]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/shmem.c
mm: initialize hotplugged pages as reserved
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
caefba17 76#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
77#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
1da177e4
LT
79/* Pretend that each entry is of this size in directory's i_size */
80#define BOGO_DIRENT_SIZE 20
81
69f07ec9
HD
82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83#define SHORT_SYMLINK_LEN 128
84
1aac1400 85/*
f00cdc6d
HD
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
89 */
90struct shmem_falloc {
8e205f77 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
92 pgoff_t start; /* start of range currently being fallocated */
93 pgoff_t next; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
96};
97
285b2c4f 98/* Flag allocation requirements to shmem_getpage */
1da177e4 99enum sgp_type {
1da177e4
LT
100 SGP_READ, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
105};
106
b76db735 107#ifdef CONFIG_TMPFS
680d794b
AM
108static unsigned long shmem_default_max_blocks(void)
109{
110 return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
b76db735 117#endif
680d794b 118
bde05d1c
HD
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 struct page **pagep, enum sgp_type sgp, int *fault_type)
127{
128 return shmem_getpage_gfp(inode, index, pagep, sgp,
129 mapping_gfp_mask(inode->i_mapping), fault_type);
130}
1da177e4 131
1da177e4
LT
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134 return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
0b0a0806 145 return (flags & VM_NORESERVE) ?
191c5424 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
0b0a0806 151 if (!(flags & VM_NORESERVE))
1da177e4
LT
152 vm_unacct_memory(VM_ACCT(size));
153}
154
77142517
KK
155static inline int shmem_reacct_size(unsigned long flags,
156 loff_t oldsize, loff_t newsize)
157{
158 if (!(flags & VM_NORESERVE)) {
159 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 return security_vm_enough_memory_mm(current->mm,
161 VM_ACCT(newsize) - VM_ACCT(oldsize));
162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 }
165 return 0;
166}
167
1da177e4
LT
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174static inline int shmem_acct_block(unsigned long flags)
175{
0b0a0806 176 return (flags & VM_NORESERVE) ?
191c5424 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
178}
179
180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181{
0b0a0806 182 if (flags & VM_NORESERVE)
1da177e4
LT
183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184}
185
759b9775 186static const struct super_operations shmem_ops;
f5e54d6e 187static const struct address_space_operations shmem_aops;
15ad7cdc 188static const struct file_operations shmem_file_operations;
92e1d5be
AV
189static const struct inode_operations shmem_inode_operations;
190static const struct inode_operations shmem_dir_inode_operations;
191static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 192static const struct vm_operations_struct shmem_vm_ops;
1da177e4 193
1da177e4 194static LIST_HEAD(shmem_swaplist);
cb5f7b9a 195static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 196
5b04c689
PE
197static int shmem_reserve_inode(struct super_block *sb)
198{
199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200 if (sbinfo->max_inodes) {
201 spin_lock(&sbinfo->stat_lock);
202 if (!sbinfo->free_inodes) {
203 spin_unlock(&sbinfo->stat_lock);
204 return -ENOSPC;
205 }
206 sbinfo->free_inodes--;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 return 0;
210}
211
212static void shmem_free_inode(struct super_block *sb)
213{
214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 if (sbinfo->max_inodes) {
216 spin_lock(&sbinfo->stat_lock);
217 sbinfo->free_inodes++;
218 spin_unlock(&sbinfo->stat_lock);
219 }
220}
221
46711810 222/**
41ffe5d5 223 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
224 * @inode: inode to recalc
225 *
226 * We have to calculate the free blocks since the mm can drop
227 * undirtied hole pages behind our back.
228 *
229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 *
232 * It has to be called with the spinlock held.
233 */
234static void shmem_recalc_inode(struct inode *inode)
235{
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 long freed;
238
239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240 if (freed > 0) {
54af6042
HD
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 244 info->alloced -= freed;
54af6042 245 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 246 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
247 }
248}
249
7a5d0fbb
HD
250/*
251 * Replace item expected in radix tree by a new item, while holding tree lock.
252 */
253static int shmem_radix_tree_replace(struct address_space *mapping,
254 pgoff_t index, void *expected, void *replacement)
255{
256 void **pslot;
6dbaf22c 257 void *item;
7a5d0fbb
HD
258
259 VM_BUG_ON(!expected);
6dbaf22c 260 VM_BUG_ON(!replacement);
7a5d0fbb 261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
262 if (!pslot)
263 return -ENOENT;
264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
265 if (item != expected)
266 return -ENOENT;
6dbaf22c 267 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
268 return 0;
269}
270
d1899228
HD
271/*
272 * Sometimes, before we decide whether to proceed or to fail, we must check
273 * that an entry was not already brought back from swap by a racing thread.
274 *
275 * Checking page is not enough: by the time a SwapCache page is locked, it
276 * might be reused, and again be SwapCache, using the same swap as before.
277 */
278static bool shmem_confirm_swap(struct address_space *mapping,
279 pgoff_t index, swp_entry_t swap)
280{
281 void *item;
282
283 rcu_read_lock();
284 item = radix_tree_lookup(&mapping->page_tree, index);
285 rcu_read_unlock();
286 return item == swp_to_radix_entry(swap);
287}
288
46f65ec1
HD
289/*
290 * Like add_to_page_cache_locked, but error if expected item has gone.
291 */
292static int shmem_add_to_page_cache(struct page *page,
293 struct address_space *mapping,
fed400a1 294 pgoff_t index, void *expected)
46f65ec1 295{
b065b432 296 int error;
46f65ec1 297
309381fe
SL
298 VM_BUG_ON_PAGE(!PageLocked(page), page);
299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 300
b065b432
HD
301 page_cache_get(page);
302 page->mapping = mapping;
303 page->index = index;
304
305 spin_lock_irq(&mapping->tree_lock);
46f65ec1 306 if (!expected)
b065b432
HD
307 error = radix_tree_insert(&mapping->page_tree, index, page);
308 else
309 error = shmem_radix_tree_replace(mapping, index, expected,
310 page);
46f65ec1 311 if (!error) {
b065b432
HD
312 mapping->nrpages++;
313 __inc_zone_page_state(page, NR_FILE_PAGES);
314 __inc_zone_page_state(page, NR_SHMEM);
315 spin_unlock_irq(&mapping->tree_lock);
316 } else {
317 page->mapping = NULL;
318 spin_unlock_irq(&mapping->tree_lock);
319 page_cache_release(page);
46f65ec1 320 }
46f65ec1
HD
321 return error;
322}
323
6922c0c7
HD
324/*
325 * Like delete_from_page_cache, but substitutes swap for page.
326 */
327static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328{
329 struct address_space *mapping = page->mapping;
330 int error;
331
332 spin_lock_irq(&mapping->tree_lock);
333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334 page->mapping = NULL;
335 mapping->nrpages--;
336 __dec_zone_page_state(page, NR_FILE_PAGES);
337 __dec_zone_page_state(page, NR_SHMEM);
338 spin_unlock_irq(&mapping->tree_lock);
339 page_cache_release(page);
340 BUG_ON(error);
341}
342
7a5d0fbb
HD
343/*
344 * Remove swap entry from radix tree, free the swap and its page cache.
345 */
346static int shmem_free_swap(struct address_space *mapping,
347 pgoff_t index, void *radswap)
348{
6dbaf22c 349 void *old;
7a5d0fbb
HD
350
351 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 353 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
354 if (old != radswap)
355 return -ENOENT;
356 free_swap_and_cache(radix_to_swp_entry(radswap));
357 return 0;
7a5d0fbb
HD
358}
359
24513264
HD
360/*
361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362 */
363void shmem_unlock_mapping(struct address_space *mapping)
364{
365 struct pagevec pvec;
366 pgoff_t indices[PAGEVEC_SIZE];
367 pgoff_t index = 0;
368
369 pagevec_init(&pvec, 0);
370 /*
371 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372 */
373 while (!mapping_unevictable(mapping)) {
374 /*
375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377 */
0cd6144a
JW
378 pvec.nr = find_get_entries(mapping, index,
379 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
380 if (!pvec.nr)
381 break;
382 index = indices[pvec.nr - 1] + 1;
0cd6144a 383 pagevec_remove_exceptionals(&pvec);
24513264
HD
384 check_move_unevictable_pages(pvec.pages, pvec.nr);
385 pagevec_release(&pvec);
386 cond_resched();
387 }
7a5d0fbb
HD
388}
389
390/*
391 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 393 */
1635f6a7
HD
394static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395 bool unfalloc)
1da177e4 396{
285b2c4f 397 struct address_space *mapping = inode->i_mapping;
1da177e4 398 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 403 struct pagevec pvec;
7a5d0fbb
HD
404 pgoff_t indices[PAGEVEC_SIZE];
405 long nr_swaps_freed = 0;
285b2c4f 406 pgoff_t index;
bda97eab
HD
407 int i;
408
83e4fa9c
HD
409 if (lend == -1)
410 end = -1; /* unsigned, so actually very big */
bda97eab
HD
411
412 pagevec_init(&pvec, 0);
413 index = start;
83e4fa9c 414 while (index < end) {
0cd6144a
JW
415 pvec.nr = find_get_entries(mapping, index,
416 min(end - index, (pgoff_t)PAGEVEC_SIZE),
417 pvec.pages, indices);
7a5d0fbb
HD
418 if (!pvec.nr)
419 break;
bda97eab
HD
420 for (i = 0; i < pagevec_count(&pvec); i++) {
421 struct page *page = pvec.pages[i];
422
7a5d0fbb 423 index = indices[i];
83e4fa9c 424 if (index >= end)
bda97eab
HD
425 break;
426
7a5d0fbb 427 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
428 if (unfalloc)
429 continue;
7a5d0fbb
HD
430 nr_swaps_freed += !shmem_free_swap(mapping,
431 index, page);
bda97eab 432 continue;
7a5d0fbb
HD
433 }
434
435 if (!trylock_page(page))
bda97eab 436 continue;
1635f6a7
HD
