]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
rmap: add argument to charge compound page
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
dd56b046
MG
76#include "internal.h"
77
caefba17 78#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
79#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
1da177e4
LT
81/* Pretend that each entry is of this size in directory's i_size */
82#define BOGO_DIRENT_SIZE 20
83
69f07ec9
HD
84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85#define SHORT_SYMLINK_LEN 128
86
1aac1400 87/*
f00cdc6d
HD
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
91 */
92struct shmem_falloc {
8e205f77 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98};
99
285b2c4f 100/* Flag allocation requirements to shmem_getpage */
1da177e4 101enum sgp_type {
1da177e4
LT
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b
AM
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
bde05d1c
HD
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176static inline int shmem_acct_block(unsigned long flags)
177{
0b0a0806 178 return (flags & VM_NORESERVE) ?
191c5424 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
180}
181
182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183{
0b0a0806 184 if (flags & VM_NORESERVE)
1da177e4
LT
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186}
187
759b9775 188static const struct super_operations shmem_ops;
f5e54d6e 189static const struct address_space_operations shmem_aops;
15ad7cdc 190static const struct file_operations shmem_file_operations;
92e1d5be
AV
191static const struct inode_operations shmem_inode_operations;
192static const struct inode_operations shmem_dir_inode_operations;
193static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 194static const struct vm_operations_struct shmem_vm_ops;
1da177e4 195
1da177e4 196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
6a15a370
VB
362/*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 364 * given offsets are swapped out.
6a15a370
VB
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
48131e03
VB
369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
6a15a370 371{
6a15a370
VB
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
48131e03 375 unsigned long swapped = 0;
6a15a370
VB
376
377 rcu_read_lock();
378
379restart:
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
382 break;
383
384 page = radix_tree_deref_slot(slot);
385
386 /*
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
389 * restarts.
390 */
391 if (radix_tree_deref_retry(page))
392 goto restart;
393
394 if (radix_tree_exceptional_entry(page))
395 swapped++;
396
397 if (need_resched()) {
398 cond_resched_rcu();
399 start = iter.index + 1;
400 goto restart;
401 }
402 }
403
404 rcu_read_unlock();
405
406 return swapped << PAGE_SHIFT;
407}
408
48131e03
VB
409/*
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
412 *
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
415 */
416unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417{
418 struct inode *inode = file_inode(vma->vm_file);
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 struct address_space *mapping = inode->i_mapping;
421 unsigned long swapped;
422
423 /* Be careful as we don't hold info->lock */
424 swapped = READ_ONCE(info->swapped);
425
426 /*
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
429 * already track.
430 */
431 if (!swapped)
432 return 0;
433
434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 return swapped << PAGE_SHIFT;
436
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping,
439 linear_page_index(vma, vma->vm_start),
440 linear_page_index(vma, vma->vm_end));
441}
442
24513264
HD
443/*
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445 */
446void shmem_unlock_mapping(struct address_space *mapping)
447{
448 struct pagevec pvec;
449 pgoff_t indices[PAGEVEC_SIZE];
450 pgoff_t index = 0;
451
452 pagevec_init(&pvec, 0);
453 /*
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455 */
456 while (!mapping_unevictable(mapping)) {
457 /*
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460 */
0cd6144a
JW
461 pvec.nr = find_get_entries(mapping, index,
462 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
463 if (!pvec.nr)
464 break;
465 index = indices[pvec.nr - 1] + 1;
0cd6144a 466 pagevec_remove_exceptionals(&pvec);
24513264
HD
467 check_move_unevictable_pages(pvec.pages, pvec.nr);
468 pagevec_release(&pvec);
469 cond_resched();
470 }
7a5d0fbb
HD
471}
472
473/*
474 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 476 */
1635f6a7
HD
477static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478 bool unfalloc)
1da177e4 479{
285b2c4f 480 struct address_space *mapping = inode->i_mapping;
1da177e4 481 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 486 struct pagevec pvec;
7a5d0fbb
HD
487 pgoff_t indices[PAGEVEC_SIZE];
488 long nr_swaps_freed = 0;
285b2c4f 489 pgoff_t index;
bda97eab
HD
490 int i;
491
83e4fa9c
HD
492 if (lend == -1)
493 end = -1; /* unsigned, so actually very big */
bda97eab
HD
494
495 pagevec_init(&pvec, 0);
496 index = start;
83e4fa9c 497 while (index < end) {
0cd6144a
JW
498 pvec.nr = find_get_entries(mapping, index,
499 min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 pvec.pages, indices);
7a5d0fbb
HD
501 if (!pvec.nr)
502 break;
bda97eab
HD
503 for (i = 0; i < pagevec_count(&pvec); i++) {
504 struct page *page = pvec.pages[i];
505
7a5d0fbb 506 index = indices[i];
83e4fa9c 507 if (index >= end)
bda97eab
HD
508 break;
509
7a5d0fbb 510 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
511 if (unfalloc)
512 continue;
7a5d0fbb
HD
513 nr_swaps_freed += !shmem_free_swap(mapping,
514 index, page);
bda97eab 515 continue;
7a5d0fbb
HD
516 }
517
518 if (!trylock_page(page))
bda97eab 519 continue;
1635f6a7
HD
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
309381fe 522 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
523 truncate_inode_page(mapping, page);
524 }
bda97eab 525 }
bda97eab
HD
526 unlock_page(page);
527 }
0cd6144a 528 pagevec_remove_exceptionals(&pvec);
24513264 529 pagevec_release(&pvec);
bda97eab
HD
530 cond_resched();
531 index++;
532 }
1da177e4 533
83e4fa9c 534 if (partial_start) {
bda97eab
HD
535 struct page *page = NULL;
536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537 if (page) {
83e4fa9c
HD
538 unsigned int top = PAGE_CACHE_SIZE;
539 if (start > end) {
540 top = partial_end;
541 partial_end = 0;
542 }
543 zero_user_segment(page, partial_start, top);
544 set_page_dirty(page);
545 unlock_page(page);
546 page_cache_release(page);
547 }
548 }
549 if (partial_end) {
550 struct page *page = NULL;
551 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552 if (page) {
553 zero_user_segment(page, 0, partial_end);
bda97eab
HD
554 set_page_dirty(page);
555 unlock_page(page);
556 page_cache_release(page);
557 }
558 }
83e4fa9c
HD
559 if (start >= end)
560 return;
bda97eab
HD
561
562 index = start;
b1a36650 563 while (index < end) {
bda97eab 564 cond_resched();
0cd6144a
JW
565
566 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 567 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 568 pvec.pages, indices);
7a5d0fbb 569 if (!pvec.nr) {
b1a36650
HD
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index == start || end != -1)
bda97eab 572 break;
b1a36650 573 /* But if truncating, restart to make sure all gone */
bda97eab
HD
574 index = start;
575 continue;
576 }
bda97eab
HD
577 for (i = 0; i < pagevec_count(&pvec); i++) {
578 struct page *page = pvec.pages[i];
579
7a5d0fbb 580 index = indices[i];
83e4fa9c 581 if (index >= end)
bda97eab
HD
582 break;
583
7a5d0fbb 584 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
585 if (unfalloc)
586 continue;
b1a36650
HD
587 if (shmem_free_swap(mapping, index, page)) {
588 /* Swap was replaced by page: retry */
589 index--;
590 break;
591 }
592 nr_swaps_freed++;
7a5d0fbb
HD
593 continue;
594 }
595
bda97eab 596 lock_page(page);
1635f6a7
HD
597 if (!unfalloc || !PageUptodate(page)) {
598 if (page->mapping == mapping) {
309381fe 599 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 600 truncate_inode_page(mapping, page);
b1a36650
HD
601 } else {
602 /* Page was replaced by swap: retry */
603 unlock_page(page);
604 index--;
605 break;
1635f6a7 606 }
7a5d0fbb 607 }
bda97eab
HD
608 unlock_page(page);
609 }
0cd6144a 610 pagevec_remove_exceptionals(&pvec);
24513264 611 pagevec_release(&pvec);
bda97eab
HD
612 index++;
613 }
94c1e62d 614
1da177e4 615 spin_lock(&info->lock);
7a5d0fbb 616 info->swapped -= nr_swaps_freed;
1da177e4
LT
617 shmem_recalc_inode(inode);
618 spin_unlock(&info->lock);
1635f6a7 619}
1da177e4 620
1635f6a7
HD
621void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622{
623 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 624 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 625}
94c1e62d 626EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 627
44a30220
YZ
628static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629 struct kstat *stat)
630{
631 struct inode *inode = dentry->d_inode;
632 struct shmem_inode_info *info = SHMEM_I(inode);
633
d0424c42
HD
634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 spin_lock(&info->lock);
636 shmem_recalc_inode(inode);
637 spin_unlock(&info->lock);
638 }
44a30220 639 generic_fillattr(inode, stat);
44a30220
YZ
640 return 0;
641}
642
94c1e62d 643static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 644{
75c3cfa8 645 struct inode *inode = d_inode(dentry);
40e041a2 646 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
647 int error;
648
db78b877
CH
649 error = inode_change_ok(inode, attr);
650 if (error)
651 return error;
652
94c1e62d
HD
653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 loff_t oldsize = inode->i_size;
655 loff_t newsize = attr->ia_size;
3889e6e7 656
40e041a2
DH
657 /* protected by i_mutex */
658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660 return -EPERM;
661
94c1e62d 662 if (newsize != oldsize) {
77142517
KK
663 error = shmem_reacct_size(SHMEM_I(inode)->flags,
664 oldsize, newsize);
665 if (error)
666 return error;
94c1e62d
HD
667 i_size_write(inode, newsize);
668 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669 }
afa2db2f 670 if (newsize <= oldsize) {
94c1e62d 671 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
672 if (oldsize > holebegin)
673 unmap_mapping_range(inode->i_mapping,
674 holebegin, 0, 1);
675 if (info->alloced)
676 shmem_truncate_range(inode,
677 newsize, (loff_t)-1);
94c1e62d 678 /* unmap again to remove racily COWed private pages */
d0424c42
HD
679 if (oldsize > holebegin)
680 unmap_mapping_range(inode->i_mapping,
681 holebegin, 0, 1);
94c1e62d 682 }
1da177e4
LT
683 }
684
db78b877 685 setattr_copy(inode, attr);
db78b877 686 if (attr->ia_valid & ATTR_MODE)
feda821e 687 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
688 return error;
689}
690
1f895f75 691static void shmem_evict_inode(struct inode *inode)
1da177e4 692{
1da177e4
LT
693 struct shmem_inode_info *info = SHMEM_I(inode);
694
3889e6e7 695 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
696 shmem_unacct_size(info->flags, inode->i_size);
697 inode->i_size = 0;
3889e6e7 698 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 699 if (!list_empty(&info->swaplist)) {
cb5f7b9a 700 mutex_lock(&shmem_swaplist_mutex);
1da177e4 701 list_del_init(&info->swaplist);
cb5f7b9a 702 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 703 }
69f07ec9
HD
704 } else
705 kfree(info->symlink);
b09e0fa4 706
38f38657 707 simple_xattrs_free(&info->xattrs);
0f3c42f5 708 WARN_ON(inode->i_blocks);
5b04c689 709 shmem_free_inode(inode->i_sb);
dbd5768f 710 clear_inode(inode);
1da177e4
LT
711}
712
46f65ec1
HD
713/*
714 * If swap found in inode, free it and move page from swapcache to filecache.
715 */
41ffe5d5 716static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 717 swp_entry_t swap, struct page **pagep)
1da177e4 718{
285b2c4f 719 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 720 void *radswap;
41ffe5d5 721 pgoff_t index;
bde05d1c
HD
722 gfp_t gfp;
723 int error = 0;
1da177e4 724
46f65ec1 725 radswap = swp_to_radix_entry(swap);
e504f3fd 726 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 727 if (index == -1)
00501b53 728 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 729
1b1b32f2
HD
730 /*
731 * Move _head_ to start search for next from here.
1f895f75 732 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 733 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 734 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
735 */
736 if (shmem_swaplist.next != &info->swaplist)
737 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 738
bde05d1c
HD
739 gfp = mapping_gfp_mask(mapping);
740 if (shmem_should_replace_page(*pagep, gfp)) {
741 mutex_unlock(&shmem_swaplist_mutex);
742 error = shmem_replace_page(pagep, gfp, info, index);
743 mutex_lock(&shmem_swaplist_mutex);
744 /*
745 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
746 * allocation, but the inode might have been freed while we
747 * dropped it: although a racing shmem_evict_inode() cannot
748 * complete without emptying the radix_tree, our page lock
749 * on this swapcache page is not enough to prevent that -
750 * free_swap_and_cache() of our swap entry will only
751 * trylock_page(), removing swap from radix_tree whatever.
