]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/shmem.c
shmem: shmem_charge: verify max_block is not exceeded before inode update
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
853ac43a 37
95cc09d6
AA
38#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
853ac43a
MM
40static struct vfsmount *shm_mnt;
41
42#ifdef CONFIG_SHMEM
1da177e4
LT
43/*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
39f0247d 49#include <linux/xattr.h>
a5694255 50#include <linux/exportfs.h>
1c7c474c 51#include <linux/posix_acl.h>
feda821e 52#include <linux/posix_acl_xattr.h>
1da177e4 53#include <linux/mman.h>
1da177e4
LT
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <linux/backing-dev.h>
57#include <linux/shmem_fs.h>
1da177e4 58#include <linux/writeback.h>
1da177e4 59#include <linux/blkdev.h>
bda97eab 60#include <linux/pagevec.h>
41ffe5d5 61#include <linux/percpu_counter.h>
83e4fa9c 62#include <linux/falloc.h>
708e3508 63#include <linux/splice.h>
1da177e4
LT
64#include <linux/security.h>
65#include <linux/swapops.h>
66#include <linux/mempolicy.h>
67#include <linux/namei.h>
b00dc3ad 68#include <linux/ctype.h>
304dbdb7 69#include <linux/migrate.h>
c1f60a5a 70#include <linux/highmem.h>
680d794b 71#include <linux/seq_file.h>
92562927 72#include <linux/magic.h>
9183df25 73#include <linux/syscalls.h>
40e041a2 74#include <linux/fcntl.h>
9183df25 75#include <uapi/linux/memfd.h>
cfda0526 76#include <linux/userfaultfd_k.h>
4c27fe4c 77#include <linux/rmap.h>
2b4db796 78#include <linux/uuid.h>
304dbdb7 79
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/pgtable.h>
82
dd56b046
MG
83#include "internal.h"
84
09cbfeaf
KS
85#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 87
1da177e4
LT
88/* Pretend that each entry is of this size in directory's i_size */
89#define BOGO_DIRENT_SIZE 20
90
69f07ec9
HD
91/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92#define SHORT_SYMLINK_LEN 128
93
1aac1400 94/*
f00cdc6d
HD
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
98 */
99struct shmem_falloc {
8e205f77 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105};
106
b76db735 107#ifdef CONFIG_TMPFS
680d794b
AM
108static unsigned long shmem_default_max_blocks(void)
109{
110 return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
b76db735 117#endif
680d794b 118
bde05d1c
HD
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
68da9f05 122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 123 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
124 gfp_t gfp, struct vm_area_struct *vma,
125 struct vm_fault *vmf, int *fault_type);
68da9f05 126
f3f0e1d2 127int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 128 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
75edd345 172 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
800d8c63 176static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 177{
800d8c63
KS
178 if (!(flags & VM_NORESERVE))
179 return 0;
180
181 return security_vm_enough_memory_mm(current->mm,
182 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
183}
184
185static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186{
0b0a0806 187 if (flags & VM_NORESERVE)
09cbfeaf 188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
189}
190
759b9775 191static const struct super_operations shmem_ops;
f5e54d6e 192static const struct address_space_operations shmem_aops;
15ad7cdc 193static const struct file_operations shmem_file_operations;
92e1d5be
AV
194static const struct inode_operations shmem_inode_operations;
195static const struct inode_operations shmem_dir_inode_operations;
196static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 197static const struct vm_operations_struct shmem_vm_ops;
779750d2 198static struct file_system_type shmem_fs_type;
1da177e4 199
b0506e48
MR
200bool vma_is_shmem(struct vm_area_struct *vma)
201{
202 return vma->vm_ops == &shmem_vm_ops;
203}
204
1da177e4 205static LIST_HEAD(shmem_swaplist);
cb5f7b9a 206static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 207
5b04c689
PE
208static int shmem_reserve_inode(struct super_block *sb)
209{
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
215 return -ENOSPC;
216 }
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220 return 0;
221}
222
223static void shmem_free_inode(struct super_block *sb)
224{
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
230 }
231}
232
46711810 233/**
41ffe5d5 234 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
235 * @inode: inode to recalc
236 *
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
239 *
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242 *
243 * It has to be called with the spinlock held.
244 */
245static void shmem_recalc_inode(struct inode *inode)
246{
247 struct shmem_inode_info *info = SHMEM_I(inode);
248 long freed;
249
250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 if (freed > 0) {
54af6042
HD
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 if (sbinfo->max_blocks)
254 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 255 info->alloced -= freed;
54af6042 256 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 257 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
258 }
259}
260
800d8c63
KS
261bool shmem_charge(struct inode *inode, long pages)
262{
263 struct shmem_inode_info *info = SHMEM_I(inode);
264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 265 unsigned long flags;
800d8c63
KS
266
267 if (shmem_acct_block(info->flags, pages))
268 return false;
b1cc94ab
MR
269
270 if (sbinfo->max_blocks) {
271 if (percpu_counter_compare(&sbinfo->used_blocks,
272 sbinfo->max_blocks - pages) > 0)
273 goto unacct;
274 percpu_counter_add(&sbinfo->used_blocks, pages);
275 }
276
4595ef88 277 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
278 info->alloced += pages;
279 inode->i_blocks += pages * BLOCKS_PER_PAGE;
280 shmem_recalc_inode(inode);
4595ef88 281 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
282 inode->i_mapping->nrpages += pages;
283
800d8c63 284 return true;
b1cc94ab
MR
285
286unacct:
287 shmem_unacct_blocks(info->flags, pages);
288 return false;
800d8c63
KS
289}
290
291void shmem_uncharge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 295 unsigned long flags;
800d8c63 296
4595ef88 297 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
298 info->alloced -= pages;
299 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
300 shmem_recalc_inode(inode);
4595ef88 301 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
302
303 if (sbinfo->max_blocks)
304 percpu_counter_sub(&sbinfo->used_blocks, pages);
71664665 305 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
306}
307
7a5d0fbb
HD
308/*
309 * Replace item expected in radix tree by a new item, while holding tree lock.
310 */
311static int shmem_radix_tree_replace(struct address_space *mapping,
312 pgoff_t index, void *expected, void *replacement)
313{
f7942430 314 struct radix_tree_node *node;
7a5d0fbb 315 void **pslot;
6dbaf22c 316 void *item;
7a5d0fbb
HD
317
318 VM_BUG_ON(!expected);
6dbaf22c 319 VM_BUG_ON(!replacement);
f7942430
JW
320 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
321 if (!item)
6dbaf22c 322 return -ENOENT;
7a5d0fbb
HD
323 if (item != expected)
324 return -ENOENT;
4d693d08
JW
325 __radix_tree_replace(&mapping->page_tree, node, pslot,
326 replacement, NULL, NULL);
7a5d0fbb
HD
327 return 0;
328}
329
d1899228
HD
330/*
331 * Sometimes, before we decide whether to proceed or to fail, we must check
332 * that an entry was not already brought back from swap by a racing thread.
333 *
334 * Checking page is not enough: by the time a SwapCache page is locked, it
335 * might be reused, and again be SwapCache, using the same swap as before.
336 */
337static bool shmem_confirm_swap(struct address_space *mapping,
338 pgoff_t index, swp_entry_t swap)
339{
340 void *item;
341
342 rcu_read_lock();
343 item = radix_tree_lookup(&mapping->page_tree, index);
344 rcu_read_unlock();
345 return item == swp_to_radix_entry(swap);
346}
347
5a6e75f8
KS
348/*
349 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
350 *
351 * SHMEM_HUGE_NEVER:
352 * disables huge pages for the mount;
353 * SHMEM_HUGE_ALWAYS:
354 * enables huge pages for the mount;
355 * SHMEM_HUGE_WITHIN_SIZE:
356 * only allocate huge pages if the page will be fully within i_size,
357 * also respect fadvise()/madvise() hints;
358 * SHMEM_HUGE_ADVISE:
359 * only allocate huge pages if requested with fadvise()/madvise();
360 */
361
362#define SHMEM_HUGE_NEVER 0
363#define SHMEM_HUGE_ALWAYS 1
364#define SHMEM_HUGE_WITHIN_SIZE 2
365#define SHMEM_HUGE_ADVISE 3
366
367/*
368 * Special values.
369 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
370 *
371 * SHMEM_HUGE_DENY:
372 * disables huge on shm_mnt and all mounts, for emergency use;
373 * SHMEM_HUGE_FORCE:
374 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
375 *
376 */
377#define SHMEM_HUGE_DENY (-1)
378#define SHMEM_HUGE_FORCE (-2)
379
e496cf3d 380#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
381/* ifdef here to avoid bloating shmem.o when not necessary */
382
383int shmem_huge __read_mostly;
384
f1f5929c 385#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
386static int shmem_parse_huge(const char *str)
387{
388 if (!strcmp(str, "never"))
389 return SHMEM_HUGE_NEVER;
390 if (!strcmp(str, "always"))
391 return SHMEM_HUGE_ALWAYS;
392 if (!strcmp(str, "within_size"))
393 return SHMEM_HUGE_WITHIN_SIZE;
394 if (!strcmp(str, "advise"))
395 return SHMEM_HUGE_ADVISE;
396 if (!strcmp(str, "deny"))
397 return SHMEM_HUGE_DENY;
398 if (!strcmp(str, "force"))
399 return SHMEM_HUGE_FORCE;
400 return -EINVAL;
401}
402
403static const char *shmem_format_huge(int huge)
404{
405 switch (huge) {
406 case SHMEM_HUGE_NEVER:
407 return "never";
408 case SHMEM_HUGE_ALWAYS:
409 return "always";
410 case SHMEM_HUGE_WITHIN_SIZE:
411 return "within_size";
412 case SHMEM_HUGE_ADVISE:
413 return "advise";
414 case SHMEM_HUGE_DENY:
415 return "deny";
416 case SHMEM_HUGE_FORCE:
417 return "force";
418 default:
419 VM_BUG_ON(1);
420 return "bad_val";
421 }
422}
f1f5929c 423#endif
5a6e75f8 424
779750d2
KS
425static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
426 struct shrink_control *sc, unsigned long nr_to_split)
427{
428 LIST_HEAD(list), *pos, *next;
253fd0f0 429 LIST_HEAD(to_remove);
779750d2
KS
430 struct inode *inode;
431 struct shmem_inode_info *info;
432 struct page *page;
433 unsigned long batch = sc ? sc->nr_to_scan : 128;
434 int removed = 0, split = 0;
435
436 if (list_empty(&sbinfo->shrinklist))
437 return SHRINK_STOP;
438
439 spin_lock(&sbinfo->shrinklist_lock);
440 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
441 info = list_entry(pos, struct shmem_inode_info, shrinklist);
442
443 /* pin the inode */
444 inode = igrab(&info->vfs_inode);
445
446 /* inode is about to be evicted */
447 if (!inode) {
448 list_del_init(&info->shrinklist);
449 removed++;
450 goto next;
451 }
452
453 /* Check if there's anything to gain */
454 if (round_up(inode->i_size, PAGE_SIZE) ==
455 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 456 list_move(&info->shrinklist, &to_remove);
779750d2 457 removed++;
779750d2
KS
458 goto next;
459 }
460
461 list_move(&info->shrinklist, &list);
462next:
463 if (!--batch)
464 break;
465 }
466 spin_unlock(&sbinfo->shrinklist_lock);
467
253fd0f0
KS
468 list_for_each_safe(pos, next, &to_remove) {
469 info = list_entry(pos, struct shmem_inode_info, shrinklist);
470 inode = &info->vfs_inode;
471 list_del_init(&info->shrinklist);
472 iput(inode);
473 }
474
779750d2
KS
475 list_for_each_safe(pos, next, &list) {
476 int ret;
477
478 info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 inode = &info->vfs_inode;
480
481 if (nr_to_split && split >= nr_to_split) {
482 iput(inode);
483 continue;
484 }
485
486 page = find_lock_page(inode->i_mapping,
487 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
488 if (!page)
489 goto drop;
490
491 if (!PageTransHuge(page)) {
492 unlock_page(page);
493 put_page(page);
494 goto drop;
495 }
496
497 ret = split_huge_page(page);
498 unlock_page(page);
499 put_page(page);
500
501 if (ret) {
502 /* split failed: leave it on the list */
503 iput(inode);
504 continue;
505 }
506
507 split++;
508drop:
509 list_del_init(&info->shrinklist);
510 removed++;
511 iput(inode);
512 }
513
514 spin_lock(&sbinfo->shrinklist_lock);
515 list_splice_tail(&list, &sbinfo->shrinklist);
516 sbinfo->shrinklist_len -= removed;
517 spin_unlock(&sbinfo->shrinklist_lock);
518
519 return split;
520}
521
522static long shmem_unused_huge_scan(struct super_block *sb,
523 struct shrink_control *sc)
524{
525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
526
527 if (!READ_ONCE(sbinfo->shrinklist_len))
528 return SHRINK_STOP;
529
530 return shmem_unused_huge_shrink(sbinfo, sc, 0);
531}
532
533static long shmem_unused_huge_count(struct super_block *sb,
534 struct shrink_control *sc)
535{
536 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
537 return READ_ONCE(sbinfo->shrinklist_len);
538}
e496cf3d 539#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
540
541#define shmem_huge SHMEM_HUGE_DENY
542
779750d2
KS
543static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
544 struct shrink_control *sc, unsigned long nr_to_split)
545{
546 return 0;
547}
e496cf3d 548#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 549
46f65ec1
HD
550/*
551 * Like add_to_page_cache_locked, but error if expected item has gone.
552 */
553static int shmem_add_to_page_cache(struct page *page,
554 struct address_space *mapping,
fed400a1 555 pgoff_t index, void *expected)
46f65ec1 556{
800d8c63 557 int error, nr = hpage_nr_pages(page);
46f65ec1 558
800d8c63
KS
559 VM_BUG_ON_PAGE(PageTail(page), page);
560 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
561 VM_BUG_ON_PAGE(!PageLocked(page), page);
562 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 563 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 564
800d8c63 565 page_ref_add(page, nr);
b065b432
HD
566 page->mapping = mapping;
567 page->index = index;
568
569 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
570 if (PageTransHuge(page)) {
571 void __rcu **results;
572 pgoff_t idx;
573 int i;
574
575 error = 0;
576 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
577 &results, &idx, index, 1) &&
578 idx < index + HPAGE_PMD_NR) {
579 error = -EEXIST;
580 }
581
582 if (!error) {
583 for (i = 0; i < HPAGE_PMD_NR; i++) {
584 error = radix_tree_insert(&mapping->page_tree,
585 index + i, page + i);
586 VM_BUG_ON(error);
587 }
588 count_vm_event(THP_FILE_ALLOC);
589 }
590 } else if (!expected) {
b065b432 591 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 592 } else {
b065b432
HD
593 error = shmem_radix_tree_replace(mapping, index, expected,
594 page);
800d8c63
KS
595 }
596
46f65ec1 597 if (!error) {
800d8c63
KS
598 mapping->nrpages += nr;
599 if (PageTransHuge(page))
11fb9989
MG
600 __inc_node_page_state(page, NR_SHMEM_THPS);
601 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
602 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
603 spin_unlock_irq(&mapping->tree_lock);
604 } else {
605 page->mapping = NULL;
606 spin_unlock_irq(&mapping->tree_lock);
800d8c63 607 page_ref_sub(page, nr);
46f65ec1 608 }
46f65ec1
HD
609 return error;
610}
611
6922c0c7
HD
612/*
613 * Like delete_from_page_cache, but substitutes swap for page.
614 */
615static void shmem_delete_from_page_cache(struct page *page, void *radswap)
616{
617 struct address_space *mapping = page->mapping;
618 int error;
619
800d8c63
KS
620 VM_BUG_ON_PAGE(PageCompound(page), page);
621
6922c0c7
HD
622 spin_lock_irq(&mapping->tree_lock);
623 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
624 page->mapping = NULL;
625 mapping->nrpages--;
11fb9989
MG
626 __dec_node_page_state(page, NR_FILE_PAGES);
627 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 628 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 629 put_page(page);
6922c0c7
HD
630 BUG_ON(error);
631}
632
7a5d0fbb
HD
633/*
634 * Remove swap entry from radix tree, free the swap and its page cache.
635 */
636static int shmem_free_swap(struct address_space *mapping,
637 pgoff_t index, void *radswap)
638{
6dbaf22c 639 void *old;
7a5d0fbb
HD
640
641 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 642 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 643 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
644 if (old != radswap)
645 return -ENOENT;
646 free_swap_and_cache(radix_to_swp_entry(radswap));
647 return 0;
7a5d0fbb
HD
648}
649
6a15a370
VB
650/*
651 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 652 * given offsets are swapped out.
6a15a370
VB
653 *
654 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
655 * as long as the inode doesn't go away and racy results are not a problem.