437 if (!unfalloc || !PageUptodate(page)) {
438 if (page->mapping == mapping) {
309381fe 439 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
440 truncate_inode_page(mapping, page);
441 }
bda97eab 442 }
bda97eab
HD
443 unlock_page(page);
444 }
0cd6144a 445 pagevec_remove_exceptionals(&pvec);
24513264 446 pagevec_release(&pvec);
bda97eab
HD
447 cond_resched();
448 index++;
449 }
1da177e4 450
83e4fa9c 451 if (partial_start) {
bda97eab
HD
452 struct page *page = NULL;
453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454 if (page) {
83e4fa9c
HD
455 unsigned int top = PAGE_CACHE_SIZE;
456 if (start > end) {
457 top = partial_end;
458 partial_end = 0;
459 }
460 zero_user_segment(page, partial_start, top);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (partial_end) {
467 struct page *page = NULL;
468 shmem_getpage(inode, end, &page, SGP_READ, NULL);
469 if (page) {
470 zero_user_segment(page, 0, partial_end);
bda97eab
HD
471 set_page_dirty(page);
472 unlock_page(page);
473 page_cache_release(page);
474 }
475 }
83e4fa9c
HD
476 if (start >= end)
477 return;
bda97eab
HD
478
479 index = start;
b1a36650 480 while (index < end) {
bda97eab 481 cond_resched();
0cd6144a
JW
482
483 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 484 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 485 pvec.pages, indices);
7a5d0fbb 486 if (!pvec.nr) {
b1a36650
HD
487 /* If all gone or hole-punch or unfalloc, we're done */
488 if (index == start || end != -1)
bda97eab 489 break;
b1a36650 490 /* But if truncating, restart to make sure all gone */
bda97eab
HD
491 index = start;
492 continue;
493 }
bda97eab
HD
494 for (i = 0; i < pagevec_count(&pvec); i++) {
495 struct page *page = pvec.pages[i];
496
7a5d0fbb 497 index = indices[i];
83e4fa9c 498 if (index >= end)
bda97eab
HD
499 break;
500
7a5d0fbb 501 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
502 if (unfalloc)
503 continue;
b1a36650
HD
504 if (shmem_free_swap(mapping, index, page)) {
505 /* Swap was replaced by page: retry */
506 index--;
507 break;
508 }
509 nr_swaps_freed++;
7a5d0fbb
HD
510 continue;
511 }
512
bda97eab 513 lock_page(page);
1635f6a7
HD
514 if (!unfalloc || !PageUptodate(page)) {
515 if (page->mapping == mapping) {
309381fe 516 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 517 truncate_inode_page(mapping, page);
b1a36650
HD
518 } else {
519 /* Page was replaced by swap: retry */
520 unlock_page(page);
521 index--;
522 break;
1635f6a7 523 }
7a5d0fbb 524 }
bda97eab
HD
525 unlock_page(page);
526 }
0cd6144a 527 pagevec_remove_exceptionals(&pvec);
24513264 528 pagevec_release(&pvec);
bda97eab
HD
529 index++;
530 }
94c1e62d 531
1da177e4 532 spin_lock(&info->lock);
7a5d0fbb 533 info->swapped -= nr_swaps_freed;
1da177e4
LT
534 shmem_recalc_inode(inode);
535 spin_unlock(&info->lock);
1635f6a7 536}
1da177e4 537
1635f6a7
HD
538void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539{
540 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 541 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 542}
94c1e62d 543EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 544
94c1e62d 545static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 546{
75c3cfa8 547 struct inode *inode = d_inode(dentry);
40e041a2 548 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
549 int error;
550
db78b877
CH
551 error = inode_change_ok(inode, attr);
552 if (error)
553 return error;
554
94c1e62d
HD
555 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
556 loff_t oldsize = inode->i_size;
557 loff_t newsize = attr->ia_size;
3889e6e7 558
40e041a2
DH
559 /* protected by i_mutex */
560 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
561 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
562 return -EPERM;
563
94c1e62d 564 if (newsize != oldsize) {
77142517
KK
565 error = shmem_reacct_size(SHMEM_I(inode)->flags,
566 oldsize, newsize);
567 if (error)
568 return error;
94c1e62d
HD
569 i_size_write(inode, newsize);
570 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571 }
afa2db2f 572 if (newsize <= oldsize) {
94c1e62d
HD
573 loff_t holebegin = round_up(newsize, PAGE_SIZE);
574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575 shmem_truncate_range(inode, newsize, (loff_t)-1);
576 /* unmap again to remove racily COWed private pages */
577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578 }
1da177e4
LT
579 }
580
db78b877 581 setattr_copy(inode, attr);
db78b877 582 if (attr->ia_valid & ATTR_MODE)
feda821e 583 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
584 return error;
585}
586
1f895f75 587static void shmem_evict_inode(struct inode *inode)
1da177e4 588{
1da177e4
LT
589 struct shmem_inode_info *info = SHMEM_I(inode);
590
3889e6e7 591 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
592 shmem_unacct_size(info->flags, inode->i_size);
593 inode->i_size = 0;
3889e6e7 594 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 595 if (!list_empty(&info->swaplist)) {
cb5f7b9a 596 mutex_lock(&shmem_swaplist_mutex);
1da177e4 597 list_del_init(&info->swaplist);
cb5f7b9a 598 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 599 }
69f07ec9
HD
600 } else
601 kfree(info->symlink);
b09e0fa4 602
38f38657 603 simple_xattrs_free(&info->xattrs);
0f3c42f5 604 WARN_ON(inode->i_blocks);
5b04c689 605 shmem_free_inode(inode->i_sb);
dbd5768f 606 clear_inode(inode);
1da177e4
LT
607}
608
46f65ec1
HD
609/*
610 * If swap found in inode, free it and move page from swapcache to filecache.
611 */
41ffe5d5 612static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 613 swp_entry_t swap, struct page **pagep)
1da177e4 614{
285b2c4f 615 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 616 void *radswap;
41ffe5d5 617 pgoff_t index;
bde05d1c
HD
618 gfp_t gfp;
619 int error = 0;
1da177e4 620
46f65ec1 621 radswap = swp_to_radix_entry(swap);
e504f3fd 622 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 623 if (index == -1)
00501b53 624 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 625
1b1b32f2
HD
626 /*
627 * Move _head_ to start search for next from here.
1f895f75 628 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 629 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 630 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
631 */
632 if (shmem_swaplist.next != &info->swaplist)
633 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 634
bde05d1c
HD
635 gfp = mapping_gfp_mask(mapping);
636 if (shmem_should_replace_page(*pagep, gfp)) {
637 mutex_unlock(&shmem_swaplist_mutex);
638 error = shmem_replace_page(pagep, gfp, info, index);
639 mutex_lock(&shmem_swaplist_mutex);
640 /*
641 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
642 * allocation, but the inode might have been freed while we
643 * dropped it: although a racing shmem_evict_inode() cannot
644 * complete without emptying the radix_tree, our page lock
645 * on this swapcache page is not enough to prevent that -
646 * free_swap_and_cache() of our swap entry will only
647 * trylock_page(), removing swap from radix_tree whatever.
648 *
649 * We must not proceed to shmem_add_to_page_cache() if the
650 * inode has been freed, but of course we cannot rely on
651 * inode or mapping or info to check that. However, we can
652 * safely check if our swap entry is still in use (and here
653 * it can't have got reused for another page): if it's still
654 * in use, then the inode cannot have been freed yet, and we
655 * can safely proceed (if it's no longer in use, that tells
656 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
657 */
658 if (!page_swapcount(*pagep))
659 error = -ENOENT;
660 }
661
d13d1443 662 /*
778dd893
HD
663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 666 */
bde05d1c
HD
667 if (!error)
668 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 669 radswap);
48f170fb 670 if (error != -ENOMEM) {
46f65ec1
HD
671 /*
672 * Truncation and eviction use free_swap_and_cache(), which
673 * only does trylock page: if we raced, best clean up here.
674 */
bde05d1c
HD
675 delete_from_swap_cache(*pagep);
676 set_page_dirty(*pagep);
46f65ec1
HD
677 if (!error) {
678 spin_lock(&info->lock);
679 info->swapped--;
680 spin_unlock(&info->lock);
681 swap_free(swap);
682 }
1da177e4 683 }
2e0e26c7 684 return error;
1da177e4
LT
685}
686
687/*
46f65ec1 688 * Search through swapped inodes to find and replace swap by page.
1da177e4 689 */
41ffe5d5 690int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 691{
41ffe5d5 692 struct list_head *this, *next;
1da177e4 693 struct shmem_inode_info *info;
00501b53 694 struct mem_cgroup *memcg;
bde05d1c
HD
695 int error = 0;
696
697 /*
698 * There's a faint possibility that swap page was replaced before
0142ef6c 699 * caller locked it: caller will come back later with the right page.
bde05d1c 700 */
0142ef6c 701 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 702 goto out;
778dd893
HD
703
704 /*
705 * Charge page using GFP_KERNEL while we can wait, before taking
706 * the shmem_swaplist_mutex which might hold up shmem_writepage().
707 * Charged back to the user (not to caller) when swap account is used.
778dd893 708 */
00501b53 709 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
710 if (error)
711 goto out;
46f65ec1 712 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 713 error = -EAGAIN;
1da177e4 714
cb5f7b9a 715 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
716 list_for_each_safe(this, next, &shmem_swaplist) {
717 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 718 if (info->swapped)
00501b53 719 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
720 else
721 list_del_init(&info->swaplist);
cb5f7b9a 722 cond_resched();
00501b53 723 if (error != -EAGAIN)
778dd893 724 break;
00501b53 725 /* found nothing in this: move on to search the next */
1da177e4 726 }
cb5f7b9a 727 mutex_unlock(&shmem_swaplist_mutex);
778dd893 728
00501b53
JW
729 if (error) {
730 if (error != -ENOMEM)
731 error = 0;
732 mem_cgroup_cancel_charge(page, memcg);
733 } else
734 mem_cgroup_commit_charge(page, memcg, true);
778dd893 735out:
aaa46865
HD
736 unlock_page(page);
737 page_cache_release(page);
778dd893 738 return error;
1da177e4
LT
739}
740
741/*
742 * Move the page from the page cache to the swap cache.