752 *
753 * We must not proceed to shmem_add_to_page_cache() if the
754 * inode has been freed, but of course we cannot rely on
755 * inode or mapping or info to check that. However, we can
756 * safely check if our swap entry is still in use (and here
757 * it can't have got reused for another page): if it's still
758 * in use, then the inode cannot have been freed yet, and we
759 * can safely proceed (if it's no longer in use, that tells
760 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
761 */
762 if (!page_swapcount(*pagep))
763 error = -ENOENT;
764 }
765
d13d1443 766 /*
778dd893
HD
767 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768 * but also to hold up shmem_evict_inode(): so inode cannot be freed
769 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 770 */
bde05d1c
HD
771 if (!error)
772 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 773 radswap);
48f170fb 774 if (error != -ENOMEM) {
46f65ec1
HD
775 /*
776 * Truncation and eviction use free_swap_and_cache(), which
777 * only does trylock page: if we raced, best clean up here.
778 */
bde05d1c
HD
779 delete_from_swap_cache(*pagep);
780 set_page_dirty(*pagep);
46f65ec1
HD
781 if (!error) {
782 spin_lock(&info->lock);
783 info->swapped--;
784 spin_unlock(&info->lock);
785 swap_free(swap);
786 }
1da177e4 787 }
2e0e26c7 788 return error;
1da177e4
LT
789}
790
791/*
46f65ec1 792 * Search through swapped inodes to find and replace swap by page.
1da177e4 793 */
41ffe5d5 794int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 795{
41ffe5d5 796 struct list_head *this, *next;
1da177e4 797 struct shmem_inode_info *info;
00501b53 798 struct mem_cgroup *memcg;
bde05d1c
HD
799 int error = 0;
800
801 /*
802 * There's a faint possibility that swap page was replaced before
0142ef6c 803 * caller locked it: caller will come back later with the right page.
bde05d1c 804 */
0142ef6c 805 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 806 goto out;
778dd893
HD
807
808 /*
809 * Charge page using GFP_KERNEL while we can wait, before taking
810 * the shmem_swaplist_mutex which might hold up shmem_writepage().
811 * Charged back to the user (not to caller) when swap account is used.
778dd893 812 */
00501b53 813 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
814 if (error)
815 goto out;
46f65ec1 816 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 817 error = -EAGAIN;
1da177e4 818
cb5f7b9a 819 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
820 list_for_each_safe(this, next, &shmem_swaplist) {
821 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 822 if (info->swapped)
00501b53 823 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
824 else
825 list_del_init(&info->swaplist);
cb5f7b9a 826 cond_resched();
00501b53 827 if (error != -EAGAIN)
778dd893 828 break;
00501b53 829 /* found nothing in this: move on to search the next */
1da177e4 830 }
cb5f7b9a 831 mutex_unlock(&shmem_swaplist_mutex);
778dd893 832
00501b53
JW
833 if (error) {
834 if (error != -ENOMEM)
835 error = 0;
836 mem_cgroup_cancel_charge(page, memcg);
837 } else
838 mem_cgroup_commit_charge(page, memcg, true);
778dd893 839out:
aaa46865
HD
840 unlock_page(page);
841 page_cache_release(page);
778dd893 842 return error;
1da177e4
LT
843}
844
845/*
846 * Move the page from the page cache to the swap cache.
847 */
848static int shmem_writepage(struct page *page, struct writeback_control *wbc)
849{
850 struct shmem_inode_info *info;
1da177e4 851 struct address_space *mapping;
1da177e4 852 struct inode *inode;
6922c0c7
HD
853 swp_entry_t swap;
854 pgoff_t index;
1da177e4
LT
855
856 BUG_ON(!PageLocked(page));
1da177e4
LT
857 mapping = page->mapping;
858 index = page->index;
859 inode = mapping->host;
860 info = SHMEM_I(inode);
861 if (info->flags & VM_LOCKED)
862 goto redirty;
d9fe526a 863 if (!total_swap_pages)
1da177e4
LT
864 goto redirty;
865
d9fe526a 866 /*
97b713ba
CH
867 * Our capabilities prevent regular writeback or sync from ever calling
868 * shmem_writepage; but a stacking filesystem might use ->writepage of
869 * its underlying filesystem, in which case tmpfs should write out to
870 * swap only in response to memory pressure, and not for the writeback
871 * threads or sync.
d9fe526a 872 */
48f170fb
HD
873 if (!wbc->for_reclaim) {
874 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
875 goto redirty;
876 }
1635f6a7
HD
877
878 /*
879 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880 * value into swapfile.c, the only way we can correctly account for a
881 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
882 *
883 * That's okay for a page already fallocated earlier, but if we have
884 * not yet completed the fallocation, then (a) we want to keep track
885 * of this page in case we have to undo it, and (b) it may not be a
886 * good idea to continue anyway, once we're pushing into swap. So
887 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
888 */
889 if (!PageUptodate(page)) {
1aac1400
HD
890 if (inode->i_private) {
891 struct shmem_falloc *shmem_falloc;
892 spin_lock(&inode->i_lock);
893 shmem_falloc = inode->i_private;
894 if (shmem_falloc &&
8e205f77 895 !shmem_falloc->waitq &&
1aac1400
HD
896 index >= shmem_falloc->start &&
897 index < shmem_falloc->next)
898 shmem_falloc->nr_unswapped++;
899 else
900 shmem_falloc = NULL;
901 spin_unlock(&inode->i_lock);
902 if (shmem_falloc)
903 goto redirty;
904 }
1635f6a7
HD
905 clear_highpage(page);
906 flush_dcache_page(page);
907 SetPageUptodate(page);
908 }
909
48f170fb
HD
910 swap = get_swap_page();
911 if (!swap.val)
912 goto redirty;
d9fe526a 913
b1dea800
HD
914 /*
915 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
916 * if it's not already there. Do it now before the page is
917 * moved to swap cache, when its pagelock no longer protects
b1dea800 918 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
919 * we've incremented swapped, because shmem_unuse_inode() will
920 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 921 */
48f170fb
HD
922 mutex_lock(&shmem_swaplist_mutex);
923 if (list_empty(&info->swaplist))
924 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 925
48f170fb 926 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
6922c0c7 927 spin_lock(&info->lock);
6922c0c7 928 shmem_recalc_inode(inode);
267a4c76 929 info->swapped++;
826267cf 930 spin_unlock(&info->lock);
6922c0c7 931
267a4c76
HD
932 swap_shmem_alloc(swap);
933 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
934
6922c0c7 935 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 936 BUG_ON(page_mapped(page));
9fab5619 937 swap_writepage(page, wbc);
1da177e4
LT
938 return 0;
939 }
940
6922c0c7 941 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 942 swapcache_free(swap);
1da177e4
LT
943redirty:
944 set_page_dirty(page);
d9fe526a
HD
945 if (wbc->for_reclaim)
946 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
947 unlock_page(page);
948 return 0;
1da177e4
LT
949}
950
951#ifdef CONFIG_NUMA
680d794b 952#ifdef CONFIG_TMPFS
71fe804b 953static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 954{
095f1fc4 955 char buffer[64];
680d794b 956
71fe804b 957 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 958 return; /* show nothing */
680d794b 959
a7a88b23 960 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
961
962 seq_printf(seq, ",mpol=%s", buffer);
680d794b 963}
71fe804b
LS
964
965static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
966{
967 struct mempolicy *mpol = NULL;
968 if (sbinfo->mpol) {
969 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
970 mpol = sbinfo->mpol;
971 mpol_get(mpol);
972 spin_unlock(&sbinfo->stat_lock);
973 }
974 return mpol;
975}
680d794b
AM
976#endif /* CONFIG_TMPFS */
977
41ffe5d5
HD
978static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
979 struct shmem_inode_info *info, pgoff_t index)
1da177e4 980{
1da177e4 981 struct vm_area_struct pvma;
18a2f371 982 struct page *page;
52cd3b07 983
1da177e4 984 /* Create a pseudo vma that just contains the policy */
c4cc6d07 985 pvma.vm_start = 0;
09c231cb
NZ
986 /* Bias interleave by inode number to distribute better across nodes */
987 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 988 pvma.vm_ops = NULL;
18a2f371
MG
989 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
990
991 page = swapin_readahead(swap, gfp, &pvma, 0);
992
993 /* Drop reference taken by mpol_shared_policy_lookup() */
994 mpol_cond_put(pvma.vm_policy);
995
996 return page;
1da177e4
LT
997}
998
02098fea 999static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1000 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1001{
1002 struct vm_area_struct pvma;
18a2f371 1003 struct page *page;
1da177e4 1004
c4cc6d07
HD
1005 /* Create a pseudo vma that just contains the policy */
1006 pvma.vm_start = 0;
09c231cb
NZ
1007 /* Bias interleave by inode number to distribute better across nodes */
1008 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 1009 pvma.vm_ops = NULL;
41ffe5d5 1010 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 1011
18a2f371
MG
1012 page = alloc_page_vma(gfp, &pvma, 0);
1013
1014 /* Drop reference taken by mpol_shared_policy_lookup() */
1015 mpol_cond_put(pvma.vm_policy);
1016
1017 return page;
1da177e4 1018}
680d794b
AM
1019#else /* !CONFIG_NUMA */
1020#ifdef CONFIG_TMPFS
41ffe5d5 1021static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
1022{
1023}
1024#endif /* CONFIG_TMPFS */
1025
41ffe5d5
HD
1026static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1027 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1028{
41ffe5d5 1029 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
1030}
1031
02098fea 1032static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1033 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1034{
e84e2e13 1035 return alloc_page(gfp);
1da177e4 1036}
680d794b 1037#endif /* CONFIG_NUMA */
1da177e4 1038
71fe804b
LS
1039#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1040static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1041{
1042 return NULL;
1043}
1044#endif
1045
bde05d1c
HD
1046/*
1047 * When a page is moved from swapcache to shmem filecache (either by the
1048 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1049 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1050 * ignorance of the mapping it belongs to. If that mapping has special
1051 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1052 * we may need to copy to a suitable page before moving to filecache.
1053 *
1054 * In a future release, this may well be extended to respect cpuset and
1055 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1056 * but for now it is a simple matter of zone.
1057 */
1058static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1059{
1060 return page_zonenum(page) > gfp_zone(gfp);
1061}
1062
1063static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1064 struct shmem_inode_info *info, pgoff_t index)
1065{
1066 struct page *oldpage, *newpage;
1067 struct address_space *swap_mapping;
1068 pgoff_t swap_index;
1069 int error;
1070
1071 oldpage = *pagep;
1072 swap_index = page_private(oldpage);
1073 swap_mapping = page_mapping(oldpage);
1074
1075 /*
1076 * We have arrived here because our zones are constrained, so don't
1077 * limit chance of success by further cpuset and node constraints.
1078 */
1079 gfp &= ~GFP_CONSTRAINT_MASK;
1080 newpage = shmem_alloc_page(gfp, info, index);
1081 if (!newpage)
1082 return -ENOMEM;
bde05d1c 1083
bde05d1c
HD
1084 page_cache_get(newpage);
1085 copy_highpage(newpage, oldpage);
0142ef6c 1086 flush_dcache_page(newpage);
bde05d1c 1087
48c935ad 1088 __SetPageLocked(newpage);
bde05d1c 1089 SetPageUptodate(newpage);
bde05d1c 1090 SetPageSwapBacked(newpage);
bde05d1c 1091 set_page_private(newpage, swap_index);
bde05d1c
HD
1092 SetPageSwapCache(newpage);
1093
1094 /*
1095 * Our caller will very soon move newpage out of swapcache, but it's
1096 * a nice clean interface for us to replace oldpage by newpage there.
1097 */
1098 spin_lock_irq(&swap_mapping->tree_lock);
1099 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1100 newpage);
0142ef6c
HD
1101 if (!error) {
1102 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1103 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1104 }
bde05d1c 1105 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1106
0142ef6c
HD
1107 if (unlikely(error)) {
1108 /*
1109 * Is this possible? I think not, now that our callers check
1110 * both PageSwapCache and page_private after getting page lock;
1111 * but be defensive. Reverse old to newpage for clear and free.
