]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
kill free_page_put_link()
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
dd56b046
MG
76#include "internal.h"
77
caefba17 78#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
79#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
1da177e4
LT
81/* Pretend that each entry is of this size in directory's i_size */
82#define BOGO_DIRENT_SIZE 20
83
69f07ec9
HD
84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85#define SHORT_SYMLINK_LEN 128
86
1aac1400 87/*
f00cdc6d
HD
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
91 */
92struct shmem_falloc {
8e205f77 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98};
99
285b2c4f 100/* Flag allocation requirements to shmem_getpage */
1da177e4 101enum sgp_type {
1da177e4
LT
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b
AM
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
bde05d1c
HD
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176static inline int shmem_acct_block(unsigned long flags)
177{
0b0a0806 178 return (flags & VM_NORESERVE) ?
191c5424 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
180}
181
182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183{
0b0a0806 184 if (flags & VM_NORESERVE)
1da177e4
LT
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186}
187
759b9775 188static const struct super_operations shmem_ops;
f5e54d6e 189static const struct address_space_operations shmem_aops;
15ad7cdc 190static const struct file_operations shmem_file_operations;
92e1d5be
AV
191static const struct inode_operations shmem_inode_operations;
192static const struct inode_operations shmem_dir_inode_operations;
193static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 194static const struct vm_operations_struct shmem_vm_ops;
1da177e4 195
1da177e4 196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
24513264
HD
362/*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365void shmem_unlock_mapping(struct address_space *mapping)
366{
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
0cd6144a
JW
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
0cd6144a 385 pagevec_remove_exceptionals(&pvec);
24513264
HD
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
7a5d0fbb
HD
390}
391
392/*
393 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 395 */
1635f6a7
HD
396static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
1da177e4 398{
285b2c4f 399 struct address_space *mapping = inode->i_mapping;
1da177e4 400 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 405 struct pagevec pvec;
7a5d0fbb
HD
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
285b2c4f 408 pgoff_t index;
bda97eab
HD
409 int i;
410
83e4fa9c
HD
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
bda97eab
HD
413
414 pagevec_init(&pvec, 0);
415 index = start;
83e4fa9c 416 while (index < end) {
0cd6144a
JW
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
7a5d0fbb
HD
420 if (!pvec.nr)
421 break;
bda97eab
HD
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
7a5d0fbb 425 index = indices[i];
83e4fa9c 426 if (index >= end)
bda97eab
HD
427 break;
428
7a5d0fbb 429 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
430 if (unfalloc)
431 continue;
7a5d0fbb
HD
432 nr_swaps_freed += !shmem_free_swap(mapping,
433 index, page);
bda97eab 434 continue;
7a5d0fbb
HD
435 }
436
437 if (!trylock_page(page))
bda97eab 438 continue;
1635f6a7
HD
439 if (!unfalloc || !PageUptodate(page)) {
440 if (page->mapping == mapping) {
309381fe 441 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
442 truncate_inode_page(mapping, page);
443 }
bda97eab 444 }
bda97eab
HD
445 unlock_page(page);
446 }
0cd6144a 447 pagevec_remove_exceptionals(&pvec);
24513264 448 pagevec_release(&pvec);
bda97eab
HD
449 cond_resched();
450 index++;
451 }
1da177e4 452
83e4fa9c 453 if (partial_start) {
bda97eab
HD
454 struct page *page = NULL;
455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 if (page) {
83e4fa9c
HD
457 unsigned int top = PAGE_CACHE_SIZE;
458 if (start > end) {
459 top = partial_end;
460 partial_end = 0;
461 }
462 zero_user_segment(page, partial_start, top);
463 set_page_dirty(page);
464 unlock_page(page);
465 page_cache_release(page);
466 }
467 }
468 if (partial_end) {
469 struct page *page = NULL;
470 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 if (page) {
472 zero_user_segment(page, 0, partial_end);
bda97eab
HD
473 set_page_dirty(page);
474 unlock_page(page);
475 page_cache_release(page);
476 }
477 }
83e4fa9c
HD
478 if (start >= end)
479 return;
bda97eab
HD
480
481 index = start;
b1a36650 482 while (index < end) {
bda97eab 483 cond_resched();
0cd6144a
JW
484
485 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 486 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 487 pvec.pages, indices);
7a5d0fbb 488 if (!pvec.nr) {
b1a36650
HD
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index == start || end != -1)
bda97eab 491 break;
b1a36650 492 /* But if truncating, restart to make sure all gone */
bda97eab
HD
493 index = start;
494 continue;
495 }
bda97eab
HD
496 for (i = 0; i < pagevec_count(&pvec); i++) {
497 struct page *page = pvec.pages[i];
498
7a5d0fbb 499 index = indices[i];
83e4fa9c 500 if (index >= end)
bda97eab
HD
501 break;
502
7a5d0fbb 503 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
504 if (unfalloc)
505 continue;
b1a36650
HD
506 if (shmem_free_swap(mapping, index, page)) {
507 /* Swap was replaced by page: retry */
508 index--;
509 break;
510 }
511 nr_swaps_freed++;
7a5d0fbb
HD
512 continue;
513 }
514
bda97eab 515 lock_page(page);
1635f6a7
HD
516 if (!unfalloc || !PageUptodate(page)) {
517 if (page->mapping == mapping) {
309381fe 518 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 519 truncate_inode_page(mapping, page);
b1a36650
HD
520 } else {
521 /* Page was replaced by swap: retry */
522 unlock_page(page);
523 index--;
524 break;
1635f6a7 525 }
7a5d0fbb 526 }
bda97eab
HD
527 unlock_page(page);
528 }
0cd6144a 529 pagevec_remove_exceptionals(&pvec);
24513264 530 pagevec_release(&pvec);
bda97eab
HD
531 index++;
532 }
94c1e62d 533
1da177e4 534 spin_lock(&info->lock);
7a5d0fbb 535 info->swapped -= nr_swaps_freed;
1da177e4
LT
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
1635f6a7 538}
1da177e4 539
1635f6a7
HD
540void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541{
542 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 544}
94c1e62d 545EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 546
44a30220
YZ
547static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548 struct kstat *stat)
549{
550 struct inode *inode = dentry->d_inode;
551 struct shmem_inode_info *info = SHMEM_I(inode);
552
d0424c42
HD
553 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554 spin_lock(&info->lock);
555 shmem_recalc_inode(inode);
556 spin_unlock(&info->lock);
557 }
44a30220 558 generic_fillattr(inode, stat);
44a30220
YZ
559 return 0;
560}
561
94c1e62d 562static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 563{
75c3cfa8 564 struct inode *inode = d_inode(dentry);
40e041a2 565 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
566 int error;
567
db78b877
CH
568 error = inode_change_ok(inode, attr);
569 if (error)
570 return error;
571
94c1e62d
HD
572 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573 loff_t oldsize = inode->i_size;
574 loff_t newsize = attr->ia_size;
3889e6e7 575
40e041a2
DH
576 /* protected by i_mutex */
577 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579 return -EPERM;
580
94c1e62d 581 if (newsize != oldsize) {
77142517
KK
582 error = shmem_reacct_size(SHMEM_I(inode)->flags,
583 oldsize, newsize);
584 if (error)
585 return error;
94c1e62d
HD
586 i_size_write(inode, newsize);
587 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588 }
afa2db2f 589 if (newsize <= oldsize) {
94c1e62d 590 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
591 if (oldsize > holebegin)
592 unmap_mapping_range(inode->i_mapping,
593 holebegin, 0, 1);
594 if (info->alloced)
595 shmem_truncate_range(inode,
596 newsize, (loff_t)-1);
94c1e62d 597 /* unmap again to remove racily COWed private pages */
d0424c42
HD
598 if (oldsize > holebegin)
599 unmap_mapping_range(inode->i_mapping,
600 holebegin, 0, 1);
94c1e62d 601 }
1da177e4
LT
602 }
603
db78b877 604 setattr_copy(inode, attr);
db78b877 605 if (attr->ia_valid & ATTR_MODE)
feda821e 606 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
607 return error;
608}
609
1f895f75 610static void shmem_evict_inode(struct inode *inode)
1da177e4 611{
1da177e4
LT
612 struct shmem_inode_info *info = SHMEM_I(inode);
613
3889e6e7 614 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
615 shmem_unacct_size(info->flags, inode->i_size);
616 inode->i_size = 0;
3889e6e7 617 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 618 if (!list_empty(&info->swaplist)) {
cb5f7b9a 619 mutex_lock(&shmem_swaplist_mutex);
1da177e4 620 list_del_init(&info->swaplist);
cb5f7b9a 621 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 622 }
69f07ec9
HD
623 } else
624 kfree(info->symlink);
b09e0fa4 625
38f38657 626 simple_xattrs_free(&info->xattrs);
0f3c42f5 627 WARN_ON(inode->i_blocks);
5b04c689 628 shmem_free_inode(inode->i_sb);
dbd5768f 629 clear_inode(inode);
1da177e4
LT
630}
631
46f65ec1
HD
632/*
633 * If swap found in inode, free it and move page from swapcache to filecache.
634 */
41ffe5d5 635static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 636 swp_entry_t swap, struct page **pagep)
1da177e4 637{
285b2c4f 638 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 639 void *radswap;
41ffe5d5 640 pgoff_t index;
bde05d1c
HD
641 gfp_t gfp;
642 int error = 0;
1da177e4 643
46f65ec1 644 radswap = swp_to_radix_entry(swap);
e504f3fd 645 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 646 if (index == -1)
00501b53 647 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 648
1b1b32f2
HD
649 /*
650 * Move _head_ to start search for next from here.
1f895f75 651 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 652 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 653 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
654 */
655 if (shmem_swaplist.next != &info->swaplist)
656 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 657
bde05d1c
HD
658 gfp = mapping_gfp_mask(mapping);
659 if (shmem_should_replace_page(*pagep, gfp)) {
660 mutex_unlock(&shmem_swaplist_mutex);
661 error = shmem_replace_page(pagep, gfp, info, index);
662 mutex_lock(&shmem_swaplist_mutex);
663 /*
664 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
665 * allocation, but the inode might have been freed while we
666 * dropped it: although a racing shmem_evict_inode() cannot
667 * complete without emptying the radix_tree, our page lock
668 * on this swapcache page is not enough to prevent that -
669 * free_swap_and_cache() of our swap entry will only
670 * trylock_page(), removing swap from radix_tree whatever.
671 *
672 * We must not proceed to shmem_add_to_page_cache() if the
673 * inode has been freed, but of course we cannot rely on
674 * inode or mapping or info to check that. However, we can
675 * safely check if our swap entry is still in use (and here
676 * it can't have got reused for another page): if it's still
677 * in use, then the inode cannot have been freed yet, and we
678 * can safely proceed (if it's no longer in use, that tells
679 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
680 */
681 if (!page_swapcount(*pagep))
682 error = -ENOENT;
683 }
684
d13d1443 685 /*
778dd893
HD
686 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687 * but also to hold up shmem_evict_inode(): so inode cannot be freed
688 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 689 */
bde05d1c
HD
690 if (!error)
691 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 692 radswap);
48f170fb 693 if (error != -ENOMEM) {
46f65ec1
HD
694 /*
695 * Truncation and eviction use free_swap_and_cache(), which
696 * only does trylock page: if we raced, best clean up here.
697 */
bde05d1c
HD
698 delete_from_swap_cache(*pagep);
699 set_page_dirty(*pagep);
46f65ec1
HD
700 if (!error) {
701 spin_lock(&info->lock);
702 info->swapped--;
703 spin_unlock(&info->lock);
704 swap_free(swap);
705 }
1da177e4 706 }
2e0e26c7 707 return error;
1da177e4
LT
708}
709
710/*
46f65ec1 711 * Search through swapped inodes to find and replace swap by page.
1da177e4 712 */
41ffe5d5 713int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 714{
41ffe5d5 715 struct list_head *this, *next;
1da177e4 716 struct shmem_inode_info *info;
00501b53 717 struct mem_cgroup *memcg;
bde05d1c
HD
718 int error = 0;
719
720 /*
721 * There's a faint possibility that swap page was replaced before
0142ef6c 722 * caller locked it: caller will come back later with the right page.
bde05d1c 723 */
0142ef6c 724 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 725 goto out;
778dd893
HD
726
727 /*
728 * Charge page using GFP_KERNEL while we can wait, before taking
729 * the shmem_swaplist_mutex which might hold up shmem_writepage().
730 * Charged back to the user (not to caller) when swap account is used.