743 */
744static int shmem_writepage(struct page *page, struct writeback_control *wbc)
745{
746 struct shmem_inode_info *info;
1da177e4 747 struct address_space *mapping;
1da177e4 748 struct inode *inode;
6922c0c7
HD
749 swp_entry_t swap;
750 pgoff_t index;
1da177e4
LT
751
752 BUG_ON(!PageLocked(page));
1da177e4
LT
753 mapping = page->mapping;
754 index = page->index;
755 inode = mapping->host;
756 info = SHMEM_I(inode);
757 if (info->flags & VM_LOCKED)
758 goto redirty;
d9fe526a 759 if (!total_swap_pages)
1da177e4
LT
760 goto redirty;
761
d9fe526a 762 /*
97b713ba
CH
763 * Our capabilities prevent regular writeback or sync from ever calling
764 * shmem_writepage; but a stacking filesystem might use ->writepage of
765 * its underlying filesystem, in which case tmpfs should write out to
766 * swap only in response to memory pressure, and not for the writeback
767 * threads or sync.
d9fe526a 768 */
48f170fb
HD
769 if (!wbc->for_reclaim) {
770 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
771 goto redirty;
772 }
1635f6a7
HD
773
774 /*
775 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776 * value into swapfile.c, the only way we can correctly account for a
777 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
778 *
779 * That's okay for a page already fallocated earlier, but if we have
780 * not yet completed the fallocation, then (a) we want to keep track
781 * of this page in case we have to undo it, and (b) it may not be a
782 * good idea to continue anyway, once we're pushing into swap. So
783 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
784 */
785 if (!PageUptodate(page)) {
1aac1400
HD
786 if (inode->i_private) {
787 struct shmem_falloc *shmem_falloc;
788 spin_lock(&inode->i_lock);
789 shmem_falloc = inode->i_private;
790 if (shmem_falloc &&
8e205f77 791 !shmem_falloc->waitq &&
1aac1400
HD
792 index >= shmem_falloc->start &&
793 index < shmem_falloc->next)
794 shmem_falloc->nr_unswapped++;
795 else
796 shmem_falloc = NULL;
797 spin_unlock(&inode->i_lock);
798 if (shmem_falloc)
799 goto redirty;
800 }
1635f6a7
HD
801 clear_highpage(page);
802 flush_dcache_page(page);
803 SetPageUptodate(page);
804 }
805
48f170fb
HD
806 swap = get_swap_page();
807 if (!swap.val)
808 goto redirty;
d9fe526a 809
b1dea800
HD
810 /*
811 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
812 * if it's not already there. Do it now before the page is
813 * moved to swap cache, when its pagelock no longer protects
b1dea800 814 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
815 * we've incremented swapped, because shmem_unuse_inode() will
816 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 817 */
48f170fb
HD
818 mutex_lock(&shmem_swaplist_mutex);
819 if (list_empty(&info->swaplist))
820 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 821
48f170fb 822 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 823 swap_shmem_alloc(swap);
6922c0c7
HD
824 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
825
826 spin_lock(&info->lock);
827 info->swapped++;
828 shmem_recalc_inode(inode);
826267cf 829 spin_unlock(&info->lock);
6922c0c7
HD
830
831 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 832 BUG_ON(page_mapped(page));
9fab5619 833 swap_writepage(page, wbc);
1da177e4
LT
834 return 0;
835 }
836
6922c0c7 837 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 838 swapcache_free(swap);
1da177e4
LT
839redirty:
840 set_page_dirty(page);
d9fe526a
HD
841 if (wbc->for_reclaim)
842 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
843 unlock_page(page);
844 return 0;
1da177e4
LT
845}
846
847#ifdef CONFIG_NUMA
680d794b 848#ifdef CONFIG_TMPFS
71fe804b 849static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 850{
095f1fc4 851 char buffer[64];
680d794b 852
71fe804b 853 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 854 return; /* show nothing */
680d794b 855
a7a88b23 856 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
857
858 seq_printf(seq, ",mpol=%s", buffer);
680d794b 859}
71fe804b
LS
860
861static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
862{
863 struct mempolicy *mpol = NULL;
864 if (sbinfo->mpol) {
865 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
866 mpol = sbinfo->mpol;
867 mpol_get(mpol);
868 spin_unlock(&sbinfo->stat_lock);
869 }
870 return mpol;
871}
680d794b
AM
872#endif /* CONFIG_TMPFS */
873
41ffe5d5
HD
874static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
875 struct shmem_inode_info *info, pgoff_t index)
1da177e4 876{
1da177e4 877 struct vm_area_struct pvma;
18a2f371 878 struct page *page;
52cd3b07 879
1da177e4 880 /* Create a pseudo vma that just contains the policy */
c4cc6d07 881 pvma.vm_start = 0;
09c231cb
NZ
882 /* Bias interleave by inode number to distribute better across nodes */
883 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 884 pvma.vm_ops = NULL;
18a2f371
MG
885 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886
887 page = swapin_readahead(swap, gfp, &pvma, 0);
888
889 /* Drop reference taken by mpol_shared_policy_lookup() */
890 mpol_cond_put(pvma.vm_policy);
891
892 return page;
1da177e4
LT
893}
894
02098fea 895static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 896 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
897{
898 struct vm_area_struct pvma;
18a2f371 899 struct page *page;
1da177e4 900
c4cc6d07
HD
901 /* Create a pseudo vma that just contains the policy */
902 pvma.vm_start = 0;
09c231cb
NZ
903 /* Bias interleave by inode number to distribute better across nodes */
904 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 905 pvma.vm_ops = NULL;
41ffe5d5 906 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 907
18a2f371
MG
908 page = alloc_page_vma(gfp, &pvma, 0);
909
910 /* Drop reference taken by mpol_shared_policy_lookup() */
911 mpol_cond_put(pvma.vm_policy);
912
913 return page;
1da177e4 914}
680d794b
AM
915#else /* !CONFIG_NUMA */
916#ifdef CONFIG_TMPFS
41ffe5d5 917static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
918{
919}
920#endif /* CONFIG_TMPFS */
921
41ffe5d5
HD
922static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
923 struct shmem_inode_info *info, pgoff_t index)
1da177e4 924{
41ffe5d5 925 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
926}
927
02098fea 928static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 929 struct shmem_inode_info *info, pgoff_t index)
1da177e4 930{
e84e2e13 931 return alloc_page(gfp);
1da177e4 932}
680d794b 933#endif /* CONFIG_NUMA */
1da177e4 934
71fe804b
LS
935#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
937{
938 return NULL;
939}
940#endif
941
bde05d1c
HD
942/*
943 * When a page is moved from swapcache to shmem filecache (either by the
944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945 * shmem_unuse_inode()), it may have been read in earlier from swap, in
946 * ignorance of the mapping it belongs to. If that mapping has special
947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948 * we may need to copy to a suitable page before moving to filecache.
949 *
950 * In a future release, this may well be extended to respect cpuset and
951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952 * but for now it is a simple matter of zone.
953 */
954static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
955{
956 return page_zonenum(page) > gfp_zone(gfp);
957}
958
959static int shmem_replace_page(struct page **pagep, gfp_t gfp,
960 struct shmem_inode_info *info, pgoff_t index)
961{
962 struct page *oldpage, *newpage;
963 struct address_space *swap_mapping;
964 pgoff_t swap_index;
965 int error;
966
967 oldpage = *pagep;
968 swap_index = page_private(oldpage);
969 swap_mapping = page_mapping(oldpage);
970
971 /*
972 * We have arrived here because our zones are constrained, so don't
973 * limit chance of success by further cpuset and node constraints.
974 */
975 gfp &= ~GFP_CONSTRAINT_MASK;
976 newpage = shmem_alloc_page(gfp, info, index);
977 if (!newpage)
978 return -ENOMEM;
bde05d1c 979
bde05d1c
HD
980 page_cache_get(newpage);
981 copy_highpage(newpage, oldpage);
0142ef6c 982 flush_dcache_page(newpage);
bde05d1c 983
bde05d1c 984 __set_page_locked(newpage);
bde05d1c 985 SetPageUptodate(newpage);
bde05d1c 986 SetPageSwapBacked(newpage);
bde05d1c 987 set_page_private(newpage, swap_index);
bde05d1c
HD
988 SetPageSwapCache(newpage);
989
990 /*
991 * Our caller will very soon move newpage out of swapcache, but it's
992 * a nice clean interface for us to replace oldpage by newpage there.
993 */
994 spin_lock_irq(&swap_mapping->tree_lock);
995 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
996 newpage);
0142ef6c
HD
997 if (!error) {
998 __inc_zone_page_state(newpage, NR_FILE_PAGES);
999 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1000 }
bde05d1c 1001 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1002
0142ef6c
HD
1003 if (unlikely(error)) {
1004 /*
1005 * Is this possible? I think not, now that our callers check
1006 * both PageSwapCache and page_private after getting page lock;
1007 * but be defensive. Reverse old to newpage for clear and free.
1008 */
1009 oldpage = newpage;
1010 } else {
f5e03a49 1011 mem_cgroup_migrate(oldpage, newpage, true);
0142ef6c
HD
1012 lru_cache_add_anon(newpage);
1013 *pagep = newpage;
1014 }
bde05d1c
HD
1015
1016 ClearPageSwapCache(oldpage);
1017 set_page_private(oldpage, 0);
1018
1019 unlock_page(oldpage);
1020 page_cache_release(oldpage);
1021 page_cache_release(oldpage);
0142ef6c 1022 return error;
bde05d1c
HD
1023}
1024
1da177e4 1025/*
68da9f05 1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1027 *
1028 * If we allocate a new one we do not mark it dirty. That's up to the
1029 * vm. If we swap it in we mark it dirty since we also free the swap
1030 * entry since a page cannot live in both the swap and page cache
1031 */
41ffe5d5 1032static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1033 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1034{
1035 struct address_space *mapping = inode->i_mapping;
54af6042 1036 struct shmem_inode_info *info;
1da177e4 1037 struct shmem_sb_info *sbinfo;
00501b53 1038 struct mem_cgroup *memcg;
27ab7006 1039 struct page *page;
1da177e4
LT
1040 swp_entry_t swap;
1041 int error;
54af6042 1042 int once = 0;
1635f6a7 1043 int alloced = 0;
1da177e4 1044
41ffe5d5 1045 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1046 return -EFBIG;
1da177e4 1047repeat:
54af6042 1048 swap.val = 0;
0cd6144a 1049 page = find_lock_entry(mapping, index);
54af6042
HD
1050 if (radix_tree_exceptional_entry(page)) {
1051 swap = radix_to_swp_entry(page);
1052 page = NULL;
1053 }
1054
1635f6a7 1055 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1056 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1057 error = -EINVAL;
1058 goto failed;
1059 }
1060
66d2f4d2
HD
1061 if (page && sgp == SGP_WRITE)
1062 mark_page_accessed(page);
1063
1635f6a7
HD
1064 /* fallocated page? */
1065 if (page && !PageUptodate(page)) {
1066 if (sgp != SGP_READ)
1067 goto clear;
1068 unlock_page(page);
1069 page_cache_release(page);
1070 page = NULL;
1071 }
54af6042 1072 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1073 *pagep = page;
1074 return 0;
27ab7006
HD
1075 }
1076
1077 /*
54af6042
HD
1078 * Fast cache lookup did not find it:
1079 * bring it back from swap or allocate.
