
712 */
713 if (!swapped)
714 return 0;
715
716 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
717 return swapped << PAGE_SHIFT;
718
719 /* Here comes the more involved part */
720 return shmem_partial_swap_usage(mapping,
721 linear_page_index(vma, vma->vm_start),
722 linear_page_index(vma, vma->vm_end));
723}
724
24513264
HD
725/*
726 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
727 */
728void shmem_unlock_mapping(struct address_space *mapping)
729{
730 struct pagevec pvec;
731 pgoff_t indices[PAGEVEC_SIZE];
732 pgoff_t index = 0;
733
734 pagevec_init(&pvec, 0);
735 /*
736 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
737 */
738 while (!mapping_unevictable(mapping)) {
739 /*
740 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
741 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
742 */
0cd6144a
JW
743 pvec.nr = find_get_entries(mapping, index,
744 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
745 if (!pvec.nr)
746 break;
747 index = indices[pvec.nr - 1] + 1;
0cd6144a 748 pagevec_remove_exceptionals(&pvec);
24513264
HD
749 check_move_unevictable_pages(pvec.pages, pvec.nr);
750 pagevec_release(&pvec);
751 cond_resched();
752 }
7a5d0fbb
HD
753}
754
755/*
756 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 757 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 758 */
1635f6a7
HD
759static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
760 bool unfalloc)
1da177e4 761{
285b2c4f 762 struct address_space *mapping = inode->i_mapping;
1da177e4 763 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
764 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
765 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
766 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
767 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 768 struct pagevec pvec;
7a5d0fbb
HD
769 pgoff_t indices[PAGEVEC_SIZE];
770 long nr_swaps_freed = 0;
285b2c4f 771 pgoff_t index;
bda97eab
HD
772 int i;
773
83e4fa9c
HD
774 if (lend == -1)
775 end = -1; /* unsigned, so actually very big */
bda97eab
HD
776
777 pagevec_init(&pvec, 0);
778 index = start;
83e4fa9c 779 while (index < end) {
0cd6144a
JW
780 pvec.nr = find_get_entries(mapping, index,
781 min(end - index, (pgoff_t)PAGEVEC_SIZE),
782 pvec.pages, indices);
7a5d0fbb
HD
783 if (!pvec.nr)
784 break;
bda97eab
HD
785 for (i = 0; i < pagevec_count(&pvec); i++) {
786 struct page *page = pvec.pages[i];
787
7a5d0fbb 788 index = indices[i];
83e4fa9c 789 if (index >= end)
bda97eab
HD
790 break;
791
7a5d0fbb 792 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
793 if (unfalloc)
794 continue;
7a5d0fbb
HD
795 nr_swaps_freed += !shmem_free_swap(mapping,
796 index, page);
bda97eab 797 continue;
7a5d0fbb
HD
798 }
799
800d8c63
KS
800 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
801
7a5d0fbb 802 if (!trylock_page(page))
bda97eab 803 continue;
800d8c63
KS
804
805 if (PageTransTail(page)) {
806 /* Middle of THP: zero out the page */
807 clear_highpage(page);
808 unlock_page(page);
809 continue;
810 } else if (PageTransHuge(page)) {
811 if (index == round_down(end, HPAGE_PMD_NR)) {
812 /*
813 * Range ends in the middle of THP:
814 * zero out the page
815 */
816 clear_highpage(page);
817 unlock_page(page);
818 continue;
819 }
820 index += HPAGE_PMD_NR - 1;
821 i += HPAGE_PMD_NR - 1;
822 }
823
1635f6a7 824 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
825 VM_BUG_ON_PAGE(PageTail(page), page);
826 if (page_mapping(page) == mapping) {
309381fe 827 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
828 truncate_inode_page(mapping, page);
829 }
bda97eab 830 }
bda97eab
HD
831 unlock_page(page);
832 }
0cd6144a 833 pagevec_remove_exceptionals(&pvec);
24513264 834 pagevec_release(&pvec);
bda97eab
HD
835 cond_resched();
836 index++;
837 }
1da177e4 838
83e4fa9c 839 if (partial_start) {
bda97eab 840 struct page *page = NULL;
9e18eb29 841 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 842 if (page) {
09cbfeaf 843 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
844 if (start > end) {
845 top = partial_end;
846 partial_end = 0;
847 }
848 zero_user_segment(page, partial_start, top);
849 set_page_dirty(page);
850 unlock_page(page);
09cbfeaf 851 put_page(page);
83e4fa9c
HD
852 }
853 }
854 if (partial_end) {
855 struct page *page = NULL;
9e18eb29 856 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
857 if (page) {
858 zero_user_segment(page, 0, partial_end);
bda97eab
HD
859 set_page_dirty(page);
860 unlock_page(page);
09cbfeaf 861 put_page(page);
bda97eab
HD
862 }
863 }
83e4fa9c
HD
864 if (start >= end)
865 return;
bda97eab
HD
866
867 index = start;
b1a36650 868 while (index < end) {
bda97eab 869 cond_resched();
0cd6144a
JW
870
871 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 872 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 873 pvec.pages, indices);
7a5d0fbb 874 if (!pvec.nr) {
b1a36650
HD
875 /* If all gone or hole-punch or unfalloc, we're done */
876 if (index == start || end != -1)
bda97eab 877 break;
b1a36650 878 /* But if truncating, restart to make sure all gone */
bda97eab
HD
879 index = start;
880 continue;
881 }
bda97eab
HD
882 for (i = 0; i < pagevec_count(&pvec); i++) {
883 struct page *page = pvec.pages[i];
884
7a5d0fbb 885 index = indices[i];
83e4fa9c 886 if (index >= end)
bda97eab
HD
887 break;
888
7a5d0fbb 889 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
890 if (unfalloc)
891 continue;
b1a36650
HD
892 if (shmem_free_swap(mapping, index, page)) {
893 /* Swap was replaced by page: retry */
894 index--;
895 break;
896 }
897 nr_swaps_freed++;
7a5d0fbb
HD
898 continue;
899 }
900
bda97eab 901 lock_page(page);
800d8c63
KS
902
903 if (PageTransTail(page)) {
904 /* Middle of THP: zero out the page */
905 clear_highpage(page);
906 unlock_page(page);
907 /*
908 * Partial thp truncate due 'start' in middle
909 * of THP: don't need to look on these pages
910 * again on !pvec.nr restart.
911 */
912 if (index != round_down(end, HPAGE_PMD_NR))
913 start++;
914 continue;
915 } else if (PageTransHuge(page)) {
916 if (index == round_down(end, HPAGE_PMD_NR)) {
917 /*
918 * Range ends in the middle of THP:
919 * zero out the page
920 */
921 clear_highpage(page);
922 unlock_page(page);
923 continue;
924 }
925 index += HPAGE_PMD_NR - 1;
926 i += HPAGE_PMD_NR - 1;
927 }
928
1635f6a7 929 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
930 VM_BUG_ON_PAGE(PageTail(page), page);
931 if (page_mapping(page) == mapping) {
309381fe 932 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 933 truncate_inode_page(mapping, page);
b1a36650
HD
934 } else {
935 /* Page was replaced by swap: retry */
936 unlock_page(page);
937 index--;
938 break;
1635f6a7 939 }
7a5d0fbb 940 }
bda97eab
HD
941 unlock_page(page);
942 }
0cd6144a 943 pagevec_remove_exceptionals(&pvec);
24513264 944 pagevec_release(&pvec);
bda97eab
HD
945 index++;
946 }
94c1e62d 947
4595ef88 948 spin_lock_irq(&info->lock);
7a5d0fbb 949 info->swapped -= nr_swaps_freed;
1da177e4 950 shmem_recalc_inode(inode);
4595ef88 951 spin_unlock_irq(&info->lock);
1635f6a7 952}
1da177e4 953
1635f6a7
HD
954void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
955{
956 shmem_undo_range(inode, lstart, lend, false);
078cd827 957 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 958}
94c1e62d 959EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 960
44a30220
YZ
961static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
962 struct kstat *stat)
963{
964 struct inode *inode = dentry->d_inode;
965 struct shmem_inode_info *info = SHMEM_I(inode);
966
d0424c42 967 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 968 spin_lock_irq(&info->lock);
d0424c42 969 shmem_recalc_inode(inode);
4595ef88 970 spin_unlock_irq(&info->lock);
d0424c42 971 }
44a30220 972 generic_fillattr(inode, stat);
44a30220
YZ
973 return 0;
974}
975
94c1e62d 976static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 977{
75c3cfa8 978 struct inode *inode = d_inode(dentry);
40e041a2 979 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 980 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
981 int error;
982
31051c85 983 error = setattr_prepare(dentry, attr);
db78b877
CH
984 if (error)
985 return error;
986
94c1e62d
HD
987 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
988 loff_t oldsize = inode->i_size;
989 loff_t newsize = attr->ia_size;
3889e6e7 990
40e041a2
DH
991 /* protected by i_mutex */
992 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
993 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
994 return -EPERM;
995
94c1e62d 996 if (newsize != oldsize) {
77142517
KK
997 error = shmem_reacct_size(SHMEM_I(inode)->flags,
998 oldsize, newsize);
999 if (error)
1000 return error;
94c1e62d 1001 i_size_write(inode, newsize);
078cd827 1002 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1003 }
afa2db2f 1004 if (newsize <= oldsize) {
94c1e62d 1005 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1006 if (oldsize > holebegin)
1007 unmap_mapping_range(inode->i_mapping,
1008 holebegin, 0, 1);
1009 if (info->alloced)
1010 shmem_truncate_range(inode,
1011 newsize, (loff_t)-1);
94c1e62d 1012 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1013 if (oldsize > holebegin)
1014 unmap_mapping_range(inode->i_mapping,
1015 holebegin, 0, 1);
779750d2
KS
1016
1017 /*
1018 * Part of the huge page can be beyond i_size: subject
1019 * to shrink under memory pressure.
1020 */
1021 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1022 spin_lock(&sbinfo->shrinklist_lock);
1023 if (list_empty(&info->shrinklist)) {
1024 list_add_tail(&info->shrinklist,
1025 &sbinfo->shrinklist);
1026 sbinfo->shrinklist_len++;
1027 }
1028 spin_unlock(&sbinfo->shrinklist_lock);
1029 }
94c1e62d 1030 }
1da177e4
LT
1031 }
1032
db78b877 1033 setattr_copy(inode, attr);
db78b877 1034 if (attr->ia_valid & ATTR_MODE)
feda821e 1035 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1036 return error;
1037}
1038
1f895f75 1039static void shmem_evict_inode(struct inode *inode)
1da177e4 1040{
1da177e4 1041 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1042 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1043
3889e6e7 1044 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1045 shmem_unacct_size(info->flags, inode->i_size);
1046 inode->i_size = 0;
3889e6e7 1047 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1048 if (!list_empty(&info->shrinklist)) {
1049 spin_lock(&sbinfo->shrinklist_lock);
1050 if (!list_empty(&info->shrinklist)) {
1051 list_del_init(&info->shrinklist);
1052 sbinfo->shrinklist_len--;
1053 }
1054 spin_unlock(&sbinfo->shrinklist_lock);
1055 }
1da177e4 1056 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1057 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1058 list_del_init(&info->swaplist);
cb5f7b9a 1059 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1060 }
3ed47db3 1061 }
b09e0fa4 1062
38f38657 1063 simple_xattrs_free(&info->xattrs);
0f3c42f5 1064 WARN_ON(inode->i_blocks);
5b04c689 1065 shmem_free_inode(inode->i_sb);
dbd5768f 1066 clear_inode(inode);
1da177e4
LT
1067}
1068
478922e2
MW
1069static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1070{
1071 struct radix_tree_iter iter;
1072 void **slot;
1073 unsigned long found = -1;
1074 unsigned int checked = 0;
1075
1076 rcu_read_lock();
1077 radix_tree_for_each_slot(slot, root, &iter, 0) {
1078 if (*slot == item) {
1079 found = iter.index;
1080 break;
1081 }
1082 checked++;
1083 if ((checked % 4096) != 0)
1084 continue;
1085 slot = radix_tree_iter_resume(slot, &iter);
1086 cond_resched_rcu();
1087 }
1088
1089 rcu_read_unlock();
1090 return found;
1091}
1092
46f65ec1
HD
1093/*
1094 * If swap found in inode, free it and move page from swapcache to filecache.
1095 */
41ffe5d5 1096static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1097 swp_entry_t swap, struct page **pagep)
1da177e4 1098{
285b2c4f 1099 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1100 void *radswap;
41ffe5d5 1101 pgoff_t index;
bde05d1c
HD
1102 gfp_t gfp;
1103 int error = 0;
1da177e4 1104
46f65ec1 1105 radswap = swp_to_radix_entry(swap);
478922e2 1106 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1107 if (index == -1)
00501b53 1108 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1109
1b1b32f2
HD
1110 /*
1111 * Move _head_ to start search for next from here.
1f895f75 1112 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1113 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1114 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1115 */
1116 if (shmem_swaplist.next != &info->swaplist)
1117 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1118
bde05d1c
HD
1119 gfp = mapping_gfp_mask(mapping);
1120 if (shmem_should_replace_page(*pagep, gfp)) {
1121 mutex_unlock(&shmem_swaplist_mutex);
1122 error = shmem_replace_page(pagep, gfp, info, index);
1123 mutex_lock(&shmem_swaplist_mutex);
1124 /*
1125 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1126 * allocation, but the inode might have been freed while we
1127 * dropped it: although a racing shmem_evict_inode() cannot
1128 * complete without emptying the radix_tree, our page lock
1129 * on this swapcache page is not enough to prevent that -
1130 * free_swap_and_cache() of our swap entry will only
1131 * trylock_page(), removing swap from radix_tree whatever.
1132 *
1133 * We must not proceed to shmem_add_to_page_cache() if the
1134 * inode has been freed, but of course we cannot rely on
1135 * inode or mapping or info to check that. However, we can
1136 * safely check if our swap entry is still in use (and here
1137 * it can't have got reused for another page): if it's still
1138 * in use, then the inode cannot have been freed yet, and we
1139 * can safely proceed (if it's no longer in use, that tells
1140 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1141 */
1142 if (!page_swapcount(*pagep))
1143 error = -ENOENT;
1144 }
1145
d13d1443 1146 /*
778dd893
HD
1147 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1148 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1149 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1150 */
bde05d1c
HD
1151 if (!error)
1152 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1153 radswap);
48f170fb 1154 if (error != -ENOMEM) {
46f65ec1
HD
1155 /*
1156 * Truncation and eviction use free_swap_and_cache(), which
1157 * only does trylock page: if we raced, best clean up here.