778dd893 731 */
00501b53 732 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
733 if (error)
734 goto out;
46f65ec1 735 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 736 error = -EAGAIN;
1da177e4 737
cb5f7b9a 738 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
739 list_for_each_safe(this, next, &shmem_swaplist) {
740 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 741 if (info->swapped)
00501b53 742 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
743 else
744 list_del_init(&info->swaplist);
cb5f7b9a 745 cond_resched();
00501b53 746 if (error != -EAGAIN)
778dd893 747 break;
00501b53 748 /* found nothing in this: move on to search the next */
1da177e4 749 }
cb5f7b9a 750 mutex_unlock(&shmem_swaplist_mutex);
778dd893 751
00501b53
JW
752 if (error) {
753 if (error != -ENOMEM)
754 error = 0;
755 mem_cgroup_cancel_charge(page, memcg);
756 } else
757 mem_cgroup_commit_charge(page, memcg, true);
778dd893 758out:
aaa46865
HD
759 unlock_page(page);
760 page_cache_release(page);
778dd893 761 return error;
1da177e4
LT
762}
763
764/*
765 * Move the page from the page cache to the swap cache.
766 */
767static int shmem_writepage(struct page *page, struct writeback_control *wbc)
768{
769 struct shmem_inode_info *info;
1da177e4 770 struct address_space *mapping;
1da177e4 771 struct inode *inode;
6922c0c7
HD
772 swp_entry_t swap;
773 pgoff_t index;
1da177e4
LT
774
775 BUG_ON(!PageLocked(page));
1da177e4
LT
776 mapping = page->mapping;
777 index = page->index;
778 inode = mapping->host;
779 info = SHMEM_I(inode);
780 if (info->flags & VM_LOCKED)
781 goto redirty;
d9fe526a 782 if (!total_swap_pages)
1da177e4
LT
783 goto redirty;
784
d9fe526a 785 /*
97b713ba
CH
786 * Our capabilities prevent regular writeback or sync from ever calling
787 * shmem_writepage; but a stacking filesystem might use ->writepage of
788 * its underlying filesystem, in which case tmpfs should write out to
789 * swap only in response to memory pressure, and not for the writeback
790 * threads or sync.
d9fe526a 791 */
48f170fb
HD
792 if (!wbc->for_reclaim) {
793 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
794 goto redirty;
795 }
1635f6a7
HD
796
797 /*
798 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799 * value into swapfile.c, the only way we can correctly account for a
800 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
801 *
802 * That's okay for a page already fallocated earlier, but if we have
803 * not yet completed the fallocation, then (a) we want to keep track
804 * of this page in case we have to undo it, and (b) it may not be a
805 * good idea to continue anyway, once we're pushing into swap. So
806 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
807 */
808 if (!PageUptodate(page)) {
1aac1400
HD
809 if (inode->i_private) {
810 struct shmem_falloc *shmem_falloc;
811 spin_lock(&inode->i_lock);
812 shmem_falloc = inode->i_private;
813 if (shmem_falloc &&
8e205f77 814 !shmem_falloc->waitq &&
1aac1400
HD
815 index >= shmem_falloc->start &&
816 index < shmem_falloc->next)
817 shmem_falloc->nr_unswapped++;
818 else
819 shmem_falloc = NULL;
820 spin_unlock(&inode->i_lock);
821 if (shmem_falloc)
822 goto redirty;
823 }
1635f6a7
HD
824 clear_highpage(page);
825 flush_dcache_page(page);
826 SetPageUptodate(page);
827 }
828
48f170fb
HD
829 swap = get_swap_page();
830 if (!swap.val)
831 goto redirty;
d9fe526a 832
b1dea800
HD
833 /*
834 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
835 * if it's not already there. Do it now before the page is
836 * moved to swap cache, when its pagelock no longer protects
b1dea800 837 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
838 * we've incremented swapped, because shmem_unuse_inode() will
839 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 840 */
48f170fb
HD
841 mutex_lock(&shmem_swaplist_mutex);
842 if (list_empty(&info->swaplist))
843 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 844
48f170fb 845 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 846 swap_shmem_alloc(swap);
6922c0c7
HD
847 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
848
849 spin_lock(&info->lock);
850 info->swapped++;
851 shmem_recalc_inode(inode);
826267cf 852 spin_unlock(&info->lock);
6922c0c7
HD
853
854 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 855 BUG_ON(page_mapped(page));
9fab5619 856 swap_writepage(page, wbc);
1da177e4
LT
857 return 0;
858 }
859
6922c0c7 860 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 861 swapcache_free(swap);
1da177e4
LT
862redirty:
863 set_page_dirty(page);
d9fe526a
HD
864 if (wbc->for_reclaim)
865 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
866 unlock_page(page);
867 return 0;
1da177e4
LT
868}
869
870#ifdef CONFIG_NUMA
680d794b 871#ifdef CONFIG_TMPFS
71fe804b 872static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 873{
095f1fc4 874 char buffer[64];
680d794b 875
71fe804b 876 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 877 return; /* show nothing */
680d794b 878
a7a88b23 879 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
880
881 seq_printf(seq, ",mpol=%s", buffer);
680d794b 882}
71fe804b
LS
883
884static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
885{
886 struct mempolicy *mpol = NULL;
887 if (sbinfo->mpol) {
888 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
889 mpol = sbinfo->mpol;
890 mpol_get(mpol);
891 spin_unlock(&sbinfo->stat_lock);
892 }
893 return mpol;
894}
680d794b
AM
895#endif /* CONFIG_TMPFS */
896
41ffe5d5
HD
897static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
898 struct shmem_inode_info *info, pgoff_t index)
1da177e4 899{
1da177e4 900 struct vm_area_struct pvma;
18a2f371 901 struct page *page;
52cd3b07 902
1da177e4 903 /* Create a pseudo vma that just contains the policy */
c4cc6d07 904 pvma.vm_start = 0;
09c231cb
NZ
905 /* Bias interleave by inode number to distribute better across nodes */
906 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 907 pvma.vm_ops = NULL;
18a2f371
MG
908 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
909
910 page = swapin_readahead(swap, gfp, &pvma, 0);
911
912 /* Drop reference taken by mpol_shared_policy_lookup() */
913 mpol_cond_put(pvma.vm_policy);
914
915 return page;
1da177e4
LT
916}
917
02098fea 918static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 919 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
920{
921 struct vm_area_struct pvma;
18a2f371 922 struct page *page;
1da177e4 923
c4cc6d07
HD
924 /* Create a pseudo vma that just contains the policy */
925 pvma.vm_start = 0;
09c231cb
NZ
926 /* Bias interleave by inode number to distribute better across nodes */
927 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 928 pvma.vm_ops = NULL;
41ffe5d5 929 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 930
18a2f371
MG
931 page = alloc_page_vma(gfp, &pvma, 0);
932
933 /* Drop reference taken by mpol_shared_policy_lookup() */
934 mpol_cond_put(pvma.vm_policy);
935
936 return page;
1da177e4 937}
680d794b
AM
938#else /* !CONFIG_NUMA */
939#ifdef CONFIG_TMPFS
41ffe5d5 940static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
941{
942}
943#endif /* CONFIG_TMPFS */
944
41ffe5d5
HD
945static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
946 struct shmem_inode_info *info, pgoff_t index)
1da177e4 947{
41ffe5d5 948 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
949}
950
02098fea 951static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 952 struct shmem_inode_info *info, pgoff_t index)
1da177e4 953{
e84e2e13 954 return alloc_page(gfp);
1da177e4 955}
680d794b 956#endif /* CONFIG_NUMA */
1da177e4 957
71fe804b
LS
958#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
960{
961 return NULL;
962}
963#endif
964
bde05d1c
HD
965/*
966 * When a page is moved from swapcache to shmem filecache (either by the
967 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968 * shmem_unuse_inode()), it may have been read in earlier from swap, in
969 * ignorance of the mapping it belongs to. If that mapping has special
970 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971 * we may need to copy to a suitable page before moving to filecache.
972 *
973 * In a future release, this may well be extended to respect cpuset and
974 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975 * but for now it is a simple matter of zone.
976 */
977static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
978{
979 return page_zonenum(page) > gfp_zone(gfp);
980}
981
982static int shmem_replace_page(struct page **pagep, gfp_t gfp,
983 struct shmem_inode_info *info, pgoff_t index)
984{
985 struct page *oldpage, *newpage;
986 struct address_space *swap_mapping;
987 pgoff_t swap_index;
988 int error;
989
990 oldpage = *pagep;
991 swap_index = page_private(oldpage);
992 swap_mapping = page_mapping(oldpage);
993
994 /*
995 * We have arrived here because our zones are constrained, so don't
996 * limit chance of success by further cpuset and node constraints.
997 */
998 gfp &= ~GFP_CONSTRAINT_MASK;
999 newpage = shmem_alloc_page(gfp, info, index);
1000 if (!newpage)
1001 return -ENOMEM;
bde05d1c 1002
bde05d1c
HD
1003 page_cache_get(newpage);
1004 copy_highpage(newpage, oldpage);
0142ef6c 1005 flush_dcache_page(newpage);
bde05d1c 1006
bde05d1c 1007 __set_page_locked(newpage);
bde05d1c 1008 SetPageUptodate(newpage);
bde05d1c 1009 SetPageSwapBacked(newpage);
bde05d1c 1010 set_page_private(newpage, swap_index);
bde05d1c
HD
1011 SetPageSwapCache(newpage);
1012
1013 /*
1014 * Our caller will very soon move newpage out of swapcache, but it's
1015 * a nice clean interface for us to replace oldpage by newpage there.
1016 */
1017 spin_lock_irq(&swap_mapping->tree_lock);
1018 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1019 newpage);
0142ef6c
HD
1020 if (!error) {
1021 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1022 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1023 }
bde05d1c 1024 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1025
0142ef6c
HD
1026 if (unlikely(error)) {
1027 /*
1028 * Is this possible? I think not, now that our callers check
1029 * both PageSwapCache and page_private after getting page lock;
1030 * but be defensive. Reverse old to newpage for clear and free.
1031 */
1032 oldpage = newpage;
1033 } else {
45637bab 1034 mem_cgroup_replace_page(oldpage, newpage);
0142ef6c
HD
1035 lru_cache_add_anon(newpage);
1036 *pagep = newpage;
1037 }
bde05d1c
HD
1038
1039 ClearPageSwapCache(oldpage);
1040 set_page_private(oldpage, 0);
1041
1042 unlock_page(oldpage);
1043 page_cache_release(oldpage);
1044 page_cache_release(oldpage);
0142ef6c 1045 return error;
bde05d1c
HD
1046}
1047
1da177e4 1048/*
68da9f05 1049 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1050 *
1051 * If we allocate a new one we do not mark it dirty. That's up to the
1052 * vm. If we swap it in we mark it dirty since we also free the swap
1053 * entry since a page cannot live in both the swap and page cache
1054 */
41ffe5d5 1055static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1056 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1057{
1058 struct address_space *mapping = inode->i_mapping;
54af6042 1059 struct shmem_inode_info *info;
1da177e4 1060 struct shmem_sb_info *sbinfo;
00501b53 1061 struct mem_cgroup *memcg;
27ab7006 1062 struct page *page;
1da177e4
LT
1063 swp_entry_t swap;
1064 int error;
54af6042 1065 int once = 0;
1635f6a7 1066 int alloced = 0;
1da177e4 1067
41ffe5d5 1068 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1069 return -EFBIG;
1da177e4 1070repeat:
54af6042 1071 swap.val = 0;
0cd6144a 1072 page = find_lock_entry(mapping, index);
54af6042
HD
1073 if (radix_tree_exceptional_entry(page)) {
1074 swap = radix_to_swp_entry(page);
1075 page = NULL;
1076 }
1077
1635f6a7 1078 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1079 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1080 error = -EINVAL;
1081 goto failed;
1082 }
1083
66d2f4d2
HD
1084 if (page && sgp == SGP_WRITE)
1085 mark_page_accessed(page);
1086
1635f6a7
HD
1087 /* fallocated page? */
1088 if (page && !PageUptodate(page)) {
1089 if (sgp != SGP_READ)
1090 goto clear;
1091 unlock_page(page);
1092 page_cache_release(page);
1093 page = NULL;
1094 }
54af6042 1095 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1096 *pagep = page;
1097 return 0;
27ab7006
HD
1098 }
1099
1100 /*
54af6042
HD
1101 * Fast cache lookup did not find it:
1102 * bring it back from swap or allocate.