27ab7006 1080 */
54af6042
HD
1081 info = SHMEM_I(inode);
1082 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1083
1da177e4
LT
1084 if (swap.val) {
1085 /* Look it up and read it in.. */
27ab7006
HD
1086 page = lookup_swap_cache(swap);
1087 if (!page) {
1da177e4 1088 /* here we actually do the io */
68da9f05
HD
1089 if (fault_type)
1090 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1091 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1092 if (!page) {
54af6042
HD
1093 error = -ENOMEM;
1094 goto failed;
1da177e4 1095 }
1da177e4
LT
1096 }
1097
1098 /* We have to do this with page locked to prevent races */
54af6042 1099 lock_page(page);
0142ef6c 1100 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1101 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1102 error = -EEXIST; /* try again */
d1899228 1103 goto unlock;
bde05d1c 1104 }
27ab7006 1105 if (!PageUptodate(page)) {
1da177e4 1106 error = -EIO;
54af6042 1107 goto failed;
1da177e4 1108 }
54af6042
HD
1109 wait_on_page_writeback(page);
1110
bde05d1c
HD
1111 if (shmem_should_replace_page(page, gfp)) {
1112 error = shmem_replace_page(&page, gfp, info, index);
1113 if (error)
1114 goto failed;
1da177e4 1115 }
27ab7006 1116
00501b53 1117 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1118 if (!error) {
aa3b1895 1119 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1120 swp_to_radix_entry(swap));
215c02bc
HD
1121 /*
1122 * We already confirmed swap under page lock, and make
1123 * no memory allocation here, so usually no possibility
1124 * of error; but free_swap_and_cache() only trylocks a
1125 * page, so it is just possible that the entry has been
1126 * truncated or holepunched since swap was confirmed.
1127 * shmem_undo_range() will have done some of the
1128 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1129 * the rest.
215c02bc
HD
1130 * Reset swap.val? No, leave it so "failed" goes back to
1131 * "repeat": reading a hole and writing should succeed.
1132 */
00501b53
JW
1133 if (error) {
1134 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1135 delete_from_swap_cache(page);
00501b53 1136 }
d1899228 1137 }
54af6042
HD
1138 if (error)
1139 goto failed;
1140
00501b53
JW
1141 mem_cgroup_commit_charge(page, memcg, true);
1142
54af6042 1143 spin_lock(&info->lock);
285b2c4f 1144 info->swapped--;
54af6042 1145 shmem_recalc_inode(inode);
27ab7006 1146 spin_unlock(&info->lock);
54af6042 1147
66d2f4d2
HD
1148 if (sgp == SGP_WRITE)
1149 mark_page_accessed(page);
1150
54af6042 1151 delete_from_swap_cache(page);
27ab7006
HD
1152 set_page_dirty(page);
1153 swap_free(swap);
1154
54af6042
HD
1155 } else {
1156 if (shmem_acct_block(info->flags)) {
1157 error = -ENOSPC;
1158 goto failed;
1da177e4 1159 }
0edd73b3 1160 if (sbinfo->max_blocks) {
fc5da22a 1161 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1162 sbinfo->max_blocks) >= 0) {
1163 error = -ENOSPC;
1164 goto unacct;
1165 }
7e496299 1166 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1167 }
1da177e4 1168
54af6042
HD
1169 page = shmem_alloc_page(gfp, info, index);
1170 if (!page) {
1171 error = -ENOMEM;
1172 goto decused;
1da177e4
LT
1173 }
1174
07a42788 1175 __SetPageSwapBacked(page);
54af6042 1176 __set_page_locked(page);
66d2f4d2 1177 if (sgp == SGP_WRITE)
eb39d618 1178 __SetPageReferenced(page);
66d2f4d2 1179
00501b53 1180 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1181 if (error)
1182 goto decused;
5e4c0d97 1183 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1184 if (!error) {
1185 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1186 NULL);
b065b432
HD
1187 radix_tree_preload_end();
1188 }
1189 if (error) {
00501b53 1190 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1191 goto decused;
1192 }
00501b53 1193 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1194 lru_cache_add_anon(page);
1195
1196 spin_lock(&info->lock);
1da177e4 1197 info->alloced++;
54af6042
HD
1198 inode->i_blocks += BLOCKS_PER_PAGE;
1199 shmem_recalc_inode(inode);
1da177e4 1200 spin_unlock(&info->lock);
1635f6a7 1201 alloced = true;
54af6042 1202
ec9516fb 1203 /*
1635f6a7
HD
1204 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1205 */
1206 if (sgp == SGP_FALLOC)
1207 sgp = SGP_WRITE;
1208clear:
1209 /*
1210 * Let SGP_WRITE caller clear ends if write does not fill page;
1211 * but SGP_FALLOC on a page fallocated earlier must initialize
1212 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1213 */
1214 if (sgp != SGP_WRITE) {
1215 clear_highpage(page);
1216 flush_dcache_page(page);
1217 SetPageUptodate(page);
1218 }
a0ee5ec5 1219 if (sgp == SGP_DIRTY)
27ab7006 1220 set_page_dirty(page);
1da177e4 1221 }
bde05d1c 1222
54af6042 1223 /* Perhaps the file has been truncated since we checked */
1635f6a7 1224 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1225 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1226 error = -EINVAL;
1635f6a7
HD
1227 if (alloced)
1228 goto trunc;
1229 else
1230 goto failed;
e83c32e8 1231 }
54af6042
HD
1232 *pagep = page;
1233 return 0;
1da177e4 1234
59a16ead 1235 /*
54af6042 1236 * Error recovery.
59a16ead 1237 */
54af6042 1238trunc:
1635f6a7 1239 info = SHMEM_I(inode);
54af6042
HD
1240 ClearPageDirty(page);
1241 delete_from_page_cache(page);
1242 spin_lock(&info->lock);
1243 info->alloced--;
1244 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1245 spin_unlock(&info->lock);
54af6042 1246decused:
1635f6a7 1247 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1248 if (sbinfo->max_blocks)
1249 percpu_counter_add(&sbinfo->used_blocks, -1);
1250unacct:
1251 shmem_unacct_blocks(info->flags, 1);
1252failed:
d1899228
HD
1253 if (swap.val && error != -EINVAL &&
1254 !shmem_confirm_swap(mapping, index, swap))
1255 error = -EEXIST;
1256unlock:
27ab7006 1257 if (page) {
54af6042 1258 unlock_page(page);
27ab7006 1259 page_cache_release(page);
54af6042
HD
1260 }
1261 if (error == -ENOSPC && !once++) {
1262 info = SHMEM_I(inode);
1263 spin_lock(&info->lock);
1264 shmem_recalc_inode(inode);
1265 spin_unlock(&info->lock);
27ab7006 1266 goto repeat;
ff36b801 1267 }
d1899228 1268 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1269 goto repeat;
1270 return error;
1da177e4
LT
1271}
1272
d0217ac0 1273static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1274{
496ad9aa 1275 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1276 int error;
68da9f05 1277 int ret = VM_FAULT_LOCKED;
1da177e4 1278
f00cdc6d
HD
1279 /*
1280 * Trinity finds that probing a hole which tmpfs is punching can
1281 * prevent the hole-punch from ever completing: which in turn
1282 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1283 * faulting pages into the hole while it's being punched. Although
1284 * shmem_undo_range() does remove the additions, it may be unable to
1285 * keep up, as each new page needs its own unmap_mapping_range() call,
1286 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1287 *
1288 * It does not matter if we sometimes reach this check just before the
1289 * hole-punch begins, so that one fault then races with the punch:
1290 * we just need to make racing faults a rare case.
1291 *
1292 * The implementation below would be much simpler if we just used a
1293 * standard mutex or completion: but we cannot take i_mutex in fault,
1294 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1295 */
1296 if (unlikely(inode->i_private)) {
1297 struct shmem_falloc *shmem_falloc;
1298
1299 spin_lock(&inode->i_lock);
1300 shmem_falloc = inode->i_private;
8e205f77
HD
1301 if (shmem_falloc &&
1302 shmem_falloc->waitq &&
1303 vmf->pgoff >= shmem_falloc->start &&
1304 vmf->pgoff < shmem_falloc->next) {
1305 wait_queue_head_t *shmem_falloc_waitq;
1306 DEFINE_WAIT(shmem_fault_wait);
1307
1308 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1309 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1310 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1311 /* It's polite to up mmap_sem if we can */
f00cdc6d 1312 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1313 ret = VM_FAULT_RETRY;
f00cdc6d 1314 }
8e205f77
HD
1315
1316 shmem_falloc_waitq = shmem_falloc->waitq;
1317 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1318 TASK_UNINTERRUPTIBLE);
1319 spin_unlock(&inode->i_lock);
1320 schedule();
1321
1322 /*
1323 * shmem_falloc_waitq points into the shmem_fallocate()
1324 * stack of the hole-punching task: shmem_falloc_waitq
1325 * is usually invalid by the time we reach here, but
1326 * finish_wait() does not dereference it in that case;
1327 * though i_lock needed lest racing with wake_up_all().