1158 */
bde05d1c
HD
1159 delete_from_swap_cache(*pagep);
1160 set_page_dirty(*pagep);
46f65ec1 1161 if (!error) {
4595ef88 1162 spin_lock_irq(&info->lock);
46f65ec1 1163 info->swapped--;
4595ef88 1164 spin_unlock_irq(&info->lock);
46f65ec1
HD
1165 swap_free(swap);
1166 }
1da177e4 1167 }
2e0e26c7 1168 return error;
1da177e4
LT
1169}
1170
1171/*
46f65ec1 1172 * Search through swapped inodes to find and replace swap by page.
1da177e4 1173 */
41ffe5d5 1174int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1175{
41ffe5d5 1176 struct list_head *this, *next;
1da177e4 1177 struct shmem_inode_info *info;
00501b53 1178 struct mem_cgroup *memcg;
bde05d1c
HD
1179 int error = 0;
1180
1181 /*
1182 * There's a faint possibility that swap page was replaced before
0142ef6c 1183 * caller locked it: caller will come back later with the right page.
bde05d1c 1184 */
0142ef6c 1185 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1186 goto out;
778dd893
HD
1187
1188 /*
1189 * Charge page using GFP_KERNEL while we can wait, before taking
1190 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1191 * Charged back to the user (not to caller) when swap account is used.
778dd893 1192 */
f627c2f5
KS
1193 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1194 false);
778dd893
HD
1195 if (error)
1196 goto out;
46f65ec1 1197 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1198 error = -EAGAIN;
1da177e4 1199
cb5f7b9a 1200 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1201 list_for_each_safe(this, next, &shmem_swaplist) {
1202 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1203 if (info->swapped)
00501b53 1204 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1205 else
1206 list_del_init(&info->swaplist);
cb5f7b9a 1207 cond_resched();
00501b53 1208 if (error != -EAGAIN)
778dd893 1209 break;
00501b53 1210 /* found nothing in this: move on to search the next */
1da177e4 1211 }
cb5f7b9a 1212 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1213
00501b53
JW
1214 if (error) {
1215 if (error != -ENOMEM)
1216 error = 0;
f627c2f5 1217 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1218 } else
f627c2f5 1219 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1220out:
aaa46865 1221 unlock_page(page);
09cbfeaf 1222 put_page(page);
778dd893 1223 return error;
1da177e4
LT
1224}
1225
1226/*
1227 * Move the page from the page cache to the swap cache.
1228 */
1229static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1230{
1231 struct shmem_inode_info *info;
1da177e4 1232 struct address_space *mapping;
1da177e4 1233 struct inode *inode;
6922c0c7
HD
1234 swp_entry_t swap;
1235 pgoff_t index;
1da177e4 1236
800d8c63 1237 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1238 BUG_ON(!PageLocked(page));
1da177e4
LT
1239 mapping = page->mapping;
1240 index = page->index;
1241 inode = mapping->host;
1242 info = SHMEM_I(inode);
1243 if (info->flags & VM_LOCKED)
1244 goto redirty;
d9fe526a 1245 if (!total_swap_pages)
1da177e4
LT
1246 goto redirty;
1247
d9fe526a 1248 /*
97b713ba
CH
1249 * Our capabilities prevent regular writeback or sync from ever calling
1250 * shmem_writepage; but a stacking filesystem might use ->writepage of
1251 * its underlying filesystem, in which case tmpfs should write out to
1252 * swap only in response to memory pressure, and not for the writeback
1253 * threads or sync.
d9fe526a 1254 */
48f170fb
HD
1255 if (!wbc->for_reclaim) {
1256 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1257 goto redirty;
1258 }
1635f6a7
HD
1259
1260 /*
1261 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1262 * value into swapfile.c, the only way we can correctly account for a
1263 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1264 *
1265 * That's okay for a page already fallocated earlier, but if we have
1266 * not yet completed the fallocation, then (a) we want to keep track
1267 * of this page in case we have to undo it, and (b) it may not be a
1268 * good idea to continue anyway, once we're pushing into swap. So
1269 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1270 */
1271 if (!PageUptodate(page)) {
1aac1400
HD
1272 if (inode->i_private) {
1273 struct shmem_falloc *shmem_falloc;
1274 spin_lock(&inode->i_lock);
1275 shmem_falloc = inode->i_private;
1276 if (shmem_falloc &&
8e205f77 1277 !shmem_falloc->waitq &&
1aac1400
HD
1278 index >= shmem_falloc->start &&
1279 index < shmem_falloc->next)
1280 shmem_falloc->nr_unswapped++;
1281 else
1282 shmem_falloc = NULL;
1283 spin_unlock(&inode->i_lock);
1284 if (shmem_falloc)
1285 goto redirty;
1286 }
1635f6a7
HD
1287 clear_highpage(page);
1288 flush_dcache_page(page);
1289 SetPageUptodate(page);
1290 }
1291
48f170fb
HD
1292 swap = get_swap_page();
1293 if (!swap.val)
1294 goto redirty;
d9fe526a 1295
37e84351
VD
1296 if (mem_cgroup_try_charge_swap(page, swap))
1297 goto free_swap;
1298
b1dea800
HD
1299 /*
1300 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1301 * if it's not already there. Do it now before the page is
1302 * moved to swap cache, when its pagelock no longer protects
b1dea800 1303 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1304 * we've incremented swapped, because shmem_unuse_inode() will
1305 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1306 */
48f170fb
HD
1307 mutex_lock(&shmem_swaplist_mutex);
1308 if (list_empty(&info->swaplist))
1309 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1310
48f170fb 1311 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1312 spin_lock_irq(&info->lock);
6922c0c7 1313 shmem_recalc_inode(inode);
267a4c76 1314 info->swapped++;
4595ef88 1315 spin_unlock_irq(&info->lock);
6922c0c7 1316
267a4c76
HD
1317 swap_shmem_alloc(swap);
1318 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1319
6922c0c7 1320 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1321 BUG_ON(page_mapped(page));
9fab5619 1322 swap_writepage(page, wbc);
1da177e4
LT
1323 return 0;
1324 }
1325
6922c0c7 1326 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1327free_swap:
0a31bc97 1328 swapcache_free(swap);
1da177e4
LT
1329redirty:
1330 set_page_dirty(page);
d9fe526a
HD
1331 if (wbc->for_reclaim)
1332 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1333 unlock_page(page);
1334 return 0;
1da177e4
LT
1335}
1336
75edd345 1337#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1338static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1339{
095f1fc4 1340 char buffer[64];
680d794b 1341
71fe804b 1342 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1343 return; /* show nothing */
680d794b 1344
a7a88b23 1345 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1346
1347 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1348}
71fe804b
LS
1349
1350static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1351{
1352 struct mempolicy *mpol = NULL;
1353 if (sbinfo->mpol) {
1354 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1355 mpol = sbinfo->mpol;
1356 mpol_get(mpol);
1357 spin_unlock(&sbinfo->stat_lock);
1358 }
1359 return mpol;
1360}
75edd345
HD
1361#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1362static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1363{
1364}
1365static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1366{
1367 return NULL;
1368}
1369#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1370#ifndef CONFIG_NUMA
1371#define vm_policy vm_private_data
1372#endif
680d794b 1373
800d8c63
KS
1374static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1375 struct shmem_inode_info *info, pgoff_t index)
1376{
1377 /* Create a pseudo vma that just contains the policy */
1378 vma->vm_start = 0;
1379 /* Bias interleave by inode number to distribute better across nodes */
1380 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1381 vma->vm_ops = NULL;
1382 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1383}
1384
1385static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1386{
1387 /* Drop reference taken by mpol_shared_policy_lookup() */
1388 mpol_cond_put(vma->vm_policy);
1389}
1390
41ffe5d5
HD
1391static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1392 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1393{
1da177e4 1394 struct vm_area_struct pvma;
18a2f371 1395 struct page *page;
52cd3b07 1396
800d8c63 1397 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1398 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1399 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1400
800d8c63
KS
1401 return page;
1402}
1403
1404static struct page *shmem_alloc_hugepage(gfp_t gfp,
1405 struct shmem_inode_info *info, pgoff_t index)
1406{
1407 struct vm_area_struct pvma;
1408 struct inode *inode = &info->vfs_inode;
1409 struct address_space *mapping = inode->i_mapping;
4620a06e 1410 pgoff_t idx, hindex;
800d8c63
KS
1411 void __rcu **results;
1412 struct page *page;
1413
e496cf3d 1414 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1415 return NULL;
1416
4620a06e 1417 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1418 rcu_read_lock();
1419 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1420 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1421 rcu_read_unlock();
1422 return NULL;
1423 }
1424 rcu_read_unlock();
18a2f371 1425
800d8c63
KS
1426 shmem_pseudo_vma_init(&pvma, info, hindex);
1427 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1428 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1429 shmem_pseudo_vma_destroy(&pvma);
1430 if (page)
1431 prep_transhuge_page(page);
18a2f371 1432 return page;
1da177e4
LT
1433}
1434
02098fea 1435static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1436 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1437{
1438 struct vm_area_struct pvma;
18a2f371 1439 struct page *page;
1da177e4 1440
800d8c63
KS
1441 shmem_pseudo_vma_init(&pvma, info, index);
1442 page = alloc_page_vma(gfp, &pvma, 0);
1443 shmem_pseudo_vma_destroy(&pvma);
1444
1445 return page;
1446}
1447
1448static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1449 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1450 pgoff_t index, bool huge)
1451{
1452 struct page *page;
1453 int nr;
1454 int err = -ENOSPC;
52cd3b07 1455
e496cf3d 1456 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1457 huge = false;
1458 nr = huge ? HPAGE_PMD_NR : 1;
1459
1460 if (shmem_acct_block(info->flags, nr))
1461 goto failed;
1462 if (sbinfo->max_blocks) {
1463 if (percpu_counter_compare(&sbinfo->used_blocks,
1464 sbinfo->max_blocks - nr) > 0)
1465 goto unacct;
1466 percpu_counter_add(&sbinfo->used_blocks, nr);
1467 }
1468
1469 if (huge)
1470 page = shmem_alloc_hugepage(gfp, info, index);
1471 else
1472 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1473 if (page) {
1474 __SetPageLocked(page);
1475 __SetPageSwapBacked(page);
800d8c63 1476 return page;
75edd345 1477 }
18a2f371 1478
800d8c63
KS
1479 err = -ENOMEM;
1480 if (sbinfo->max_blocks)
1481 percpu_counter_add(&sbinfo->used_blocks, -nr);
1482unacct:
1483 shmem_unacct_blocks(info->flags, nr);
1484failed:
1485 return ERR_PTR(err);
1da177e4 1486}
71fe804b 1487
bde05d1c
HD
1488/*
1489 * When a page is moved from swapcache to shmem filecache (either by the
1490 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1491 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1492 * ignorance of the mapping it belongs to. If that mapping has special
1493 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1494 * we may need to copy to a suitable page before moving to filecache.
1495 *
1496 * In a future release, this may well be extended to respect cpuset and
1497 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1498 * but for now it is a simple matter of zone.
1499 */
1500static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1501{
1502 return page_zonenum(page) > gfp_zone(gfp);
1503}
1504
1505static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1506 struct shmem_inode_info *info, pgoff_t index)
1507{
1508 struct page *oldpage, *newpage;
1509 struct address_space *swap_mapping;
1510 pgoff_t swap_index;
1511 int error;
1512
1513 oldpage = *pagep;
1514 swap_index = page_private(oldpage);
1515 swap_mapping = page_mapping(oldpage);
1516
1517 /*
1518 * We have arrived here because our zones are constrained, so don't
1519 * limit chance of success by further cpuset and node constraints.
1520 */
1521 gfp &= ~GFP_CONSTRAINT_MASK;
1522 newpage = shmem_alloc_page(gfp, info, index);
1523 if (!newpage)
1524 return -ENOMEM;
bde05d1c 1525
09cbfeaf 1526 get_page(newpage);
bde05d1c 1527 copy_highpage(newpage, oldpage);
0142ef6c 1528 flush_dcache_page(newpage);
bde05d1c 1529
9956edf3
HD
1530 __SetPageLocked(newpage);
1531 __SetPageSwapBacked(newpage);
bde05d1c 1532 SetPageUptodate(newpage);
bde05d1c 1533 set_page_private(newpage, swap_index);
bde05d1c
HD
1534 SetPageSwapCache(newpage);
1535
1536 /*
1537 * Our caller will very soon move newpage out of swapcache, but it's
1538 * a nice clean interface for us to replace oldpage by newpage there.
1539 */
1540 spin_lock_irq(&swap_mapping->tree_lock);
1541 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1542 newpage);
0142ef6c 1543 if (!error) {
11fb9989
MG
1544 __inc_node_page_state(newpage, NR_FILE_PAGES);
1545 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1546 }
bde05d1c 1547 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1548
0142ef6c
HD
1549 if (unlikely(error)) {
1550 /*
1551 * Is this possible? I think not, now that our callers check
1552 * both PageSwapCache and page_private after getting page lock;
1553 * but be defensive. Reverse old to newpage for clear and free.
1554 */
1555 oldpage = newpage;
1556 } else {
6a93ca8f 1557 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1558 lru_cache_add_anon(newpage);
1559 *pagep = newpage;
1560 }
bde05d1c
HD
1561
1562 ClearPageSwapCache(oldpage);
1563 set_page_private(oldpage, 0);
1564
1565 unlock_page(oldpage);
09cbfeaf
KS
1566 put_page(oldpage);
1567 put_page(oldpage);
0142ef6c 1568 return error;
bde05d1c
HD
1569}
1570
1da177e4 1571/*
68da9f05 1572 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1573 *
1574 * If we allocate a new one we do not mark it dirty. That's up to the
1575 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1576 * entry since a page cannot live in both the swap and page cache.
1577 *
1578 * fault_mm and fault_type are only supplied by shmem_fault:
1579 * otherwise they are NULL.
