]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
shmem: fix negative rss in memcg memory.stat
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
caefba17 28#include <linux/pagemap.h>
853ac43a
MM
29#include <linux/file.h>
30#include <linux/mm.h>
b95f1b31 31#include <linux/export.h>
853ac43a
MM
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
1da177e4
LT
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
39f0247d 43#include <linux/xattr.h>
a5694255 44#include <linux/exportfs.h>
1c7c474c 45#include <linux/posix_acl.h>
39f0247d 46#include <linux/generic_acl.h>
1da177e4 47#include <linux/mman.h>
1da177e4
LT
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
1da177e4 52#include <linux/writeback.h>
1da177e4 53#include <linux/blkdev.h>
bda97eab 54#include <linux/pagevec.h>
41ffe5d5 55#include <linux/percpu_counter.h>
83e4fa9c 56#include <linux/falloc.h>
708e3508 57#include <linux/splice.h>
1da177e4
LT
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
b00dc3ad 62#include <linux/ctype.h>
304dbdb7 63#include <linux/migrate.h>
c1f60a5a 64#include <linux/highmem.h>
680d794b 65#include <linux/seq_file.h>
92562927 66#include <linux/magic.h>
304dbdb7 67
1da177e4 68#include <asm/uaccess.h>
1da177e4
LT
69#include <asm/pgtable.h>
70
caefba17 71#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
72#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
1da177e4
LT
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
69f07ec9
HD
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
b09e0fa4
EP
80struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85};
86
1aac1400
HD
87/*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97};
98
285b2c4f 99/* Flag allocation requirements to shmem_getpage */
1da177e4 100enum sgp_type {
1da177e4
LT
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b
AM
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128{
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131}
1da177e4 132
1da177e4
LT
133static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134{
135 return sb->s_fs_info;
136}
137
138/*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144static inline int shmem_acct_size(unsigned long flags, loff_t size)
145{
0b0a0806 146 return (flags & VM_NORESERVE) ?
191c5424 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
148}
149
150static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151{
0b0a0806 152 if (!(flags & VM_NORESERVE))
1da177e4
LT
153 vm_unacct_memory(VM_ACCT(size));
154}
155
156/*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162static inline int shmem_acct_block(unsigned long flags)
163{
0b0a0806 164 return (flags & VM_NORESERVE) ?
191c5424 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
166}
167
168static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169{
0b0a0806 170 if (flags & VM_NORESERVE)
1da177e4
LT
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172}
173
759b9775 174static const struct super_operations shmem_ops;
f5e54d6e 175static const struct address_space_operations shmem_aops;
15ad7cdc 176static const struct file_operations shmem_file_operations;
92e1d5be
AV
177static const struct inode_operations shmem_inode_operations;
178static const struct inode_operations shmem_dir_inode_operations;
179static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 180static const struct vm_operations_struct shmem_vm_ops;
1da177e4 181
6c231b7b 182static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 183 .ra_pages = 0, /* No readahead */
4f98a2fe 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
185};
186
187static LIST_HEAD(shmem_swaplist);
cb5f7b9a 188static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 189
5b04c689
PE
190static int shmem_reserve_inode(struct super_block *sb)
191{
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203}
204
205static void shmem_free_inode(struct super_block *sb)
206{
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213}
214
46711810 215/**
41ffe5d5 216 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227static void shmem_recalc_inode(struct inode *inode)
228{
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
54af6042
HD
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 237 info->alloced -= freed;
54af6042 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 239 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
240 }
241}
242
7a5d0fbb
HD
243/*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248{
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264}
265
d1899228
HD
266/*
267 * Sometimes, before we decide whether to proceed or to fail, we must check
268 * that an entry was not already brought back from swap by a racing thread.
269 *
270 * Checking page is not enough: by the time a SwapCache page is locked, it
271 * might be reused, and again be SwapCache, using the same swap as before.
272 */
273static bool shmem_confirm_swap(struct address_space *mapping,
274 pgoff_t index, swp_entry_t swap)
275{
276 void *item;
277
278 rcu_read_lock();
279 item = radix_tree_lookup(&mapping->page_tree, index);
280 rcu_read_unlock();
281 return item == swp_to_radix_entry(swap);
282}
283
46f65ec1
HD
284/*
285 * Like add_to_page_cache_locked, but error if expected item has gone.
286 */
287static int shmem_add_to_page_cache(struct page *page,
288 struct address_space *mapping,
289 pgoff_t index, gfp_t gfp, void *expected)
290{
aa3b1895 291 int error = 0;
46f65ec1
HD
292
293 VM_BUG_ON(!PageLocked(page));
294 VM_BUG_ON(!PageSwapBacked(page));
295
46f65ec1
HD
296 if (!expected)
297 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
298 if (!error) {
299 page_cache_get(page);
300 page->mapping = mapping;
301 page->index = index;
302
303 spin_lock_irq(&mapping->tree_lock);
304 if (!expected)
305 error = radix_tree_insert(&mapping->page_tree,
306 index, page);
307 else
308 error = shmem_radix_tree_replace(mapping, index,
309 expected, page);
310 if (!error) {
311 mapping->nrpages++;
312 __inc_zone_page_state(page, NR_FILE_PAGES);
313 __inc_zone_page_state(page, NR_SHMEM);
314 spin_unlock_irq(&mapping->tree_lock);
315 } else {
316 page->mapping = NULL;
317 spin_unlock_irq(&mapping->tree_lock);
318 page_cache_release(page);
319 }
320 if (!expected)
321 radix_tree_preload_end();
322 }
323 if (error)
324 mem_cgroup_uncharge_cache_page(page);
46f65ec1
HD
325 return error;
326}
327
6922c0c7
HD
328/*
329 * Like delete_from_page_cache, but substitutes swap for page.
330 */
331static void shmem_delete_from_page_cache(struct page *page, void *radswap)
332{
333 struct address_space *mapping = page->mapping;
334 int error;
335
336 spin_lock_irq(&mapping->tree_lock);
337 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
338 page->mapping = NULL;
339 mapping->nrpages--;
340 __dec_zone_page_state(page, NR_FILE_PAGES);
341 __dec_zone_page_state(page, NR_SHMEM);
342 spin_unlock_irq(&mapping->tree_lock);
343 page_cache_release(page);
344 BUG_ON(error);
345}
346
7a5d0fbb
HD
347/*
348 * Like find_get_pages, but collecting swap entries as well as pages.
349 */
350static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
351 pgoff_t start, unsigned int nr_pages,
352 struct page **pages, pgoff_t *indices)
353{
354 unsigned int i;
355 unsigned int ret;
356 unsigned int nr_found;
357
358 rcu_read_lock();
359restart:
360 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
361 (void ***)pages, indices, start, nr_pages);
362 ret = 0;
363 for (i = 0; i < nr_found; i++) {
364 struct page *page;
365repeat:
366 page = radix_tree_deref_slot((void **)pages[i]);
367 if (unlikely(!page))
368 continue;
369 if (radix_tree_exception(page)) {
8079b1c8
HD
370 if (radix_tree_deref_retry(page))
371 goto restart;
372 /*
373 * Otherwise, we must be storing a swap entry
374 * here as an exceptional entry: so return it
375 * without attempting to raise page count.
376 */
377 goto export;
7a5d0fbb
HD
378 }
379 if (!page_cache_get_speculative(page))
380 goto repeat;
381
382 /* Has the page moved? */
383 if (unlikely(page != *((void **)pages[i]))) {
384 page_cache_release(page);
385 goto repeat;
386 }
387export:
388 indices[ret] = indices[i];
389 pages[ret] = page;
390 ret++;
391 }
392 if (unlikely(!ret && nr_found))
393 goto restart;
394 rcu_read_unlock();
395 return ret;
396}
397
398/*
399 * Remove swap entry from radix tree, free the swap and its page cache.
400 */
401static int shmem_free_swap(struct address_space *mapping,
402 pgoff_t index, void *radswap)
403{
404 int error;
405
406 spin_lock_irq(&mapping->tree_lock);
407 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
408 spin_unlock_irq(&mapping->tree_lock);
409 if (!error)
410 free_swap_and_cache(radix_to_swp_entry(radswap));
411 return error;
412}
413
414/*
415 * Pagevec may contain swap entries, so shuffle up pages before releasing.