1328 */
1329 spin_lock(&inode->i_lock);
1330 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1331 spin_unlock(&inode->i_lock);
1332 return ret;
f00cdc6d 1333 }
8e205f77 1334 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1335 }
1336
27d54b39 1337 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1338 if (error)
1339 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1340
456f998e
YH
1341 if (ret & VM_FAULT_MAJOR) {
1342 count_vm_event(PGMAJFAULT);
1343 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1344 }
68da9f05 1345 return ret;
1da177e4
LT
1346}
1347
1da177e4 1348#ifdef CONFIG_NUMA
41ffe5d5 1349static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1350{
496ad9aa 1351 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1352 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1353}
1354
d8dc74f2
AB
1355static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1356 unsigned long addr)
1da177e4 1357{
496ad9aa 1358 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1359 pgoff_t index;
1da177e4 1360
41ffe5d5
HD
1361 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1362 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1363}
1364#endif
1365
1366int shmem_lock(struct file *file, int lock, struct user_struct *user)
1367{
496ad9aa 1368 struct inode *inode = file_inode(file);
1da177e4
LT
1369 struct shmem_inode_info *info = SHMEM_I(inode);
1370 int retval = -ENOMEM;
1371
1372 spin_lock(&info->lock);
1373 if (lock && !(info->flags & VM_LOCKED)) {
1374 if (!user_shm_lock(inode->i_size, user))
1375 goto out_nomem;
1376 info->flags |= VM_LOCKED;
89e004ea 1377 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1378 }
1379 if (!lock && (info->flags & VM_LOCKED) && user) {
1380 user_shm_unlock(inode->i_size, user);
1381 info->flags &= ~VM_LOCKED;
89e004ea 1382 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1383 }
1384 retval = 0;
89e004ea 1385
1da177e4
LT
1386out_nomem:
1387 spin_unlock(&info->lock);
1388 return retval;
1389}
1390
9b83a6a8 1391static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1392{
1393 file_accessed(file);
1394 vma->vm_ops = &shmem_vm_ops;
1395 return 0;
1396}
1397
454abafe 1398static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1399 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1400{
1401 struct inode *inode;
1402 struct shmem_inode_info *info;
1403 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1404
5b04c689
PE
1405 if (shmem_reserve_inode(sb))
1406 return NULL;
1da177e4
LT
1407
1408 inode = new_inode(sb);
1409 if (inode) {
85fe4025 1410 inode->i_ino = get_next_ino();
454abafe 1411 inode_init_owner(inode, dir, mode);
1da177e4 1412 inode->i_blocks = 0;
1da177e4 1413 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1414 inode->i_generation = get_seconds();
1da177e4
LT
1415 info = SHMEM_I(inode);
1416 memset(info, 0, (char *)inode - (char *)info);
1417 spin_lock_init(&info->lock);
40e041a2 1418 info->seals = F_SEAL_SEAL;
0b0a0806 1419 info->flags = flags & VM_NORESERVE;
1da177e4 1420 INIT_LIST_HEAD(&info->swaplist);
38f38657 1421 simple_xattrs_init(&info->xattrs);
72c04902 1422 cache_no_acl(inode);
1da177e4
LT
1423
1424 switch (mode & S_IFMT) {
1425 default:
39f0247d 1426 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1427 init_special_inode(inode, mode, dev);
1428 break;
1429 case S_IFREG:
14fcc23f 1430 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1431 inode->i_op = &shmem_inode_operations;
1432 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1433 mpol_shared_policy_init(&info->policy,
1434 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1435 break;
1436 case S_IFDIR:
d8c76e6f 1437 inc_nlink(inode);
1da177e4
LT
1438 /* Some things misbehave if size == 0 on a directory */
1439 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440 inode->i_op = &shmem_dir_inode_operations;
1441 inode->i_fop = &simple_dir_operations;
1442 break;
1443 case S_IFLNK:
1444 /*
1445 * Must not load anything in the rbtree,
1446 * mpol_free_shared_policy will not be called.
1447 */
71fe804b 1448 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1449 break;
1450 }
5b04c689
PE
1451 } else
1452 shmem_free_inode(sb);
1da177e4
LT
1453 return inode;
1454}
1455
0cd6144a
JW
1456bool shmem_mapping(struct address_space *mapping)
1457{
f0774d88
SL
1458 if (!mapping->host)
1459 return false;
1460
97b713ba 1461 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1462}
1463
1da177e4 1464#ifdef CONFIG_TMPFS
92e1d5be 1465static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1466static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1467
6d9d88d0
JS
1468#ifdef CONFIG_TMPFS_XATTR
1469static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1470#else
1471#define shmem_initxattrs NULL
1472#endif
1473
1da177e4 1474static int
800d15a5
NP
1475shmem_write_begin(struct file *file, struct address_space *mapping,
1476 loff_t pos, unsigned len, unsigned flags,
1477 struct page **pagep, void **fsdata)
1da177e4 1478{
800d15a5 1479 struct inode *inode = mapping->host;
40e041a2 1480 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1481 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DH
1482
1483 /* i_mutex is held by caller */
1484 if (unlikely(info->seals)) {
1485 if (info->seals & F_SEAL_WRITE)
1486 return -EPERM;
1487 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1488 return -EPERM;
1489 }
1490
66d2f4d2 1491 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1492}
1493
1494static int
1495shmem_write_end(struct file *file, struct address_space *mapping,
1496 loff_t pos, unsigned len, unsigned copied,
1497 struct page *page, void *fsdata)
1498{
1499 struct inode *inode = mapping->host;
1500
d3602444
HD
1501 if (pos + copied > inode->i_size)
1502 i_size_write(inode, pos + copied);
1503
ec9516fb
HD
1504 if (!PageUptodate(page)) {
1505 if (copied < PAGE_CACHE_SIZE) {
1506 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1507 zero_user_segments(page, 0, from,
1508 from + copied, PAGE_CACHE_SIZE);
1509 }
1510 SetPageUptodate(page);
1511 }
800d15a5 1512 set_page_dirty(page);
6746aff7 1513 unlock_page(page);
800d15a5
NP
1514 page_cache_release(page);
1515
800d15a5 1516 return copied;
1da177e4
LT
1517}
1518
2ba5bbed 1519static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1520{
6e58e79d
AV
1521 struct file *file = iocb->ki_filp;
1522 struct inode *inode = file_inode(file);
1da177e4 1523 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1524 pgoff_t index;
1525 unsigned long offset;
a0ee5ec5 1526 enum sgp_type sgp = SGP_READ;
f7c1d074 1527 int error = 0;
cb66a7a1 1528 ssize_t retval = 0;
6e58e79d 1529 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1530
1531 /*
1532 * Might this read be for a stacking filesystem? Then when reading
1533 * holes of a sparse file, we actually need to allocate those pages,
1534 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1535 */
777eda2c 1536 if (!iter_is_iovec(to))
a0ee5ec5 1537 sgp = SGP_DIRTY;
1da177e4
LT
1538
1539 index = *ppos >> PAGE_CACHE_SHIFT;
1540 offset = *ppos & ~PAGE_CACHE_MASK;
1541
1542 for (;;) {
1543 struct page *page = NULL;
41ffe5d5
HD
1544 pgoff_t end_index;
1545 unsigned long nr, ret;
1da177e4
LT
1546 loff_t i_size = i_size_read(inode);
1547
1548 end_index = i_size >> PAGE_CACHE_SHIFT;
1549 if (index > end_index)
1550 break;
1551 if (index == end_index) {
1552 nr = i_size & ~PAGE_CACHE_MASK;
1553 if (nr <= offset)
1554 break;
1555 }
1556
6e58e79d
AV
1557 error = shmem_getpage(inode, index, &page, sgp, NULL);
1558 if (error) {
1559 if (error == -EINVAL)
1560 error = 0;
1da177e4
LT
1561 break;
1562 }
d3602444
HD
1563 if (page)
1564 unlock_page(page);
1da177e4
LT
1565
1566 /*
1567 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1568 * are called without i_mutex protection against truncate
1da177e4
LT
1569 */
1570 nr = PAGE_CACHE_SIZE;
1571 i_size = i_size_read(inode);
1572 end_index = i_size >> PAGE_CACHE_SHIFT;
1573 if (index == end_index) {
1574 nr = i_size & ~PAGE_CACHE_MASK;
1575 if (nr <= offset) {
1576 if (page)
1577 page_cache_release(page);
1578 break;
1579 }
1580 }
1581 nr -= offset;
1582
1583 if (page) {
1584 /*
1585 * If users can be writing to this page using arbitrary
1586 * virtual addresses, take care about potential aliasing
1587 * before reading the page on the kernel side.
1588 */
1589 if (mapping_writably_mapped(mapping))
1590 flush_dcache_page(page);
1591 /*
1592 * Mark the page accessed if we read the beginning.
1593 */
1594 if (!offset)
1595 mark_page_accessed(page);
b5810039 1596 } else {
1da177e4 1597 page = ZERO_PAGE(0);
b5810039
NP
1598 page_cache_get(page);
1599 }
1da177e4
LT
1600
1601 /*
1602 * Ok, we have the page, and it's up-to-date, so
1603 * now we can copy it to user space...
