]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
ext4: support RENAME_WHITEOUT
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
caefba17 76#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
77#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
1da177e4
LT
79/* Pretend that each entry is of this size in directory's i_size */
80#define BOGO_DIRENT_SIZE 20
81
69f07ec9
HD
82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83#define SHORT_SYMLINK_LEN 128
84
1aac1400 85/*
f00cdc6d
HD
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
89 */
90struct shmem_falloc {
8e205f77 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
92 pgoff_t start; /* start of range currently being fallocated */
93 pgoff_t next; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
96};
97
285b2c4f 98/* Flag allocation requirements to shmem_getpage */
1da177e4 99enum sgp_type {
1da177e4
LT
100 SGP_READ, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
105};
106
b76db735 107#ifdef CONFIG_TMPFS
680d794b
AM
108static unsigned long shmem_default_max_blocks(void)
109{
110 return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
b76db735 117#endif
680d794b 118
bde05d1c
HD
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp, int *fault_type)
127{
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
129 mapping_gfp_mask(inode->i_mapping), fault_type);
130}
1da177e4 131
1da177e4
LT
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134 return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
0b0a0806 145 return (flags & VM_NORESERVE) ?
191c5424 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
0b0a0806 151 if (!(flags & VM_NORESERVE))
1da177e4
LT
152 vm_unacct_memory(VM_ACCT(size));
153}
154
77142517
KK
155static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157{
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166}
167
1da177e4
LT
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174static inline int shmem_acct_block(unsigned long flags)
175{
0b0a0806 176 return (flags & VM_NORESERVE) ?
191c5424 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
178}
179
180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181{
0b0a0806 182 if (flags & VM_NORESERVE)
1da177e4
LT
183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184}
185
759b9775 186static const struct super_operations shmem_ops;
f5e54d6e 187static const struct address_space_operations shmem_aops;
15ad7cdc 188static const struct file_operations shmem_file_operations;
92e1d5be
AV
189static const struct inode_operations shmem_inode_operations;
190static const struct inode_operations shmem_dir_inode_operations;
191static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 192static const struct vm_operations_struct shmem_vm_ops;
1da177e4 193
6c231b7b 194static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 195 .ra_pages = 0, /* No readahead */
4f98a2fe 196 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
197};
198
199static LIST_HEAD(shmem_swaplist);
cb5f7b9a 200static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 201
5b04c689
PE
202static int shmem_reserve_inode(struct super_block *sb)
203{
204 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205 if (sbinfo->max_inodes) {
206 spin_lock(&sbinfo->stat_lock);
207 if (!sbinfo->free_inodes) {
208 spin_unlock(&sbinfo->stat_lock);
209 return -ENOSPC;
210 }
211 sbinfo->free_inodes--;
212 spin_unlock(&sbinfo->stat_lock);
213 }
214 return 0;
215}
216
217static void shmem_free_inode(struct super_block *sb)
218{
219 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220 if (sbinfo->max_inodes) {
221 spin_lock(&sbinfo->stat_lock);
222 sbinfo->free_inodes++;
223 spin_unlock(&sbinfo->stat_lock);
224 }
225}
226
46711810 227/**
41ffe5d5 228 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
229 * @inode: inode to recalc
230 *
231 * We have to calculate the free blocks since the mm can drop
232 * undirtied hole pages behind our back.
233 *
234 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236 *
237 * It has to be called with the spinlock held.
238 */
239static void shmem_recalc_inode(struct inode *inode)
240{
241 struct shmem_inode_info *info = SHMEM_I(inode);
242 long freed;
243
244 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245 if (freed > 0) {
54af6042
HD
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 if (sbinfo->max_blocks)
248 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 249 info->alloced -= freed;
54af6042 250 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 251 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
252 }
253}
254
7a5d0fbb
HD
255/*
256 * Replace item expected in radix tree by a new item, while holding tree lock.
257 */
258static int shmem_radix_tree_replace(struct address_space *mapping,
259 pgoff_t index, void *expected, void *replacement)
260{
261 void **pslot;
6dbaf22c 262 void *item;
7a5d0fbb
HD
263
264 VM_BUG_ON(!expected);
6dbaf22c 265 VM_BUG_ON(!replacement);
7a5d0fbb 266 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
267 if (!pslot)
268 return -ENOENT;
269 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
270 if (item != expected)
271 return -ENOENT;
6dbaf22c 272 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
273 return 0;
274}
275
d1899228
HD
276/*
277 * Sometimes, before we decide whether to proceed or to fail, we must check
278 * that an entry was not already brought back from swap by a racing thread.
279 *
280 * Checking page is not enough: by the time a SwapCache page is locked, it
281 * might be reused, and again be SwapCache, using the same swap as before.
282 */
283static bool shmem_confirm_swap(struct address_space *mapping,
284 pgoff_t index, swp_entry_t swap)
285{
286 void *item;
287
288 rcu_read_lock();
289 item = radix_tree_lookup(&mapping->page_tree, index);
290 rcu_read_unlock();
291 return item == swp_to_radix_entry(swap);
292}
293
46f65ec1
HD
294/*
295 * Like add_to_page_cache_locked, but error if expected item has gone.
296 */
297static int shmem_add_to_page_cache(struct page *page,
298 struct address_space *mapping,
fed400a1 299 pgoff_t index, void *expected)
46f65ec1 300{
b065b432 301 int error;
46f65ec1 302
309381fe
SL
303 VM_BUG_ON_PAGE(!PageLocked(page), page);
304 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 305
b065b432
HD
306 page_cache_get(page);
307 page->mapping = mapping;
308 page->index = index;
309
310 spin_lock_irq(&mapping->tree_lock);
46f65ec1 311 if (!expected)
b065b432
HD
312 error = radix_tree_insert(&mapping->page_tree, index, page);
313 else
314 error = shmem_radix_tree_replace(mapping, index, expected,
315 page);
46f65ec1 316 if (!error) {
b065b432
HD
317 mapping->nrpages++;
318 __inc_zone_page_state(page, NR_FILE_PAGES);
319 __inc_zone_page_state(page, NR_SHMEM);
320 spin_unlock_irq(&mapping->tree_lock);
321 } else {
322 page->mapping = NULL;
323 spin_unlock_irq(&mapping->tree_lock);
324 page_cache_release(page);
46f65ec1 325 }
46f65ec1
HD
326 return error;
327}
328
6922c0c7
HD
329/*
330 * Like delete_from_page_cache, but substitutes swap for page.
331 */
332static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333{
334 struct address_space *mapping = page->mapping;
335 int error;
336
337 spin_lock_irq(&mapping->tree_lock);
338 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339 page->mapping = NULL;
340 mapping->nrpages--;
341 __dec_zone_page_state(page, NR_FILE_PAGES);
342 __dec_zone_page_state(page, NR_SHMEM);
343 spin_unlock_irq(&mapping->tree_lock);
344 page_cache_release(page);
345 BUG_ON(error);
346}
347
7a5d0fbb
HD
348/*
349 * Remove swap entry from radix tree, free the swap and its page cache.
350 */
351static int shmem_free_swap(struct address_space *mapping,
352 pgoff_t index, void *radswap)
353{
6dbaf22c 354 void *old;
7a5d0fbb
HD
355
356 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 357 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 358 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
359 if (old != radswap)
360 return -ENOENT;
361 free_swap_and_cache(radix_to_swp_entry(radswap));
362 return 0;
7a5d0fbb
HD
363}
364
24513264
HD
365/*
366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367 */
368void shmem_unlock_mapping(struct address_space *mapping)
369{
370 struct pagevec pvec;
371 pgoff_t indices[PAGEVEC_SIZE];
372 pgoff_t index = 0;
373
374 pagevec_init(&pvec, 0);
375 /*
376 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377 */
378 while (!mapping_unevictable(mapping)) {
379 /*
380 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382 */
0cd6144a
JW
383 pvec.nr = find_get_entries(mapping, index,
384 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
385 if (!pvec.nr)
386 break;
387 index = indices[pvec.nr - 1] + 1;
0cd6144a 388 pagevec_remove_exceptionals(&pvec);
24513264
HD
389 check_move_unevictable_pages(pvec.pages, pvec.nr);
390 pagevec_release(&pvec);
391 cond_resched();
392 }
7a5d0fbb
HD
393}
394
395/*
396 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 398 */
1635f6a7
HD
399static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400 bool unfalloc)
1da177e4 401{
285b2c4f 402 struct address_space *mapping = inode->i_mapping;
1da177e4 403 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 404 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
405 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 408 struct pagevec pvec;
7a5d0fbb
HD
409 pgoff_t indices[PAGEVEC_SIZE];
410 long nr_swaps_freed = 0;
285b2c4f 411 pgoff_t index;
bda97eab
HD
412 int i;
413
83e4fa9c
HD
414 if (lend == -1)
415 end = -1; /* unsigned, so actually very big */
bda97eab
HD
416
417 pagevec_init(&pvec, 0);
418 index = start;
83e4fa9c 419 while (index < end) {
0cd6144a
JW
420 pvec.nr = find_get_entries(mapping, index,
421 min(end - index, (pgoff_t)PAGEVEC_SIZE),
422 pvec.pages, indices);
7a5d0fbb
HD
423 if (!pvec.nr)
424 break;
bda97eab
HD
425 for (i = 0; i < pagevec_count(&pvec); i++) {
426 struct page *page = pvec.pages[i];
427
7a5d0fbb 428 index = indices[i];
83e4fa9c 429 if (index >= end)
bda97eab
HD
430 break;
431
7a5d0fbb 432 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
433 if (unfalloc)
434 continue;
7a5d0fbb
HD
435 nr_swaps_freed += !shmem_free_swap(mapping,
436 index, page);
bda97eab 437 continue;
7a5d0fbb
HD
438 }
439
440 if (!trylock_page(page))
bda97eab 441 continue;
1635f6a7
HD
442 if (!unfalloc || !PageUptodate(page)) {
443 if (page->mapping == mapping) {
309381fe 444 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
445 truncate_inode_page(mapping, page);
446 }
bda97eab 447 }
bda97eab
HD
448 unlock_page(page);
449 }
0cd6144a 450 pagevec_remove_exceptionals(&pvec);
24513264 451 pagevec_release(&pvec);
bda97eab
HD
452 cond_resched();
453 index++;
454 }
1da177e4 455
83e4fa9c 456 if (partial_start) {
bda97eab
HD
457 struct page *page = NULL;
458 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459 if (page) {
83e4fa9c
HD
460 unsigned int top = PAGE_CACHE_SIZE;
461 if (start > end) {
462 top = partial_end;
463 partial_end = 0;
464 }
465 zero_user_segment(page, partial_start, top);
466 set_page_dirty(page);
467 unlock_page(page);
468 page_cache_release(page);
469 }
470 }
471 if (partial_end) {
472 struct page *page = NULL;
473 shmem_getpage(inode, end, &page, SGP_READ, NULL);
474 if (page) {
475 zero_user_segment(page, 0, partial_end);
bda97eab
HD
476 set_page_dirty(page);
477 unlock_page(page);
478 page_cache_release(page);
479 }
480 }
83e4fa9c
HD
481 if (start >= end)
482 return;
bda97eab
HD
483
484 index = start;
b1a36650 485 while (index < end) {
bda97eab 486 cond_resched();
0cd6144a
JW
487
488 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 489 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 490 pvec.pages, indices);
7a5d0fbb 491 if (!pvec.nr) {
b1a36650
HD
492 /* If all gone or hole-punch or unfalloc, we're done */
493 if (index == start || end != -1)
bda97eab 494 break;
b1a36650 495 /* But if truncating, restart to make sure all gone */
bda97eab
HD
496 index = start;
497 continue;
498 }
bda97eab
HD
499 for (i = 0; i < pagevec_count(&pvec); i++) {
500 struct page *page = pvec.pages[i];
501
7a5d0fbb 502 index = indices[i];
83e4fa9c 503 if (index >= end)
bda97eab
HD
504 break;
505
7a5d0fbb 506 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
507 if (unfalloc)
508 continue;
b1a36650
HD
509 if (shmem_free_swap(mapping, index, page)) {
510 /* Swap was replaced by page: retry */
511 index--;
512 break;
513 }
514 nr_swaps_freed++;
7a5d0fbb
HD
515 continue;
516 }
517
bda97eab 518 lock_page(page);
1635f6a7
HD
519 if (!unfalloc || !PageUptodate(page)) {
520 if (page->mapping == mapping) {
309381fe 521 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 522 truncate_inode_page(mapping, page);
b1a36650
HD
523 } else {
524 /* Page was replaced by swap: retry */
525 unlock_page(page);
526 index--;
527 break;
1635f6a7 528 }
7a5d0fbb 529 }
bda97eab
HD
530 unlock_page(page);
531 }
0cd6144a 532 pagevec_remove_exceptionals(&pvec);
24513264 533 pagevec_release(&pvec);
bda97eab
HD
534 index++;
535 }
94c1e62d 536
1da177e4 537 spin_lock(&info->lock);
7a5d0fbb 538 info->swapped -= nr_swaps_freed;
1da177e4
LT
539 shmem_recalc_inode(inode);
540 spin_unlock(&info->lock);
1635f6a7 541}
1da177e4 542
1635f6a7
HD
543void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544{
545 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 547}
94c1e62d 548EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 549
94c1e62d 550static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
551{
552 struct inode *inode = dentry->d_inode;
40e041a2 553 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
554 int error;
555
db78b877
CH
556 error = inode_change_ok(inode, attr);
557 if (error)
558 return error;
559
94c1e62d
HD
560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 loff_t oldsize = inode->i_size;
562 loff_t newsize = attr->ia_size;
3889e6e7 563
40e041a2
DH
564 /* protected by i_mutex */
565 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567 return -EPERM;
568
94c1e62d 569 if (newsize != oldsize) {
77142517
KK
570 error = shmem_reacct_size(SHMEM_I(inode)->flags,
571 oldsize, newsize);
572 if (error)
573 return error;
94c1e62d
HD
574 i_size_write(inode, newsize);
575 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576 }
577 if (newsize < oldsize) {
578 loff_t holebegin = round_up(newsize, PAGE_SIZE);
579 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580 shmem_truncate_range(inode, newsize, (loff_t)-1);
581 /* unmap again to remove racily COWed private pages */
582 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583 }
1da177e4
LT
584 }
585
db78b877 586 setattr_copy(inode, attr);
db78b877 587 if (attr->ia_valid & ATTR_MODE)
feda821e 588 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
589 return error;
590}
591
1f895f75 592static void shmem_evict_inode(struct inode *inode)
1da177e4 593{
1da177e4
LT
594 struct shmem_inode_info *info = SHMEM_I(inode);
595
3889e6e7 596 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
597 shmem_unacct_size(info->flags, inode->i_size);
598 inode->i_size = 0;
3889e6e7 599 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 600 if (!list_empty(&info->swaplist)) {
cb5f7b9a 601 mutex_lock(&shmem_swaplist_mutex);
1da177e4 602 list_del_init(&info->swaplist);
cb5f7b9a 603 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 604 }
69f07ec9
HD
605 } else
606 kfree(info->symlink);
b09e0fa4 607
38f38657 608 simple_xattrs_free(&info->xattrs);
0f3c42f5 609 WARN_ON(inode->i_blocks);
5b04c689 610 shmem_free_inode(inode->i_sb);
dbd5768f 611 clear_inode(inode);
1da177e4
LT
612}
613
46f65ec1
HD
614/*
615 * If swap found in inode, free it and move page from swapcache to filecache.