1da177e4 1580 */
41ffe5d5 1581static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1582 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1583 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1584{
1585 struct address_space *mapping = inode->i_mapping;
23f919d4 1586 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1587 struct shmem_sb_info *sbinfo;
9e18eb29 1588 struct mm_struct *charge_mm;
00501b53 1589 struct mem_cgroup *memcg;
27ab7006 1590 struct page *page;
1da177e4 1591 swp_entry_t swap;
657e3038 1592 enum sgp_type sgp_huge = sgp;
800d8c63 1593 pgoff_t hindex = index;
1da177e4 1594 int error;
54af6042 1595 int once = 0;
1635f6a7 1596 int alloced = 0;
1da177e4 1597
09cbfeaf 1598 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1599 return -EFBIG;
657e3038
KS
1600 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1601 sgp = SGP_CACHE;
1da177e4 1602repeat:
54af6042 1603 swap.val = 0;
0cd6144a 1604 page = find_lock_entry(mapping, index);
54af6042
HD
1605 if (radix_tree_exceptional_entry(page)) {
1606 swap = radix_to_swp_entry(page);
1607 page = NULL;
1608 }
1609
75edd345 1610 if (sgp <= SGP_CACHE &&
09cbfeaf 1611 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1612 error = -EINVAL;
267a4c76 1613 goto unlock;
54af6042
HD
1614 }
1615
66d2f4d2
HD
1616 if (page && sgp == SGP_WRITE)
1617 mark_page_accessed(page);
1618
1635f6a7
HD
1619 /* fallocated page? */
1620 if (page && !PageUptodate(page)) {
1621 if (sgp != SGP_READ)
1622 goto clear;
1623 unlock_page(page);
09cbfeaf 1624 put_page(page);
1635f6a7
HD
1625 page = NULL;
1626 }
54af6042 1627 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1628 *pagep = page;
1629 return 0;
27ab7006
HD
1630 }
1631
1632 /*
54af6042
HD
1633 * Fast cache lookup did not find it:
1634 * bring it back from swap or allocate.
27ab7006 1635 */
54af6042 1636 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1637 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1638
1da177e4
LT
1639 if (swap.val) {
1640 /* Look it up and read it in.. */
27ab7006
HD
1641 page = lookup_swap_cache(swap);
1642 if (!page) {
9e18eb29
ALC
1643 /* Or update major stats only when swapin succeeds?? */
1644 if (fault_type) {
68da9f05 1645 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1646 count_vm_event(PGMAJFAULT);
cfda0526
MR
1647 mem_cgroup_count_vm_event(charge_mm,
1648 PGMAJFAULT);
9e18eb29
ALC
1649 }
1650 /* Here we actually start the io */
41ffe5d5 1651 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1652 if (!page) {
54af6042
HD
1653 error = -ENOMEM;
1654 goto failed;
1da177e4 1655 }
1da177e4
LT
1656 }
1657
1658 /* We have to do this with page locked to prevent races */
54af6042 1659 lock_page(page);
0142ef6c 1660 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1661 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1662 error = -EEXIST; /* try again */
d1899228 1663 goto unlock;
bde05d1c 1664 }
27ab7006 1665 if (!PageUptodate(page)) {
1da177e4 1666 error = -EIO;
54af6042 1667 goto failed;
1da177e4 1668 }
54af6042
HD
1669 wait_on_page_writeback(page);
1670
bde05d1c
HD
1671 if (shmem_should_replace_page(page, gfp)) {
1672 error = shmem_replace_page(&page, gfp, info, index);
1673 if (error)
1674 goto failed;
1da177e4 1675 }
27ab7006 1676
9e18eb29 1677 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1678 false);
d1899228 1679 if (!error) {
aa3b1895 1680 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1681 swp_to_radix_entry(swap));
215c02bc
HD
1682 /*
1683 * We already confirmed swap under page lock, and make
1684 * no memory allocation here, so usually no possibility
1685 * of error; but free_swap_and_cache() only trylocks a
1686 * page, so it is just possible that the entry has been
1687 * truncated or holepunched since swap was confirmed.
1688 * shmem_undo_range() will have done some of the
1689 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1690 * the rest.
215c02bc
HD
1691 * Reset swap.val? No, leave it so "failed" goes back to
1692 * "repeat": reading a hole and writing should succeed.
1693 */
00501b53 1694 if (error) {
f627c2f5 1695 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1696 delete_from_swap_cache(page);
00501b53 1697 }
d1899228 1698 }
54af6042
HD
1699 if (error)
1700 goto failed;
1701
f627c2f5 1702 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1703
4595ef88 1704 spin_lock_irq(&info->lock);
285b2c4f 1705 info->swapped--;
54af6042 1706 shmem_recalc_inode(inode);
4595ef88 1707 spin_unlock_irq(&info->lock);
54af6042 1708
66d2f4d2
HD
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1711
54af6042 1712 delete_from_swap_cache(page);
27ab7006
HD
1713 set_page_dirty(page);
1714 swap_free(swap);
1715
54af6042 1716 } else {
cfda0526
MR
1717 if (vma && userfaultfd_missing(vma)) {
1718 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1719 return 0;
1720 }
1721
800d8c63
KS
1722 /* shmem_symlink() */
1723 if (mapping->a_ops != &shmem_aops)
1724 goto alloc_nohuge;
657e3038 1725 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1726 goto alloc_nohuge;
1727 if (shmem_huge == SHMEM_HUGE_FORCE)
1728 goto alloc_huge;
1729 switch (sbinfo->huge) {
1730 loff_t i_size;
1731 pgoff_t off;
1732 case SHMEM_HUGE_NEVER:
1733 goto alloc_nohuge;
1734 case SHMEM_HUGE_WITHIN_SIZE:
1735 off = round_up(index, HPAGE_PMD_NR);
1736 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1737 if (i_size >= HPAGE_PMD_SIZE &&
1738 i_size >> PAGE_SHIFT >= off)
1739 goto alloc_huge;
1740 /* fallthrough */
1741 case SHMEM_HUGE_ADVISE:
657e3038
KS
1742 if (sgp_huge == SGP_HUGE)
1743 goto alloc_huge;
1744 /* TODO: implement fadvise() hints */
800d8c63 1745 goto alloc_nohuge;
54af6042 1746 }
1da177e4 1747
800d8c63
KS
1748alloc_huge:
1749 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1750 index, true);
1751 if (IS_ERR(page)) {
1752alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1753 index, false);
1da177e4 1754 }
800d8c63 1755 if (IS_ERR(page)) {
779750d2 1756 int retry = 5;
800d8c63
KS
1757 error = PTR_ERR(page);
1758 page = NULL;
779750d2
KS
1759 if (error != -ENOSPC)
1760 goto failed;
1761 /*
1762 * Try to reclaim some spece by splitting a huge page
1763 * beyond i_size on the filesystem.
1764 */
1765 while (retry--) {
1766 int ret;
1767 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1768 if (ret == SHRINK_STOP)
1769 break;
1770 if (ret)
1771 goto alloc_nohuge;
1772 }
800d8c63
KS
1773 goto failed;
1774 }
1775
1776 if (PageTransHuge(page))
1777 hindex = round_down(index, HPAGE_PMD_NR);
1778 else
1779 hindex = index;
1780
66d2f4d2 1781 if (sgp == SGP_WRITE)
eb39d618 1782 __SetPageReferenced(page);
66d2f4d2 1783
9e18eb29 1784 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1785 PageTransHuge(page));
54af6042 1786 if (error)
800d8c63
KS
1787 goto unacct;
1788 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1789 compound_order(page));
b065b432 1790 if (!error) {
800d8c63 1791 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1792 NULL);
b065b432
HD
1793 radix_tree_preload_end();
1794 }
1795 if (error) {
800d8c63
KS
1796 mem_cgroup_cancel_charge(page, memcg,
1797 PageTransHuge(page));
1798 goto unacct;
b065b432 1799 }
800d8c63
KS
1800 mem_cgroup_commit_charge(page, memcg, false,
1801 PageTransHuge(page));
54af6042
HD
1802 lru_cache_add_anon(page);
1803
4595ef88 1804 spin_lock_irq(&info->lock);
800d8c63
KS
1805 info->alloced += 1 << compound_order(page);
1806 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1807 shmem_recalc_inode(inode);
4595ef88 1808 spin_unlock_irq(&info->lock);
1635f6a7 1809 alloced = true;
54af6042 1810
779750d2
KS
1811 if (PageTransHuge(page) &&
1812 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1813 hindex + HPAGE_PMD_NR - 1) {
1814 /*
1815 * Part of the huge page is beyond i_size: subject
1816 * to shrink under memory pressure.
1817 */
1818 spin_lock(&sbinfo->shrinklist_lock);
1819 if (list_empty(&info->shrinklist)) {
1820 list_add_tail(&info->shrinklist,
1821 &sbinfo->shrinklist);
1822 sbinfo->shrinklist_len++;
1823 }
1824 spin_unlock(&sbinfo->shrinklist_lock);
1825 }
1826
ec9516fb 1827 /*
1635f6a7
HD
1828 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1829 */
1830 if (sgp == SGP_FALLOC)
1831 sgp = SGP_WRITE;
1832clear:
1833 /*
1834 * Let SGP_WRITE caller clear ends if write does not fill page;
1835 * but SGP_FALLOC on a page fallocated earlier must initialize
1836 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1837 */
800d8c63
KS
1838 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1839 struct page *head = compound_head(page);
1840 int i;
1841
1842 for (i = 0; i < (1 << compound_order(head)); i++) {
1843 clear_highpage(head + i);
1844 flush_dcache_page(head + i);
1845 }
1846 SetPageUptodate(head);
ec9516fb 1847 }
1da177e4 1848 }
bde05d1c 1849
54af6042 1850 /* Perhaps the file has been truncated since we checked */
75edd345 1851 if (sgp <= SGP_CACHE &&
09cbfeaf 1852 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1853 if (alloced) {
1854 ClearPageDirty(page);
1855 delete_from_page_cache(page);
4595ef88 1856 spin_lock_irq(&info->lock);
267a4c76 1857 shmem_recalc_inode(inode);
4595ef88 1858 spin_unlock_irq(&info->lock);
267a4c76 1859 }
54af6042 1860 error = -EINVAL;
267a4c76 1861 goto unlock;
e83c32e8 1862 }
800d8c63 1863 *pagep = page + index - hindex;
54af6042 1864 return 0;
1da177e4 1865
59a16ead 1866 /*
54af6042 1867 * Error recovery.
59a16ead 1868 */
54af6042 1869unacct:
800d8c63
KS
1870 if (sbinfo->max_blocks)
1871 percpu_counter_sub(&sbinfo->used_blocks,
1872 1 << compound_order(page));
1873 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1874
1875 if (PageTransHuge(page)) {
1876 unlock_page(page);
1877 put_page(page);
1878 goto alloc_nohuge;
1879 }
54af6042 1880failed:
267a4c76 1881 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1882 error = -EEXIST;
1883unlock:
27ab7006 1884 if (page) {
54af6042 1885 unlock_page(page);
09cbfeaf 1886 put_page(page);
54af6042
HD
1887 }
1888 if (error == -ENOSPC && !once++) {
4595ef88 1889 spin_lock_irq(&info->lock);
54af6042 1890 shmem_recalc_inode(inode);
4595ef88 1891 spin_unlock_irq(&info->lock);
27ab7006 1892 goto repeat;
ff36b801 1893 }
d1899228 1894 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1895 goto repeat;
1896 return error;
1da177e4
LT
1897}
1898
10d20bd2
LT
1899/*
1900 * This is like autoremove_wake_function, but it removes the wait queue
1901 * entry unconditionally - even if something else had already woken the
1902 * target.
1903 */
1904static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1905{
1906 int ret = default_wake_function(wait, mode, sync, key);
1907 list_del_init(&wait->task_list);
1908 return ret;
1909}
1910
d0217ac0 1911static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1912{
496ad9aa 1913 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1914 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1915 enum sgp_type sgp;
1da177e4 1916 int error;
68da9f05 1917 int ret = VM_FAULT_LOCKED;
1da177e4 1918
f00cdc6d
HD
1919 /*
1920 * Trinity finds that probing a hole which tmpfs is punching can
1921 * prevent the hole-punch from ever completing: which in turn
1922 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1923 * faulting pages into the hole while it's being punched. Although
1924 * shmem_undo_range() does remove the additions, it may be unable to
1925 * keep up, as each new page needs its own unmap_mapping_range() call,
1926 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1927 *
1928 * It does not matter if we sometimes reach this check just before the
1929 * hole-punch begins, so that one fault then races with the punch:
1930 * we just need to make racing faults a rare case.
1931 *
1932 * The implementation below would be much simpler if we just used a
1933 * standard mutex or completion: but we cannot take i_mutex in fault,
1934 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1935 */
1936 if (unlikely(inode->i_private)) {
1937 struct shmem_falloc *shmem_falloc;
1938
1939 spin_lock(&inode->i_lock);
1940 shmem_falloc = inode->i_private;
8e205f77
HD
1941 if (shmem_falloc &&
1942 shmem_falloc->waitq &&
1943 vmf->pgoff >= shmem_falloc->start &&
1944 vmf->pgoff < shmem_falloc->next) {
1945 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1946 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1947
1948 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1949 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1950 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1951 /* It's polite to up mmap_sem if we can */
f00cdc6d 1952 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1953 ret = VM_FAULT_RETRY;
f00cdc6d 1954 }
8e205f77
HD
1955
1956 shmem_falloc_waitq = shmem_falloc->waitq;
1957 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1958 TASK_UNINTERRUPTIBLE);
1959 spin_unlock(&inode->i_lock);
1960 schedule();
1961
1962 /*
1963 * shmem_falloc_waitq points into the shmem_fallocate()
1964 * stack of the hole-punching task: shmem_falloc_waitq
1965 * is usually invalid by the time we reach here, but
1966 * finish_wait() does not dereference it in that case;
1967 * though i_lock needed lest racing with wake_up_all().
1968 */
1969 spin_lock(&inode->i_lock);
1970 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1971 spin_unlock(&inode->i_lock);
1972 return ret;
f00cdc6d 1973 }
8e205f77 1974 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1975 }
1976
657e3038
KS
1977 sgp = SGP_CACHE;
1978 if (vma->vm_flags & VM_HUGEPAGE)
1979 sgp = SGP_HUGE;
1980 else if (vma->vm_flags & VM_NOHUGEPAGE)
1981 sgp = SGP_NOHUGE;
1982
1983 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 1984 gfp, vma, vmf, &ret);
d0217ac0
NP
1985 if (error)
1986 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1987 return ret;
1da177e4
LT
1988}
1989
c01d5b30
HD
1990unsigned long shmem_get_unmapped_area(struct file *file,
1991 unsigned long uaddr, unsigned long len,
1992 unsigned long pgoff, unsigned long flags)
1993{
1994 unsigned long (*get_area)(struct file *,
1995 unsigned long, unsigned long, unsigned long, unsigned long);
1996 unsigned long addr;
1997 unsigned long offset;
1998 unsigned long inflated_len;
1999 unsigned long inflated_addr;
2000 unsigned long inflated_offset;
2001
2002 if (len > TASK_SIZE)
2003 return -ENOMEM;
2004
2005 get_area = current->mm->get_unmapped_area;
2006 addr = get_area(file, uaddr, len, pgoff, flags);
2007
e496cf3d 2008 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2009 return addr;
2010 if (IS_ERR_VALUE(addr))
2011 return addr;
2012 if (addr & ~PAGE_MASK)
2013 return addr;
2014 if (addr > TASK_SIZE - len)
2015 return addr;
2016
2017 if (shmem_huge == SHMEM_HUGE_DENY)
2018 return addr;
2019 if (len < HPAGE_PMD_SIZE)
2020 return addr;
2021 if (flags & MAP_FIXED)
2022 return addr;
2023 /*
2024 * Our priority is to support MAP_SHARED mapped hugely;
2025 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2026 * But if caller specified an address hint, respect that as before.