27ab7006 1103 */
54af6042
HD
1104 info = SHMEM_I(inode);
1105 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1106
1da177e4
LT
1107 if (swap.val) {
1108 /* Look it up and read it in.. */
27ab7006
HD
1109 page = lookup_swap_cache(swap);
1110 if (!page) {
1da177e4 1111 /* here we actually do the io */
68da9f05
HD
1112 if (fault_type)
1113 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1114 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1115 if (!page) {
54af6042
HD
1116 error = -ENOMEM;
1117 goto failed;
1da177e4 1118 }
1da177e4
LT
1119 }
1120
1121 /* We have to do this with page locked to prevent races */
54af6042 1122 lock_page(page);
0142ef6c 1123 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1124 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1125 error = -EEXIST; /* try again */
d1899228 1126 goto unlock;
bde05d1c 1127 }
27ab7006 1128 if (!PageUptodate(page)) {
1da177e4 1129 error = -EIO;
54af6042 1130 goto failed;
1da177e4 1131 }
54af6042
HD
1132 wait_on_page_writeback(page);
1133
bde05d1c
HD
1134 if (shmem_should_replace_page(page, gfp)) {
1135 error = shmem_replace_page(&page, gfp, info, index);
1136 if (error)
1137 goto failed;
1da177e4 1138 }
27ab7006 1139
00501b53 1140 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1141 if (!error) {
aa3b1895 1142 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1143 swp_to_radix_entry(swap));
215c02bc
HD
1144 /*
1145 * We already confirmed swap under page lock, and make
1146 * no memory allocation here, so usually no possibility
1147 * of error; but free_swap_and_cache() only trylocks a
1148 * page, so it is just possible that the entry has been
1149 * truncated or holepunched since swap was confirmed.
1150 * shmem_undo_range() will have done some of the
1151 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1152 * the rest.
215c02bc
HD
1153 * Reset swap.val? No, leave it so "failed" goes back to
1154 * "repeat": reading a hole and writing should succeed.
1155 */
00501b53
JW
1156 if (error) {
1157 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1158 delete_from_swap_cache(page);
00501b53 1159 }
d1899228 1160 }
54af6042
HD
1161 if (error)
1162 goto failed;
1163
00501b53
JW
1164 mem_cgroup_commit_charge(page, memcg, true);
1165
54af6042 1166 spin_lock(&info->lock);
285b2c4f 1167 info->swapped--;
54af6042 1168 shmem_recalc_inode(inode);
27ab7006 1169 spin_unlock(&info->lock);
54af6042 1170
66d2f4d2
HD
1171 if (sgp == SGP_WRITE)
1172 mark_page_accessed(page);
1173
54af6042 1174 delete_from_swap_cache(page);
27ab7006
HD
1175 set_page_dirty(page);
1176 swap_free(swap);
1177
54af6042
HD
1178 } else {
1179 if (shmem_acct_block(info->flags)) {
1180 error = -ENOSPC;
1181 goto failed;
1da177e4 1182 }
0edd73b3 1183 if (sbinfo->max_blocks) {
fc5da22a 1184 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1185 sbinfo->max_blocks) >= 0) {
1186 error = -ENOSPC;
1187 goto unacct;
1188 }
7e496299 1189 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1190 }
1da177e4 1191
54af6042
HD
1192 page = shmem_alloc_page(gfp, info, index);
1193 if (!page) {
1194 error = -ENOMEM;
1195 goto decused;
1da177e4
LT
1196 }
1197
07a42788 1198 __SetPageSwapBacked(page);
54af6042 1199 __set_page_locked(page);
66d2f4d2 1200 if (sgp == SGP_WRITE)
eb39d618 1201 __SetPageReferenced(page);
66d2f4d2 1202
00501b53 1203 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1204 if (error)
1205 goto decused;
5e4c0d97 1206 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1207 if (!error) {
1208 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1209 NULL);
b065b432
HD
1210 radix_tree_preload_end();
1211 }
1212 if (error) {
00501b53 1213 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1214 goto decused;
1215 }
00501b53 1216 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1217 lru_cache_add_anon(page);
1218
1219 spin_lock(&info->lock);
1da177e4 1220 info->alloced++;
54af6042
HD
1221 inode->i_blocks += BLOCKS_PER_PAGE;
1222 shmem_recalc_inode(inode);
1da177e4 1223 spin_unlock(&info->lock);
1635f6a7 1224 alloced = true;
54af6042 1225
ec9516fb 1226 /*
1635f6a7
HD
1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 */
1229 if (sgp == SGP_FALLOC)
1230 sgp = SGP_WRITE;
1231clear:
1232 /*
1233 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1236 */
1237 if (sgp != SGP_WRITE) {
1238 clear_highpage(page);
1239 flush_dcache_page(page);
1240 SetPageUptodate(page);
1241 }
a0ee5ec5 1242 if (sgp == SGP_DIRTY)
27ab7006 1243 set_page_dirty(page);
1da177e4 1244 }
bde05d1c 1245
54af6042 1246 /* Perhaps the file has been truncated since we checked */
1635f6a7 1247 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1248 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 error = -EINVAL;
1635f6a7
HD
1250 if (alloced)
1251 goto trunc;
1252 else
1253 goto failed;
e83c32e8 1254 }
54af6042
HD
1255 *pagep = page;
1256 return 0;
1da177e4 1257
59a16ead 1258 /*
54af6042 1259 * Error recovery.
59a16ead 1260 */
54af6042 1261trunc:
1635f6a7 1262 info = SHMEM_I(inode);
54af6042
HD
1263 ClearPageDirty(page);
1264 delete_from_page_cache(page);
1265 spin_lock(&info->lock);
1266 info->alloced--;
1267 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1268 spin_unlock(&info->lock);
54af6042 1269decused:
1635f6a7 1270 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1271 if (sbinfo->max_blocks)
1272 percpu_counter_add(&sbinfo->used_blocks, -1);
1273unacct:
1274 shmem_unacct_blocks(info->flags, 1);
1275failed:
d1899228
HD
1276 if (swap.val && error != -EINVAL &&
1277 !shmem_confirm_swap(mapping, index, swap))
1278 error = -EEXIST;
1279unlock:
27ab7006 1280 if (page) {
54af6042 1281 unlock_page(page);
27ab7006 1282 page_cache_release(page);
54af6042
HD
1283 }
1284 if (error == -ENOSPC && !once++) {
1285 info = SHMEM_I(inode);
1286 spin_lock(&info->lock);
1287 shmem_recalc_inode(inode);
1288 spin_unlock(&info->lock);
27ab7006 1289 goto repeat;
ff36b801 1290 }
d1899228 1291 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1292 goto repeat;
1293 return error;
1da177e4
LT
1294}
1295
d0217ac0 1296static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1297{
496ad9aa 1298 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1299 int error;
68da9f05 1300 int ret = VM_FAULT_LOCKED;
1da177e4 1301
f00cdc6d
HD
1302 /*
1303 * Trinity finds that probing a hole which tmpfs is punching can
1304 * prevent the hole-punch from ever completing: which in turn
1305 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1306 * faulting pages into the hole while it's being punched. Although
1307 * shmem_undo_range() does remove the additions, it may be unable to
1308 * keep up, as each new page needs its own unmap_mapping_range() call,
1309 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1310 *
1311 * It does not matter if we sometimes reach this check just before the
1312 * hole-punch begins, so that one fault then races with the punch:
1313 * we just need to make racing faults a rare case.
1314 *
1315 * The implementation below would be much simpler if we just used a
1316 * standard mutex or completion: but we cannot take i_mutex in fault,
1317 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1318 */
1319 if (unlikely(inode->i_private)) {
1320 struct shmem_falloc *shmem_falloc;
1321
1322 spin_lock(&inode->i_lock);
1323 shmem_falloc = inode->i_private;
8e205f77
HD
1324 if (shmem_falloc &&
1325 shmem_falloc->waitq &&
1326 vmf->pgoff >= shmem_falloc->start &&
1327 vmf->pgoff < shmem_falloc->next) {
1328 wait_queue_head_t *shmem_falloc_waitq;
1329 DEFINE_WAIT(shmem_fault_wait);
1330
1331 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1332 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1333 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1334 /* It's polite to up mmap_sem if we can */
f00cdc6d 1335 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1336 ret = VM_FAULT_RETRY;
f00cdc6d 1337 }
8e205f77
HD
1338
1339 shmem_falloc_waitq = shmem_falloc->waitq;
1340 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1341 TASK_UNINTERRUPTIBLE);
1342 spin_unlock(&inode->i_lock);
1343 schedule();
1344
1345 /*
1346 * shmem_falloc_waitq points into the shmem_fallocate()
1347 * stack of the hole-punching task: shmem_falloc_waitq
1348 * is usually invalid by the time we reach here, but
1349 * finish_wait() does not dereference it in that case;
1350 * though i_lock needed lest racing with wake_up_all().
1351 */
1352 spin_lock(&inode->i_lock);
1353 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1354 spin_unlock(&inode->i_lock);
1355 return ret;
f00cdc6d 1356 }
8e205f77 1357 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1358 }
1359
27d54b39 1360 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1361 if (error)
1362 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1363
456f998e
YH
1364 if (ret & VM_FAULT_MAJOR) {
1365 count_vm_event(PGMAJFAULT);
1366 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1367 }
68da9f05 1368 return ret;
1da177e4
LT
1369}
1370
1da177e4 1371#ifdef CONFIG_NUMA
41ffe5d5 1372static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1373{
496ad9aa 1374 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1375 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1376}
1377
d8dc74f2
AB
1378static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1379 unsigned long addr)
1da177e4 1380{
496ad9aa 1381 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1382 pgoff_t index;
1da177e4 1383
41ffe5d5
HD
1384 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1385 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1386}
1387#endif
1388
1389int shmem_lock(struct file *file, int lock, struct user_struct *user)
1390{
496ad9aa 1391 struct inode *inode = file_inode(file);
1da177e4
LT
1392 struct shmem_inode_info *info = SHMEM_I(inode);
1393 int retval = -ENOMEM;
1394
1395 spin_lock(&info->lock);
1396 if (lock && !(info->flags & VM_LOCKED)) {
1397 if (!user_shm_lock(inode->i_size, user))
1398 goto out_nomem;
1399 info->flags |= VM_LOCKED;
89e004ea 1400 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1401 }
1402 if (!lock && (info->flags & VM_LOCKED) && user) {
1403 user_shm_unlock(inode->i_size, user);
1404 info->flags &= ~VM_LOCKED;
89e004ea 1405 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1406 }
1407 retval = 0;
89e004ea 1408
1da177e4
LT
1409out_nomem:
1410 spin_unlock(&info->lock);
1411 return retval;
1412}
1413
9b83a6a8 1414static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1415{
1416 file_accessed(file);
1417 vma->vm_ops = &shmem_vm_ops;
1418 return 0;
1419}
1420
454abafe 1421static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1422 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1423{
1424 struct inode *inode;
1425 struct shmem_inode_info *info;
1426 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1427
5b04c689
PE
1428 if (shmem_reserve_inode(sb))
1429 return NULL;
1da177e4
LT
1430
1431 inode = new_inode(sb);
1432 if (inode) {
85fe4025 1433 inode->i_ino = get_next_ino();
454abafe 1434 inode_init_owner(inode, dir, mode);
1da177e4 1435 inode->i_blocks = 0;
1da177e4 1436 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1437 inode->i_generation = get_seconds();
1da177e4
LT
1438 info = SHMEM_I(inode);
1439 memset(info, 0, (char *)inode - (char *)info);
1440 spin_lock_init(&info->lock);
40e041a2 1441 info->seals = F_SEAL_SEAL;
0b0a0806 1442 info->flags = flags & VM_NORESERVE;
1da177e4 1443 INIT_LIST_HEAD(&info->swaplist);
38f38657 1444 simple_xattrs_init(&info->xattrs);
72c04902 1445 cache_no_acl(inode);
1da177e4
LT
1446
1447 switch (mode & S_IFMT) {
1448 default:
39f0247d 1449 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1450 init_special_inode(inode, mode, dev);
1451 break;
1452 case S_IFREG:
14fcc23f 1453 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1454 inode->i_op = &shmem_inode_operations;
1455 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1456 mpol_shared_policy_init(&info->policy,
1457 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1458 break;
1459 case S_IFDIR:
d8c76e6f 1460 inc_nlink(inode);
1da177e4
LT
1461 /* Some things misbehave if size == 0 on a directory */
1462 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1463 inode->i_op = &shmem_dir_inode_operations;
1464 inode->i_fop = &simple_dir_operations;
1465 break;
1466 case S_IFLNK:
1467 /*
1468 * Must not load anything in the rbtree,
1469 * mpol_free_shared_policy will not be called.