616 */
41ffe5d5 617static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 618 swp_entry_t swap, struct page **pagep)
1da177e4 619{
285b2c4f 620 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 621 void *radswap;
41ffe5d5 622 pgoff_t index;
bde05d1c
HD
623 gfp_t gfp;
624 int error = 0;
1da177e4 625
46f65ec1 626 radswap = swp_to_radix_entry(swap);
e504f3fd 627 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 628 if (index == -1)
00501b53 629 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 630
1b1b32f2
HD
631 /*
632 * Move _head_ to start search for next from here.
1f895f75 633 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 634 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 635 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
636 */
637 if (shmem_swaplist.next != &info->swaplist)
638 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 639
bde05d1c
HD
640 gfp = mapping_gfp_mask(mapping);
641 if (shmem_should_replace_page(*pagep, gfp)) {
642 mutex_unlock(&shmem_swaplist_mutex);
643 error = shmem_replace_page(pagep, gfp, info, index);
644 mutex_lock(&shmem_swaplist_mutex);
645 /*
646 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
647 * allocation, but the inode might have been freed while we
648 * dropped it: although a racing shmem_evict_inode() cannot
649 * complete without emptying the radix_tree, our page lock
650 * on this swapcache page is not enough to prevent that -
651 * free_swap_and_cache() of our swap entry will only
652 * trylock_page(), removing swap from radix_tree whatever.
653 *
654 * We must not proceed to shmem_add_to_page_cache() if the
655 * inode has been freed, but of course we cannot rely on
656 * inode or mapping or info to check that. However, we can
657 * safely check if our swap entry is still in use (and here
658 * it can't have got reused for another page): if it's still
659 * in use, then the inode cannot have been freed yet, and we
660 * can safely proceed (if it's no longer in use, that tells
661 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
662 */
663 if (!page_swapcount(*pagep))
664 error = -ENOENT;
665 }
666
d13d1443 667 /*
778dd893
HD
668 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 671 */
bde05d1c
HD
672 if (!error)
673 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 674 radswap);
48f170fb 675 if (error != -ENOMEM) {
46f65ec1
HD
676 /*
677 * Truncation and eviction use free_swap_and_cache(), which
678 * only does trylock page: if we raced, best clean up here.
679 */
bde05d1c
HD
680 delete_from_swap_cache(*pagep);
681 set_page_dirty(*pagep);
46f65ec1
HD
682 if (!error) {
683 spin_lock(&info->lock);
684 info->swapped--;
685 spin_unlock(&info->lock);
686 swap_free(swap);
687 }
1da177e4 688 }
2e0e26c7 689 return error;
1da177e4
LT
690}
691
692/*
46f65ec1 693 * Search through swapped inodes to find and replace swap by page.
1da177e4 694 */
41ffe5d5 695int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 696{
41ffe5d5 697 struct list_head *this, *next;
1da177e4 698 struct shmem_inode_info *info;
00501b53 699 struct mem_cgroup *memcg;
bde05d1c
HD
700 int error = 0;
701
702 /*
703 * There's a faint possibility that swap page was replaced before
0142ef6c 704 * caller locked it: caller will come back later with the right page.
bde05d1c 705 */
0142ef6c 706 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 707 goto out;
778dd893
HD
708
709 /*
710 * Charge page using GFP_KERNEL while we can wait, before taking
711 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712 * Charged back to the user (not to caller) when swap account is used.
778dd893 713 */
00501b53 714 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
715 if (error)
716 goto out;
46f65ec1 717 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 718 error = -EAGAIN;
1da177e4 719
cb5f7b9a 720 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
721 list_for_each_safe(this, next, &shmem_swaplist) {
722 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 723 if (info->swapped)
00501b53 724 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
725 else
726 list_del_init(&info->swaplist);
cb5f7b9a 727 cond_resched();
00501b53 728 if (error != -EAGAIN)
778dd893 729 break;
00501b53 730 /* found nothing in this: move on to search the next */
1da177e4 731 }
cb5f7b9a 732 mutex_unlock(&shmem_swaplist_mutex);
778dd893 733
00501b53
JW
734 if (error) {
735 if (error != -ENOMEM)
736 error = 0;
737 mem_cgroup_cancel_charge(page, memcg);
738 } else
739 mem_cgroup_commit_charge(page, memcg, true);
778dd893 740out:
aaa46865
HD
741 unlock_page(page);
742 page_cache_release(page);
778dd893 743 return error;
1da177e4
LT
744}
745
746/*
747 * Move the page from the page cache to the swap cache.
748 */
749static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750{
751 struct shmem_inode_info *info;
1da177e4 752 struct address_space *mapping;
1da177e4 753 struct inode *inode;
6922c0c7
HD
754 swp_entry_t swap;
755 pgoff_t index;
1da177e4
LT
756
757 BUG_ON(!PageLocked(page));
1da177e4
LT
758 mapping = page->mapping;
759 index = page->index;
760 inode = mapping->host;
761 info = SHMEM_I(inode);
762 if (info->flags & VM_LOCKED)
763 goto redirty;
d9fe526a 764 if (!total_swap_pages)
1da177e4
LT
765 goto redirty;
766
d9fe526a
HD
767 /*
768 * shmem_backing_dev_info's capabilities prevent regular writeback or
769 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 770 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 771 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 772 * and not for the writeback threads or sync.
d9fe526a 773 */
48f170fb
HD
774 if (!wbc->for_reclaim) {
775 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
776 goto redirty;
777 }
1635f6a7
HD
778
779 /*
780 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781 * value into swapfile.c, the only way we can correctly account for a
782 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
783 *
784 * That's okay for a page already fallocated earlier, but if we have
785 * not yet completed the fallocation, then (a) we want to keep track
786 * of this page in case we have to undo it, and (b) it may not be a
787 * good idea to continue anyway, once we're pushing into swap. So
788 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
789 */
790 if (!PageUptodate(page)) {
1aac1400
HD
791 if (inode->i_private) {
792 struct shmem_falloc *shmem_falloc;
793 spin_lock(&inode->i_lock);
794 shmem_falloc = inode->i_private;
795 if (shmem_falloc &&
8e205f77 796 !shmem_falloc->waitq &&
1aac1400
HD
797 index >= shmem_falloc->start &&
798 index < shmem_falloc->next)
799 shmem_falloc->nr_unswapped++;
800 else
801 shmem_falloc = NULL;
802 spin_unlock(&inode->i_lock);
803 if (shmem_falloc)
804 goto redirty;
805 }
1635f6a7
HD
806 clear_highpage(page);
807 flush_dcache_page(page);
808 SetPageUptodate(page);
809 }
810
48f170fb
HD
811 swap = get_swap_page();
812 if (!swap.val)
813 goto redirty;
d9fe526a 814
b1dea800
HD
815 /*
816 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
817 * if it's not already there. Do it now before the page is
818 * moved to swap cache, when its pagelock no longer protects
b1dea800 819 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
820 * we've incremented swapped, because shmem_unuse_inode() will
821 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 822 */
48f170fb
HD
823 mutex_lock(&shmem_swaplist_mutex);
824 if (list_empty(&info->swaplist))
825 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 826
48f170fb 827 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 828 swap_shmem_alloc(swap);
6922c0c7
HD
829 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830
831 spin_lock(&info->lock);
832 info->swapped++;
833 shmem_recalc_inode(inode);
826267cf 834 spin_unlock(&info->lock);
6922c0c7
HD
835
836 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 837 BUG_ON(page_mapped(page));
9fab5619 838 swap_writepage(page, wbc);
1da177e4
LT
839 return 0;
840 }
841
6922c0c7 842 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 843 swapcache_free(swap);
1da177e4
LT
844redirty:
845 set_page_dirty(page);
d9fe526a
HD
846 if (wbc->for_reclaim)
847 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
848 unlock_page(page);
849 return 0;
1da177e4
LT
850}
851
852#ifdef CONFIG_NUMA
680d794b 853#ifdef CONFIG_TMPFS
71fe804b 854static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 855{
095f1fc4 856 char buffer[64];
680d794b 857
71fe804b 858 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 859 return; /* show nothing */
680d794b 860
a7a88b23 861 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
862
863 seq_printf(seq, ",mpol=%s", buffer);
680d794b 864}
71fe804b
LS
865
866static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867{
868 struct mempolicy *mpol = NULL;
869 if (sbinfo->mpol) {
870 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
871 mpol = sbinfo->mpol;
872 mpol_get(mpol);
873 spin_unlock(&sbinfo->stat_lock);
874 }
875 return mpol;
876}
680d794b
AM
877#endif /* CONFIG_TMPFS */
878
41ffe5d5
HD
879static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880 struct shmem_inode_info *info, pgoff_t index)
1da177e4 881{
1da177e4 882 struct vm_area_struct pvma;
18a2f371 883 struct page *page;
52cd3b07 884
1da177e4 885 /* Create a pseudo vma that just contains the policy */
c4cc6d07 886 pvma.vm_start = 0;
09c231cb
NZ
887 /* Bias interleave by inode number to distribute better across nodes */
888 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 889 pvma.vm_ops = NULL;
18a2f371
MG
890 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891
892 page = swapin_readahead(swap, gfp, &pvma, 0);
893
894 /* Drop reference taken by mpol_shared_policy_lookup() */
895 mpol_cond_put(pvma.vm_policy);
896
897 return page;
1da177e4
LT
898}
899
02098fea 900static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 901 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
902{
903 struct vm_area_struct pvma;
18a2f371 904 struct page *page;
1da177e4 905
c4cc6d07
HD
906 /* Create a pseudo vma that just contains the policy */
907 pvma.vm_start = 0;
09c231cb
NZ
908 /* Bias interleave by inode number to distribute better across nodes */
909 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 910 pvma.vm_ops = NULL;
41ffe5d5 911 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 912
18a2f371
MG
913 page = alloc_page_vma(gfp, &pvma, 0);
914
915 /* Drop reference taken by mpol_shared_policy_lookup() */
916 mpol_cond_put(pvma.vm_policy);
917
918 return page;
1da177e4 919}
680d794b
AM
920#else /* !CONFIG_NUMA */
921#ifdef CONFIG_TMPFS
41ffe5d5 922static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
923{
924}
925#endif /* CONFIG_TMPFS */
926
41ffe5d5
HD
927static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928 struct shmem_inode_info *info, pgoff_t index)
1da177e4 929{
41ffe5d5 930 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
931}
932
02098fea 933static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 934 struct shmem_inode_info *info, pgoff_t index)
1da177e4 935{
e84e2e13 936 return alloc_page(gfp);
1da177e4 937}
680d794b 938#endif /* CONFIG_NUMA */
1da177e4 939
71fe804b
LS
940#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
941static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942{
943 return NULL;
944}
945#endif
946
bde05d1c
HD
947/*
948 * When a page is moved from swapcache to shmem filecache (either by the
949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950 * shmem_unuse_inode()), it may have been read in earlier from swap, in
951 * ignorance of the mapping it belongs to. If that mapping has special
952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953 * we may need to copy to a suitable page before moving to filecache.
954 *
955 * In a future release, this may well be extended to respect cpuset and
956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957 * but for now it is a simple matter of zone.