1112 */
1113 oldpage = newpage;
1114 } else {
45637bab 1115 mem_cgroup_replace_page(oldpage, newpage);
0142ef6c
HD
1116 lru_cache_add_anon(newpage);
1117 *pagep = newpage;
1118 }
bde05d1c
HD
1119
1120 ClearPageSwapCache(oldpage);
1121 set_page_private(oldpage, 0);
1122
1123 unlock_page(oldpage);
1124 page_cache_release(oldpage);
1125 page_cache_release(oldpage);
0142ef6c 1126 return error;
bde05d1c
HD
1127}
1128
1da177e4 1129/*
68da9f05 1130 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1131 *
1132 * If we allocate a new one we do not mark it dirty. That's up to the
1133 * vm. If we swap it in we mark it dirty since we also free the swap
1134 * entry since a page cannot live in both the swap and page cache
1135 */
41ffe5d5 1136static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1137 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1138{
1139 struct address_space *mapping = inode->i_mapping;
54af6042 1140 struct shmem_inode_info *info;
1da177e4 1141 struct shmem_sb_info *sbinfo;
00501b53 1142 struct mem_cgroup *memcg;
27ab7006 1143 struct page *page;
1da177e4
LT
1144 swp_entry_t swap;
1145 int error;
54af6042 1146 int once = 0;
1635f6a7 1147 int alloced = 0;
1da177e4 1148
41ffe5d5 1149 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1150 return -EFBIG;
1da177e4 1151repeat:
54af6042 1152 swap.val = 0;
0cd6144a 1153 page = find_lock_entry(mapping, index);
54af6042
HD
1154 if (radix_tree_exceptional_entry(page)) {
1155 swap = radix_to_swp_entry(page);
1156 page = NULL;
1157 }
1158
1635f6a7 1159 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1160 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1161 error = -EINVAL;
267a4c76 1162 goto unlock;
54af6042
HD
1163 }
1164
66d2f4d2
HD
1165 if (page && sgp == SGP_WRITE)
1166 mark_page_accessed(page);
1167
1635f6a7
HD
1168 /* fallocated page? */
1169 if (page && !PageUptodate(page)) {
1170 if (sgp != SGP_READ)
1171 goto clear;
1172 unlock_page(page);
1173 page_cache_release(page);
1174 page = NULL;
1175 }
54af6042 1176 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1177 *pagep = page;
1178 return 0;
27ab7006
HD
1179 }
1180
1181 /*
54af6042
HD
1182 * Fast cache lookup did not find it:
1183 * bring it back from swap or allocate.
27ab7006 1184 */
54af6042
HD
1185 info = SHMEM_I(inode);
1186 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1187
1da177e4
LT
1188 if (swap.val) {
1189 /* Look it up and read it in.. */
27ab7006
HD
1190 page = lookup_swap_cache(swap);
1191 if (!page) {
1da177e4 1192 /* here we actually do the io */
68da9f05
HD
1193 if (fault_type)
1194 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1195 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1196 if (!page) {
54af6042
HD
1197 error = -ENOMEM;
1198 goto failed;
1da177e4 1199 }
1da177e4
LT
1200 }
1201
1202 /* We have to do this with page locked to prevent races */
54af6042 1203 lock_page(page);
0142ef6c 1204 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1205 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1206 error = -EEXIST; /* try again */
d1899228 1207 goto unlock;
bde05d1c 1208 }
27ab7006 1209 if (!PageUptodate(page)) {
1da177e4 1210 error = -EIO;
54af6042 1211 goto failed;
1da177e4 1212 }
54af6042
HD
1213 wait_on_page_writeback(page);
1214
bde05d1c
HD
1215 if (shmem_should_replace_page(page, gfp)) {
1216 error = shmem_replace_page(&page, gfp, info, index);
1217 if (error)
1218 goto failed;
1da177e4 1219 }
27ab7006 1220
00501b53 1221 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1222 if (!error) {
aa3b1895 1223 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1224 swp_to_radix_entry(swap));
215c02bc
HD
1225 /*
1226 * We already confirmed swap under page lock, and make
1227 * no memory allocation here, so usually no possibility
1228 * of error; but free_swap_and_cache() only trylocks a
1229 * page, so it is just possible that the entry has been
1230 * truncated or holepunched since swap was confirmed.
1231 * shmem_undo_range() will have done some of the
1232 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1233 * the rest.
215c02bc
HD
1234 * Reset swap.val? No, leave it so "failed" goes back to
1235 * "repeat": reading a hole and writing should succeed.
1236 */
00501b53
JW
1237 if (error) {
1238 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1239 delete_from_swap_cache(page);
00501b53 1240 }
d1899228 1241 }
54af6042
HD
1242 if (error)
1243 goto failed;
1244
00501b53
JW
1245 mem_cgroup_commit_charge(page, memcg, true);
1246
54af6042 1247 spin_lock(&info->lock);
285b2c4f 1248 info->swapped--;
54af6042 1249 shmem_recalc_inode(inode);
27ab7006 1250 spin_unlock(&info->lock);
54af6042 1251
66d2f4d2
HD
1252 if (sgp == SGP_WRITE)
1253 mark_page_accessed(page);
1254
54af6042 1255 delete_from_swap_cache(page);
27ab7006
HD
1256 set_page_dirty(page);
1257 swap_free(swap);
1258
54af6042
HD
1259 } else {
1260 if (shmem_acct_block(info->flags)) {
1261 error = -ENOSPC;
1262 goto failed;
1da177e4 1263 }
0edd73b3 1264 if (sbinfo->max_blocks) {
fc5da22a 1265 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1266 sbinfo->max_blocks) >= 0) {
1267 error = -ENOSPC;
1268 goto unacct;
1269 }
7e496299 1270 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1271 }
1da177e4 1272
54af6042
HD
1273 page = shmem_alloc_page(gfp, info, index);
1274 if (!page) {
1275 error = -ENOMEM;
1276 goto decused;
1da177e4
LT
1277 }
1278
07a42788 1279 __SetPageSwapBacked(page);
48c935ad 1280 __SetPageLocked(page);
66d2f4d2 1281 if (sgp == SGP_WRITE)
eb39d618 1282 __SetPageReferenced(page);
66d2f4d2 1283
00501b53 1284 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1285 if (error)
1286 goto decused;
5e4c0d97 1287 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1288 if (!error) {
1289 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1290 NULL);
b065b432
HD
1291 radix_tree_preload_end();
1292 }
1293 if (error) {
00501b53 1294 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1295 goto decused;
1296 }
00501b53 1297 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1298 lru_cache_add_anon(page);
1299
1300 spin_lock(&info->lock);
1da177e4 1301 info->alloced++;
54af6042
HD
1302 inode->i_blocks += BLOCKS_PER_PAGE;
1303 shmem_recalc_inode(inode);
1da177e4 1304 spin_unlock(&info->lock);
1635f6a7 1305 alloced = true;
54af6042 1306
ec9516fb 1307 /*
1635f6a7
HD
1308 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1309 */
1310 if (sgp == SGP_FALLOC)
1311 sgp = SGP_WRITE;
1312clear:
1313 /*
1314 * Let SGP_WRITE caller clear ends if write does not fill page;
1315 * but SGP_FALLOC on a page fallocated earlier must initialize
1316 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1317 */
1318 if (sgp != SGP_WRITE) {
1319 clear_highpage(page);
1320 flush_dcache_page(page);
1321 SetPageUptodate(page);
1322 }
a0ee5ec5 1323 if (sgp == SGP_DIRTY)
27ab7006 1324 set_page_dirty(page);
1da177e4 1325 }
bde05d1c 1326
54af6042 1327 /* Perhaps the file has been truncated since we checked */
1635f6a7 1328 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042 1329 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1330 if (alloced) {
1331 ClearPageDirty(page);
1332 delete_from_page_cache(page);
1333 spin_lock(&info->lock);
1334 shmem_recalc_inode(inode);
1335 spin_unlock(&info->lock);
1336 }
54af6042 1337 error = -EINVAL;
267a4c76 1338 goto unlock;
e83c32e8 1339 }
54af6042
HD
1340 *pagep = page;
1341 return 0;
1da177e4 1342
59a16ead 1343 /*
54af6042 1344 * Error recovery.
59a16ead 1345 */
54af6042
HD
1346decused:
1347 if (sbinfo->max_blocks)
1348 percpu_counter_add(&sbinfo->used_blocks, -1);
1349unacct:
1350 shmem_unacct_blocks(info->flags, 1);
1351failed:
267a4c76 1352 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1353 error = -EEXIST;
1354unlock:
27ab7006 1355 if (page) {
54af6042 1356 unlock_page(page);
27ab7006 1357 page_cache_release(page);
54af6042
HD
1358 }
1359 if (error == -ENOSPC && !once++) {
1360 info = SHMEM_I(inode);
1361 spin_lock(&info->lock);
1362 shmem_recalc_inode(inode);
1363 spin_unlock(&info->lock);
27ab7006 1364 goto repeat;
ff36b801 1365 }
d1899228 1366 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1367 goto repeat;
1368 return error;
1da177e4
LT
1369}
1370
d0217ac0 1371static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1372{
496ad9aa 1373 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1374 int error;
68da9f05 1375 int ret = VM_FAULT_LOCKED;
1da177e4 1376
f00cdc6d
HD
1377 /*
1378 * Trinity finds that probing a hole which tmpfs is punching can
1379 * prevent the hole-punch from ever completing: which in turn
1380 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1381 * faulting pages into the hole while it's being punched. Although
1382 * shmem_undo_range() does remove the additions, it may be unable to
1383 * keep up, as each new page needs its own unmap_mapping_range() call,
1384 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1385 *
1386 * It does not matter if we sometimes reach this check just before the
1387 * hole-punch begins, so that one fault then races with the punch:
1388 * we just need to make racing faults a rare case.
1389 *
1390 * The implementation below would be much simpler if we just used a
1391 * standard mutex or completion: but we cannot take i_mutex in fault,
1392 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1393 */
1394 if (unlikely(inode->i_private)) {
1395 struct shmem_falloc *shmem_falloc;
1396
1397 spin_lock(&inode->i_lock);
1398 shmem_falloc = inode->i_private;
8e205f77
HD
1399 if (shmem_falloc &&
1400 shmem_falloc->waitq &&
1401 vmf->pgoff >= shmem_falloc->start &&
1402 vmf->pgoff < shmem_falloc->next) {
1403 wait_queue_head_t *shmem_falloc_waitq;
1404 DEFINE_WAIT(shmem_fault_wait);
1405
1406 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1407 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1408 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1409 /* It's polite to up mmap_sem if we can */
f00cdc6d 1410 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1411 ret = VM_FAULT_RETRY;
f00cdc6d 1412 }
8e205f77
HD
1413
1414 shmem_falloc_waitq = shmem_falloc->waitq;
1415 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1416 TASK_UNINTERRUPTIBLE);
1417 spin_unlock(&inode->i_lock);
1418 schedule();
1419
1420 /*
1421 * shmem_falloc_waitq points into the shmem_fallocate()
1422 * stack of the hole-punching task: shmem_falloc_waitq
1423 * is usually invalid by the time we reach here, but
1424 * finish_wait() does not dereference it in that case;
1425 * though i_lock needed lest racing with wake_up_all().
1426 */
1427 spin_lock(&inode->i_lock);
1428 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1429 spin_unlock(&inode->i_lock);
1430 return ret;
f00cdc6d 1431 }
8e205f77 1432 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1433 }
1434
27d54b39 1435 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1436 if (error)
1437 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1438
456f998e
YH
1439 if (ret & VM_FAULT_MAJOR) {
1440 count_vm_event(PGMAJFAULT);
1441 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1442 }
68da9f05 1443 return ret;
1da177e4
LT
1444}
1445
1da177e4 1446#ifdef CONFIG_NUMA
41ffe5d5 1447static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1448{
496ad9aa 1449 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1450 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1451}
1452
d8dc74f2
AB
1453static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1454 unsigned long addr)
1da177e4 1455{
496ad9aa 1456 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1457 pgoff_t index;
1da177e4 1458
41ffe5d5
HD
1459 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1460 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1461}
1462#endif
1463
1464int shmem_lock(struct file *file, int lock, struct user_struct *user)
1465{
496ad9aa 1466 struct inode *inode = file_inode(file);
1da177e4
LT
1467 struct shmem_inode_info *info = SHMEM_I(inode);
1468 int retval = -ENOMEM;
1469
1470 spin_lock(&info->lock);
1471 if (lock && !(info->flags & VM_LOCKED)) {
1472 if (!user_shm_lock(inode->i_size, user))
1473 goto out_nomem;
1474 info->flags |= VM_LOCKED;
89e004ea 1475 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1476 }
1477 if (!lock && (info->flags & VM_LOCKED) && user) {
1478 user_shm_unlock(inode->i_size, user);
1479 info->flags &= ~VM_LOCKED;
89e004ea 1480 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1481 }
1482 retval = 0;
89e004ea 1483
1da177e4
LT
1484out_nomem:
1485 spin_unlock(&info->lock);
1486 return retval;
1487}
1488
9b83a6a8 1489static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1490{
1491 file_accessed(file);
1492 vma->vm_ops = &shmem_vm_ops;
1493 return 0;
1494}
1495
454abafe 1496static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1497 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1498{
1499 struct inode *inode;
1500 struct shmem_inode_info *info;
1501 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1502
5b04c689
PE
1503 if (shmem_reserve_inode(sb))
1504 return NULL;
1da177e4
LT
1505
1506 inode = new_inode(sb);
1507 if (inode) {
85fe4025 1508 inode->i_ino = get_next_ino();
454abafe 1509 inode_init_owner(inode, dir, mode);
1da177e4 1510 inode->i_blocks = 0;
1da177e4 1511 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1512 inode->i_generation = get_seconds();
1da177e4
LT
1513 info = SHMEM_I(inode);
1514 memset(info, 0, (char *)inode - (char *)info);
1515 spin_lock_init(&info->lock);
40e041a2 1516 info->seals = F_SEAL_SEAL;
0b0a0806 1517 info->flags = flags & VM_NORESERVE;
1da177e4 1518 INIT_LIST_HEAD(&info->swaplist);
38f38657 1519 simple_xattrs_init(&info->xattrs);
72c04902 1520 cache_no_acl(inode);
1da177e4
LT
1521
1522 switch (mode & S_IFMT) {
1523 default:
39f0247d 1524 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1525 init_special_inode(inode, mode, dev);
1526 break;
1527 case S_IFREG:
14fcc23f 1528 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1529 inode->i_op = &shmem_inode_operations;
1530 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1531 mpol_shared_policy_init(&info->policy,
1532 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1533 break;
1534 case S_IFDIR:
d8c76e6f 1535 inc_nlink(inode);
1da177e4
LT
1536 /* Some things misbehave if size == 0 on a directory */
1537 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1538 inode->i_op = &shmem_dir_inode_operations;
1539 inode->i_fop = &simple_dir_operations;
1540 break;
1541 case S_IFLNK:
1542 /*
1543 * Must not load anything in the rbtree,
1544 * mpol_free_shared_policy will not be called.