656 */
48131e03
VB
657unsigned long shmem_partial_swap_usage(struct address_space *mapping,
658 pgoff_t start, pgoff_t end)
6a15a370 659{
6a15a370
VB
660 struct radix_tree_iter iter;
661 void **slot;
662 struct page *page;
48131e03 663 unsigned long swapped = 0;
6a15a370
VB
664
665 rcu_read_lock();
666
6a15a370
VB
667 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
668 if (iter.index >= end)
669 break;
670
671 page = radix_tree_deref_slot(slot);
672
2cf938aa
MW
673 if (radix_tree_deref_retry(page)) {
674 slot = radix_tree_iter_retry(&iter);
675 continue;
676 }
6a15a370
VB
677
678 if (radix_tree_exceptional_entry(page))
679 swapped++;
680
681 if (need_resched()) {
148deab2 682 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 683 cond_resched_rcu();
6a15a370
VB
684 }
685 }
686
687 rcu_read_unlock();
688
689 return swapped << PAGE_SHIFT;
690}
691
48131e03
VB
692/*
693 * Determine (in bytes) how many of the shmem object's pages mapped by the
694 * given vma is swapped out.
695 *
696 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
697 * as long as the inode doesn't go away and racy results are not a problem.
698 */
699unsigned long shmem_swap_usage(struct vm_area_struct *vma)
700{
701 struct inode *inode = file_inode(vma->vm_file);
702 struct shmem_inode_info *info = SHMEM_I(inode);
703 struct address_space *mapping = inode->i_mapping;
704 unsigned long swapped;
705
706 /* Be careful as we don't hold info->lock */
707 swapped = READ_ONCE(info->swapped);
708
709 /*
710 * The easier cases are when the shmem object has nothing in swap, or
711 * the vma maps it whole. Then we can simply use the stats that we
712 * already track.
713 */
714 if (!swapped)
715 return 0;
716
717 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
718 return swapped << PAGE_SHIFT;
719
720 /* Here comes the more involved part */
721 return shmem_partial_swap_usage(mapping,
722 linear_page_index(vma, vma->vm_start),
723 linear_page_index(vma, vma->vm_end));
724}
725
24513264
HD
726/*
727 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
728 */
729void shmem_unlock_mapping(struct address_space *mapping)
730{
731 struct pagevec pvec;
732 pgoff_t indices[PAGEVEC_SIZE];
733 pgoff_t index = 0;
734
735 pagevec_init(&pvec, 0);
736 /*
737 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
738 */
739 while (!mapping_unevictable(mapping)) {
740 /*
741 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
742 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
743 */
0cd6144a
JW
744 pvec.nr = find_get_entries(mapping, index,
745 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
746 if (!pvec.nr)
747 break;
748 index = indices[pvec.nr - 1] + 1;
0cd6144a 749 pagevec_remove_exceptionals(&pvec);
24513264
HD
750 check_move_unevictable_pages(pvec.pages, pvec.nr);
751 pagevec_release(&pvec);
752 cond_resched();
753 }
7a5d0fbb
HD
754}
755
756/*
757 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 758 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 759 */
1635f6a7
HD
760static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
761 bool unfalloc)
1da177e4 762{
285b2c4f 763 struct address_space *mapping = inode->i_mapping;
1da177e4 764 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
765 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
766 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
767 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
768 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 769 struct pagevec pvec;
7a5d0fbb
HD
770 pgoff_t indices[PAGEVEC_SIZE];
771 long nr_swaps_freed = 0;
285b2c4f 772 pgoff_t index;
bda97eab
HD
773 int i;
774
83e4fa9c
HD
775 if (lend == -1)
776 end = -1; /* unsigned, so actually very big */
bda97eab
HD
777
778 pagevec_init(&pvec, 0);
779 index = start;
83e4fa9c 780 while (index < end) {
0cd6144a
JW
781 pvec.nr = find_get_entries(mapping, index,
782 min(end - index, (pgoff_t)PAGEVEC_SIZE),
783 pvec.pages, indices);
7a5d0fbb
HD
784 if (!pvec.nr)
785 break;
bda97eab
HD
786 for (i = 0; i < pagevec_count(&pvec); i++) {
787 struct page *page = pvec.pages[i];
788
7a5d0fbb 789 index = indices[i];
83e4fa9c 790 if (index >= end)
bda97eab
HD
791 break;
792
7a5d0fbb 793 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
794 if (unfalloc)
795 continue;
7a5d0fbb
HD
796 nr_swaps_freed += !shmem_free_swap(mapping,
797 index, page);
bda97eab 798 continue;
7a5d0fbb
HD
799 }
800
800d8c63
KS
801 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
802
7a5d0fbb 803 if (!trylock_page(page))
bda97eab 804 continue;
800d8c63
KS
805
806 if (PageTransTail(page)) {
807 /* Middle of THP: zero out the page */
808 clear_highpage(page);
809 unlock_page(page);
810 continue;
811 } else if (PageTransHuge(page)) {
812 if (index == round_down(end, HPAGE_PMD_NR)) {
813 /*
814 * Range ends in the middle of THP:
815 * zero out the page
816 */
817 clear_highpage(page);
818 unlock_page(page);
819 continue;
820 }
821 index += HPAGE_PMD_NR - 1;
822 i += HPAGE_PMD_NR - 1;
823 }
824
1635f6a7 825 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
826 VM_BUG_ON_PAGE(PageTail(page), page);
827 if (page_mapping(page) == mapping) {
309381fe 828 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
829 truncate_inode_page(mapping, page);
830 }
bda97eab 831 }
bda97eab
HD
832 unlock_page(page);
833 }
0cd6144a 834 pagevec_remove_exceptionals(&pvec);
24513264 835 pagevec_release(&pvec);
bda97eab
HD
836 cond_resched();
837 index++;
838 }
1da177e4 839
83e4fa9c 840 if (partial_start) {
bda97eab 841 struct page *page = NULL;
9e18eb29 842 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 843 if (page) {
09cbfeaf 844 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
845 if (start > end) {
846 top = partial_end;
847 partial_end = 0;
848 }
849 zero_user_segment(page, partial_start, top);
850 set_page_dirty(page);
851 unlock_page(page);
09cbfeaf 852 put_page(page);
83e4fa9c
HD
853 }
854 }
855 if (partial_end) {
856 struct page *page = NULL;
9e18eb29 857 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
858 if (page) {
859 zero_user_segment(page, 0, partial_end);
bda97eab
HD
860 set_page_dirty(page);
861 unlock_page(page);
09cbfeaf 862 put_page(page);
bda97eab
HD
863 }
864 }
83e4fa9c
HD
865 if (start >= end)
866 return;
bda97eab
HD
867
868 index = start;
b1a36650 869 while (index < end) {
bda97eab 870 cond_resched();
0cd6144a
JW
871
872 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 873 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 874 pvec.pages, indices);
7a5d0fbb 875 if (!pvec.nr) {
b1a36650
HD
876 /* If all gone or hole-punch or unfalloc, we're done */
877 if (index == start || end != -1)
bda97eab 878 break;
b1a36650 879 /* But if truncating, restart to make sure all gone */
bda97eab
HD
880 index = start;
881 continue;
882 }
bda97eab
HD
883 for (i = 0; i < pagevec_count(&pvec); i++) {
884 struct page *page = pvec.pages[i];
885
7a5d0fbb 886 index = indices[i];
83e4fa9c 887 if (index >= end)
bda97eab
HD
888 break;
889
7a5d0fbb 890 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
891 if (unfalloc)
892 continue;
b1a36650
HD
893 if (shmem_free_swap(mapping, index, page)) {
894 /* Swap was replaced by page: retry */
895 index--;
896 break;
897 }
898 nr_swaps_freed++;
7a5d0fbb
HD
899 continue;
900 }
901
bda97eab 902 lock_page(page);
800d8c63
KS
903
904 if (PageTransTail(page)) {
905 /* Middle of THP: zero out the page */
906 clear_highpage(page);
907 unlock_page(page);
908 /*
909 * Partial thp truncate due 'start' in middle
910 * of THP: don't need to look on these pages
911 * again on !pvec.nr restart.
912 */
913 if (index != round_down(end, HPAGE_PMD_NR))
914 start++;
915 continue;
916 } else if (PageTransHuge(page)) {
917 if (index == round_down(end, HPAGE_PMD_NR)) {
918 /*
919 * Range ends in the middle of THP:
920 * zero out the page
921 */
922 clear_highpage(page);
923 unlock_page(page);
924 continue;
925 }
926 index += HPAGE_PMD_NR - 1;
927 i += HPAGE_PMD_NR - 1;
928 }
929
1635f6a7 930 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
931 VM_BUG_ON_PAGE(PageTail(page), page);
932 if (page_mapping(page) == mapping) {
309381fe 933 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 934 truncate_inode_page(mapping, page);
b1a36650
HD
935 } else {
936 /* Page was replaced by swap: retry */
937 unlock_page(page);
938 index--;
939 break;
1635f6a7 940 }
7a5d0fbb 941 }
bda97eab
HD
942 unlock_page(page);
943 }
0cd6144a 944 pagevec_remove_exceptionals(&pvec);
24513264 945 pagevec_release(&pvec);
bda97eab
HD
946 index++;
947 }
94c1e62d 948
4595ef88 949 spin_lock_irq(&info->lock);
7a5d0fbb 950 info->swapped -= nr_swaps_freed;
1da177e4 951 shmem_recalc_inode(inode);
4595ef88 952 spin_unlock_irq(&info->lock);
1635f6a7 953}
1da177e4 954
1635f6a7
HD
955void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
956{
957 shmem_undo_range(inode, lstart, lend, false);
078cd827 958 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 959}
94c1e62d 960EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 961
a528d35e
DH
962static int shmem_getattr(const struct path *path, struct kstat *stat,
963 u32 request_mask, unsigned int query_flags)
44a30220 964{
a528d35e 965 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
966 struct shmem_inode_info *info = SHMEM_I(inode);
967
d0424c42 968 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 969 spin_lock_irq(&info->lock);
d0424c42 970 shmem_recalc_inode(inode);
4595ef88 971 spin_unlock_irq(&info->lock);
d0424c42 972 }
44a30220 973 generic_fillattr(inode, stat);
44a30220
YZ
974 return 0;
975}
976
94c1e62d 977static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 978{
75c3cfa8 979 struct inode *inode = d_inode(dentry);
40e041a2 980 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 981 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
982 int error;
983
31051c85 984 error = setattr_prepare(dentry, attr);
db78b877
CH
985 if (error)
986 return error;
987
94c1e62d
HD
988 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
989 loff_t oldsize = inode->i_size;
990 loff_t newsize = attr->ia_size;
3889e6e7 991
40e041a2
DH
992 /* protected by i_mutex */
993 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
994 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
995 return -EPERM;
996
94c1e62d 997 if (newsize != oldsize) {
77142517
KK
998 error = shmem_reacct_size(SHMEM_I(inode)->flags,
999 oldsize, newsize);
1000 if (error)
1001 return error;
94c1e62d 1002 i_size_write(inode, newsize);
078cd827 1003 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1004 }
afa2db2f 1005 if (newsize <= oldsize) {
94c1e62d 1006 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1007 if (oldsize > holebegin)
1008 unmap_mapping_range(inode->i_mapping,
1009 holebegin, 0, 1);
1010 if (info->alloced)
1011 shmem_truncate_range(inode,
1012 newsize, (loff_t)-1);
94c1e62d 1013 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1014 if (oldsize > holebegin)
1015 unmap_mapping_range(inode->i_mapping,
1016 holebegin, 0, 1);
779750d2
KS
1017
1018 /*
1019 * Part of the huge page can be beyond i_size: subject
1020 * to shrink under memory pressure.
1021 */
1022 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1023 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1024 /*
1025 * _careful to defend against unlocked access to
1026 * ->shrink_list in shmem_unused_huge_shrink()
1027 */
1028 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1029 list_add_tail(&info->shrinklist,
1030 &sbinfo->shrinklist);
1031 sbinfo->shrinklist_len++;
1032 }
1033 spin_unlock(&sbinfo->shrinklist_lock);
1034 }
94c1e62d 1035 }
1da177e4
LT
1036 }
1037
db78b877 1038 setattr_copy(inode, attr);
db78b877 1039 if (attr->ia_valid & ATTR_MODE)
feda821e 1040 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1041 return error;
1042}
1043
1f895f75 1044static void shmem_evict_inode(struct inode *inode)
1da177e4 1045{
1da177e4 1046 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1047 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1048
3889e6e7 1049 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1050 shmem_unacct_size(info->flags, inode->i_size);
1051 inode->i_size = 0;
3889e6e7 1052 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1053 if (!list_empty(&info->shrinklist)) {
1054 spin_lock(&sbinfo->shrinklist_lock);
1055 if (!list_empty(&info->shrinklist)) {
1056 list_del_init(&info->shrinklist);
1057 sbinfo->shrinklist_len--;
1058 }
1059 spin_unlock(&sbinfo->shrinklist_lock);
1060 }
1da177e4 1061 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1062 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1063 list_del_init(&info->swaplist);
cb5f7b9a 1064 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1065 }
3ed47db3 1066 }
b09e0fa4 1067
38f38657 1068 simple_xattrs_free(&info->xattrs);
0f3c42f5 1069 WARN_ON(inode->i_blocks);
5b04c689 1070 shmem_free_inode(inode->i_sb);
dbd5768f 1071 clear_inode(inode);
1da177e4
LT
1072}
1073
478922e2
MW
1074static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1075{
1076 struct radix_tree_iter iter;
1077 void **slot;
1078 unsigned long found = -1;
1079 unsigned int checked = 0;
1080
1081 rcu_read_lock();
1082 radix_tree_for_each_slot(slot, root, &iter, 0) {
1083 if (*slot == item) {
1084 found = iter.index;
1085 break;
1086 }
1087 checked++;
1088 if ((checked % 4096) != 0)
1089 continue;
1090 slot = radix_tree_iter_resume(slot, &iter);
1091 cond_resched_rcu();
1092 }
1093
1094 rcu_read_unlock();
1095 return found;
1096}
1097
46f65ec1
HD
1098/*
1099 * If swap found in inode, free it and move page from swapcache to filecache.
1100 */
41ffe5d5 1101static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1102 swp_entry_t swap, struct page **pagep)
1da177e4 1103{
285b2c4f 1104 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1105 void *radswap;
41ffe5d5 1106 pgoff_t index;
bde05d1c
HD
1107 gfp_t gfp;
1108 int error = 0;
1da177e4 1109
46f65ec1 1110 radswap = swp_to_radix_entry(swap);
478922e2 1111 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1112 if (index == -1)
00501b53 1113 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1114
1b1b32f2
HD
1115 /*
1116 * Move _head_ to start search for next from here.
1f895f75 1117 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1118 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1119 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1120 */
1121 if (shmem_swaplist.next != &info->swaplist)
1122 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1123
bde05d1c
HD
1124 gfp = mapping_gfp_mask(mapping);
1125 if (shmem_should_replace_page(*pagep, gfp)) {
1126 mutex_unlock(&shmem_swaplist_mutex);
1127 error = shmem_replace_page(pagep, gfp, info, index);
1128 mutex_lock(&shmem_swaplist_mutex);
1129 /*
1130 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1131 * allocation, but the inode might have been freed while we
1132 * dropped it: although a racing shmem_evict_inode() cannot
1133 * complete without emptying the radix_tree, our page lock
1134 * on this swapcache page is not enough to prevent that -
1135 * free_swap_and_cache() of our swap entry will only
1136 * trylock_page(), removing swap from radix_tree whatever.
1137 *
1138 * We must not proceed to shmem_add_to_page_cache() if the
1139 * inode has been freed, but of course we cannot rely on
1140 * inode or mapping or info to check that. However, we can
1141 * safely check if our swap entry is still in use (and here
1142 * it can't have got reused for another page): if it's still
1143 * in use, then the inode cannot have been freed yet, and we
1144 * can safely proceed (if it's no longer in use, that tells
1145 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1146 */
1147 if (!page_swapcount(*pagep))
1148 error = -ENOENT;
1149 }
1150
d13d1443 1151 /*
778dd893
HD
1152 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1153 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1154 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1155 */
bde05d1c
HD
1156 if (!error)
1157 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1158 radswap);
48f170fb 1159 if (error != -ENOMEM) {
46f65ec1
HD
1160 /*
1161 * Truncation and eviction use free_swap_and_cache(), which
1162 * only does trylock page: if we raced, best clean up here.
1163 */
bde05d1c
HD
1164 delete_from_swap_cache(*pagep);
1165 set_page_dirty(*pagep);
46f65ec1 1166 if (!error) {
4595ef88 1167 spin_lock_irq(&info->lock);
46f65ec1 1168 info->swapped--;
4595ef88 1169 spin_unlock_irq(&info->lock);
46f65ec1
HD
1170 swap_free(swap);
1171 }
1da177e4 1172 }
2e0e26c7 1173 return error;
1da177e4
LT
1174}
1175
1176/*
46f65ec1 1177 * Search through swapped inodes to find and replace swap by page.