416 */
24513264 417static void shmem_deswap_pagevec(struct pagevec *pvec)
7a5d0fbb
HD
418{
419 int i, j;
420
421 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
422 struct page *page = pvec->pages[i];
423 if (!radix_tree_exceptional_entry(page))
424 pvec->pages[j++] = page;
425 }
426 pvec->nr = j;
24513264
HD
427}
428
429/*
430 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
431 */
432void shmem_unlock_mapping(struct address_space *mapping)
433{
434 struct pagevec pvec;
435 pgoff_t indices[PAGEVEC_SIZE];
436 pgoff_t index = 0;
437
438 pagevec_init(&pvec, 0);
439 /*
440 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
441 */
442 while (!mapping_unevictable(mapping)) {
443 /*
444 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
445 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
446 */
447 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
448 PAGEVEC_SIZE, pvec.pages, indices);
449 if (!pvec.nr)
450 break;
451 index = indices[pvec.nr - 1] + 1;
452 shmem_deswap_pagevec(&pvec);
453 check_move_unevictable_pages(pvec.pages, pvec.nr);
454 pagevec_release(&pvec);
455 cond_resched();
456 }
7a5d0fbb
HD
457}
458
459/*
460 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 461 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 462 */
1635f6a7
HD
463static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
464 bool unfalloc)
1da177e4 465{
285b2c4f 466 struct address_space *mapping = inode->i_mapping;
1da177e4 467 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 468 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
469 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
470 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
471 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 472 struct pagevec pvec;
7a5d0fbb
HD
473 pgoff_t indices[PAGEVEC_SIZE];
474 long nr_swaps_freed = 0;
285b2c4f 475 pgoff_t index;
bda97eab
HD
476 int i;
477
83e4fa9c
HD
478 if (lend == -1)
479 end = -1; /* unsigned, so actually very big */
bda97eab
HD
480
481 pagevec_init(&pvec, 0);
482 index = start;
83e4fa9c 483 while (index < end) {
7a5d0fbb 484 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 485 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
486 pvec.pages, indices);
487 if (!pvec.nr)
488 break;
bda97eab
HD
489 mem_cgroup_uncharge_start();
490 for (i = 0; i < pagevec_count(&pvec); i++) {
491 struct page *page = pvec.pages[i];
492
7a5d0fbb 493 index = indices[i];
83e4fa9c 494 if (index >= end)
bda97eab
HD
495 break;
496
7a5d0fbb 497 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
498 if (unfalloc)
499 continue;
7a5d0fbb
HD
500 nr_swaps_freed += !shmem_free_swap(mapping,
501 index, page);
bda97eab 502 continue;
7a5d0fbb
HD
503 }
504
505 if (!trylock_page(page))
bda97eab 506 continue;
1635f6a7
HD
507 if (!unfalloc || !PageUptodate(page)) {
508 if (page->mapping == mapping) {
509 VM_BUG_ON(PageWriteback(page));
510 truncate_inode_page(mapping, page);
511 }
bda97eab 512 }
bda97eab
HD
513 unlock_page(page);
514 }
24513264
HD
515 shmem_deswap_pagevec(&pvec);
516 pagevec_release(&pvec);
bda97eab
HD
517 mem_cgroup_uncharge_end();
518 cond_resched();
519 index++;
520 }
1da177e4 521
83e4fa9c 522 if (partial_start) {
bda97eab
HD
523 struct page *page = NULL;
524 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
525 if (page) {
83e4fa9c
HD
526 unsigned int top = PAGE_CACHE_SIZE;
527 if (start > end) {
528 top = partial_end;
529 partial_end = 0;
530 }
531 zero_user_segment(page, partial_start, top);
532 set_page_dirty(page);
533 unlock_page(page);
534 page_cache_release(page);
535 }
536 }
537 if (partial_end) {
538 struct page *page = NULL;
539 shmem_getpage(inode, end, &page, SGP_READ, NULL);
540 if (page) {
541 zero_user_segment(page, 0, partial_end);
bda97eab
HD
542 set_page_dirty(page);
543 unlock_page(page);
544 page_cache_release(page);
545 }
546 }
83e4fa9c
HD
547 if (start >= end)
548 return;
bda97eab
HD
549
550 index = start;
551 for ( ; ; ) {
552 cond_resched();
7a5d0fbb 553 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 554 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
555 pvec.pages, indices);
556 if (!pvec.nr) {
1635f6a7 557 if (index == start || unfalloc)
bda97eab
HD
558 break;
559 index = start;
560 continue;
561 }
1635f6a7 562 if ((index == start || unfalloc) && indices[0] >= end) {
24513264
HD
563 shmem_deswap_pagevec(&pvec);
564 pagevec_release(&pvec);
bda97eab
HD
565 break;
566 }
567 mem_cgroup_uncharge_start();
568 for (i = 0; i < pagevec_count(&pvec); i++) {
569 struct page *page = pvec.pages[i];
570
7a5d0fbb 571 index = indices[i];
83e4fa9c 572 if (index >= end)
bda97eab
HD
573 break;
574
7a5d0fbb 575 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
576 if (unfalloc)
577 continue;
7a5d0fbb
HD
578 nr_swaps_freed += !shmem_free_swap(mapping,
579 index, page);
580 continue;
581 }
582
bda97eab 583 lock_page(page);
1635f6a7
HD
584 if (!unfalloc || !PageUptodate(page)) {
585 if (page->mapping == mapping) {
586 VM_BUG_ON(PageWriteback(page));
587 truncate_inode_page(mapping, page);
588 }
7a5d0fbb 589 }
bda97eab
HD
590 unlock_page(page);
591 }
24513264
HD
592 shmem_deswap_pagevec(&pvec);
593 pagevec_release(&pvec);
bda97eab
HD
594 mem_cgroup_uncharge_end();
595 index++;
596 }
94c1e62d 597
1da177e4 598 spin_lock(&info->lock);
7a5d0fbb 599 info->swapped -= nr_swaps_freed;
1da177e4
LT
600 shmem_recalc_inode(inode);
601 spin_unlock(&info->lock);
1635f6a7 602}
1da177e4 603
1635f6a7
HD
604void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
605{
606 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 607 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 608}
94c1e62d 609EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 610
94c1e62d 611static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
612{
613 struct inode *inode = dentry->d_inode;
1da177e4
LT
614 int error;
615
db78b877
CH
616 error = inode_change_ok(inode, attr);
617 if (error)
618 return error;
619
94c1e62d
HD
620 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
621 loff_t oldsize = inode->i_size;
622 loff_t newsize = attr->ia_size;
3889e6e7 623
94c1e62d
HD
624 if (newsize != oldsize) {
625 i_size_write(inode, newsize);
626 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
627 }
628 if (newsize < oldsize) {
629 loff_t holebegin = round_up(newsize, PAGE_SIZE);
630 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
631 shmem_truncate_range(inode, newsize, (loff_t)-1);
632 /* unmap again to remove racily COWed private pages */
633 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
634 }
1da177e4
LT
635 }
636
db78b877 637 setattr_copy(inode, attr);
39f0247d 638#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 639 if (attr->ia_valid & ATTR_MODE)
1c7c474c 640 error = generic_acl_chmod(inode);
39f0247d 641#endif
1da177e4
LT
642 return error;
643}
644
1f895f75 645static void shmem_evict_inode(struct inode *inode)
1da177e4 646{
1da177e4 647 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 648 struct shmem_xattr *xattr, *nxattr;
1da177e4 649
3889e6e7 650 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
651 shmem_unacct_size(info->flags, inode->i_size);
652 inode->i_size = 0;
3889e6e7 653 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 654 if (!list_empty(&info->swaplist)) {
cb5f7b9a 655 mutex_lock(&shmem_swaplist_mutex);
1da177e4 656 list_del_init(&info->swaplist);
cb5f7b9a 657 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 658 }
69f07ec9
HD
659 } else
660 kfree(info->symlink);
b09e0fa4
EP
661
662 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
663 kfree(xattr->name);
664 kfree(xattr);
665 }
0edd73b3 666 BUG_ON(inode->i_blocks);
5b04c689 667 shmem_free_inode(inode->i_sb);
dbd5768f 668 clear_inode(inode);
1da177e4
LT
669}
670
46f65ec1
HD
671/*
672 * If swap found in inode, free it and move page from swapcache to filecache.
673 */
41ffe5d5 674static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 675 swp_entry_t swap, struct page **pagep)
1da177e4 676{
285b2c4f 677 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 678 void *radswap;
41ffe5d5 679 pgoff_t index;
bde05d1c
HD
680 gfp_t gfp;
681 int error = 0;
1da177e4 682
46f65ec1 683 radswap = swp_to_radix_entry(swap);
e504f3fd 684 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 685 if (index == -1)
285b2c4f 686 return 0;
2e0e26c7 687
1b1b32f2
HD
688 /*
689 * Move _head_ to start search for next from here.
1f895f75 690 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 691 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 692 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
693 */
694 if (shmem_swaplist.next != &info->swaplist)
695 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 696
bde05d1c
HD
697 gfp = mapping_gfp_mask(mapping);
698 if (shmem_should_replace_page(*pagep, gfp)) {
699 mutex_unlock(&shmem_swaplist_mutex);
700 error = shmem_replace_page(pagep, gfp, info, index);
701 mutex_lock(&shmem_swaplist_mutex);
702 /*
703 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
704 * allocation, but the inode might have been freed while we
705 * dropped it: although a racing shmem_evict_inode() cannot
706 * complete without emptying the radix_tree, our page lock
707 * on this swapcache page is not enough to prevent that -
708 * free_swap_and_cache() of our swap entry will only
709 * trylock_page(), removing swap from radix_tree whatever.
710 *
711 * We must not proceed to shmem_add_to_page_cache() if the
712 * inode has been freed, but of course we cannot rely on
713 * inode or mapping or info to check that. However, we can
714 * safely check if our swap entry is still in use (and here
715 * it can't have got reused for another page): if it's still
716 * in use, then the inode cannot have been freed yet, and we
717 * can safely proceed (if it's no longer in use, that tells
718 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
719 */
720 if (!page_swapcount(*pagep))
721 error = -ENOENT;
722 }
723
d13d1443 724 /*
778dd893
HD
725 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
726 * but also to hold up shmem_evict_inode(): so inode cannot be freed
727 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 728 */
bde05d1c
HD
729 if (!error)
730 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 731 GFP_NOWAIT, radswap);
48f170fb 732 if (error != -ENOMEM) {
46f65ec1
HD
733 /*
734 * Truncation and eviction use free_swap_and_cache(), which
735 * only does trylock page: if we raced, best clean up here.
736 */
bde05d1c
HD
737 delete_from_swap_cache(*pagep);
738 set_page_dirty(*pagep);
46f65ec1
HD
739 if (!error) {
740 spin_lock(&info->lock);
741 info->swapped--;
742 spin_unlock(&info->lock);
743 swap_free(swap);
744 }
2e0e26c7 745 error = 1; /* not an error, but entry was found */
1da177e4 746 }
2e0e26c7 747 return error;
1da177e4
LT
748}
749
750/*
46f65ec1 751 * Search through swapped inodes to find and replace swap by page.
1da177e4 752 */
41ffe5d5 753int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 754{
41ffe5d5 755 struct list_head *this, *next;
1da177e4
LT
756 struct shmem_inode_info *info;
757 int found = 0;
bde05d1c
HD
758 int error = 0;
759
760 /*
761 * There's a faint possibility that swap page was replaced before
0142ef6c 762 * caller locked it: caller will come back later with the right page.
bde05d1c 763 */
0142ef6c 764 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 765 goto out;
778dd893
HD
766
767 /*
768 * Charge page using GFP_KERNEL while we can wait, before taking
769 * the shmem_swaplist_mutex which might hold up shmem_writepage().
770 * Charged back to the user (not to caller) when swap account is used.
778dd893
HD
771 */
772 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
773 if (error)
774 goto out;
46f65ec1 775 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 776
cb5f7b9a 777 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
778 list_for_each_safe(this, next, &shmem_swaplist) {
779 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 780 if (info->swapped)
bde05d1c 781 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
782 else
783 list_del_init(&info->swaplist);
cb5f7b9a 784 cond_resched();
2e0e26c7 785 if (found)
778dd893 786 break;
1da177e4 787 }
cb5f7b9a 788 mutex_unlock(&shmem_swaplist_mutex);
778dd893 789
778dd893
HD
790 if (found < 0)
791 error = found;
792out:
aaa46865
HD
793 unlock_page(page);
794 page_cache_release(page);
778dd893 795 return error;
1da177e4
LT
796}
797
798/*
799 * Move the page from the page cache to the swap cache.
800 */
801static int shmem_writepage(struct page *page, struct writeback_control *wbc)
802{
803 struct shmem_inode_info *info;
1da177e4 804 struct address_space *mapping;
1da177e4 805 struct inode *inode;
6922c0c7
HD
806 swp_entry_t swap;
807 pgoff_t index;
1da177e4
LT
808
809 BUG_ON(!PageLocked(page));
1da177e4
LT
810 mapping = page->mapping;
811 index = page->index;
812 inode = mapping->host;
813 info = SHMEM_I(inode);
814 if (info->flags & VM_LOCKED)
815 goto redirty;
d9fe526a 816 if (!total_swap_pages)
1da177e4
LT
817 goto redirty;
818
d9fe526a
HD
819 /*
820 * shmem_backing_dev_info's capabilities prevent regular writeback or
821 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 822 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 823 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 824 * and not for the writeback threads or sync.