2027 */
2028 if (uaddr)
2029 return addr;
2030
2031 if (shmem_huge != SHMEM_HUGE_FORCE) {
2032 struct super_block *sb;
2033
2034 if (file) {
2035 VM_BUG_ON(file->f_op != &shmem_file_operations);
2036 sb = file_inode(file)->i_sb;
2037 } else {
2038 /*
2039 * Called directly from mm/mmap.c, or drivers/char/mem.c
2040 * for "/dev/zero", to create a shared anonymous object.
2041 */
2042 if (IS_ERR(shm_mnt))
2043 return addr;
2044 sb = shm_mnt->mnt_sb;
2045 }
3089bf61 2046 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2047 return addr;
2048 }
2049
2050 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2051 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2052 return addr;
2053 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2054 return addr;
2055
2056 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2057 if (inflated_len > TASK_SIZE)
2058 return addr;
2059 if (inflated_len < len)
2060 return addr;
2061
2062 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2063 if (IS_ERR_VALUE(inflated_addr))
2064 return addr;
2065 if (inflated_addr & ~PAGE_MASK)
2066 return addr;
2067
2068 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2069 inflated_addr += offset - inflated_offset;
2070 if (inflated_offset > offset)
2071 inflated_addr += HPAGE_PMD_SIZE;
2072
2073 if (inflated_addr > TASK_SIZE - len)
2074 return addr;
2075 return inflated_addr;
2076}
2077
1da177e4 2078#ifdef CONFIG_NUMA
41ffe5d5 2079static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2080{
496ad9aa 2081 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2082 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2083}
2084
d8dc74f2
AB
2085static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2086 unsigned long addr)
1da177e4 2087{
496ad9aa 2088 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2089 pgoff_t index;
1da177e4 2090
41ffe5d5
HD
2091 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2092 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2093}
2094#endif
2095
2096int shmem_lock(struct file *file, int lock, struct user_struct *user)
2097{
496ad9aa 2098 struct inode *inode = file_inode(file);
1da177e4
LT
2099 struct shmem_inode_info *info = SHMEM_I(inode);
2100 int retval = -ENOMEM;
2101
4595ef88 2102 spin_lock_irq(&info->lock);
1da177e4
LT
2103 if (lock && !(info->flags & VM_LOCKED)) {
2104 if (!user_shm_lock(inode->i_size, user))
2105 goto out_nomem;
2106 info->flags |= VM_LOCKED;
89e004ea 2107 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2108 }
2109 if (!lock && (info->flags & VM_LOCKED) && user) {
2110 user_shm_unlock(inode->i_size, user);
2111 info->flags &= ~VM_LOCKED;
89e004ea 2112 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2113 }
2114 retval = 0;
89e004ea 2115
1da177e4 2116out_nomem:
4595ef88 2117 spin_unlock_irq(&info->lock);
1da177e4
LT
2118 return retval;
2119}
2120
9b83a6a8 2121static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2122{
2123 file_accessed(file);
2124 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2125 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2126 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2127 (vma->vm_end & HPAGE_PMD_MASK)) {
2128 khugepaged_enter(vma, vma->vm_flags);
2129 }
1da177e4
LT
2130 return 0;
2131}
2132
454abafe 2133static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2134 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2135{
2136 struct inode *inode;
2137 struct shmem_inode_info *info;
2138 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2139
5b04c689
PE
2140 if (shmem_reserve_inode(sb))
2141 return NULL;
1da177e4
LT
2142
2143 inode = new_inode(sb);
2144 if (inode) {
85fe4025 2145 inode->i_ino = get_next_ino();
454abafe 2146 inode_init_owner(inode, dir, mode);
1da177e4 2147 inode->i_blocks = 0;
078cd827 2148 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2149 inode->i_generation = get_seconds();
1da177e4
LT
2150 info = SHMEM_I(inode);
2151 memset(info, 0, (char *)inode - (char *)info);
2152 spin_lock_init(&info->lock);
40e041a2 2153 info->seals = F_SEAL_SEAL;
0b0a0806 2154 info->flags = flags & VM_NORESERVE;
779750d2 2155 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2156 INIT_LIST_HEAD(&info->swaplist);
38f38657 2157 simple_xattrs_init(&info->xattrs);
72c04902 2158 cache_no_acl(inode);
1da177e4
LT
2159
2160 switch (mode & S_IFMT) {
2161 default:
39f0247d 2162 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2163 init_special_inode(inode, mode, dev);
2164 break;
2165 case S_IFREG:
14fcc23f 2166 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2167 inode->i_op = &shmem_inode_operations;
2168 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2169 mpol_shared_policy_init(&info->policy,
2170 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2171 break;
2172 case S_IFDIR:
d8c76e6f 2173 inc_nlink(inode);
1da177e4
LT
2174 /* Some things misbehave if size == 0 on a directory */
2175 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2176 inode->i_op = &shmem_dir_inode_operations;
2177 inode->i_fop = &simple_dir_operations;
2178 break;
2179 case S_IFLNK:
2180 /*
2181 * Must not load anything in the rbtree,
2182 * mpol_free_shared_policy will not be called.
2183 */
71fe804b 2184 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2185 break;
2186 }
5b04c689
PE
2187 } else
2188 shmem_free_inode(sb);
1da177e4
LT
2189 return inode;
2190}
2191
0cd6144a
JW
2192bool shmem_mapping(struct address_space *mapping)
2193{
f8005451 2194 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2195}
2196
4c27fe4c
MR
2197int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2198 pmd_t *dst_pmd,
2199 struct vm_area_struct *dst_vma,
2200 unsigned long dst_addr,
2201 unsigned long src_addr,
2202 struct page **pagep)
2203{
2204 struct inode *inode = file_inode(dst_vma->vm_file);
2205 struct shmem_inode_info *info = SHMEM_I(inode);
2206 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2207 struct address_space *mapping = inode->i_mapping;
2208 gfp_t gfp = mapping_gfp_mask(mapping);
2209 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2210 struct mem_cgroup *memcg;
2211 spinlock_t *ptl;
2212 void *page_kaddr;
2213 struct page *page;
2214 pte_t _dst_pte, *dst_pte;
2215 int ret;
2216
2217 if (!*pagep) {
2218 ret = -ENOMEM;
2219 if (shmem_acct_block(info->flags, 1))
2220 goto out;
2221 if (sbinfo->max_blocks) {
2222 if (percpu_counter_compare(&sbinfo->used_blocks,
2223 sbinfo->max_blocks) >= 0)
2224 goto out_unacct_blocks;
2225 percpu_counter_inc(&sbinfo->used_blocks);
2226 }
2227
2228 page = shmem_alloc_page(gfp, info, pgoff);
2229 if (!page)
2230 goto out_dec_used_blocks;
2231
2232 page_kaddr = kmap_atomic(page);
2233 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2234 PAGE_SIZE);
2235 kunmap_atomic(page_kaddr);
2236
2237 /* fallback to copy_from_user outside mmap_sem */
2238 if (unlikely(ret)) {
2239 *pagep = page;
2240 /* don't free the page */
2241 return -EFAULT;
2242 }
2243 } else {
2244 page = *pagep;
2245 *pagep = NULL;
2246 }
2247
9cc90c66
AA
2248 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2249 __SetPageLocked(page);
2250 __SetPageSwapBacked(page);
2251
4c27fe4c
MR
2252 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2253 if (ret)
2254 goto out_release;
2255
2256 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2257 if (!ret) {
2258 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2259 radix_tree_preload_end();
2260 }
2261 if (ret)
2262 goto out_release_uncharge;
2263
2264 mem_cgroup_commit_charge(page, memcg, false, false);
2265
2266 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2267 if (dst_vma->vm_flags & VM_WRITE)
2268 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2269
2270 ret = -EEXIST;
2271 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2272 if (!pte_none(*dst_pte))
2273 goto out_release_uncharge_unlock;
2274
2275 __SetPageUptodate(page);
2276
2277 lru_cache_add_anon(page);
2278
2279 spin_lock(&info->lock);
2280 info->alloced++;
2281 inode->i_blocks += BLOCKS_PER_PAGE;
2282 shmem_recalc_inode(inode);
2283 spin_unlock(&info->lock);
2284
2285 inc_mm_counter(dst_mm, mm_counter_file(page));
2286 page_add_file_rmap(page, false);
2287 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2288
2289 /* No need to invalidate - it was non-present before */
2290 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2291 unlock_page(page);
2292 pte_unmap_unlock(dst_pte, ptl);
2293 ret = 0;
2294out:
2295 return ret;
2296out_release_uncharge_unlock:
2297 pte_unmap_unlock(dst_pte, ptl);
2298out_release_uncharge:
2299 mem_cgroup_cancel_charge(page, memcg, false);
2300out_release:
9cc90c66 2301 unlock_page(page);
4c27fe4c
MR
2302 put_page(page);
2303out_dec_used_blocks:
2304 if (sbinfo->max_blocks)
2305 percpu_counter_add(&sbinfo->used_blocks, -1);
2306out_unacct_blocks:
2307 shmem_unacct_blocks(info->flags, 1);
2308 goto out;
2309}
2310
1da177e4 2311#ifdef CONFIG_TMPFS
92e1d5be 2312static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2313static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2314
6d9d88d0
JS
2315#ifdef CONFIG_TMPFS_XATTR
2316static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2317#else
2318#define shmem_initxattrs NULL
2319#endif
2320
1da177e4 2321static int
800d15a5
NP
2322shmem_write_begin(struct file *file, struct address_space *mapping,
2323 loff_t pos, unsigned len, unsigned flags,
2324 struct page **pagep, void **fsdata)
1da177e4 2325{
800d15a5 2326 struct inode *inode = mapping->host;
40e041a2 2327 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2328 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2329
2330 /* i_mutex is held by caller */
2331 if (unlikely(info->seals)) {
2332 if (info->seals & F_SEAL_WRITE)
2333 return -EPERM;
2334 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2335 return -EPERM;
2336 }
2337
9e18eb29 2338 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2339}
2340
2341static int
2342shmem_write_end(struct file *file, struct address_space *mapping,
2343 loff_t pos, unsigned len, unsigned copied,
2344 struct page *page, void *fsdata)
2345{
2346 struct inode *inode = mapping->host;
2347
d3602444
HD
2348 if (pos + copied > inode->i_size)
2349 i_size_write(inode, pos + copied);
2350
ec9516fb 2351 if (!PageUptodate(page)) {
800d8c63
KS
2352 struct page *head = compound_head(page);
2353 if (PageTransCompound(page)) {
2354 int i;
2355
2356 for (i = 0; i < HPAGE_PMD_NR; i++) {
2357 if (head + i == page)
2358 continue;
2359 clear_highpage(head + i);
2360 flush_dcache_page(head + i);
2361 }
2362 }
09cbfeaf
KS
2363 if (copied < PAGE_SIZE) {
2364 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2365 zero_user_segments(page, 0, from,
09cbfeaf 2366 from + copied, PAGE_SIZE);
ec9516fb 2367 }
800d8c63 2368 SetPageUptodate(head);
ec9516fb 2369 }
800d15a5 2370 set_page_dirty(page);
6746aff7 2371 unlock_page(page);
09cbfeaf 2372 put_page(page);
800d15a5 2373
800d15a5 2374 return copied;
1da177e4
LT
2375}
2376
2ba5bbed 2377static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2378{
6e58e79d
AV
2379 struct file *file = iocb->ki_filp;
2380 struct inode *inode = file_inode(file);
1da177e4 2381 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2382 pgoff_t index;
2383 unsigned long offset;
a0ee5ec5 2384 enum sgp_type sgp = SGP_READ;
f7c1d074 2385 int error = 0;
cb66a7a1 2386 ssize_t retval = 0;
6e58e79d 2387 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2388
2389 /*
2390 * Might this read be for a stacking filesystem? Then when reading
2391 * holes of a sparse file, we actually need to allocate those pages,
2392 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2393 */
777eda2c 2394 if (!iter_is_iovec(to))
75edd345 2395 sgp = SGP_CACHE;
1da177e4 2396
09cbfeaf
KS
2397 index = *ppos >> PAGE_SHIFT;
2398 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2399
2400 for (;;) {
2401 struct page *page = NULL;
41ffe5d5
HD
2402 pgoff_t end_index;
2403 unsigned long nr, ret;
1da177e4
LT
2404 loff_t i_size = i_size_read(inode);
2405
09cbfeaf 2406 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2407 if (index > end_index)
2408 break;
2409 if (index == end_index) {
09cbfeaf 2410 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2411 if (nr <= offset)
2412 break;
2413 }
2414
9e18eb29 2415 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2416 if (error) {
2417 if (error == -EINVAL)
2418 error = 0;
1da177e4
LT
2419 break;
2420 }
75edd345
HD
2421 if (page) {
2422 if (sgp == SGP_CACHE)
2423 set_page_dirty(page);
d3602444 2424 unlock_page(page);
75edd345 2425 }
1da177e4
LT
2426
2427 /*
2428 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2429 * are called without i_mutex protection against truncate
1da177e4 2430 */
09cbfeaf 2431 nr = PAGE_SIZE;
1da177e4 2432 i_size = i_size_read(inode);
09cbfeaf 2433 end_index = i_size >> PAGE_SHIFT;
1da177e4 2434 if (index == end_index) {
09cbfeaf 2435 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2436 if (nr <= offset) {
2437 if (page)
09cbfeaf 2438 put_page(page);
1da177e4
LT
2439 break;
2440 }
2441 }
2442 nr -= offset;
2443
2444 if (page) {
2445 /*
2446 * If users can be writing to this page using arbitrary
2447 * virtual addresses, take care about potential aliasing
2448 * before reading the page on the kernel side.
2449 */
2450 if (mapping_writably_mapped(mapping))
2451 flush_dcache_page(page);
2452 /*
2453 * Mark the page accessed if we read the beginning.