1da177e4 1604 */
2ba5bbed 1605 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1606 retval += ret;
1da177e4
LT
1607 offset += ret;
1608 index += offset >> PAGE_CACHE_SHIFT;
1609 offset &= ~PAGE_CACHE_MASK;
1610
1611 page_cache_release(page);
2ba5bbed 1612 if (!iov_iter_count(to))
1da177e4 1613 break;
6e58e79d
AV
1614 if (ret < nr) {
1615 error = -EFAULT;
1616 break;
1617 }
1da177e4
LT
1618 cond_resched();
1619 }
1620
1621 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1622 file_accessed(file);
1623 return retval ? retval : error;
1da177e4
LT
1624}
1625
708e3508
HD
1626static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1627 struct pipe_inode_info *pipe, size_t len,
1628 unsigned int flags)
1629{
1630 struct address_space *mapping = in->f_mapping;
71f0e07a 1631 struct inode *inode = mapping->host;
708e3508
HD
1632 unsigned int loff, nr_pages, req_pages;
1633 struct page *pages[PIPE_DEF_BUFFERS];
1634 struct partial_page partial[PIPE_DEF_BUFFERS];
1635 struct page *page;
1636 pgoff_t index, end_index;
1637 loff_t isize, left;
1638 int error, page_nr;
1639 struct splice_pipe_desc spd = {
1640 .pages = pages,
1641 .partial = partial,
047fe360 1642 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1643 .flags = flags,
1644 .ops = &page_cache_pipe_buf_ops,
1645 .spd_release = spd_release_page,
1646 };
1647
71f0e07a 1648 isize = i_size_read(inode);
708e3508
HD
1649 if (unlikely(*ppos >= isize))
1650 return 0;
1651
1652 left = isize - *ppos;
1653 if (unlikely(left < len))
1654 len = left;
1655
1656 if (splice_grow_spd(pipe, &spd))
1657 return -ENOMEM;
1658
1659 index = *ppos >> PAGE_CACHE_SHIFT;
1660 loff = *ppos & ~PAGE_CACHE_MASK;
1661 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1662 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1663
708e3508
HD
1664 spd.nr_pages = find_get_pages_contig(mapping, index,
1665 nr_pages, spd.pages);
1666 index += spd.nr_pages;
708e3508 1667 error = 0;
708e3508 1668
71f0e07a 1669 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1670 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1671 if (error)
1672 break;
1673 unlock_page(page);
708e3508
HD
1674 spd.pages[spd.nr_pages++] = page;
1675 index++;
1676 }
1677
708e3508
HD
1678 index = *ppos >> PAGE_CACHE_SHIFT;
1679 nr_pages = spd.nr_pages;
1680 spd.nr_pages = 0;
71f0e07a 1681
708e3508
HD
1682 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1683 unsigned int this_len;
1684
1685 if (!len)
1686 break;
1687
708e3508
HD
1688 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1689 page = spd.pages[page_nr];
1690
71f0e07a 1691 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1692 error = shmem_getpage(inode, index, &page,
1693 SGP_CACHE, NULL);
1694 if (error)
708e3508 1695 break;
71f0e07a
HD
1696 unlock_page(page);
1697 page_cache_release(spd.pages[page_nr]);
1698 spd.pages[page_nr] = page;
708e3508 1699 }
71f0e07a
HD
1700
1701 isize = i_size_read(inode);
708e3508
HD
1702 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1703 if (unlikely(!isize || index > end_index))
1704 break;
1705
708e3508
HD
1706 if (end_index == index) {
1707 unsigned int plen;
1708
708e3508
HD
1709 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710 if (plen <= loff)
1711 break;
1712
708e3508
HD
1713 this_len = min(this_len, plen - loff);
1714 len = this_len;
1715 }
1716
1717 spd.partial[page_nr].offset = loff;
1718 spd.partial[page_nr].len = this_len;
1719 len -= this_len;
1720 loff = 0;
1721 spd.nr_pages++;
1722 index++;
1723 }
1724
708e3508
HD
1725 while (page_nr < nr_pages)
1726 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1727
1728 if (spd.nr_pages)
1729 error = splice_to_pipe(pipe, &spd);
1730
047fe360 1731 splice_shrink_spd(&spd);
708e3508
HD
1732
1733 if (error > 0) {
1734 *ppos += error;
1735 file_accessed(in);
1736 }
1737 return error;
1738}
1739
220f2ac9
HD
1740/*
1741 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1742 */
1743static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1744 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1745{
1746 struct page *page;
1747 struct pagevec pvec;
1748 pgoff_t indices[PAGEVEC_SIZE];
1749 bool done = false;
1750 int i;
1751
1752 pagevec_init(&pvec, 0);
1753 pvec.nr = 1; /* start small: we may be there already */
1754 while (!done) {
0cd6144a 1755 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1756 pvec.nr, pvec.pages, indices);
1757 if (!pvec.nr) {
965c8e59 1758 if (whence == SEEK_DATA)
220f2ac9
HD
1759 index = end;
1760 break;
1761 }
1762 for (i = 0; i < pvec.nr; i++, index++) {
1763 if (index < indices[i]) {
965c8e59 1764 if (whence == SEEK_HOLE) {
220f2ac9
HD
1765 done = true;
1766 break;
1767 }
1768 index = indices[i];
1769 }
1770 page = pvec.pages[i];
1771 if (page && !radix_tree_exceptional_entry(page)) {
1772 if (!PageUptodate(page))
1773 page = NULL;
1774 }
1775 if (index >= end ||
965c8e59
AM
1776 (page && whence == SEEK_DATA) ||
1777 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1778 done = true;
1779 break;
1780 }
1781 }
0cd6144a 1782 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1783 pagevec_release(&pvec);
1784 pvec.nr = PAGEVEC_SIZE;
1785 cond_resched();
1786 }
1787 return index;
1788}
1789
965c8e59 1790static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1791{
1792 struct address_space *mapping = file->f_mapping;
1793 struct inode *inode = mapping->host;
1794 pgoff_t start, end;
1795 loff_t new_offset;
1796
965c8e59
AM
1797 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1798 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1799 MAX_LFS_FILESIZE, i_size_read(inode));
1800 mutex_lock(&inode->i_mutex);
1801 /* We're holding i_mutex so we can access i_size directly */
1802
1803 if (offset < 0)
1804 offset = -EINVAL;
1805 else if (offset >= inode->i_size)
1806 offset = -ENXIO;
1807 else {
1808 start = offset >> PAGE_CACHE_SHIFT;
1809 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1810 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1811 new_offset <<= PAGE_CACHE_SHIFT;
1812 if (new_offset > offset) {
1813 if (new_offset < inode->i_size)
1814 offset = new_offset;
965c8e59 1815 else if (whence == SEEK_DATA)
220f2ac9
HD
1816 offset = -ENXIO;
1817 else
1818 offset = inode->i_size;
1819 }
1820 }
1821
387aae6f
HD
1822 if (offset >= 0)
1823 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1824 mutex_unlock(&inode->i_mutex);
1825 return offset;
1826}
1827
05f65b5c
DH
1828/*
1829 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1830 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1831 */
1832#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1833#define LAST_SCAN 4 /* about 150ms max */
1834
1835static void shmem_tag_pins(struct address_space *mapping)
1836{
1837 struct radix_tree_iter iter;
1838 void **slot;
1839 pgoff_t start;
1840 struct page *page;
1841
1842 lru_add_drain();
1843 start = 0;
1844 rcu_read_lock();
1845
1846restart:
1847 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1848 page = radix_tree_deref_slot(slot);
1849 if (!page || radix_tree_exception(page)) {
1850 if (radix_tree_deref_retry(page))
1851 goto restart;
1852 } else if (page_count(page) - page_mapcount(page) > 1) {
1853 spin_lock_irq(&mapping->tree_lock);
1854 radix_tree_tag_set(&mapping->page_tree, iter.index,
1855 SHMEM_TAG_PINNED);
1856 spin_unlock_irq(&mapping->tree_lock);
1857 }
1858
1859 if (need_resched()) {
1860 cond_resched_rcu();
1861 start = iter.index + 1;
1862 goto restart;
1863 }
1864 }
1865 rcu_read_unlock();
1866}
1867
1868/*
1869 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1870 * via get_user_pages(), drivers might have some pending I/O without any active
1871 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1872 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1873 * them to be dropped.
1874 * The caller must guarantee that no new user will acquire writable references
1875 * to those pages to avoid races.
1876 */
40e041a2
DH
1877static int shmem_wait_for_pins(struct address_space *mapping)
1878{
05f65b5c
DH
1879 struct radix_tree_iter iter;
1880 void **slot;
1881 pgoff_t start;
1882 struct page *page;
1883 int error, scan;
1884
1885 shmem_tag_pins(mapping);
1886
1887 error = 0;
1888 for (scan = 0; scan <= LAST_SCAN; scan++) {
1889 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1890 break;
1891
1892 if (!scan)
1893 lru_add_drain_all();
1894 else if (schedule_timeout_killable((HZ << scan) / 200))
1895 scan = LAST_SCAN;
1896
1897 start = 0;
1898 rcu_read_lock();
1899restart:
1900 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1901 start, SHMEM_TAG_PINNED) {
1902
1903 page = radix_tree_deref_slot(slot);
1904 if (radix_tree_exception(page)) {
1905 if (radix_tree_deref_retry(page))
1906 goto restart;
1907
1908 page = NULL;
1909 }
1910
1911 if (page &&
1912 page_count(page) - page_mapcount(page) != 1) {
1913 if (scan < LAST_SCAN)
1914 goto continue_resched;
1915
1916 /*
1917 * On the last scan, we clean up all those tags
1918 * we inserted; but make a note that we still
1919 * found pages pinned.
1920 */
1921 error = -EBUSY;
1922 }
1923
1924 spin_lock_irq(&mapping->tree_lock);
1925 radix_tree_tag_clear(&mapping->page_tree,
1926 iter.index, SHMEM_TAG_PINNED);
1927 spin_unlock_irq(&mapping->tree_lock);
1928continue_resched:
1929 if (need_resched()) {
1930 cond_resched_rcu();
1931 start = iter.index + 1;
1932 goto restart;
1933 }
1934 }
1935 rcu_read_unlock();
1936 }
1937
1938 return error;
40e041a2
DH
1939}
1940
1941#define F_ALL_SEALS (F_SEAL_SEAL | \
1942 F_SEAL_SHRINK | \
1943 F_SEAL_GROW | \
1944 F_SEAL_WRITE)
1945
1946int shmem_add_seals(struct file *file, unsigned int seals)
1947{
1948 struct inode *inode = file_inode(file);
1949 struct shmem_inode_info *info = SHMEM_I(inode);
1950 int error;
1951
1952 /*
1953 * SEALING
1954 * Sealing allows multiple parties to share a shmem-file but restrict
1955 * access to a specific subset of file operations. Seals can only be
1956 * added, but never removed. This way, mutually untrusted parties can
1957 * share common memory regions with a well-defined policy. A malicious
1958 * peer can thus never perform unwanted operations on a shared object.
1959 *
1960 * Seals are only supported on special shmem-files and always affect
1961 * the whole underlying inode. Once a seal is set, it may prevent some
1962 * kinds of access to the file. Currently, the following seals are
1963 * defined:
1964 * SEAL_SEAL: Prevent further seals from being set on this file
1965 * SEAL_SHRINK: Prevent the file from shrinking
1966 * SEAL_GROW: Prevent the file from growing
1967 * SEAL_WRITE: Prevent write access to the file
1968 *
1969 * As we don't require any trust relationship between two parties, we
1970 * must prevent seals from being removed. Therefore, sealing a file
1971 * only adds a given set of seals to the file, it never touches
1972 * existing seals. Furthermore, the "setting seals"-operation can be
1973 * sealed itself, which basically prevents any further seal from being
1974 * added.
1975 *
1976 * Semantics of sealing are only defined on volatile files. Only
1977 * anonymous shmem files support sealing. More importantly, seals are
1978 * never written to disk. Therefore, there's no plan to support it on
1979 * other file types.