d9fe526a 825 */
48f170fb
HD
826 if (!wbc->for_reclaim) {
827 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
828 goto redirty;
829 }
1635f6a7
HD
830
831 /*
832 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
833 * value into swapfile.c, the only way we can correctly account for a
834 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
835 *
836 * That's okay for a page already fallocated earlier, but if we have
837 * not yet completed the fallocation, then (a) we want to keep track
838 * of this page in case we have to undo it, and (b) it may not be a
839 * good idea to continue anyway, once we're pushing into swap. So
840 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
841 */
842 if (!PageUptodate(page)) {
1aac1400
HD
843 if (inode->i_private) {
844 struct shmem_falloc *shmem_falloc;
845 spin_lock(&inode->i_lock);
846 shmem_falloc = inode->i_private;
847 if (shmem_falloc &&
848 index >= shmem_falloc->start &&
849 index < shmem_falloc->next)
850 shmem_falloc->nr_unswapped++;
851 else
852 shmem_falloc = NULL;
853 spin_unlock(&inode->i_lock);
854 if (shmem_falloc)
855 goto redirty;
856 }
1635f6a7
HD
857 clear_highpage(page);
858 flush_dcache_page(page);
859 SetPageUptodate(page);
860 }
861
48f170fb
HD
862 swap = get_swap_page();
863 if (!swap.val)
864 goto redirty;
d9fe526a 865
b1dea800
HD
866 /*
867 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
868 * if it's not already there. Do it now before the page is
869 * moved to swap cache, when its pagelock no longer protects
b1dea800 870 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
871 * we've incremented swapped, because shmem_unuse_inode() will
872 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 873 */
48f170fb
HD
874 mutex_lock(&shmem_swaplist_mutex);
875 if (list_empty(&info->swaplist))
876 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 877
48f170fb 878 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 879 swap_shmem_alloc(swap);
6922c0c7
HD
880 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
881
882 spin_lock(&info->lock);
883 info->swapped++;
884 shmem_recalc_inode(inode);
826267cf 885 spin_unlock(&info->lock);
6922c0c7
HD
886
887 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 888 BUG_ON(page_mapped(page));
9fab5619 889 swap_writepage(page, wbc);
1da177e4
LT
890 return 0;
891 }
892
6922c0c7 893 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 894 swapcache_free(swap, NULL);
1da177e4
LT
895redirty:
896 set_page_dirty(page);
d9fe526a
HD
897 if (wbc->for_reclaim)
898 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
899 unlock_page(page);
900 return 0;
1da177e4
LT
901}
902
903#ifdef CONFIG_NUMA
680d794b 904#ifdef CONFIG_TMPFS
71fe804b 905static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 906{
095f1fc4 907 char buffer[64];
680d794b 908
71fe804b 909 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 910 return; /* show nothing */
680d794b 911
71fe804b 912 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
913
914 seq_printf(seq, ",mpol=%s", buffer);
680d794b 915}
71fe804b
LS
916
917static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
918{
919 struct mempolicy *mpol = NULL;
920 if (sbinfo->mpol) {
921 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
922 mpol = sbinfo->mpol;
923 mpol_get(mpol);
924 spin_unlock(&sbinfo->stat_lock);
925 }
926 return mpol;
927}
680d794b
AM
928#endif /* CONFIG_TMPFS */
929
41ffe5d5
HD
930static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
931 struct shmem_inode_info *info, pgoff_t index)
1da177e4 932{
52cd3b07 933 struct mempolicy mpol, *spol;
1da177e4
LT
934 struct vm_area_struct pvma;
935
52cd3b07 936 spol = mpol_cond_copy(&mpol,
41ffe5d5 937 mpol_shared_policy_lookup(&info->policy, index));
52cd3b07 938
1da177e4 939 /* Create a pseudo vma that just contains the policy */
c4cc6d07 940 pvma.vm_start = 0;
41ffe5d5 941 pvma.vm_pgoff = index;
c4cc6d07 942 pvma.vm_ops = NULL;
52cd3b07 943 pvma.vm_policy = spol;
41ffe5d5 944 return swapin_readahead(swap, gfp, &pvma, 0);
1da177e4
LT
945}
946
02098fea 947static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 948 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
949{
950 struct vm_area_struct pvma;
1da177e4 951
c4cc6d07
HD
952 /* Create a pseudo vma that just contains the policy */
953 pvma.vm_start = 0;
41ffe5d5 954 pvma.vm_pgoff = index;
c4cc6d07 955 pvma.vm_ops = NULL;
41ffe5d5 956 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07
LS
957
958 /*
959 * alloc_page_vma() will drop the shared policy reference
960 */
961 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 962}
680d794b
AM
963#else /* !CONFIG_NUMA */
964#ifdef CONFIG_TMPFS
41ffe5d5 965static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
966{
967}
968#endif /* CONFIG_TMPFS */
969
41ffe5d5
HD
970static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
971 struct shmem_inode_info *info, pgoff_t index)
1da177e4 972{
41ffe5d5 973 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
974}
975
02098fea 976static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 977 struct shmem_inode_info *info, pgoff_t index)
1da177e4 978{
e84e2e13 979 return alloc_page(gfp);
1da177e4 980}
680d794b 981#endif /* CONFIG_NUMA */
1da177e4 982
71fe804b
LS
983#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
984static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
985{
986 return NULL;
987}
988#endif
989
bde05d1c
HD
990/*
991 * When a page is moved from swapcache to shmem filecache (either by the
992 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
993 * shmem_unuse_inode()), it may have been read in earlier from swap, in
994 * ignorance of the mapping it belongs to. If that mapping has special
995 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
996 * we may need to copy to a suitable page before moving to filecache.
997 *
998 * In a future release, this may well be extended to respect cpuset and
999 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1000 * but for now it is a simple matter of zone.
1001 */
1002static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1003{
1004 return page_zonenum(page) > gfp_zone(gfp);
1005}
1006
1007static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1008 struct shmem_inode_info *info, pgoff_t index)
1009{
1010 struct page *oldpage, *newpage;
1011 struct address_space *swap_mapping;
1012 pgoff_t swap_index;
1013 int error;
1014
1015 oldpage = *pagep;
1016 swap_index = page_private(oldpage);
1017 swap_mapping = page_mapping(oldpage);
1018
1019 /*
1020 * We have arrived here because our zones are constrained, so don't
1021 * limit chance of success by further cpuset and node constraints.
1022 */
1023 gfp &= ~GFP_CONSTRAINT_MASK;
1024 newpage = shmem_alloc_page(gfp, info, index);
1025 if (!newpage)
1026 return -ENOMEM;
bde05d1c 1027
bde05d1c
HD
1028 page_cache_get(newpage);
1029 copy_highpage(newpage, oldpage);
0142ef6c 1030 flush_dcache_page(newpage);
bde05d1c 1031
bde05d1c 1032 __set_page_locked(newpage);
bde05d1c 1033 SetPageUptodate(newpage);
bde05d1c 1034 SetPageSwapBacked(newpage);
bde05d1c 1035 set_page_private(newpage, swap_index);
bde05d1c
HD
1036 SetPageSwapCache(newpage);
1037
1038 /*
1039 * Our caller will very soon move newpage out of swapcache, but it's
1040 * a nice clean interface for us to replace oldpage by newpage there.
1041 */
1042 spin_lock_irq(&swap_mapping->tree_lock);
1043 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1044 newpage);
0142ef6c
HD
1045 if (!error) {
1046 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1047 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1048 }
bde05d1c 1049 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1050
0142ef6c
HD
1051 if (unlikely(error)) {
1052 /*
1053 * Is this possible? I think not, now that our callers check
1054 * both PageSwapCache and page_private after getting page lock;
1055 * but be defensive. Reverse old to newpage for clear and free.
1056 */
1057 oldpage = newpage;
1058 } else {
1059 mem_cgroup_replace_page_cache(oldpage, newpage);
1060 lru_cache_add_anon(newpage);
1061 *pagep = newpage;
1062 }
bde05d1c
HD
1063
1064 ClearPageSwapCache(oldpage);
1065 set_page_private(oldpage, 0);
1066
1067 unlock_page(oldpage);
1068 page_cache_release(oldpage);
1069 page_cache_release(oldpage);
0142ef6c 1070 return error;
bde05d1c
HD
1071}
1072
1da177e4 1073/*
68da9f05 1074 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1075 *
1076 * If we allocate a new one we do not mark it dirty. That's up to the
1077 * vm. If we swap it in we mark it dirty since we also free the swap
1078 * entry since a page cannot live in both the swap and page cache
1079 */
41ffe5d5 1080static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1081 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1082{
1083 struct address_space *mapping = inode->i_mapping;
54af6042 1084 struct shmem_inode_info *info;
1da177e4 1085 struct shmem_sb_info *sbinfo;
27ab7006 1086 struct page *page;
1da177e4
LT
1087 swp_entry_t swap;
1088 int error;
54af6042 1089 int once = 0;
1635f6a7 1090 int alloced = 0;
1da177e4 1091
41ffe5d5 1092 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1093 return -EFBIG;
1da177e4 1094repeat:
54af6042 1095 swap.val = 0;
41ffe5d5 1096 page = find_lock_page(mapping, index);
54af6042
HD
1097 if (radix_tree_exceptional_entry(page)) {
1098 swap = radix_to_swp_entry(page);
1099 page = NULL;
1100 }
1101
1635f6a7 1102 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1103 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1104 error = -EINVAL;
1105 goto failed;
1106 }
1107
1635f6a7
HD
1108 /* fallocated page? */
1109 if (page && !PageUptodate(page)) {
1110 if (sgp != SGP_READ)
1111 goto clear;
1112 unlock_page(page);
1113 page_cache_release(page);
1114 page = NULL;
1115 }
54af6042 1116 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1117 *pagep = page;
1118 return 0;
27ab7006
HD
1119 }
1120
1121 /*
54af6042
HD
1122 * Fast cache lookup did not find it:
1123 * bring it back from swap or allocate.
27ab7006 1124 */
54af6042
HD
1125 info = SHMEM_I(inode);
1126 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1127
1da177e4
LT
1128 if (swap.val) {
1129 /* Look it up and read it in.. */
27ab7006
HD
1130 page = lookup_swap_cache(swap);
1131 if (!page) {
1da177e4 1132 /* here we actually do the io */
68da9f05
HD
1133 if (fault_type)
1134 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1135 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1136 if (!page) {
54af6042
HD
1137 error = -ENOMEM;
1138 goto failed;
1da177e4 1139 }
1da177e4
LT
1140 }
1141
1142 /* We have to do this with page locked to prevent races */
54af6042 1143 lock_page(page);
0142ef6c 1144 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1145 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1146 error = -EEXIST; /* try again */
d1899228 1147 goto unlock;
bde05d1c 1148 }
27ab7006 1149 if (!PageUptodate(page)) {
1da177e4 1150 error = -EIO;
54af6042 1151 goto failed;
1da177e4 1152 }
54af6042
HD
1153 wait_on_page_writeback(page);
1154
bde05d1c
HD
1155 if (shmem_should_replace_page(page, gfp)) {
1156 error = shmem_replace_page(&page, gfp, info, index);
1157 if (error)
1158 goto failed;
1da177e4 1159 }
27ab7006 1160
aa3b1895
HD
1161 error = mem_cgroup_cache_charge(page, current->mm,
1162 gfp & GFP_RECLAIM_MASK);
d1899228 1163 if (!error) {
aa3b1895
HD
1164 error = shmem_add_to_page_cache(page, mapping, index,
1165 gfp, swp_to_radix_entry(swap));
d1899228
HD
1166 /* We already confirmed swap, and make no allocation */
1167 VM_BUG_ON(error);
1168 }
54af6042
HD
1169 if (error)
1170 goto failed;
1171
1172 spin_lock(&info->lock);
285b2c4f 1173 info->swapped--;
54af6042 1174 shmem_recalc_inode(inode);
27ab7006 1175 spin_unlock(&info->lock);
54af6042
HD
1176
1177 delete_from_swap_cache(page);
27ab7006
HD
1178 set_page_dirty(page);
1179 swap_free(swap);
1180
54af6042
HD
1181 } else {
1182 if (shmem_acct_block(info->flags)) {
1183 error = -ENOSPC;
1184 goto failed;
1da177e4 1185 }
0edd73b3 1186 if (sbinfo->max_blocks) {
fc5da22a 1187 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1188 sbinfo->max_blocks) >= 0) {
1189 error = -ENOSPC;
1190 goto unacct;
1191 }
7e496299 1192 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1193 }
1da177e4 1194
54af6042
HD
1195 page = shmem_alloc_page(gfp, info, index);
1196 if (!page) {
1197 error = -ENOMEM;
1198 goto decused;
1da177e4
LT
1199 }
1200
54af6042
HD
1201 SetPageSwapBacked(page);
1202 __set_page_locked(page);
aa3b1895
HD
1203 error = mem_cgroup_cache_charge(page, current->mm,
1204 gfp & GFP_RECLAIM_MASK);
1205 if (!error)
1206 error = shmem_add_to_page_cache(page, mapping, index,
1207 gfp, NULL);
54af6042
HD
1208 if (error)
1209 goto decused;
1210 lru_cache_add_anon(page);
1211
1212 spin_lock(&info->lock);
1da177e4 1213 info->alloced++;
54af6042
HD
1214 inode->i_blocks += BLOCKS_PER_PAGE;
1215 shmem_recalc_inode(inode);
1da177e4 1216 spin_unlock(&info->lock);
1635f6a7 1217 alloced = true;
54af6042 1218
ec9516fb 1219 /*
1635f6a7
HD
1220 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1221 */
1222 if (sgp == SGP_FALLOC)
1223 sgp = SGP_WRITE;
1224clear:
1225 /*
1226 * Let SGP_WRITE caller clear ends if write does not fill page;
1227 * but SGP_FALLOC on a page fallocated earlier must initialize
1228 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1229 */
1230 if (sgp != SGP_WRITE) {
1231 clear_highpage(page);
1232 flush_dcache_page(page);
1233 SetPageUptodate(page);
1234 }
a0ee5ec5 1235 if (sgp == SGP_DIRTY)
27ab7006 1236 set_page_dirty(page);
1da177e4 1237 }
bde05d1c 1238
54af6042 1239 /* Perhaps the file has been truncated since we checked */
1635f6a7 1240 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1241 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1242 error = -EINVAL;
1635f6a7
HD
1243 if (alloced)
1244 goto trunc;
1245 else
1246 goto failed;
e83c32e8 1247 }
54af6042
HD
1248 *pagep = page;
1249 return 0;
1da177e4 1250
59a16ead 1251 /*
54af6042 1252 * Error recovery.