2454 */
2455 if (!offset)
2456 mark_page_accessed(page);
b5810039 2457 } else {
1da177e4 2458 page = ZERO_PAGE(0);
09cbfeaf 2459 get_page(page);
b5810039 2460 }
1da177e4
LT
2461
2462 /*
2463 * Ok, we have the page, and it's up-to-date, so
2464 * now we can copy it to user space...
1da177e4 2465 */
2ba5bbed 2466 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2467 retval += ret;
1da177e4 2468 offset += ret;
09cbfeaf
KS
2469 index += offset >> PAGE_SHIFT;
2470 offset &= ~PAGE_MASK;
1da177e4 2471
09cbfeaf 2472 put_page(page);
2ba5bbed 2473 if (!iov_iter_count(to))
1da177e4 2474 break;
6e58e79d
AV
2475 if (ret < nr) {
2476 error = -EFAULT;
2477 break;
2478 }
1da177e4
LT
2479 cond_resched();
2480 }
2481
09cbfeaf 2482 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2483 file_accessed(file);
2484 return retval ? retval : error;
1da177e4
LT
2485}
2486
220f2ac9
HD
2487/*
2488 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2489 */
2490static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2491 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2492{
2493 struct page *page;
2494 struct pagevec pvec;
2495 pgoff_t indices[PAGEVEC_SIZE];
2496 bool done = false;
2497 int i;
2498
2499 pagevec_init(&pvec, 0);
2500 pvec.nr = 1; /* start small: we may be there already */
2501 while (!done) {
0cd6144a 2502 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2503 pvec.nr, pvec.pages, indices);
2504 if (!pvec.nr) {
965c8e59 2505 if (whence == SEEK_DATA)
220f2ac9
HD
2506 index = end;
2507 break;
2508 }
2509 for (i = 0; i < pvec.nr; i++, index++) {
2510 if (index < indices[i]) {
965c8e59 2511 if (whence == SEEK_HOLE) {
220f2ac9
HD
2512 done = true;
2513 break;
2514 }
2515 index = indices[i];
2516 }
2517 page = pvec.pages[i];
2518 if (page && !radix_tree_exceptional_entry(page)) {
2519 if (!PageUptodate(page))
2520 page = NULL;
2521 }
2522 if (index >= end ||
965c8e59
AM
2523 (page && whence == SEEK_DATA) ||
2524 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2525 done = true;
2526 break;
2527 }
2528 }
0cd6144a 2529 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2530 pagevec_release(&pvec);
2531 pvec.nr = PAGEVEC_SIZE;
2532 cond_resched();
2533 }
2534 return index;
2535}
2536
965c8e59 2537static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2538{
2539 struct address_space *mapping = file->f_mapping;
2540 struct inode *inode = mapping->host;
2541 pgoff_t start, end;
2542 loff_t new_offset;
2543
965c8e59
AM
2544 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2545 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2546 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2547 inode_lock(inode);
220f2ac9
HD
2548 /* We're holding i_mutex so we can access i_size directly */
2549
2550 if (offset < 0)
2551 offset = -EINVAL;
2552 else if (offset >= inode->i_size)
2553 offset = -ENXIO;
2554 else {
09cbfeaf
KS
2555 start = offset >> PAGE_SHIFT;
2556 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2557 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2558 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2559 if (new_offset > offset) {
2560 if (new_offset < inode->i_size)
2561 offset = new_offset;
965c8e59 2562 else if (whence == SEEK_DATA)
220f2ac9
HD
2563 offset = -ENXIO;
2564 else
2565 offset = inode->i_size;
2566 }
2567 }
2568
387aae6f
HD
2569 if (offset >= 0)
2570 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2571 inode_unlock(inode);
220f2ac9
HD
2572 return offset;
2573}
2574
05f65b5c
DH
2575/*
2576 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2577 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2578 */
2579#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2580#define LAST_SCAN 4 /* about 150ms max */
2581
2582static void shmem_tag_pins(struct address_space *mapping)
2583{
2584 struct radix_tree_iter iter;
2585 void **slot;
2586 pgoff_t start;
2587 struct page *page;
2588
2589 lru_add_drain();
2590 start = 0;
2591 rcu_read_lock();
2592
05f65b5c
DH
2593 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2594 page = radix_tree_deref_slot(slot);
2595 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2596 if (radix_tree_deref_retry(page)) {
2597 slot = radix_tree_iter_retry(&iter);
2598 continue;
2599 }
05f65b5c
DH
2600 } else if (page_count(page) - page_mapcount(page) > 1) {
2601 spin_lock_irq(&mapping->tree_lock);
2602 radix_tree_tag_set(&mapping->page_tree, iter.index,
2603 SHMEM_TAG_PINNED);
2604 spin_unlock_irq(&mapping->tree_lock);
2605 }
2606
2607 if (need_resched()) {
148deab2 2608 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2609 cond_resched_rcu();
05f65b5c
DH
2610 }
2611 }
2612 rcu_read_unlock();
2613}
2614
2615/*
2616 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2617 * via get_user_pages(), drivers might have some pending I/O without any active
2618 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2619 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2620 * them to be dropped.
2621 * The caller must guarantee that no new user will acquire writable references
2622 * to those pages to avoid races.
2623 */
40e041a2
DH
2624static int shmem_wait_for_pins(struct address_space *mapping)
2625{
05f65b5c
DH
2626 struct radix_tree_iter iter;
2627 void **slot;
2628 pgoff_t start;
2629 struct page *page;
2630 int error, scan;
2631
2632 shmem_tag_pins(mapping);
2633
2634 error = 0;
2635 for (scan = 0; scan <= LAST_SCAN; scan++) {
2636 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2637 break;
2638
2639 if (!scan)
2640 lru_add_drain_all();
2641 else if (schedule_timeout_killable((HZ << scan) / 200))
2642 scan = LAST_SCAN;
2643
2644 start = 0;
2645 rcu_read_lock();
05f65b5c
DH
2646 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2647 start, SHMEM_TAG_PINNED) {
2648
2649 page = radix_tree_deref_slot(slot);
2650 if (radix_tree_exception(page)) {
2cf938aa
MW
2651 if (radix_tree_deref_retry(page)) {
2652 slot = radix_tree_iter_retry(&iter);
2653 continue;
2654 }
05f65b5c
DH
2655
2656 page = NULL;
2657 }
2658
2659 if (page &&
2660 page_count(page) - page_mapcount(page) != 1) {
2661 if (scan < LAST_SCAN)
2662 goto continue_resched;
2663
2664 /*
2665 * On the last scan, we clean up all those tags
2666 * we inserted; but make a note that we still
2667 * found pages pinned.
2668 */
2669 error = -EBUSY;
2670 }
2671
2672 spin_lock_irq(&mapping->tree_lock);
2673 radix_tree_tag_clear(&mapping->page_tree,
2674 iter.index, SHMEM_TAG_PINNED);
2675 spin_unlock_irq(&mapping->tree_lock);
2676continue_resched:
2677 if (need_resched()) {
148deab2 2678 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2679 cond_resched_rcu();
05f65b5c
DH
2680 }
2681 }
2682 rcu_read_unlock();
2683 }
2684
2685 return error;
40e041a2
DH
2686}
2687
2688#define F_ALL_SEALS (F_SEAL_SEAL | \
2689 F_SEAL_SHRINK | \
2690 F_SEAL_GROW | \
2691 F_SEAL_WRITE)
2692
2693int shmem_add_seals(struct file *file, unsigned int seals)
2694{
2695 struct inode *inode = file_inode(file);
2696 struct shmem_inode_info *info = SHMEM_I(inode);
2697 int error;
2698
2699 /*
2700 * SEALING
2701 * Sealing allows multiple parties to share a shmem-file but restrict
2702 * access to a specific subset of file operations. Seals can only be
2703 * added, but never removed. This way, mutually untrusted parties can
2704 * share common memory regions with a well-defined policy. A malicious
2705 * peer can thus never perform unwanted operations on a shared object.
2706 *
2707 * Seals are only supported on special shmem-files and always affect
2708 * the whole underlying inode. Once a seal is set, it may prevent some
2709 * kinds of access to the file. Currently, the following seals are
2710 * defined:
2711 * SEAL_SEAL: Prevent further seals from being set on this file
2712 * SEAL_SHRINK: Prevent the file from shrinking
2713 * SEAL_GROW: Prevent the file from growing
2714 * SEAL_WRITE: Prevent write access to the file
2715 *
2716 * As we don't require any trust relationship between two parties, we
2717 * must prevent seals from being removed. Therefore, sealing a file
2718 * only adds a given set of seals to the file, it never touches
2719 * existing seals. Furthermore, the "setting seals"-operation can be
2720 * sealed itself, which basically prevents any further seal from being
2721 * added.
2722 *
2723 * Semantics of sealing are only defined on volatile files. Only
2724 * anonymous shmem files support sealing. More importantly, seals are
2725 * never written to disk. Therefore, there's no plan to support it on
2726 * other file types.
2727 */
2728
2729 if (file->f_op != &shmem_file_operations)
2730 return -EINVAL;
2731 if (!(file->f_mode & FMODE_WRITE))
2732 return -EPERM;
2733 if (seals & ~(unsigned int)F_ALL_SEALS)
2734 return -EINVAL;
2735
5955102c 2736 inode_lock(inode);
40e041a2
DH
2737
2738 if (info->seals & F_SEAL_SEAL) {
2739 error = -EPERM;
2740 goto unlock;
2741 }
2742
2743 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2744 error = mapping_deny_writable(file->f_mapping);
2745 if (error)
2746 goto unlock;
2747
2748 error = shmem_wait_for_pins(file->f_mapping);
2749 if (error) {
2750 mapping_allow_writable(file->f_mapping);
2751 goto unlock;
2752 }
2753 }
2754
2755 info->seals |= seals;
2756 error = 0;
2757
2758unlock:
5955102c 2759 inode_unlock(inode);
40e041a2
DH
2760 return error;
2761}
2762EXPORT_SYMBOL_GPL(shmem_add_seals);
2763
2764int shmem_get_seals(struct file *file)
2765{
2766 if (file->f_op != &shmem_file_operations)
2767 return -EINVAL;
2768
2769 return SHMEM_I(file_inode(file))->seals;
2770}
2771EXPORT_SYMBOL_GPL(shmem_get_seals);
2772
2773long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2774{
2775 long error;
2776
2777 switch (cmd) {
2778 case F_ADD_SEALS:
2779 /* disallow upper 32bit */
2780 if (arg > UINT_MAX)
2781 return -EINVAL;
2782
2783 error = shmem_add_seals(file, arg);
2784 break;
2785 case F_GET_SEALS:
2786 error = shmem_get_seals(file);
2787 break;
2788 default:
2789 error = -EINVAL;
2790 break;
2791 }
2792
2793 return error;
2794}
2795
83e4fa9c
HD
2796static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2797 loff_t len)
2798{
496ad9aa 2799 struct inode *inode = file_inode(file);
e2d12e22 2800 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2801 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2802 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2803 pgoff_t start, index, end;
2804 int error;
83e4fa9c 2805
13ace4d0
HD
2806 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2807 return -EOPNOTSUPP;
2808
5955102c 2809 inode_lock(inode);
83e4fa9c
HD
2810
2811 if (mode & FALLOC_FL_PUNCH_HOLE) {
2812 struct address_space *mapping = file->f_mapping;
2813 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2814 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2815 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2816
40e041a2
DH
2817 /* protected by i_mutex */
2818 if (info->seals & F_SEAL_WRITE) {
2819 error = -EPERM;
2820 goto out;
2821 }
2822
8e205f77 2823 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2824 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2825 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2826 spin_lock(&inode->i_lock);
2827 inode->i_private = &shmem_falloc;
2828 spin_unlock(&inode->i_lock);
2829
83e4fa9c
HD
2830 if ((u64)unmap_end > (u64)unmap_start)
2831 unmap_mapping_range(mapping, unmap_start,
2832 1 + unmap_end - unmap_start, 0);
2833 shmem_truncate_range(inode, offset, offset + len - 1);
2834 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2835
2836 spin_lock(&inode->i_lock);
2837 inode->i_private = NULL;
2838 wake_up_all(&shmem_falloc_waitq);
10d20bd2 2839 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
8e205f77 2840 spin_unlock(&inode->i_lock);
83e4fa9c 2841 error = 0;
8e205f77 2842 goto out;
e2d12e22
HD
2843 }
2844
2845 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2846 error = inode_newsize_ok(inode, offset + len);
2847 if (error)
2848 goto out;
2849
40e041a2
DH
2850 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2851 error = -EPERM;
2852 goto out;
2853 }
2854
09cbfeaf
KS
2855 start = offset >> PAGE_SHIFT;
2856 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2857 /* Try to avoid a swapstorm if len is impossible to satisfy */
2858 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2859 error = -ENOSPC;
2860 goto out;
83e4fa9c
HD
2861 }
2862
8e205f77 2863 shmem_falloc.waitq = NULL;
1aac1400
HD
2864 shmem_falloc.start = start;
2865 shmem_falloc.next = start;
2866 shmem_falloc.nr_falloced = 0;
2867 shmem_falloc.nr_unswapped = 0;
2868 spin_lock(&inode->i_lock);
2869 inode->i_private = &shmem_falloc;
2870 spin_unlock(&inode->i_lock);
2871
e2d12e22
HD
2872 for (index = start; index < end; index++) {
2873 struct page *page;
2874
2875 /*
2876 * Good, the fallocate(2) manpage permits EINTR: we may have
2877 * been interrupted because we are using up too much memory.
2878 */
2879 if (signal_pending(current))
2880 error = -EINTR;
1aac1400
HD
2881 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2882 error = -ENOMEM;
e2d12e22 2883 else
9e18eb29 2884 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2885 if (error) {
1635f6a7 2886 /* Remove the !PageUptodate pages we added */
7f556567
HD
2887 if (index > start) {
2888 shmem_undo_range(inode,
2889 (loff_t)start << PAGE_SHIFT,
2890 ((loff_t)index << PAGE_SHIFT) - 1, true);
2891 }
1aac1400 2892 goto undone;
e2d12e22
HD
2893 }
2894
1aac1400
HD
2895 /*
2896 * Inform shmem_writepage() how far we have reached.
2897 * No need for lock or barrier: we have the page lock.
2898 */
2899 shmem_falloc.next++;
2900 if (!PageUptodate(page))
2901 shmem_falloc.nr_falloced++;
2902
e2d12e22 2903 /*
1635f6a7
HD
2904 * If !PageUptodate, leave it that way so that freeable pages
2905 * can be recognized if we need to rollback on error later.