1545 */
71fe804b 1546 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1547 break;
1548 }
5b04c689
PE
1549 } else
1550 shmem_free_inode(sb);
1da177e4
LT
1551 return inode;
1552}
1553
0cd6144a
JW
1554bool shmem_mapping(struct address_space *mapping)
1555{
f0774d88
SL
1556 if (!mapping->host)
1557 return false;
1558
97b713ba 1559 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1560}
1561
1da177e4 1562#ifdef CONFIG_TMPFS
92e1d5be 1563static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1564static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1565
6d9d88d0
JS
1566#ifdef CONFIG_TMPFS_XATTR
1567static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1568#else
1569#define shmem_initxattrs NULL
1570#endif
1571
1da177e4 1572static int
800d15a5
NP
1573shmem_write_begin(struct file *file, struct address_space *mapping,
1574 loff_t pos, unsigned len, unsigned flags,
1575 struct page **pagep, void **fsdata)
1da177e4 1576{
800d15a5 1577 struct inode *inode = mapping->host;
40e041a2 1578 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1579 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DH
1580
1581 /* i_mutex is held by caller */
1582 if (unlikely(info->seals)) {
1583 if (info->seals & F_SEAL_WRITE)
1584 return -EPERM;
1585 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1586 return -EPERM;
1587 }
1588
66d2f4d2 1589 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1590}
1591
1592static int
1593shmem_write_end(struct file *file, struct address_space *mapping,
1594 loff_t pos, unsigned len, unsigned copied,
1595 struct page *page, void *fsdata)
1596{
1597 struct inode *inode = mapping->host;
1598
d3602444
HD
1599 if (pos + copied > inode->i_size)
1600 i_size_write(inode, pos + copied);
1601
ec9516fb
HD
1602 if (!PageUptodate(page)) {
1603 if (copied < PAGE_CACHE_SIZE) {
1604 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1605 zero_user_segments(page, 0, from,
1606 from + copied, PAGE_CACHE_SIZE);
1607 }
1608 SetPageUptodate(page);
1609 }
800d15a5 1610 set_page_dirty(page);
6746aff7 1611 unlock_page(page);
800d15a5
NP
1612 page_cache_release(page);
1613
800d15a5 1614 return copied;
1da177e4
LT
1615}
1616
2ba5bbed 1617static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1618{
6e58e79d
AV
1619 struct file *file = iocb->ki_filp;
1620 struct inode *inode = file_inode(file);
1da177e4 1621 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1622 pgoff_t index;
1623 unsigned long offset;
a0ee5ec5 1624 enum sgp_type sgp = SGP_READ;
f7c1d074 1625 int error = 0;
cb66a7a1 1626 ssize_t retval = 0;
6e58e79d 1627 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1628
1629 /*
1630 * Might this read be for a stacking filesystem? Then when reading
1631 * holes of a sparse file, we actually need to allocate those pages,
1632 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1633 */
777eda2c 1634 if (!iter_is_iovec(to))
a0ee5ec5 1635 sgp = SGP_DIRTY;
1da177e4
LT
1636
1637 index = *ppos >> PAGE_CACHE_SHIFT;
1638 offset = *ppos & ~PAGE_CACHE_MASK;
1639
1640 for (;;) {
1641 struct page *page = NULL;
41ffe5d5
HD
1642 pgoff_t end_index;
1643 unsigned long nr, ret;
1da177e4
LT
1644 loff_t i_size = i_size_read(inode);
1645
1646 end_index = i_size >> PAGE_CACHE_SHIFT;
1647 if (index > end_index)
1648 break;
1649 if (index == end_index) {
1650 nr = i_size & ~PAGE_CACHE_MASK;
1651 if (nr <= offset)
1652 break;
1653 }
1654
6e58e79d
AV
1655 error = shmem_getpage(inode, index, &page, sgp, NULL);
1656 if (error) {
1657 if (error == -EINVAL)
1658 error = 0;
1da177e4
LT
1659 break;
1660 }
d3602444
HD
1661 if (page)
1662 unlock_page(page);
1da177e4
LT
1663
1664 /*
1665 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1666 * are called without i_mutex protection against truncate
1da177e4
LT
1667 */
1668 nr = PAGE_CACHE_SIZE;
1669 i_size = i_size_read(inode);
1670 end_index = i_size >> PAGE_CACHE_SHIFT;
1671 if (index == end_index) {
1672 nr = i_size & ~PAGE_CACHE_MASK;
1673 if (nr <= offset) {
1674 if (page)
1675 page_cache_release(page);
1676 break;
1677 }
1678 }
1679 nr -= offset;
1680
1681 if (page) {
1682 /*
1683 * If users can be writing to this page using arbitrary
1684 * virtual addresses, take care about potential aliasing
1685 * before reading the page on the kernel side.
1686 */
1687 if (mapping_writably_mapped(mapping))
1688 flush_dcache_page(page);
1689 /*
1690 * Mark the page accessed if we read the beginning.
1691 */
1692 if (!offset)
1693 mark_page_accessed(page);
b5810039 1694 } else {
1da177e4 1695 page = ZERO_PAGE(0);
b5810039
NP
1696 page_cache_get(page);
1697 }
1da177e4
LT
1698
1699 /*
1700 * Ok, we have the page, and it's up-to-date, so
1701 * now we can copy it to user space...
1da177e4 1702 */
2ba5bbed 1703 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1704 retval += ret;
1da177e4
LT
1705 offset += ret;
1706 index += offset >> PAGE_CACHE_SHIFT;
1707 offset &= ~PAGE_CACHE_MASK;
1708
1709 page_cache_release(page);
2ba5bbed 1710 if (!iov_iter_count(to))
1da177e4 1711 break;
6e58e79d
AV
1712 if (ret < nr) {
1713 error = -EFAULT;
1714 break;
1715 }
1da177e4
LT
1716 cond_resched();
1717 }
1718
1719 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1720 file_accessed(file);
1721 return retval ? retval : error;
1da177e4
LT
1722}
1723
708e3508
HD
1724static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1725 struct pipe_inode_info *pipe, size_t len,
1726 unsigned int flags)
1727{
1728 struct address_space *mapping = in->f_mapping;
71f0e07a 1729 struct inode *inode = mapping->host;
708e3508
HD
1730 unsigned int loff, nr_pages, req_pages;
1731 struct page *pages[PIPE_DEF_BUFFERS];
1732 struct partial_page partial[PIPE_DEF_BUFFERS];
1733 struct page *page;
1734 pgoff_t index, end_index;
1735 loff_t isize, left;
1736 int error, page_nr;
1737 struct splice_pipe_desc spd = {
1738 .pages = pages,
1739 .partial = partial,
047fe360 1740 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1741 .flags = flags,
1742 .ops = &page_cache_pipe_buf_ops,
1743 .spd_release = spd_release_page,
1744 };
1745
71f0e07a 1746 isize = i_size_read(inode);
708e3508
HD
1747 if (unlikely(*ppos >= isize))
1748 return 0;
1749
1750 left = isize - *ppos;
1751 if (unlikely(left < len))
1752 len = left;
1753
1754 if (splice_grow_spd(pipe, &spd))
1755 return -ENOMEM;
1756
1757 index = *ppos >> PAGE_CACHE_SHIFT;
1758 loff = *ppos & ~PAGE_CACHE_MASK;
1759 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1760 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1761
708e3508
HD
1762 spd.nr_pages = find_get_pages_contig(mapping, index,
1763 nr_pages, spd.pages);
1764 index += spd.nr_pages;
708e3508 1765 error = 0;
708e3508 1766
71f0e07a 1767 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1768 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1769 if (error)
1770 break;
1771 unlock_page(page);
708e3508
HD
1772 spd.pages[spd.nr_pages++] = page;
1773 index++;
1774 }
1775
708e3508
HD
1776 index = *ppos >> PAGE_CACHE_SHIFT;
1777 nr_pages = spd.nr_pages;
1778 spd.nr_pages = 0;
71f0e07a 1779
708e3508
HD
1780 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1781 unsigned int this_len;
1782
1783 if (!len)
1784 break;
1785
708e3508
HD
1786 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1787 page = spd.pages[page_nr];
1788
71f0e07a 1789 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1790 error = shmem_getpage(inode, index, &page,
1791 SGP_CACHE, NULL);
1792 if (error)
708e3508 1793 break;
71f0e07a
HD
1794 unlock_page(page);
1795 page_cache_release(spd.pages[page_nr]);
1796 spd.pages[page_nr] = page;
708e3508 1797 }
71f0e07a
HD
1798
1799 isize = i_size_read(inode);
708e3508
HD
1800 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1801 if (unlikely(!isize || index > end_index))
1802 break;
1803
708e3508
HD
1804 if (end_index == index) {
1805 unsigned int plen;
1806
708e3508
HD
1807 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1808 if (plen <= loff)
1809 break;
1810
708e3508
HD
1811 this_len = min(this_len, plen - loff);
1812 len = this_len;
1813 }
1814
1815 spd.partial[page_nr].offset = loff;
1816 spd.partial[page_nr].len = this_len;
1817 len -= this_len;
1818 loff = 0;
1819 spd.nr_pages++;
1820 index++;
1821 }
1822
708e3508
HD
1823 while (page_nr < nr_pages)
1824 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1825
1826 if (spd.nr_pages)
1827 error = splice_to_pipe(pipe, &spd);
1828
047fe360 1829 splice_shrink_spd(&spd);
708e3508
HD
1830
1831 if (error > 0) {
1832 *ppos += error;
1833 file_accessed(in);
1834 }
1835 return error;
1836}
1837
220f2ac9
HD
1838/*
1839 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1840 */
1841static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1842 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1843{
1844 struct page *page;
1845 struct pagevec pvec;
1846 pgoff_t indices[PAGEVEC_SIZE];
1847 bool done = false;
1848 int i;
1849
1850 pagevec_init(&pvec, 0);
1851 pvec.nr = 1; /* start small: we may be there already */
1852 while (!done) {
0cd6144a 1853 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1854 pvec.nr, pvec.pages, indices);
1855 if (!pvec.nr) {
965c8e59 1856 if (whence == SEEK_DATA)
220f2ac9
HD
1857 index = end;
1858 break;
1859 }
1860 for (i = 0; i < pvec.nr; i++, index++) {
1861 if (index < indices[i]) {
965c8e59 1862 if (whence == SEEK_HOLE) {
220f2ac9
HD
1863 done = true;
1864 break;
1865 }
1866 index = indices[i];
1867 }
1868 page = pvec.pages[i];
1869 if (page && !radix_tree_exceptional_entry(page)) {
1870 if (!PageUptodate(page))
1871 page = NULL;
1872 }
1873 if (index >= end ||
965c8e59
AM
1874 (page && whence == SEEK_DATA) ||
1875 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1876 done = true;
1877 break;
1878 }
1879 }
0cd6144a 1880 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1881 pagevec_release(&pvec);
1882 pvec.nr = PAGEVEC_SIZE;
1883 cond_resched();
1884 }
1885 return index;
1886}
1887
965c8e59 1888static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1889{
1890 struct address_space *mapping = file->f_mapping;
1891 struct inode *inode = mapping->host;
1892 pgoff_t start, end;
1893 loff_t new_offset;
1894
965c8e59
AM
1895 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1896 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1897 MAX_LFS_FILESIZE, i_size_read(inode));
1898 mutex_lock(&inode->i_mutex);
1899 /* We're holding i_mutex so we can access i_size directly */
1900
1901 if (offset < 0)
1902 offset = -EINVAL;
1903 else if (offset >= inode->i_size)
1904 offset = -ENXIO;
1905 else {
1906 start = offset >> PAGE_CACHE_SHIFT;
1907 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1908 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1909 new_offset <<= PAGE_CACHE_SHIFT;
1910 if (new_offset > offset) {
1911 if (new_offset < inode->i_size)
1912 offset = new_offset;
965c8e59 1913 else if (whence == SEEK_DATA)
220f2ac9
HD
1914 offset = -ENXIO;
1915 else
1916 offset = inode->i_size;
1917 }
1918 }
1919
387aae6f
HD
1920 if (offset >= 0)
1921 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1922 mutex_unlock(&inode->i_mutex);
1923 return offset;
1924}
1925
05f65b5c
DH
1926/*
1927 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1928 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1929 */
1930#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1931#define LAST_SCAN 4 /* about 150ms max */
1932
1933static void shmem_tag_pins(struct address_space *mapping)
1934{
1935 struct radix_tree_iter iter;
1936 void **slot;
1937 pgoff_t start;
1938 struct page *page;
1939
1940 lru_add_drain();
1941 start = 0;
1942 rcu_read_lock();
1943
1944restart:
1945 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946 page = radix_tree_deref_slot(slot);
1947 if (!page || radix_tree_exception(page)) {
1948 if (radix_tree_deref_retry(page))
1949 goto restart;
1950 } else if (page_count(page) - page_mapcount(page) > 1) {
1951 spin_lock_irq(&mapping->tree_lock);
1952 radix_tree_tag_set(&mapping->page_tree, iter.index,
1953 SHMEM_TAG_PINNED);
1954 spin_unlock_irq(&mapping->tree_lock);
1955 }
1956
1957 if (need_resched()) {
1958 cond_resched_rcu();
1959 start = iter.index + 1;
1960 goto restart;
1961 }
1962 }
1963 rcu_read_unlock();
1964}
1965
1966/*
1967 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1968 * via get_user_pages(), drivers might have some pending I/O without any active
1969 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1970 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1971 * them to be dropped.