59a16ead 1253 */
54af6042 1254trunc:
1635f6a7 1255 info = SHMEM_I(inode);
54af6042
HD
1256 ClearPageDirty(page);
1257 delete_from_page_cache(page);
1258 spin_lock(&info->lock);
1259 info->alloced--;
1260 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1261 spin_unlock(&info->lock);
54af6042 1262decused:
1635f6a7 1263 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1264 if (sbinfo->max_blocks)
1265 percpu_counter_add(&sbinfo->used_blocks, -1);
1266unacct:
1267 shmem_unacct_blocks(info->flags, 1);
1268failed:
d1899228
HD
1269 if (swap.val && error != -EINVAL &&
1270 !shmem_confirm_swap(mapping, index, swap))
1271 error = -EEXIST;
1272unlock:
27ab7006 1273 if (page) {
54af6042 1274 unlock_page(page);
27ab7006 1275 page_cache_release(page);
54af6042
HD
1276 }
1277 if (error == -ENOSPC && !once++) {
1278 info = SHMEM_I(inode);
1279 spin_lock(&info->lock);
1280 shmem_recalc_inode(inode);
1281 spin_unlock(&info->lock);
27ab7006 1282 goto repeat;
ff36b801 1283 }
d1899228 1284 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1285 goto repeat;
1286 return error;
1da177e4
LT
1287}
1288
d0217ac0 1289static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1290{
d3ac7f89 1291 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1292 int error;
68da9f05 1293 int ret = VM_FAULT_LOCKED;
1da177e4 1294
27d54b39 1295 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1296 if (error)
1297 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1298
456f998e
YH
1299 if (ret & VM_FAULT_MAJOR) {
1300 count_vm_event(PGMAJFAULT);
1301 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1302 }
68da9f05 1303 return ret;
1da177e4
LT
1304}
1305
1da177e4 1306#ifdef CONFIG_NUMA
41ffe5d5 1307static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1308{
41ffe5d5
HD
1309 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1310 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1311}
1312
d8dc74f2
AB
1313static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1314 unsigned long addr)
1da177e4 1315{
41ffe5d5
HD
1316 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317 pgoff_t index;
1da177e4 1318
41ffe5d5
HD
1319 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1320 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1321}
1322#endif
1323
1324int shmem_lock(struct file *file, int lock, struct user_struct *user)
1325{
d3ac7f89 1326 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1327 struct shmem_inode_info *info = SHMEM_I(inode);
1328 int retval = -ENOMEM;
1329
1330 spin_lock(&info->lock);
1331 if (lock && !(info->flags & VM_LOCKED)) {
1332 if (!user_shm_lock(inode->i_size, user))
1333 goto out_nomem;
1334 info->flags |= VM_LOCKED;
89e004ea 1335 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1336 }
1337 if (!lock && (info->flags & VM_LOCKED) && user) {
1338 user_shm_unlock(inode->i_size, user);
1339 info->flags &= ~VM_LOCKED;
89e004ea 1340 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1341 }
1342 retval = 0;
89e004ea 1343
1da177e4
LT
1344out_nomem:
1345 spin_unlock(&info->lock);
1346 return retval;
1347}
1348
9b83a6a8 1349static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1350{
1351 file_accessed(file);
1352 vma->vm_ops = &shmem_vm_ops;
d0217ac0 1353 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1354 return 0;
1355}
1356
454abafe 1357static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1358 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1359{
1360 struct inode *inode;
1361 struct shmem_inode_info *info;
1362 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1363
5b04c689
PE
1364 if (shmem_reserve_inode(sb))
1365 return NULL;
1da177e4
LT
1366
1367 inode = new_inode(sb);
1368 if (inode) {
85fe4025 1369 inode->i_ino = get_next_ino();
454abafe 1370 inode_init_owner(inode, dir, mode);
1da177e4 1371 inode->i_blocks = 0;
1da177e4
LT
1372 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1373 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1374 inode->i_generation = get_seconds();
1da177e4
LT
1375 info = SHMEM_I(inode);
1376 memset(info, 0, (char *)inode - (char *)info);
1377 spin_lock_init(&info->lock);
0b0a0806 1378 info->flags = flags & VM_NORESERVE;
1da177e4 1379 INIT_LIST_HEAD(&info->swaplist);
b09e0fa4 1380 INIT_LIST_HEAD(&info->xattr_list);
72c04902 1381 cache_no_acl(inode);
1da177e4
LT
1382
1383 switch (mode & S_IFMT) {
1384 default:
39f0247d 1385 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1386 init_special_inode(inode, mode, dev);
1387 break;
1388 case S_IFREG:
14fcc23f 1389 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1390 inode->i_op = &shmem_inode_operations;
1391 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1392 mpol_shared_policy_init(&info->policy,
1393 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1394 break;
1395 case S_IFDIR:
d8c76e6f 1396 inc_nlink(inode);
1da177e4
LT
1397 /* Some things misbehave if size == 0 on a directory */
1398 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1399 inode->i_op = &shmem_dir_inode_operations;
1400 inode->i_fop = &simple_dir_operations;
1401 break;
1402 case S_IFLNK:
1403 /*
1404 * Must not load anything in the rbtree,
1405 * mpol_free_shared_policy will not be called.
1406 */
71fe804b 1407 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1408 break;
1409 }
5b04c689
PE
1410 } else
1411 shmem_free_inode(sb);
1da177e4
LT
1412 return inode;
1413}
1414
1415#ifdef CONFIG_TMPFS
92e1d5be 1416static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1417static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1418
6d9d88d0
JS
1419#ifdef CONFIG_TMPFS_XATTR
1420static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1421#else
1422#define shmem_initxattrs NULL
1423#endif
1424
1da177e4 1425static int
800d15a5
NP
1426shmem_write_begin(struct file *file, struct address_space *mapping,
1427 loff_t pos, unsigned len, unsigned flags,
1428 struct page **pagep, void **fsdata)
1da177e4 1429{
800d15a5
NP
1430 struct inode *inode = mapping->host;
1431 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1432 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1433}
1434
1435static int
1436shmem_write_end(struct file *file, struct address_space *mapping,
1437 loff_t pos, unsigned len, unsigned copied,
1438 struct page *page, void *fsdata)
1439{
1440 struct inode *inode = mapping->host;
1441
d3602444
HD
1442 if (pos + copied > inode->i_size)
1443 i_size_write(inode, pos + copied);
1444
ec9516fb
HD
1445 if (!PageUptodate(page)) {
1446 if (copied < PAGE_CACHE_SIZE) {
1447 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1448 zero_user_segments(page, 0, from,
1449 from + copied, PAGE_CACHE_SIZE);
1450 }
1451 SetPageUptodate(page);
1452 }
800d15a5 1453 set_page_dirty(page);
6746aff7 1454 unlock_page(page);
800d15a5
NP
1455 page_cache_release(page);
1456
800d15a5 1457 return copied;
1da177e4
LT
1458}
1459
1da177e4
LT
1460static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1461{
d3ac7f89 1462 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4 1463 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1464 pgoff_t index;
1465 unsigned long offset;
a0ee5ec5
HD
1466 enum sgp_type sgp = SGP_READ;
1467
1468 /*
1469 * Might this read be for a stacking filesystem? Then when reading
1470 * holes of a sparse file, we actually need to allocate those pages,
1471 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1472 */
1473 if (segment_eq(get_fs(), KERNEL_DS))
1474 sgp = SGP_DIRTY;
1da177e4
LT
1475
1476 index = *ppos >> PAGE_CACHE_SHIFT;
1477 offset = *ppos & ~PAGE_CACHE_MASK;
1478
1479 for (;;) {
1480 struct page *page = NULL;
41ffe5d5
HD
1481 pgoff_t end_index;
1482 unsigned long nr, ret;
1da177e4
LT
1483 loff_t i_size = i_size_read(inode);
1484
1485 end_index = i_size >> PAGE_CACHE_SHIFT;
1486 if (index > end_index)
1487 break;
1488 if (index == end_index) {
1489 nr = i_size & ~PAGE_CACHE_MASK;
1490 if (nr <= offset)
1491 break;
1492 }
1493
a0ee5ec5 1494 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1495 if (desc->error) {
1496 if (desc->error == -EINVAL)
1497 desc->error = 0;
1498 break;
1499 }
d3602444
HD
1500 if (page)
1501 unlock_page(page);
1da177e4
LT
1502
1503 /*
1504 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1505 * are called without i_mutex protection against truncate
1da177e4
LT
1506 */
1507 nr = PAGE_CACHE_SIZE;
1508 i_size = i_size_read(inode);
1509 end_index = i_size >> PAGE_CACHE_SHIFT;
1510 if (index == end_index) {
1511 nr = i_size & ~PAGE_CACHE_MASK;
1512 if (nr <= offset) {
1513 if (page)
1514 page_cache_release(page);
1515 break;
1516 }
1517 }
1518 nr -= offset;
1519
1520 if (page) {
1521 /*
1522 * If users can be writing to this page using arbitrary
1523 * virtual addresses, take care about potential aliasing
1524 * before reading the page on the kernel side.
1525 */
1526 if (mapping_writably_mapped(mapping))
1527 flush_dcache_page(page);
1528 /*
1529 * Mark the page accessed if we read the beginning.
1530 */
1531 if (!offset)
1532 mark_page_accessed(page);
b5810039 1533 } else {
1da177e4 1534 page = ZERO_PAGE(0);
b5810039
NP
1535 page_cache_get(page);
1536 }
1da177e4
LT
1537
1538 /*
1539 * Ok, we have the page, and it's up-to-date, so
1540 * now we can copy it to user space...
1541 *
1542 * The actor routine returns how many bytes were actually used..
1543 * NOTE! This may not be the same as how much of a user buffer
1544 * we filled up (we may be padding etc), so we can only update
1545 * "pos" here (the actor routine has to update the user buffer
1546 * pointers and the remaining count).