1da177e4 1178 */
41ffe5d5 1179int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1180{
41ffe5d5 1181 struct list_head *this, *next;
1da177e4 1182 struct shmem_inode_info *info;
00501b53 1183 struct mem_cgroup *memcg;
bde05d1c
HD
1184 int error = 0;
1185
1186 /*
1187 * There's a faint possibility that swap page was replaced before
0142ef6c 1188 * caller locked it: caller will come back later with the right page.
bde05d1c 1189 */
0142ef6c 1190 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1191 goto out;
778dd893
HD
1192
1193 /*
1194 * Charge page using GFP_KERNEL while we can wait, before taking
1195 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1196 * Charged back to the user (not to caller) when swap account is used.
778dd893 1197 */
f627c2f5
KS
1198 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1199 false);
778dd893
HD
1200 if (error)
1201 goto out;
46f65ec1 1202 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1203 error = -EAGAIN;
1da177e4 1204
cb5f7b9a 1205 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1206 list_for_each_safe(this, next, &shmem_swaplist) {
1207 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1208 if (info->swapped)
00501b53 1209 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1210 else
1211 list_del_init(&info->swaplist);
cb5f7b9a 1212 cond_resched();
00501b53 1213 if (error != -EAGAIN)
778dd893 1214 break;
00501b53 1215 /* found nothing in this: move on to search the next */
1da177e4 1216 }
cb5f7b9a 1217 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1218
00501b53
JW
1219 if (error) {
1220 if (error != -ENOMEM)
1221 error = 0;
f627c2f5 1222 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1223 } else
f627c2f5 1224 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1225out:
aaa46865 1226 unlock_page(page);
09cbfeaf 1227 put_page(page);
778dd893 1228 return error;
1da177e4
LT
1229}
1230
1231/*
1232 * Move the page from the page cache to the swap cache.
1233 */
1234static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1235{
1236 struct shmem_inode_info *info;
1da177e4 1237 struct address_space *mapping;
1da177e4 1238 struct inode *inode;
6922c0c7
HD
1239 swp_entry_t swap;
1240 pgoff_t index;
1da177e4 1241
800d8c63 1242 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1243 BUG_ON(!PageLocked(page));
1da177e4
LT
1244 mapping = page->mapping;
1245 index = page->index;
1246 inode = mapping->host;
1247 info = SHMEM_I(inode);
1248 if (info->flags & VM_LOCKED)
1249 goto redirty;
d9fe526a 1250 if (!total_swap_pages)
1da177e4
LT
1251 goto redirty;
1252
d9fe526a 1253 /*
97b713ba
CH
1254 * Our capabilities prevent regular writeback or sync from ever calling
1255 * shmem_writepage; but a stacking filesystem might use ->writepage of
1256 * its underlying filesystem, in which case tmpfs should write out to
1257 * swap only in response to memory pressure, and not for the writeback
1258 * threads or sync.
d9fe526a 1259 */
48f170fb
HD
1260 if (!wbc->for_reclaim) {
1261 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1262 goto redirty;
1263 }
1635f6a7
HD
1264
1265 /*
1266 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1267 * value into swapfile.c, the only way we can correctly account for a
1268 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1269 *
1270 * That's okay for a page already fallocated earlier, but if we have
1271 * not yet completed the fallocation, then (a) we want to keep track
1272 * of this page in case we have to undo it, and (b) it may not be a
1273 * good idea to continue anyway, once we're pushing into swap. So
1274 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1275 */
1276 if (!PageUptodate(page)) {
1aac1400
HD
1277 if (inode->i_private) {
1278 struct shmem_falloc *shmem_falloc;
1279 spin_lock(&inode->i_lock);
1280 shmem_falloc = inode->i_private;
1281 if (shmem_falloc &&
8e205f77 1282 !shmem_falloc->waitq &&
1aac1400
HD
1283 index >= shmem_falloc->start &&
1284 index < shmem_falloc->next)
1285 shmem_falloc->nr_unswapped++;
1286 else
1287 shmem_falloc = NULL;
1288 spin_unlock(&inode->i_lock);
1289 if (shmem_falloc)
1290 goto redirty;
1291 }
1635f6a7
HD
1292 clear_highpage(page);
1293 flush_dcache_page(page);
1294 SetPageUptodate(page);
1295 }
1296
38d8b4e6 1297 swap = get_swap_page(page);
48f170fb
HD
1298 if (!swap.val)
1299 goto redirty;
d9fe526a 1300
37e84351
VD
1301 if (mem_cgroup_try_charge_swap(page, swap))
1302 goto free_swap;
1303
b1dea800
HD
1304 /*
1305 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1306 * if it's not already there. Do it now before the page is
1307 * moved to swap cache, when its pagelock no longer protects
b1dea800 1308 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1309 * we've incremented swapped, because shmem_unuse_inode() will
1310 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1311 */
48f170fb
HD
1312 mutex_lock(&shmem_swaplist_mutex);
1313 if (list_empty(&info->swaplist))
1314 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1315
48f170fb 1316 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1317 spin_lock_irq(&info->lock);
6922c0c7 1318 shmem_recalc_inode(inode);
267a4c76 1319 info->swapped++;
4595ef88 1320 spin_unlock_irq(&info->lock);
6922c0c7 1321
267a4c76
HD
1322 swap_shmem_alloc(swap);
1323 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1324
6922c0c7 1325 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1326 BUG_ON(page_mapped(page));
9fab5619 1327 swap_writepage(page, wbc);
1da177e4
LT
1328 return 0;
1329 }
1330
6922c0c7 1331 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1332free_swap:
75f6d6d2 1333 put_swap_page(page, swap);
1da177e4
LT
1334redirty:
1335 set_page_dirty(page);
d9fe526a
HD
1336 if (wbc->for_reclaim)
1337 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1338 unlock_page(page);
1339 return 0;
1da177e4
LT
1340}
1341
75edd345 1342#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1343static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1344{
095f1fc4 1345 char buffer[64];
680d794b 1346
71fe804b 1347 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1348 return; /* show nothing */
680d794b 1349
a7a88b23 1350 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1351
1352 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1353}
71fe804b
LS
1354
1355static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1356{
1357 struct mempolicy *mpol = NULL;
1358 if (sbinfo->mpol) {
1359 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1360 mpol = sbinfo->mpol;
1361 mpol_get(mpol);
1362 spin_unlock(&sbinfo->stat_lock);
1363 }
1364 return mpol;
1365}
75edd345
HD
1366#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1367static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368{
1369}
1370static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1371{
1372 return NULL;
1373}
1374#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1375#ifndef CONFIG_NUMA
1376#define vm_policy vm_private_data
1377#endif
680d794b 1378
800d8c63
KS
1379static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1380 struct shmem_inode_info *info, pgoff_t index)
1381{
1382 /* Create a pseudo vma that just contains the policy */
1383 vma->vm_start = 0;
1384 /* Bias interleave by inode number to distribute better across nodes */
1385 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1386 vma->vm_ops = NULL;
1387 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1388}
1389
1390static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1391{
1392 /* Drop reference taken by mpol_shared_policy_lookup() */
1393 mpol_cond_put(vma->vm_policy);
1394}
1395
41ffe5d5
HD
1396static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1397 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1398{
1da177e4 1399 struct vm_area_struct pvma;
18a2f371 1400 struct page *page;
52cd3b07 1401
800d8c63 1402 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1403 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1404 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1405
800d8c63
KS
1406 return page;
1407}
1408
1409static struct page *shmem_alloc_hugepage(gfp_t gfp,
1410 struct shmem_inode_info *info, pgoff_t index)
1411{
1412 struct vm_area_struct pvma;
1413 struct inode *inode = &info->vfs_inode;
1414 struct address_space *mapping = inode->i_mapping;
4620a06e 1415 pgoff_t idx, hindex;
800d8c63
KS
1416 void __rcu **results;
1417 struct page *page;
1418
e496cf3d 1419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1420 return NULL;
1421
4620a06e 1422 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1423 rcu_read_lock();
1424 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1425 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1426 rcu_read_unlock();
1427 return NULL;
1428 }
1429 rcu_read_unlock();
18a2f371 1430
800d8c63
KS
1431 shmem_pseudo_vma_init(&pvma, info, hindex);
1432 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1433 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1434 shmem_pseudo_vma_destroy(&pvma);
1435 if (page)
1436 prep_transhuge_page(page);
18a2f371 1437 return page;
1da177e4
LT
1438}
1439
02098fea 1440static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1441 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1442{
1443 struct vm_area_struct pvma;
18a2f371 1444 struct page *page;
1da177e4 1445
800d8c63
KS
1446 shmem_pseudo_vma_init(&pvma, info, index);
1447 page = alloc_page_vma(gfp, &pvma, 0);
1448 shmem_pseudo_vma_destroy(&pvma);
1449
1450 return page;
1451}
1452
1453static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1454 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1455 pgoff_t index, bool huge)
1456{
1457 struct page *page;
1458 int nr;
1459 int err = -ENOSPC;
52cd3b07 1460
e496cf3d 1461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1462 huge = false;
1463 nr = huge ? HPAGE_PMD_NR : 1;
1464
1465 if (shmem_acct_block(info->flags, nr))
1466 goto failed;
1467 if (sbinfo->max_blocks) {
1468 if (percpu_counter_compare(&sbinfo->used_blocks,
1469 sbinfo->max_blocks - nr) > 0)
1470 goto unacct;
1471 percpu_counter_add(&sbinfo->used_blocks, nr);
1472 }
1473
1474 if (huge)
1475 page = shmem_alloc_hugepage(gfp, info, index);
1476 else
1477 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1478 if (page) {
1479 __SetPageLocked(page);
1480 __SetPageSwapBacked(page);
800d8c63 1481 return page;
75edd345 1482 }
18a2f371 1483
800d8c63
KS
1484 err = -ENOMEM;
1485 if (sbinfo->max_blocks)
1486 percpu_counter_add(&sbinfo->used_blocks, -nr);
1487unacct:
1488 shmem_unacct_blocks(info->flags, nr);
1489failed:
1490 return ERR_PTR(err);
1da177e4 1491}
71fe804b 1492
bde05d1c
HD
1493/*
1494 * When a page is moved from swapcache to shmem filecache (either by the
1495 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1496 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1497 * ignorance of the mapping it belongs to. If that mapping has special
1498 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1499 * we may need to copy to a suitable page before moving to filecache.
1500 *
1501 * In a future release, this may well be extended to respect cpuset and
1502 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1503 * but for now it is a simple matter of zone.
1504 */
1505static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1506{
1507 return page_zonenum(page) > gfp_zone(gfp);
1508}
1509
1510static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1511 struct shmem_inode_info *info, pgoff_t index)
1512{
1513 struct page *oldpage, *newpage;
1514 struct address_space *swap_mapping;
1515 pgoff_t swap_index;
1516 int error;
1517
1518 oldpage = *pagep;
1519 swap_index = page_private(oldpage);
1520 swap_mapping = page_mapping(oldpage);
1521
1522 /*
1523 * We have arrived here because our zones are constrained, so don't
1524 * limit chance of success by further cpuset and node constraints.
1525 */
1526 gfp &= ~GFP_CONSTRAINT_MASK;
1527 newpage = shmem_alloc_page(gfp, info, index);
1528 if (!newpage)
1529 return -ENOMEM;
bde05d1c 1530
09cbfeaf 1531 get_page(newpage);
bde05d1c 1532 copy_highpage(newpage, oldpage);
0142ef6c 1533 flush_dcache_page(newpage);
bde05d1c 1534
9956edf3
HD
1535 __SetPageLocked(newpage);
1536 __SetPageSwapBacked(newpage);
bde05d1c 1537 SetPageUptodate(newpage);
bde05d1c 1538 set_page_private(newpage, swap_index);
bde05d1c
HD
1539 SetPageSwapCache(newpage);
1540
1541 /*
1542 * Our caller will very soon move newpage out of swapcache, but it's
1543 * a nice clean interface for us to replace oldpage by newpage there.
1544 */
1545 spin_lock_irq(&swap_mapping->tree_lock);
1546 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1547 newpage);
0142ef6c 1548 if (!error) {
11fb9989
MG
1549 __inc_node_page_state(newpage, NR_FILE_PAGES);
1550 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1551 }
bde05d1c 1552 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1553
0142ef6c
HD
1554 if (unlikely(error)) {
1555 /*
1556 * Is this possible? I think not, now that our callers check
1557 * both PageSwapCache and page_private after getting page lock;
1558 * but be defensive. Reverse old to newpage for clear and free.
1559 */
1560 oldpage = newpage;
1561 } else {
6a93ca8f 1562 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1563 lru_cache_add_anon(newpage);
1564 *pagep = newpage;
1565 }
bde05d1c
HD
1566
1567 ClearPageSwapCache(oldpage);
1568 set_page_private(oldpage, 0);
1569
1570 unlock_page(oldpage);
09cbfeaf
KS
1571 put_page(oldpage);
1572 put_page(oldpage);
0142ef6c 1573 return error;
bde05d1c
HD
1574}
1575
1da177e4 1576/*
68da9f05 1577 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1578 *
1579 * If we allocate a new one we do not mark it dirty. That's up to the
1580 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1581 * entry since a page cannot live in both the swap and page cache.
1582 *
1583 * fault_mm and fault_type are only supplied by shmem_fault:
1584 * otherwise they are NULL.
1da177e4 1585 */
41ffe5d5 1586static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1587 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1588 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1589{
1590 struct address_space *mapping = inode->i_mapping;
23f919d4 1591 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1592 struct shmem_sb_info *sbinfo;
9e18eb29 1593 struct mm_struct *charge_mm;
00501b53 1594 struct mem_cgroup *memcg;
27ab7006 1595 struct page *page;
1da177e4 1596 swp_entry_t swap;
657e3038 1597 enum sgp_type sgp_huge = sgp;
800d8c63 1598 pgoff_t hindex = index;
1da177e4 1599 int error;
54af6042 1600 int once = 0;
1635f6a7 1601 int alloced = 0;
1da177e4 1602
09cbfeaf 1603 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1604 return -EFBIG;
657e3038
KS
1605 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1606 sgp = SGP_CACHE;
1da177e4 1607repeat:
54af6042 1608 swap.val = 0;
0cd6144a 1609 page = find_lock_entry(mapping, index);
54af6042
HD
1610 if (radix_tree_exceptional_entry(page)) {
1611 swap = radix_to_swp_entry(page);
1612 page = NULL;
1613 }
1614
75edd345 1615 if (sgp <= SGP_CACHE &&
09cbfeaf 1616 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1617 error = -EINVAL;
267a4c76 1618 goto unlock;
54af6042
HD
1619 }
1620
66d2f4d2
HD
1621 if (page && sgp == SGP_WRITE)
1622 mark_page_accessed(page);
1623
1635f6a7
HD
1624 /* fallocated page? */
1625 if (page && !PageUptodate(page)) {
1626 if (sgp != SGP_READ)
1627 goto clear;
1628 unlock_page(page);
09cbfeaf 1629 put_page(page);
1635f6a7
HD
1630 page = NULL;
1631 }
54af6042 1632 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1633 *pagep = page;
1634 return 0;
27ab7006
HD
1635 }
1636
1637 /*
54af6042
HD
1638 * Fast cache lookup did not find it:
1639 * bring it back from swap or allocate.
27ab7006 1640 */
54af6042 1641 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1642 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1643
1da177e4
LT
1644 if (swap.val) {
1645 /* Look it up and read it in.. */
27ab7006
HD
1646 page = lookup_swap_cache(swap);
1647 if (!page) {
9e18eb29
ALC
1648 /* Or update major stats only when swapin succeeds?? */
1649 if (fault_type) {
68da9f05 1650 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1651 count_vm_event(PGMAJFAULT);
2262185c 1652 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1653 }
1654 /* Here we actually start the io */
41ffe5d5 1655 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1656 if (!page) {
54af6042
HD
1657 error = -ENOMEM;
1658 goto failed;
1da177e4 1659 }
1da177e4
LT
1660 }
1661
1662 /* We have to do this with page locked to prevent races */
54af6042 1663 lock_page(page);
0142ef6c 1664 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1665 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1666 error = -EEXIST; /* try again */
d1899228 1667 goto unlock;
bde05d1c 1668 }
27ab7006 1669 if (!PageUptodate(page)) {
1da177e4 1670 error = -EIO;
54af6042 1671 goto failed;
1da177e4 1672 }
54af6042
HD
1673 wait_on_page_writeback(page);
1674
bde05d1c
HD
1675 if (shmem_should_replace_page(page, gfp)) {
1676 error = shmem_replace_page(&page, gfp, info, index);
1677 if (error)
1678 goto failed;
1da177e4 1679 }
27ab7006 1680
9e18eb29 1681 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1682 false);
d1899228 1683 if (!error) {
aa3b1895 1684 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1685 swp_to_radix_entry(swap));
215c02bc
HD
1686 /*
1687 * We already confirmed swap under page lock, and make
1688 * no memory allocation here, so usually no possibility
1689 * of error; but free_swap_and_cache() only trylocks a
1690 * page, so it is just possible that the entry has been
1691 * truncated or holepunched since swap was confirmed.