1972 * The caller must guarantee that no new user will acquire writable references
1973 * to those pages to avoid races.
1974 */
40e041a2
DH
1975static int shmem_wait_for_pins(struct address_space *mapping)
1976{
05f65b5c
DH
1977 struct radix_tree_iter iter;
1978 void **slot;
1979 pgoff_t start;
1980 struct page *page;
1981 int error, scan;
1982
1983 shmem_tag_pins(mapping);
1984
1985 error = 0;
1986 for (scan = 0; scan <= LAST_SCAN; scan++) {
1987 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1988 break;
1989
1990 if (!scan)
1991 lru_add_drain_all();
1992 else if (schedule_timeout_killable((HZ << scan) / 200))
1993 scan = LAST_SCAN;
1994
1995 start = 0;
1996 rcu_read_lock();
1997restart:
1998 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999 start, SHMEM_TAG_PINNED) {
2000
2001 page = radix_tree_deref_slot(slot);
2002 if (radix_tree_exception(page)) {
2003 if (radix_tree_deref_retry(page))
2004 goto restart;
2005
2006 page = NULL;
2007 }
2008
2009 if (page &&
2010 page_count(page) - page_mapcount(page) != 1) {
2011 if (scan < LAST_SCAN)
2012 goto continue_resched;
2013
2014 /*
2015 * On the last scan, we clean up all those tags
2016 * we inserted; but make a note that we still
2017 * found pages pinned.
2018 */
2019 error = -EBUSY;
2020 }
2021
2022 spin_lock_irq(&mapping->tree_lock);
2023 radix_tree_tag_clear(&mapping->page_tree,
2024 iter.index, SHMEM_TAG_PINNED);
2025 spin_unlock_irq(&mapping->tree_lock);
2026continue_resched:
2027 if (need_resched()) {
2028 cond_resched_rcu();
2029 start = iter.index + 1;
2030 goto restart;
2031 }
2032 }
2033 rcu_read_unlock();
2034 }
2035
2036 return error;
40e041a2
DH
2037}
2038
2039#define F_ALL_SEALS (F_SEAL_SEAL | \
2040 F_SEAL_SHRINK | \
2041 F_SEAL_GROW | \
2042 F_SEAL_WRITE)
2043
2044int shmem_add_seals(struct file *file, unsigned int seals)
2045{
2046 struct inode *inode = file_inode(file);
2047 struct shmem_inode_info *info = SHMEM_I(inode);
2048 int error;
2049
2050 /*
2051 * SEALING
2052 * Sealing allows multiple parties to share a shmem-file but restrict
2053 * access to a specific subset of file operations. Seals can only be
2054 * added, but never removed. This way, mutually untrusted parties can
2055 * share common memory regions with a well-defined policy. A malicious
2056 * peer can thus never perform unwanted operations on a shared object.
2057 *
2058 * Seals are only supported on special shmem-files and always affect
2059 * the whole underlying inode. Once a seal is set, it may prevent some
2060 * kinds of access to the file. Currently, the following seals are
2061 * defined:
2062 * SEAL_SEAL: Prevent further seals from being set on this file
2063 * SEAL_SHRINK: Prevent the file from shrinking
2064 * SEAL_GROW: Prevent the file from growing
2065 * SEAL_WRITE: Prevent write access to the file
2066 *
2067 * As we don't require any trust relationship between two parties, we
2068 * must prevent seals from being removed. Therefore, sealing a file
2069 * only adds a given set of seals to the file, it never touches
2070 * existing seals. Furthermore, the "setting seals"-operation can be
2071 * sealed itself, which basically prevents any further seal from being
2072 * added.
2073 *
2074 * Semantics of sealing are only defined on volatile files. Only
2075 * anonymous shmem files support sealing. More importantly, seals are
2076 * never written to disk. Therefore, there's no plan to support it on
2077 * other file types.
2078 */
2079
2080 if (file->f_op != &shmem_file_operations)
2081 return -EINVAL;
2082 if (!(file->f_mode & FMODE_WRITE))
2083 return -EPERM;
2084 if (seals & ~(unsigned int)F_ALL_SEALS)
2085 return -EINVAL;
2086
2087 mutex_lock(&inode->i_mutex);
2088
2089 if (info->seals & F_SEAL_SEAL) {
2090 error = -EPERM;
2091 goto unlock;
2092 }
2093
2094 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2095 error = mapping_deny_writable(file->f_mapping);
2096 if (error)
2097 goto unlock;
2098
2099 error = shmem_wait_for_pins(file->f_mapping);
2100 if (error) {
2101 mapping_allow_writable(file->f_mapping);
2102 goto unlock;
2103 }
2104 }
2105
2106 info->seals |= seals;
2107 error = 0;
2108
2109unlock:
2110 mutex_unlock(&inode->i_mutex);
2111 return error;
2112}
2113EXPORT_SYMBOL_GPL(shmem_add_seals);
2114
2115int shmem_get_seals(struct file *file)
2116{
2117 if (file->f_op != &shmem_file_operations)
2118 return -EINVAL;
2119
2120 return SHMEM_I(file_inode(file))->seals;
2121}
2122EXPORT_SYMBOL_GPL(shmem_get_seals);
2123
2124long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2125{
2126 long error;
2127
2128 switch (cmd) {
2129 case F_ADD_SEALS:
2130 /* disallow upper 32bit */
2131 if (arg > UINT_MAX)
2132 return -EINVAL;
2133
2134 error = shmem_add_seals(file, arg);
2135 break;
2136 case F_GET_SEALS:
2137 error = shmem_get_seals(file);
2138 break;
2139 default:
2140 error = -EINVAL;
2141 break;
2142 }
2143
2144 return error;
2145}
2146
83e4fa9c
HD
2147static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2148 loff_t len)
2149{
496ad9aa 2150 struct inode *inode = file_inode(file);
e2d12e22 2151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2152 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2153 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2154 pgoff_t start, index, end;
2155 int error;
83e4fa9c 2156
13ace4d0
HD
2157 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2158 return -EOPNOTSUPP;
2159
83e4fa9c
HD
2160 mutex_lock(&inode->i_mutex);
2161
2162 if (mode & FALLOC_FL_PUNCH_HOLE) {
2163 struct address_space *mapping = file->f_mapping;
2164 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2165 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2166 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2167
40e041a2
DH
2168 /* protected by i_mutex */
2169 if (info->seals & F_SEAL_WRITE) {
2170 error = -EPERM;
2171 goto out;
2172 }
2173
8e205f77 2174 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2175 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2176 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2177 spin_lock(&inode->i_lock);
2178 inode->i_private = &shmem_falloc;
2179 spin_unlock(&inode->i_lock);
2180
83e4fa9c
HD
2181 if ((u64)unmap_end > (u64)unmap_start)
2182 unmap_mapping_range(mapping, unmap_start,
2183 1 + unmap_end - unmap_start, 0);
2184 shmem_truncate_range(inode, offset, offset + len - 1);
2185 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2186
2187 spin_lock(&inode->i_lock);
2188 inode->i_private = NULL;
2189 wake_up_all(&shmem_falloc_waitq);
2190 spin_unlock(&inode->i_lock);
83e4fa9c 2191 error = 0;
8e205f77 2192 goto out;
e2d12e22
HD
2193 }
2194
2195 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2196 error = inode_newsize_ok(inode, offset + len);
2197 if (error)
2198 goto out;
2199
40e041a2
DH
2200 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2201 error = -EPERM;
2202 goto out;
2203 }
2204
e2d12e22
HD
2205 start = offset >> PAGE_CACHE_SHIFT;
2206 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2207 /* Try to avoid a swapstorm if len is impossible to satisfy */
2208 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2209 error = -ENOSPC;
2210 goto out;
83e4fa9c
HD
2211 }
2212
8e205f77 2213 shmem_falloc.waitq = NULL;
1aac1400
HD
2214 shmem_falloc.start = start;
2215 shmem_falloc.next = start;
2216 shmem_falloc.nr_falloced = 0;
2217 shmem_falloc.nr_unswapped = 0;
2218 spin_lock(&inode->i_lock);
2219 inode->i_private = &shmem_falloc;
2220 spin_unlock(&inode->i_lock);
2221
e2d12e22
HD
2222 for (index = start; index < end; index++) {
2223 struct page *page;
2224
2225 /*
2226 * Good, the fallocate(2) manpage permits EINTR: we may have
2227 * been interrupted because we are using up too much memory.
2228 */
2229 if (signal_pending(current))
2230 error = -EINTR;
1aac1400
HD
2231 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2232 error = -ENOMEM;
e2d12e22 2233 else
1635f6a7 2234 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2235 NULL);
2236 if (error) {
1635f6a7
HD
2237 /* Remove the !PageUptodate pages we added */
2238 shmem_undo_range(inode,
2239 (loff_t)start << PAGE_CACHE_SHIFT,
2240 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2241 goto undone;
e2d12e22
HD
2242 }
2243
1aac1400
HD
2244 /*
2245 * Inform shmem_writepage() how far we have reached.
2246 * No need for lock or barrier: we have the page lock.
2247 */
2248 shmem_falloc.next++;
2249 if (!PageUptodate(page))
2250 shmem_falloc.nr_falloced++;
2251
e2d12e22 2252 /*
1635f6a7
HD
2253 * If !PageUptodate, leave it that way so that freeable pages
2254 * can be recognized if we need to rollback on error later.
2255 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2256 * than free the pages we are allocating (and SGP_CACHE pages
2257 * might still be clean: we now need to mark those dirty too).
2258 */
2259 set_page_dirty(page);
2260 unlock_page(page);
2261 page_cache_release(page);
2262 cond_resched();
2263 }
2264
2265 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2266 i_size_write(inode, offset + len);
e2d12e22 2267 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2268undone:
2269 spin_lock(&inode->i_lock);
2270 inode->i_private = NULL;
2271 spin_unlock(&inode->i_lock);
e2d12e22 2272out:
83e4fa9c
HD
2273 mutex_unlock(&inode->i_mutex);
2274 return error;
2275}
2276
726c3342 2277static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2278{
726c3342 2279 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2280
2281 buf->f_type = TMPFS_MAGIC;
2282 buf->f_bsize = PAGE_CACHE_SIZE;
2283 buf->f_namelen = NAME_MAX;
0edd73b3 2284 if (sbinfo->max_blocks) {
1da177e4 2285 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2286 buf->f_bavail =
2287 buf->f_bfree = sbinfo->max_blocks -
2288 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2289 }
2290 if (sbinfo->max_inodes) {
1da177e4
LT
2291 buf->f_files = sbinfo->max_inodes;
2292 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2293 }
2294 /* else leave those fields 0 like simple_statfs */
2295 return 0;
2296}
2297
2298/*
2299 * File creation. Allocate an inode, and we're done..