958 */
959static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960{
961 return page_zonenum(page) > gfp_zone(gfp);
962}
963
964static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965 struct shmem_inode_info *info, pgoff_t index)
966{
967 struct page *oldpage, *newpage;
968 struct address_space *swap_mapping;
969 pgoff_t swap_index;
970 int error;
971
972 oldpage = *pagep;
973 swap_index = page_private(oldpage);
974 swap_mapping = page_mapping(oldpage);
975
976 /*
977 * We have arrived here because our zones are constrained, so don't
978 * limit chance of success by further cpuset and node constraints.
979 */
980 gfp &= ~GFP_CONSTRAINT_MASK;
981 newpage = shmem_alloc_page(gfp, info, index);
982 if (!newpage)
983 return -ENOMEM;
bde05d1c 984
bde05d1c
HD
985 page_cache_get(newpage);
986 copy_highpage(newpage, oldpage);
0142ef6c 987 flush_dcache_page(newpage);
bde05d1c 988
bde05d1c 989 __set_page_locked(newpage);
bde05d1c 990 SetPageUptodate(newpage);
bde05d1c 991 SetPageSwapBacked(newpage);
bde05d1c 992 set_page_private(newpage, swap_index);
bde05d1c
HD
993 SetPageSwapCache(newpage);
994
995 /*
996 * Our caller will very soon move newpage out of swapcache, but it's
997 * a nice clean interface for us to replace oldpage by newpage there.
998 */
999 spin_lock_irq(&swap_mapping->tree_lock);
1000 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001 newpage);
0142ef6c
HD
1002 if (!error) {
1003 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1004 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005 }
bde05d1c 1006 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1007
0142ef6c
HD
1008 if (unlikely(error)) {
1009 /*
1010 * Is this possible? I think not, now that our callers check
1011 * both PageSwapCache and page_private after getting page lock;
1012 * but be defensive. Reverse old to newpage for clear and free.
1013 */
1014 oldpage = newpage;
1015 } else {
0a31bc97 1016 mem_cgroup_migrate(oldpage, newpage, false);
0142ef6c
HD
1017 lru_cache_add_anon(newpage);
1018 *pagep = newpage;
1019 }
bde05d1c
HD
1020
1021 ClearPageSwapCache(oldpage);
1022 set_page_private(oldpage, 0);
1023
1024 unlock_page(oldpage);
1025 page_cache_release(oldpage);
1026 page_cache_release(oldpage);
0142ef6c 1027 return error;
bde05d1c
HD
1028}
1029
1da177e4 1030/*
68da9f05 1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1032 *
1033 * If we allocate a new one we do not mark it dirty. That's up to the
1034 * vm. If we swap it in we mark it dirty since we also free the swap
1035 * entry since a page cannot live in both the swap and page cache
1036 */
41ffe5d5 1037static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1038 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1039{
1040 struct address_space *mapping = inode->i_mapping;
54af6042 1041 struct shmem_inode_info *info;
1da177e4 1042 struct shmem_sb_info *sbinfo;
00501b53 1043 struct mem_cgroup *memcg;
27ab7006 1044 struct page *page;
1da177e4
LT
1045 swp_entry_t swap;
1046 int error;
54af6042 1047 int once = 0;
1635f6a7 1048 int alloced = 0;
1da177e4 1049
41ffe5d5 1050 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1051 return -EFBIG;
1da177e4 1052repeat:
54af6042 1053 swap.val = 0;
0cd6144a 1054 page = find_lock_entry(mapping, index);
54af6042
HD
1055 if (radix_tree_exceptional_entry(page)) {
1056 swap = radix_to_swp_entry(page);
1057 page = NULL;
1058 }
1059
1635f6a7 1060 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1061 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062 error = -EINVAL;
1063 goto failed;
1064 }
1065
66d2f4d2
HD
1066 if (page && sgp == SGP_WRITE)
1067 mark_page_accessed(page);
1068
1635f6a7
HD
1069 /* fallocated page? */
1070 if (page && !PageUptodate(page)) {
1071 if (sgp != SGP_READ)
1072 goto clear;
1073 unlock_page(page);
1074 page_cache_release(page);
1075 page = NULL;
1076 }
54af6042 1077 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1078 *pagep = page;
1079 return 0;
27ab7006
HD
1080 }
1081
1082 /*
54af6042
HD
1083 * Fast cache lookup did not find it:
1084 * bring it back from swap or allocate.
27ab7006 1085 */
54af6042
HD
1086 info = SHMEM_I(inode);
1087 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1088
1da177e4
LT
1089 if (swap.val) {
1090 /* Look it up and read it in.. */
27ab7006
HD
1091 page = lookup_swap_cache(swap);
1092 if (!page) {
1da177e4 1093 /* here we actually do the io */
68da9f05
HD
1094 if (fault_type)
1095 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1096 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1097 if (!page) {
54af6042
HD
1098 error = -ENOMEM;
1099 goto failed;
1da177e4 1100 }
1da177e4
LT
1101 }
1102
1103 /* We have to do this with page locked to prevent races */
54af6042 1104 lock_page(page);
0142ef6c 1105 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1106 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1107 error = -EEXIST; /* try again */
d1899228 1108 goto unlock;
bde05d1c 1109 }
27ab7006 1110 if (!PageUptodate(page)) {
1da177e4 1111 error = -EIO;
54af6042 1112 goto failed;
1da177e4 1113 }
54af6042
HD
1114 wait_on_page_writeback(page);
1115
bde05d1c
HD
1116 if (shmem_should_replace_page(page, gfp)) {
1117 error = shmem_replace_page(&page, gfp, info, index);
1118 if (error)
1119 goto failed;
1da177e4 1120 }
27ab7006 1121
00501b53 1122 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1123 if (!error) {
aa3b1895 1124 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1125 swp_to_radix_entry(swap));
215c02bc
HD
1126 /*
1127 * We already confirmed swap under page lock, and make
1128 * no memory allocation here, so usually no possibility
1129 * of error; but free_swap_and_cache() only trylocks a
1130 * page, so it is just possible that the entry has been
1131 * truncated or holepunched since swap was confirmed.
1132 * shmem_undo_range() will have done some of the
1133 * unaccounting, now delete_from_swap_cache() will do
1134 * the rest (including mem_cgroup_uncharge_swapcache).
1135 * Reset swap.val? No, leave it so "failed" goes back to
1136 * "repeat": reading a hole and writing should succeed.
1137 */
00501b53
JW
1138 if (error) {
1139 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1140 delete_from_swap_cache(page);
00501b53 1141 }
d1899228 1142 }
54af6042
HD
1143 if (error)
1144 goto failed;
1145
00501b53
JW
1146 mem_cgroup_commit_charge(page, memcg, true);
1147
54af6042 1148 spin_lock(&info->lock);
285b2c4f 1149 info->swapped--;
54af6042 1150 shmem_recalc_inode(inode);
27ab7006 1151 spin_unlock(&info->lock);
54af6042 1152
66d2f4d2
HD
1153 if (sgp == SGP_WRITE)
1154 mark_page_accessed(page);
1155
54af6042 1156 delete_from_swap_cache(page);
27ab7006
HD
1157 set_page_dirty(page);
1158 swap_free(swap);
1159
54af6042
HD
1160 } else {
1161 if (shmem_acct_block(info->flags)) {
1162 error = -ENOSPC;
1163 goto failed;
1da177e4 1164 }
0edd73b3 1165 if (sbinfo->max_blocks) {
fc5da22a 1166 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1167 sbinfo->max_blocks) >= 0) {
1168 error = -ENOSPC;
1169 goto unacct;
1170 }
7e496299 1171 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1172 }
1da177e4 1173
54af6042
HD
1174 page = shmem_alloc_page(gfp, info, index);
1175 if (!page) {
1176 error = -ENOMEM;
1177 goto decused;
1da177e4
LT
1178 }
1179
07a42788 1180 __SetPageSwapBacked(page);
54af6042 1181 __set_page_locked(page);
66d2f4d2 1182 if (sgp == SGP_WRITE)
eb39d618 1183 __SetPageReferenced(page);
66d2f4d2 1184
00501b53 1185 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1186 if (error)
1187 goto decused;
5e4c0d97 1188 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1189 if (!error) {
1190 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1191 NULL);
b065b432
HD
1192 radix_tree_preload_end();
1193 }
1194 if (error) {
00501b53 1195 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1196 goto decused;
1197 }
00501b53 1198 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1199 lru_cache_add_anon(page);
1200
1201 spin_lock(&info->lock);
1da177e4 1202 info->alloced++;
54af6042
HD
1203 inode->i_blocks += BLOCKS_PER_PAGE;
1204 shmem_recalc_inode(inode);
1da177e4 1205 spin_unlock(&info->lock);
1635f6a7 1206 alloced = true;
54af6042 1207
ec9516fb 1208 /*
1635f6a7
HD
1209 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210 */
1211 if (sgp == SGP_FALLOC)
1212 sgp = SGP_WRITE;
1213clear:
1214 /*
1215 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1218 */
1219 if (sgp != SGP_WRITE) {
1220 clear_highpage(page);
1221 flush_dcache_page(page);
1222 SetPageUptodate(page);
1223 }
a0ee5ec5 1224 if (sgp == SGP_DIRTY)
27ab7006 1225 set_page_dirty(page);
1da177e4 1226 }
bde05d1c 1227
54af6042 1228 /* Perhaps the file has been truncated since we checked */
1635f6a7 1229 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1230 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 error = -EINVAL;
1635f6a7
HD
1232 if (alloced)
1233 goto trunc;
1234 else
1235 goto failed;
e83c32e8 1236 }
54af6042
HD
1237 *pagep = page;
1238 return 0;
1da177e4 1239
59a16ead 1240 /*
54af6042 1241 * Error recovery.
59a16ead 1242 */
54af6042 1243trunc:
1635f6a7 1244 info = SHMEM_I(inode);
54af6042
HD
1245 ClearPageDirty(page);
1246 delete_from_page_cache(page);
1247 spin_lock(&info->lock);
1248 info->alloced--;
1249 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1250 spin_unlock(&info->lock);
54af6042 1251decused:
1635f6a7 1252 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1253 if (sbinfo->max_blocks)
1254 percpu_counter_add(&sbinfo->used_blocks, -1);
1255unacct:
1256 shmem_unacct_blocks(info->flags, 1);
1257failed:
d1899228
HD
1258 if (swap.val && error != -EINVAL &&
1259 !shmem_confirm_swap(mapping, index, swap))
1260 error = -EEXIST;
1261unlock:
27ab7006 1262 if (page) {
54af6042 1263 unlock_page(page);
27ab7006 1264 page_cache_release(page);
54af6042
HD
1265 }
1266 if (error == -ENOSPC && !once++) {
1267 info = SHMEM_I(inode);
1268 spin_lock(&info->lock);
1269 shmem_recalc_inode(inode);
1270 spin_unlock(&info->lock);
27ab7006 1271 goto repeat;
ff36b801 1272 }
d1899228 1273 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1274 goto repeat;
1275 return error;
1da177e4
LT
1276}
1277
d0217ac0 1278static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1279{
496ad9aa 1280 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1281 int error;
68da9f05 1282 int ret = VM_FAULT_LOCKED;
1da177e4 1283
f00cdc6d
HD
1284 /*
1285 * Trinity finds that probing a hole which tmpfs is punching can
1286 * prevent the hole-punch from ever completing: which in turn
1287 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1288 * faulting pages into the hole while it's being punched. Although
1289 * shmem_undo_range() does remove the additions, it may be unable to
1290 * keep up, as each new page needs its own unmap_mapping_range() call,
1291 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292 *
1293 * It does not matter if we sometimes reach this check just before the
1294 * hole-punch begins, so that one fault then races with the punch:
1295 * we just need to make racing faults a rare case.
1296 *
1297 * The implementation below would be much simpler if we just used a
1298 * standard mutex or completion: but we cannot take i_mutex in fault,
1299 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1300 */
1301 if (unlikely(inode->i_private)) {
1302 struct shmem_falloc *shmem_falloc;
1303
1304 spin_lock(&inode->i_lock);
1305 shmem_falloc = inode->i_private;
8e205f77
HD
1306 if (shmem_falloc &&
1307 shmem_falloc->waitq &&
1308 vmf->pgoff >= shmem_falloc->start &&
1309 vmf->pgoff < shmem_falloc->next) {
1310 wait_queue_head_t *shmem_falloc_waitq;
1311 DEFINE_WAIT(shmem_fault_wait);
1312
1313 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1314 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1316 /* It's polite to up mmap_sem if we can */
f00cdc6d 1317 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1318 ret = VM_FAULT_RETRY;
f00cdc6d 1319 }
8e205f77
HD
1320
1321 shmem_falloc_waitq = shmem_falloc->waitq;
1322 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323 TASK_UNINTERRUPTIBLE);
1324 spin_unlock(&inode->i_lock);
1325 schedule();
1326
1327 /*
1328 * shmem_falloc_waitq points into the shmem_fallocate()
1329 * stack of the hole-punching task: shmem_falloc_waitq
1330 * is usually invalid by the time we reach here, but
1331 * finish_wait() does not dereference it in that case;
1332 * though i_lock needed lest racing with wake_up_all().