1692 * shmem_undo_range() will have done some of the
1693 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1694 * the rest.
215c02bc
HD
1695 * Reset swap.val? No, leave it so "failed" goes back to
1696 * "repeat": reading a hole and writing should succeed.
1697 */
00501b53 1698 if (error) {
f627c2f5 1699 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1700 delete_from_swap_cache(page);
00501b53 1701 }
d1899228 1702 }
54af6042
HD
1703 if (error)
1704 goto failed;
1705
f627c2f5 1706 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1707
4595ef88 1708 spin_lock_irq(&info->lock);
285b2c4f 1709 info->swapped--;
54af6042 1710 shmem_recalc_inode(inode);
4595ef88 1711 spin_unlock_irq(&info->lock);
54af6042 1712
66d2f4d2
HD
1713 if (sgp == SGP_WRITE)
1714 mark_page_accessed(page);
1715
54af6042 1716 delete_from_swap_cache(page);
27ab7006
HD
1717 set_page_dirty(page);
1718 swap_free(swap);
1719
54af6042 1720 } else {
cfda0526
MR
1721 if (vma && userfaultfd_missing(vma)) {
1722 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1723 return 0;
1724 }
1725
800d8c63
KS
1726 /* shmem_symlink() */
1727 if (mapping->a_ops != &shmem_aops)
1728 goto alloc_nohuge;
657e3038 1729 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1730 goto alloc_nohuge;
1731 if (shmem_huge == SHMEM_HUGE_FORCE)
1732 goto alloc_huge;
1733 switch (sbinfo->huge) {
1734 loff_t i_size;
1735 pgoff_t off;
1736 case SHMEM_HUGE_NEVER:
1737 goto alloc_nohuge;
1738 case SHMEM_HUGE_WITHIN_SIZE:
1739 off = round_up(index, HPAGE_PMD_NR);
1740 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1741 if (i_size >= HPAGE_PMD_SIZE &&
1742 i_size >> PAGE_SHIFT >= off)
1743 goto alloc_huge;
1744 /* fallthrough */
1745 case SHMEM_HUGE_ADVISE:
657e3038
KS
1746 if (sgp_huge == SGP_HUGE)
1747 goto alloc_huge;
1748 /* TODO: implement fadvise() hints */
800d8c63 1749 goto alloc_nohuge;
54af6042 1750 }
1da177e4 1751
800d8c63
KS
1752alloc_huge:
1753 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 index, true);
1755 if (IS_ERR(page)) {
1756alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1757 index, false);
1da177e4 1758 }
800d8c63 1759 if (IS_ERR(page)) {
779750d2 1760 int retry = 5;
800d8c63
KS
1761 error = PTR_ERR(page);
1762 page = NULL;
779750d2
KS
1763 if (error != -ENOSPC)
1764 goto failed;
1765 /*
1766 * Try to reclaim some spece by splitting a huge page
1767 * beyond i_size on the filesystem.
1768 */
1769 while (retry--) {
1770 int ret;
1771 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1772 if (ret == SHRINK_STOP)
1773 break;
1774 if (ret)
1775 goto alloc_nohuge;
1776 }
800d8c63
KS
1777 goto failed;
1778 }
1779
1780 if (PageTransHuge(page))
1781 hindex = round_down(index, HPAGE_PMD_NR);
1782 else
1783 hindex = index;
1784
66d2f4d2 1785 if (sgp == SGP_WRITE)
eb39d618 1786 __SetPageReferenced(page);
66d2f4d2 1787
9e18eb29 1788 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1789 PageTransHuge(page));
54af6042 1790 if (error)
800d8c63
KS
1791 goto unacct;
1792 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1793 compound_order(page));
b065b432 1794 if (!error) {
800d8c63 1795 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1796 NULL);
b065b432
HD
1797 radix_tree_preload_end();
1798 }
1799 if (error) {
800d8c63
KS
1800 mem_cgroup_cancel_charge(page, memcg,
1801 PageTransHuge(page));
1802 goto unacct;
b065b432 1803 }
800d8c63
KS
1804 mem_cgroup_commit_charge(page, memcg, false,
1805 PageTransHuge(page));
54af6042
HD
1806 lru_cache_add_anon(page);
1807
4595ef88 1808 spin_lock_irq(&info->lock);
800d8c63
KS
1809 info->alloced += 1 << compound_order(page);
1810 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1811 shmem_recalc_inode(inode);
4595ef88 1812 spin_unlock_irq(&info->lock);
1635f6a7 1813 alloced = true;
54af6042 1814
779750d2
KS
1815 if (PageTransHuge(page) &&
1816 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1817 hindex + HPAGE_PMD_NR - 1) {
1818 /*
1819 * Part of the huge page is beyond i_size: subject
1820 * to shrink under memory pressure.
1821 */
1822 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1823 /*
1824 * _careful to defend against unlocked access to
1825 * ->shrink_list in shmem_unused_huge_shrink()
1826 */
1827 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1828 list_add_tail(&info->shrinklist,
1829 &sbinfo->shrinklist);
1830 sbinfo->shrinklist_len++;
1831 }
1832 spin_unlock(&sbinfo->shrinklist_lock);
1833 }
1834
ec9516fb 1835 /*
1635f6a7
HD
1836 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1837 */
1838 if (sgp == SGP_FALLOC)
1839 sgp = SGP_WRITE;
1840clear:
1841 /*
1842 * Let SGP_WRITE caller clear ends if write does not fill page;
1843 * but SGP_FALLOC on a page fallocated earlier must initialize
1844 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1845 */
800d8c63
KS
1846 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1847 struct page *head = compound_head(page);
1848 int i;
1849
1850 for (i = 0; i < (1 << compound_order(head)); i++) {
1851 clear_highpage(head + i);
1852 flush_dcache_page(head + i);
1853 }
1854 SetPageUptodate(head);
ec9516fb 1855 }
1da177e4 1856 }
bde05d1c 1857
54af6042 1858 /* Perhaps the file has been truncated since we checked */
75edd345 1859 if (sgp <= SGP_CACHE &&
09cbfeaf 1860 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1861 if (alloced) {
1862 ClearPageDirty(page);
1863 delete_from_page_cache(page);
4595ef88 1864 spin_lock_irq(&info->lock);
267a4c76 1865 shmem_recalc_inode(inode);
4595ef88 1866 spin_unlock_irq(&info->lock);
267a4c76 1867 }
54af6042 1868 error = -EINVAL;
267a4c76 1869 goto unlock;
e83c32e8 1870 }
800d8c63 1871 *pagep = page + index - hindex;
54af6042 1872 return 0;
1da177e4 1873
59a16ead 1874 /*
54af6042 1875 * Error recovery.
59a16ead 1876 */
54af6042 1877unacct:
800d8c63
KS
1878 if (sbinfo->max_blocks)
1879 percpu_counter_sub(&sbinfo->used_blocks,
1880 1 << compound_order(page));
1881 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1882
1883 if (PageTransHuge(page)) {
1884 unlock_page(page);
1885 put_page(page);
1886 goto alloc_nohuge;
1887 }
54af6042 1888failed:
267a4c76 1889 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1890 error = -EEXIST;
1891unlock:
27ab7006 1892 if (page) {
54af6042 1893 unlock_page(page);
09cbfeaf 1894 put_page(page);
54af6042
HD
1895 }
1896 if (error == -ENOSPC && !once++) {
4595ef88 1897 spin_lock_irq(&info->lock);
54af6042 1898 shmem_recalc_inode(inode);
4595ef88 1899 spin_unlock_irq(&info->lock);
27ab7006 1900 goto repeat;
ff36b801 1901 }
d1899228 1902 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1903 goto repeat;
1904 return error;
1da177e4
LT
1905}
1906
10d20bd2
LT
1907/*
1908 * This is like autoremove_wake_function, but it removes the wait queue
1909 * entry unconditionally - even if something else had already woken the
1910 * target.
1911 */
ac6424b9 1912static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1913{
1914 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1915 list_del_init(&wait->entry);
10d20bd2
LT
1916 return ret;
1917}
1918
11bac800 1919static int shmem_fault(struct vm_fault *vmf)
1da177e4 1920{
11bac800 1921 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1922 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1923 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1924 enum sgp_type sgp;
1da177e4 1925 int error;
68da9f05 1926 int ret = VM_FAULT_LOCKED;
1da177e4 1927
f00cdc6d
HD
1928 /*
1929 * Trinity finds that probing a hole which tmpfs is punching can
1930 * prevent the hole-punch from ever completing: which in turn
1931 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1932 * faulting pages into the hole while it's being punched. Although
1933 * shmem_undo_range() does remove the additions, it may be unable to
1934 * keep up, as each new page needs its own unmap_mapping_range() call,
1935 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1936 *
1937 * It does not matter if we sometimes reach this check just before the
1938 * hole-punch begins, so that one fault then races with the punch:
1939 * we just need to make racing faults a rare case.
1940 *
1941 * The implementation below would be much simpler if we just used a
1942 * standard mutex or completion: but we cannot take i_mutex in fault,
1943 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1944 */
1945 if (unlikely(inode->i_private)) {
1946 struct shmem_falloc *shmem_falloc;
1947
1948 spin_lock(&inode->i_lock);
1949 shmem_falloc = inode->i_private;
8e205f77
HD
1950 if (shmem_falloc &&
1951 shmem_falloc->waitq &&
1952 vmf->pgoff >= shmem_falloc->start &&
1953 vmf->pgoff < shmem_falloc->next) {
1954 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1955 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1956
1957 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1958 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1959 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1960 /* It's polite to up mmap_sem if we can */
f00cdc6d 1961 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1962 ret = VM_FAULT_RETRY;
f00cdc6d 1963 }
8e205f77
HD
1964
1965 shmem_falloc_waitq = shmem_falloc->waitq;
1966 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1967 TASK_UNINTERRUPTIBLE);
1968 spin_unlock(&inode->i_lock);
1969 schedule();
1970
1971 /*
1972 * shmem_falloc_waitq points into the shmem_fallocate()
1973 * stack of the hole-punching task: shmem_falloc_waitq
1974 * is usually invalid by the time we reach here, but
1975 * finish_wait() does not dereference it in that case;
1976 * though i_lock needed lest racing with wake_up_all().
1977 */
1978 spin_lock(&inode->i_lock);
1979 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1980 spin_unlock(&inode->i_lock);
1981 return ret;
f00cdc6d 1982 }
8e205f77 1983 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1984 }
1985
657e3038 1986 sgp = SGP_CACHE;
18600332
MH
1987
1988 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1989 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 1990 sgp = SGP_NOHUGE;
18600332
MH
1991 else if (vma->vm_flags & VM_HUGEPAGE)
1992 sgp = SGP_HUGE;
657e3038
KS
1993
1994 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 1995 gfp, vma, vmf, &ret);
d0217ac0
NP
1996 if (error)
1997 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1998 return ret;
1da177e4
LT
1999}
2000
c01d5b30
HD
2001unsigned long shmem_get_unmapped_area(struct file *file,
2002 unsigned long uaddr, unsigned long len,
2003 unsigned long pgoff, unsigned long flags)
2004{
2005 unsigned long (*get_area)(struct file *,
2006 unsigned long, unsigned long, unsigned long, unsigned long);
2007 unsigned long addr;
2008 unsigned long offset;
2009 unsigned long inflated_len;
2010 unsigned long inflated_addr;
2011 unsigned long inflated_offset;
2012
2013 if (len > TASK_SIZE)
2014 return -ENOMEM;
2015
2016 get_area = current->mm->get_unmapped_area;
2017 addr = get_area(file, uaddr, len, pgoff, flags);
2018
e496cf3d 2019 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2020 return addr;
2021 if (IS_ERR_VALUE(addr))
2022 return addr;
2023 if (addr & ~PAGE_MASK)
2024 return addr;
2025 if (addr > TASK_SIZE - len)
2026 return addr;
2027
2028 if (shmem_huge == SHMEM_HUGE_DENY)
2029 return addr;
2030 if (len < HPAGE_PMD_SIZE)
2031 return addr;
2032 if (flags & MAP_FIXED)
2033 return addr;
2034 /*
2035 * Our priority is to support MAP_SHARED mapped hugely;
2036 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2037 * But if caller specified an address hint, respect that as before.
2038 */
2039 if (uaddr)
2040 return addr;
2041
2042 if (shmem_huge != SHMEM_HUGE_FORCE) {
2043 struct super_block *sb;
2044
2045 if (file) {
2046 VM_BUG_ON(file->f_op != &shmem_file_operations);
2047 sb = file_inode(file)->i_sb;
2048 } else {
2049 /*
2050 * Called directly from mm/mmap.c, or drivers/char/mem.c
2051 * for "/dev/zero", to create a shared anonymous object.
2052 */
2053 if (IS_ERR(shm_mnt))
2054 return addr;
2055 sb = shm_mnt->mnt_sb;
2056 }
3089bf61 2057 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2058 return addr;
2059 }
2060
2061 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2062 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2063 return addr;
2064 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2065 return addr;
2066
2067 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2068 if (inflated_len > TASK_SIZE)
2069 return addr;
2070 if (inflated_len < len)
2071 return addr;
2072
2073 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2074 if (IS_ERR_VALUE(inflated_addr))
2075 return addr;
2076 if (inflated_addr & ~PAGE_MASK)
2077 return addr;
2078
2079 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2080 inflated_addr += offset - inflated_offset;
2081 if (inflated_offset > offset)
2082 inflated_addr += HPAGE_PMD_SIZE;
2083
2084 if (inflated_addr > TASK_SIZE - len)
2085 return addr;
2086 return inflated_addr;
2087}
2088
1da177e4 2089#ifdef CONFIG_NUMA
41ffe5d5 2090static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2091{
496ad9aa 2092 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2093 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2094}
2095
d8dc74f2
AB
2096static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2097 unsigned long addr)
1da177e4 2098{
496ad9aa 2099 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2100 pgoff_t index;
1da177e4 2101
41ffe5d5
HD
2102 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2103 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2104}
2105#endif
2106
2107int shmem_lock(struct file *file, int lock, struct user_struct *user)
2108{
496ad9aa 2109 struct inode *inode = file_inode(file);
1da177e4
LT
2110 struct shmem_inode_info *info = SHMEM_I(inode);
2111 int retval = -ENOMEM;
2112
4595ef88 2113 spin_lock_irq(&info->lock);
1da177e4
LT
2114 if (lock && !(info->flags & VM_LOCKED)) {
2115 if (!user_shm_lock(inode->i_size, user))
2116 goto out_nomem;
2117 info->flags |= VM_LOCKED;
89e004ea 2118 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2119 }
2120 if (!lock && (info->flags & VM_LOCKED) && user) {
2121 user_shm_unlock(inode->i_size, user);
2122 info->flags &= ~VM_LOCKED;
89e004ea 2123 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2124 }
2125 retval = 0;
89e004ea 2126
1da177e4 2127out_nomem:
4595ef88 2128 spin_unlock_irq(&info->lock);
1da177e4
LT
2129 return retval;
2130}
2131
9b83a6a8 2132static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2133{
2134 file_accessed(file);
2135 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2136 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2137 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2138 (vma->vm_end & HPAGE_PMD_MASK)) {
2139 khugepaged_enter(vma, vma->vm_flags);
2140 }
1da177e4
LT
2141 return 0;
2142}
2143
454abafe 2144static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2145 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2146{
2147 struct inode *inode;
2148 struct shmem_inode_info *info;
2149 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2150
5b04c689
PE
2151 if (shmem_reserve_inode(sb))
2152 return NULL;
1da177e4
LT
2153
2154 inode = new_inode(sb);
2155 if (inode) {
85fe4025 2156 inode->i_ino = get_next_ino();
454abafe 2157 inode_init_owner(inode, dir, mode);
1da177e4 2158 inode->i_blocks = 0;
078cd827 2159 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2160 inode->i_generation = get_seconds();
1da177e4
LT
2161 info = SHMEM_I(inode);
2162 memset(info, 0, (char *)inode - (char *)info);
2163 spin_lock_init(&info->lock);
40e041a2 2164 info->seals = F_SEAL_SEAL;
0b0a0806 2165 info->flags = flags & VM_NORESERVE;
779750d2 2166 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2167 INIT_LIST_HEAD(&info->swaplist);
38f38657 2168 simple_xattrs_init(&info->xattrs);
72c04902 2169 cache_no_acl(inode);
1da177e4
LT
2170
2171 switch (mode & S_IFMT) {
2172 default:
39f0247d 2173 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2174 init_special_inode(inode, mode, dev);
2175 break;
2176 case S_IFREG:
14fcc23f 2177 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2178 inode->i_op = &shmem_inode_operations;
2179 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2180 mpol_shared_policy_init(&info->policy,
2181 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2182 break;
2183 case S_IFDIR:
d8c76e6f 2184 inc_nlink(inode);
1da177e4
LT
2185 /* Some things misbehave if size == 0 on a directory */
2186 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2187 inode->i_op = &shmem_dir_inode_operations;
2188 inode->i_fop = &simple_dir_operations;
2189 break;
2190 case S_IFLNK:
2191 /*
2192 * Must not load anything in the rbtree,
2193 * mpol_free_shared_policy will not be called.