2300 */
2301static int
1a67aafb 2302shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2303{
0b0a0806 2304 struct inode *inode;
1da177e4
LT
2305 int error = -ENOSPC;
2306
454abafe 2307 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2308 if (inode) {
feda821e
CH
2309 error = simple_acl_create(dir, inode);
2310 if (error)
2311 goto out_iput;
2a7dba39 2312 error = security_inode_init_security(inode, dir,
9d8f13ba 2313 &dentry->d_name,
6d9d88d0 2314 shmem_initxattrs, NULL);
feda821e
CH
2315 if (error && error != -EOPNOTSUPP)
2316 goto out_iput;
37ec43cd 2317
718deb6b 2318 error = 0;
1da177e4
LT
2319 dir->i_size += BOGO_DIRENT_SIZE;
2320 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2321 d_instantiate(dentry, inode);
2322 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2323 }
2324 return error;
feda821e
CH
2325out_iput:
2326 iput(inode);
2327 return error;
1da177e4
LT
2328}
2329
60545d0d
AV
2330static int
2331shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2332{
2333 struct inode *inode;
2334 int error = -ENOSPC;
2335
2336 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2337 if (inode) {
2338 error = security_inode_init_security(inode, dir,
2339 NULL,
2340 shmem_initxattrs, NULL);
feda821e
CH
2341 if (error && error != -EOPNOTSUPP)
2342 goto out_iput;
2343 error = simple_acl_create(dir, inode);
2344 if (error)
2345 goto out_iput;
60545d0d
AV
2346 d_tmpfile(dentry, inode);
2347 }
2348 return error;
feda821e
CH
2349out_iput:
2350 iput(inode);
2351 return error;
60545d0d
AV
2352}
2353
18bb1db3 2354static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2355{
2356 int error;
2357
2358 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2359 return error;
d8c76e6f 2360 inc_nlink(dir);
1da177e4
LT
2361 return 0;
2362}
2363
4acdaf27 2364static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2365 bool excl)
1da177e4
LT
2366{
2367 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2368}
2369
2370/*
2371 * Link a file..
2372 */
2373static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2374{
75c3cfa8 2375 struct inode *inode = d_inode(old_dentry);
5b04c689 2376 int ret;
1da177e4
LT
2377
2378 /*
2379 * No ordinary (disk based) filesystem counts links as inodes;
2380 * but each new link needs a new dentry, pinning lowmem, and
2381 * tmpfs dentries cannot be pruned until they are unlinked.
2382 */
5b04c689
PE
2383 ret = shmem_reserve_inode(inode->i_sb);
2384 if (ret)
2385 goto out;
1da177e4
LT
2386
2387 dir->i_size += BOGO_DIRENT_SIZE;
2388 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2389 inc_nlink(inode);
7de9c6ee 2390 ihold(inode); /* New dentry reference */
1da177e4
LT
2391 dget(dentry); /* Extra pinning count for the created dentry */
2392 d_instantiate(dentry, inode);
5b04c689
PE
2393out:
2394 return ret;
1da177e4
LT
2395}
2396
2397static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2398{
75c3cfa8 2399 struct inode *inode = d_inode(dentry);
1da177e4 2400
5b04c689
PE
2401 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2402 shmem_free_inode(inode->i_sb);
1da177e4
LT
2403
2404 dir->i_size -= BOGO_DIRENT_SIZE;
2405 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2406 drop_nlink(inode);
1da177e4
LT
2407 dput(dentry); /* Undo the count from "create" - this does all the work */
2408 return 0;
2409}
2410
2411static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2412{
2413 if (!simple_empty(dentry))
2414 return -ENOTEMPTY;
2415
75c3cfa8 2416 drop_nlink(d_inode(dentry));
9a53c3a7 2417 drop_nlink(dir);
1da177e4
LT
2418 return shmem_unlink(dir, dentry);
2419}
2420
37456771
MS
2421static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2422{
e36cb0b8
DH
2423 bool old_is_dir = d_is_dir(old_dentry);
2424 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2425
2426 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2427 if (old_is_dir) {
2428 drop_nlink(old_dir);
2429 inc_nlink(new_dir);
2430 } else {
2431 drop_nlink(new_dir);
2432 inc_nlink(old_dir);
2433 }
2434 }
2435 old_dir->i_ctime = old_dir->i_mtime =
2436 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2437 d_inode(old_dentry)->i_ctime =
2438 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2439
2440 return 0;
2441}
2442
46fdb794
MS
2443static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2444{
2445 struct dentry *whiteout;
2446 int error;
2447
2448 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2449 if (!whiteout)
2450 return -ENOMEM;
2451
2452 error = shmem_mknod(old_dir, whiteout,
2453 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2454 dput(whiteout);
2455 if (error)
2456 return error;
2457
2458 /*
2459 * Cheat and hash the whiteout while the old dentry is still in
2460 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2461 *
2462 * d_lookup() will consistently find one of them at this point,
2463 * not sure which one, but that isn't even important.
2464 */
2465 d_rehash(whiteout);
2466 return 0;
2467}
2468
1da177e4
LT
2469/*
2470 * The VFS layer already does all the dentry stuff for rename,
2471 * we just have to decrement the usage count for the target if
2472 * it exists so that the VFS layer correctly free's it when it
2473 * gets overwritten.
2474 */
3b69ff51 2475static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2476{
75c3cfa8 2477 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2478 int they_are_dirs = S_ISDIR(inode->i_mode);
2479
46fdb794 2480 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2481 return -EINVAL;
2482
37456771
MS
2483 if (flags & RENAME_EXCHANGE)
2484 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2485
1da177e4
LT
2486 if (!simple_empty(new_dentry))
2487 return -ENOTEMPTY;
2488
46fdb794
MS
2489 if (flags & RENAME_WHITEOUT) {
2490 int error;
2491
2492 error = shmem_whiteout(old_dir, old_dentry);
2493 if (error)
2494 return error;
2495 }
2496
75c3cfa8 2497 if (d_really_is_positive(new_dentry)) {
1da177e4 2498 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2499 if (they_are_dirs) {
75c3cfa8 2500 drop_nlink(d_inode(new_dentry));
9a53c3a7 2501 drop_nlink(old_dir);
b928095b 2502 }
1da177e4 2503 } else if (they_are_dirs) {
9a53c3a7 2504 drop_nlink(old_dir);
d8c76e6f 2505 inc_nlink(new_dir);
1da177e4
LT
2506 }
2507
2508 old_dir->i_size -= BOGO_DIRENT_SIZE;
2509 new_dir->i_size += BOGO_DIRENT_SIZE;
2510 old_dir->i_ctime = old_dir->i_mtime =
2511 new_dir->i_ctime = new_dir->i_mtime =
2512 inode->i_ctime = CURRENT_TIME;
2513 return 0;
2514}
2515
2516static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2517{
2518 int error;
2519 int len;
2520 struct inode *inode;
9276aad6 2521 struct page *page;
1da177e4
LT
2522 struct shmem_inode_info *info;
2523
2524 len = strlen(symname) + 1;
2525 if (len > PAGE_CACHE_SIZE)
2526 return -ENAMETOOLONG;
2527
454abafe 2528 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2529 if (!inode)
2530 return -ENOSPC;
2531
9d8f13ba 2532 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2533 shmem_initxattrs, NULL);
570bc1c2
SS
2534 if (error) {
2535 if (error != -EOPNOTSUPP) {
2536 iput(inode);
2537 return error;
2538 }
2539 error = 0;
2540 }
2541
1da177e4
LT
2542 info = SHMEM_I(inode);
2543 inode->i_size = len-1;
69f07ec9
HD
2544 if (len <= SHORT_SYMLINK_LEN) {
2545 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2546 if (!info->symlink) {
2547 iput(inode);
2548 return -ENOMEM;
2549 }
2550 inode->i_op = &shmem_short_symlink_operations;
60380f19 2551 inode->i_link = info->symlink;
1da177e4 2552 } else {
e8ecde25 2553 inode_nohighmem(inode);
1da177e4
LT
2554 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555 if (error) {
2556 iput(inode);
2557 return error;
2558 }
14fcc23f 2559 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2560 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 2561 memcpy(page_address(page), symname, len);
ec9516fb 2562 SetPageUptodate(page);
1da177e4 2563 set_page_dirty(page);
6746aff7 2564 unlock_page(page);
1da177e4
LT
2565 page_cache_release(page);
2566 }
1da177e4
LT
2567 dir->i_size += BOGO_DIRENT_SIZE;
2568 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569 d_instantiate(dentry, inode);
2570 dget(dentry);
2571 return 0;
2572}
2573
fceef393 2574static void shmem_put_link(void *arg)
1da177e4 2575{
fceef393
AV
2576 mark_page_accessed(arg);
2577 put_page(arg);
1da177e4
LT
2578}
2579
6b255391 2580static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
2581 struct inode *inode,
2582 struct delayed_call *done)
1da177e4 2583{
1da177e4 2584 struct page *page = NULL;
6b255391 2585 int error;
6a6c9904
AV
2586 if (!dentry) {
2587 page = find_get_page(inode->i_mapping, 0);
2588 if (!page)
2589 return ERR_PTR(-ECHILD);
2590 if (!PageUptodate(page)) {
2591 put_page(page);
2592 return ERR_PTR(-ECHILD);
2593 }
2594 } else {
2595 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596 if (error)
2597 return ERR_PTR(error);
2598 unlock_page(page);
2599 }
fceef393 2600 set_delayed_call(done, shmem_put_link, page);
21fc61c7 2601 return page_address(page);
1da177e4
LT
2602}
2603
b09e0fa4 2604#ifdef CONFIG_TMPFS_XATTR
46711810 2605/*
b09e0fa4
EP
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2610 */
2611
6d9d88d0
JS
2612/*
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2614 */
2615static int shmem_initxattrs(struct inode *inode,
2616 const struct xattr *xattr_array,
2617 void *fs_info)
2618{
2619 struct shmem_inode_info *info = SHMEM_I(inode);
2620 const struct xattr *xattr;
38f38657 2621 struct simple_xattr *new_xattr;
6d9d88d0
JS
2622 size_t len;
2623
2624 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2625 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2626 if (!new_xattr)
2627 return -ENOMEM;
2628
2629 len = strlen(xattr->name) + 1;
2630 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631 GFP_KERNEL);
2632 if (!new_xattr->name) {
2633 kfree(new_xattr);
2634 return -ENOMEM;
2635 }
2636
2637 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638 XATTR_SECURITY_PREFIX_LEN);
2639 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640 xattr->name, len);
2641
38f38657 2642 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2643 }
2644
2645 return 0;
2646}
2647
aa7c5241
AG
2648static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649 struct dentry *dentry, const char *name,
2650 void *buffer, size_t size)
b09e0fa4 2651{
75c3cfa8 2652 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2653
aa7c5241 2654 name = xattr_full_name(handler, name);
38f38657 2655 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2656}
2657
aa7c5241
AG
2658static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659 struct dentry *dentry, const char *name,
2660 const void *value, size_t size, int flags)
b09e0fa4 2661{
75c3cfa8 2662 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2663
aa7c5241 2664 name = xattr_full_name(handler, name);
38f38657 2665 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2666}
2667
aa7c5241
AG
2668static const struct xattr_handler shmem_security_xattr_handler = {
2669 .prefix = XATTR_SECURITY_PREFIX,
2670 .get = shmem_xattr_handler_get,
2671 .set = shmem_xattr_handler_set,
2672};
b09e0fa4 2673
aa7c5241
AG
2674static const struct xattr_handler shmem_trusted_xattr_handler = {
2675 .prefix = XATTR_TRUSTED_PREFIX,
2676 .get = shmem_xattr_handler_get,
2677 .set = shmem_xattr_handler_set,
2678};
b09e0fa4 2679
aa7c5241
AG
2680static const struct xattr_handler *shmem_xattr_handlers[] = {
2681#ifdef CONFIG_TMPFS_POSIX_ACL
2682 &posix_acl_access_xattr_handler,
2683 &posix_acl_default_xattr_handler,
2684#endif
2685 &shmem_security_xattr_handler,
2686 &shmem_trusted_xattr_handler,
2687 NULL
2688};
b09e0fa4
EP
2689
2690static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691{
75c3cfa8 2692 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 2693 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
2694}
2695#endif /* CONFIG_TMPFS_XATTR */
2696
69f07ec9 2697static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2698 .readlink = generic_readlink,
6b255391 2699 .get_link = simple_get_link,
b09e0fa4 2700#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2701 .setxattr = generic_setxattr,
2702 .getxattr = generic_getxattr,
b09e0fa4 2703 .listxattr = shmem_listxattr,
aa7c5241 2704 .removexattr = generic_removexattr,
b09e0fa4
EP
2705#endif
2706};
2707
2708static const struct inode_operations shmem_symlink_inode_operations = {
2709 .readlink = generic_readlink,
6b255391 2710 .get_link = shmem_get_link,
b09e0fa4 2711#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2712 .setxattr = generic_setxattr,
2713 .getxattr = generic_getxattr,
b09e0fa4 2714 .listxattr = shmem_listxattr,
aa7c5241 2715 .removexattr = generic_removexattr,
39f0247d 2716#endif
b09e0fa4 2717};
39f0247d 2718
91828a40
DG
2719static struct dentry *shmem_get_parent(struct dentry *child)
2720{
2721 return ERR_PTR(-ESTALE);
2722}
2723
2724static int shmem_match(struct inode *ino, void *vfh)
2725{
2726 __u32 *fh = vfh;
2727 __u64 inum = fh[2];
2728 inum = (inum << 32) | fh[1];
2729 return ino->i_ino == inum && fh[0] == ino->i_generation;
2730}
2731
480b116c
CH
2732static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733 struct fid *fid, int fh_len, int fh_type)
91828a40 2734{
91828a40 2735 struct inode *inode;
480b116c 2736 struct dentry *dentry = NULL;
35c2a7f4 2737 u64 inum;
480b116c
CH
2738
2739 if (fh_len < 3)
2740 return NULL;
91828a40 2741
35c2a7f4
HD
2742 inum = fid->raw[2];
2743 inum = (inum << 32) | fid->raw[1];
2744
480b116c
CH
2745 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746 shmem_match, fid->raw);
91828a40 2747 if (inode) {
480b116c 2748 dentry = d_find_alias(inode);
91828a40
DG
2749 iput(inode);
2750 }
2751
480b116c 2752 return dentry;
91828a40
DG
2753}
2754
b0b0382b
AV
2755static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756 struct inode *parent)
91828a40 2757{
5fe0c237
AK
2758 if (*len < 3) {
2759 *len = 3;
94e07a75 2760 return FILEID_INVALID;
5fe0c237 2761 }
91828a40 2762
1d3382cb 2763 if (inode_unhashed(inode)) {
91828a40
DG
2764 /* Unfortunately insert_inode_hash is not idempotent,
2765 * so as we hash inodes here rather than at creation
2766 * time, we need a lock to ensure we only try
2767 * to do it once
2768 */
2769 static DEFINE_SPINLOCK(lock);
2770 spin_lock(&lock);
1d3382cb 2771 if (inode_unhashed(inode))
91828a40
DG
2772 __insert_inode_hash(inode,
2773 inode->i_ino + inode->i_generation);
2774 spin_unlock(&lock);
2775 }
2776
2777 fh[0] = inode->i_generation;
2778 fh[1] = inode->i_ino;
2779 fh[2] = ((__u64)inode->i_ino) >> 32;
2780
2781 *len = 3;
2782 return 1;
2783}
2784
39655164 2785static const struct export_operations shmem_export_ops = {
91828a40 2786 .get_parent = shmem_get_parent,
91828a40 2787 .encode_fh = shmem_encode_fh,
480b116c 2788 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2789};
2790
680d794b
AM
2791static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792 bool remount)
1da177e4
LT
2793{
2794 char *this_char, *value, *rest;
49cd0a5c 2795 struct mempolicy *mpol = NULL;
8751e039
EB
2796 uid_t uid;
2797 gid_t gid;
1da177e4 2798
b00dc3ad
HD
2799 while (options != NULL) {
2800 this_char = options;
2801 for (;;) {
2802 /*
2803 * NUL-terminate this option: unfortunately,
2804 * mount options form a comma-separated list,
2805 * but mpol's nodelist may also contain commas.