1333 */
1334 spin_lock(&inode->i_lock);
1335 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336 spin_unlock(&inode->i_lock);
1337 return ret;
f00cdc6d 1338 }
8e205f77 1339 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1340 }
1341
27d54b39 1342 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1343 if (error)
1344 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1345
456f998e
YH
1346 if (ret & VM_FAULT_MAJOR) {
1347 count_vm_event(PGMAJFAULT);
1348 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349 }
68da9f05 1350 return ret;
1da177e4
LT
1351}
1352
1da177e4 1353#ifdef CONFIG_NUMA
41ffe5d5 1354static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1355{
496ad9aa 1356 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1357 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1358}
1359
d8dc74f2
AB
1360static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361 unsigned long addr)
1da177e4 1362{
496ad9aa 1363 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1364 pgoff_t index;
1da177e4 1365
41ffe5d5
HD
1366 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1368}
1369#endif
1370
1371int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372{
496ad9aa 1373 struct inode *inode = file_inode(file);
1da177e4
LT
1374 struct shmem_inode_info *info = SHMEM_I(inode);
1375 int retval = -ENOMEM;
1376
1377 spin_lock(&info->lock);
1378 if (lock && !(info->flags & VM_LOCKED)) {
1379 if (!user_shm_lock(inode->i_size, user))
1380 goto out_nomem;
1381 info->flags |= VM_LOCKED;
89e004ea 1382 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1383 }
1384 if (!lock && (info->flags & VM_LOCKED) && user) {
1385 user_shm_unlock(inode->i_size, user);
1386 info->flags &= ~VM_LOCKED;
89e004ea 1387 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1388 }
1389 retval = 0;
89e004ea 1390
1da177e4
LT
1391out_nomem:
1392 spin_unlock(&info->lock);
1393 return retval;
1394}
1395
9b83a6a8 1396static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1397{
1398 file_accessed(file);
1399 vma->vm_ops = &shmem_vm_ops;
1400 return 0;
1401}
1402
454abafe 1403static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1404 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1405{
1406 struct inode *inode;
1407 struct shmem_inode_info *info;
1408 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409
5b04c689
PE
1410 if (shmem_reserve_inode(sb))
1411 return NULL;
1da177e4
LT
1412
1413 inode = new_inode(sb);
1414 if (inode) {
85fe4025 1415 inode->i_ino = get_next_ino();
454abafe 1416 inode_init_owner(inode, dir, mode);
1da177e4 1417 inode->i_blocks = 0;
1da177e4
LT
1418 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1420 inode->i_generation = get_seconds();
1da177e4
LT
1421 info = SHMEM_I(inode);
1422 memset(info, 0, (char *)inode - (char *)info);
1423 spin_lock_init(&info->lock);
40e041a2 1424 info->seals = F_SEAL_SEAL;
0b0a0806 1425 info->flags = flags & VM_NORESERVE;
1da177e4 1426 INIT_LIST_HEAD(&info->swaplist);
38f38657 1427 simple_xattrs_init(&info->xattrs);
72c04902 1428 cache_no_acl(inode);
1da177e4
LT
1429
1430 switch (mode & S_IFMT) {
1431 default:
39f0247d 1432 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1433 init_special_inode(inode, mode, dev);
1434 break;
1435 case S_IFREG:
14fcc23f 1436 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1437 inode->i_op = &shmem_inode_operations;
1438 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1439 mpol_shared_policy_init(&info->policy,
1440 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1441 break;
1442 case S_IFDIR:
d8c76e6f 1443 inc_nlink(inode);
1da177e4
LT
1444 /* Some things misbehave if size == 0 on a directory */
1445 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446 inode->i_op = &shmem_dir_inode_operations;
1447 inode->i_fop = &simple_dir_operations;
1448 break;
1449 case S_IFLNK:
1450 /*
1451 * Must not load anything in the rbtree,
1452 * mpol_free_shared_policy will not be called.
1453 */
71fe804b 1454 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1455 break;
1456 }
5b04c689
PE
1457 } else
1458 shmem_free_inode(sb);
1da177e4
LT
1459 return inode;
1460}
1461
0cd6144a
JW
1462bool shmem_mapping(struct address_space *mapping)
1463{
1464 return mapping->backing_dev_info == &shmem_backing_dev_info;
1465}
1466
1da177e4 1467#ifdef CONFIG_TMPFS
92e1d5be 1468static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1469static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1470
6d9d88d0
JS
1471#ifdef CONFIG_TMPFS_XATTR
1472static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473#else
1474#define shmem_initxattrs NULL
1475#endif
1476
1da177e4 1477static int
800d15a5
NP
1478shmem_write_begin(struct file *file, struct address_space *mapping,
1479 loff_t pos, unsigned len, unsigned flags,
1480 struct page **pagep, void **fsdata)
1da177e4 1481{
800d15a5 1482 struct inode *inode = mapping->host;
40e041a2 1483 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1484 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DH
1485
1486 /* i_mutex is held by caller */
1487 if (unlikely(info->seals)) {
1488 if (info->seals & F_SEAL_WRITE)
1489 return -EPERM;
1490 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491 return -EPERM;
1492 }
1493
66d2f4d2 1494 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1495}
1496
1497static int
1498shmem_write_end(struct file *file, struct address_space *mapping,
1499 loff_t pos, unsigned len, unsigned copied,
1500 struct page *page, void *fsdata)
1501{
1502 struct inode *inode = mapping->host;
1503
d3602444
HD
1504 if (pos + copied > inode->i_size)
1505 i_size_write(inode, pos + copied);
1506
ec9516fb
HD
1507 if (!PageUptodate(page)) {
1508 if (copied < PAGE_CACHE_SIZE) {
1509 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510 zero_user_segments(page, 0, from,
1511 from + copied, PAGE_CACHE_SIZE);
1512 }
1513 SetPageUptodate(page);
1514 }
800d15a5 1515 set_page_dirty(page);
6746aff7 1516 unlock_page(page);
800d15a5
NP
1517 page_cache_release(page);
1518
800d15a5 1519 return copied;
1da177e4
LT
1520}
1521
2ba5bbed 1522static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1523{
6e58e79d
AV
1524 struct file *file = iocb->ki_filp;
1525 struct inode *inode = file_inode(file);
1da177e4 1526 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1527 pgoff_t index;
1528 unsigned long offset;
a0ee5ec5 1529 enum sgp_type sgp = SGP_READ;
f7c1d074 1530 int error = 0;
cb66a7a1 1531 ssize_t retval = 0;
6e58e79d 1532 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1533
1534 /*
1535 * Might this read be for a stacking filesystem? Then when reading
1536 * holes of a sparse file, we actually need to allocate those pages,
1537 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538 */
1539 if (segment_eq(get_fs(), KERNEL_DS))
1540 sgp = SGP_DIRTY;
1da177e4
LT
1541
1542 index = *ppos >> PAGE_CACHE_SHIFT;
1543 offset = *ppos & ~PAGE_CACHE_MASK;
1544
1545 for (;;) {
1546 struct page *page = NULL;
41ffe5d5
HD
1547 pgoff_t end_index;
1548 unsigned long nr, ret;
1da177e4
LT
1549 loff_t i_size = i_size_read(inode);
1550
1551 end_index = i_size >> PAGE_CACHE_SHIFT;
1552 if (index > end_index)
1553 break;
1554 if (index == end_index) {
1555 nr = i_size & ~PAGE_CACHE_MASK;
1556 if (nr <= offset)
1557 break;
1558 }
1559
6e58e79d
AV
1560 error = shmem_getpage(inode, index, &page, sgp, NULL);
1561 if (error) {
1562 if (error == -EINVAL)
1563 error = 0;
1da177e4
LT
1564 break;
1565 }
d3602444
HD
1566 if (page)
1567 unlock_page(page);
1da177e4
LT
1568
1569 /*
1570 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1571 * are called without i_mutex protection against truncate
1da177e4
LT
1572 */
1573 nr = PAGE_CACHE_SIZE;
1574 i_size = i_size_read(inode);
1575 end_index = i_size >> PAGE_CACHE_SHIFT;
1576 if (index == end_index) {
1577 nr = i_size & ~PAGE_CACHE_MASK;
1578 if (nr <= offset) {
1579 if (page)
1580 page_cache_release(page);
1581 break;
1582 }
1583 }
1584 nr -= offset;
1585
1586 if (page) {
1587 /*
1588 * If users can be writing to this page using arbitrary
1589 * virtual addresses, take care about potential aliasing
1590 * before reading the page on the kernel side.
1591 */
1592 if (mapping_writably_mapped(mapping))
1593 flush_dcache_page(page);
1594 /*
1595 * Mark the page accessed if we read the beginning.
1596 */
1597 if (!offset)
1598 mark_page_accessed(page);
b5810039 1599 } else {
1da177e4 1600 page = ZERO_PAGE(0);
b5810039
NP
1601 page_cache_get(page);
1602 }
1da177e4
LT
1603
1604 /*
1605 * Ok, we have the page, and it's up-to-date, so
1606 * now we can copy it to user space...
1da177e4 1607 */
2ba5bbed 1608 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1609 retval += ret;
1da177e4
LT
1610 offset += ret;
1611 index += offset >> PAGE_CACHE_SHIFT;
1612 offset &= ~PAGE_CACHE_MASK;
1613
1614 page_cache_release(page);
2ba5bbed 1615 if (!iov_iter_count(to))
1da177e4 1616 break;
6e58e79d
AV
1617 if (ret < nr) {
1618 error = -EFAULT;
1619 break;
1620 }
1da177e4
LT
1621 cond_resched();
1622 }
1623
1624 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1625 file_accessed(file);
1626 return retval ? retval : error;
1da177e4
LT
1627}
1628
708e3508
HD
1629static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630 struct pipe_inode_info *pipe, size_t len,
1631 unsigned int flags)
1632{
1633 struct address_space *mapping = in->f_mapping;
71f0e07a 1634 struct inode *inode = mapping->host;
708e3508
HD
1635 unsigned int loff, nr_pages, req_pages;
1636 struct page *pages[PIPE_DEF_BUFFERS];
1637 struct partial_page partial[PIPE_DEF_BUFFERS];
1638 struct page *page;
1639 pgoff_t index, end_index;
1640 loff_t isize, left;
1641 int error, page_nr;
1642 struct splice_pipe_desc spd = {
1643 .pages = pages,
1644 .partial = partial,
047fe360 1645 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1646 .flags = flags,
1647 .ops = &page_cache_pipe_buf_ops,
1648 .spd_release = spd_release_page,
1649 };
1650
71f0e07a 1651 isize = i_size_read(inode);
708e3508
HD
1652 if (unlikely(*ppos >= isize))
1653 return 0;
1654
1655 left = isize - *ppos;
1656 if (unlikely(left < len))
1657 len = left;
1658
1659 if (splice_grow_spd(pipe, &spd))
1660 return -ENOMEM;
1661
1662 index = *ppos >> PAGE_CACHE_SHIFT;
1663 loff = *ppos & ~PAGE_CACHE_MASK;
1664 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1665 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1666
708e3508
HD
1667 spd.nr_pages = find_get_pages_contig(mapping, index,
1668 nr_pages, spd.pages);
1669 index += spd.nr_pages;
708e3508 1670 error = 0;
708e3508 1671
71f0e07a 1672 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1673 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674 if (error)
1675 break;
1676 unlock_page(page);
708e3508
HD
1677 spd.pages[spd.nr_pages++] = page;
1678 index++;
1679 }
1680
708e3508
HD
1681 index = *ppos >> PAGE_CACHE_SHIFT;
1682 nr_pages = spd.nr_pages;
1683 spd.nr_pages = 0;
71f0e07a 1684
708e3508
HD
1685 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686 unsigned int this_len;
1687
1688 if (!len)
1689 break;
1690
708e3508
HD
1691 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692 page = spd.pages[page_nr];
1693
71f0e07a 1694 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1695 error = shmem_getpage(inode, index, &page,
1696 SGP_CACHE, NULL);
1697 if (error)
708e3508 1698 break;
71f0e07a
HD
1699 unlock_page(page);
1700 page_cache_release(spd.pages[page_nr]);
1701 spd.pages[page_nr] = page;
708e3508 1702 }
71f0e07a
HD
1703
1704 isize = i_size_read(inode);
708e3508
HD
1705 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706 if (unlikely(!isize || index > end_index))
1707 break;
1708
708e3508
HD
1709 if (end_index == index) {
1710 unsigned int plen;
1711
708e3508
HD
1712 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713 if (plen <= loff)
1714 break;
1715
708e3508
HD
1716 this_len = min(this_len, plen - loff);
1717 len = this_len;
1718 }
1719
1720 spd.partial[page_nr].offset = loff;
1721 spd.partial[page_nr].len = this_len;
1722 len -= this_len;
1723 loff = 0;
1724 spd.nr_pages++;
1725 index++;
1726 }
1727
708e3508
HD
1728 while (page_nr < nr_pages)
1729 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1730
1731 if (spd.nr_pages)
1732 error = splice_to_pipe(pipe, &spd);
1733
047fe360 1734 splice_shrink_spd(&spd);
708e3508
HD
1735
1736 if (error > 0) {
1737 *ppos += error;
1738 file_accessed(in);
1739 }
1740 return error;
1741}
1742
220f2ac9
HD
1743/*
1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745 */
1746static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1747 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1748{
1749 struct page *page;
1750 struct pagevec pvec;
1751 pgoff_t indices[PAGEVEC_SIZE];
1752 bool done = false;
1753 int i;
1754
1755 pagevec_init(&pvec, 0);
1756 pvec.nr = 1; /* start small: we may be there already */
1757 while (!done) {
0cd6144a 1758 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1759 pvec.nr, pvec.pages, indices);
1760 if (!pvec.nr) {
965c8e59 1761 if (whence == SEEK_DATA)
220f2ac9
HD
1762 index = end;
1763 break;
1764 }
1765 for (i = 0; i < pvec.nr; i++, index++) {
1766 if (index < indices[i]) {
965c8e59 1767 if (whence == SEEK_HOLE) {
220f2ac9
HD
1768 done = true;
1769 break;
1770 }
1771 index = indices[i];
1772 }
1773 page = pvec.pages[i];
1774 if (page && !radix_tree_exceptional_entry(page)) {
1775 if (!PageUptodate(page))
1776 page = NULL;
1777 }
1778 if (index >= end ||
965c8e59
AM
1779 (page && whence == SEEK_DATA) ||
1780 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1781 done = true;
1782 break;
1783 }
1784 }
0cd6144a 1785 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1786 pagevec_release(&pvec);
1787 pvec.nr = PAGEVEC_SIZE;
1788 cond_resched();
1789 }
1790 return index;
1791}
1792
965c8e59 1793static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1794{
1795 struct address_space *mapping = file->f_mapping;
1796 struct inode *inode = mapping->host;
1797 pgoff_t start, end;
1798 loff_t new_offset;
1799
965c8e59
AM
1800 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1802 MAX_LFS_FILESIZE, i_size_read(inode));
1803 mutex_lock(&inode->i_mutex);
1804 /* We're holding i_mutex so we can access i_size directly */
1805
1806 if (offset < 0)
1807 offset = -EINVAL;
1808 else if (offset >= inode->i_size)
1809 offset = -ENXIO;
1810 else {
1811 start = offset >> PAGE_CACHE_SHIFT;
1812 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1813 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1814 new_offset <<= PAGE_CACHE_SHIFT;
1815 if (new_offset > offset) {
1816 if (new_offset < inode->i_size)
1817 offset = new_offset;
965c8e59 1818 else if (whence == SEEK_DATA)
220f2ac9
HD
1819 offset = -ENXIO;
1820 else
1821 offset = inode->i_size;
1822 }
1823 }
1824
387aae6f
HD
1825 if (offset >= 0)
1826 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1827 mutex_unlock(&inode->i_mutex);
1828 return offset;
1829}
1830
05f65b5c
DH
1831/*
1832 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1833 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1834 */
1835#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1836#define LAST_SCAN 4 /* about 150ms max */
1837
1838static void shmem_tag_pins(struct address_space *mapping)
1839{
1840 struct radix_tree_iter iter;
1841 void **slot;
1842 pgoff_t start;
1843 struct page *page;
1844
1845 lru_add_drain();
1846 start = 0;
1847 rcu_read_lock();
1848
1849restart:
1850 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1851 page = radix_tree_deref_slot(slot);
1852 if (!page || radix_tree_exception(page)) {
1853 if (radix_tree_deref_retry(page))
1854 goto restart;
1855 } else if (page_count(page) - page_mapcount(page) > 1) {
1856 spin_lock_irq(&mapping->tree_lock);
1857 radix_tree_tag_set(&mapping->page_tree, iter.index,
1858 SHMEM_TAG_PINNED);
1859 spin_unlock_irq(&mapping->tree_lock);
1860 }
1861
1862 if (need_resched()) {
1863 cond_resched_rcu();
1864 start = iter.index + 1;
1865 goto restart;
1866 }
1867 }
1868 rcu_read_unlock();
1869}
1870
1871/*
1872 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1873 * via get_user_pages(), drivers might have some pending I/O without any active
1874 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1875 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1876 * them to be dropped.