2194 */
71fe804b 2195 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2196 break;
2197 }
5b04c689
PE
2198 } else
2199 shmem_free_inode(sb);
1da177e4
LT
2200 return inode;
2201}
2202
0cd6144a
JW
2203bool shmem_mapping(struct address_space *mapping)
2204{
f8005451 2205 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2206}
2207
4c27fe4c
MR
2208int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2209 pmd_t *dst_pmd,
2210 struct vm_area_struct *dst_vma,
2211 unsigned long dst_addr,
2212 unsigned long src_addr,
2213 struct page **pagep)
2214{
2215 struct inode *inode = file_inode(dst_vma->vm_file);
2216 struct shmem_inode_info *info = SHMEM_I(inode);
2217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2218 struct address_space *mapping = inode->i_mapping;
2219 gfp_t gfp = mapping_gfp_mask(mapping);
2220 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2221 struct mem_cgroup *memcg;
2222 spinlock_t *ptl;
2223 void *page_kaddr;
2224 struct page *page;
2225 pte_t _dst_pte, *dst_pte;
2226 int ret;
2227
cb658a45
AA
2228 ret = -ENOMEM;
2229 if (shmem_acct_block(info->flags, 1))
2230 goto out;
2231 if (sbinfo->max_blocks) {
2232 if (percpu_counter_compare(&sbinfo->used_blocks,
2233 sbinfo->max_blocks) >= 0)
2234 goto out_unacct_blocks;
2235 percpu_counter_inc(&sbinfo->used_blocks);
2236 }
4c27fe4c 2237
cb658a45 2238 if (!*pagep) {
4c27fe4c
MR
2239 page = shmem_alloc_page(gfp, info, pgoff);
2240 if (!page)
2241 goto out_dec_used_blocks;
2242
2243 page_kaddr = kmap_atomic(page);
2244 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2245 PAGE_SIZE);
2246 kunmap_atomic(page_kaddr);
2247
2248 /* fallback to copy_from_user outside mmap_sem */
2249 if (unlikely(ret)) {
2250 *pagep = page;
cb658a45
AA
2251 if (sbinfo->max_blocks)
2252 percpu_counter_add(&sbinfo->used_blocks, -1);
2253 shmem_unacct_blocks(info->flags, 1);
4c27fe4c
MR
2254 /* don't free the page */
2255 return -EFAULT;
2256 }
2257 } else {
2258 page = *pagep;
2259 *pagep = NULL;
2260 }
2261
9cc90c66
AA
2262 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2263 __SetPageLocked(page);
2264 __SetPageSwapBacked(page);
a425d358 2265 __SetPageUptodate(page);
9cc90c66 2266
4c27fe4c
MR
2267 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2268 if (ret)
2269 goto out_release;
2270
2271 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2272 if (!ret) {
2273 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2274 radix_tree_preload_end();
2275 }
2276 if (ret)
2277 goto out_release_uncharge;
2278
2279 mem_cgroup_commit_charge(page, memcg, false, false);
2280
2281 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2282 if (dst_vma->vm_flags & VM_WRITE)
2283 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2284
2285 ret = -EEXIST;
2286 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2287 if (!pte_none(*dst_pte))
2288 goto out_release_uncharge_unlock;
2289
4c27fe4c
MR
2290 lru_cache_add_anon(page);
2291
2292 spin_lock(&info->lock);
2293 info->alloced++;
2294 inode->i_blocks += BLOCKS_PER_PAGE;
2295 shmem_recalc_inode(inode);
2296 spin_unlock(&info->lock);
2297
2298 inc_mm_counter(dst_mm, mm_counter_file(page));
2299 page_add_file_rmap(page, false);
2300 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2301
2302 /* No need to invalidate - it was non-present before */
2303 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2304 unlock_page(page);
2305 pte_unmap_unlock(dst_pte, ptl);
2306 ret = 0;
2307out:
2308 return ret;
2309out_release_uncharge_unlock:
2310 pte_unmap_unlock(dst_pte, ptl);
2311out_release_uncharge:
2312 mem_cgroup_cancel_charge(page, memcg, false);
2313out_release:
9cc90c66 2314 unlock_page(page);
4c27fe4c
MR
2315 put_page(page);
2316out_dec_used_blocks:
2317 if (sbinfo->max_blocks)
2318 percpu_counter_add(&sbinfo->used_blocks, -1);
2319out_unacct_blocks:
2320 shmem_unacct_blocks(info->flags, 1);
2321 goto out;
2322}
2323
1da177e4 2324#ifdef CONFIG_TMPFS
92e1d5be 2325static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2326static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2327
6d9d88d0
JS
2328#ifdef CONFIG_TMPFS_XATTR
2329static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2330#else
2331#define shmem_initxattrs NULL
2332#endif
2333
1da177e4 2334static int
800d15a5
NP
2335shmem_write_begin(struct file *file, struct address_space *mapping,
2336 loff_t pos, unsigned len, unsigned flags,
2337 struct page **pagep, void **fsdata)
1da177e4 2338{
800d15a5 2339 struct inode *inode = mapping->host;
40e041a2 2340 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2341 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2342
2343 /* i_mutex is held by caller */
3f472cc9 2344 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2345 if (info->seals & F_SEAL_WRITE)
2346 return -EPERM;
2347 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2348 return -EPERM;
2349 }
2350
9e18eb29 2351 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2352}
2353
2354static int
2355shmem_write_end(struct file *file, struct address_space *mapping,
2356 loff_t pos, unsigned len, unsigned copied,
2357 struct page *page, void *fsdata)
2358{
2359 struct inode *inode = mapping->host;
2360
d3602444
HD
2361 if (pos + copied > inode->i_size)
2362 i_size_write(inode, pos + copied);
2363
ec9516fb 2364 if (!PageUptodate(page)) {
800d8c63
KS
2365 struct page *head = compound_head(page);
2366 if (PageTransCompound(page)) {
2367 int i;
2368
2369 for (i = 0; i < HPAGE_PMD_NR; i++) {
2370 if (head + i == page)
2371 continue;
2372 clear_highpage(head + i);
2373 flush_dcache_page(head + i);
2374 }
2375 }
09cbfeaf
KS
2376 if (copied < PAGE_SIZE) {
2377 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2378 zero_user_segments(page, 0, from,
09cbfeaf 2379 from + copied, PAGE_SIZE);
ec9516fb 2380 }
800d8c63 2381 SetPageUptodate(head);
ec9516fb 2382 }
800d15a5 2383 set_page_dirty(page);
6746aff7 2384 unlock_page(page);
09cbfeaf 2385 put_page(page);
800d15a5 2386
800d15a5 2387 return copied;
1da177e4
LT
2388}
2389
2ba5bbed 2390static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2391{
6e58e79d
AV
2392 struct file *file = iocb->ki_filp;
2393 struct inode *inode = file_inode(file);
1da177e4 2394 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2395 pgoff_t index;
2396 unsigned long offset;
a0ee5ec5 2397 enum sgp_type sgp = SGP_READ;
f7c1d074 2398 int error = 0;
cb66a7a1 2399 ssize_t retval = 0;
6e58e79d 2400 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2401
2402 /*
2403 * Might this read be for a stacking filesystem? Then when reading
2404 * holes of a sparse file, we actually need to allocate those pages,
2405 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2406 */
777eda2c 2407 if (!iter_is_iovec(to))
75edd345 2408 sgp = SGP_CACHE;
1da177e4 2409
09cbfeaf
KS
2410 index = *ppos >> PAGE_SHIFT;
2411 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2412
2413 for (;;) {
2414 struct page *page = NULL;
41ffe5d5
HD
2415 pgoff_t end_index;
2416 unsigned long nr, ret;
1da177e4
LT
2417 loff_t i_size = i_size_read(inode);
2418
09cbfeaf 2419 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2420 if (index > end_index)
2421 break;
2422 if (index == end_index) {
09cbfeaf 2423 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2424 if (nr <= offset)
2425 break;
2426 }
2427
9e18eb29 2428 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2429 if (error) {
2430 if (error == -EINVAL)
2431 error = 0;
1da177e4
LT
2432 break;
2433 }
75edd345
HD
2434 if (page) {
2435 if (sgp == SGP_CACHE)
2436 set_page_dirty(page);
d3602444 2437 unlock_page(page);
75edd345 2438 }
1da177e4
LT
2439
2440 /*
2441 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2442 * are called without i_mutex protection against truncate
1da177e4 2443 */
09cbfeaf 2444 nr = PAGE_SIZE;
1da177e4 2445 i_size = i_size_read(inode);
09cbfeaf 2446 end_index = i_size >> PAGE_SHIFT;
1da177e4 2447 if (index == end_index) {
09cbfeaf 2448 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2449 if (nr <= offset) {
2450 if (page)
09cbfeaf 2451 put_page(page);
1da177e4
LT
2452 break;
2453 }
2454 }
2455 nr -= offset;
2456
2457 if (page) {
2458 /*
2459 * If users can be writing to this page using arbitrary
2460 * virtual addresses, take care about potential aliasing
2461 * before reading the page on the kernel side.
2462 */
2463 if (mapping_writably_mapped(mapping))
2464 flush_dcache_page(page);
2465 /*
2466 * Mark the page accessed if we read the beginning.
2467 */
2468 if (!offset)
2469 mark_page_accessed(page);
b5810039 2470 } else {
1da177e4 2471 page = ZERO_PAGE(0);
09cbfeaf 2472 get_page(page);
b5810039 2473 }
1da177e4
LT
2474
2475 /*
2476 * Ok, we have the page, and it's up-to-date, so
2477 * now we can copy it to user space...
1da177e4 2478 */
2ba5bbed 2479 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2480 retval += ret;
1da177e4 2481 offset += ret;
09cbfeaf
KS
2482 index += offset >> PAGE_SHIFT;
2483 offset &= ~PAGE_MASK;
1da177e4 2484
09cbfeaf 2485 put_page(page);
2ba5bbed 2486 if (!iov_iter_count(to))
1da177e4 2487 break;
6e58e79d
AV
2488 if (ret < nr) {
2489 error = -EFAULT;
2490 break;
2491 }
1da177e4
LT
2492 cond_resched();
2493 }
2494
09cbfeaf 2495 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2496 file_accessed(file);
2497 return retval ? retval : error;
1da177e4
LT
2498}
2499
220f2ac9
HD
2500/*
2501 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2502 */
2503static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2504 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2505{
2506 struct page *page;
2507 struct pagevec pvec;
2508 pgoff_t indices[PAGEVEC_SIZE];
2509 bool done = false;
2510 int i;
2511
2512 pagevec_init(&pvec, 0);
2513 pvec.nr = 1; /* start small: we may be there already */
2514 while (!done) {
0cd6144a 2515 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2516 pvec.nr, pvec.pages, indices);
2517 if (!pvec.nr) {
965c8e59 2518 if (whence == SEEK_DATA)
220f2ac9
HD
2519 index = end;
2520 break;
2521 }
2522 for (i = 0; i < pvec.nr; i++, index++) {
2523 if (index < indices[i]) {
965c8e59 2524 if (whence == SEEK_HOLE) {
220f2ac9
HD
2525 done = true;
2526 break;
2527 }
2528 index = indices[i];
2529 }
2530 page = pvec.pages[i];
2531 if (page && !radix_tree_exceptional_entry(page)) {
2532 if (!PageUptodate(page))
2533 page = NULL;
2534 }
2535 if (index >= end ||
965c8e59
AM
2536 (page && whence == SEEK_DATA) ||
2537 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2538 done = true;
2539 break;
2540 }
2541 }
0cd6144a 2542 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2543 pagevec_release(&pvec);
2544 pvec.nr = PAGEVEC_SIZE;
2545 cond_resched();
2546 }
2547 return index;
2548}
2549
965c8e59 2550static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2551{
2552 struct address_space *mapping = file->f_mapping;
2553 struct inode *inode = mapping->host;
2554 pgoff_t start, end;
2555 loff_t new_offset;
2556
965c8e59
AM
2557 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2558 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2559 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2560 inode_lock(inode);
220f2ac9
HD
2561 /* We're holding i_mutex so we can access i_size directly */
2562
2563 if (offset < 0)
2564 offset = -EINVAL;
2565 else if (offset >= inode->i_size)
2566 offset = -ENXIO;
2567 else {
09cbfeaf
KS
2568 start = offset >> PAGE_SHIFT;
2569 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2570 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2571 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2572 if (new_offset > offset) {
2573 if (new_offset < inode->i_size)
2574 offset = new_offset;
965c8e59 2575 else if (whence == SEEK_DATA)
220f2ac9
HD
2576 offset = -ENXIO;
2577 else
2578 offset = inode->i_size;
2579 }
2580 }
2581
387aae6f
HD
2582 if (offset >= 0)
2583 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2584 inode_unlock(inode);
220f2ac9
HD
2585 return offset;
2586}
2587
05f65b5c
DH
2588/*
2589 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2590 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2591 */
2592#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2593#define LAST_SCAN 4 /* about 150ms max */
2594
2595static void shmem_tag_pins(struct address_space *mapping)
2596{
2597 struct radix_tree_iter iter;
2598 void **slot;
2599 pgoff_t start;
2600 struct page *page;
2601
2602 lru_add_drain();
2603 start = 0;
2604 rcu_read_lock();
2605
05f65b5c
DH
2606 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2607 page = radix_tree_deref_slot(slot);
2608 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2609 if (radix_tree_deref_retry(page)) {
2610 slot = radix_tree_iter_retry(&iter);
2611 continue;
2612 }
05f65b5c
DH
2613 } else if (page_count(page) - page_mapcount(page) > 1) {
2614 spin_lock_irq(&mapping->tree_lock);
2615 radix_tree_tag_set(&mapping->page_tree, iter.index,
2616 SHMEM_TAG_PINNED);
2617 spin_unlock_irq(&mapping->tree_lock);
2618 }
2619
2620 if (need_resched()) {
148deab2 2621 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2622 cond_resched_rcu();
05f65b5c
DH
2623 }
2624 }
2625 rcu_read_unlock();
2626}
2627
2628/*
2629 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2630 * via get_user_pages(), drivers might have some pending I/O without any active
2631 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2632 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2633 * them to be dropped.
2634 * The caller must guarantee that no new user will acquire writable references
2635 * to those pages to avoid races.
2636 */
40e041a2
DH
2637static int shmem_wait_for_pins(struct address_space *mapping)
2638{
05f65b5c
DH
2639 struct radix_tree_iter iter;
2640 void **slot;
2641 pgoff_t start;
2642 struct page *page;
2643 int error, scan;
2644
2645 shmem_tag_pins(mapping);
2646
2647 error = 0;
2648 for (scan = 0; scan <= LAST_SCAN; scan++) {
2649 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2650 break;
2651
2652 if (!scan)
2653 lru_add_drain_all();
2654 else if (schedule_timeout_killable((HZ << scan) / 200))
2655 scan = LAST_SCAN;
2656
2657 start = 0;
2658 rcu_read_lock();
05f65b5c
DH
2659 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2660 start, SHMEM_TAG_PINNED) {
2661
2662 page = radix_tree_deref_slot(slot);
2663 if (radix_tree_exception(page)) {
2cf938aa
MW
2664 if (radix_tree_deref_retry(page)) {
2665 slot = radix_tree_iter_retry(&iter);
2666 continue;
2667 }
05f65b5c
DH
2668
2669 page = NULL;
2670 }
2671
2672 if (page &&
2673 page_count(page) - page_mapcount(page) != 1) {
2674 if (scan < LAST_SCAN)
2675 goto continue_resched;
2676
2677 /*
2678 * On the last scan, we clean up all those tags
2679 * we inserted; but make a note that we still
2680 * found pages pinned.
2681 */
2682 error = -EBUSY;
2683 }
2684
2685 spin_lock_irq(&mapping->tree_lock);
2686 radix_tree_tag_clear(&mapping->page_tree,
2687 iter.index, SHMEM_TAG_PINNED);
2688 spin_unlock_irq(&mapping->tree_lock);
2689continue_resched:
2690 if (need_resched()) {
148deab2 2691 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2692 cond_resched_rcu();
05f65b5c
DH
2693 }
2694 }
2695 rcu_read_unlock();
2696 }
2697
2698 return error;
40e041a2
DH
2699}
2700
2701#define F_ALL_SEALS (F_SEAL_SEAL | \
2702 F_SEAL_SHRINK | \
2703 F_SEAL_GROW | \
2704 F_SEAL_WRITE)
2705
2706int shmem_add_seals(struct file *file, unsigned int seals)
2707{
2708 struct inode *inode = file_inode(file);
2709 struct shmem_inode_info *info = SHMEM_I(inode);
2710 int error;
2711
2712 /*
2713 * SEALING
2714 * Sealing allows multiple parties to share a shmem-file but restrict
2715 * access to a specific subset of file operations. Seals can only be
2716 * added, but never removed. This way, mutually untrusted parties can
2717 * share common memory regions with a well-defined policy. A malicious
2718 * peer can thus never perform unwanted operations on a shared object.