1547 */
1548 ret = actor(desc, page, offset, nr);
1549 offset += ret;
1550 index += offset >> PAGE_CACHE_SHIFT;
1551 offset &= ~PAGE_CACHE_MASK;
1552
1553 page_cache_release(page);
1554 if (ret != nr || !desc->count)
1555 break;
1556
1557 cond_resched();
1558 }
1559
1560 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1561 file_accessed(filp);
1562}
1563
bcd78e49
HD
1564static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1565 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1566{
1567 struct file *filp = iocb->ki_filp;
1568 ssize_t retval;
1569 unsigned long seg;
1570 size_t count;
1571 loff_t *ppos = &iocb->ki_pos;
1572
1573 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1574 if (retval)
1575 return retval;
1576
1577 for (seg = 0; seg < nr_segs; seg++) {
1578 read_descriptor_t desc;
1579
1580 desc.written = 0;
1581 desc.arg.buf = iov[seg].iov_base;
1582 desc.count = iov[seg].iov_len;
1583 if (desc.count == 0)
1584 continue;
1585 desc.error = 0;
1586 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1587 retval += desc.written;
1588 if (desc.error) {
1589 retval = retval ?: desc.error;
1590 break;
1591 }
1592 if (desc.count > 0)
1593 break;
1594 }
1595 return retval;
1da177e4
LT
1596}
1597
708e3508
HD
1598static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1599 struct pipe_inode_info *pipe, size_t len,
1600 unsigned int flags)
1601{
1602 struct address_space *mapping = in->f_mapping;
71f0e07a 1603 struct inode *inode = mapping->host;
708e3508
HD
1604 unsigned int loff, nr_pages, req_pages;
1605 struct page *pages[PIPE_DEF_BUFFERS];
1606 struct partial_page partial[PIPE_DEF_BUFFERS];
1607 struct page *page;
1608 pgoff_t index, end_index;
1609 loff_t isize, left;
1610 int error, page_nr;
1611 struct splice_pipe_desc spd = {
1612 .pages = pages,
1613 .partial = partial,
047fe360 1614 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1615 .flags = flags,
1616 .ops = &page_cache_pipe_buf_ops,
1617 .spd_release = spd_release_page,
1618 };
1619
71f0e07a 1620 isize = i_size_read(inode);
708e3508
HD
1621 if (unlikely(*ppos >= isize))
1622 return 0;
1623
1624 left = isize - *ppos;
1625 if (unlikely(left < len))
1626 len = left;
1627
1628 if (splice_grow_spd(pipe, &spd))
1629 return -ENOMEM;
1630
1631 index = *ppos >> PAGE_CACHE_SHIFT;
1632 loff = *ppos & ~PAGE_CACHE_MASK;
1633 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1634 nr_pages = min(req_pages, pipe->buffers);
1635
708e3508
HD
1636 spd.nr_pages = find_get_pages_contig(mapping, index,
1637 nr_pages, spd.pages);
1638 index += spd.nr_pages;
708e3508 1639 error = 0;
708e3508 1640
71f0e07a 1641 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1642 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1643 if (error)
1644 break;
1645 unlock_page(page);
708e3508
HD
1646 spd.pages[spd.nr_pages++] = page;
1647 index++;
1648 }
1649
708e3508
HD
1650 index = *ppos >> PAGE_CACHE_SHIFT;
1651 nr_pages = spd.nr_pages;
1652 spd.nr_pages = 0;
71f0e07a 1653
708e3508
HD
1654 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1655 unsigned int this_len;
1656
1657 if (!len)
1658 break;
1659
708e3508
HD
1660 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1661 page = spd.pages[page_nr];
1662
71f0e07a 1663 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1664 error = shmem_getpage(inode, index, &page,
1665 SGP_CACHE, NULL);
1666 if (error)
708e3508 1667 break;
71f0e07a
HD
1668 unlock_page(page);
1669 page_cache_release(spd.pages[page_nr]);
1670 spd.pages[page_nr] = page;
708e3508 1671 }
71f0e07a
HD
1672
1673 isize = i_size_read(inode);
708e3508
HD
1674 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1675 if (unlikely(!isize || index > end_index))
1676 break;
1677
708e3508
HD
1678 if (end_index == index) {
1679 unsigned int plen;
1680
708e3508
HD
1681 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682 if (plen <= loff)
1683 break;
1684
708e3508
HD
1685 this_len = min(this_len, plen - loff);
1686 len = this_len;
1687 }
1688
1689 spd.partial[page_nr].offset = loff;
1690 spd.partial[page_nr].len = this_len;
1691 len -= this_len;
1692 loff = 0;
1693 spd.nr_pages++;
1694 index++;
1695 }
1696
708e3508
HD
1697 while (page_nr < nr_pages)
1698 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1699
1700 if (spd.nr_pages)
1701 error = splice_to_pipe(pipe, &spd);
1702
047fe360 1703 splice_shrink_spd(&spd);
708e3508
HD
1704
1705 if (error > 0) {
1706 *ppos += error;
1707 file_accessed(in);
1708 }
1709 return error;
1710}
1711
83e4fa9c
HD
1712static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1713 loff_t len)
1714{
1715 struct inode *inode = file->f_path.dentry->d_inode;
e2d12e22 1716 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1717 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1718 pgoff_t start, index, end;
1719 int error;
83e4fa9c
HD
1720
1721 mutex_lock(&inode->i_mutex);
1722
1723 if (mode & FALLOC_FL_PUNCH_HOLE) {
1724 struct address_space *mapping = file->f_mapping;
1725 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1726 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1727
1728 if ((u64)unmap_end > (u64)unmap_start)
1729 unmap_mapping_range(mapping, unmap_start,
1730 1 + unmap_end - unmap_start, 0);
1731 shmem_truncate_range(inode, offset, offset + len - 1);
1732 /* No need to unmap again: hole-punching leaves COWed pages */
1733 error = 0;
e2d12e22
HD
1734 goto out;
1735 }
1736
1737 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738 error = inode_newsize_ok(inode, offset + len);
1739 if (error)
1740 goto out;
1741
1742 start = offset >> PAGE_CACHE_SHIFT;
1743 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1744 /* Try to avoid a swapstorm if len is impossible to satisfy */
1745 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1746 error = -ENOSPC;
1747 goto out;
83e4fa9c
HD
1748 }
1749
1aac1400
HD
1750 shmem_falloc.start = start;
1751 shmem_falloc.next = start;
1752 shmem_falloc.nr_falloced = 0;
1753 shmem_falloc.nr_unswapped = 0;
1754 spin_lock(&inode->i_lock);
1755 inode->i_private = &shmem_falloc;
1756 spin_unlock(&inode->i_lock);
1757
e2d12e22
HD
1758 for (index = start; index < end; index++) {
1759 struct page *page;
1760
1761 /*
1762 * Good, the fallocate(2) manpage permits EINTR: we may have
1763 * been interrupted because we are using up too much memory.
1764 */
1765 if (signal_pending(current))
1766 error = -EINTR;
1aac1400
HD
1767 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1768 error = -ENOMEM;
e2d12e22 1769 else
1635f6a7 1770 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1771 NULL);
1772 if (error) {
1635f6a7
HD
1773 /* Remove the !PageUptodate pages we added */
1774 shmem_undo_range(inode,
1775 (loff_t)start << PAGE_CACHE_SHIFT,
1776 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1777 goto undone;
e2d12e22
HD
1778 }
1779
1aac1400
HD
1780 /*
1781 * Inform shmem_writepage() how far we have reached.
1782 * No need for lock or barrier: we have the page lock.
1783 */
1784 shmem_falloc.next++;
1785 if (!PageUptodate(page))
1786 shmem_falloc.nr_falloced++;
1787
e2d12e22 1788 /*
1635f6a7
HD
1789 * If !PageUptodate, leave it that way so that freeable pages
1790 * can be recognized if we need to rollback on error later.
1791 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1792 * than free the pages we are allocating (and SGP_CACHE pages
1793 * might still be clean: we now need to mark those dirty too).
1794 */
1795 set_page_dirty(page);
1796 unlock_page(page);
1797 page_cache_release(page);
1798 cond_resched();
1799 }
1800
1801 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1802 i_size_write(inode, offset + len);
e2d12e22 1803 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1804undone:
1805 spin_lock(&inode->i_lock);
1806 inode->i_private = NULL;
1807 spin_unlock(&inode->i_lock);
e2d12e22 1808out:
83e4fa9c
HD
1809 mutex_unlock(&inode->i_mutex);
1810 return error;
1811}
1812
726c3342 1813static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1814{
726c3342 1815 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1816
1817 buf->f_type = TMPFS_MAGIC;
1818 buf->f_bsize = PAGE_CACHE_SIZE;
1819 buf->f_namelen = NAME_MAX;
0edd73b3 1820 if (sbinfo->max_blocks) {
1da177e4 1821 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1822 buf->f_bavail =
1823 buf->f_bfree = sbinfo->max_blocks -
1824 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1825 }
1826 if (sbinfo->max_inodes) {
1da177e4
LT
1827 buf->f_files = sbinfo->max_inodes;
1828 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1829 }
1830 /* else leave those fields 0 like simple_statfs */
1831 return 0;
1832}
1833
1834/*
1835 * File creation. Allocate an inode, and we're done..
1836 */
1837static int
1a67aafb 1838shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1839{
0b0a0806 1840 struct inode *inode;
1da177e4
LT
1841 int error = -ENOSPC;
1842
454abafe 1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1844 if (inode) {
2a7dba39 1845 error = security_inode_init_security(inode, dir,
9d8f13ba 1846 &dentry->d_name,
6d9d88d0 1847 shmem_initxattrs, NULL);
570bc1c2
SS
1848 if (error) {
1849 if (error != -EOPNOTSUPP) {
1850 iput(inode);
1851 return error;
1852 }
39f0247d 1853 }
1c7c474c
CH
1854#ifdef CONFIG_TMPFS_POSIX_ACL
1855 error = generic_acl_init(inode, dir);
39f0247d
AG
1856 if (error) {
1857 iput(inode);
1858 return error;
570bc1c2 1859 }
718deb6b
AV
1860#else
1861 error = 0;
1c7c474c 1862#endif
1da177e4
LT
1863 dir->i_size += BOGO_DIRENT_SIZE;
1864 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865 d_instantiate(dentry, inode);
1866 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1867 }
1868 return error;
1869}
1870
18bb1db3 1871static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1872{
1873 int error;
1874
1875 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876 return error;
d8c76e6f 1877 inc_nlink(dir);
1da177e4
LT
1878 return 0;
1879}
1880
4acdaf27 1881static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1da177e4
LT
1882 struct nameidata *nd)
1883{
1884 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1885}
1886
1887/*
1888 * Link a file..
1889 */
1890static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891{
1892 struct inode *inode = old_dentry->d_inode;
5b04c689 1893 int ret;
1da177e4
LT
1894
1895 /*
1896 * No ordinary (disk based) filesystem counts links as inodes;
1897 * but each new link needs a new dentry, pinning lowmem, and
1898 * tmpfs dentries cannot be pruned until they are unlinked.
1899 */
5b04c689
PE
1900 ret = shmem_reserve_inode(inode->i_sb);
1901 if (ret)
1902 goto out;
1da177e4
LT
1903
1904 dir->i_size += BOGO_DIRENT_SIZE;
1905 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1906 inc_nlink(inode);
7de9c6ee 1907 ihold(inode); /* New dentry reference */
1da177e4
LT
1908 dget(dentry); /* Extra pinning count for the created dentry */
1909 d_instantiate(dentry, inode);
5b04c689
PE
1910out:
1911 return ret;
1da177e4
LT
1912}
1913
1914static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915{
1916 struct inode *inode = dentry->d_inode;
1917
5b04c689
PE
1918 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919 shmem_free_inode(inode->i_sb);
1da177e4
LT
1920
1921 dir->i_size -= BOGO_DIRENT_SIZE;
1922 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1923 drop_nlink(inode);
1da177e4
LT
1924 dput(dentry); /* Undo the count from "create" - this does all the work */
1925 return 0;
1926}
1927
1928static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929{
1930 if (!simple_empty(dentry))
1931 return -ENOTEMPTY;
1932
9a53c3a7
DH
1933 drop_nlink(dentry->d_inode);
1934 drop_nlink(dir);
1da177e4
LT
1935 return shmem_unlink(dir, dentry);
1936}
1937
1938/*
1939 * The VFS layer already does all the dentry stuff for rename,
1940 * we just have to decrement the usage count for the target if
1941 * it exists so that the VFS layer correctly free's it when it
1942 * gets overwritten.