1470 */
71fe804b 1471 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1472 break;
1473 }
5b04c689
PE
1474 } else
1475 shmem_free_inode(sb);
1da177e4
LT
1476 return inode;
1477}
1478
0cd6144a
JW
1479bool shmem_mapping(struct address_space *mapping)
1480{
f0774d88
SL
1481 if (!mapping->host)
1482 return false;
1483
97b713ba 1484 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1485}
1486
1da177e4 1487#ifdef CONFIG_TMPFS
92e1d5be 1488static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1489static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1490
6d9d88d0
JS
1491#ifdef CONFIG_TMPFS_XATTR
1492static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1493#else
1494#define shmem_initxattrs NULL
1495#endif
1496
1da177e4 1497static int
800d15a5
NP
1498shmem_write_begin(struct file *file, struct address_space *mapping,
1499 loff_t pos, unsigned len, unsigned flags,
1500 struct page **pagep, void **fsdata)
1da177e4 1501{
800d15a5 1502 struct inode *inode = mapping->host;
40e041a2 1503 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1504 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DH
1505
1506 /* i_mutex is held by caller */
1507 if (unlikely(info->seals)) {
1508 if (info->seals & F_SEAL_WRITE)
1509 return -EPERM;
1510 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1511 return -EPERM;
1512 }
1513
66d2f4d2 1514 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1515}
1516
1517static int
1518shmem_write_end(struct file *file, struct address_space *mapping,
1519 loff_t pos, unsigned len, unsigned copied,
1520 struct page *page, void *fsdata)
1521{
1522 struct inode *inode = mapping->host;
1523
d3602444
HD
1524 if (pos + copied > inode->i_size)
1525 i_size_write(inode, pos + copied);
1526
ec9516fb
HD
1527 if (!PageUptodate(page)) {
1528 if (copied < PAGE_CACHE_SIZE) {
1529 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1530 zero_user_segments(page, 0, from,
1531 from + copied, PAGE_CACHE_SIZE);
1532 }
1533 SetPageUptodate(page);
1534 }
800d15a5 1535 set_page_dirty(page);
6746aff7 1536 unlock_page(page);
800d15a5
NP
1537 page_cache_release(page);
1538
800d15a5 1539 return copied;
1da177e4
LT
1540}
1541
2ba5bbed 1542static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1543{
6e58e79d
AV
1544 struct file *file = iocb->ki_filp;
1545 struct inode *inode = file_inode(file);
1da177e4 1546 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1547 pgoff_t index;
1548 unsigned long offset;
a0ee5ec5 1549 enum sgp_type sgp = SGP_READ;
f7c1d074 1550 int error = 0;
cb66a7a1 1551 ssize_t retval = 0;
6e58e79d 1552 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1553
1554 /*
1555 * Might this read be for a stacking filesystem? Then when reading
1556 * holes of a sparse file, we actually need to allocate those pages,
1557 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1558 */
777eda2c 1559 if (!iter_is_iovec(to))
a0ee5ec5 1560 sgp = SGP_DIRTY;
1da177e4
LT
1561
1562 index = *ppos >> PAGE_CACHE_SHIFT;
1563 offset = *ppos & ~PAGE_CACHE_MASK;
1564
1565 for (;;) {
1566 struct page *page = NULL;
41ffe5d5
HD
1567 pgoff_t end_index;
1568 unsigned long nr, ret;
1da177e4
LT
1569 loff_t i_size = i_size_read(inode);
1570
1571 end_index = i_size >> PAGE_CACHE_SHIFT;
1572 if (index > end_index)
1573 break;
1574 if (index == end_index) {
1575 nr = i_size & ~PAGE_CACHE_MASK;
1576 if (nr <= offset)
1577 break;
1578 }
1579
6e58e79d
AV
1580 error = shmem_getpage(inode, index, &page, sgp, NULL);
1581 if (error) {
1582 if (error == -EINVAL)
1583 error = 0;
1da177e4
LT
1584 break;
1585 }
d3602444
HD
1586 if (page)
1587 unlock_page(page);
1da177e4
LT
1588
1589 /*
1590 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1591 * are called without i_mutex protection against truncate
1da177e4
LT
1592 */
1593 nr = PAGE_CACHE_SIZE;
1594 i_size = i_size_read(inode);
1595 end_index = i_size >> PAGE_CACHE_SHIFT;
1596 if (index == end_index) {
1597 nr = i_size & ~PAGE_CACHE_MASK;
1598 if (nr <= offset) {
1599 if (page)
1600 page_cache_release(page);
1601 break;
1602 }
1603 }
1604 nr -= offset;
1605
1606 if (page) {
1607 /*
1608 * If users can be writing to this page using arbitrary
1609 * virtual addresses, take care about potential aliasing
1610 * before reading the page on the kernel side.
1611 */
1612 if (mapping_writably_mapped(mapping))
1613 flush_dcache_page(page);
1614 /*
1615 * Mark the page accessed if we read the beginning.
1616 */
1617 if (!offset)
1618 mark_page_accessed(page);
b5810039 1619 } else {
1da177e4 1620 page = ZERO_PAGE(0);
b5810039
NP
1621 page_cache_get(page);
1622 }
1da177e4
LT
1623
1624 /*
1625 * Ok, we have the page, and it's up-to-date, so
1626 * now we can copy it to user space...
1da177e4 1627 */
2ba5bbed 1628 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1629 retval += ret;
1da177e4
LT
1630 offset += ret;
1631 index += offset >> PAGE_CACHE_SHIFT;
1632 offset &= ~PAGE_CACHE_MASK;
1633
1634 page_cache_release(page);
2ba5bbed 1635 if (!iov_iter_count(to))
1da177e4 1636 break;
6e58e79d
AV
1637 if (ret < nr) {
1638 error = -EFAULT;
1639 break;
1640 }
1da177e4
LT
1641 cond_resched();
1642 }
1643
1644 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1645 file_accessed(file);
1646 return retval ? retval : error;
1da177e4
LT
1647}
1648
708e3508
HD
1649static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1650 struct pipe_inode_info *pipe, size_t len,
1651 unsigned int flags)
1652{
1653 struct address_space *mapping = in->f_mapping;
71f0e07a 1654 struct inode *inode = mapping->host;
708e3508
HD
1655 unsigned int loff, nr_pages, req_pages;
1656 struct page *pages[PIPE_DEF_BUFFERS];
1657 struct partial_page partial[PIPE_DEF_BUFFERS];
1658 struct page *page;
1659 pgoff_t index, end_index;
1660 loff_t isize, left;
1661 int error, page_nr;
1662 struct splice_pipe_desc spd = {
1663 .pages = pages,
1664 .partial = partial,
047fe360 1665 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1666 .flags = flags,
1667 .ops = &page_cache_pipe_buf_ops,
1668 .spd_release = spd_release_page,
1669 };
1670
71f0e07a 1671 isize = i_size_read(inode);
708e3508
HD
1672 if (unlikely(*ppos >= isize))
1673 return 0;
1674
1675 left = isize - *ppos;
1676 if (unlikely(left < len))
1677 len = left;
1678
1679 if (splice_grow_spd(pipe, &spd))
1680 return -ENOMEM;
1681
1682 index = *ppos >> PAGE_CACHE_SHIFT;
1683 loff = *ppos & ~PAGE_CACHE_MASK;
1684 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1685 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1686
708e3508
HD
1687 spd.nr_pages = find_get_pages_contig(mapping, index,
1688 nr_pages, spd.pages);
1689 index += spd.nr_pages;
708e3508 1690 error = 0;
708e3508 1691
71f0e07a 1692 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1693 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1694 if (error)
1695 break;
1696 unlock_page(page);
708e3508
HD
1697 spd.pages[spd.nr_pages++] = page;
1698 index++;
1699 }
1700
708e3508
HD
1701 index = *ppos >> PAGE_CACHE_SHIFT;
1702 nr_pages = spd.nr_pages;
1703 spd.nr_pages = 0;
71f0e07a 1704
708e3508
HD
1705 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1706 unsigned int this_len;
1707
1708 if (!len)
1709 break;
1710
708e3508
HD
1711 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1712 page = spd.pages[page_nr];
1713
71f0e07a 1714 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1715 error = shmem_getpage(inode, index, &page,
1716 SGP_CACHE, NULL);
1717 if (error)
708e3508 1718 break;
71f0e07a
HD
1719 unlock_page(page);
1720 page_cache_release(spd.pages[page_nr]);
1721 spd.pages[page_nr] = page;
708e3508 1722 }
71f0e07a
HD
1723
1724 isize = i_size_read(inode);
708e3508
HD
1725 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1726 if (unlikely(!isize || index > end_index))
1727 break;
1728
708e3508
HD
1729 if (end_index == index) {
1730 unsigned int plen;
1731
708e3508
HD
1732 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1733 if (plen <= loff)
1734 break;
1735
708e3508
HD
1736 this_len = min(this_len, plen - loff);
1737 len = this_len;
1738 }
1739
1740 spd.partial[page_nr].offset = loff;
1741 spd.partial[page_nr].len = this_len;
1742 len -= this_len;
1743 loff = 0;
1744 spd.nr_pages++;
1745 index++;
1746 }
1747
708e3508
HD
1748 while (page_nr < nr_pages)
1749 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1750
1751 if (spd.nr_pages)
1752 error = splice_to_pipe(pipe, &spd);
1753
047fe360 1754 splice_shrink_spd(&spd);
708e3508
HD
1755
1756 if (error > 0) {
1757 *ppos += error;
1758 file_accessed(in);
1759 }
1760 return error;
1761}
1762
220f2ac9
HD
1763/*
1764 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1765 */
1766static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1767 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1768{
1769 struct page *page;
1770 struct pagevec pvec;
1771 pgoff_t indices[PAGEVEC_SIZE];
1772 bool done = false;
1773 int i;
1774
1775 pagevec_init(&pvec, 0);
1776 pvec.nr = 1; /* start small: we may be there already */
1777 while (!done) {
0cd6144a 1778 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1779 pvec.nr, pvec.pages, indices);
1780 if (!pvec.nr) {
965c8e59 1781 if (whence == SEEK_DATA)
220f2ac9
HD
1782 index = end;
1783 break;
1784 }
1785 for (i = 0; i < pvec.nr; i++, index++) {
1786 if (index < indices[i]) {
965c8e59 1787 if (whence == SEEK_HOLE) {
220f2ac9
HD
1788 done = true;
1789 break;
1790 }
1791 index = indices[i];
1792 }
1793 page = pvec.pages[i];
1794 if (page && !radix_tree_exceptional_entry(page)) {
1795 if (!PageUptodate(page))
1796 page = NULL;
1797 }
1798 if (index >= end ||
965c8e59
AM
1799 (page && whence == SEEK_DATA) ||
1800 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1801 done = true;
1802 break;
1803 }
1804 }
0cd6144a 1805 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1806 pagevec_release(&pvec);
1807 pvec.nr = PAGEVEC_SIZE;
1808 cond_resched();
1809 }
1810 return index;
1811}
1812
965c8e59 1813static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1814{
1815 struct address_space *mapping = file->f_mapping;
1816 struct inode *inode = mapping->host;
1817 pgoff_t start, end;
1818 loff_t new_offset;
1819
965c8e59
AM
1820 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1821 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1822 MAX_LFS_FILESIZE, i_size_read(inode));
1823 mutex_lock(&inode->i_mutex);
1824 /* We're holding i_mutex so we can access i_size directly */
1825
1826 if (offset < 0)
1827 offset = -EINVAL;
1828 else if (offset >= inode->i_size)
1829 offset = -ENXIO;
1830 else {
1831 start = offset >> PAGE_CACHE_SHIFT;
1832 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1833 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1834 new_offset <<= PAGE_CACHE_SHIFT;
1835 if (new_offset > offset) {
1836 if (new_offset < inode->i_size)
1837 offset = new_offset;
965c8e59 1838 else if (whence == SEEK_DATA)
220f2ac9
HD
1839 offset = -ENXIO;
1840 else
1841 offset = inode->i_size;
1842 }
1843 }
1844
387aae6f
HD
1845 if (offset >= 0)
1846 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1847 mutex_unlock(&inode->i_mutex);
1848 return offset;
1849}
1850
05f65b5c
DH
1851/*
1852 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1853 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1854 */
1855#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1856#define LAST_SCAN 4 /* about 150ms max */
1857
1858static void shmem_tag_pins(struct address_space *mapping)
1859{
1860 struct radix_tree_iter iter;
1861 void **slot;
1862 pgoff_t start;
1863 struct page *page;
1864
1865 lru_add_drain();
1866 start = 0;
1867 rcu_read_lock();
1868
1869restart:
1870 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1871 page = radix_tree_deref_slot(slot);
1872 if (!page || radix_tree_exception(page)) {
1873 if (radix_tree_deref_retry(page))
1874 goto restart;
1875 } else if (page_count(page) - page_mapcount(page) > 1) {
1876 spin_lock_irq(&mapping->tree_lock);
1877 radix_tree_tag_set(&mapping->page_tree, iter.index,
1878 SHMEM_TAG_PINNED);
1879 spin_unlock_irq(&mapping->tree_lock);
1880 }
1881
1882 if (need_resched()) {
1883 cond_resched_rcu();
1884 start = iter.index + 1;
1885 goto restart;
1886 }
1887 }
1888 rcu_read_unlock();
1889}
1890
1891/*
1892 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1893 * via get_user_pages(), drivers might have some pending I/O without any active
1894 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1895 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1896 * them to be dropped.