2906 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2907 * than free the pages we are allocating (and SGP_CACHE pages
2908 * might still be clean: we now need to mark those dirty too).
2909 */
2910 set_page_dirty(page);
2911 unlock_page(page);
09cbfeaf 2912 put_page(page);
e2d12e22
HD
2913 cond_resched();
2914 }
2915
2916 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2917 i_size_write(inode, offset + len);
078cd827 2918 inode->i_ctime = current_time(inode);
1aac1400
HD
2919undone:
2920 spin_lock(&inode->i_lock);
2921 inode->i_private = NULL;
2922 spin_unlock(&inode->i_lock);
e2d12e22 2923out:
5955102c 2924 inode_unlock(inode);
83e4fa9c
HD
2925 return error;
2926}
2927
726c3342 2928static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2929{
726c3342 2930 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2931
2932 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2933 buf->f_bsize = PAGE_SIZE;
1da177e4 2934 buf->f_namelen = NAME_MAX;
0edd73b3 2935 if (sbinfo->max_blocks) {
1da177e4 2936 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2937 buf->f_bavail =
2938 buf->f_bfree = sbinfo->max_blocks -
2939 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2940 }
2941 if (sbinfo->max_inodes) {
1da177e4
LT
2942 buf->f_files = sbinfo->max_inodes;
2943 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2944 }
2945 /* else leave those fields 0 like simple_statfs */
2946 return 0;
2947}
2948
2949/*
2950 * File creation. Allocate an inode, and we're done..
2951 */
2952static int
1a67aafb 2953shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2954{
0b0a0806 2955 struct inode *inode;
1da177e4
LT
2956 int error = -ENOSPC;
2957
454abafe 2958 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2959 if (inode) {
feda821e
CH
2960 error = simple_acl_create(dir, inode);
2961 if (error)
2962 goto out_iput;
2a7dba39 2963 error = security_inode_init_security(inode, dir,
9d8f13ba 2964 &dentry->d_name,
6d9d88d0 2965 shmem_initxattrs, NULL);
feda821e
CH
2966 if (error && error != -EOPNOTSUPP)
2967 goto out_iput;
37ec43cd 2968
718deb6b 2969 error = 0;
1da177e4 2970 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2971 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2972 d_instantiate(dentry, inode);
2973 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2974 }
2975 return error;
feda821e
CH
2976out_iput:
2977 iput(inode);
2978 return error;
1da177e4
LT
2979}
2980
60545d0d
AV
2981static int
2982shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2983{
2984 struct inode *inode;
2985 int error = -ENOSPC;
2986
2987 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2988 if (inode) {
2989 error = security_inode_init_security(inode, dir,
2990 NULL,
2991 shmem_initxattrs, NULL);
feda821e
CH
2992 if (error && error != -EOPNOTSUPP)
2993 goto out_iput;
2994 error = simple_acl_create(dir, inode);
2995 if (error)
2996 goto out_iput;
60545d0d
AV
2997 d_tmpfile(dentry, inode);
2998 }
2999 return error;
feda821e
CH
3000out_iput:
3001 iput(inode);
3002 return error;
60545d0d
AV
3003}
3004
18bb1db3 3005static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3006{
3007 int error;
3008
3009 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3010 return error;
d8c76e6f 3011 inc_nlink(dir);
1da177e4
LT
3012 return 0;
3013}
3014
4acdaf27 3015static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3016 bool excl)
1da177e4
LT
3017{
3018 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3019}
3020
3021/*
3022 * Link a file..
3023 */
3024static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3025{
75c3cfa8 3026 struct inode *inode = d_inode(old_dentry);
5b04c689 3027 int ret;
1da177e4
LT
3028
3029 /*
3030 * No ordinary (disk based) filesystem counts links as inodes;
3031 * but each new link needs a new dentry, pinning lowmem, and
3032 * tmpfs dentries cannot be pruned until they are unlinked.
3033 */
5b04c689
PE
3034 ret = shmem_reserve_inode(inode->i_sb);
3035 if (ret)
3036 goto out;
1da177e4
LT
3037
3038 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3039 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3040 inc_nlink(inode);
7de9c6ee 3041 ihold(inode); /* New dentry reference */
1da177e4
LT
3042 dget(dentry); /* Extra pinning count for the created dentry */
3043 d_instantiate(dentry, inode);
5b04c689
PE
3044out:
3045 return ret;
1da177e4
LT
3046}
3047
3048static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3049{
75c3cfa8 3050 struct inode *inode = d_inode(dentry);
1da177e4 3051
5b04c689
PE
3052 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3053 shmem_free_inode(inode->i_sb);
1da177e4
LT
3054
3055 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3056 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3057 drop_nlink(inode);
1da177e4
LT
3058 dput(dentry); /* Undo the count from "create" - this does all the work */
3059 return 0;
3060}
3061
3062static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3063{
3064 if (!simple_empty(dentry))
3065 return -ENOTEMPTY;
3066
75c3cfa8 3067 drop_nlink(d_inode(dentry));
9a53c3a7 3068 drop_nlink(dir);
1da177e4
LT
3069 return shmem_unlink(dir, dentry);
3070}
3071
37456771
MS
3072static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3073{
e36cb0b8
DH
3074 bool old_is_dir = d_is_dir(old_dentry);
3075 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3076
3077 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3078 if (old_is_dir) {
3079 drop_nlink(old_dir);
3080 inc_nlink(new_dir);
3081 } else {
3082 drop_nlink(new_dir);
3083 inc_nlink(old_dir);
3084 }
3085 }
3086 old_dir->i_ctime = old_dir->i_mtime =
3087 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3088 d_inode(old_dentry)->i_ctime =
078cd827 3089 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3090
3091 return 0;
3092}
3093
46fdb794
MS
3094static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3095{
3096 struct dentry *whiteout;
3097 int error;
3098
3099 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3100 if (!whiteout)
3101 return -ENOMEM;
3102
3103 error = shmem_mknod(old_dir, whiteout,
3104 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3105 dput(whiteout);
3106 if (error)
3107 return error;
3108
3109 /*
3110 * Cheat and hash the whiteout while the old dentry is still in
3111 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3112 *
3113 * d_lookup() will consistently find one of them at this point,
3114 * not sure which one, but that isn't even important.
3115 */
3116 d_rehash(whiteout);
3117 return 0;
3118}
3119
1da177e4
LT
3120/*
3121 * The VFS layer already does all the dentry stuff for rename,
3122 * we just have to decrement the usage count for the target if
3123 * it exists so that the VFS layer correctly free's it when it
3124 * gets overwritten.
3125 */
3b69ff51 3126static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3127{
75c3cfa8 3128 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3129 int they_are_dirs = S_ISDIR(inode->i_mode);
3130
46fdb794 3131 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3132 return -EINVAL;
3133
37456771
MS
3134 if (flags & RENAME_EXCHANGE)
3135 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3136
1da177e4
LT
3137 if (!simple_empty(new_dentry))
3138 return -ENOTEMPTY;
3139
46fdb794
MS
3140 if (flags & RENAME_WHITEOUT) {
3141 int error;
3142
3143 error = shmem_whiteout(old_dir, old_dentry);
3144 if (error)
3145 return error;
3146 }
3147
75c3cfa8 3148 if (d_really_is_positive(new_dentry)) {
1da177e4 3149 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3150 if (they_are_dirs) {
75c3cfa8 3151 drop_nlink(d_inode(new_dentry));
9a53c3a7 3152 drop_nlink(old_dir);
b928095b 3153 }
1da177e4 3154 } else if (they_are_dirs) {
9a53c3a7 3155 drop_nlink(old_dir);
d8c76e6f 3156 inc_nlink(new_dir);
1da177e4
LT
3157 }
3158
3159 old_dir->i_size -= BOGO_DIRENT_SIZE;
3160 new_dir->i_size += BOGO_DIRENT_SIZE;
3161 old_dir->i_ctime = old_dir->i_mtime =
3162 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3163 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3164 return 0;
3165}
3166
3167static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3168{
3169 int error;
3170 int len;
3171 struct inode *inode;
9276aad6 3172 struct page *page;
1da177e4
LT
3173 struct shmem_inode_info *info;
3174
3175 len = strlen(symname) + 1;
09cbfeaf 3176 if (len > PAGE_SIZE)
1da177e4
LT
3177 return -ENAMETOOLONG;
3178
454abafe 3179 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3180 if (!inode)
3181 return -ENOSPC;
3182
9d8f13ba 3183 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3184 shmem_initxattrs, NULL);
570bc1c2
SS
3185 if (error) {
3186 if (error != -EOPNOTSUPP) {
3187 iput(inode);
3188 return error;
3189 }
3190 error = 0;
3191 }
3192
1da177e4
LT
3193 info = SHMEM_I(inode);
3194 inode->i_size = len-1;
69f07ec9 3195 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3196 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3197 if (!inode->i_link) {
69f07ec9
HD
3198 iput(inode);
3199 return -ENOMEM;
3200 }
3201 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3202 } else {
e8ecde25 3203 inode_nohighmem(inode);
9e18eb29 3204 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3205 if (error) {
3206 iput(inode);
3207 return error;
3208 }
14fcc23f 3209 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3210 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3211 memcpy(page_address(page), symname, len);
ec9516fb 3212 SetPageUptodate(page);
1da177e4 3213 set_page_dirty(page);
6746aff7 3214 unlock_page(page);
09cbfeaf 3215 put_page(page);
1da177e4 3216 }
1da177e4 3217 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3218 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3219 d_instantiate(dentry, inode);
3220 dget(dentry);
3221 return 0;
3222}
3223
fceef393 3224static void shmem_put_link(void *arg)
1da177e4 3225{
fceef393
AV
3226 mark_page_accessed(arg);
3227 put_page(arg);
1da177e4
LT
3228}
3229
6b255391 3230static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3231 struct inode *inode,
3232 struct delayed_call *done)
1da177e4 3233{
1da177e4 3234 struct page *page = NULL;
6b255391 3235 int error;
6a6c9904
AV
3236 if (!dentry) {
3237 page = find_get_page(inode->i_mapping, 0);
3238 if (!page)
3239 return ERR_PTR(-ECHILD);
3240 if (!PageUptodate(page)) {
3241 put_page(page);
3242 return ERR_PTR(-ECHILD);
3243 }
3244 } else {
9e18eb29 3245 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3246 if (error)
3247 return ERR_PTR(error);
3248 unlock_page(page);
3249 }
fceef393 3250 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3251 return page_address(page);
1da177e4
LT
3252}
3253
b09e0fa4 3254#ifdef CONFIG_TMPFS_XATTR
46711810 3255/*
b09e0fa4
EP
3256 * Superblocks without xattr inode operations may get some security.* xattr
3257 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3258 * like ACLs, we also need to implement the security.* handlers at
3259 * filesystem level, though.
3260 */
3261
6d9d88d0
JS
3262/*
3263 * Callback for security_inode_init_security() for acquiring xattrs.
3264 */
3265static int shmem_initxattrs(struct inode *inode,
3266 const struct xattr *xattr_array,
3267 void *fs_info)
3268{
3269 struct shmem_inode_info *info = SHMEM_I(inode);
3270 const struct xattr *xattr;
38f38657 3271 struct simple_xattr *new_xattr;
6d9d88d0
JS
3272 size_t len;
3273
3274 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3275 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3276 if (!new_xattr)
3277 return -ENOMEM;
3278
3279 len = strlen(xattr->name) + 1;
3280 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3281 GFP_KERNEL);
3282 if (!new_xattr->name) {
3283 kfree(new_xattr);
3284 return -ENOMEM;
3285 }
3286
3287 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3288 XATTR_SECURITY_PREFIX_LEN);
3289 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3290 xattr->name, len);
3291
38f38657 3292 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3293 }
3294
3295 return 0;
3296}
3297
aa7c5241 3298static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3299 struct dentry *unused, struct inode *inode,
3300 const char *name, void *buffer, size_t size)
b09e0fa4 3301{
b296821a 3302 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3303
aa7c5241 3304 name = xattr_full_name(handler, name);
38f38657 3305 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3306}
3307
aa7c5241 3308static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3309 struct dentry *unused, struct inode *inode,
3310 const char *name, const void *value,
3311 size_t size, int flags)
b09e0fa4 3312{
59301226 3313 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3314
aa7c5241 3315 name = xattr_full_name(handler, name);
38f38657 3316 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3317}
3318
aa7c5241
AG
3319static const struct xattr_handler shmem_security_xattr_handler = {
3320 .prefix = XATTR_SECURITY_PREFIX,
3321 .get = shmem_xattr_handler_get,
3322 .set = shmem_xattr_handler_set,
3323};
b09e0fa4 3324
aa7c5241
AG
3325static const struct xattr_handler shmem_trusted_xattr_handler = {
3326 .prefix = XATTR_TRUSTED_PREFIX,
3327 .get = shmem_xattr_handler_get,
3328 .set = shmem_xattr_handler_set,
3329};
b09e0fa4 3330
aa7c5241
AG
3331static const struct xattr_handler *shmem_xattr_handlers[] = {
3332#ifdef CONFIG_TMPFS_POSIX_ACL
3333 &posix_acl_access_xattr_handler,
3334 &posix_acl_default_xattr_handler,
3335#endif
3336 &shmem_security_xattr_handler,
3337 &shmem_trusted_xattr_handler,
3338 NULL
3339};
b09e0fa4
EP
3340
3341static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3342{
75c3cfa8 3343 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3344 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3345}
3346#endif /* CONFIG_TMPFS_XATTR */
3347
69f07ec9 3348static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3349 .get_link = simple_get_link,
b09e0fa4 3350#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3351 .listxattr = shmem_listxattr,
b09e0fa4
EP
3352#endif
3353};
3354
3355static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3356 .get_link = shmem_get_link,
b09e0fa4 3357#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3358 .listxattr = shmem_listxattr,
39f0247d 3359#endif
b09e0fa4 3360};
39f0247d 3361
91828a40
DG
3362static struct dentry *shmem_get_parent(struct dentry *child)
3363{
3364 return ERR_PTR(-ESTALE);
3365}
3366
3367static int shmem_match(struct inode *ino, void *vfh)
3368{
3369 __u32 *fh = vfh;
3370 __u64 inum = fh[2];
3371 inum = (inum << 32) | fh[1];
3372 return ino->i_ino == inum && fh[0] == ino->i_generation;
3373}
3374
480b116c
CH
3375static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3376 struct fid *fid, int fh_len, int fh_type)
91828a40 3377{
91828a40 3378 struct inode *inode;
480b116c 3379 struct dentry *dentry = NULL;
35c2a7f4 3380 u64 inum;
480b116c
CH
3381
3382 if (fh_len < 3)
3383 return NULL;
91828a40 3384
35c2a7f4
HD
3385 inum = fid->raw[2];
3386 inum = (inum << 32) | fid->raw[1];
3387
480b116c
CH
3388 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3389 shmem_match, fid->raw);
91828a40 3390 if (inode) {
480b116c 3391 dentry = d_find_alias(inode);
91828a40
DG
3392 iput(inode);
3393 }
3394
480b116c 3395 return dentry;
91828a40
DG
3396}
3397
b0b0382b
AV
3398static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3399 struct inode *parent)
91828a40 3400{
5fe0c237
AK
3401 if (*len < 3) {
3402 *len = 3;
94e07a75 3403 return FILEID_INVALID;
5fe0c237 3404 }
91828a40 3405
1d3382cb 3406 if (inode_unhashed(inode)) {
91828a40
DG
3407 /* Unfortunately insert_inode_hash is not idempotent,
3408 * so as we hash inodes here rather than at creation
3409 * time, we need a lock to ensure we only try
3410 * to do it once
3411 */
3412 static DEFINE_SPINLOCK(lock);
3413 spin_lock(&lock);
1d3382cb 3414 if (inode_unhashed(inode))
91828a40
DG
3415 __insert_inode_hash(inode,
3416 inode->i_ino + inode->i_generation);
3417 spin_unlock(&lock);
3418 }
3419
3420 fh[0] = inode->i_generation;
3421 fh[1] = inode->i_ino;
3422 fh[2] = ((__u64)inode->i_ino) >> 32;
3423
3424 *len = 3;
3425 return 1;
3426}
3427
39655164 3428static const struct export_operations shmem_export_ops = {
91828a40 3429 .get_parent = shmem_get_parent,
91828a40 3430 .encode_fh = shmem_encode_fh,
480b116c 3431 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3432};
3433
680d794b
AM
3434static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3435 bool remount)
1da177e4
LT
3436{
3437 char *this_char, *value, *rest;
49cd0a5c 3438 struct mempolicy *mpol = NULL;
8751e039
EB
3439 uid_t uid;
3440 gid_t gid;
1da177e4 3441
b00dc3ad
HD
3442 while (options != NULL) {
3443 this_char = options;
3444 for (;;) {
3445 /*
3446 * NUL-terminate this option: unfortunately,
3447 * mount options form a comma-separated list,
3448 * but mpol's nodelist may also contain commas.