1877 * The caller must guarantee that no new user will acquire writable references
1878 * to those pages to avoid races.
1879 */
40e041a2
DH
1880static int shmem_wait_for_pins(struct address_space *mapping)
1881{
05f65b5c
DH
1882 struct radix_tree_iter iter;
1883 void **slot;
1884 pgoff_t start;
1885 struct page *page;
1886 int error, scan;
1887
1888 shmem_tag_pins(mapping);
1889
1890 error = 0;
1891 for (scan = 0; scan <= LAST_SCAN; scan++) {
1892 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1893 break;
1894
1895 if (!scan)
1896 lru_add_drain_all();
1897 else if (schedule_timeout_killable((HZ << scan) / 200))
1898 scan = LAST_SCAN;
1899
1900 start = 0;
1901 rcu_read_lock();
1902restart:
1903 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1904 start, SHMEM_TAG_PINNED) {
1905
1906 page = radix_tree_deref_slot(slot);
1907 if (radix_tree_exception(page)) {
1908 if (radix_tree_deref_retry(page))
1909 goto restart;
1910
1911 page = NULL;
1912 }
1913
1914 if (page &&
1915 page_count(page) - page_mapcount(page) != 1) {
1916 if (scan < LAST_SCAN)
1917 goto continue_resched;
1918
1919 /*
1920 * On the last scan, we clean up all those tags
1921 * we inserted; but make a note that we still
1922 * found pages pinned.
1923 */
1924 error = -EBUSY;
1925 }
1926
1927 spin_lock_irq(&mapping->tree_lock);
1928 radix_tree_tag_clear(&mapping->page_tree,
1929 iter.index, SHMEM_TAG_PINNED);
1930 spin_unlock_irq(&mapping->tree_lock);
1931continue_resched:
1932 if (need_resched()) {
1933 cond_resched_rcu();
1934 start = iter.index + 1;
1935 goto restart;
1936 }
1937 }
1938 rcu_read_unlock();
1939 }
1940
1941 return error;
40e041a2
DH
1942}
1943
1944#define F_ALL_SEALS (F_SEAL_SEAL | \
1945 F_SEAL_SHRINK | \
1946 F_SEAL_GROW | \
1947 F_SEAL_WRITE)
1948
1949int shmem_add_seals(struct file *file, unsigned int seals)
1950{
1951 struct inode *inode = file_inode(file);
1952 struct shmem_inode_info *info = SHMEM_I(inode);
1953 int error;
1954
1955 /*
1956 * SEALING
1957 * Sealing allows multiple parties to share a shmem-file but restrict
1958 * access to a specific subset of file operations. Seals can only be
1959 * added, but never removed. This way, mutually untrusted parties can
1960 * share common memory regions with a well-defined policy. A malicious
1961 * peer can thus never perform unwanted operations on a shared object.
1962 *
1963 * Seals are only supported on special shmem-files and always affect
1964 * the whole underlying inode. Once a seal is set, it may prevent some
1965 * kinds of access to the file. Currently, the following seals are
1966 * defined:
1967 * SEAL_SEAL: Prevent further seals from being set on this file
1968 * SEAL_SHRINK: Prevent the file from shrinking
1969 * SEAL_GROW: Prevent the file from growing
1970 * SEAL_WRITE: Prevent write access to the file
1971 *
1972 * As we don't require any trust relationship between two parties, we
1973 * must prevent seals from being removed. Therefore, sealing a file
1974 * only adds a given set of seals to the file, it never touches
1975 * existing seals. Furthermore, the "setting seals"-operation can be
1976 * sealed itself, which basically prevents any further seal from being
1977 * added.
1978 *
1979 * Semantics of sealing are only defined on volatile files. Only
1980 * anonymous shmem files support sealing. More importantly, seals are
1981 * never written to disk. Therefore, there's no plan to support it on
1982 * other file types.
1983 */
1984
1985 if (file->f_op != &shmem_file_operations)
1986 return -EINVAL;
1987 if (!(file->f_mode & FMODE_WRITE))
1988 return -EPERM;
1989 if (seals & ~(unsigned int)F_ALL_SEALS)
1990 return -EINVAL;
1991
1992 mutex_lock(&inode->i_mutex);
1993
1994 if (info->seals & F_SEAL_SEAL) {
1995 error = -EPERM;
1996 goto unlock;
1997 }
1998
1999 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2000 error = mapping_deny_writable(file->f_mapping);
2001 if (error)
2002 goto unlock;
2003
2004 error = shmem_wait_for_pins(file->f_mapping);
2005 if (error) {
2006 mapping_allow_writable(file->f_mapping);
2007 goto unlock;
2008 }
2009 }
2010
2011 info->seals |= seals;
2012 error = 0;
2013
2014unlock:
2015 mutex_unlock(&inode->i_mutex);
2016 return error;
2017}
2018EXPORT_SYMBOL_GPL(shmem_add_seals);
2019
2020int shmem_get_seals(struct file *file)
2021{
2022 if (file->f_op != &shmem_file_operations)
2023 return -EINVAL;
2024
2025 return SHMEM_I(file_inode(file))->seals;
2026}
2027EXPORT_SYMBOL_GPL(shmem_get_seals);
2028
2029long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2030{
2031 long error;
2032
2033 switch (cmd) {
2034 case F_ADD_SEALS:
2035 /* disallow upper 32bit */
2036 if (arg > UINT_MAX)
2037 return -EINVAL;
2038
2039 error = shmem_add_seals(file, arg);
2040 break;
2041 case F_GET_SEALS:
2042 error = shmem_get_seals(file);
2043 break;
2044 default:
2045 error = -EINVAL;
2046 break;
2047 }
2048
2049 return error;
2050}
2051
83e4fa9c
HD
2052static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2053 loff_t len)
2054{
496ad9aa 2055 struct inode *inode = file_inode(file);
e2d12e22 2056 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2057 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2058 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2059 pgoff_t start, index, end;
2060 int error;
83e4fa9c 2061
13ace4d0
HD
2062 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2063 return -EOPNOTSUPP;
2064
83e4fa9c
HD
2065 mutex_lock(&inode->i_mutex);
2066
2067 if (mode & FALLOC_FL_PUNCH_HOLE) {
2068 struct address_space *mapping = file->f_mapping;
2069 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2070 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2071 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2072
40e041a2
DH
2073 /* protected by i_mutex */
2074 if (info->seals & F_SEAL_WRITE) {
2075 error = -EPERM;
2076 goto out;
2077 }
2078
8e205f77 2079 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2080 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2081 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2082 spin_lock(&inode->i_lock);
2083 inode->i_private = &shmem_falloc;
2084 spin_unlock(&inode->i_lock);
2085
83e4fa9c
HD
2086 if ((u64)unmap_end > (u64)unmap_start)
2087 unmap_mapping_range(mapping, unmap_start,
2088 1 + unmap_end - unmap_start, 0);
2089 shmem_truncate_range(inode, offset, offset + len - 1);
2090 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2091
2092 spin_lock(&inode->i_lock);
2093 inode->i_private = NULL;
2094 wake_up_all(&shmem_falloc_waitq);
2095 spin_unlock(&inode->i_lock);
83e4fa9c 2096 error = 0;
8e205f77 2097 goto out;
e2d12e22
HD
2098 }
2099
2100 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2101 error = inode_newsize_ok(inode, offset + len);
2102 if (error)
2103 goto out;
2104
40e041a2
DH
2105 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2106 error = -EPERM;
2107 goto out;
2108 }
2109
e2d12e22
HD
2110 start = offset >> PAGE_CACHE_SHIFT;
2111 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2112 /* Try to avoid a swapstorm if len is impossible to satisfy */
2113 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2114 error = -ENOSPC;
2115 goto out;
83e4fa9c
HD
2116 }
2117
8e205f77 2118 shmem_falloc.waitq = NULL;
1aac1400
HD
2119 shmem_falloc.start = start;
2120 shmem_falloc.next = start;
2121 shmem_falloc.nr_falloced = 0;
2122 shmem_falloc.nr_unswapped = 0;
2123 spin_lock(&inode->i_lock);
2124 inode->i_private = &shmem_falloc;
2125 spin_unlock(&inode->i_lock);
2126
e2d12e22
HD
2127 for (index = start; index < end; index++) {
2128 struct page *page;
2129
2130 /*
2131 * Good, the fallocate(2) manpage permits EINTR: we may have
2132 * been interrupted because we are using up too much memory.
2133 */
2134 if (signal_pending(current))
2135 error = -EINTR;
1aac1400
HD
2136 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2137 error = -ENOMEM;
e2d12e22 2138 else
1635f6a7 2139 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2140 NULL);
2141 if (error) {
1635f6a7
HD
2142 /* Remove the !PageUptodate pages we added */
2143 shmem_undo_range(inode,
2144 (loff_t)start << PAGE_CACHE_SHIFT,
2145 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2146 goto undone;
e2d12e22
HD
2147 }
2148
1aac1400
HD
2149 /*
2150 * Inform shmem_writepage() how far we have reached.
2151 * No need for lock or barrier: we have the page lock.
2152 */
2153 shmem_falloc.next++;
2154 if (!PageUptodate(page))
2155 shmem_falloc.nr_falloced++;
2156
e2d12e22 2157 /*
1635f6a7
HD
2158 * If !PageUptodate, leave it that way so that freeable pages
2159 * can be recognized if we need to rollback on error later.
2160 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2161 * than free the pages we are allocating (and SGP_CACHE pages
2162 * might still be clean: we now need to mark those dirty too).