1897 * The caller must guarantee that no new user will acquire writable references
1898 * to those pages to avoid races.
1899 */
40e041a2
DH
1900static int shmem_wait_for_pins(struct address_space *mapping)
1901{
05f65b5c
DH
1902 struct radix_tree_iter iter;
1903 void **slot;
1904 pgoff_t start;
1905 struct page *page;
1906 int error, scan;
1907
1908 shmem_tag_pins(mapping);
1909
1910 error = 0;
1911 for (scan = 0; scan <= LAST_SCAN; scan++) {
1912 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1913 break;
1914
1915 if (!scan)
1916 lru_add_drain_all();
1917 else if (schedule_timeout_killable((HZ << scan) / 200))
1918 scan = LAST_SCAN;
1919
1920 start = 0;
1921 rcu_read_lock();
1922restart:
1923 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1924 start, SHMEM_TAG_PINNED) {
1925
1926 page = radix_tree_deref_slot(slot);
1927 if (radix_tree_exception(page)) {
1928 if (radix_tree_deref_retry(page))
1929 goto restart;
1930
1931 page = NULL;
1932 }
1933
1934 if (page &&
1935 page_count(page) - page_mapcount(page) != 1) {
1936 if (scan < LAST_SCAN)
1937 goto continue_resched;
1938
1939 /*
1940 * On the last scan, we clean up all those tags
1941 * we inserted; but make a note that we still
1942 * found pages pinned.
1943 */
1944 error = -EBUSY;
1945 }
1946
1947 spin_lock_irq(&mapping->tree_lock);
1948 radix_tree_tag_clear(&mapping->page_tree,
1949 iter.index, SHMEM_TAG_PINNED);
1950 spin_unlock_irq(&mapping->tree_lock);
1951continue_resched:
1952 if (need_resched()) {
1953 cond_resched_rcu();
1954 start = iter.index + 1;
1955 goto restart;
1956 }
1957 }
1958 rcu_read_unlock();
1959 }
1960
1961 return error;
40e041a2
DH
1962}
1963
1964#define F_ALL_SEALS (F_SEAL_SEAL | \
1965 F_SEAL_SHRINK | \
1966 F_SEAL_GROW | \
1967 F_SEAL_WRITE)
1968
1969int shmem_add_seals(struct file *file, unsigned int seals)
1970{
1971 struct inode *inode = file_inode(file);
1972 struct shmem_inode_info *info = SHMEM_I(inode);
1973 int error;
1974
1975 /*
1976 * SEALING
1977 * Sealing allows multiple parties to share a shmem-file but restrict
1978 * access to a specific subset of file operations. Seals can only be
1979 * added, but never removed. This way, mutually untrusted parties can
1980 * share common memory regions with a well-defined policy. A malicious
1981 * peer can thus never perform unwanted operations on a shared object.
1982 *
1983 * Seals are only supported on special shmem-files and always affect
1984 * the whole underlying inode. Once a seal is set, it may prevent some
1985 * kinds of access to the file. Currently, the following seals are
1986 * defined:
1987 * SEAL_SEAL: Prevent further seals from being set on this file
1988 * SEAL_SHRINK: Prevent the file from shrinking
1989 * SEAL_GROW: Prevent the file from growing
1990 * SEAL_WRITE: Prevent write access to the file
1991 *
1992 * As we don't require any trust relationship between two parties, we
1993 * must prevent seals from being removed. Therefore, sealing a file
1994 * only adds a given set of seals to the file, it never touches
1995 * existing seals. Furthermore, the "setting seals"-operation can be
1996 * sealed itself, which basically prevents any further seal from being
1997 * added.
1998 *
1999 * Semantics of sealing are only defined on volatile files. Only
2000 * anonymous shmem files support sealing. More importantly, seals are
2001 * never written to disk. Therefore, there's no plan to support it on
2002 * other file types.
2003 */
2004
2005 if (file->f_op != &shmem_file_operations)
2006 return -EINVAL;
2007 if (!(file->f_mode & FMODE_WRITE))
2008 return -EPERM;
2009 if (seals & ~(unsigned int)F_ALL_SEALS)
2010 return -EINVAL;
2011
2012 mutex_lock(&inode->i_mutex);
2013
2014 if (info->seals & F_SEAL_SEAL) {
2015 error = -EPERM;
2016 goto unlock;
2017 }
2018
2019 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2020 error = mapping_deny_writable(file->f_mapping);
2021 if (error)
2022 goto unlock;
2023
2024 error = shmem_wait_for_pins(file->f_mapping);
2025 if (error) {
2026 mapping_allow_writable(file->f_mapping);
2027 goto unlock;
2028 }
2029 }
2030
2031 info->seals |= seals;
2032 error = 0;
2033
2034unlock:
2035 mutex_unlock(&inode->i_mutex);
2036 return error;
2037}
2038EXPORT_SYMBOL_GPL(shmem_add_seals);
2039
2040int shmem_get_seals(struct file *file)
2041{
2042 if (file->f_op != &shmem_file_operations)
2043 return -EINVAL;
2044
2045 return SHMEM_I(file_inode(file))->seals;
2046}
2047EXPORT_SYMBOL_GPL(shmem_get_seals);
2048
2049long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2050{
2051 long error;
2052
2053 switch (cmd) {
2054 case F_ADD_SEALS:
2055 /* disallow upper 32bit */
2056 if (arg > UINT_MAX)
2057 return -EINVAL;
2058
2059 error = shmem_add_seals(file, arg);
2060 break;
2061 case F_GET_SEALS:
2062 error = shmem_get_seals(file);
2063 break;
2064 default:
2065 error = -EINVAL;
2066 break;
2067 }
2068
2069 return error;
2070}
2071
83e4fa9c
HD
2072static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2073 loff_t len)
2074{
496ad9aa 2075 struct inode *inode = file_inode(file);
e2d12e22 2076 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2077 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2078 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2079 pgoff_t start, index, end;
2080 int error;
83e4fa9c 2081
13ace4d0
HD
2082 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2083 return -EOPNOTSUPP;
2084
83e4fa9c
HD
2085 mutex_lock(&inode->i_mutex);
2086
2087 if (mode & FALLOC_FL_PUNCH_HOLE) {
2088 struct address_space *mapping = file->f_mapping;
2089 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2090 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2091 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2092
40e041a2
DH
2093 /* protected by i_mutex */
2094 if (info->seals & F_SEAL_WRITE) {
2095 error = -EPERM;
2096 goto out;
2097 }
2098
8e205f77 2099 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2100 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2101 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2102 spin_lock(&inode->i_lock);
2103 inode->i_private = &shmem_falloc;
2104 spin_unlock(&inode->i_lock);
2105
83e4fa9c
HD
2106 if ((u64)unmap_end > (u64)unmap_start)
2107 unmap_mapping_range(mapping, unmap_start,
2108 1 + unmap_end - unmap_start, 0);
2109 shmem_truncate_range(inode, offset, offset + len - 1);
2110 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2111
2112 spin_lock(&inode->i_lock);
2113 inode->i_private = NULL;
2114 wake_up_all(&shmem_falloc_waitq);
2115 spin_unlock(&inode->i_lock);
83e4fa9c 2116 error = 0;
8e205f77 2117 goto out;
e2d12e22
HD
2118 }
2119
2120 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2121 error = inode_newsize_ok(inode, offset + len);
2122 if (error)
2123 goto out;
2124
40e041a2
DH
2125 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2126 error = -EPERM;
2127 goto out;
2128 }
2129
e2d12e22
HD
2130 start = offset >> PAGE_CACHE_SHIFT;
2131 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2132 /* Try to avoid a swapstorm if len is impossible to satisfy */
2133 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2134 error = -ENOSPC;
2135 goto out;
83e4fa9c
HD
2136 }
2137
8e205f77 2138 shmem_falloc.waitq = NULL;
1aac1400
HD
2139 shmem_falloc.start = start;
2140 shmem_falloc.next = start;
2141 shmem_falloc.nr_falloced = 0;
2142 shmem_falloc.nr_unswapped = 0;
2143 spin_lock(&inode->i_lock);
2144 inode->i_private = &shmem_falloc;
2145 spin_unlock(&inode->i_lock);
2146
e2d12e22
HD
2147 for (index = start; index < end; index++) {
2148 struct page *page;
2149
2150 /*
2151 * Good, the fallocate(2) manpage permits EINTR: we may have
2152 * been interrupted because we are using up too much memory.
2153 */
2154 if (signal_pending(current))
2155 error = -EINTR;
1aac1400
HD
2156 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2157 error = -ENOMEM;
e2d12e22 2158 else
1635f6a7 2159 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2160 NULL);
2161 if (error) {
1635f6a7
HD
2162 /* Remove the !PageUptodate pages we added */
2163 shmem_undo_range(inode,
2164 (loff_t)start << PAGE_CACHE_SHIFT,
2165 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2166 goto undone;
e2d12e22
HD
2167 }
2168
1aac1400
HD
2169 /*
2170 * Inform shmem_writepage() how far we have reached.
2171 * No need for lock or barrier: we have the page lock.
2172 */
2173 shmem_falloc.next++;
2174 if (!PageUptodate(page))
2175 shmem_falloc.nr_falloced++;
2176
e2d12e22 2177 /*
1635f6a7
HD
2178 * If !PageUptodate, leave it that way so that freeable pages
2179 * can be recognized if we need to rollback on error later.
2180 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2181 * than free the pages we are allocating (and SGP_CACHE pages
2182 * might still be clean: we now need to mark those dirty too).
2183 */
2184 set_page_dirty(page);
2185 unlock_page(page);
2186 page_cache_release(page);
2187 cond_resched();
2188 }
2189
2190 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2191 i_size_write(inode, offset + len);
e2d12e22 2192 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2193undone:
2194 spin_lock(&inode->i_lock);
2195 inode->i_private = NULL;
2196 spin_unlock(&inode->i_lock);
e2d12e22 2197out:
83e4fa9c
HD
2198 mutex_unlock(&inode->i_mutex);
2199 return error;
2200}
2201
726c3342 2202static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2203{
726c3342 2204 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2205
2206 buf->f_type = TMPFS_MAGIC;
2207 buf->f_bsize = PAGE_CACHE_SIZE;
2208 buf->f_namelen = NAME_MAX;
0edd73b3 2209 if (sbinfo->max_blocks) {
1da177e4 2210 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2211 buf->f_bavail =
2212 buf->f_bfree = sbinfo->max_blocks -
2213 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2214 }
2215 if (sbinfo->max_inodes) {
1da177e4
LT
2216 buf->f_files = sbinfo->max_inodes;
2217 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2218 }
2219 /* else leave those fields 0 like simple_statfs */
2220 return 0;
2221}
2222
2223/*
2224 * File creation. Allocate an inode, and we're done..
2225 */
2226static int
1a67aafb 2227shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2228{
0b0a0806 2229 struct inode *inode;
1da177e4
LT
2230 int error = -ENOSPC;
2231
454abafe 2232 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2233 if (inode) {
feda821e
CH
2234 error = simple_acl_create(dir, inode);
2235 if (error)
2236 goto out_iput;
2a7dba39 2237 error = security_inode_init_security(inode, dir,
9d8f13ba 2238 &dentry->d_name,
6d9d88d0 2239 shmem_initxattrs, NULL);
feda821e
CH
2240 if (error && error != -EOPNOTSUPP)
2241 goto out_iput;
37ec43cd 2242
718deb6b 2243 error = 0;
1da177e4
LT
2244 dir->i_size += BOGO_DIRENT_SIZE;
2245 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2246 d_instantiate(dentry, inode);
2247 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2248 }
2249 return error;
feda821e
CH
2250out_iput:
2251 iput(inode);
2252 return error;
1da177e4
LT
2253}
2254
60545d0d
AV
2255static int
2256shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2257{
2258 struct inode *inode;
2259 int error = -ENOSPC;
2260
2261 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2262 if (inode) {
2263 error = security_inode_init_security(inode, dir,
2264 NULL,
2265 shmem_initxattrs, NULL);
feda821e
CH
2266 if (error && error != -EOPNOTSUPP)
2267 goto out_iput;
2268 error = simple_acl_create(dir, inode);
2269 if (error)
2270 goto out_iput;
60545d0d
AV
2271 d_tmpfile(dentry, inode);
2272 }
2273 return error;
feda821e
CH
2274out_iput:
2275 iput(inode);
2276 return error;
60545d0d
AV
2277}
2278
18bb1db3 2279static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2280{
2281 int error;
2282
2283 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2284 return error;
d8c76e6f 2285 inc_nlink(dir);
1da177e4
LT
2286 return 0;
2287}
2288
4acdaf27 2289static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2290 bool excl)
1da177e4
LT
2291{
2292 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2293}
2294
2295/*
2296 * Link a file..