2719 *
2720 * Seals are only supported on special shmem-files and always affect
2721 * the whole underlying inode. Once a seal is set, it may prevent some
2722 * kinds of access to the file. Currently, the following seals are
2723 * defined:
2724 * SEAL_SEAL: Prevent further seals from being set on this file
2725 * SEAL_SHRINK: Prevent the file from shrinking
2726 * SEAL_GROW: Prevent the file from growing
2727 * SEAL_WRITE: Prevent write access to the file
2728 *
2729 * As we don't require any trust relationship between two parties, we
2730 * must prevent seals from being removed. Therefore, sealing a file
2731 * only adds a given set of seals to the file, it never touches
2732 * existing seals. Furthermore, the "setting seals"-operation can be
2733 * sealed itself, which basically prevents any further seal from being
2734 * added.
2735 *
2736 * Semantics of sealing are only defined on volatile files. Only
2737 * anonymous shmem files support sealing. More importantly, seals are
2738 * never written to disk. Therefore, there's no plan to support it on
2739 * other file types.
2740 */
2741
2742 if (file->f_op != &shmem_file_operations)
2743 return -EINVAL;
2744 if (!(file->f_mode & FMODE_WRITE))
2745 return -EPERM;
2746 if (seals & ~(unsigned int)F_ALL_SEALS)
2747 return -EINVAL;
2748
5955102c 2749 inode_lock(inode);
40e041a2
DH
2750
2751 if (info->seals & F_SEAL_SEAL) {
2752 error = -EPERM;
2753 goto unlock;
2754 }
2755
2756 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2757 error = mapping_deny_writable(file->f_mapping);
2758 if (error)
2759 goto unlock;
2760
2761 error = shmem_wait_for_pins(file->f_mapping);
2762 if (error) {
2763 mapping_allow_writable(file->f_mapping);
2764 goto unlock;
2765 }
2766 }
2767
2768 info->seals |= seals;
2769 error = 0;
2770
2771unlock:
5955102c 2772 inode_unlock(inode);
40e041a2
DH
2773 return error;
2774}
2775EXPORT_SYMBOL_GPL(shmem_add_seals);
2776
2777int shmem_get_seals(struct file *file)
2778{
2779 if (file->f_op != &shmem_file_operations)
2780 return -EINVAL;
2781
2782 return SHMEM_I(file_inode(file))->seals;
2783}
2784EXPORT_SYMBOL_GPL(shmem_get_seals);
2785
2786long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2787{
2788 long error;
2789
2790 switch (cmd) {
2791 case F_ADD_SEALS:
2792 /* disallow upper 32bit */
2793 if (arg > UINT_MAX)
2794 return -EINVAL;
2795
2796 error = shmem_add_seals(file, arg);
2797 break;
2798 case F_GET_SEALS:
2799 error = shmem_get_seals(file);
2800 break;
2801 default:
2802 error = -EINVAL;
2803 break;
2804 }
2805
2806 return error;
2807}
2808
83e4fa9c
HD
2809static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2810 loff_t len)
2811{
496ad9aa 2812 struct inode *inode = file_inode(file);
e2d12e22 2813 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2814 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2815 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2816 pgoff_t start, index, end;
2817 int error;
83e4fa9c 2818
13ace4d0
HD
2819 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2820 return -EOPNOTSUPP;
2821
5955102c 2822 inode_lock(inode);
83e4fa9c
HD
2823
2824 if (mode & FALLOC_FL_PUNCH_HOLE) {
2825 struct address_space *mapping = file->f_mapping;
2826 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2827 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2828 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2829
40e041a2
DH
2830 /* protected by i_mutex */
2831 if (info->seals & F_SEAL_WRITE) {
2832 error = -EPERM;
2833 goto out;
2834 }
2835
8e205f77 2836 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2837 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2838 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2839 spin_lock(&inode->i_lock);
2840 inode->i_private = &shmem_falloc;
2841 spin_unlock(&inode->i_lock);
2842
83e4fa9c
HD
2843 if ((u64)unmap_end > (u64)unmap_start)
2844 unmap_mapping_range(mapping, unmap_start,
2845 1 + unmap_end - unmap_start, 0);
2846 shmem_truncate_range(inode, offset, offset + len - 1);
2847 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2848
2849 spin_lock(&inode->i_lock);
2850 inode->i_private = NULL;
2851 wake_up_all(&shmem_falloc_waitq);
2055da97 2852 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2853 spin_unlock(&inode->i_lock);
83e4fa9c 2854 error = 0;
8e205f77 2855 goto out;
e2d12e22
HD
2856 }
2857
2858 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2859 error = inode_newsize_ok(inode, offset + len);
2860 if (error)
2861 goto out;
2862
40e041a2
DH
2863 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2864 error = -EPERM;
2865 goto out;
2866 }
2867
09cbfeaf
KS
2868 start = offset >> PAGE_SHIFT;
2869 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2870 /* Try to avoid a swapstorm if len is impossible to satisfy */
2871 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2872 error = -ENOSPC;
2873 goto out;
83e4fa9c
HD
2874 }
2875
8e205f77 2876 shmem_falloc.waitq = NULL;
1aac1400
HD
2877 shmem_falloc.start = start;
2878 shmem_falloc.next = start;
2879 shmem_falloc.nr_falloced = 0;
2880 shmem_falloc.nr_unswapped = 0;
2881 spin_lock(&inode->i_lock);
2882 inode->i_private = &shmem_falloc;
2883 spin_unlock(&inode->i_lock);
2884
e2d12e22
HD
2885 for (index = start; index < end; index++) {
2886 struct page *page;
2887
2888 /*
2889 * Good, the fallocate(2) manpage permits EINTR: we may have
2890 * been interrupted because we are using up too much memory.
2891 */
2892 if (signal_pending(current))
2893 error = -EINTR;
1aac1400
HD
2894 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2895 error = -ENOMEM;
e2d12e22 2896 else
9e18eb29 2897 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2898 if (error) {
1635f6a7 2899 /* Remove the !PageUptodate pages we added */
7f556567
HD
2900 if (index > start) {
2901 shmem_undo_range(inode,
2902 (loff_t)start << PAGE_SHIFT,
2903 ((loff_t)index << PAGE_SHIFT) - 1, true);
2904 }
1aac1400 2905 goto undone;
e2d12e22
HD
2906 }
2907
1aac1400
HD
2908 /*
2909 * Inform shmem_writepage() how far we have reached.
2910 * No need for lock or barrier: we have the page lock.
2911 */
2912 shmem_falloc.next++;
2913 if (!PageUptodate(page))
2914 shmem_falloc.nr_falloced++;
2915
e2d12e22 2916 /*
1635f6a7
HD
2917 * If !PageUptodate, leave it that way so that freeable pages
2918 * can be recognized if we need to rollback on error later.
2919 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2920 * than free the pages we are allocating (and SGP_CACHE pages
2921 * might still be clean: we now need to mark those dirty too).
2922 */
2923 set_page_dirty(page);
2924 unlock_page(page);
09cbfeaf 2925 put_page(page);
e2d12e22
HD
2926 cond_resched();
2927 }
2928
2929 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2930 i_size_write(inode, offset + len);
078cd827 2931 inode->i_ctime = current_time(inode);
1aac1400
HD
2932undone:
2933 spin_lock(&inode->i_lock);
2934 inode->i_private = NULL;
2935 spin_unlock(&inode->i_lock);
e2d12e22 2936out:
5955102c 2937 inode_unlock(inode);
83e4fa9c
HD
2938 return error;
2939}
2940
726c3342 2941static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2942{
726c3342 2943 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2944
2945 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2946 buf->f_bsize = PAGE_SIZE;
1da177e4 2947 buf->f_namelen = NAME_MAX;
0edd73b3 2948 if (sbinfo->max_blocks) {
1da177e4 2949 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2950 buf->f_bavail =
2951 buf->f_bfree = sbinfo->max_blocks -
2952 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2953 }
2954 if (sbinfo->max_inodes) {
1da177e4
LT
2955 buf->f_files = sbinfo->max_inodes;
2956 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2957 }
2958 /* else leave those fields 0 like simple_statfs */
2959 return 0;
2960}
2961
2962/*
2963 * File creation. Allocate an inode, and we're done..
2964 */
2965static int
1a67aafb 2966shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2967{
0b0a0806 2968 struct inode *inode;
1da177e4
LT
2969 int error = -ENOSPC;
2970
454abafe 2971 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2972 if (inode) {
feda821e
CH
2973 error = simple_acl_create(dir, inode);
2974 if (error)
2975 goto out_iput;
2a7dba39 2976 error = security_inode_init_security(inode, dir,
9d8f13ba 2977 &dentry->d_name,
6d9d88d0 2978 shmem_initxattrs, NULL);
feda821e
CH
2979 if (error && error != -EOPNOTSUPP)
2980 goto out_iput;
37ec43cd 2981
718deb6b 2982 error = 0;
1da177e4 2983 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2984 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2985 d_instantiate(dentry, inode);
2986 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2987 }
2988 return error;
feda821e
CH
2989out_iput:
2990 iput(inode);
2991 return error;
1da177e4
LT
2992}
2993
60545d0d
AV
2994static int
2995shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2996{
2997 struct inode *inode;
2998 int error = -ENOSPC;
2999
3000 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3001 if (inode) {
3002 error = security_inode_init_security(inode, dir,
3003 NULL,
3004 shmem_initxattrs, NULL);
feda821e
CH
3005 if (error && error != -EOPNOTSUPP)
3006 goto out_iput;
3007 error = simple_acl_create(dir, inode);
3008 if (error)
3009 goto out_iput;
60545d0d
AV
3010 d_tmpfile(dentry, inode);
3011 }
3012 return error;
feda821e
CH
3013out_iput:
3014 iput(inode);
3015 return error;
60545d0d
AV
3016}
3017
18bb1db3 3018static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3019{
3020 int error;
3021
3022 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3023 return error;
d8c76e6f 3024 inc_nlink(dir);
1da177e4
LT
3025 return 0;
3026}
3027
4acdaf27 3028static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3029 bool excl)
1da177e4
LT
3030{
3031 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3032}
3033
3034/*
3035 * Link a file..
3036 */
3037static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3038{
75c3cfa8 3039 struct inode *inode = d_inode(old_dentry);
5b04c689 3040 int ret;
1da177e4
LT
3041
3042 /*
3043 * No ordinary (disk based) filesystem counts links as inodes;
3044 * but each new link needs a new dentry, pinning lowmem, and
3045 * tmpfs dentries cannot be pruned until they are unlinked.
3046 */
5b04c689
PE
3047 ret = shmem_reserve_inode(inode->i_sb);
3048 if (ret)
3049 goto out;
1da177e4
LT
3050
3051 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3052 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3053 inc_nlink(inode);
7de9c6ee 3054 ihold(inode); /* New dentry reference */
1da177e4
LT
3055 dget(dentry); /* Extra pinning count for the created dentry */
3056 d_instantiate(dentry, inode);
5b04c689
PE
3057out:
3058 return ret;
1da177e4
LT
3059}
3060
3061static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3062{
75c3cfa8 3063 struct inode *inode = d_inode(dentry);
1da177e4 3064
5b04c689
PE
3065 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3066 shmem_free_inode(inode->i_sb);
1da177e4
LT
3067
3068 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3069 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3070 drop_nlink(inode);
1da177e4
LT
3071 dput(dentry); /* Undo the count from "create" - this does all the work */
3072 return 0;
3073}
3074
3075static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3076{
3077 if (!simple_empty(dentry))
3078 return -ENOTEMPTY;
3079
75c3cfa8 3080 drop_nlink(d_inode(dentry));
9a53c3a7 3081 drop_nlink(dir);
1da177e4
LT
3082 return shmem_unlink(dir, dentry);
3083}
3084
37456771
MS
3085static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3086{
e36cb0b8
DH
3087 bool old_is_dir = d_is_dir(old_dentry);
3088 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3089
3090 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3091 if (old_is_dir) {
3092 drop_nlink(old_dir);
3093 inc_nlink(new_dir);
3094 } else {
3095 drop_nlink(new_dir);
3096 inc_nlink(old_dir);
3097 }
3098 }
3099 old_dir->i_ctime = old_dir->i_mtime =
3100 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3101 d_inode(old_dentry)->i_ctime =
078cd827 3102 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3103
3104 return 0;
3105}
3106
46fdb794
MS
3107static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3108{
3109 struct dentry *whiteout;
3110 int error;
3111
3112 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3113 if (!whiteout)
3114 return -ENOMEM;
3115
3116 error = shmem_mknod(old_dir, whiteout,
3117 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3118 dput(whiteout);
3119 if (error)
3120 return error;
3121
3122 /*
3123 * Cheat and hash the whiteout while the old dentry is still in
3124 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3125 *
3126 * d_lookup() will consistently find one of them at this point,
3127 * not sure which one, but that isn't even important.
3128 */
3129 d_rehash(whiteout);
3130 return 0;
3131}
3132
1da177e4
LT
3133/*
3134 * The VFS layer already does all the dentry stuff for rename,
3135 * we just have to decrement the usage count for the target if
3136 * it exists so that the VFS layer correctly free's it when it
3137 * gets overwritten.
3138 */
3b69ff51 3139static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3140{
75c3cfa8 3141 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3142 int they_are_dirs = S_ISDIR(inode->i_mode);
3143
46fdb794 3144 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3145 return -EINVAL;
3146
37456771
MS
3147 if (flags & RENAME_EXCHANGE)
3148 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3149
1da177e4
LT
3150 if (!simple_empty(new_dentry))
3151 return -ENOTEMPTY;
3152
46fdb794
MS
3153 if (flags & RENAME_WHITEOUT) {
3154 int error;
3155
3156 error = shmem_whiteout(old_dir, old_dentry);
3157 if (error)
3158 return error;
3159 }
3160
75c3cfa8 3161 if (d_really_is_positive(new_dentry)) {
1da177e4 3162 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3163 if (they_are_dirs) {
75c3cfa8 3164 drop_nlink(d_inode(new_dentry));
9a53c3a7 3165 drop_nlink(old_dir);
b928095b 3166 }
1da177e4 3167 } else if (they_are_dirs) {
9a53c3a7 3168 drop_nlink(old_dir);
d8c76e6f 3169 inc_nlink(new_dir);
1da177e4
LT
3170 }
3171
3172 old_dir->i_size -= BOGO_DIRENT_SIZE;
3173 new_dir->i_size += BOGO_DIRENT_SIZE;
3174 old_dir->i_ctime = old_dir->i_mtime =
3175 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3176 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3177 return 0;
3178}
3179
3180static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3181{
3182 int error;
3183 int len;
3184 struct inode *inode;
9276aad6 3185 struct page *page;
1da177e4
LT
3186 struct shmem_inode_info *info;
3187
3188 len = strlen(symname) + 1;
09cbfeaf 3189 if (len > PAGE_SIZE)
1da177e4
LT
3190 return -ENAMETOOLONG;
3191
454abafe 3192 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3193 if (!inode)
3194 return -ENOSPC;
3195
9d8f13ba 3196 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3197 shmem_initxattrs, NULL);
570bc1c2
SS
3198 if (error) {
3199 if (error != -EOPNOTSUPP) {
3200 iput(inode);
3201 return error;
3202 }
3203 error = 0;
3204 }
3205
1da177e4
LT
3206 info = SHMEM_I(inode);
3207 inode->i_size = len-1;
69f07ec9 3208 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3209 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3210 if (!inode->i_link) {
69f07ec9
HD
3211 iput(inode);
3212 return -ENOMEM;
3213 }
3214 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3215 } else {
e8ecde25 3216 inode_nohighmem(inode);
9e18eb29 3217 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3218 if (error) {
3219 iput(inode);
3220 return error;
3221 }
14fcc23f 3222 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3223 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3224 memcpy(page_address(page), symname, len);
ec9516fb 3225 SetPageUptodate(page);
1da177e4 3226 set_page_dirty(page);
6746aff7 3227 unlock_page(page);
09cbfeaf 3228 put_page(page);
1da177e4 3229 }
1da177e4 3230 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3231 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3232 d_instantiate(dentry, inode);
3233 dget(dentry);
3234 return 0;
3235}
3236
fceef393 3237static void shmem_put_link(void *arg)
1da177e4 3238{
fceef393
AV
3239 mark_page_accessed(arg);
3240 put_page(arg);
1da177e4
LT
3241}
3242
6b255391 3243static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3244 struct inode *inode,
3245 struct delayed_call *done)
1da177e4 3246{
1da177e4 3247 struct page *page = NULL;
6b255391 3248 int error;
6a6c9904
AV
3249 if (!dentry) {
3250 page = find_get_page(inode->i_mapping, 0);
3251 if (!page)
3252 return ERR_PTR(-ECHILD);
3253 if (!PageUptodate(page)) {
3254 put_page(page);
3255 return ERR_PTR(-ECHILD);
3256 }
3257 } else {
9e18eb29 3258 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3259 if (error)
3260 return ERR_PTR(error);
3261 unlock_page(page);
3262 }
fceef393 3263 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3264 return page_address(page);
1da177e4
LT
3265}
3266
b09e0fa4 3267#ifdef CONFIG_TMPFS_XATTR
46711810 3268/*
b09e0fa4
EP
3269 * Superblocks without xattr inode operations may get some security.* xattr
3270 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3271 * like ACLs, we also need to implement the security.* handlers at
3272 * filesystem level, though.