2163 */
2164 set_page_dirty(page);
2165 unlock_page(page);
2166 page_cache_release(page);
2167 cond_resched();
2168 }
2169
2170 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2171 i_size_write(inode, offset + len);
e2d12e22 2172 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2173undone:
2174 spin_lock(&inode->i_lock);
2175 inode->i_private = NULL;
2176 spin_unlock(&inode->i_lock);
e2d12e22 2177out:
83e4fa9c
HD
2178 mutex_unlock(&inode->i_mutex);
2179 return error;
2180}
2181
726c3342 2182static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2183{
726c3342 2184 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2185
2186 buf->f_type = TMPFS_MAGIC;
2187 buf->f_bsize = PAGE_CACHE_SIZE;
2188 buf->f_namelen = NAME_MAX;
0edd73b3 2189 if (sbinfo->max_blocks) {
1da177e4 2190 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2191 buf->f_bavail =
2192 buf->f_bfree = sbinfo->max_blocks -
2193 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2194 }
2195 if (sbinfo->max_inodes) {
1da177e4
LT
2196 buf->f_files = sbinfo->max_inodes;
2197 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2198 }
2199 /* else leave those fields 0 like simple_statfs */
2200 return 0;
2201}
2202
2203/*
2204 * File creation. Allocate an inode, and we're done..
2205 */
2206static int
1a67aafb 2207shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2208{
0b0a0806 2209 struct inode *inode;
1da177e4
LT
2210 int error = -ENOSPC;
2211
454abafe 2212 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2213 if (inode) {
feda821e
CH
2214 error = simple_acl_create(dir, inode);
2215 if (error)
2216 goto out_iput;
2a7dba39 2217 error = security_inode_init_security(inode, dir,
9d8f13ba 2218 &dentry->d_name,
6d9d88d0 2219 shmem_initxattrs, NULL);
feda821e
CH
2220 if (error && error != -EOPNOTSUPP)
2221 goto out_iput;
37ec43cd 2222
718deb6b 2223 error = 0;
1da177e4
LT
2224 dir->i_size += BOGO_DIRENT_SIZE;
2225 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2226 d_instantiate(dentry, inode);
2227 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2228 }
2229 return error;
feda821e
CH
2230out_iput:
2231 iput(inode);
2232 return error;
1da177e4
LT
2233}
2234
60545d0d
AV
2235static int
2236shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2237{
2238 struct inode *inode;
2239 int error = -ENOSPC;
2240
2241 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2242 if (inode) {
2243 error = security_inode_init_security(inode, dir,
2244 NULL,
2245 shmem_initxattrs, NULL);
feda821e
CH
2246 if (error && error != -EOPNOTSUPP)
2247 goto out_iput;
2248 error = simple_acl_create(dir, inode);
2249 if (error)
2250 goto out_iput;
60545d0d
AV
2251 d_tmpfile(dentry, inode);
2252 }
2253 return error;
feda821e
CH
2254out_iput:
2255 iput(inode);
2256 return error;
60545d0d
AV
2257}
2258
18bb1db3 2259static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2260{
2261 int error;
2262
2263 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2264 return error;
d8c76e6f 2265 inc_nlink(dir);
1da177e4
LT
2266 return 0;
2267}
2268
4acdaf27 2269static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2270 bool excl)
1da177e4
LT
2271{
2272 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2273}
2274
2275/*
2276 * Link a file..
2277 */
2278static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2279{
2280 struct inode *inode = old_dentry->d_inode;
5b04c689 2281 int ret;
1da177e4
LT
2282
2283 /*
2284 * No ordinary (disk based) filesystem counts links as inodes;
2285 * but each new link needs a new dentry, pinning lowmem, and
2286 * tmpfs dentries cannot be pruned until they are unlinked.
2287 */
5b04c689
PE
2288 ret = shmem_reserve_inode(inode->i_sb);
2289 if (ret)
2290 goto out;
1da177e4
LT
2291
2292 dir->i_size += BOGO_DIRENT_SIZE;
2293 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2294 inc_nlink(inode);
7de9c6ee 2295 ihold(inode); /* New dentry reference */
1da177e4
LT
2296 dget(dentry); /* Extra pinning count for the created dentry */
2297 d_instantiate(dentry, inode);
5b04c689
PE
2298out:
2299 return ret;
1da177e4
LT
2300}
2301
2302static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2303{
2304 struct inode *inode = dentry->d_inode;
2305
5b04c689
PE
2306 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2307 shmem_free_inode(inode->i_sb);
1da177e4
LT
2308
2309 dir->i_size -= BOGO_DIRENT_SIZE;
2310 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2311 drop_nlink(inode);
1da177e4
LT
2312 dput(dentry); /* Undo the count from "create" - this does all the work */
2313 return 0;
2314}
2315
2316static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2317{
2318 if (!simple_empty(dentry))
2319 return -ENOTEMPTY;
2320
9a53c3a7
DH
2321 drop_nlink(dentry->d_inode);
2322 drop_nlink(dir);
1da177e4
LT
2323 return shmem_unlink(dir, dentry);
2324}
2325
37456771
MS
2326static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2327{
2328 bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2329 bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2330
2331 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2332 if (old_is_dir) {
2333 drop_nlink(old_dir);
2334 inc_nlink(new_dir);
2335 } else {
2336 drop_nlink(new_dir);
2337 inc_nlink(old_dir);
2338 }
2339 }
2340 old_dir->i_ctime = old_dir->i_mtime =
2341 new_dir->i_ctime = new_dir->i_mtime =
2342 old_dentry->d_inode->i_ctime =
2343 new_dentry->d_inode->i_ctime = CURRENT_TIME;
2344
2345 return 0;
2346}
2347
1da177e4
LT
2348/*
2349 * The VFS layer already does all the dentry stuff for rename,
2350 * we just have to decrement the usage count for the target if
2351 * it exists so that the VFS layer correctly free's it when it
2352 * gets overwritten.
2353 */
3b69ff51 2354static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4
LT
2355{
2356 struct inode *inode = old_dentry->d_inode;
2357 int they_are_dirs = S_ISDIR(inode->i_mode);
2358
37456771 2359 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
3b69ff51
MS
2360 return -EINVAL;
2361
37456771
MS
2362 if (flags & RENAME_EXCHANGE)
2363 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2364
1da177e4
LT
2365 if (!simple_empty(new_dentry))
2366 return -ENOTEMPTY;
2367
2368 if (new_dentry->d_inode) {
2369 (void) shmem_unlink(new_dir, new_dentry);
b928095b
MS
2370 if (they_are_dirs) {
2371 drop_nlink(new_dentry->d_inode);
9a53c3a7 2372 drop_nlink(old_dir);
b928095b 2373 }
1da177e4 2374 } else if (they_are_dirs) {
9a53c3a7 2375 drop_nlink(old_dir);
d8c76e6f 2376 inc_nlink(new_dir);
1da177e4
LT
2377 }
2378
2379 old_dir->i_size -= BOGO_DIRENT_SIZE;
2380 new_dir->i_size += BOGO_DIRENT_SIZE;
2381 old_dir->i_ctime = old_dir->i_mtime =
2382 new_dir->i_ctime = new_dir->i_mtime =
2383 inode->i_ctime = CURRENT_TIME;
2384 return 0;
2385}
2386
2387static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2388{
2389 int error;
2390 int len;
2391 struct inode *inode;
9276aad6 2392 struct page *page;
1da177e4
LT
2393 char *kaddr;
2394 struct shmem_inode_info *info;
2395
2396 len = strlen(symname) + 1;
2397 if (len > PAGE_CACHE_SIZE)
2398 return -ENAMETOOLONG;
2399
454abafe 2400 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2401 if (!inode)
2402 return -ENOSPC;
2403
9d8f13ba 2404 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2405 shmem_initxattrs, NULL);
570bc1c2
SS
2406 if (error) {
2407 if (error != -EOPNOTSUPP) {
2408 iput(inode);
2409 return error;
2410 }
2411 error = 0;
2412 }
2413
1da177e4
LT
2414 info = SHMEM_I(inode);
2415 inode->i_size = len-1;
69f07ec9
HD
2416 if (len <= SHORT_SYMLINK_LEN) {
2417 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2418 if (!info->symlink) {
2419 iput(inode);
2420 return -ENOMEM;
2421 }
2422 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2423 } else {
2424 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2425 if (error) {
2426 iput(inode);
2427 return error;
2428 }
14fcc23f 2429 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2430 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2431 kaddr = kmap_atomic(page);
1da177e4 2432 memcpy(kaddr, symname, len);
9b04c5fe 2433 kunmap_atomic(kaddr);
ec9516fb 2434 SetPageUptodate(page);
1da177e4 2435 set_page_dirty(page);
6746aff7 2436 unlock_page(page);
1da177e4
LT
2437 page_cache_release(page);
2438 }
1da177e4
LT
2439 dir->i_size += BOGO_DIRENT_SIZE;
2440 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2441 d_instantiate(dentry, inode);
2442 dget(dentry);
2443 return 0;
2444}
2445
69f07ec9 2446static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2447{
69f07ec9 2448 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2449 return NULL;
1da177e4
LT
2450}
2451
cc314eef 2452static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2453{
2454 struct page *page = NULL;
41ffe5d5
HD
2455 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2456 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2457 if (page)
2458 unlock_page(page);
cc314eef 2459 return page;
1da177e4
LT
2460}
2461
cc314eef 2462static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2463{
2464 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2465 struct page *page = cookie;
1da177e4
LT
2466 kunmap(page);
2467 mark_page_accessed(page);
2468 page_cache_release(page);
1da177e4
LT
2469 }
2470}
2471
b09e0fa4 2472#ifdef CONFIG_TMPFS_XATTR
46711810 2473/*
b09e0fa4
EP
2474 * Superblocks without xattr inode operations may get some security.* xattr
2475 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2476 * like ACLs, we also need to implement the security.* handlers at
2477 * filesystem level, though.
2478 */
2479
6d9d88d0
JS
2480/*
2481 * Callback for security_inode_init_security() for acquiring xattrs.
2482 */
2483static int shmem_initxattrs(struct inode *inode,
2484 const struct xattr *xattr_array,
2485 void *fs_info)
2486{
2487 struct shmem_inode_info *info = SHMEM_I(inode);
2488 const struct xattr *xattr;
38f38657 2489 struct simple_xattr *new_xattr;
6d9d88d0
JS
2490 size_t len;
2491
2492 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2493 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2494 if (!new_xattr)
2495 return -ENOMEM;
2496
2497 len = strlen(xattr->name) + 1;
2498 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2499 GFP_KERNEL);
2500 if (!new_xattr->name) {
2501 kfree(new_xattr);
2502 return -ENOMEM;
2503 }
2504
2505 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2506 XATTR_SECURITY_PREFIX_LEN);
2507 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2508 xattr->name, len);
2509
38f38657 2510 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2511 }
2512
2513 return 0;
2514}
2515
bb435453 2516static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2517#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2518 &posix_acl_access_xattr_handler,
2519 &posix_acl_default_xattr_handler,
b09e0fa4 2520#endif
39f0247d
AG
2521 NULL
2522};
b09e0fa4
EP
2523
2524static int shmem_xattr_validate(const char *name)
2525{
2526 struct { const char *prefix; size_t len; } arr[] = {
2527 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2528 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2529 };
2530 int i;
2531
2532 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2533 size_t preflen = arr[i].len;
2534 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2535 if (!name[preflen])
2536 return -EINVAL;
2537 return 0;
2538 }
2539 }
2540 return -EOPNOTSUPP;
2541}
2542
2543static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2544 void *buffer, size_t size)
2545{
38f38657 2546 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2547 int err;
2548
2549 /*
2550 * If this is a request for a synthetic attribute in the system.*
2551 * namespace use the generic infrastructure to resolve a handler
2552 * for it via sb->s_xattr.
2553 */
2554 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2555 return generic_getxattr(dentry, name, buffer, size);
2556
2557 err = shmem_xattr_validate(name);
2558 if (err)
2559 return err;
2560
38f38657 2561 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2562}
2563
2564static int shmem_setxattr(struct dentry *dentry, const char *name,
2565 const void *value, size_t size, int flags)
2566{
38f38657 2567 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2568 int err;
2569
2570 /*
2571 * If this is a request for a synthetic attribute in the system.*
2572 * namespace use the generic infrastructure to resolve a handler
2573 * for it via sb->s_xattr.
2574 */
2575 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2576 return generic_setxattr(dentry, name, value, size, flags);
2577
2578 err = shmem_xattr_validate(name);
2579 if (err)
2580 return err;
2581
38f38657 2582 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2583}
2584
2585static int shmem_removexattr(struct dentry *dentry, const char *name)
2586{
38f38657 2587 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2588 int err;
2589
2590 /*
2591 * If this is a request for a synthetic attribute in the system.*
2592 * namespace use the generic infrastructure to resolve a handler
2593 * for it via sb->s_xattr.