2297 */
2298static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2299{
75c3cfa8 2300 struct inode *inode = d_inode(old_dentry);
5b04c689 2301 int ret;
1da177e4
LT
2302
2303 /*
2304 * No ordinary (disk based) filesystem counts links as inodes;
2305 * but each new link needs a new dentry, pinning lowmem, and
2306 * tmpfs dentries cannot be pruned until they are unlinked.
2307 */
5b04c689
PE
2308 ret = shmem_reserve_inode(inode->i_sb);
2309 if (ret)
2310 goto out;
1da177e4
LT
2311
2312 dir->i_size += BOGO_DIRENT_SIZE;
2313 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2314 inc_nlink(inode);
7de9c6ee 2315 ihold(inode); /* New dentry reference */
1da177e4
LT
2316 dget(dentry); /* Extra pinning count for the created dentry */
2317 d_instantiate(dentry, inode);
5b04c689
PE
2318out:
2319 return ret;
1da177e4
LT
2320}
2321
2322static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2323{
75c3cfa8 2324 struct inode *inode = d_inode(dentry);
1da177e4 2325
5b04c689
PE
2326 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2327 shmem_free_inode(inode->i_sb);
1da177e4
LT
2328
2329 dir->i_size -= BOGO_DIRENT_SIZE;
2330 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2331 drop_nlink(inode);
1da177e4
LT
2332 dput(dentry); /* Undo the count from "create" - this does all the work */
2333 return 0;
2334}
2335
2336static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2337{
2338 if (!simple_empty(dentry))
2339 return -ENOTEMPTY;
2340
75c3cfa8 2341 drop_nlink(d_inode(dentry));
9a53c3a7 2342 drop_nlink(dir);
1da177e4
LT
2343 return shmem_unlink(dir, dentry);
2344}
2345
37456771
MS
2346static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2347{
e36cb0b8
DH
2348 bool old_is_dir = d_is_dir(old_dentry);
2349 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2350
2351 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2352 if (old_is_dir) {
2353 drop_nlink(old_dir);
2354 inc_nlink(new_dir);
2355 } else {
2356 drop_nlink(new_dir);
2357 inc_nlink(old_dir);
2358 }
2359 }
2360 old_dir->i_ctime = old_dir->i_mtime =
2361 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2362 d_inode(old_dentry)->i_ctime =
2363 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2364
2365 return 0;
2366}
2367
46fdb794
MS
2368static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2369{
2370 struct dentry *whiteout;
2371 int error;
2372
2373 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2374 if (!whiteout)
2375 return -ENOMEM;
2376
2377 error = shmem_mknod(old_dir, whiteout,
2378 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2379 dput(whiteout);
2380 if (error)
2381 return error;
2382
2383 /*
2384 * Cheat and hash the whiteout while the old dentry is still in
2385 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2386 *
2387 * d_lookup() will consistently find one of them at this point,
2388 * not sure which one, but that isn't even important.
2389 */
2390 d_rehash(whiteout);
2391 return 0;
2392}
2393
1da177e4
LT
2394/*
2395 * The VFS layer already does all the dentry stuff for rename,
2396 * we just have to decrement the usage count for the target if
2397 * it exists so that the VFS layer correctly free's it when it
2398 * gets overwritten.
2399 */
3b69ff51 2400static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2401{
75c3cfa8 2402 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2403 int they_are_dirs = S_ISDIR(inode->i_mode);
2404
46fdb794 2405 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2406 return -EINVAL;
2407
37456771
MS
2408 if (flags & RENAME_EXCHANGE)
2409 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2410
1da177e4
LT
2411 if (!simple_empty(new_dentry))
2412 return -ENOTEMPTY;
2413
46fdb794
MS
2414 if (flags & RENAME_WHITEOUT) {
2415 int error;
2416
2417 error = shmem_whiteout(old_dir, old_dentry);
2418 if (error)
2419 return error;
2420 }
2421
75c3cfa8 2422 if (d_really_is_positive(new_dentry)) {
1da177e4 2423 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2424 if (they_are_dirs) {
75c3cfa8 2425 drop_nlink(d_inode(new_dentry));
9a53c3a7 2426 drop_nlink(old_dir);
b928095b 2427 }
1da177e4 2428 } else if (they_are_dirs) {
9a53c3a7 2429 drop_nlink(old_dir);
d8c76e6f 2430 inc_nlink(new_dir);
1da177e4
LT
2431 }
2432
2433 old_dir->i_size -= BOGO_DIRENT_SIZE;
2434 new_dir->i_size += BOGO_DIRENT_SIZE;
2435 old_dir->i_ctime = old_dir->i_mtime =
2436 new_dir->i_ctime = new_dir->i_mtime =
2437 inode->i_ctime = CURRENT_TIME;
2438 return 0;
2439}
2440
2441static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2442{
2443 int error;
2444 int len;
2445 struct inode *inode;
9276aad6 2446 struct page *page;
1da177e4
LT
2447 struct shmem_inode_info *info;
2448
2449 len = strlen(symname) + 1;
2450 if (len > PAGE_CACHE_SIZE)
2451 return -ENAMETOOLONG;
2452
454abafe 2453 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2454 if (!inode)
2455 return -ENOSPC;
2456
9d8f13ba 2457 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2458 shmem_initxattrs, NULL);
570bc1c2
SS
2459 if (error) {
2460 if (error != -EOPNOTSUPP) {
2461 iput(inode);
2462 return error;
2463 }
2464 error = 0;
2465 }
2466
1da177e4
LT
2467 info = SHMEM_I(inode);
2468 inode->i_size = len-1;
69f07ec9
HD
2469 if (len <= SHORT_SYMLINK_LEN) {
2470 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2471 if (!info->symlink) {
2472 iput(inode);
2473 return -ENOMEM;
2474 }
2475 inode->i_op = &shmem_short_symlink_operations;
60380f19 2476 inode->i_link = info->symlink;
1da177e4
LT
2477 } else {
2478 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2479 if (error) {
2480 iput(inode);
2481 return error;
2482 }
14fcc23f 2483 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2484 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7
AV
2485 inode_nohighmem(inode);
2486 memcpy(page_address(page), symname, len);
ec9516fb 2487 SetPageUptodate(page);
1da177e4 2488 set_page_dirty(page);
6746aff7 2489 unlock_page(page);
1da177e4
LT
2490 page_cache_release(page);
2491 }
1da177e4
LT
2492 dir->i_size += BOGO_DIRENT_SIZE;
2493 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2494 d_instantiate(dentry, inode);
2495 dget(dentry);
2496 return 0;
2497}
2498
6b255391
AV
2499static const char *shmem_get_link(struct dentry *dentry,
2500 struct inode *inode, void **cookie)
1da177e4
LT
2501{
2502 struct page *page = NULL;
6b255391 2503 int error;
6a6c9904
AV
2504 if (!dentry) {
2505 page = find_get_page(inode->i_mapping, 0);
2506 if (!page)
2507 return ERR_PTR(-ECHILD);
2508 if (!PageUptodate(page)) {
2509 put_page(page);
2510 return ERR_PTR(-ECHILD);
2511 }
2512 } else {
2513 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2514 if (error)
2515 return ERR_PTR(error);
2516 unlock_page(page);
2517 }
680baacb 2518 *cookie = page;
21fc61c7 2519 return page_address(page);
1da177e4
LT
2520}
2521
5f2c4179 2522static void shmem_put_link(struct inode *unused, void *cookie)
1da177e4 2523{
680baacb 2524 struct page *page = cookie;
680baacb
AV
2525 mark_page_accessed(page);
2526 page_cache_release(page);
1da177e4
LT
2527}
2528
b09e0fa4 2529#ifdef CONFIG_TMPFS_XATTR
46711810 2530/*
b09e0fa4
EP
2531 * Superblocks without xattr inode operations may get some security.* xattr
2532 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2533 * like ACLs, we also need to implement the security.* handlers at
2534 * filesystem level, though.
2535 */
2536
6d9d88d0
JS
2537/*
2538 * Callback for security_inode_init_security() for acquiring xattrs.
2539 */
2540static int shmem_initxattrs(struct inode *inode,
2541 const struct xattr *xattr_array,
2542 void *fs_info)
2543{
2544 struct shmem_inode_info *info = SHMEM_I(inode);
2545 const struct xattr *xattr;
38f38657 2546 struct simple_xattr *new_xattr;
6d9d88d0
JS
2547 size_t len;
2548
2549 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2550 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2551 if (!new_xattr)
2552 return -ENOMEM;
2553
2554 len = strlen(xattr->name) + 1;
2555 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2556 GFP_KERNEL);
2557 if (!new_xattr->name) {
2558 kfree(new_xattr);
2559 return -ENOMEM;
2560 }
2561
2562 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2563 XATTR_SECURITY_PREFIX_LEN);
2564 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2565 xattr->name, len);
2566
38f38657 2567 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2568 }
2569
2570 return 0;
2571}
2572
bb435453 2573static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2574#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2575 &posix_acl_access_xattr_handler,
2576 &posix_acl_default_xattr_handler,
b09e0fa4 2577#endif
39f0247d
AG
2578 NULL
2579};
b09e0fa4
EP
2580
2581static int shmem_xattr_validate(const char *name)
2582{
2583 struct { const char *prefix; size_t len; } arr[] = {
2584 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2585 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2586 };
2587 int i;
2588
2589 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2590 size_t preflen = arr[i].len;
2591 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2592 if (!name[preflen])
2593 return -EINVAL;
2594 return 0;
2595 }
2596 }
2597 return -EOPNOTSUPP;
2598}
2599
2600static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2601 void *buffer, size_t size)
2602{
75c3cfa8 2603 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4
EP
2604 int err;
2605
2606 /*
2607 * If this is a request for a synthetic attribute in the system.*
2608 * namespace use the generic infrastructure to resolve a handler
2609 * for it via sb->s_xattr.
2610 */
2611 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2612 return generic_getxattr(dentry, name, buffer, size);
2613
2614 err = shmem_xattr_validate(name);
2615 if (err)
2616 return err;
2617
38f38657 2618 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2619}
2620
2621static int shmem_setxattr(struct dentry *dentry, const char *name,
2622 const void *value, size_t size, int flags)
2623{
75c3cfa8 2624 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4
EP
2625 int err;
2626
2627 /*
2628 * If this is a request for a synthetic attribute in the system.*
2629 * namespace use the generic infrastructure to resolve a handler
2630 * for it via sb->s_xattr.
2631 */
2632 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2633 return generic_setxattr(dentry, name, value, size, flags);
2634
2635 err = shmem_xattr_validate(name);
2636 if (err)
2637 return err;
2638
38f38657 2639 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2640}
2641
2642static int shmem_removexattr(struct dentry *dentry, const char *name)
2643{
75c3cfa8 2644 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4
EP
2645 int err;
2646
2647 /*
2648 * If this is a request for a synthetic attribute in the system.*
2649 * namespace use the generic infrastructure to resolve a handler
2650 * for it via sb->s_xattr.