3449 */
3450 options = strchr(options, ',');
3451 if (options == NULL)
3452 break;
3453 options++;
3454 if (!isdigit(*options)) {
3455 options[-1] = '\0';
3456 break;
3457 }
3458 }
1da177e4
LT
3459 if (!*this_char)
3460 continue;
3461 if ((value = strchr(this_char,'=')) != NULL) {
3462 *value++ = 0;
3463 } else {
1170532b
JP
3464 pr_err("tmpfs: No value for mount option '%s'\n",
3465 this_char);
49cd0a5c 3466 goto error;
1da177e4
LT
3467 }
3468
3469 if (!strcmp(this_char,"size")) {
3470 unsigned long long size;
3471 size = memparse(value,&rest);
3472 if (*rest == '%') {
3473 size <<= PAGE_SHIFT;
3474 size *= totalram_pages;
3475 do_div(size, 100);
3476 rest++;
3477 }
3478 if (*rest)
3479 goto bad_val;
680d794b 3480 sbinfo->max_blocks =
09cbfeaf 3481 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3482 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3483 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3484 if (*rest)
3485 goto bad_val;
3486 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3487 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3488 if (*rest)
3489 goto bad_val;
3490 } else if (!strcmp(this_char,"mode")) {
680d794b 3491 if (remount)
1da177e4 3492 continue;
680d794b 3493 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3494 if (*rest)
3495 goto bad_val;
3496 } else if (!strcmp(this_char,"uid")) {
680d794b 3497 if (remount)
1da177e4 3498 continue;
8751e039 3499 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3500 if (*rest)
3501 goto bad_val;
8751e039
EB
3502 sbinfo->uid = make_kuid(current_user_ns(), uid);
3503 if (!uid_valid(sbinfo->uid))
3504 goto bad_val;
1da177e4 3505 } else if (!strcmp(this_char,"gid")) {
680d794b 3506 if (remount)
1da177e4 3507 continue;
8751e039 3508 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3509 if (*rest)
3510 goto bad_val;
8751e039
EB
3511 sbinfo->gid = make_kgid(current_user_ns(), gid);
3512 if (!gid_valid(sbinfo->gid))
3513 goto bad_val;
e496cf3d 3514#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3515 } else if (!strcmp(this_char, "huge")) {
3516 int huge;
3517 huge = shmem_parse_huge(value);
3518 if (huge < 0)
3519 goto bad_val;
3520 if (!has_transparent_hugepage() &&
3521 huge != SHMEM_HUGE_NEVER)
3522 goto bad_val;
3523 sbinfo->huge = huge;
3524#endif
3525#ifdef CONFIG_NUMA
7339ff83 3526 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3527 mpol_put(mpol);
3528 mpol = NULL;
3529 if (mpol_parse_str(value, &mpol))
7339ff83 3530 goto bad_val;
5a6e75f8 3531#endif
1da177e4 3532 } else {
1170532b 3533 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3534 goto error;
1da177e4
LT
3535 }
3536 }
49cd0a5c 3537 sbinfo->mpol = mpol;
1da177e4
LT
3538 return 0;
3539
3540bad_val:
1170532b 3541 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3542 value, this_char);
49cd0a5c
GT
3543error:
3544 mpol_put(mpol);
1da177e4
LT
3545 return 1;
3546
3547}
3548
3549static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3550{
3551 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3552 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3553 unsigned long inodes;
3554 int error = -EINVAL;
3555
5f00110f 3556 config.mpol = NULL;
680d794b 3557 if (shmem_parse_options(data, &config, true))
0edd73b3 3558 return error;
1da177e4 3559
0edd73b3 3560 spin_lock(&sbinfo->stat_lock);
0edd73b3 3561 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3562 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3563 goto out;
680d794b 3564 if (config.max_inodes < inodes)
0edd73b3
HD
3565 goto out;
3566 /*
54af6042 3567 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3568 * but we must separately disallow unlimited->limited, because
3569 * in that case we have no record of how much is already in use.
3570 */
680d794b 3571 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3572 goto out;
680d794b 3573 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3574 goto out;
3575
3576 error = 0;
5a6e75f8 3577 sbinfo->huge = config.huge;
680d794b 3578 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3579 sbinfo->max_inodes = config.max_inodes;
3580 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3581
5f00110f
GT
3582 /*
3583 * Preserve previous mempolicy unless mpol remount option was specified.
3584 */
3585 if (config.mpol) {
3586 mpol_put(sbinfo->mpol);
3587 sbinfo->mpol = config.mpol; /* transfers initial ref */
3588 }
0edd73b3
HD
3589out:
3590 spin_unlock(&sbinfo->stat_lock);
3591 return error;
1da177e4 3592}
680d794b 3593
34c80b1d 3594static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3595{
34c80b1d 3596 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3597
3598 if (sbinfo->max_blocks != shmem_default_max_blocks())
3599 seq_printf(seq, ",size=%luk",
09cbfeaf 3600 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3601 if (sbinfo->max_inodes != shmem_default_max_inodes())
3602 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3603 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3604 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3605 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3606 seq_printf(seq, ",uid=%u",
3607 from_kuid_munged(&init_user_ns, sbinfo->uid));
3608 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3609 seq_printf(seq, ",gid=%u",
3610 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3611#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3612 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3613 if (sbinfo->huge)
3614 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3615#endif
71fe804b 3616 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3617 return 0;
3618}
9183df25
DH
3619
3620#define MFD_NAME_PREFIX "memfd:"
3621#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3622#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3623
3624#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3625
3626SYSCALL_DEFINE2(memfd_create,
3627 const char __user *, uname,
3628 unsigned int, flags)
3629{
3630 struct shmem_inode_info *info;
3631 struct file *file;
3632 int fd, error;
3633 char *name;
3634 long len;
3635
3636 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3637 return -EINVAL;
3638
3639 /* length includes terminating zero */
3640 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3641 if (len <= 0)
3642 return -EFAULT;
3643 if (len > MFD_NAME_MAX_LEN + 1)
3644 return -EINVAL;
3645
3646 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3647 if (!name)
3648 return -ENOMEM;
3649
3650 strcpy(name, MFD_NAME_PREFIX);
3651 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3652 error = -EFAULT;
3653 goto err_name;
3654 }
3655
3656 /* terminating-zero may have changed after strnlen_user() returned */
3657 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3658 error = -EFAULT;
3659 goto err_name;
3660 }
3661
3662 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3663 if (fd < 0) {
3664 error = fd;
3665 goto err_name;
3666 }
3667
3668 file = shmem_file_setup(name, 0, VM_NORESERVE);
3669 if (IS_ERR(file)) {
3670 error = PTR_ERR(file);
3671 goto err_fd;
3672 }
3673 info = SHMEM_I(file_inode(file));
3674 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3675 file->f_flags |= O_RDWR | O_LARGEFILE;
3676 if (flags & MFD_ALLOW_SEALING)
3677 info->seals &= ~F_SEAL_SEAL;
3678
3679 fd_install(fd, file);
3680 kfree(name);
3681 return fd;
3682
3683err_fd:
3684 put_unused_fd(fd);
3685err_name:
3686 kfree(name);
3687 return error;
3688}
3689
680d794b 3690#endif /* CONFIG_TMPFS */
1da177e4
LT
3691
3692static void shmem_put_super(struct super_block *sb)
3693{
602586a8
HD
3694 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3695
3696 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3697 mpol_put(sbinfo->mpol);
602586a8 3698 kfree(sbinfo);
1da177e4
LT
3699 sb->s_fs_info = NULL;
3700}
3701
2b2af54a 3702int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3703{
3704 struct inode *inode;
0edd73b3 3705 struct shmem_sb_info *sbinfo;
680d794b
AM
3706 int err = -ENOMEM;
3707
3708 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3709 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3710 L1_CACHE_BYTES), GFP_KERNEL);
3711 if (!sbinfo)
3712 return -ENOMEM;
3713
680d794b 3714 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3715 sbinfo->uid = current_fsuid();
3716 sbinfo->gid = current_fsgid();
680d794b 3717 sb->s_fs_info = sbinfo;
1da177e4 3718
0edd73b3 3719#ifdef CONFIG_TMPFS
1da177e4
LT
3720 /*
3721 * Per default we only allow half of the physical ram per
3722 * tmpfs instance, limiting inodes to one per page of lowmem;
3723 * but the internal instance is left unlimited.