2594 */
2595 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2596 return generic_removexattr(dentry, name);
2597
2598 err = shmem_xattr_validate(name);
2599 if (err)
2600 return err;
2601
38f38657 2602 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2603}
2604
2605static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2606{
38f38657
AR
2607 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2608 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2609}
2610#endif /* CONFIG_TMPFS_XATTR */
2611
69f07ec9 2612static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2613 .readlink = generic_readlink,
69f07ec9 2614 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2615#ifdef CONFIG_TMPFS_XATTR
2616 .setxattr = shmem_setxattr,
2617 .getxattr = shmem_getxattr,
2618 .listxattr = shmem_listxattr,
2619 .removexattr = shmem_removexattr,
2620#endif
2621};
2622
2623static const struct inode_operations shmem_symlink_inode_operations = {
2624 .readlink = generic_readlink,
2625 .follow_link = shmem_follow_link,
2626 .put_link = shmem_put_link,
2627#ifdef CONFIG_TMPFS_XATTR
2628 .setxattr = shmem_setxattr,
2629 .getxattr = shmem_getxattr,
2630 .listxattr = shmem_listxattr,
2631 .removexattr = shmem_removexattr,
39f0247d 2632#endif
b09e0fa4 2633};
39f0247d 2634
91828a40
DG
2635static struct dentry *shmem_get_parent(struct dentry *child)
2636{
2637 return ERR_PTR(-ESTALE);
2638}
2639
2640static int shmem_match(struct inode *ino, void *vfh)
2641{
2642 __u32 *fh = vfh;
2643 __u64 inum = fh[2];
2644 inum = (inum << 32) | fh[1];
2645 return ino->i_ino == inum && fh[0] == ino->i_generation;
2646}
2647
480b116c
CH
2648static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2649 struct fid *fid, int fh_len, int fh_type)
91828a40 2650{
91828a40 2651 struct inode *inode;
480b116c 2652 struct dentry *dentry = NULL;
35c2a7f4 2653 u64 inum;
480b116c
CH
2654
2655 if (fh_len < 3)
2656 return NULL;
91828a40 2657
35c2a7f4
HD
2658 inum = fid->raw[2];
2659 inum = (inum << 32) | fid->raw[1];
2660
480b116c
CH
2661 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2662 shmem_match, fid->raw);
91828a40 2663 if (inode) {
480b116c 2664 dentry = d_find_alias(inode);
91828a40
DG
2665 iput(inode);
2666 }
2667
480b116c 2668 return dentry;
91828a40
DG
2669}
2670
b0b0382b
AV
2671static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2672 struct inode *parent)
91828a40 2673{
5fe0c237
AK
2674 if (*len < 3) {
2675 *len = 3;
94e07a75 2676 return FILEID_INVALID;
5fe0c237 2677 }
91828a40 2678
1d3382cb 2679 if (inode_unhashed(inode)) {
91828a40
DG
2680 /* Unfortunately insert_inode_hash is not idempotent,
2681 * so as we hash inodes here rather than at creation
2682 * time, we need a lock to ensure we only try
2683 * to do it once
2684 */
2685 static DEFINE_SPINLOCK(lock);
2686 spin_lock(&lock);
1d3382cb 2687 if (inode_unhashed(inode))
91828a40
DG
2688 __insert_inode_hash(inode,
2689 inode->i_ino + inode->i_generation);
2690 spin_unlock(&lock);
2691 }
2692
2693 fh[0] = inode->i_generation;
2694 fh[1] = inode->i_ino;
2695 fh[2] = ((__u64)inode->i_ino) >> 32;
2696
2697 *len = 3;
2698 return 1;
2699}
2700
39655164 2701static const struct export_operations shmem_export_ops = {
91828a40 2702 .get_parent = shmem_get_parent,
91828a40 2703 .encode_fh = shmem_encode_fh,
480b116c 2704 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2705};
2706
680d794b
AM
2707static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2708 bool remount)
1da177e4
LT
2709{
2710 char *this_char, *value, *rest;
49cd0a5c 2711 struct mempolicy *mpol = NULL;
8751e039
EB
2712 uid_t uid;
2713 gid_t gid;
1da177e4 2714
b00dc3ad
HD
2715 while (options != NULL) {
2716 this_char = options;
2717 for (;;) {
2718 /*
2719 * NUL-terminate this option: unfortunately,
2720 * mount options form a comma-separated list,
2721 * but mpol's nodelist may also contain commas.
2722 */
2723 options = strchr(options, ',');
2724 if (options == NULL)
2725 break;
2726 options++;
2727 if (!isdigit(*options)) {
2728 options[-1] = '\0';
2729 break;
2730 }
2731 }
1da177e4
LT
2732 if (!*this_char)
2733 continue;
2734 if ((value = strchr(this_char,'=')) != NULL) {
2735 *value++ = 0;
2736 } else {
2737 printk(KERN_ERR
2738 "tmpfs: No value for mount option '%s'\n",
2739 this_char);
49cd0a5c 2740 goto error;
1da177e4
LT
2741 }
2742
2743 if (!strcmp(this_char,"size")) {
2744 unsigned long long size;
2745 size = memparse(value,&rest);
2746 if (*rest == '%') {
2747 size <<= PAGE_SHIFT;
2748 size *= totalram_pages;
2749 do_div(size, 100);
2750 rest++;
2751 }
2752 if (*rest)
2753 goto bad_val;
680d794b
AM
2754 sbinfo->max_blocks =
2755 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2756 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2757 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2758 if (*rest)
2759 goto bad_val;
2760 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2761 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2762 if (*rest)
2763 goto bad_val;
2764 } else if (!strcmp(this_char,"mode")) {
680d794b 2765 if (remount)
1da177e4 2766 continue;
680d794b 2767 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2768 if (*rest)
2769 goto bad_val;
2770 } else if (!strcmp(this_char,"uid")) {
680d794b 2771 if (remount)
1da177e4 2772 continue;
8751e039 2773 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2774 if (*rest)
2775 goto bad_val;
8751e039
EB
2776 sbinfo->uid = make_kuid(current_user_ns(), uid);
2777 if (!uid_valid(sbinfo->uid))
2778 goto bad_val;
1da177e4 2779 } else if (!strcmp(this_char,"gid")) {
680d794b 2780 if (remount)
1da177e4 2781 continue;
8751e039 2782 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2783 if (*rest)
2784 goto bad_val;
8751e039
EB
2785 sbinfo->gid = make_kgid(current_user_ns(), gid);
2786 if (!gid_valid(sbinfo->gid))
2787 goto bad_val;
7339ff83 2788 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2789 mpol_put(mpol);
2790 mpol = NULL;
2791 if (mpol_parse_str(value, &mpol))
7339ff83 2792 goto bad_val;
1da177e4
LT
2793 } else {
2794 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2795 this_char);
49cd0a5c 2796 goto error;
1da177e4
LT
2797 }
2798 }
49cd0a5c 2799 sbinfo->mpol = mpol;
1da177e4
LT
2800 return 0;
2801
2802bad_val:
2803 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2804 value, this_char);
49cd0a5c
GT
2805error:
2806 mpol_put(mpol);
1da177e4
LT
2807 return 1;
2808
2809}
2810
2811static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2812{
2813 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2814 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2815 unsigned long inodes;
2816 int error = -EINVAL;
2817
5f00110f 2818 config.mpol = NULL;
680d794b 2819 if (shmem_parse_options(data, &config, true))
0edd73b3 2820 return error;
1da177e4 2821
0edd73b3 2822 spin_lock(&sbinfo->stat_lock);
0edd73b3 2823 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2824 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2825 goto out;
680d794b 2826 if (config.max_inodes < inodes)
0edd73b3
HD
2827 goto out;
2828 /*
54af6042 2829 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2830 * but we must separately disallow unlimited->limited, because
2831 * in that case we have no record of how much is already in use.
2832 */
680d794b 2833 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2834 goto out;
680d794b 2835 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2836 goto out;
2837
2838 error = 0;
680d794b 2839 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2840 sbinfo->max_inodes = config.max_inodes;
2841 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2842
5f00110f
GT
2843 /*
2844 * Preserve previous mempolicy unless mpol remount option was specified.
2845 */
2846 if (config.mpol) {
2847 mpol_put(sbinfo->mpol);
2848 sbinfo->mpol = config.mpol; /* transfers initial ref */
2849 }
0edd73b3
HD
2850out:
2851 spin_unlock(&sbinfo->stat_lock);
2852 return error;
1da177e4 2853}
680d794b 2854
34c80b1d 2855static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2856{
34c80b1d 2857 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2858
2859 if (sbinfo->max_blocks != shmem_default_max_blocks())
2860 seq_printf(seq, ",size=%luk",
2861 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2862 if (sbinfo->max_inodes != shmem_default_max_inodes())
2863 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2864 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2865 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2866 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2867 seq_printf(seq, ",uid=%u",
2868 from_kuid_munged(&init_user_ns, sbinfo->uid));
2869 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2870 seq_printf(seq, ",gid=%u",
2871 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2872 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2873 return 0;
2874}
9183df25
DH
2875
2876#define MFD_NAME_PREFIX "memfd:"
2877#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2878#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2879
2880#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2881
2882SYSCALL_DEFINE2(memfd_create,
2883 const char __user *, uname,
2884 unsigned int, flags)
2885{
2886 struct shmem_inode_info *info;
2887 struct file *file;
2888 int fd, error;
2889 char *name;
2890 long len;
2891
2892 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2893 return -EINVAL;
2894
2895 /* length includes terminating zero */
2896 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2897 if (len <= 0)
2898 return -EFAULT;
2899 if (len > MFD_NAME_MAX_LEN + 1)
2900 return -EINVAL;
2901
2902 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2903 if (!name)
2904 return -ENOMEM;
2905
2906 strcpy(name, MFD_NAME_PREFIX);
2907 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2908 error = -EFAULT;
2909 goto err_name;
2910 }
2911
2912 /* terminating-zero may have changed after strnlen_user() returned */
2913 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2914 error = -EFAULT;
2915 goto err_name;
2916 }
2917
2918 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2919 if (fd < 0) {
2920 error = fd;
2921 goto err_name;
2922 }
2923
2924 file = shmem_file_setup(name, 0, VM_NORESERVE);
2925 if (IS_ERR(file)) {
2926 error = PTR_ERR(file);
2927 goto err_fd;
2928 }
2929 info = SHMEM_I(file_inode(file));
2930 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2931 file->f_flags |= O_RDWR | O_LARGEFILE;
2932 if (flags & MFD_ALLOW_SEALING)
2933 info->seals &= ~F_SEAL_SEAL;
2934
2935 fd_install(fd, file);
2936 kfree(name);
2937 return fd;
2938
2939err_fd:
2940 put_unused_fd(fd);
2941err_name:
2942 kfree(name);
2943 return error;
2944}
2945
680d794b 2946#endif /* CONFIG_TMPFS */
1da177e4
LT
2947
2948static void shmem_put_super(struct super_block *sb)
2949{
602586a8
HD
2950 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2951
2952 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2953 mpol_put(sbinfo->mpol);
602586a8 2954 kfree(sbinfo);
1da177e4
LT
2955 sb->s_fs_info = NULL;
2956}
2957
2b2af54a 2958int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2959{
2960 struct inode *inode;
0edd73b3 2961 struct shmem_sb_info *sbinfo;
680d794b
AM
2962 int err = -ENOMEM;
2963
2964 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2965 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2966 L1_CACHE_BYTES), GFP_KERNEL);
2967 if (!sbinfo)
2968 return -ENOMEM;
2969
680d794b 2970 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2971 sbinfo->uid = current_fsuid();
2972 sbinfo->gid = current_fsgid();
680d794b 2973 sb->s_fs_info = sbinfo;
1da177e4 2974
0edd73b3 2975#ifdef CONFIG_TMPFS
1da177e4
LT
2976 /*
2977 * Per default we only allow half of the physical ram per
2978 * tmpfs instance, limiting inodes to one per page of lowmem;
2979 * but the internal instance is left unlimited.