1943 */
1944static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945{
1946 struct inode *inode = old_dentry->d_inode;
1947 int they_are_dirs = S_ISDIR(inode->i_mode);
1948
1949 if (!simple_empty(new_dentry))
1950 return -ENOTEMPTY;
1951
1952 if (new_dentry->d_inode) {
1953 (void) shmem_unlink(new_dir, new_dentry);
1954 if (they_are_dirs)
9a53c3a7 1955 drop_nlink(old_dir);
1da177e4 1956 } else if (they_are_dirs) {
9a53c3a7 1957 drop_nlink(old_dir);
d8c76e6f 1958 inc_nlink(new_dir);
1da177e4
LT
1959 }
1960
1961 old_dir->i_size -= BOGO_DIRENT_SIZE;
1962 new_dir->i_size += BOGO_DIRENT_SIZE;
1963 old_dir->i_ctime = old_dir->i_mtime =
1964 new_dir->i_ctime = new_dir->i_mtime =
1965 inode->i_ctime = CURRENT_TIME;
1966 return 0;
1967}
1968
1969static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970{
1971 int error;
1972 int len;
1973 struct inode *inode;
9276aad6 1974 struct page *page;
1da177e4
LT
1975 char *kaddr;
1976 struct shmem_inode_info *info;
1977
1978 len = strlen(symname) + 1;
1979 if (len > PAGE_CACHE_SIZE)
1980 return -ENAMETOOLONG;
1981
454abafe 1982 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
1983 if (!inode)
1984 return -ENOSPC;
1985
9d8f13ba 1986 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 1987 shmem_initxattrs, NULL);
570bc1c2
SS
1988 if (error) {
1989 if (error != -EOPNOTSUPP) {
1990 iput(inode);
1991 return error;
1992 }
1993 error = 0;
1994 }
1995
1da177e4
LT
1996 info = SHMEM_I(inode);
1997 inode->i_size = len-1;
69f07ec9
HD
1998 if (len <= SHORT_SYMLINK_LEN) {
1999 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2000 if (!info->symlink) {
2001 iput(inode);
2002 return -ENOMEM;
2003 }
2004 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2005 } else {
2006 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2007 if (error) {
2008 iput(inode);
2009 return error;
2010 }
14fcc23f 2011 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2012 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2013 kaddr = kmap_atomic(page);
1da177e4 2014 memcpy(kaddr, symname, len);
9b04c5fe 2015 kunmap_atomic(kaddr);
ec9516fb 2016 SetPageUptodate(page);
1da177e4 2017 set_page_dirty(page);
6746aff7 2018 unlock_page(page);
1da177e4
LT
2019 page_cache_release(page);
2020 }
1da177e4
LT
2021 dir->i_size += BOGO_DIRENT_SIZE;
2022 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2023 d_instantiate(dentry, inode);
2024 dget(dentry);
2025 return 0;
2026}
2027
69f07ec9 2028static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2029{
69f07ec9 2030 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2031 return NULL;
1da177e4
LT
2032}
2033
cc314eef 2034static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2035{
2036 struct page *page = NULL;
41ffe5d5
HD
2037 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2038 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2039 if (page)
2040 unlock_page(page);
cc314eef 2041 return page;
1da177e4
LT
2042}
2043
cc314eef 2044static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2045{
2046 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2047 struct page *page = cookie;
1da177e4
LT
2048 kunmap(page);
2049 mark_page_accessed(page);
2050 page_cache_release(page);
1da177e4
LT
2051 }
2052}
2053
b09e0fa4 2054#ifdef CONFIG_TMPFS_XATTR
46711810 2055/*
b09e0fa4
EP
2056 * Superblocks without xattr inode operations may get some security.* xattr
2057 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2058 * like ACLs, we also need to implement the security.* handlers at
2059 * filesystem level, though.
2060 */
2061
6d9d88d0
JS
2062/*
2063 * Allocate new xattr and copy in the value; but leave the name to callers.
2064 */
2065static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2066{
2067 struct shmem_xattr *new_xattr;
2068 size_t len;
2069
2070 /* wrap around? */
2071 len = sizeof(*new_xattr) + size;
2072 if (len <= sizeof(*new_xattr))
2073 return NULL;
2074
2075 new_xattr = kmalloc(len, GFP_KERNEL);
2076 if (!new_xattr)
2077 return NULL;
2078
2079 new_xattr->size = size;
2080 memcpy(new_xattr->value, value, size);
2081 return new_xattr;
2082}
2083
2084/*
2085 * Callback for security_inode_init_security() for acquiring xattrs.
2086 */
2087static int shmem_initxattrs(struct inode *inode,
2088 const struct xattr *xattr_array,
2089 void *fs_info)
2090{
2091 struct shmem_inode_info *info = SHMEM_I(inode);
2092 const struct xattr *xattr;
2093 struct shmem_xattr *new_xattr;
2094 size_t len;
2095
2096 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2097 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2098 if (!new_xattr)
2099 return -ENOMEM;
2100
2101 len = strlen(xattr->name) + 1;
2102 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2103 GFP_KERNEL);
2104 if (!new_xattr->name) {
2105 kfree(new_xattr);
2106 return -ENOMEM;
2107 }
2108
2109 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2110 XATTR_SECURITY_PREFIX_LEN);
2111 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2112 xattr->name, len);
2113
2114 spin_lock(&info->lock);
2115 list_add(&new_xattr->list, &info->xattr_list);
2116 spin_unlock(&info->lock);
2117 }
2118
2119 return 0;
2120}
2121
b09e0fa4
EP
2122static int shmem_xattr_get(struct dentry *dentry, const char *name,
2123 void *buffer, size_t size)
39f0247d 2124{
b09e0fa4
EP
2125 struct shmem_inode_info *info;
2126 struct shmem_xattr *xattr;
2127 int ret = -ENODATA;
39f0247d 2128
b09e0fa4
EP
2129 info = SHMEM_I(dentry->d_inode);
2130
2131 spin_lock(&info->lock);
2132 list_for_each_entry(xattr, &info->xattr_list, list) {
2133 if (strcmp(name, xattr->name))
2134 continue;
2135
2136 ret = xattr->size;
2137 if (buffer) {
2138 if (size < xattr->size)
2139 ret = -ERANGE;
2140 else
2141 memcpy(buffer, xattr->value, xattr->size);
2142 }
2143 break;
2144 }
2145 spin_unlock(&info->lock);
2146 return ret;
39f0247d
AG
2147}
2148
6d9d88d0 2149static int shmem_xattr_set(struct inode *inode, const char *name,
b09e0fa4 2150 const void *value, size_t size, int flags)
39f0247d 2151{
b09e0fa4
EP
2152 struct shmem_inode_info *info = SHMEM_I(inode);
2153 struct shmem_xattr *xattr;
2154 struct shmem_xattr *new_xattr = NULL;
b09e0fa4
EP
2155 int err = 0;
2156
2157 /* value == NULL means remove */
2158 if (value) {
6d9d88d0 2159 new_xattr = shmem_xattr_alloc(value, size);
b09e0fa4
EP
2160 if (!new_xattr)
2161 return -ENOMEM;
2162
2163 new_xattr->name = kstrdup(name, GFP_KERNEL);
2164 if (!new_xattr->name) {
2165 kfree(new_xattr);
2166 return -ENOMEM;
2167 }
b09e0fa4
EP
2168 }
2169
2170 spin_lock(&info->lock);
2171 list_for_each_entry(xattr, &info->xattr_list, list) {
2172 if (!strcmp(name, xattr->name)) {
2173 if (flags & XATTR_CREATE) {
2174 xattr = new_xattr;
2175 err = -EEXIST;
2176 } else if (new_xattr) {
2177 list_replace(&xattr->list, &new_xattr->list);
2178 } else {
2179 list_del(&xattr->list);
2180 }
2181 goto out;
2182 }
2183 }
2184 if (flags & XATTR_REPLACE) {
2185 xattr = new_xattr;
2186 err = -ENODATA;
2187 } else {
2188 list_add(&new_xattr->list, &info->xattr_list);
2189 xattr = NULL;
2190 }
2191out:
2192 spin_unlock(&info->lock);
2193 if (xattr)
2194 kfree(xattr->name);
2195 kfree(xattr);
2196 return err;
39f0247d
AG
2197}
2198
bb435453 2199static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2200#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2201 &generic_acl_access_handler,
2202 &generic_acl_default_handler,
b09e0fa4 2203#endif
39f0247d
AG
2204 NULL
2205};
b09e0fa4
EP
2206
2207static int shmem_xattr_validate(const char *name)
2208{
2209 struct { const char *prefix; size_t len; } arr[] = {
2210 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2211 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2212 };
2213 int i;
2214
2215 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2216 size_t preflen = arr[i].len;
2217 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2218 if (!name[preflen])
2219 return -EINVAL;
2220 return 0;
2221 }
2222 }
2223 return -EOPNOTSUPP;
2224}
2225
2226static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2227 void *buffer, size_t size)
2228{
2229 int err;
2230
2231 /*
2232 * If this is a request for a synthetic attribute in the system.*
2233 * namespace use the generic infrastructure to resolve a handler
2234 * for it via sb->s_xattr.
2235 */
2236 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2237 return generic_getxattr(dentry, name, buffer, size);
2238
2239 err = shmem_xattr_validate(name);
2240 if (err)
2241 return err;
2242
2243 return shmem_xattr_get(dentry, name, buffer, size);
2244}
2245
2246static int shmem_setxattr(struct dentry *dentry, const char *name,
2247 const void *value, size_t size, int flags)
2248{
2249 int err;
2250
2251 /*
2252 * If this is a request for a synthetic attribute in the system.*
2253 * namespace use the generic infrastructure to resolve a handler
2254 * for it via sb->s_xattr.
2255 */
2256 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2257 return generic_setxattr(dentry, name, value, size, flags);
2258
2259 err = shmem_xattr_validate(name);
2260 if (err)
2261 return err;
2262
2263 if (size == 0)
2264 value = ""; /* empty EA, do not remove */
2265
6d9d88d0 2266 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
b09e0fa4
EP
2267
2268}
2269
2270static int shmem_removexattr(struct dentry *dentry, const char *name)
2271{
2272 int err;
2273
2274 /*
2275 * If this is a request for a synthetic attribute in the system.*
2276 * namespace use the generic infrastructure to resolve a handler
2277 * for it via sb->s_xattr.