2651 */
2652 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2653 return generic_removexattr(dentry, name);
2654
2655 err = shmem_xattr_validate(name);
2656 if (err)
2657 return err;
2658
38f38657 2659 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2660}
2661
2662static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2663{
75c3cfa8 2664 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
38f38657 2665 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2666}
2667#endif /* CONFIG_TMPFS_XATTR */
2668
69f07ec9 2669static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2670 .readlink = generic_readlink,
6b255391 2671 .get_link = simple_get_link,
b09e0fa4
EP
2672#ifdef CONFIG_TMPFS_XATTR
2673 .setxattr = shmem_setxattr,
2674 .getxattr = shmem_getxattr,
2675 .listxattr = shmem_listxattr,
2676 .removexattr = shmem_removexattr,
2677#endif
2678};
2679
2680static const struct inode_operations shmem_symlink_inode_operations = {
2681 .readlink = generic_readlink,
6b255391 2682 .get_link = shmem_get_link,
b09e0fa4
EP
2683 .put_link = shmem_put_link,
2684#ifdef CONFIG_TMPFS_XATTR
2685 .setxattr = shmem_setxattr,
2686 .getxattr = shmem_getxattr,
2687 .listxattr = shmem_listxattr,
2688 .removexattr = shmem_removexattr,
39f0247d 2689#endif
b09e0fa4 2690};
39f0247d 2691
91828a40
DG
2692static struct dentry *shmem_get_parent(struct dentry *child)
2693{
2694 return ERR_PTR(-ESTALE);
2695}
2696
2697static int shmem_match(struct inode *ino, void *vfh)
2698{
2699 __u32 *fh = vfh;
2700 __u64 inum = fh[2];
2701 inum = (inum << 32) | fh[1];
2702 return ino->i_ino == inum && fh[0] == ino->i_generation;
2703}
2704
480b116c
CH
2705static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2706 struct fid *fid, int fh_len, int fh_type)
91828a40 2707{
91828a40 2708 struct inode *inode;
480b116c 2709 struct dentry *dentry = NULL;
35c2a7f4 2710 u64 inum;
480b116c
CH
2711
2712 if (fh_len < 3)
2713 return NULL;
91828a40 2714
35c2a7f4
HD
2715 inum = fid->raw[2];
2716 inum = (inum << 32) | fid->raw[1];
2717
480b116c
CH
2718 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2719 shmem_match, fid->raw);
91828a40 2720 if (inode) {
480b116c 2721 dentry = d_find_alias(inode);
91828a40
DG
2722 iput(inode);
2723 }
2724
480b116c 2725 return dentry;
91828a40
DG
2726}
2727
b0b0382b
AV
2728static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2729 struct inode *parent)
91828a40 2730{
5fe0c237
AK
2731 if (*len < 3) {
2732 *len = 3;
94e07a75 2733 return FILEID_INVALID;
5fe0c237 2734 }
91828a40 2735
1d3382cb 2736 if (inode_unhashed(inode)) {
91828a40
DG
2737 /* Unfortunately insert_inode_hash is not idempotent,
2738 * so as we hash inodes here rather than at creation
2739 * time, we need a lock to ensure we only try
2740 * to do it once
2741 */
2742 static DEFINE_SPINLOCK(lock);
2743 spin_lock(&lock);
1d3382cb 2744 if (inode_unhashed(inode))
91828a40
DG
2745 __insert_inode_hash(inode,
2746 inode->i_ino + inode->i_generation);
2747 spin_unlock(&lock);
2748 }
2749
2750 fh[0] = inode->i_generation;
2751 fh[1] = inode->i_ino;
2752 fh[2] = ((__u64)inode->i_ino) >> 32;
2753
2754 *len = 3;
2755 return 1;
2756}
2757
39655164 2758static const struct export_operations shmem_export_ops = {
91828a40 2759 .get_parent = shmem_get_parent,
91828a40 2760 .encode_fh = shmem_encode_fh,
480b116c 2761 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2762};
2763
680d794b
AM
2764static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2765 bool remount)
1da177e4
LT
2766{
2767 char *this_char, *value, *rest;
49cd0a5c 2768 struct mempolicy *mpol = NULL;
8751e039
EB
2769 uid_t uid;
2770 gid_t gid;
1da177e4 2771
b00dc3ad
HD
2772 while (options != NULL) {
2773 this_char = options;
2774 for (;;) {
2775 /*
2776 * NUL-terminate this option: unfortunately,
2777 * mount options form a comma-separated list,
2778 * but mpol's nodelist may also contain commas.
2779 */
2780 options = strchr(options, ',');
2781 if (options == NULL)
2782 break;
2783 options++;
2784 if (!isdigit(*options)) {
2785 options[-1] = '\0';
2786 break;
2787 }
2788 }
1da177e4
LT
2789 if (!*this_char)
2790 continue;
2791 if ((value = strchr(this_char,'=')) != NULL) {
2792 *value++ = 0;
2793 } else {
2794 printk(KERN_ERR
2795 "tmpfs: No value for mount option '%s'\n",
2796 this_char);
49cd0a5c 2797 goto error;
1da177e4
LT
2798 }
2799
2800 if (!strcmp(this_char,"size")) {
2801 unsigned long long size;
2802 size = memparse(value,&rest);
2803 if (*rest == '%') {
2804 size <<= PAGE_SHIFT;
2805 size *= totalram_pages;
2806 do_div(size, 100);
2807 rest++;
2808 }
2809 if (*rest)
2810 goto bad_val;
680d794b
AM
2811 sbinfo->max_blocks =
2812 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2813 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2814 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2815 if (*rest)
2816 goto bad_val;
2817 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2818 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2819 if (*rest)
2820 goto bad_val;
2821 } else if (!strcmp(this_char,"mode")) {
680d794b 2822 if (remount)
1da177e4 2823 continue;
680d794b 2824 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2825 if (*rest)
2826 goto bad_val;
2827 } else if (!strcmp(this_char,"uid")) {
680d794b 2828 if (remount)
1da177e4 2829 continue;
8751e039 2830 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2831 if (*rest)
2832 goto bad_val;
8751e039
EB
2833 sbinfo->uid = make_kuid(current_user_ns(), uid);
2834 if (!uid_valid(sbinfo->uid))
2835 goto bad_val;
1da177e4 2836 } else if (!strcmp(this_char,"gid")) {
680d794b 2837 if (remount)
1da177e4 2838 continue;
8751e039 2839 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2840 if (*rest)
2841 goto bad_val;
8751e039
EB
2842 sbinfo->gid = make_kgid(current_user_ns(), gid);
2843 if (!gid_valid(sbinfo->gid))
2844 goto bad_val;
7339ff83 2845 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2846 mpol_put(mpol);
2847 mpol = NULL;
2848 if (mpol_parse_str(value, &mpol))
7339ff83 2849 goto bad_val;
1da177e4
LT
2850 } else {
2851 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2852 this_char);
49cd0a5c 2853 goto error;
1da177e4
LT
2854 }
2855 }
49cd0a5c 2856 sbinfo->mpol = mpol;
1da177e4
LT
2857 return 0;
2858
2859bad_val:
2860 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2861 value, this_char);
49cd0a5c
GT
2862error:
2863 mpol_put(mpol);
1da177e4
LT
2864 return 1;
2865
2866}
2867
2868static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2869{
2870 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2871 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2872 unsigned long inodes;
2873 int error = -EINVAL;
2874
5f00110f 2875 config.mpol = NULL;
680d794b 2876 if (shmem_parse_options(data, &config, true))
0edd73b3 2877 return error;
1da177e4 2878
0edd73b3 2879 spin_lock(&sbinfo->stat_lock);
0edd73b3 2880 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2881 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2882 goto out;
680d794b 2883 if (config.max_inodes < inodes)
0edd73b3
HD
2884 goto out;
2885 /*
54af6042 2886 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2887 * but we must separately disallow unlimited->limited, because
2888 * in that case we have no record of how much is already in use.
2889 */
680d794b 2890 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2891 goto out;
680d794b 2892 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2893 goto out;
2894
2895 error = 0;
680d794b 2896 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2897 sbinfo->max_inodes = config.max_inodes;
2898 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2899
5f00110f
GT
2900 /*
2901 * Preserve previous mempolicy unless mpol remount option was specified.
2902 */
2903 if (config.mpol) {
2904 mpol_put(sbinfo->mpol);
2905 sbinfo->mpol = config.mpol; /* transfers initial ref */
2906 }
0edd73b3
HD
2907out:
2908 spin_unlock(&sbinfo->stat_lock);
2909 return error;
1da177e4 2910}
680d794b 2911
34c80b1d 2912static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2913{
34c80b1d 2914 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2915
2916 if (sbinfo->max_blocks != shmem_default_max_blocks())
2917 seq_printf(seq, ",size=%luk",
2918 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2919 if (sbinfo->max_inodes != shmem_default_max_inodes())
2920 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2921 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2922 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2923 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2924 seq_printf(seq, ",uid=%u",
2925 from_kuid_munged(&init_user_ns, sbinfo->uid));
2926 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2927 seq_printf(seq, ",gid=%u",
2928 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2929 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2930 return 0;
2931}
9183df25
DH
2932
2933#define MFD_NAME_PREFIX "memfd:"
2934#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2935#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2936
2937#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2938
2939SYSCALL_DEFINE2(memfd_create,
2940 const char __user *, uname,
2941 unsigned int, flags)
2942{
2943 struct shmem_inode_info *info;
2944 struct file *file;
2945 int fd, error;
2946 char *name;
2947 long len;
2948
2949 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2950 return -EINVAL;
2951
2952 /* length includes terminating zero */
2953 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2954 if (len <= 0)
2955 return -EFAULT;
2956 if (len > MFD_NAME_MAX_LEN + 1)
2957 return -EINVAL;
2958
2959 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2960 if (!name)
2961 return -ENOMEM;
2962
2963 strcpy(name, MFD_NAME_PREFIX);
2964 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2965 error = -EFAULT;
2966 goto err_name;
2967 }
2968
2969 /* terminating-zero may have changed after strnlen_user() returned */
2970 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2971 error = -EFAULT;
2972 goto err_name;
2973 }
2974
2975 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2976 if (fd < 0) {
2977 error = fd;
2978 goto err_name;
2979 }
2980
2981 file = shmem_file_setup(name, 0, VM_NORESERVE);
2982 if (IS_ERR(file)) {
2983 error = PTR_ERR(file);
2984 goto err_fd;
2985 }
2986 info = SHMEM_I(file_inode(file));
2987 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2988 file->f_flags |= O_RDWR | O_LARGEFILE;
2989 if (flags & MFD_ALLOW_SEALING)
2990 info->seals &= ~F_SEAL_SEAL;
2991
2992 fd_install(fd, file);
2993 kfree(name);
2994 return fd;
2995
2996err_fd:
2997 put_unused_fd(fd);
2998err_name:
2999 kfree(name);
3000 return error;
3001}
3002
680d794b 3003#endif /* CONFIG_TMPFS */
1da177e4
LT
3004
3005static void shmem_put_super(struct super_block *sb)
3006{
602586a8
HD
3007 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3008
3009 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3010 mpol_put(sbinfo->mpol);
602586a8 3011 kfree(sbinfo);
1da177e4
LT
3012 sb->s_fs_info = NULL;
3013}
3014
2b2af54a 3015int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3016{
3017 struct inode *inode;
0edd73b3 3018 struct shmem_sb_info *sbinfo;
680d794b
AM
3019 int err = -ENOMEM;
3020
3021 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3022 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3023 L1_CACHE_BYTES), GFP_KERNEL);
3024 if (!sbinfo)
3025 return -ENOMEM;
3026
680d794b 3027 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3028 sbinfo->uid = current_fsuid();
3029 sbinfo->gid = current_fsgid();
680d794b 3030 sb->s_fs_info = sbinfo;
1da177e4 3031
0edd73b3 3032#ifdef CONFIG_TMPFS
1da177e4
LT
3033 /*
3034 * Per default we only allow half of the physical ram per
3035 * tmpfs instance, limiting inodes to one per page of lowmem;
3036 * but the internal instance is left unlimited.