3273 */
3274
6d9d88d0
JS
3275/*
3276 * Callback for security_inode_init_security() for acquiring xattrs.
3277 */
3278static int shmem_initxattrs(struct inode *inode,
3279 const struct xattr *xattr_array,
3280 void *fs_info)
3281{
3282 struct shmem_inode_info *info = SHMEM_I(inode);
3283 const struct xattr *xattr;
38f38657 3284 struct simple_xattr *new_xattr;
6d9d88d0
JS
3285 size_t len;
3286
3287 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3288 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3289 if (!new_xattr)
3290 return -ENOMEM;
3291
3292 len = strlen(xattr->name) + 1;
3293 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3294 GFP_KERNEL);
3295 if (!new_xattr->name) {
3296 kfree(new_xattr);
3297 return -ENOMEM;
3298 }
3299
3300 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3301 XATTR_SECURITY_PREFIX_LEN);
3302 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3303 xattr->name, len);
3304
38f38657 3305 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3306 }
3307
3308 return 0;
3309}
3310
aa7c5241 3311static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3312 struct dentry *unused, struct inode *inode,
3313 const char *name, void *buffer, size_t size)
b09e0fa4 3314{
b296821a 3315 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3316
aa7c5241 3317 name = xattr_full_name(handler, name);
38f38657 3318 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3319}
3320
aa7c5241 3321static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3322 struct dentry *unused, struct inode *inode,
3323 const char *name, const void *value,
3324 size_t size, int flags)
b09e0fa4 3325{
59301226 3326 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3327
aa7c5241 3328 name = xattr_full_name(handler, name);
38f38657 3329 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3330}
3331
aa7c5241
AG
3332static const struct xattr_handler shmem_security_xattr_handler = {
3333 .prefix = XATTR_SECURITY_PREFIX,
3334 .get = shmem_xattr_handler_get,
3335 .set = shmem_xattr_handler_set,
3336};
b09e0fa4 3337
aa7c5241
AG
3338static const struct xattr_handler shmem_trusted_xattr_handler = {
3339 .prefix = XATTR_TRUSTED_PREFIX,
3340 .get = shmem_xattr_handler_get,
3341 .set = shmem_xattr_handler_set,
3342};
b09e0fa4 3343
aa7c5241
AG
3344static const struct xattr_handler *shmem_xattr_handlers[] = {
3345#ifdef CONFIG_TMPFS_POSIX_ACL
3346 &posix_acl_access_xattr_handler,
3347 &posix_acl_default_xattr_handler,
3348#endif
3349 &shmem_security_xattr_handler,
3350 &shmem_trusted_xattr_handler,
3351 NULL
3352};
b09e0fa4
EP
3353
3354static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3355{
75c3cfa8 3356 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3357 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3358}
3359#endif /* CONFIG_TMPFS_XATTR */
3360
69f07ec9 3361static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3362 .get_link = simple_get_link,
b09e0fa4 3363#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3364 .listxattr = shmem_listxattr,
b09e0fa4
EP
3365#endif
3366};
3367
3368static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3369 .get_link = shmem_get_link,
b09e0fa4 3370#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3371 .listxattr = shmem_listxattr,
39f0247d 3372#endif
b09e0fa4 3373};
39f0247d 3374
91828a40
DG
3375static struct dentry *shmem_get_parent(struct dentry *child)
3376{
3377 return ERR_PTR(-ESTALE);
3378}
3379
3380static int shmem_match(struct inode *ino, void *vfh)
3381{
3382 __u32 *fh = vfh;
3383 __u64 inum = fh[2];
3384 inum = (inum << 32) | fh[1];
3385 return ino->i_ino == inum && fh[0] == ino->i_generation;
3386}
3387
480b116c
CH
3388static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389 struct fid *fid, int fh_len, int fh_type)
91828a40 3390{
91828a40 3391 struct inode *inode;
480b116c 3392 struct dentry *dentry = NULL;
35c2a7f4 3393 u64 inum;
480b116c
CH
3394
3395 if (fh_len < 3)
3396 return NULL;
91828a40 3397
35c2a7f4
HD
3398 inum = fid->raw[2];
3399 inum = (inum << 32) | fid->raw[1];
3400
480b116c
CH
3401 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402 shmem_match, fid->raw);
91828a40 3403 if (inode) {
480b116c 3404 dentry = d_find_alias(inode);
91828a40
DG
3405 iput(inode);
3406 }
3407
480b116c 3408 return dentry;
91828a40
DG
3409}
3410
b0b0382b
AV
3411static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412 struct inode *parent)
91828a40 3413{
5fe0c237
AK
3414 if (*len < 3) {
3415 *len = 3;
94e07a75 3416 return FILEID_INVALID;
5fe0c237 3417 }
91828a40 3418
1d3382cb 3419 if (inode_unhashed(inode)) {
91828a40
DG
3420 /* Unfortunately insert_inode_hash is not idempotent,
3421 * so as we hash inodes here rather than at creation
3422 * time, we need a lock to ensure we only try
3423 * to do it once
3424 */
3425 static DEFINE_SPINLOCK(lock);
3426 spin_lock(&lock);
1d3382cb 3427 if (inode_unhashed(inode))
91828a40
DG
3428 __insert_inode_hash(inode,
3429 inode->i_ino + inode->i_generation);
3430 spin_unlock(&lock);
3431 }
3432
3433 fh[0] = inode->i_generation;
3434 fh[1] = inode->i_ino;
3435 fh[2] = ((__u64)inode->i_ino) >> 32;
3436
3437 *len = 3;
3438 return 1;
3439}
3440
39655164 3441static const struct export_operations shmem_export_ops = {
91828a40 3442 .get_parent = shmem_get_parent,
91828a40 3443 .encode_fh = shmem_encode_fh,
480b116c 3444 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3445};
3446
680d794b
AM
3447static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3448 bool remount)
1da177e4
LT
3449{
3450 char *this_char, *value, *rest;
49cd0a5c 3451 struct mempolicy *mpol = NULL;
8751e039
EB
3452 uid_t uid;
3453 gid_t gid;
1da177e4 3454
b00dc3ad
HD
3455 while (options != NULL) {
3456 this_char = options;
3457 for (;;) {
3458 /*
3459 * NUL-terminate this option: unfortunately,
3460 * mount options form a comma-separated list,
3461 * but mpol's nodelist may also contain commas.
3462 */
3463 options = strchr(options, ',');
3464 if (options == NULL)
3465 break;
3466 options++;
3467 if (!isdigit(*options)) {
3468 options[-1] = '\0';
3469 break;
3470 }
3471 }
1da177e4
LT
3472 if (!*this_char)
3473 continue;
3474 if ((value = strchr(this_char,'=')) != NULL) {
3475 *value++ = 0;
3476 } else {
1170532b
JP
3477 pr_err("tmpfs: No value for mount option '%s'\n",
3478 this_char);
49cd0a5c 3479 goto error;
1da177e4
LT
3480 }
3481
3482 if (!strcmp(this_char,"size")) {
3483 unsigned long long size;
3484 size = memparse(value,&rest);
3485 if (*rest == '%') {
3486 size <<= PAGE_SHIFT;
3487 size *= totalram_pages;
3488 do_div(size, 100);
3489 rest++;
3490 }
3491 if (*rest)
3492 goto bad_val;
680d794b 3493 sbinfo->max_blocks =
09cbfeaf 3494 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3495 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3496 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3497 if (*rest)
3498 goto bad_val;
3499 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3500 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3501 if (*rest)
3502 goto bad_val;
3503 } else if (!strcmp(this_char,"mode")) {
680d794b 3504 if (remount)
1da177e4 3505 continue;
680d794b 3506 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3507 if (*rest)
3508 goto bad_val;
3509 } else if (!strcmp(this_char,"uid")) {
680d794b 3510 if (remount)
1da177e4 3511 continue;
8751e039 3512 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3513 if (*rest)
3514 goto bad_val;
8751e039
EB
3515 sbinfo->uid = make_kuid(current_user_ns(), uid);
3516 if (!uid_valid(sbinfo->uid))
3517 goto bad_val;
1da177e4 3518 } else if (!strcmp(this_char,"gid")) {
680d794b 3519 if (remount)
1da177e4 3520 continue;
8751e039 3521 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3522 if (*rest)
3523 goto bad_val;
8751e039
EB
3524 sbinfo->gid = make_kgid(current_user_ns(), gid);
3525 if (!gid_valid(sbinfo->gid))
3526 goto bad_val;
e496cf3d 3527#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3528 } else if (!strcmp(this_char, "huge")) {
3529 int huge;
3530 huge = shmem_parse_huge(value);
3531 if (huge < 0)
3532 goto bad_val;
3533 if (!has_transparent_hugepage() &&
3534 huge != SHMEM_HUGE_NEVER)
3535 goto bad_val;
3536 sbinfo->huge = huge;
3537#endif
3538#ifdef CONFIG_NUMA
7339ff83 3539 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3540 mpol_put(mpol);
3541 mpol = NULL;
3542 if (mpol_parse_str(value, &mpol))
7339ff83 3543 goto bad_val;
5a6e75f8 3544#endif
1da177e4 3545 } else {
1170532b 3546 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3547 goto error;
1da177e4
LT
3548 }
3549 }
49cd0a5c 3550 sbinfo->mpol = mpol;
1da177e4
LT
3551 return 0;
3552
3553bad_val:
1170532b 3554 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3555 value, this_char);
49cd0a5c
GT
3556error:
3557 mpol_put(mpol);
1da177e4
LT
3558 return 1;
3559
3560}
3561
3562static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3563{
3564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3565 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3566 unsigned long inodes;
3567 int error = -EINVAL;
3568
5f00110f 3569 config.mpol = NULL;
680d794b 3570 if (shmem_parse_options(data, &config, true))
0edd73b3 3571 return error;
1da177e4 3572
0edd73b3 3573 spin_lock(&sbinfo->stat_lock);
0edd73b3 3574 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3575 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3576 goto out;
680d794b 3577 if (config.max_inodes < inodes)
0edd73b3
HD
3578 goto out;
3579 /*
54af6042 3580 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3581 * but we must separately disallow unlimited->limited, because
3582 * in that case we have no record of how much is already in use.
3583 */
680d794b 3584 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3585 goto out;
680d794b 3586 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3587 goto out;
3588
3589 error = 0;
5a6e75f8 3590 sbinfo->huge = config.huge;
680d794b 3591 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3592 sbinfo->max_inodes = config.max_inodes;
3593 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3594
5f00110f
GT
3595 /*
3596 * Preserve previous mempolicy unless mpol remount option was specified.
3597 */
3598 if (config.mpol) {
3599 mpol_put(sbinfo->mpol);
3600 sbinfo->mpol = config.mpol; /* transfers initial ref */
3601 }
0edd73b3
HD
3602out:
3603 spin_unlock(&sbinfo->stat_lock);
3604 return error;
1da177e4 3605}
680d794b 3606
34c80b1d 3607static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3608{
34c80b1d 3609 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3610
3611 if (sbinfo->max_blocks != shmem_default_max_blocks())
3612 seq_printf(seq, ",size=%luk",
09cbfeaf 3613 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3614 if (sbinfo->max_inodes != shmem_default_max_inodes())
3615 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3616 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3617 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3618 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3619 seq_printf(seq, ",uid=%u",
3620 from_kuid_munged(&init_user_ns, sbinfo->uid));
3621 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3622 seq_printf(seq, ",gid=%u",
3623 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3624#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3625 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3626 if (sbinfo->huge)
3627 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3628#endif
71fe804b 3629 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3630 return 0;
3631}
9183df25
DH
3632
3633#define MFD_NAME_PREFIX "memfd:"
3634#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3635#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3636
3637#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3638
3639SYSCALL_DEFINE2(memfd_create,
3640 const char __user *, uname,
3641 unsigned int, flags)
3642{
3643 struct shmem_inode_info *info;
3644 struct file *file;
3645 int fd, error;
3646 char *name;
3647 long len;
3648
3649 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3650 return -EINVAL;
3651
3652 /* length includes terminating zero */
3653 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3654 if (len <= 0)
3655 return -EFAULT;
3656 if (len > MFD_NAME_MAX_LEN + 1)
3657 return -EINVAL;
3658
3659 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3660 if (!name)
3661 return -ENOMEM;
3662
3663 strcpy(name, MFD_NAME_PREFIX);
3664 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3665 error = -EFAULT;
3666 goto err_name;
3667 }
3668
3669 /* terminating-zero may have changed after strnlen_user() returned */
3670 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3671 error = -EFAULT;
3672 goto err_name;
3673 }
3674
3675 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3676 if (fd < 0) {
3677 error = fd;
3678 goto err_name;
3679 }
3680
3681 file = shmem_file_setup(name, 0, VM_NORESERVE);
3682 if (IS_ERR(file)) {
3683 error = PTR_ERR(file);
3684 goto err_fd;
3685 }
3686 info = SHMEM_I(file_inode(file));
3687 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3688 file->f_flags |= O_RDWR | O_LARGEFILE;
3689 if (flags & MFD_ALLOW_SEALING)
3690 info->seals &= ~F_SEAL_SEAL;
3691
3692 fd_install(fd, file);
3693 kfree(name);
3694 return fd;
3695
3696err_fd:
3697 put_unused_fd(fd);
3698err_name:
3699 kfree(name);
3700 return error;
3701}
3702
680d794b 3703#endif /* CONFIG_TMPFS */
1da177e4
LT
3704
3705static void shmem_put_super(struct super_block *sb)
3706{
602586a8
HD
3707 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3708
3709 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3710 mpol_put(sbinfo->mpol);
602586a8 3711 kfree(sbinfo);
1da177e4
LT
3712 sb->s_fs_info = NULL;
3713}
3714
2b2af54a 3715int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3716{
3717 struct inode *inode;
0edd73b3 3718 struct shmem_sb_info *sbinfo;
680d794b
AM
3719 int err = -ENOMEM;
3720
3721 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3722 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3723 L1_CACHE_BYTES), GFP_KERNEL);
3724 if (!sbinfo)
3725 return -ENOMEM;
3726
680d794b 3727 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3728 sbinfo->uid = current_fsuid();
3729 sbinfo->gid = current_fsgid();
680d794b 3730 sb->s_fs_info = sbinfo;
1da177e4 3731
0edd73b3 3732#ifdef CONFIG_TMPFS
1da177e4
LT
3733 /*
3734 * Per default we only allow half of the physical ram per
3735 * tmpfs instance, limiting inodes to one per page of lowmem;
3736 * but the internal instance is left unlimited.