2278 */
2279 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2280 return generic_removexattr(dentry, name);
2281
2282 err = shmem_xattr_validate(name);
2283 if (err)
2284 return err;
2285
6d9d88d0 2286 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
b09e0fa4
EP
2287}
2288
2289static bool xattr_is_trusted(const char *name)
2290{
2291 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2292}
2293
2294static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295{
2296 bool trusted = capable(CAP_SYS_ADMIN);
2297 struct shmem_xattr *xattr;
2298 struct shmem_inode_info *info;
2299 size_t used = 0;
2300
2301 info = SHMEM_I(dentry->d_inode);
2302
2303 spin_lock(&info->lock);
2304 list_for_each_entry(xattr, &info->xattr_list, list) {
2305 size_t len;
2306
2307 /* skip "trusted." attributes for unprivileged callers */
2308 if (!trusted && xattr_is_trusted(xattr->name))
2309 continue;
2310
2311 len = strlen(xattr->name) + 1;
2312 used += len;
2313 if (buffer) {
2314 if (size < used) {
2315 used = -ERANGE;
2316 break;
2317 }
2318 memcpy(buffer, xattr->name, len);
2319 buffer += len;
2320 }
2321 }
2322 spin_unlock(&info->lock);
2323
2324 return used;
2325}
2326#endif /* CONFIG_TMPFS_XATTR */
2327
69f07ec9 2328static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2329 .readlink = generic_readlink,
69f07ec9 2330 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2331#ifdef CONFIG_TMPFS_XATTR
2332 .setxattr = shmem_setxattr,
2333 .getxattr = shmem_getxattr,
2334 .listxattr = shmem_listxattr,
2335 .removexattr = shmem_removexattr,
2336#endif
2337};
2338
2339static const struct inode_operations shmem_symlink_inode_operations = {
2340 .readlink = generic_readlink,
2341 .follow_link = shmem_follow_link,
2342 .put_link = shmem_put_link,
2343#ifdef CONFIG_TMPFS_XATTR
2344 .setxattr = shmem_setxattr,
2345 .getxattr = shmem_getxattr,
2346 .listxattr = shmem_listxattr,
2347 .removexattr = shmem_removexattr,
39f0247d 2348#endif
b09e0fa4 2349};
39f0247d 2350
91828a40
DG
2351static struct dentry *shmem_get_parent(struct dentry *child)
2352{
2353 return ERR_PTR(-ESTALE);
2354}
2355
2356static int shmem_match(struct inode *ino, void *vfh)
2357{
2358 __u32 *fh = vfh;
2359 __u64 inum = fh[2];
2360 inum = (inum << 32) | fh[1];
2361 return ino->i_ino == inum && fh[0] == ino->i_generation;
2362}
2363
480b116c
CH
2364static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2365 struct fid *fid, int fh_len, int fh_type)
91828a40 2366{
91828a40 2367 struct inode *inode;
480b116c
CH
2368 struct dentry *dentry = NULL;
2369 u64 inum = fid->raw[2];
2370 inum = (inum << 32) | fid->raw[1];
2371
2372 if (fh_len < 3)
2373 return NULL;
91828a40 2374
480b116c
CH
2375 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2376 shmem_match, fid->raw);
91828a40 2377 if (inode) {
480b116c 2378 dentry = d_find_alias(inode);
91828a40
DG
2379 iput(inode);
2380 }
2381
480b116c 2382 return dentry;
91828a40
DG
2383}
2384
b0b0382b
AV
2385static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2386 struct inode *parent)
91828a40 2387{
5fe0c237
AK
2388 if (*len < 3) {
2389 *len = 3;
91828a40 2390 return 255;
5fe0c237 2391 }
91828a40 2392
1d3382cb 2393 if (inode_unhashed(inode)) {
91828a40
DG
2394 /* Unfortunately insert_inode_hash is not idempotent,
2395 * so as we hash inodes here rather than at creation
2396 * time, we need a lock to ensure we only try
2397 * to do it once
2398 */
2399 static DEFINE_SPINLOCK(lock);
2400 spin_lock(&lock);
1d3382cb 2401 if (inode_unhashed(inode))
91828a40
DG
2402 __insert_inode_hash(inode,
2403 inode->i_ino + inode->i_generation);
2404 spin_unlock(&lock);
2405 }
2406
2407 fh[0] = inode->i_generation;
2408 fh[1] = inode->i_ino;
2409 fh[2] = ((__u64)inode->i_ino) >> 32;
2410
2411 *len = 3;
2412 return 1;
2413}
2414
39655164 2415static const struct export_operations shmem_export_ops = {
91828a40 2416 .get_parent = shmem_get_parent,
91828a40 2417 .encode_fh = shmem_encode_fh,
480b116c 2418 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2419};
2420
680d794b
AM
2421static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2422 bool remount)
1da177e4
LT
2423{
2424 char *this_char, *value, *rest;
8751e039
EB
2425 uid_t uid;
2426 gid_t gid;
1da177e4 2427
b00dc3ad
HD
2428 while (options != NULL) {
2429 this_char = options;
2430 for (;;) {
2431 /*
2432 * NUL-terminate this option: unfortunately,
2433 * mount options form a comma-separated list,
2434 * but mpol's nodelist may also contain commas.
2435 */
2436 options = strchr(options, ',');
2437 if (options == NULL)
2438 break;
2439 options++;
2440 if (!isdigit(*options)) {
2441 options[-1] = '\0';
2442 break;
2443 }
2444 }
1da177e4
LT
2445 if (!*this_char)
2446 continue;
2447 if ((value = strchr(this_char,'=')) != NULL) {
2448 *value++ = 0;
2449 } else {
2450 printk(KERN_ERR
2451 "tmpfs: No value for mount option '%s'\n",
2452 this_char);
2453 return 1;
2454 }
2455
2456 if (!strcmp(this_char,"size")) {
2457 unsigned long long size;
2458 size = memparse(value,&rest);
2459 if (*rest == '%') {
2460 size <<= PAGE_SHIFT;
2461 size *= totalram_pages;
2462 do_div(size, 100);
2463 rest++;
2464 }
2465 if (*rest)
2466 goto bad_val;
680d794b
AM
2467 sbinfo->max_blocks =
2468 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2469 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2470 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2471 if (*rest)
2472 goto bad_val;
2473 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2474 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2475 if (*rest)
2476 goto bad_val;
2477 } else if (!strcmp(this_char,"mode")) {
680d794b 2478 if (remount)
1da177e4 2479 continue;
680d794b 2480 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2481 if (*rest)
2482 goto bad_val;
2483 } else if (!strcmp(this_char,"uid")) {
680d794b 2484 if (remount)
1da177e4 2485 continue;
8751e039 2486 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2487 if (*rest)
2488 goto bad_val;
8751e039
EB
2489 sbinfo->uid = make_kuid(current_user_ns(), uid);
2490 if (!uid_valid(sbinfo->uid))
2491 goto bad_val;
1da177e4 2492 } else if (!strcmp(this_char,"gid")) {
680d794b 2493 if (remount)
1da177e4 2494 continue;
8751e039 2495 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2496 if (*rest)
2497 goto bad_val;
8751e039
EB
2498 sbinfo->gid = make_kgid(current_user_ns(), gid);
2499 if (!gid_valid(sbinfo->gid))
2500 goto bad_val;
7339ff83 2501 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2502 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2503 goto bad_val;
1da177e4
LT
2504 } else {
2505 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2506 this_char);
2507 return 1;
2508 }
2509 }
2510 return 0;
2511
2512bad_val:
2513 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2514 value, this_char);
2515 return 1;
2516
2517}
2518
2519static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2520{
2521 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2522 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2523 unsigned long inodes;
2524 int error = -EINVAL;
2525
680d794b 2526 if (shmem_parse_options(data, &config, true))
0edd73b3 2527 return error;
1da177e4 2528
0edd73b3 2529 spin_lock(&sbinfo->stat_lock);
0edd73b3 2530 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2531 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2532 goto out;
680d794b 2533 if (config.max_inodes < inodes)
0edd73b3
HD
2534 goto out;
2535 /*
54af6042 2536 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2537 * but we must separately disallow unlimited->limited, because
2538 * in that case we have no record of how much is already in use.
2539 */
680d794b 2540 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2541 goto out;
680d794b 2542 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2543 goto out;
2544
2545 error = 0;
680d794b 2546 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2547 sbinfo->max_inodes = config.max_inodes;
2548 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2549
2550 mpol_put(sbinfo->mpol);
2551 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2552out:
2553 spin_unlock(&sbinfo->stat_lock);
2554 return error;
1da177e4 2555}
680d794b 2556
34c80b1d 2557static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2558{
34c80b1d 2559 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2560
2561 if (sbinfo->max_blocks != shmem_default_max_blocks())
2562 seq_printf(seq, ",size=%luk",
2563 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2564 if (sbinfo->max_inodes != shmem_default_max_inodes())
2565 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2566 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2567 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2568 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2569 seq_printf(seq, ",uid=%u",
2570 from_kuid_munged(&init_user_ns, sbinfo->uid));
2571 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2572 seq_printf(seq, ",gid=%u",
2573 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2574 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2575 return 0;
2576}
2577#endif /* CONFIG_TMPFS */
1da177e4
LT
2578
2579static void shmem_put_super(struct super_block *sb)
2580{
602586a8
HD
2581 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2582
2583 percpu_counter_destroy(&sbinfo->used_blocks);
2584 kfree(sbinfo);
1da177e4
LT
2585 sb->s_fs_info = NULL;
2586}
2587
2b2af54a 2588int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2589{
2590 struct inode *inode;
0edd73b3 2591 struct shmem_sb_info *sbinfo;
680d794b
AM
2592 int err = -ENOMEM;
2593
2594 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2595 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2596 L1_CACHE_BYTES), GFP_KERNEL);
2597 if (!sbinfo)
2598 return -ENOMEM;
2599
680d794b 2600 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2601 sbinfo->uid = current_fsuid();
2602 sbinfo->gid = current_fsgid();
680d794b 2603 sb->s_fs_info = sbinfo;
1da177e4 2604
0edd73b3 2605#ifdef CONFIG_TMPFS
1da177e4
LT
2606 /*
2607 * Per default we only allow half of the physical ram per
2608 * tmpfs instance, limiting inodes to one per page of lowmem;
2609 * but the internal instance is left unlimited.