3037 */
ca4e0519 3038 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3039 sbinfo->max_blocks = shmem_default_max_blocks();
3040 sbinfo->max_inodes = shmem_default_max_inodes();
3041 if (shmem_parse_options(data, sbinfo, false)) {
3042 err = -EINVAL;
3043 goto failed;
3044 }
ca4e0519
AV
3045 } else {
3046 sb->s_flags |= MS_NOUSER;
1da177e4 3047 }
91828a40 3048 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3049 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3050#else
3051 sb->s_flags |= MS_NOUSER;
3052#endif
3053
0edd73b3 3054 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3055 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3056 goto failed;
680d794b 3057 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3058
285b2c4f 3059 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3060 sb->s_blocksize = PAGE_CACHE_SIZE;
3061 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3062 sb->s_magic = TMPFS_MAGIC;
3063 sb->s_op = &shmem_ops;
cfd95a9c 3064 sb->s_time_gran = 1;
b09e0fa4 3065#ifdef CONFIG_TMPFS_XATTR
39f0247d 3066 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3067#endif
3068#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3069 sb->s_flags |= MS_POSIXACL;
3070#endif
0edd73b3 3071
454abafe 3072 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3073 if (!inode)
3074 goto failed;
680d794b
AM
3075 inode->i_uid = sbinfo->uid;
3076 inode->i_gid = sbinfo->gid;
318ceed0
AV
3077 sb->s_root = d_make_root(inode);
3078 if (!sb->s_root)
48fde701 3079 goto failed;
1da177e4
LT
3080 return 0;
3081
1da177e4
LT
3082failed:
3083 shmem_put_super(sb);
3084 return err;
3085}
3086
fcc234f8 3087static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3088
3089static struct inode *shmem_alloc_inode(struct super_block *sb)
3090{
41ffe5d5
HD
3091 struct shmem_inode_info *info;
3092 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3093 if (!info)
1da177e4 3094 return NULL;
41ffe5d5 3095 return &info->vfs_inode;
1da177e4
LT
3096}
3097
41ffe5d5 3098static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3099{
3100 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
3101 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3102}
3103
1da177e4
LT
3104static void shmem_destroy_inode(struct inode *inode)
3105{
09208d15 3106 if (S_ISREG(inode->i_mode))
1da177e4 3107 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3108 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3109}
3110
41ffe5d5 3111static void shmem_init_inode(void *foo)
1da177e4 3112{
41ffe5d5
HD
3113 struct shmem_inode_info *info = foo;
3114 inode_init_once(&info->vfs_inode);
1da177e4
LT
3115}
3116
41ffe5d5 3117static int shmem_init_inodecache(void)
1da177e4
LT
3118{
3119 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3120 sizeof(struct shmem_inode_info),
41ffe5d5 3121 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
3122 return 0;
3123}
3124
41ffe5d5 3125static void shmem_destroy_inodecache(void)
1da177e4 3126{
1a1d92c1 3127 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3128}
3129
f5e54d6e 3130static const struct address_space_operations shmem_aops = {
1da177e4 3131 .writepage = shmem_writepage,
76719325 3132 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3133#ifdef CONFIG_TMPFS
800d15a5
NP
3134 .write_begin = shmem_write_begin,
3135 .write_end = shmem_write_end,
1da177e4 3136#endif
1c93923c 3137#ifdef CONFIG_MIGRATION
304dbdb7 3138 .migratepage = migrate_page,
1c93923c 3139#endif
aa261f54 3140 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3141};
3142
15ad7cdc 3143static const struct file_operations shmem_file_operations = {
1da177e4
LT
3144 .mmap = shmem_mmap,
3145#ifdef CONFIG_TMPFS
220f2ac9 3146 .llseek = shmem_file_llseek,
2ba5bbed 3147 .read_iter = shmem_file_read_iter,
8174202b 3148 .write_iter = generic_file_write_iter,
1b061d92 3149 .fsync = noop_fsync,
708e3508 3150 .splice_read = shmem_file_splice_read,
f6cb85d0 3151 .splice_write = iter_file_splice_write,
83e4fa9c 3152 .fallocate = shmem_fallocate,
1da177e4
LT
3153#endif
3154};
3155
92e1d5be 3156static const struct inode_operations shmem_inode_operations = {
44a30220 3157 .getattr = shmem_getattr,
94c1e62d 3158 .setattr = shmem_setattr,
b09e0fa4
EP
3159#ifdef CONFIG_TMPFS_XATTR
3160 .setxattr = shmem_setxattr,
3161 .getxattr = shmem_getxattr,
3162 .listxattr = shmem_listxattr,
3163 .removexattr = shmem_removexattr,
feda821e 3164 .set_acl = simple_set_acl,
b09e0fa4 3165#endif
1da177e4
LT
3166};
3167
92e1d5be 3168static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3169#ifdef CONFIG_TMPFS
3170 .create = shmem_create,
3171 .lookup = simple_lookup,
3172 .link = shmem_link,
3173 .unlink = shmem_unlink,
3174 .symlink = shmem_symlink,
3175 .mkdir = shmem_mkdir,
3176 .rmdir = shmem_rmdir,
3177 .mknod = shmem_mknod,
3b69ff51 3178 .rename2 = shmem_rename2,
60545d0d 3179 .tmpfile = shmem_tmpfile,
1da177e4 3180#endif
b09e0fa4
EP
3181#ifdef CONFIG_TMPFS_XATTR
3182 .setxattr = shmem_setxattr,
3183 .getxattr = shmem_getxattr,
3184 .listxattr = shmem_listxattr,
3185 .removexattr = shmem_removexattr,
3186#endif
39f0247d 3187#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3188 .setattr = shmem_setattr,
feda821e 3189 .set_acl = simple_set_acl,
39f0247d
AG
3190#endif
3191};
3192
92e1d5be 3193static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
3194#ifdef CONFIG_TMPFS_XATTR
3195 .setxattr = shmem_setxattr,
3196 .getxattr = shmem_getxattr,
3197 .listxattr = shmem_listxattr,
3198 .removexattr = shmem_removexattr,
3199#endif
39f0247d 3200#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3201 .setattr = shmem_setattr,
feda821e 3202 .set_acl = simple_set_acl,
39f0247d 3203#endif
1da177e4
LT
3204};
3205
759b9775 3206static const struct super_operations shmem_ops = {
1da177e4
LT
3207 .alloc_inode = shmem_alloc_inode,
3208 .destroy_inode = shmem_destroy_inode,
3209#ifdef CONFIG_TMPFS
3210 .statfs = shmem_statfs,
3211 .remount_fs = shmem_remount_fs,
680d794b 3212 .show_options = shmem_show_options,
1da177e4 3213#endif
1f895f75 3214 .evict_inode = shmem_evict_inode,
1da177e4
LT
3215 .drop_inode = generic_delete_inode,
3216 .put_super = shmem_put_super,
3217};
3218
f0f37e2f 3219static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3220 .fault = shmem_fault,
d7c17551 3221 .map_pages = filemap_map_pages,
1da177e4
LT
3222#ifdef CONFIG_NUMA
3223 .set_policy = shmem_set_policy,
3224 .get_policy = shmem_get_policy,
3225#endif
3226};
3227
3c26ff6e
AV
3228static struct dentry *shmem_mount(struct file_system_type *fs_type,
3229 int flags, const char *dev_name, void *data)
1da177e4 3230{
3c26ff6e 3231 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3232}
3233
41ffe5d5 3234static struct file_system_type shmem_fs_type = {
1da177e4
LT
3235 .owner = THIS_MODULE,
3236 .name = "tmpfs",
3c26ff6e 3237 .mount = shmem_mount,
1da177e4 3238 .kill_sb = kill_litter_super,
2b8576cb 3239 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3240};
1da177e4 3241
41ffe5d5 3242int __init shmem_init(void)
1da177e4
LT
3243{
3244 int error;
3245
16203a7a
RL
3246 /* If rootfs called this, don't re-init */
3247 if (shmem_inode_cachep)
3248 return 0;
3249
41ffe5d5 3250 error = shmem_init_inodecache();
1da177e4
LT
3251 if (error)
3252 goto out3;
3253
41ffe5d5 3254 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
3255 if (error) {
3256 printk(KERN_ERR "Could not register tmpfs\n");
3257 goto out2;
3258 }
95dc112a 3259
ca4e0519 3260 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3261 if (IS_ERR(shm_mnt)) {
3262 error = PTR_ERR(shm_mnt);
3263 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3264 goto out1;
3265 }
3266 return 0;
3267
3268out1:
41ffe5d5 3269 unregister_filesystem(&shmem_fs_type);
1da177e4 3270out2:
41ffe5d5 3271 shmem_destroy_inodecache();
1da177e4
LT
3272out3:
3273 shm_mnt = ERR_PTR(error);
3274 return error;
3275}
853ac43a
MM
3276
3277#else /* !CONFIG_SHMEM */
3278
3279/*
3280 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3281 *
3282 * This is intended for small system where the benefits of the full
3283 * shmem code (swap-backed and resource-limited) are outweighed by
3284 * their complexity. On systems without swap this code should be
3285 * effectively equivalent, but much lighter weight.
3286 */
3287
41ffe5d5 3288static struct file_system_type shmem_fs_type = {
853ac43a 3289 .name = "tmpfs",
3c26ff6e 3290 .mount = ramfs_mount,
853ac43a 3291 .kill_sb = kill_litter_super,
2b8576cb 3292 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3293};
3294
41ffe5d5 3295int __init shmem_init(void)
853ac43a 3296{
41ffe5d5 3297 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3298
41ffe5d5 3299 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3300 BUG_ON(IS_ERR(shm_mnt));
3301
3302 return 0;
3303}
3304
41ffe5d5 3305int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3306{
3307 return 0;
3308}
3309
3f96b79a
HD
3310int shmem_lock(struct file *file, int lock, struct user_struct *user)
3311{
3312 return 0;
3313}
3314
24513264
HD
3315void shmem_unlock_mapping(struct address_space *mapping)
3316{
3317}
3318
41ffe5d5 3319void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3320{
41ffe5d5 3321 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3322}
3323EXPORT_SYMBOL_GPL(shmem_truncate_range);
3324
0b0a0806
HD
3325#define shmem_vm_ops generic_file_vm_ops
3326#define shmem_file_operations ramfs_file_operations
454abafe 3327#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3328#define shmem_acct_size(flags, size) 0
3329#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3330
3331#endif /* CONFIG_SHMEM */
3332
3333/* common code */
1da177e4 3334
3451538a 3335static struct dentry_operations anon_ops = {
118b2302 3336 .d_dname = simple_dname
3451538a
AV
3337};
3338
c7277090
EP
3339static struct file *__shmem_file_setup(const char *name, loff_t size,
3340 unsigned long flags, unsigned int i_flags)
1da177e4 3341{
6b4d0b27 3342 struct file *res;
1da177e4 3343 struct inode *inode;
2c48b9c4 3344 struct path path;
3451538a 3345 struct super_block *sb;
1da177e4
LT
3346 struct qstr this;
3347
3348 if (IS_ERR(shm_mnt))
6b4d0b27 3349 return ERR_CAST(shm_mnt);
1da177e4 3350
285b2c4f 3351 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3352 return ERR_PTR(-EINVAL);
3353
3354 if (shmem_acct_size(flags, size))
3355 return ERR_PTR(-ENOMEM);
3356
6b4d0b27 3357 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3358 this.name = name;
3359 this.len = strlen(name);
3360 this.hash = 0; /* will go */
3451538a 3361 sb = shm_mnt->mnt_sb;
66ee4b88 3362 path.mnt = mntget(shm_mnt);
3451538a 3363 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3364 if (!path.dentry)
1da177e4 3365 goto put_memory;
3451538a 3366 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3367
6b4d0b27 3368 res = ERR_PTR(-ENOSPC);
3451538a 3369 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3370 if (!inode)
66ee4b88 3371 goto put_memory;
1da177e4 3372
c7277090 3373 inode->i_flags |= i_flags;
2c48b9c4 3374 d_instantiate(path.dentry, inode);
1da177e4 3375 inode->i_size = size;
6d6b77f1 3376 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3377 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3378 if (IS_ERR(res))
66ee4b88 3379 goto put_path;
4b42af81 3380
6b4d0b27 3381 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3382 &shmem_file_operations);
6b4d0b27 3383 if (IS_ERR(res))
66ee4b88 3384 goto put_path;
4b42af81 3385
6b4d0b27 3386 return res;
1da177e4 3387
1da177e4
LT
3388put_memory:
3389 shmem_unacct_size(flags, size);
66ee4b88
KK
3390put_path:
3391 path_put(&path);
6b4d0b27 3392 return res;
1da177e4 3393}
c7277090
EP
3394
3395/**
3396 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3397 * kernel internal. There will be NO LSM permission checks against the
3398 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3399 * higher layer. The users are the big_key and shm implementations. LSM
3400 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3401 * @name: name for dentry (to be seen in /proc/<pid>/maps
3402 * @size: size to be set for the file
3403 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3404 */
3405struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3406{
3407 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3408}
3409
3410/**
3411 * shmem_file_setup - get an unlinked file living in tmpfs
3412 * @name: name for dentry (to be seen in /proc/<pid>/maps
3413 * @size: size to be set for the file
3414 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3415 */
3416struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3417{
3418 return __shmem_file_setup(name, size, flags, 0);
3419}
395e0ddc 3420EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3421
46711810 3422/**
1da177e4 3423 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3424 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3425 */
3426int shmem_zero_setup(struct vm_area_struct *vma)
3427{
3428 struct file *file;
3429 loff_t size = vma->vm_end - vma->vm_start;
3430
66fc1303
HD
3431 /*
3432 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3433 * between XFS directory reading and selinux: since this file is only
3434 * accessible to the user through its mapping, use S_PRIVATE flag to
3435 * bypass file security, in the same way as shmem_kernel_file_setup().
3436 */
3437 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3438 if (IS_ERR(file))
3439 return PTR_ERR(file);
3440
3441 if (vma->vm_file)
3442 fput(vma->vm_file);
3443 vma->vm_file = file;
3444 vma->vm_ops = &shmem_vm_ops;
3445 return 0;
3446}
d9d90e5e
HD
3447
3448/**
3449 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3450 * @mapping: the page's address_space
3451 * @index: the page index
3452 * @gfp: the page allocator flags to use if allocating
3453 *
3454 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3455 * with any new page allocations done using the specified allocation flags.
3456 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3457 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3458 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3459 *
68da9f05
HD
3460 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3461 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3462 */
3463struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3464 pgoff_t index, gfp_t gfp)
3465{
68da9f05
HD
3466#ifdef CONFIG_SHMEM
3467 struct inode *inode = mapping->host;
9276aad6 3468 struct page *page;
68da9f05
HD
3469 int error;
3470
3471 BUG_ON(mapping->a_ops != &shmem_aops);
3472 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3473 if (error)
3474 page = ERR_PTR(error);
3475 else
3476 unlock_page(page);
3477 return page;
3478#else
3479 /*
3480 * The tiny !SHMEM case uses ramfs without swap
3481 */
d9d90e5e 3482 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3483#endif
d9d90e5e
HD
3484}
3485EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);