1980 */
1981
1982 if (file->f_op != &shmem_file_operations)
1983 return -EINVAL;
1984 if (!(file->f_mode & FMODE_WRITE))
1985 return -EPERM;
1986 if (seals & ~(unsigned int)F_ALL_SEALS)
1987 return -EINVAL;
1988
1989 mutex_lock(&inode->i_mutex);
1990
1991 if (info->seals & F_SEAL_SEAL) {
1992 error = -EPERM;
1993 goto unlock;
1994 }
1995
1996 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
1997 error = mapping_deny_writable(file->f_mapping);
1998 if (error)
1999 goto unlock;
2000
2001 error = shmem_wait_for_pins(file->f_mapping);
2002 if (error) {
2003 mapping_allow_writable(file->f_mapping);
2004 goto unlock;
2005 }
2006 }
2007
2008 info->seals |= seals;
2009 error = 0;
2010
2011unlock:
2012 mutex_unlock(&inode->i_mutex);
2013 return error;
2014}
2015EXPORT_SYMBOL_GPL(shmem_add_seals);
2016
2017int shmem_get_seals(struct file *file)
2018{
2019 if (file->f_op != &shmem_file_operations)
2020 return -EINVAL;
2021
2022 return SHMEM_I(file_inode(file))->seals;
2023}
2024EXPORT_SYMBOL_GPL(shmem_get_seals);
2025
2026long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2027{
2028 long error;
2029
2030 switch (cmd) {
2031 case F_ADD_SEALS:
2032 /* disallow upper 32bit */
2033 if (arg > UINT_MAX)
2034 return -EINVAL;
2035
2036 error = shmem_add_seals(file, arg);
2037 break;
2038 case F_GET_SEALS:
2039 error = shmem_get_seals(file);
2040 break;
2041 default:
2042 error = -EINVAL;
2043 break;
2044 }
2045
2046 return error;
2047}
2048
83e4fa9c
HD
2049static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2050 loff_t len)
2051{
496ad9aa 2052 struct inode *inode = file_inode(file);
e2d12e22 2053 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2054 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2055 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2056 pgoff_t start, index, end;
2057 int error;
83e4fa9c 2058
13ace4d0
HD
2059 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2060 return -EOPNOTSUPP;
2061
83e4fa9c
HD
2062 mutex_lock(&inode->i_mutex);
2063
2064 if (mode & FALLOC_FL_PUNCH_HOLE) {
2065 struct address_space *mapping = file->f_mapping;
2066 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2067 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2068 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2069
40e041a2
DH
2070 /* protected by i_mutex */
2071 if (info->seals & F_SEAL_WRITE) {
2072 error = -EPERM;
2073 goto out;
2074 }
2075
8e205f77 2076 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2077 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2078 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2079 spin_lock(&inode->i_lock);
2080 inode->i_private = &shmem_falloc;
2081 spin_unlock(&inode->i_lock);
2082
83e4fa9c
HD
2083 if ((u64)unmap_end > (u64)unmap_start)
2084 unmap_mapping_range(mapping, unmap_start,
2085 1 + unmap_end - unmap_start, 0);
2086 shmem_truncate_range(inode, offset, offset + len - 1);
2087 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2088
2089 spin_lock(&inode->i_lock);
2090 inode->i_private = NULL;
2091 wake_up_all(&shmem_falloc_waitq);
2092 spin_unlock(&inode->i_lock);
83e4fa9c 2093 error = 0;
8e205f77 2094 goto out;
e2d12e22
HD
2095 }
2096
2097 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2098 error = inode_newsize_ok(inode, offset + len);
2099 if (error)
2100 goto out;
2101
40e041a2
DH
2102 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2103 error = -EPERM;
2104 goto out;
2105 }
2106
e2d12e22
HD
2107 start = offset >> PAGE_CACHE_SHIFT;
2108 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2109 /* Try to avoid a swapstorm if len is impossible to satisfy */
2110 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2111 error = -ENOSPC;
2112 goto out;
83e4fa9c
HD
2113 }
2114
8e205f77 2115 shmem_falloc.waitq = NULL;
1aac1400
HD
2116 shmem_falloc.start = start;
2117 shmem_falloc.next = start;
2118 shmem_falloc.nr_falloced = 0;
2119 shmem_falloc.nr_unswapped = 0;
2120 spin_lock(&inode->i_lock);
2121 inode->i_private = &shmem_falloc;
2122 spin_unlock(&inode->i_lock);
2123
e2d12e22
HD
2124 for (index = start; index < end; index++) {
2125 struct page *page;
2126
2127 /*
2128 * Good, the fallocate(2) manpage permits EINTR: we may have
2129 * been interrupted because we are using up too much memory.
2130 */
2131 if (signal_pending(current))
2132 error = -EINTR;
1aac1400
HD
2133 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2134 error = -ENOMEM;
e2d12e22 2135 else
1635f6a7 2136 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2137 NULL);
2138 if (error) {
1635f6a7
HD
2139 /* Remove the !PageUptodate pages we added */
2140 shmem_undo_range(inode,
2141 (loff_t)start << PAGE_CACHE_SHIFT,
2142 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2143 goto undone;
e2d12e22
HD
2144 }
2145
1aac1400
HD
2146 /*
2147 * Inform shmem_writepage() how far we have reached.
2148 * No need for lock or barrier: we have the page lock.
2149 */
2150 shmem_falloc.next++;
2151 if (!PageUptodate(page))
2152 shmem_falloc.nr_falloced++;
2153
e2d12e22 2154 /*
1635f6a7
HD
2155 * If !PageUptodate, leave it that way so that freeable pages
2156 * can be recognized if we need to rollback on error later.
2157 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2158 * than free the pages we are allocating (and SGP_CACHE pages
2159 * might still be clean: we now need to mark those dirty too).
2160 */
2161 set_page_dirty(page);
2162 unlock_page(page);
2163 page_cache_release(page);
2164 cond_resched();
2165 }
2166
2167 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2168 i_size_write(inode, offset + len);
e2d12e22 2169 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2170undone:
2171 spin_lock(&inode->i_lock);
2172 inode->i_private = NULL;
2173 spin_unlock(&inode->i_lock);
e2d12e22 2174out:
83e4fa9c
HD
2175 mutex_unlock(&inode->i_mutex);
2176 return error;
2177}
2178
726c3342 2179static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2180{
726c3342 2181 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2182
2183 buf->f_type = TMPFS_MAGIC;
2184 buf->f_bsize = PAGE_CACHE_SIZE;
2185 buf->f_namelen = NAME_MAX;
0edd73b3 2186 if (sbinfo->max_blocks) {
1da177e4 2187 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2188 buf->f_bavail =
2189 buf->f_bfree = sbinfo->max_blocks -
2190 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2191 }
2192 if (sbinfo->max_inodes) {
1da177e4
LT
2193 buf->f_files = sbinfo->max_inodes;
2194 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2195 }
2196 /* else leave those fields 0 like simple_statfs */
2197 return 0;
2198}
2199
2200/*
2201 * File creation. Allocate an inode, and we're done..
2202 */
2203static int
1a67aafb 2204shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2205{
0b0a0806 2206 struct inode *inode;
1da177e4
LT
2207 int error = -ENOSPC;
2208
454abafe 2209 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2210 if (inode) {
feda821e
CH
2211 error = simple_acl_create(dir, inode);
2212 if (error)
2213 goto out_iput;
2a7dba39 2214 error = security_inode_init_security(inode, dir,
9d8f13ba 2215 &dentry->d_name,
6d9d88d0 2216 shmem_initxattrs, NULL);
feda821e
CH
2217 if (error && error != -EOPNOTSUPP)
2218 goto out_iput;
37ec43cd 2219
718deb6b 2220 error = 0;
1da177e4
LT
2221 dir->i_size += BOGO_DIRENT_SIZE;
2222 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2223 d_instantiate(dentry, inode);
2224 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2225 }
2226 return error;
feda821e
CH
2227out_iput:
2228 iput(inode);
2229 return error;
1da177e4
LT
2230}
2231
60545d0d
AV
2232static int
2233shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2234{
2235 struct inode *inode;
2236 int error = -ENOSPC;
2237
2238 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2239 if (inode) {
2240 error = security_inode_init_security(inode, dir,
2241 NULL,
2242 shmem_initxattrs, NULL);
feda821e
CH
2243 if (error && error != -EOPNOTSUPP)
2244 goto out_iput;
2245 error = simple_acl_create(dir, inode);
2246 if (error)
2247 goto out_iput;
60545d0d
AV
2248 d_tmpfile(dentry, inode);
2249 }
2250 return error;
feda821e
CH
2251out_iput:
2252 iput(inode);
2253 return error;
60545d0d
AV
2254}
2255
18bb1db3 2256static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2257{
2258 int error;
2259
2260 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2261 return error;
d8c76e6f 2262 inc_nlink(dir);
1da177e4
LT
2263 return 0;
2264}
2265
4acdaf27 2266static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2267 bool excl)
1da177e4
LT
2268{
2269 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2270}
2271
2272/*
2273 * Link a file..
2274 */
2275static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2276{
75c3cfa8 2277 struct inode *inode = d_inode(old_dentry);
5b04c689 2278 int ret;
1da177e4
LT
2279
2280 /*
2281 * No ordinary (disk based) filesystem counts links as inodes;
2282 * but each new link needs a new dentry, pinning lowmem, and
2283 * tmpfs dentries cannot be pruned until they are unlinked.
2284 */
5b04c689
PE
2285 ret = shmem_reserve_inode(inode->i_sb);
2286 if (ret)
2287 goto out;
1da177e4
LT
2288
2289 dir->i_size += BOGO_DIRENT_SIZE;
2290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2291 inc_nlink(inode);
7de9c6ee 2292 ihold(inode); /* New dentry reference */
1da177e4
LT
2293 dget(dentry); /* Extra pinning count for the created dentry */
2294 d_instantiate(dentry, inode);
5b04c689
PE
2295out:
2296 return ret;
1da177e4
LT
2297}
2298
2299static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2300{
75c3cfa8 2301 struct inode *inode = d_inode(dentry);
1da177e4 2302
5b04c689
PE
2303 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2304 shmem_free_inode(inode->i_sb);
1da177e4
LT
2305
2306 dir->i_size -= BOGO_DIRENT_SIZE;
2307 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2308 drop_nlink(inode);
1da177e4
LT
2309 dput(dentry); /* Undo the count from "create" - this does all the work */
2310 return 0;
2311}
2312
2313static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2314{
2315 if (!simple_empty(dentry))
2316 return -ENOTEMPTY;
2317
75c3cfa8 2318 drop_nlink(d_inode(dentry));
9a53c3a7 2319 drop_nlink(dir);
1da177e4
LT
2320 return shmem_unlink(dir, dentry);
2321}
2322
37456771
MS
2323static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2324{
e36cb0b8
DH
2325 bool old_is_dir = d_is_dir(old_dentry);
2326 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2327
2328 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2329 if (old_is_dir) {
2330 drop_nlink(old_dir);
2331 inc_nlink(new_dir);
2332 } else {
2333 drop_nlink(new_dir);
2334 inc_nlink(old_dir);
2335 }
2336 }
2337 old_dir->i_ctime = old_dir->i_mtime =
2338 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2339 d_inode(old_dentry)->i_ctime =
2340 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2341
2342 return 0;
2343}
2344
46fdb794
MS
2345static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2346{
2347 struct dentry *whiteout;
2348 int error;
2349
2350 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2351 if (!whiteout)
2352 return -ENOMEM;
2353
2354 error = shmem_mknod(old_dir, whiteout,
2355 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2356 dput(whiteout);
2357 if (error)
2358 return error;
2359
2360 /*
2361 * Cheat and hash the whiteout while the old dentry is still in
2362 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2363 *
2364 * d_lookup() will consistently find one of them at this point,
2365 * not sure which one, but that isn't even important.
2366 */
2367 d_rehash(whiteout);
2368 return 0;
2369}
2370
1da177e4
LT
2371/*
2372 * The VFS layer already does all the dentry stuff for rename,
2373 * we just have to decrement the usage count for the target if
2374 * it exists so that the VFS layer correctly free's it when it
2375 * gets overwritten.