2806 */
2807 options = strchr(options, ',');
2808 if (options == NULL)
2809 break;
2810 options++;
2811 if (!isdigit(*options)) {
2812 options[-1] = '\0';
2813 break;
2814 }
2815 }
1da177e4
LT
2816 if (!*this_char)
2817 continue;
2818 if ((value = strchr(this_char,'=')) != NULL) {
2819 *value++ = 0;
2820 } else {
2821 printk(KERN_ERR
2822 "tmpfs: No value for mount option '%s'\n",
2823 this_char);
49cd0a5c 2824 goto error;
1da177e4
LT
2825 }
2826
2827 if (!strcmp(this_char,"size")) {
2828 unsigned long long size;
2829 size = memparse(value,&rest);
2830 if (*rest == '%') {
2831 size <<= PAGE_SHIFT;
2832 size *= totalram_pages;
2833 do_div(size, 100);
2834 rest++;
2835 }
2836 if (*rest)
2837 goto bad_val;
680d794b
AM
2838 sbinfo->max_blocks =
2839 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2840 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2841 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2842 if (*rest)
2843 goto bad_val;
2844 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2845 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2846 if (*rest)
2847 goto bad_val;
2848 } else if (!strcmp(this_char,"mode")) {
680d794b 2849 if (remount)
1da177e4 2850 continue;
680d794b 2851 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2852 if (*rest)
2853 goto bad_val;
2854 } else if (!strcmp(this_char,"uid")) {
680d794b 2855 if (remount)
1da177e4 2856 continue;
8751e039 2857 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2858 if (*rest)
2859 goto bad_val;
8751e039
EB
2860 sbinfo->uid = make_kuid(current_user_ns(), uid);
2861 if (!uid_valid(sbinfo->uid))
2862 goto bad_val;
1da177e4 2863 } else if (!strcmp(this_char,"gid")) {
680d794b 2864 if (remount)
1da177e4 2865 continue;
8751e039 2866 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2867 if (*rest)
2868 goto bad_val;
8751e039
EB
2869 sbinfo->gid = make_kgid(current_user_ns(), gid);
2870 if (!gid_valid(sbinfo->gid))
2871 goto bad_val;
7339ff83 2872 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2873 mpol_put(mpol);
2874 mpol = NULL;
2875 if (mpol_parse_str(value, &mpol))
7339ff83 2876 goto bad_val;
1da177e4
LT
2877 } else {
2878 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2879 this_char);
49cd0a5c 2880 goto error;
1da177e4
LT
2881 }
2882 }
49cd0a5c 2883 sbinfo->mpol = mpol;
1da177e4
LT
2884 return 0;
2885
2886bad_val:
2887 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2888 value, this_char);
49cd0a5c
GT
2889error:
2890 mpol_put(mpol);
1da177e4
LT
2891 return 1;
2892
2893}
2894
2895static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2896{
2897 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2898 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2899 unsigned long inodes;
2900 int error = -EINVAL;
2901
5f00110f 2902 config.mpol = NULL;
680d794b 2903 if (shmem_parse_options(data, &config, true))
0edd73b3 2904 return error;
1da177e4 2905
0edd73b3 2906 spin_lock(&sbinfo->stat_lock);
0edd73b3 2907 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2908 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2909 goto out;
680d794b 2910 if (config.max_inodes < inodes)
0edd73b3
HD
2911 goto out;
2912 /*
54af6042 2913 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2914 * but we must separately disallow unlimited->limited, because
2915 * in that case we have no record of how much is already in use.
2916 */
680d794b 2917 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2918 goto out;
680d794b 2919 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2920 goto out;
2921
2922 error = 0;
680d794b 2923 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2924 sbinfo->max_inodes = config.max_inodes;
2925 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2926
5f00110f
GT
2927 /*
2928 * Preserve previous mempolicy unless mpol remount option was specified.
2929 */
2930 if (config.mpol) {
2931 mpol_put(sbinfo->mpol);
2932 sbinfo->mpol = config.mpol; /* transfers initial ref */
2933 }
0edd73b3
HD
2934out:
2935 spin_unlock(&sbinfo->stat_lock);
2936 return error;
1da177e4 2937}
680d794b 2938
34c80b1d 2939static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2940{
34c80b1d 2941 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2942
2943 if (sbinfo->max_blocks != shmem_default_max_blocks())
2944 seq_printf(seq, ",size=%luk",
2945 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2946 if (sbinfo->max_inodes != shmem_default_max_inodes())
2947 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2948 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2949 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2950 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2951 seq_printf(seq, ",uid=%u",
2952 from_kuid_munged(&init_user_ns, sbinfo->uid));
2953 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2954 seq_printf(seq, ",gid=%u",
2955 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2956 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2957 return 0;
2958}
9183df25
DH
2959
2960#define MFD_NAME_PREFIX "memfd:"
2961#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2962#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2963
2964#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2965
2966SYSCALL_DEFINE2(memfd_create,
2967 const char __user *, uname,
2968 unsigned int, flags)
2969{
2970 struct shmem_inode_info *info;
2971 struct file *file;
2972 int fd, error;
2973 char *name;
2974 long len;
2975
2976 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2977 return -EINVAL;
2978
2979 /* length includes terminating zero */
2980 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2981 if (len <= 0)
2982 return -EFAULT;
2983 if (len > MFD_NAME_MAX_LEN + 1)
2984 return -EINVAL;
2985
2986 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2987 if (!name)
2988 return -ENOMEM;
2989
2990 strcpy(name, MFD_NAME_PREFIX);
2991 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2992 error = -EFAULT;
2993 goto err_name;
2994 }
2995
2996 /* terminating-zero may have changed after strnlen_user() returned */
2997 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2998 error = -EFAULT;
2999 goto err_name;
3000 }
3001
3002 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3003 if (fd < 0) {
3004 error = fd;
3005 goto err_name;
3006 }
3007
3008 file = shmem_file_setup(name, 0, VM_NORESERVE);
3009 if (IS_ERR(file)) {
3010 error = PTR_ERR(file);
3011 goto err_fd;
3012 }
3013 info = SHMEM_I(file_inode(file));
3014 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3015 file->f_flags |= O_RDWR | O_LARGEFILE;
3016 if (flags & MFD_ALLOW_SEALING)
3017 info->seals &= ~F_SEAL_SEAL;
3018
3019 fd_install(fd, file);
3020 kfree(name);
3021 return fd;
3022
3023err_fd:
3024 put_unused_fd(fd);
3025err_name:
3026 kfree(name);
3027 return error;
3028}
3029
680d794b 3030#endif /* CONFIG_TMPFS */
1da177e4
LT
3031
3032static void shmem_put_super(struct super_block *sb)
3033{
602586a8
HD
3034 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3035
3036 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3037 mpol_put(sbinfo->mpol);
602586a8 3038 kfree(sbinfo);
1da177e4
LT
3039 sb->s_fs_info = NULL;
3040}
3041
2b2af54a 3042int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3043{
3044 struct inode *inode;
0edd73b3 3045 struct shmem_sb_info *sbinfo;
680d794b
AM
3046 int err = -ENOMEM;
3047
3048 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3049 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3050 L1_CACHE_BYTES), GFP_KERNEL);
3051 if (!sbinfo)
3052 return -ENOMEM;
3053
680d794b 3054 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3055 sbinfo->uid = current_fsuid();
3056 sbinfo->gid = current_fsgid();
680d794b 3057 sb->s_fs_info = sbinfo;
1da177e4 3058
0edd73b3 3059#ifdef CONFIG_TMPFS
1da177e4
LT
3060 /*
3061 * Per default we only allow half of the physical ram per
3062 * tmpfs instance, limiting inodes to one per page of lowmem;
3063 * but the internal instance is left unlimited.