2980 */
ca4e0519 2981 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
2982 sbinfo->max_blocks = shmem_default_max_blocks();
2983 sbinfo->max_inodes = shmem_default_max_inodes();
2984 if (shmem_parse_options(data, sbinfo, false)) {
2985 err = -EINVAL;
2986 goto failed;
2987 }
ca4e0519
AV
2988 } else {
2989 sb->s_flags |= MS_NOUSER;
1da177e4 2990 }
91828a40 2991 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2992 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2993#else
2994 sb->s_flags |= MS_NOUSER;
2995#endif
2996
0edd73b3 2997 spin_lock_init(&sbinfo->stat_lock);
908c7f19 2998 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 2999 goto failed;
680d794b 3000 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3001
285b2c4f 3002 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3003 sb->s_blocksize = PAGE_CACHE_SIZE;
3004 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3005 sb->s_magic = TMPFS_MAGIC;
3006 sb->s_op = &shmem_ops;
cfd95a9c 3007 sb->s_time_gran = 1;
b09e0fa4 3008#ifdef CONFIG_TMPFS_XATTR
39f0247d 3009 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3010#endif
3011#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3012 sb->s_flags |= MS_POSIXACL;
3013#endif
0edd73b3 3014
454abafe 3015 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3016 if (!inode)
3017 goto failed;
680d794b
AM
3018 inode->i_uid = sbinfo->uid;
3019 inode->i_gid = sbinfo->gid;
318ceed0
AV
3020 sb->s_root = d_make_root(inode);
3021 if (!sb->s_root)
48fde701 3022 goto failed;
1da177e4
LT
3023 return 0;
3024
1da177e4
LT
3025failed:
3026 shmem_put_super(sb);
3027 return err;
3028}
3029
fcc234f8 3030static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3031
3032static struct inode *shmem_alloc_inode(struct super_block *sb)
3033{
41ffe5d5
HD
3034 struct shmem_inode_info *info;
3035 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3036 if (!info)
1da177e4 3037 return NULL;
41ffe5d5 3038 return &info->vfs_inode;
1da177e4
LT
3039}
3040
41ffe5d5 3041static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3042{
3043 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
3044 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3045}
3046
1da177e4
LT
3047static void shmem_destroy_inode(struct inode *inode)
3048{
09208d15 3049 if (S_ISREG(inode->i_mode))
1da177e4 3050 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3051 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3052}
3053
41ffe5d5 3054static void shmem_init_inode(void *foo)
1da177e4 3055{
41ffe5d5
HD
3056 struct shmem_inode_info *info = foo;
3057 inode_init_once(&info->vfs_inode);
1da177e4
LT
3058}
3059
41ffe5d5 3060static int shmem_init_inodecache(void)
1da177e4
LT
3061{
3062 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3063 sizeof(struct shmem_inode_info),
41ffe5d5 3064 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
3065 return 0;
3066}
3067
41ffe5d5 3068static void shmem_destroy_inodecache(void)
1da177e4 3069{
1a1d92c1 3070 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3071}
3072
f5e54d6e 3073static const struct address_space_operations shmem_aops = {
1da177e4 3074 .writepage = shmem_writepage,
76719325 3075 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3076#ifdef CONFIG_TMPFS
800d15a5
NP
3077 .write_begin = shmem_write_begin,
3078 .write_end = shmem_write_end,
1da177e4 3079#endif
1c93923c 3080#ifdef CONFIG_MIGRATION
304dbdb7 3081 .migratepage = migrate_page,
1c93923c 3082#endif
aa261f54 3083 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3084};
3085
15ad7cdc 3086static const struct file_operations shmem_file_operations = {
1da177e4
LT
3087 .mmap = shmem_mmap,
3088#ifdef CONFIG_TMPFS
220f2ac9 3089 .llseek = shmem_file_llseek,
2ba5bbed 3090 .read = new_sync_read,
8174202b 3091 .write = new_sync_write,
2ba5bbed 3092 .read_iter = shmem_file_read_iter,
8174202b 3093 .write_iter = generic_file_write_iter,
1b061d92 3094 .fsync = noop_fsync,
708e3508 3095 .splice_read = shmem_file_splice_read,
f6cb85d0 3096 .splice_write = iter_file_splice_write,
83e4fa9c 3097 .fallocate = shmem_fallocate,
1da177e4
LT
3098#endif
3099};
3100
92e1d5be 3101static const struct inode_operations shmem_inode_operations = {
94c1e62d 3102 .setattr = shmem_setattr,
b09e0fa4
EP
3103#ifdef CONFIG_TMPFS_XATTR
3104 .setxattr = shmem_setxattr,
3105 .getxattr = shmem_getxattr,
3106 .listxattr = shmem_listxattr,
3107 .removexattr = shmem_removexattr,
feda821e 3108 .set_acl = simple_set_acl,
b09e0fa4 3109#endif
1da177e4
LT
3110};
3111
92e1d5be 3112static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3113#ifdef CONFIG_TMPFS
3114 .create = shmem_create,
3115 .lookup = simple_lookup,
3116 .link = shmem_link,
3117 .unlink = shmem_unlink,
3118 .symlink = shmem_symlink,
3119 .mkdir = shmem_mkdir,
3120 .rmdir = shmem_rmdir,
3121 .mknod = shmem_mknod,
3b69ff51 3122 .rename2 = shmem_rename2,
60545d0d 3123 .tmpfile = shmem_tmpfile,
1da177e4 3124#endif
b09e0fa4
EP
3125#ifdef CONFIG_TMPFS_XATTR
3126 .setxattr = shmem_setxattr,
3127 .getxattr = shmem_getxattr,
3128 .listxattr = shmem_listxattr,
3129 .removexattr = shmem_removexattr,
3130#endif
39f0247d 3131#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3132 .setattr = shmem_setattr,
feda821e 3133 .set_acl = simple_set_acl,
39f0247d
AG
3134#endif
3135};
3136
92e1d5be 3137static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
3138#ifdef CONFIG_TMPFS_XATTR
3139 .setxattr = shmem_setxattr,
3140 .getxattr = shmem_getxattr,
3141 .listxattr = shmem_listxattr,
3142 .removexattr = shmem_removexattr,
3143#endif
39f0247d 3144#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3145 .setattr = shmem_setattr,
feda821e 3146 .set_acl = simple_set_acl,
39f0247d 3147#endif
1da177e4
LT
3148};
3149
759b9775 3150static const struct super_operations shmem_ops = {
1da177e4
LT
3151 .alloc_inode = shmem_alloc_inode,
3152 .destroy_inode = shmem_destroy_inode,
3153#ifdef CONFIG_TMPFS
3154 .statfs = shmem_statfs,
3155 .remount_fs = shmem_remount_fs,
680d794b 3156 .show_options = shmem_show_options,
1da177e4 3157#endif
1f895f75 3158 .evict_inode = shmem_evict_inode,
1da177e4
LT
3159 .drop_inode = generic_delete_inode,
3160 .put_super = shmem_put_super,
3161};
3162
f0f37e2f 3163static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3164 .fault = shmem_fault,
d7c17551 3165 .map_pages = filemap_map_pages,
1da177e4
LT
3166#ifdef CONFIG_NUMA
3167 .set_policy = shmem_set_policy,
3168 .get_policy = shmem_get_policy,
3169#endif
0b173bc4 3170 .remap_pages = generic_file_remap_pages,
1da177e4
LT
3171};
3172
3c26ff6e
AV
3173static struct dentry *shmem_mount(struct file_system_type *fs_type,
3174 int flags, const char *dev_name, void *data)
1da177e4 3175{
3c26ff6e 3176 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3177}
3178
41ffe5d5 3179static struct file_system_type shmem_fs_type = {
1da177e4
LT
3180 .owner = THIS_MODULE,
3181 .name = "tmpfs",
3c26ff6e 3182 .mount = shmem_mount,
1da177e4 3183 .kill_sb = kill_litter_super,
2b8576cb 3184 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3185};
1da177e4 3186
41ffe5d5 3187int __init shmem_init(void)
1da177e4
LT
3188{
3189 int error;
3190
16203a7a
RL
3191 /* If rootfs called this, don't re-init */
3192 if (shmem_inode_cachep)
3193 return 0;
3194
e0bf68dd
PZ
3195 error = bdi_init(&shmem_backing_dev_info);
3196 if (error)
3197 goto out4;
3198
41ffe5d5 3199 error = shmem_init_inodecache();
1da177e4
LT
3200 if (error)
3201 goto out3;
3202
41ffe5d5 3203 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
3204 if (error) {
3205 printk(KERN_ERR "Could not register tmpfs\n");
3206 goto out2;
3207 }
95dc112a 3208
ca4e0519 3209 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3210 if (IS_ERR(shm_mnt)) {
3211 error = PTR_ERR(shm_mnt);
3212 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3213 goto out1;
3214 }
3215 return 0;
3216
3217out1:
41ffe5d5 3218 unregister_filesystem(&shmem_fs_type);
1da177e4 3219out2:
41ffe5d5 3220 shmem_destroy_inodecache();
1da177e4 3221out3:
e0bf68dd
PZ
3222 bdi_destroy(&shmem_backing_dev_info);
3223out4:
1da177e4
LT
3224 shm_mnt = ERR_PTR(error);
3225 return error;
3226}
853ac43a
MM
3227
3228#else /* !CONFIG_SHMEM */
3229
3230/*
3231 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3232 *
3233 * This is intended for small system where the benefits of the full
3234 * shmem code (swap-backed and resource-limited) are outweighed by
3235 * their complexity. On systems without swap this code should be
3236 * effectively equivalent, but much lighter weight.
3237 */
3238
41ffe5d5 3239static struct file_system_type shmem_fs_type = {
853ac43a 3240 .name = "tmpfs",
3c26ff6e 3241 .mount = ramfs_mount,
853ac43a 3242 .kill_sb = kill_litter_super,
2b8576cb 3243 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3244};
3245
41ffe5d5 3246int __init shmem_init(void)
853ac43a 3247{
41ffe5d5 3248 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3249
41ffe5d5 3250 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3251 BUG_ON(IS_ERR(shm_mnt));
3252
3253 return 0;
3254}
3255
41ffe5d5 3256int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3257{
3258 return 0;
3259}
3260
3f96b79a
HD
3261int shmem_lock(struct file *file, int lock, struct user_struct *user)
3262{
3263 return 0;
3264}
3265
24513264
HD
3266void shmem_unlock_mapping(struct address_space *mapping)
3267{
3268}
3269
41ffe5d5 3270void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3271{
41ffe5d5 3272 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3273}
3274EXPORT_SYMBOL_GPL(shmem_truncate_range);
3275
0b0a0806
HD
3276#define shmem_vm_ops generic_file_vm_ops
3277#define shmem_file_operations ramfs_file_operations
454abafe 3278#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3279#define shmem_acct_size(flags, size) 0
3280#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3281
3282#endif /* CONFIG_SHMEM */
3283
3284/* common code */
1da177e4 3285
3451538a 3286static struct dentry_operations anon_ops = {
118b2302 3287 .d_dname = simple_dname
3451538a
AV
3288};
3289
c7277090
EP
3290static struct file *__shmem_file_setup(const char *name, loff_t size,
3291 unsigned long flags, unsigned int i_flags)
1da177e4 3292{
6b4d0b27 3293 struct file *res;
1da177e4 3294 struct inode *inode;
2c48b9c4 3295 struct path path;
3451538a 3296 struct super_block *sb;
1da177e4
LT
3297 struct qstr this;
3298
3299 if (IS_ERR(shm_mnt))
6b4d0b27 3300 return ERR_CAST(shm_mnt);
1da177e4 3301
285b2c4f 3302 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3303 return ERR_PTR(-EINVAL);
3304
3305 if (shmem_acct_size(flags, size))
3306 return ERR_PTR(-ENOMEM);
3307
6b4d0b27 3308 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3309 this.name = name;
3310 this.len = strlen(name);
3311 this.hash = 0; /* will go */
3451538a 3312 sb = shm_mnt->mnt_sb;
66ee4b88 3313 path.mnt = mntget(shm_mnt);
3451538a 3314 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3315 if (!path.dentry)
1da177e4 3316 goto put_memory;
3451538a 3317 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3318
6b4d0b27 3319 res = ERR_PTR(-ENOSPC);
3451538a 3320 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3321 if (!inode)
66ee4b88 3322 goto put_memory;
1da177e4 3323
c7277090 3324 inode->i_flags |= i_flags;
2c48b9c4 3325 d_instantiate(path.dentry, inode);
1da177e4 3326 inode->i_size = size;
6d6b77f1 3327 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3328 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3329 if (IS_ERR(res))
66ee4b88 3330 goto put_path;
4b42af81 3331
6b4d0b27 3332 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3333 &shmem_file_operations);
6b4d0b27 3334 if (IS_ERR(res))
66ee4b88 3335 goto put_path;
4b42af81 3336
6b4d0b27 3337 return res;
1da177e4 3338
1da177e4
LT
3339put_memory:
3340 shmem_unacct_size(flags, size);
66ee4b88
KK
3341put_path:
3342 path_put(&path);
6b4d0b27 3343 return res;
1da177e4 3344}
c7277090
EP
3345
3346/**
3347 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3348 * kernel internal. There will be NO LSM permission checks against the
3349 * underlying inode. So users of this interface must do LSM checks at a
3350 * higher layer. The one user is the big_key implementation. LSM checks
3351 * are provided at the key level rather than the inode level.
3352 * @name: name for dentry (to be seen in /proc/<pid>/maps
3353 * @size: size to be set for the file
3354 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3355 */
3356struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3357{
3358 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3359}
3360
3361/**
3362 * shmem_file_setup - get an unlinked file living in tmpfs
3363 * @name: name for dentry (to be seen in /proc/<pid>/maps
3364 * @size: size to be set for the file
3365 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3366 */
3367struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3368{
3369 return __shmem_file_setup(name, size, flags, 0);
3370}
395e0ddc 3371EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3372
46711810 3373/**
1da177e4 3374 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3375 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3376 */
3377int shmem_zero_setup(struct vm_area_struct *vma)
3378{
3379 struct file *file;
3380 loff_t size = vma->vm_end - vma->vm_start;
3381
3382 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3383 if (IS_ERR(file))
3384 return PTR_ERR(file);
3385
3386 if (vma->vm_file)
3387 fput(vma->vm_file);
3388 vma->vm_file = file;
3389 vma->vm_ops = &shmem_vm_ops;
3390 return 0;
3391}
d9d90e5e
HD
3392
3393/**
3394 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3395 * @mapping: the page's address_space
3396 * @index: the page index
3397 * @gfp: the page allocator flags to use if allocating
3398 *
3399 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3400 * with any new page allocations done using the specified allocation flags.
3401 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3402 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3403 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3404 *
68da9f05
HD
3405 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3406 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3407 */
3408struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3409 pgoff_t index, gfp_t gfp)
3410{
68da9f05
HD
3411#ifdef CONFIG_SHMEM
3412 struct inode *inode = mapping->host;
9276aad6 3413 struct page *page;
68da9f05
HD
3414 int error;
3415
3416 BUG_ON(mapping->a_ops != &shmem_aops);
3417 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3418 if (error)
3419 page = ERR_PTR(error);
3420 else
3421 unlock_page(page);
3422 return page;
3423#else
3424 /*
3425 * The tiny !SHMEM case uses ramfs without swap
3426 */
d9d90e5e 3427 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3428#endif
d9d90e5e
HD
3429}
3430EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);