3724 */
ca4e0519 3725 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3726 sbinfo->max_blocks = shmem_default_max_blocks();
3727 sbinfo->max_inodes = shmem_default_max_inodes();
3728 if (shmem_parse_options(data, sbinfo, false)) {
3729 err = -EINVAL;
3730 goto failed;
3731 }
ca4e0519
AV
3732 } else {
3733 sb->s_flags |= MS_NOUSER;
1da177e4 3734 }
91828a40 3735 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3736 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3737#else
3738 sb->s_flags |= MS_NOUSER;
3739#endif
3740
0edd73b3 3741 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3742 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3743 goto failed;
680d794b 3744 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3745 spin_lock_init(&sbinfo->shrinklist_lock);
3746 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3747
285b2c4f 3748 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3749 sb->s_blocksize = PAGE_SIZE;
3750 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3751 sb->s_magic = TMPFS_MAGIC;
3752 sb->s_op = &shmem_ops;
cfd95a9c 3753 sb->s_time_gran = 1;
b09e0fa4 3754#ifdef CONFIG_TMPFS_XATTR
39f0247d 3755 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3756#endif
3757#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3758 sb->s_flags |= MS_POSIXACL;
3759#endif
0edd73b3 3760
454abafe 3761 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3762 if (!inode)
3763 goto failed;
680d794b
AM
3764 inode->i_uid = sbinfo->uid;
3765 inode->i_gid = sbinfo->gid;
318ceed0
AV
3766 sb->s_root = d_make_root(inode);
3767 if (!sb->s_root)
48fde701 3768 goto failed;
1da177e4
LT
3769 return 0;
3770
1da177e4
LT
3771failed:
3772 shmem_put_super(sb);
3773 return err;
3774}
3775
fcc234f8 3776static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3777
3778static struct inode *shmem_alloc_inode(struct super_block *sb)
3779{
41ffe5d5
HD
3780 struct shmem_inode_info *info;
3781 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3782 if (!info)
1da177e4 3783 return NULL;
41ffe5d5 3784 return &info->vfs_inode;
1da177e4
LT
3785}
3786
41ffe5d5 3787static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3788{
3789 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3790 if (S_ISLNK(inode->i_mode))
3791 kfree(inode->i_link);
fa0d7e3d
NP
3792 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3793}
3794
1da177e4
LT
3795static void shmem_destroy_inode(struct inode *inode)
3796{
09208d15 3797 if (S_ISREG(inode->i_mode))
1da177e4 3798 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3799 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3800}
3801
41ffe5d5 3802static void shmem_init_inode(void *foo)
1da177e4 3803{
41ffe5d5
HD
3804 struct shmem_inode_info *info = foo;
3805 inode_init_once(&info->vfs_inode);
1da177e4
LT
3806}
3807
41ffe5d5 3808static int shmem_init_inodecache(void)
1da177e4
LT
3809{
3810 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3811 sizeof(struct shmem_inode_info),
5d097056 3812 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3813 return 0;
3814}
3815
41ffe5d5 3816static void shmem_destroy_inodecache(void)
1da177e4 3817{
1a1d92c1 3818 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3819}
3820
f5e54d6e 3821static const struct address_space_operations shmem_aops = {
1da177e4 3822 .writepage = shmem_writepage,
76719325 3823 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3824#ifdef CONFIG_TMPFS
800d15a5
NP
3825 .write_begin = shmem_write_begin,
3826 .write_end = shmem_write_end,
1da177e4 3827#endif
1c93923c 3828#ifdef CONFIG_MIGRATION
304dbdb7 3829 .migratepage = migrate_page,
1c93923c 3830#endif
aa261f54 3831 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3832};
3833
15ad7cdc 3834static const struct file_operations shmem_file_operations = {
1da177e4 3835 .mmap = shmem_mmap,
c01d5b30 3836 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3837#ifdef CONFIG_TMPFS
220f2ac9 3838 .llseek = shmem_file_llseek,
2ba5bbed 3839 .read_iter = shmem_file_read_iter,
8174202b 3840 .write_iter = generic_file_write_iter,
1b061d92 3841 .fsync = noop_fsync,
82c156f8 3842 .splice_read = generic_file_splice_read,
f6cb85d0 3843 .splice_write = iter_file_splice_write,
83e4fa9c 3844 .fallocate = shmem_fallocate,
1da177e4
LT
3845#endif
3846};
3847
92e1d5be 3848static const struct inode_operations shmem_inode_operations = {
44a30220 3849 .getattr = shmem_getattr,
94c1e62d 3850 .setattr = shmem_setattr,
b09e0fa4 3851#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3852 .listxattr = shmem_listxattr,
feda821e 3853 .set_acl = simple_set_acl,
b09e0fa4 3854#endif
1da177e4
LT
3855};
3856
92e1d5be 3857static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3858#ifdef CONFIG_TMPFS
3859 .create = shmem_create,
3860 .lookup = simple_lookup,
3861 .link = shmem_link,
3862 .unlink = shmem_unlink,
3863 .symlink = shmem_symlink,
3864 .mkdir = shmem_mkdir,
3865 .rmdir = shmem_rmdir,
3866 .mknod = shmem_mknod,
2773bf00 3867 .rename = shmem_rename2,
60545d0d 3868 .tmpfile = shmem_tmpfile,
1da177e4 3869#endif
b09e0fa4 3870#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3871 .listxattr = shmem_listxattr,
b09e0fa4 3872#endif
39f0247d 3873#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3874 .setattr = shmem_setattr,
feda821e 3875 .set_acl = simple_set_acl,
39f0247d
AG
3876#endif
3877};
3878
92e1d5be 3879static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3880#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3881 .listxattr = shmem_listxattr,
b09e0fa4 3882#endif
39f0247d 3883#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3884 .setattr = shmem_setattr,
feda821e 3885 .set_acl = simple_set_acl,
39f0247d 3886#endif
1da177e4
LT
3887};
3888
759b9775 3889static const struct super_operations shmem_ops = {
1da177e4
LT
3890 .alloc_inode = shmem_alloc_inode,
3891 .destroy_inode = shmem_destroy_inode,
3892#ifdef CONFIG_TMPFS
3893 .statfs = shmem_statfs,
3894 .remount_fs = shmem_remount_fs,
680d794b 3895 .show_options = shmem_show_options,
1da177e4 3896#endif
1f895f75 3897 .evict_inode = shmem_evict_inode,
1da177e4
LT
3898 .drop_inode = generic_delete_inode,
3899 .put_super = shmem_put_super,
779750d2
KS
3900#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3901 .nr_cached_objects = shmem_unused_huge_count,
3902 .free_cached_objects = shmem_unused_huge_scan,
3903#endif
1da177e4
LT
3904};
3905
f0f37e2f 3906static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3907 .fault = shmem_fault,
d7c17551 3908 .map_pages = filemap_map_pages,
1da177e4
LT
3909#ifdef CONFIG_NUMA
3910 .set_policy = shmem_set_policy,
3911 .get_policy = shmem_get_policy,
3912#endif
3913};
3914
3c26ff6e
AV
3915static struct dentry *shmem_mount(struct file_system_type *fs_type,
3916 int flags, const char *dev_name, void *data)
1da177e4 3917{
3c26ff6e 3918 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3919}
3920
41ffe5d5 3921static struct file_system_type shmem_fs_type = {
1da177e4
LT
3922 .owner = THIS_MODULE,
3923 .name = "tmpfs",
3c26ff6e 3924 .mount = shmem_mount,
1da177e4 3925 .kill_sb = kill_litter_super,
2b8576cb 3926 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3927};
1da177e4 3928
41ffe5d5 3929int __init shmem_init(void)
1da177e4
LT
3930{
3931 int error;
3932
16203a7a
RL
3933 /* If rootfs called this, don't re-init */
3934 if (shmem_inode_cachep)
3935 return 0;
3936
41ffe5d5 3937 error = shmem_init_inodecache();
1da177e4
LT
3938 if (error)
3939 goto out3;
3940
41ffe5d5 3941 error = register_filesystem(&shmem_fs_type);
1da177e4 3942 if (error) {
1170532b 3943 pr_err("Could not register tmpfs\n");
1da177e4
LT
3944 goto out2;
3945 }
95dc112a 3946
ca4e0519 3947 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3948 if (IS_ERR(shm_mnt)) {
3949 error = PTR_ERR(shm_mnt);
1170532b 3950 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3951 goto out1;
3952 }
5a6e75f8 3953
e496cf3d 3954#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3955 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3956 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3957 else
3958 shmem_huge = 0; /* just in case it was patched */
3959#endif
1da177e4
LT
3960 return 0;
3961
3962out1:
41ffe5d5 3963 unregister_filesystem(&shmem_fs_type);
1da177e4 3964out2:
41ffe5d5 3965 shmem_destroy_inodecache();
1da177e4
LT
3966out3:
3967 shm_mnt = ERR_PTR(error);
3968 return error;
3969}
853ac43a 3970
e496cf3d 3971#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3972static ssize_t shmem_enabled_show(struct kobject *kobj,
3973 struct kobj_attribute *attr, char *buf)
3974{
3975 int values[] = {
3976 SHMEM_HUGE_ALWAYS,
3977 SHMEM_HUGE_WITHIN_SIZE,
3978 SHMEM_HUGE_ADVISE,
3979 SHMEM_HUGE_NEVER,
3980 SHMEM_HUGE_DENY,
3981 SHMEM_HUGE_FORCE,
3982 };
3983 int i, count;
3984
3985 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3986 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3987
3988 count += sprintf(buf + count, fmt,
3989 shmem_format_huge(values[i]));
3990 }
3991 buf[count - 1] = '\n';
3992 return count;
3993}
3994
3995static ssize_t shmem_enabled_store(struct kobject *kobj,
3996 struct kobj_attribute *attr, const char *buf, size_t count)
3997{
3998 char tmp[16];
3999 int huge;
4000
4001 if (count + 1 > sizeof(tmp))
4002 return -EINVAL;
4003 memcpy(tmp, buf, count);
4004 tmp[count] = '\0';
4005 if (count && tmp[count - 1] == '\n')
4006 tmp[count - 1] = '\0';
4007
4008 huge = shmem_parse_huge(tmp);
4009 if (huge == -EINVAL)
4010 return -EINVAL;
4011 if (!has_transparent_hugepage() &&
4012 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4013 return -EINVAL;
4014
4015 shmem_huge = huge;
4016 if (shmem_huge < SHMEM_HUGE_DENY)
4017 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4018 return count;
4019}
4020
4021struct kobj_attribute shmem_enabled_attr =
4022 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4023#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4024
3b33719c 4025#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4026bool shmem_huge_enabled(struct vm_area_struct *vma)
4027{
4028 struct inode *inode = file_inode(vma->vm_file);
4029 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4030 loff_t i_size;
4031 pgoff_t off;
4032
4033 if (shmem_huge == SHMEM_HUGE_FORCE)
4034 return true;
4035 if (shmem_huge == SHMEM_HUGE_DENY)
4036 return false;
4037 switch (sbinfo->huge) {
4038 case SHMEM_HUGE_NEVER:
4039 return false;
4040 case SHMEM_HUGE_ALWAYS:
4041 return true;
4042 case SHMEM_HUGE_WITHIN_SIZE:
4043 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4044 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4045 if (i_size >= HPAGE_PMD_SIZE &&
4046 i_size >> PAGE_SHIFT >= off)
4047 return true;
4048 case SHMEM_HUGE_ADVISE:
4049 /* TODO: implement fadvise() hints */
4050 return (vma->vm_flags & VM_HUGEPAGE);
4051 default:
4052 VM_BUG_ON(1);
4053 return false;
4054 }
4055}
3b33719c 4056#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4057
853ac43a
MM
4058#else /* !CONFIG_SHMEM */
4059
4060/*
4061 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4062 *
4063 * This is intended for small system where the benefits of the full
4064 * shmem code (swap-backed and resource-limited) are outweighed by
4065 * their complexity. On systems without swap this code should be
4066 * effectively equivalent, but much lighter weight.
4067 */
4068
41ffe5d5 4069static struct file_system_type shmem_fs_type = {
853ac43a 4070 .name = "tmpfs",
3c26ff6e 4071 .mount = ramfs_mount,
853ac43a 4072 .kill_sb = kill_litter_super,
2b8576cb 4073 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4074};
4075
41ffe5d5 4076int __init shmem_init(void)
853ac43a 4077{
41ffe5d5 4078 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4079
41ffe5d5 4080 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4081 BUG_ON(IS_ERR(shm_mnt));
4082
4083 return 0;
4084}
4085
41ffe5d5 4086int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4087{
4088 return 0;
4089}
4090
3f96b79a
HD
4091int shmem_lock(struct file *file, int lock, struct user_struct *user)
4092{
4093 return 0;
4094}
4095
24513264
HD
4096void shmem_unlock_mapping(struct address_space *mapping)
4097{
4098}
4099
c01d5b30
HD
4100#ifdef CONFIG_MMU
4101unsigned long shmem_get_unmapped_area(struct file *file,
4102 unsigned long addr, unsigned long len,
4103 unsigned long pgoff, unsigned long flags)
4104{
4105 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4106}
4107#endif
4108
41ffe5d5 4109void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4110{
41ffe5d5 4111 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4112}
4113EXPORT_SYMBOL_GPL(shmem_truncate_range);
4114
0b0a0806
HD
4115#define shmem_vm_ops generic_file_vm_ops
4116#define shmem_file_operations ramfs_file_operations
454abafe 4117#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4118#define shmem_acct_size(flags, size) 0
4119#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4120
4121#endif /* CONFIG_SHMEM */
4122
4123/* common code */
1da177e4 4124
19938e35 4125static const struct dentry_operations anon_ops = {
118b2302 4126 .d_dname = simple_dname
3451538a
AV
4127};
4128
c7277090
EP
4129static struct file *__shmem_file_setup(const char *name, loff_t size,
4130 unsigned long flags, unsigned int i_flags)
1da177e4 4131{
6b4d0b27 4132 struct file *res;
1da177e4 4133 struct inode *inode;
2c48b9c4 4134 struct path path;
3451538a 4135 struct super_block *sb;
1da177e4
LT
4136 struct qstr this;
4137
4138 if (IS_ERR(shm_mnt))
6b4d0b27 4139 return ERR_CAST(shm_mnt);
1da177e4 4140
285b2c4f 4141 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4142 return ERR_PTR(-EINVAL);
4143
4144 if (shmem_acct_size(flags, size))
4145 return ERR_PTR(-ENOMEM);
4146
6b4d0b27 4147 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4148 this.name = name;
4149 this.len = strlen(name);
4150 this.hash = 0; /* will go */
3451538a 4151 sb = shm_mnt->mnt_sb;
66ee4b88 4152 path.mnt = mntget(shm_mnt);
3451538a 4153 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4154 if (!path.dentry)
1da177e4 4155 goto put_memory;
3451538a 4156 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4157
6b4d0b27 4158 res = ERR_PTR(-ENOSPC);
3451538a 4159 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4160 if (!inode)
66ee4b88 4161 goto put_memory;
1da177e4 4162
c7277090 4163 inode->i_flags |= i_flags;
2c48b9c4 4164 d_instantiate(path.dentry, inode);
1da177e4 4165 inode->i_size = size;
6d6b77f1 4166 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4167 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4168 if (IS_ERR(res))
66ee4b88 4169 goto put_path;
4b42af81 4170
6b4d0b27 4171 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4172 &shmem_file_operations);
6b4d0b27 4173 if (IS_ERR(res))
66ee4b88 4174 goto put_path;
4b42af81 4175
6b4d0b27 4176 return res;
1da177e4 4177
1da177e4
LT
4178put_memory:
4179 shmem_unacct_size(flags, size);
66ee4b88
KK
4180put_path:
4181 path_put(&path);
6b4d0b27 4182 return res;
1da177e4 4183}
c7277090
EP
4184
4185/**
4186 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4187 * kernel internal. There will be NO LSM permission checks against the
4188 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4189 * higher layer. The users are the big_key and shm implementations. LSM
4190 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4191 * @name: name for dentry (to be seen in /proc/<pid>/maps
4192 * @size: size to be set for the file
4193 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4194 */
4195struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4196{
4197 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4198}
4199
4200/**
4201 * shmem_file_setup - get an unlinked file living in tmpfs
4202 * @name: name for dentry (to be seen in /proc/<pid>/maps
4203 * @size: size to be set for the file
4204 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4205 */
4206struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4207{
4208 return __shmem_file_setup(name, size, flags, 0);
4209}
395e0ddc 4210EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4211
46711810 4212/**
1da177e4 4213 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4214 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4215 */
4216int shmem_zero_setup(struct vm_area_struct *vma)
4217{
4218 struct file *file;
4219 loff_t size = vma->vm_end - vma->vm_start;
4220
66fc1303
HD
4221 /*
4222 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4223 * between XFS directory reading and selinux: since this file is only
4224 * accessible to the user through its mapping, use S_PRIVATE flag to
4225 * bypass file security, in the same way as shmem_kernel_file_setup().
4226 */
4227 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4228 if (IS_ERR(file))
4229 return PTR_ERR(file);
4230
4231 if (vma->vm_file)
4232 fput(vma->vm_file);
4233 vma->vm_file = file;
4234 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4235
e496cf3d 4236 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4237 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4238 (vma->vm_end & HPAGE_PMD_MASK)) {
4239 khugepaged_enter(vma, vma->vm_flags);
4240 }
4241
1da177e4
LT
4242 return 0;
4243}
d9d90e5e
HD
4244
4245/**
4246 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4247 * @mapping: the page's address_space
4248 * @index: the page index
4249 * @gfp: the page allocator flags to use if allocating
4250 *
4251 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4252 * with any new page allocations done using the specified allocation flags.
4253 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4254 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4255 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4256 *
68da9f05
HD
4257 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4258 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4259 */
4260struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4261 pgoff_t index, gfp_t gfp)
4262{
68da9f05
HD
4263#ifdef CONFIG_SHMEM
4264 struct inode *inode = mapping->host;
9276aad6 4265 struct page *page;
68da9f05
HD
4266 int error;
4267
4268 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4269 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4270 gfp, NULL, NULL, NULL);
68da9f05
HD
4271 if (error)
4272 page = ERR_PTR(error);
4273 else
4274 unlock_page(page);
4275 return page;
4276#else
4277 /*
4278 * The tiny !SHMEM case uses ramfs without swap
4279 */
d9d90e5e 4280 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4281#endif
d9d90e5e
HD
4282}
4283EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);