3064 */
ca4e0519 3065 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3066 sbinfo->max_blocks = shmem_default_max_blocks();
3067 sbinfo->max_inodes = shmem_default_max_inodes();
3068 if (shmem_parse_options(data, sbinfo, false)) {
3069 err = -EINVAL;
3070 goto failed;
3071 }
ca4e0519
AV
3072 } else {
3073 sb->s_flags |= MS_NOUSER;
1da177e4 3074 }
91828a40 3075 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3076 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3077#else
3078 sb->s_flags |= MS_NOUSER;
3079#endif
3080
0edd73b3 3081 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3082 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3083 goto failed;
680d794b 3084 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3085
285b2c4f 3086 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3087 sb->s_blocksize = PAGE_CACHE_SIZE;
3088 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3089 sb->s_magic = TMPFS_MAGIC;
3090 sb->s_op = &shmem_ops;
cfd95a9c 3091 sb->s_time_gran = 1;
b09e0fa4 3092#ifdef CONFIG_TMPFS_XATTR
39f0247d 3093 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3094#endif
3095#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3096 sb->s_flags |= MS_POSIXACL;
3097#endif
0edd73b3 3098
454abafe 3099 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3100 if (!inode)
3101 goto failed;
680d794b
AM
3102 inode->i_uid = sbinfo->uid;
3103 inode->i_gid = sbinfo->gid;
318ceed0
AV
3104 sb->s_root = d_make_root(inode);
3105 if (!sb->s_root)
48fde701 3106 goto failed;
1da177e4
LT
3107 return 0;
3108
1da177e4
LT
3109failed:
3110 shmem_put_super(sb);
3111 return err;
3112}
3113
fcc234f8 3114static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3115
3116static struct inode *shmem_alloc_inode(struct super_block *sb)
3117{
41ffe5d5
HD
3118 struct shmem_inode_info *info;
3119 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3120 if (!info)
1da177e4 3121 return NULL;
41ffe5d5 3122 return &info->vfs_inode;
1da177e4
LT
3123}
3124
41ffe5d5 3125static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3126{
3127 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
3128 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3129}
3130
1da177e4
LT
3131static void shmem_destroy_inode(struct inode *inode)
3132{
09208d15 3133 if (S_ISREG(inode->i_mode))
1da177e4 3134 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3135 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3136}
3137
41ffe5d5 3138static void shmem_init_inode(void *foo)
1da177e4 3139{
41ffe5d5
HD
3140 struct shmem_inode_info *info = foo;
3141 inode_init_once(&info->vfs_inode);
1da177e4
LT
3142}
3143
41ffe5d5 3144static int shmem_init_inodecache(void)
1da177e4
LT
3145{
3146 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3147 sizeof(struct shmem_inode_info),
5d097056 3148 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3149 return 0;
3150}
3151
41ffe5d5 3152static void shmem_destroy_inodecache(void)
1da177e4 3153{
1a1d92c1 3154 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3155}
3156
f5e54d6e 3157static const struct address_space_operations shmem_aops = {
1da177e4 3158 .writepage = shmem_writepage,
76719325 3159 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3160#ifdef CONFIG_TMPFS
800d15a5
NP
3161 .write_begin = shmem_write_begin,
3162 .write_end = shmem_write_end,
1da177e4 3163#endif
1c93923c 3164#ifdef CONFIG_MIGRATION
304dbdb7 3165 .migratepage = migrate_page,
1c93923c 3166#endif
aa261f54 3167 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3168};
3169
15ad7cdc 3170static const struct file_operations shmem_file_operations = {
1da177e4
LT
3171 .mmap = shmem_mmap,
3172#ifdef CONFIG_TMPFS
220f2ac9 3173 .llseek = shmem_file_llseek,
2ba5bbed 3174 .read_iter = shmem_file_read_iter,
8174202b 3175 .write_iter = generic_file_write_iter,
1b061d92 3176 .fsync = noop_fsync,
708e3508 3177 .splice_read = shmem_file_splice_read,
f6cb85d0 3178 .splice_write = iter_file_splice_write,
83e4fa9c 3179 .fallocate = shmem_fallocate,
1da177e4
LT
3180#endif
3181};
3182
92e1d5be 3183static const struct inode_operations shmem_inode_operations = {
44a30220 3184 .getattr = shmem_getattr,
94c1e62d 3185 .setattr = shmem_setattr,
b09e0fa4 3186#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3187 .setxattr = generic_setxattr,
3188 .getxattr = generic_getxattr,
b09e0fa4 3189 .listxattr = shmem_listxattr,
aa7c5241 3190 .removexattr = generic_removexattr,
feda821e 3191 .set_acl = simple_set_acl,
b09e0fa4 3192#endif
1da177e4
LT
3193};
3194
92e1d5be 3195static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3196#ifdef CONFIG_TMPFS
3197 .create = shmem_create,
3198 .lookup = simple_lookup,
3199 .link = shmem_link,
3200 .unlink = shmem_unlink,
3201 .symlink = shmem_symlink,
3202 .mkdir = shmem_mkdir,
3203 .rmdir = shmem_rmdir,
3204 .mknod = shmem_mknod,
3b69ff51 3205 .rename2 = shmem_rename2,
60545d0d 3206 .tmpfile = shmem_tmpfile,
1da177e4 3207#endif
b09e0fa4 3208#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3209 .setxattr = generic_setxattr,
3210 .getxattr = generic_getxattr,
b09e0fa4 3211 .listxattr = shmem_listxattr,
aa7c5241 3212 .removexattr = generic_removexattr,
b09e0fa4 3213#endif
39f0247d 3214#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3215 .setattr = shmem_setattr,
feda821e 3216 .set_acl = simple_set_acl,
39f0247d
AG
3217#endif
3218};
3219
92e1d5be 3220static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3221#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3222 .setxattr = generic_setxattr,
3223 .getxattr = generic_getxattr,
b09e0fa4 3224 .listxattr = shmem_listxattr,
aa7c5241 3225 .removexattr = generic_removexattr,
b09e0fa4 3226#endif
39f0247d 3227#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3228 .setattr = shmem_setattr,
feda821e 3229 .set_acl = simple_set_acl,
39f0247d 3230#endif
1da177e4
LT
3231};
3232
759b9775 3233static const struct super_operations shmem_ops = {
1da177e4
LT
3234 .alloc_inode = shmem_alloc_inode,
3235 .destroy_inode = shmem_destroy_inode,
3236#ifdef CONFIG_TMPFS
3237 .statfs = shmem_statfs,
3238 .remount_fs = shmem_remount_fs,
680d794b 3239 .show_options = shmem_show_options,
1da177e4 3240#endif
1f895f75 3241 .evict_inode = shmem_evict_inode,
1da177e4
LT
3242 .drop_inode = generic_delete_inode,
3243 .put_super = shmem_put_super,
3244};
3245
f0f37e2f 3246static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3247 .fault = shmem_fault,
d7c17551 3248 .map_pages = filemap_map_pages,
1da177e4
LT
3249#ifdef CONFIG_NUMA
3250 .set_policy = shmem_set_policy,
3251 .get_policy = shmem_get_policy,
3252#endif
3253};
3254
3c26ff6e
AV
3255static struct dentry *shmem_mount(struct file_system_type *fs_type,
3256 int flags, const char *dev_name, void *data)
1da177e4 3257{
3c26ff6e 3258 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3259}
3260
41ffe5d5 3261static struct file_system_type shmem_fs_type = {
1da177e4
LT
3262 .owner = THIS_MODULE,
3263 .name = "tmpfs",
3c26ff6e 3264 .mount = shmem_mount,
1da177e4 3265 .kill_sb = kill_litter_super,
2b8576cb 3266 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3267};
1da177e4 3268
41ffe5d5 3269int __init shmem_init(void)
1da177e4
LT
3270{
3271 int error;
3272
16203a7a
RL
3273 /* If rootfs called this, don't re-init */
3274 if (shmem_inode_cachep)
3275 return 0;
3276
41ffe5d5 3277 error = shmem_init_inodecache();
1da177e4
LT
3278 if (error)
3279 goto out3;
3280
41ffe5d5 3281 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
3282 if (error) {
3283 printk(KERN_ERR "Could not register tmpfs\n");
3284 goto out2;
3285 }
95dc112a 3286
ca4e0519 3287 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3288 if (IS_ERR(shm_mnt)) {
3289 error = PTR_ERR(shm_mnt);
3290 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3291 goto out1;
3292 }
3293 return 0;
3294
3295out1:
41ffe5d5 3296 unregister_filesystem(&shmem_fs_type);
1da177e4 3297out2:
41ffe5d5 3298 shmem_destroy_inodecache();
1da177e4
LT
3299out3:
3300 shm_mnt = ERR_PTR(error);
3301 return error;
3302}
853ac43a
MM
3303
3304#else /* !CONFIG_SHMEM */
3305
3306/*
3307 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3308 *
3309 * This is intended for small system where the benefits of the full
3310 * shmem code (swap-backed and resource-limited) are outweighed by
3311 * their complexity. On systems without swap this code should be
3312 * effectively equivalent, but much lighter weight.
3313 */
3314
41ffe5d5 3315static struct file_system_type shmem_fs_type = {
853ac43a 3316 .name = "tmpfs",
3c26ff6e 3317 .mount = ramfs_mount,
853ac43a 3318 .kill_sb = kill_litter_super,
2b8576cb 3319 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3320};
3321
41ffe5d5 3322int __init shmem_init(void)
853ac43a 3323{
41ffe5d5 3324 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3325
41ffe5d5 3326 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3327 BUG_ON(IS_ERR(shm_mnt));
3328
3329 return 0;
3330}
3331
41ffe5d5 3332int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3333{
3334 return 0;
3335}
3336
3f96b79a
HD
3337int shmem_lock(struct file *file, int lock, struct user_struct *user)
3338{
3339 return 0;
3340}
3341
24513264
HD
3342void shmem_unlock_mapping(struct address_space *mapping)
3343{
3344}
3345
41ffe5d5 3346void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3347{
41ffe5d5 3348 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3349}
3350EXPORT_SYMBOL_GPL(shmem_truncate_range);
3351
0b0a0806
HD
3352#define shmem_vm_ops generic_file_vm_ops
3353#define shmem_file_operations ramfs_file_operations
454abafe 3354#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3355#define shmem_acct_size(flags, size) 0
3356#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3357
3358#endif /* CONFIG_SHMEM */
3359
3360/* common code */
1da177e4 3361
3451538a 3362static struct dentry_operations anon_ops = {
118b2302 3363 .d_dname = simple_dname
3451538a
AV
3364};
3365
c7277090
EP
3366static struct file *__shmem_file_setup(const char *name, loff_t size,
3367 unsigned long flags, unsigned int i_flags)
1da177e4 3368{
6b4d0b27 3369 struct file *res;
1da177e4 3370 struct inode *inode;
2c48b9c4 3371 struct path path;
3451538a 3372 struct super_block *sb;
1da177e4
LT
3373 struct qstr this;
3374
3375 if (IS_ERR(shm_mnt))
6b4d0b27 3376 return ERR_CAST(shm_mnt);
1da177e4 3377
285b2c4f 3378 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3379 return ERR_PTR(-EINVAL);
3380
3381 if (shmem_acct_size(flags, size))
3382 return ERR_PTR(-ENOMEM);
3383
6b4d0b27 3384 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3385 this.name = name;
3386 this.len = strlen(name);
3387 this.hash = 0; /* will go */
3451538a 3388 sb = shm_mnt->mnt_sb;
66ee4b88 3389 path.mnt = mntget(shm_mnt);
3451538a 3390 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3391 if (!path.dentry)
1da177e4 3392 goto put_memory;
3451538a 3393 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3394
6b4d0b27 3395 res = ERR_PTR(-ENOSPC);
3451538a 3396 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3397 if (!inode)
66ee4b88 3398 goto put_memory;
1da177e4 3399
c7277090 3400 inode->i_flags |= i_flags;
2c48b9c4 3401 d_instantiate(path.dentry, inode);
1da177e4 3402 inode->i_size = size;
6d6b77f1 3403 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3404 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3405 if (IS_ERR(res))
66ee4b88 3406 goto put_path;
4b42af81 3407
6b4d0b27 3408 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3409 &shmem_file_operations);
6b4d0b27 3410 if (IS_ERR(res))
66ee4b88 3411 goto put_path;
4b42af81 3412
6b4d0b27 3413 return res;
1da177e4 3414
1da177e4
LT
3415put_memory:
3416 shmem_unacct_size(flags, size);
66ee4b88
KK
3417put_path:
3418 path_put(&path);
6b4d0b27 3419 return res;
1da177e4 3420}
c7277090
EP
3421
3422/**
3423 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3424 * kernel internal. There will be NO LSM permission checks against the
3425 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3426 * higher layer. The users are the big_key and shm implementations. LSM
3427 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3428 * @name: name for dentry (to be seen in /proc/<pid>/maps
3429 * @size: size to be set for the file
3430 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3431 */
3432struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3433{
3434 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3435}
3436
3437/**
3438 * shmem_file_setup - get an unlinked file living in tmpfs
3439 * @name: name for dentry (to be seen in /proc/<pid>/maps
3440 * @size: size to be set for the file
3441 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3442 */
3443struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3444{
3445 return __shmem_file_setup(name, size, flags, 0);
3446}
395e0ddc 3447EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3448
46711810 3449/**
1da177e4 3450 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3451 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3452 */
3453int shmem_zero_setup(struct vm_area_struct *vma)
3454{
3455 struct file *file;
3456 loff_t size = vma->vm_end - vma->vm_start;
3457
66fc1303
HD
3458 /*
3459 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3460 * between XFS directory reading and selinux: since this file is only
3461 * accessible to the user through its mapping, use S_PRIVATE flag to
3462 * bypass file security, in the same way as shmem_kernel_file_setup().
3463 */
3464 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3465 if (IS_ERR(file))
3466 return PTR_ERR(file);
3467
3468 if (vma->vm_file)
3469 fput(vma->vm_file);
3470 vma->vm_file = file;
3471 vma->vm_ops = &shmem_vm_ops;
3472 return 0;
3473}
d9d90e5e
HD
3474
3475/**
3476 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3477 * @mapping: the page's address_space
3478 * @index: the page index
3479 * @gfp: the page allocator flags to use if allocating
3480 *
3481 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3482 * with any new page allocations done using the specified allocation flags.
3483 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3484 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3485 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3486 *
68da9f05
HD
3487 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3488 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3489 */
3490struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3491 pgoff_t index, gfp_t gfp)
3492{
68da9f05
HD
3493#ifdef CONFIG_SHMEM
3494 struct inode *inode = mapping->host;
9276aad6 3495 struct page *page;
68da9f05
HD
3496 int error;
3497
3498 BUG_ON(mapping->a_ops != &shmem_aops);
3499 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3500 if (error)
3501 page = ERR_PTR(error);
3502 else
3503 unlock_page(page);
3504 return page;
3505#else
3506 /*
3507 * The tiny !SHMEM case uses ramfs without swap
3508 */
d9d90e5e 3509 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3510#endif
d9d90e5e
HD
3511}
3512EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);