3737 */
ca4e0519 3738 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3739 sbinfo->max_blocks = shmem_default_max_blocks();
3740 sbinfo->max_inodes = shmem_default_max_inodes();
3741 if (shmem_parse_options(data, sbinfo, false)) {
3742 err = -EINVAL;
3743 goto failed;
3744 }
ca4e0519
AV
3745 } else {
3746 sb->s_flags |= MS_NOUSER;
1da177e4 3747 }
91828a40 3748 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3749 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3750#else
3751 sb->s_flags |= MS_NOUSER;
3752#endif
3753
0edd73b3 3754 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3755 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3756 goto failed;
680d794b 3757 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3758 spin_lock_init(&sbinfo->shrinklist_lock);
3759 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3760
285b2c4f 3761 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3762 sb->s_blocksize = PAGE_SIZE;
3763 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3764 sb->s_magic = TMPFS_MAGIC;
3765 sb->s_op = &shmem_ops;
cfd95a9c 3766 sb->s_time_gran = 1;
b09e0fa4 3767#ifdef CONFIG_TMPFS_XATTR
39f0247d 3768 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3769#endif
3770#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3771 sb->s_flags |= MS_POSIXACL;
3772#endif
2b4db796 3773 uuid_gen(&sb->s_uuid);
0edd73b3 3774
454abafe 3775 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3776 if (!inode)
3777 goto failed;
680d794b
AM
3778 inode->i_uid = sbinfo->uid;
3779 inode->i_gid = sbinfo->gid;
318ceed0
AV
3780 sb->s_root = d_make_root(inode);
3781 if (!sb->s_root)
48fde701 3782 goto failed;
1da177e4
LT
3783 return 0;
3784
1da177e4
LT
3785failed:
3786 shmem_put_super(sb);
3787 return err;
3788}
3789
fcc234f8 3790static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3791
3792static struct inode *shmem_alloc_inode(struct super_block *sb)
3793{
41ffe5d5
HD
3794 struct shmem_inode_info *info;
3795 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3796 if (!info)
1da177e4 3797 return NULL;
41ffe5d5 3798 return &info->vfs_inode;
1da177e4
LT
3799}
3800
41ffe5d5 3801static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3802{
3803 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3804 if (S_ISLNK(inode->i_mode))
3805 kfree(inode->i_link);
fa0d7e3d
NP
3806 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3807}
3808
1da177e4
LT
3809static void shmem_destroy_inode(struct inode *inode)
3810{
09208d15 3811 if (S_ISREG(inode->i_mode))
1da177e4 3812 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3813 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3814}
3815
41ffe5d5 3816static void shmem_init_inode(void *foo)
1da177e4 3817{
41ffe5d5
HD
3818 struct shmem_inode_info *info = foo;
3819 inode_init_once(&info->vfs_inode);
1da177e4
LT
3820}
3821
41ffe5d5 3822static int shmem_init_inodecache(void)
1da177e4
LT
3823{
3824 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3825 sizeof(struct shmem_inode_info),
5d097056 3826 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3827 return 0;
3828}
3829
41ffe5d5 3830static void shmem_destroy_inodecache(void)
1da177e4 3831{
1a1d92c1 3832 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3833}
3834
f5e54d6e 3835static const struct address_space_operations shmem_aops = {
1da177e4 3836 .writepage = shmem_writepage,
76719325 3837 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3838#ifdef CONFIG_TMPFS
800d15a5
NP
3839 .write_begin = shmem_write_begin,
3840 .write_end = shmem_write_end,
1da177e4 3841#endif
1c93923c 3842#ifdef CONFIG_MIGRATION
304dbdb7 3843 .migratepage = migrate_page,
1c93923c 3844#endif
aa261f54 3845 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3846};
3847
15ad7cdc 3848static const struct file_operations shmem_file_operations = {
1da177e4 3849 .mmap = shmem_mmap,
c01d5b30 3850 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3851#ifdef CONFIG_TMPFS
220f2ac9 3852 .llseek = shmem_file_llseek,
2ba5bbed 3853 .read_iter = shmem_file_read_iter,
8174202b 3854 .write_iter = generic_file_write_iter,
1b061d92 3855 .fsync = noop_fsync,
82c156f8 3856 .splice_read = generic_file_splice_read,
f6cb85d0 3857 .splice_write = iter_file_splice_write,
83e4fa9c 3858 .fallocate = shmem_fallocate,
1da177e4
LT
3859#endif
3860};
3861
92e1d5be 3862static const struct inode_operations shmem_inode_operations = {
44a30220 3863 .getattr = shmem_getattr,
94c1e62d 3864 .setattr = shmem_setattr,
b09e0fa4 3865#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3866 .listxattr = shmem_listxattr,
feda821e 3867 .set_acl = simple_set_acl,
b09e0fa4 3868#endif
1da177e4
LT
3869};
3870
92e1d5be 3871static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3872#ifdef CONFIG_TMPFS
3873 .create = shmem_create,
3874 .lookup = simple_lookup,
3875 .link = shmem_link,
3876 .unlink = shmem_unlink,
3877 .symlink = shmem_symlink,
3878 .mkdir = shmem_mkdir,
3879 .rmdir = shmem_rmdir,
3880 .mknod = shmem_mknod,
2773bf00 3881 .rename = shmem_rename2,
60545d0d 3882 .tmpfile = shmem_tmpfile,
1da177e4 3883#endif
b09e0fa4 3884#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3885 .listxattr = shmem_listxattr,
b09e0fa4 3886#endif
39f0247d 3887#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3888 .setattr = shmem_setattr,
feda821e 3889 .set_acl = simple_set_acl,
39f0247d
AG
3890#endif
3891};
3892
92e1d5be 3893static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3894#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3895 .listxattr = shmem_listxattr,
b09e0fa4 3896#endif
39f0247d 3897#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3898 .setattr = shmem_setattr,
feda821e 3899 .set_acl = simple_set_acl,
39f0247d 3900#endif
1da177e4
LT
3901};
3902
759b9775 3903static const struct super_operations shmem_ops = {
1da177e4
LT
3904 .alloc_inode = shmem_alloc_inode,
3905 .destroy_inode = shmem_destroy_inode,
3906#ifdef CONFIG_TMPFS
3907 .statfs = shmem_statfs,
3908 .remount_fs = shmem_remount_fs,
680d794b 3909 .show_options = shmem_show_options,
1da177e4 3910#endif
1f895f75 3911 .evict_inode = shmem_evict_inode,
1da177e4
LT
3912 .drop_inode = generic_delete_inode,
3913 .put_super = shmem_put_super,
779750d2
KS
3914#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3915 .nr_cached_objects = shmem_unused_huge_count,
3916 .free_cached_objects = shmem_unused_huge_scan,
3917#endif
1da177e4
LT
3918};
3919
f0f37e2f 3920static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3921 .fault = shmem_fault,
d7c17551 3922 .map_pages = filemap_map_pages,
1da177e4
LT
3923#ifdef CONFIG_NUMA
3924 .set_policy = shmem_set_policy,
3925 .get_policy = shmem_get_policy,
3926#endif
3927};
3928
3c26ff6e
AV
3929static struct dentry *shmem_mount(struct file_system_type *fs_type,
3930 int flags, const char *dev_name, void *data)
1da177e4 3931{
3c26ff6e 3932 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3933}
3934
41ffe5d5 3935static struct file_system_type shmem_fs_type = {
1da177e4
LT
3936 .owner = THIS_MODULE,
3937 .name = "tmpfs",
3c26ff6e 3938 .mount = shmem_mount,
1da177e4 3939 .kill_sb = kill_litter_super,
2b8576cb 3940 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3941};
1da177e4 3942
41ffe5d5 3943int __init shmem_init(void)
1da177e4
LT
3944{
3945 int error;
3946
16203a7a
RL
3947 /* If rootfs called this, don't re-init */
3948 if (shmem_inode_cachep)
3949 return 0;
3950
41ffe5d5 3951 error = shmem_init_inodecache();
1da177e4
LT
3952 if (error)
3953 goto out3;
3954
41ffe5d5 3955 error = register_filesystem(&shmem_fs_type);
1da177e4 3956 if (error) {
1170532b 3957 pr_err("Could not register tmpfs\n");
1da177e4
LT
3958 goto out2;
3959 }
95dc112a 3960
ca4e0519 3961 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3962 if (IS_ERR(shm_mnt)) {
3963 error = PTR_ERR(shm_mnt);
1170532b 3964 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3965 goto out1;
3966 }
5a6e75f8 3967
e496cf3d 3968#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 3969 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3970 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3971 else
3972 shmem_huge = 0; /* just in case it was patched */
3973#endif
1da177e4
LT
3974 return 0;
3975
3976out1:
41ffe5d5 3977 unregister_filesystem(&shmem_fs_type);
1da177e4 3978out2:
41ffe5d5 3979 shmem_destroy_inodecache();
1da177e4
LT
3980out3:
3981 shm_mnt = ERR_PTR(error);
3982 return error;
3983}
853ac43a 3984
e496cf3d 3985#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3986static ssize_t shmem_enabled_show(struct kobject *kobj,
3987 struct kobj_attribute *attr, char *buf)
3988{
3989 int values[] = {
3990 SHMEM_HUGE_ALWAYS,
3991 SHMEM_HUGE_WITHIN_SIZE,
3992 SHMEM_HUGE_ADVISE,
3993 SHMEM_HUGE_NEVER,
3994 SHMEM_HUGE_DENY,
3995 SHMEM_HUGE_FORCE,
3996 };
3997 int i, count;
3998
3999 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4000 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4001
4002 count += sprintf(buf + count, fmt,
4003 shmem_format_huge(values[i]));
4004 }
4005 buf[count - 1] = '\n';
4006 return count;
4007}
4008
4009static ssize_t shmem_enabled_store(struct kobject *kobj,
4010 struct kobj_attribute *attr, const char *buf, size_t count)
4011{
4012 char tmp[16];
4013 int huge;
4014
4015 if (count + 1 > sizeof(tmp))
4016 return -EINVAL;
4017 memcpy(tmp, buf, count);
4018 tmp[count] = '\0';
4019 if (count && tmp[count - 1] == '\n')
4020 tmp[count - 1] = '\0';
4021
4022 huge = shmem_parse_huge(tmp);
4023 if (huge == -EINVAL)
4024 return -EINVAL;
4025 if (!has_transparent_hugepage() &&
4026 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4027 return -EINVAL;
4028
4029 shmem_huge = huge;
435c0b87 4030 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4031 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4032 return count;
4033}
4034
4035struct kobj_attribute shmem_enabled_attr =
4036 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4037#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4038
3b33719c 4039#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4040bool shmem_huge_enabled(struct vm_area_struct *vma)
4041{
4042 struct inode *inode = file_inode(vma->vm_file);
4043 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4044 loff_t i_size;
4045 pgoff_t off;
4046
4047 if (shmem_huge == SHMEM_HUGE_FORCE)
4048 return true;
4049 if (shmem_huge == SHMEM_HUGE_DENY)
4050 return false;
4051 switch (sbinfo->huge) {
4052 case SHMEM_HUGE_NEVER:
4053 return false;
4054 case SHMEM_HUGE_ALWAYS:
4055 return true;
4056 case SHMEM_HUGE_WITHIN_SIZE:
4057 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4058 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4059 if (i_size >= HPAGE_PMD_SIZE &&
4060 i_size >> PAGE_SHIFT >= off)
4061 return true;
4062 case SHMEM_HUGE_ADVISE:
4063 /* TODO: implement fadvise() hints */
4064 return (vma->vm_flags & VM_HUGEPAGE);
4065 default:
4066 VM_BUG_ON(1);
4067 return false;
4068 }
4069}
3b33719c 4070#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4071
853ac43a
MM
4072#else /* !CONFIG_SHMEM */
4073
4074/*
4075 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4076 *
4077 * This is intended for small system where the benefits of the full
4078 * shmem code (swap-backed and resource-limited) are outweighed by
4079 * their complexity. On systems without swap this code should be
4080 * effectively equivalent, but much lighter weight.
4081 */
4082
41ffe5d5 4083static struct file_system_type shmem_fs_type = {
853ac43a 4084 .name = "tmpfs",
3c26ff6e 4085 .mount = ramfs_mount,
853ac43a 4086 .kill_sb = kill_litter_super,
2b8576cb 4087 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4088};
4089
41ffe5d5 4090int __init shmem_init(void)
853ac43a 4091{
41ffe5d5 4092 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4093
41ffe5d5 4094 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4095 BUG_ON(IS_ERR(shm_mnt));
4096
4097 return 0;
4098}
4099
41ffe5d5 4100int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4101{
4102 return 0;
4103}
4104
3f96b79a
HD
4105int shmem_lock(struct file *file, int lock, struct user_struct *user)
4106{
4107 return 0;
4108}
4109
24513264
HD
4110void shmem_unlock_mapping(struct address_space *mapping)
4111{
4112}
4113
c01d5b30
HD
4114#ifdef CONFIG_MMU
4115unsigned long shmem_get_unmapped_area(struct file *file,
4116 unsigned long addr, unsigned long len,
4117 unsigned long pgoff, unsigned long flags)
4118{
4119 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4120}
4121#endif
4122
41ffe5d5 4123void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4124{
41ffe5d5 4125 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4126}
4127EXPORT_SYMBOL_GPL(shmem_truncate_range);
4128
0b0a0806
HD
4129#define shmem_vm_ops generic_file_vm_ops
4130#define shmem_file_operations ramfs_file_operations
454abafe 4131#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4132#define shmem_acct_size(flags, size) 0
4133#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4134
4135#endif /* CONFIG_SHMEM */
4136
4137/* common code */
1da177e4 4138
19938e35 4139static const struct dentry_operations anon_ops = {
118b2302 4140 .d_dname = simple_dname
3451538a
AV
4141};
4142
c7277090
EP
4143static struct file *__shmem_file_setup(const char *name, loff_t size,
4144 unsigned long flags, unsigned int i_flags)
1da177e4 4145{
6b4d0b27 4146 struct file *res;
1da177e4 4147 struct inode *inode;
2c48b9c4 4148 struct path path;
3451538a 4149 struct super_block *sb;
1da177e4
LT
4150 struct qstr this;
4151
4152 if (IS_ERR(shm_mnt))
6b4d0b27 4153 return ERR_CAST(shm_mnt);
1da177e4 4154
285b2c4f 4155 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4156 return ERR_PTR(-EINVAL);
4157
4158 if (shmem_acct_size(flags, size))
4159 return ERR_PTR(-ENOMEM);
4160
6b4d0b27 4161 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4162 this.name = name;
4163 this.len = strlen(name);
4164 this.hash = 0; /* will go */
3451538a 4165 sb = shm_mnt->mnt_sb;
66ee4b88 4166 path.mnt = mntget(shm_mnt);
3451538a 4167 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4168 if (!path.dentry)
1da177e4 4169 goto put_memory;
3451538a 4170 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4171
6b4d0b27 4172 res = ERR_PTR(-ENOSPC);
3451538a 4173 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4174 if (!inode)
66ee4b88 4175 goto put_memory;
1da177e4 4176
c7277090 4177 inode->i_flags |= i_flags;
2c48b9c4 4178 d_instantiate(path.dentry, inode);
1da177e4 4179 inode->i_size = size;
6d6b77f1 4180 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4181 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4182 if (IS_ERR(res))
66ee4b88 4183 goto put_path;
4b42af81 4184
6b4d0b27 4185 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4186 &shmem_file_operations);
6b4d0b27 4187 if (IS_ERR(res))
66ee4b88 4188 goto put_path;
4b42af81 4189
6b4d0b27 4190 return res;
1da177e4 4191
1da177e4
LT
4192put_memory:
4193 shmem_unacct_size(flags, size);
66ee4b88
KK
4194put_path:
4195 path_put(&path);
6b4d0b27 4196 return res;
1da177e4 4197}
c7277090
EP
4198
4199/**
4200 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4201 * kernel internal. There will be NO LSM permission checks against the
4202 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4203 * higher layer. The users are the big_key and shm implementations. LSM
4204 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4205 * @name: name for dentry (to be seen in /proc/<pid>/maps
4206 * @size: size to be set for the file
4207 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4208 */
4209struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4210{
4211 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4212}
4213
4214/**
4215 * shmem_file_setup - get an unlinked file living in tmpfs
4216 * @name: name for dentry (to be seen in /proc/<pid>/maps
4217 * @size: size to be set for the file
4218 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4219 */
4220struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4221{
4222 return __shmem_file_setup(name, size, flags, 0);
4223}
395e0ddc 4224EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4225
46711810 4226/**
1da177e4 4227 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4228 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4229 */
4230int shmem_zero_setup(struct vm_area_struct *vma)
4231{
4232 struct file *file;
4233 loff_t size = vma->vm_end - vma->vm_start;
4234
66fc1303
HD
4235 /*
4236 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4237 * between XFS directory reading and selinux: since this file is only
4238 * accessible to the user through its mapping, use S_PRIVATE flag to
4239 * bypass file security, in the same way as shmem_kernel_file_setup().
4240 */
4241 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4242 if (IS_ERR(file))
4243 return PTR_ERR(file);
4244
4245 if (vma->vm_file)
4246 fput(vma->vm_file);
4247 vma->vm_file = file;
4248 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4249
e496cf3d 4250 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4251 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4252 (vma->vm_end & HPAGE_PMD_MASK)) {
4253 khugepaged_enter(vma, vma->vm_flags);
4254 }
4255
1da177e4
LT
4256 return 0;
4257}
d9d90e5e
HD
4258
4259/**
4260 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4261 * @mapping: the page's address_space
4262 * @index: the page index
4263 * @gfp: the page allocator flags to use if allocating
4264 *
4265 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4266 * with any new page allocations done using the specified allocation flags.
4267 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4268 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4269 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4270 *
68da9f05
HD
4271 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4272 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4273 */
4274struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4275 pgoff_t index, gfp_t gfp)
4276{
68da9f05
HD
4277#ifdef CONFIG_SHMEM
4278 struct inode *inode = mapping->host;
9276aad6 4279 struct page *page;
68da9f05
HD
4280 int error;
4281
4282 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4283 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4284 gfp, NULL, NULL, NULL);
68da9f05
HD
4285 if (error)
4286 page = ERR_PTR(error);
4287 else
4288 unlock_page(page);
4289 return page;
4290#else
4291 /*
4292 * The tiny !SHMEM case uses ramfs without swap
4293 */
d9d90e5e 4294 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4295#endif
d9d90e5e
HD
4296}
4297EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);