2610 */
2611 if (!(sb->s_flags & MS_NOUSER)) {
680d794b
AM
2612 sbinfo->max_blocks = shmem_default_max_blocks();
2613 sbinfo->max_inodes = shmem_default_max_inodes();
2614 if (shmem_parse_options(data, sbinfo, false)) {
2615 err = -EINVAL;
2616 goto failed;
2617 }
1da177e4 2618 }
91828a40 2619 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2620 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2621#else
2622 sb->s_flags |= MS_NOUSER;
2623#endif
2624
0edd73b3 2625 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2626 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2627 goto failed;
680d794b 2628 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2629
285b2c4f 2630 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2631 sb->s_blocksize = PAGE_CACHE_SIZE;
2632 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2633 sb->s_magic = TMPFS_MAGIC;
2634 sb->s_op = &shmem_ops;
cfd95a9c 2635 sb->s_time_gran = 1;
b09e0fa4 2636#ifdef CONFIG_TMPFS_XATTR
39f0247d 2637 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2638#endif
2639#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2640 sb->s_flags |= MS_POSIXACL;
2641#endif
0edd73b3 2642
454abafe 2643 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2644 if (!inode)
2645 goto failed;
680d794b
AM
2646 inode->i_uid = sbinfo->uid;
2647 inode->i_gid = sbinfo->gid;
318ceed0
AV
2648 sb->s_root = d_make_root(inode);
2649 if (!sb->s_root)
48fde701 2650 goto failed;
1da177e4
LT
2651 return 0;
2652
1da177e4
LT
2653failed:
2654 shmem_put_super(sb);
2655 return err;
2656}
2657
fcc234f8 2658static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2659
2660static struct inode *shmem_alloc_inode(struct super_block *sb)
2661{
41ffe5d5
HD
2662 struct shmem_inode_info *info;
2663 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2664 if (!info)
1da177e4 2665 return NULL;
41ffe5d5 2666 return &info->vfs_inode;
1da177e4
LT
2667}
2668
41ffe5d5 2669static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2670{
2671 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2672 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2673}
2674
1da177e4
LT
2675static void shmem_destroy_inode(struct inode *inode)
2676{
09208d15 2677 if (S_ISREG(inode->i_mode))
1da177e4 2678 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2679 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2680}
2681
41ffe5d5 2682static void shmem_init_inode(void *foo)
1da177e4 2683{
41ffe5d5
HD
2684 struct shmem_inode_info *info = foo;
2685 inode_init_once(&info->vfs_inode);
1da177e4
LT
2686}
2687
41ffe5d5 2688static int shmem_init_inodecache(void)
1da177e4
LT
2689{
2690 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2691 sizeof(struct shmem_inode_info),
41ffe5d5 2692 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2693 return 0;
2694}
2695
41ffe5d5 2696static void shmem_destroy_inodecache(void)
1da177e4 2697{
1a1d92c1 2698 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2699}
2700
f5e54d6e 2701static const struct address_space_operations shmem_aops = {
1da177e4 2702 .writepage = shmem_writepage,
76719325 2703 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2704#ifdef CONFIG_TMPFS
800d15a5
NP
2705 .write_begin = shmem_write_begin,
2706 .write_end = shmem_write_end,
1da177e4 2707#endif
304dbdb7 2708 .migratepage = migrate_page,
aa261f54 2709 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2710};
2711
15ad7cdc 2712static const struct file_operations shmem_file_operations = {
1da177e4
LT
2713 .mmap = shmem_mmap,
2714#ifdef CONFIG_TMPFS
f21f8062 2715 .llseek = generic_file_llseek,
bcd78e49 2716 .read = do_sync_read,
5402b976 2717 .write = do_sync_write,
bcd78e49 2718 .aio_read = shmem_file_aio_read,
5402b976 2719 .aio_write = generic_file_aio_write,
1b061d92 2720 .fsync = noop_fsync,
708e3508 2721 .splice_read = shmem_file_splice_read,
ae976416 2722 .splice_write = generic_file_splice_write,
83e4fa9c 2723 .fallocate = shmem_fallocate,
1da177e4
LT
2724#endif
2725};
2726
92e1d5be 2727static const struct inode_operations shmem_inode_operations = {
94c1e62d 2728 .setattr = shmem_setattr,
b09e0fa4
EP
2729#ifdef CONFIG_TMPFS_XATTR
2730 .setxattr = shmem_setxattr,
2731 .getxattr = shmem_getxattr,
2732 .listxattr = shmem_listxattr,
2733 .removexattr = shmem_removexattr,
2734#endif
1da177e4
LT
2735};
2736
92e1d5be 2737static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2738#ifdef CONFIG_TMPFS
2739 .create = shmem_create,
2740 .lookup = simple_lookup,
2741 .link = shmem_link,
2742 .unlink = shmem_unlink,
2743 .symlink = shmem_symlink,
2744 .mkdir = shmem_mkdir,
2745 .rmdir = shmem_rmdir,
2746 .mknod = shmem_mknod,
2747 .rename = shmem_rename,
1da177e4 2748#endif
b09e0fa4
EP
2749#ifdef CONFIG_TMPFS_XATTR
2750 .setxattr = shmem_setxattr,
2751 .getxattr = shmem_getxattr,
2752 .listxattr = shmem_listxattr,
2753 .removexattr = shmem_removexattr,
2754#endif
39f0247d 2755#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2756 .setattr = shmem_setattr,
39f0247d
AG
2757#endif
2758};
2759
92e1d5be 2760static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2761#ifdef CONFIG_TMPFS_XATTR
2762 .setxattr = shmem_setxattr,
2763 .getxattr = shmem_getxattr,
2764 .listxattr = shmem_listxattr,
2765 .removexattr = shmem_removexattr,
2766#endif
39f0247d 2767#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2768 .setattr = shmem_setattr,
39f0247d 2769#endif
1da177e4
LT
2770};
2771
759b9775 2772static const struct super_operations shmem_ops = {
1da177e4
LT
2773 .alloc_inode = shmem_alloc_inode,
2774 .destroy_inode = shmem_destroy_inode,
2775#ifdef CONFIG_TMPFS
2776 .statfs = shmem_statfs,
2777 .remount_fs = shmem_remount_fs,
680d794b 2778 .show_options = shmem_show_options,
1da177e4 2779#endif
1f895f75 2780 .evict_inode = shmem_evict_inode,
1da177e4
LT
2781 .drop_inode = generic_delete_inode,
2782 .put_super = shmem_put_super,
2783};
2784
f0f37e2f 2785static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2786 .fault = shmem_fault,
1da177e4
LT
2787#ifdef CONFIG_NUMA
2788 .set_policy = shmem_set_policy,
2789 .get_policy = shmem_get_policy,
2790#endif
2791};
2792
3c26ff6e
AV
2793static struct dentry *shmem_mount(struct file_system_type *fs_type,
2794 int flags, const char *dev_name, void *data)
1da177e4 2795{
3c26ff6e 2796 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2797}
2798
41ffe5d5 2799static struct file_system_type shmem_fs_type = {
1da177e4
LT
2800 .owner = THIS_MODULE,
2801 .name = "tmpfs",
3c26ff6e 2802 .mount = shmem_mount,
1da177e4
LT
2803 .kill_sb = kill_litter_super,
2804};
1da177e4 2805
41ffe5d5 2806int __init shmem_init(void)
1da177e4
LT
2807{
2808 int error;
2809
e0bf68dd
PZ
2810 error = bdi_init(&shmem_backing_dev_info);
2811 if (error)
2812 goto out4;
2813
41ffe5d5 2814 error = shmem_init_inodecache();
1da177e4
LT
2815 if (error)
2816 goto out3;
2817
41ffe5d5 2818 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2819 if (error) {
2820 printk(KERN_ERR "Could not register tmpfs\n");
2821 goto out2;
2822 }
95dc112a 2823
41ffe5d5
HD
2824 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2825 shmem_fs_type.name, NULL);
1da177e4
LT
2826 if (IS_ERR(shm_mnt)) {
2827 error = PTR_ERR(shm_mnt);
2828 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829 goto out1;
2830 }
2831 return 0;
2832
2833out1:
41ffe5d5 2834 unregister_filesystem(&shmem_fs_type);
1da177e4 2835out2:
41ffe5d5 2836 shmem_destroy_inodecache();
1da177e4 2837out3:
e0bf68dd
PZ
2838 bdi_destroy(&shmem_backing_dev_info);
2839out4:
1da177e4
LT
2840 shm_mnt = ERR_PTR(error);
2841 return error;
2842}
853ac43a
MM
2843
2844#else /* !CONFIG_SHMEM */
2845
2846/*
2847 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848 *
2849 * This is intended for small system where the benefits of the full
2850 * shmem code (swap-backed and resource-limited) are outweighed by
2851 * their complexity. On systems without swap this code should be
2852 * effectively equivalent, but much lighter weight.
2853 */
2854
2855#include <linux/ramfs.h>
2856
41ffe5d5 2857static struct file_system_type shmem_fs_type = {
853ac43a 2858 .name = "tmpfs",
3c26ff6e 2859 .mount = ramfs_mount,
853ac43a
MM
2860 .kill_sb = kill_litter_super,
2861};
2862
41ffe5d5 2863int __init shmem_init(void)
853ac43a 2864{
41ffe5d5 2865 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2866
41ffe5d5 2867 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2868 BUG_ON(IS_ERR(shm_mnt));
2869
2870 return 0;
2871}
2872
41ffe5d5 2873int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2874{
2875 return 0;
2876}
2877
3f96b79a
HD
2878int shmem_lock(struct file *file, int lock, struct user_struct *user)
2879{
2880 return 0;
2881}
2882
24513264
HD
2883void shmem_unlock_mapping(struct address_space *mapping)
2884{
2885}
2886
41ffe5d5 2887void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2888{
41ffe5d5 2889 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2890}
2891EXPORT_SYMBOL_GPL(shmem_truncate_range);
2892
0b0a0806
HD
2893#define shmem_vm_ops generic_file_vm_ops
2894#define shmem_file_operations ramfs_file_operations
454abafe 2895#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2896#define shmem_acct_size(flags, size) 0
2897#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2898
2899#endif /* CONFIG_SHMEM */
2900
2901/* common code */
1da177e4 2902
46711810 2903/**
1da177e4 2904 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2905 * @name: name for dentry (to be seen in /proc/<pid>/maps
2906 * @size: size to be set for the file
0b0a0806 2907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2908 */
168f5ac6 2909struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
2910{
2911 int error;
2912 struct file *file;
2913 struct inode *inode;
2c48b9c4
AV
2914 struct path path;
2915 struct dentry *root;
1da177e4
LT
2916 struct qstr this;
2917
2918 if (IS_ERR(shm_mnt))
2919 return (void *)shm_mnt;
2920
285b2c4f 2921 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2922 return ERR_PTR(-EINVAL);
2923
2924 if (shmem_acct_size(flags, size))
2925 return ERR_PTR(-ENOMEM);
2926
2927 error = -ENOMEM;
2928 this.name = name;
2929 this.len = strlen(name);
2930 this.hash = 0; /* will go */
2931 root = shm_mnt->mnt_root;
2c48b9c4
AV
2932 path.dentry = d_alloc(root, &this);
2933 if (!path.dentry)
1da177e4 2934 goto put_memory;
2c48b9c4 2935 path.mnt = mntget(shm_mnt);
1da177e4 2936
1da177e4 2937 error = -ENOSPC;
454abafe 2938 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2939 if (!inode)
4b42af81 2940 goto put_dentry;
1da177e4 2941
2c48b9c4 2942 d_instantiate(path.dentry, inode);
1da177e4 2943 inode->i_size = size;
6d6b77f1 2944 clear_nlink(inode); /* It is unlinked */
853ac43a
MM
2945#ifndef CONFIG_MMU
2946 error = ramfs_nommu_expand_for_mapping(inode, size);
2947 if (error)
4b42af81 2948 goto put_dentry;
853ac43a 2949#endif
4b42af81
AV
2950
2951 error = -ENFILE;
2c48b9c4 2952 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
2953 &shmem_file_operations);
2954 if (!file)
2955 goto put_dentry;
2956
1da177e4
LT
2957 return file;
2958
1da177e4 2959put_dentry:
2c48b9c4 2960 path_put(&path);
1da177e4
LT
2961put_memory:
2962 shmem_unacct_size(flags, size);
2963 return ERR_PTR(error);
2964}
395e0ddc 2965EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2966
46711810 2967/**
1da177e4 2968 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2969 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2970 */
2971int shmem_zero_setup(struct vm_area_struct *vma)
2972{
2973 struct file *file;
2974 loff_t size = vma->vm_end - vma->vm_start;
2975
2976 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2977 if (IS_ERR(file))
2978 return PTR_ERR(file);
2979
2980 if (vma->vm_file)
2981 fput(vma->vm_file);
2982 vma->vm_file = file;
2983 vma->vm_ops = &shmem_vm_ops;
bee4c36a 2984 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
2985 return 0;
2986}
d9d90e5e
HD
2987
2988/**
2989 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2990 * @mapping: the page's address_space
2991 * @index: the page index
2992 * @gfp: the page allocator flags to use if allocating
2993 *
2994 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2995 * with any new page allocations done using the specified allocation flags.
2996 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2997 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2998 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2999 *
68da9f05
HD
3000 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3001 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3002 */
3003struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3004 pgoff_t index, gfp_t gfp)
3005{
68da9f05
HD
3006#ifdef CONFIG_SHMEM
3007 struct inode *inode = mapping->host;
9276aad6 3008 struct page *page;
68da9f05
HD
3009 int error;
3010
3011 BUG_ON(mapping->a_ops != &shmem_aops);
3012 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3013 if (error)
3014 page = ERR_PTR(error);
3015 else
3016 unlock_page(page);
3017 return page;
3018#else
3019 /*
3020 * The tiny !SHMEM case uses ramfs without swap
3021 */
d9d90e5e 3022 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3023#endif
d9d90e5e
HD
3024}
3025EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);