2376 */
3b69ff51 2377static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2378{
75c3cfa8 2379 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2380 int they_are_dirs = S_ISDIR(inode->i_mode);
2381
46fdb794 2382 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2383 return -EINVAL;
2384
37456771
MS
2385 if (flags & RENAME_EXCHANGE)
2386 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2387
1da177e4
LT
2388 if (!simple_empty(new_dentry))
2389 return -ENOTEMPTY;
2390
46fdb794
MS
2391 if (flags & RENAME_WHITEOUT) {
2392 int error;
2393
2394 error = shmem_whiteout(old_dir, old_dentry);
2395 if (error)
2396 return error;
2397 }
2398
75c3cfa8 2399 if (d_really_is_positive(new_dentry)) {
1da177e4 2400 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2401 if (they_are_dirs) {
75c3cfa8 2402 drop_nlink(d_inode(new_dentry));
9a53c3a7 2403 drop_nlink(old_dir);
b928095b 2404 }
1da177e4 2405 } else if (they_are_dirs) {
9a53c3a7 2406 drop_nlink(old_dir);
d8c76e6f 2407 inc_nlink(new_dir);
1da177e4
LT
2408 }
2409
2410 old_dir->i_size -= BOGO_DIRENT_SIZE;
2411 new_dir->i_size += BOGO_DIRENT_SIZE;
2412 old_dir->i_ctime = old_dir->i_mtime =
2413 new_dir->i_ctime = new_dir->i_mtime =
2414 inode->i_ctime = CURRENT_TIME;
2415 return 0;
2416}
2417
2418static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2419{
2420 int error;
2421 int len;
2422 struct inode *inode;
9276aad6 2423 struct page *page;
1da177e4
LT
2424 char *kaddr;
2425 struct shmem_inode_info *info;
2426
2427 len = strlen(symname) + 1;
2428 if (len > PAGE_CACHE_SIZE)
2429 return -ENAMETOOLONG;
2430
454abafe 2431 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2432 if (!inode)
2433 return -ENOSPC;
2434
9d8f13ba 2435 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2436 shmem_initxattrs, NULL);
570bc1c2
SS
2437 if (error) {
2438 if (error != -EOPNOTSUPP) {
2439 iput(inode);
2440 return error;
2441 }
2442 error = 0;
2443 }
2444
1da177e4
LT
2445 info = SHMEM_I(inode);
2446 inode->i_size = len-1;
69f07ec9
HD
2447 if (len <= SHORT_SYMLINK_LEN) {
2448 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2449 if (!info->symlink) {
2450 iput(inode);
2451 return -ENOMEM;
2452 }
2453 inode->i_op = &shmem_short_symlink_operations;
60380f19 2454 inode->i_link = info->symlink;
1da177e4
LT
2455 } else {
2456 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2457 if (error) {
2458 iput(inode);
2459 return error;
2460 }
14fcc23f 2461 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2462 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2463 kaddr = kmap_atomic(page);
1da177e4 2464 memcpy(kaddr, symname, len);
9b04c5fe 2465 kunmap_atomic(kaddr);
ec9516fb 2466 SetPageUptodate(page);
1da177e4 2467 set_page_dirty(page);
6746aff7 2468 unlock_page(page);
1da177e4
LT
2469 page_cache_release(page);
2470 }
1da177e4
LT
2471 dir->i_size += BOGO_DIRENT_SIZE;
2472 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2473 d_instantiate(dentry, inode);
2474 dget(dentry);
2475 return 0;
2476}
2477
6e77137b 2478static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
1da177e4
LT
2479{
2480 struct page *page = NULL;
75c3cfa8 2481 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
680baacb
AV
2482 if (error)
2483 return ERR_PTR(error);
2484 unlock_page(page);
2485 *cookie = page;
2486 return kmap(page);
1da177e4
LT
2487}
2488
5f2c4179 2489static void shmem_put_link(struct inode *unused, void *cookie)
1da177e4 2490{
680baacb
AV
2491 struct page *page = cookie;
2492 kunmap(page);
2493 mark_page_accessed(page);
2494 page_cache_release(page);
1da177e4
LT
2495}
2496
b09e0fa4 2497#ifdef CONFIG_TMPFS_XATTR
46711810 2498/*
b09e0fa4
EP
2499 * Superblocks without xattr inode operations may get some security.* xattr
2500 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2501 * like ACLs, we also need to implement the security.* handlers at
2502 * filesystem level, though.
2503 */
2504
6d9d88d0
JS
2505/*
2506 * Callback for security_inode_init_security() for acquiring xattrs.
2507 */
2508static int shmem_initxattrs(struct inode *inode,
2509 const struct xattr *xattr_array,
2510 void *fs_info)
2511{
2512 struct shmem_inode_info *info = SHMEM_I(inode);
2513 const struct xattr *xattr;
38f38657 2514 struct simple_xattr *new_xattr;
6d9d88d0
JS
2515 size_t len;
2516
2517 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2518 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2519 if (!new_xattr)
2520 return -ENOMEM;
2521
2522 len = strlen(xattr->name) + 1;
2523 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2524 GFP_KERNEL);
2525 if (!new_xattr->name) {
2526 kfree(new_xattr);
2527 return -ENOMEM;
2528 }
2529
2530 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2531 XATTR_SECURITY_PREFIX_LEN);
2532 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2533 xattr->name, len);
2534
38f38657 2535 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2536 }
2537
2538 return 0;
2539}
2540
bb435453 2541static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2542#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2543 &posix_acl_access_xattr_handler,
2544 &posix_acl_default_xattr_handler,
b09e0fa4 2545#endif
39f0247d
AG
2546 NULL
2547};
b09e0fa4
EP
2548
2549static int shmem_xattr_validate(const char *name)
2550{
2551 struct { const char *prefix; size_t len; } arr[] = {
2552 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2553 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2554 };
2555 int i;
2556
2557 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2558 size_t preflen = arr[i].len;
2559 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2560 if (!name[preflen])
2561 return -EINVAL;
2562 return 0;
2563 }
2564 }
2565 return -EOPNOTSUPP;
2566}
2567
2568static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2569 void *buffer, size_t size)
2570{
75c3cfa8 2571 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4
EP
2572 int err;
2573
2574 /*
2575 * If this is a request for a synthetic attribute in the system.*
2576 * namespace use the generic infrastructure to resolve a handler
2577 * for it via sb->s_xattr.
2578 */
2579 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2580 return generic_getxattr(dentry, name, buffer, size);
2581
2582 err = shmem_xattr_validate(name);
2583 if (err)
2584 return err;
2585
38f38657 2586 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2587}
2588
2589static int shmem_setxattr(struct dentry *dentry, const char *name,
2590 const void *value, size_t size, int flags)
2591{
75c3cfa8 2592 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4
EP
2593 int err;
2594
2595 /*
2596 * If this is a request for a synthetic attribute in the system.*
2597 * namespace use the generic infrastructure to resolve a handler
2598 * for it via sb->s_xattr.
2599 */
2600 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2601 return generic_setxattr(dentry, name, value, size, flags);
2602
2603 err = shmem_xattr_validate(name);
2604 if (err)
2605 return err;
2606
38f38657 2607 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2608}
2609
2610static int shmem_removexattr(struct dentry *dentry, const char *name)
2611{
75c3cfa8 2612 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4
EP
2613 int err;
2614
2615 /*
2616 * If this is a request for a synthetic attribute in the system.*
2617 * namespace use the generic infrastructure to resolve a handler
2618 * for it via sb->s_xattr.
2619 */
2620 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2621 return generic_removexattr(dentry, name);
2622
2623 err = shmem_xattr_validate(name);
2624 if (err)
2625 return err;
2626
38f38657 2627 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2628}
2629
2630static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2631{
75c3cfa8 2632 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
38f38657 2633 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2634}
2635#endif /* CONFIG_TMPFS_XATTR */
2636
69f07ec9 2637static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2638 .readlink = generic_readlink,
60380f19 2639 .follow_link = simple_follow_link,
b09e0fa4
EP
2640#ifdef CONFIG_TMPFS_XATTR
2641 .setxattr = shmem_setxattr,
2642 .getxattr = shmem_getxattr,
2643 .listxattr = shmem_listxattr,
2644 .removexattr = shmem_removexattr,
2645#endif
2646};
2647
2648static const struct inode_operations shmem_symlink_inode_operations = {
2649 .readlink = generic_readlink,
2650 .follow_link = shmem_follow_link,
2651 .put_link = shmem_put_link,
2652#ifdef CONFIG_TMPFS_XATTR
2653 .setxattr = shmem_setxattr,
2654 .getxattr = shmem_getxattr,
2655 .listxattr = shmem_listxattr,
2656 .removexattr = shmem_removexattr,
39f0247d 2657#endif
b09e0fa4 2658};
39f0247d 2659
91828a40
DG
2660static struct dentry *shmem_get_parent(struct dentry *child)
2661{
2662 return ERR_PTR(-ESTALE);
2663}
2664
2665static int shmem_match(struct inode *ino, void *vfh)
2666{
2667 __u32 *fh = vfh;
2668 __u64 inum = fh[2];
2669 inum = (inum << 32) | fh[1];
2670 return ino->i_ino == inum && fh[0] == ino->i_generation;
2671}
2672
480b116c
CH
2673static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2674 struct fid *fid, int fh_len, int fh_type)
91828a40 2675{
91828a40 2676 struct inode *inode;
480b116c 2677 struct dentry *dentry = NULL;
35c2a7f4 2678 u64 inum;
480b116c
CH
2679
2680 if (fh_len < 3)
2681 return NULL;
91828a40 2682
35c2a7f4
HD
2683 inum = fid->raw[2];
2684 inum = (inum << 32) | fid->raw[1];
2685
480b116c
CH
2686 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2687 shmem_match, fid->raw);
91828a40 2688 if (inode) {
480b116c 2689 dentry = d_find_alias(inode);
91828a40
DG
2690 iput(inode);
2691 }
2692
480b116c 2693 return dentry;
91828a40
DG
2694}
2695
b0b0382b
AV
2696static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2697 struct inode *parent)
91828a40 2698{
5fe0c237
AK
2699 if (*len < 3) {
2700 *len = 3;
94e07a75 2701 return FILEID_INVALID;
5fe0c237 2702 }
91828a40 2703
1d3382cb 2704 if (inode_unhashed(inode)) {
91828a40
DG
2705 /* Unfortunately insert_inode_hash is not idempotent,
2706 * so as we hash inodes here rather than at creation
2707 * time, we need a lock to ensure we only try
2708 * to do it once
2709 */
2710 static DEFINE_SPINLOCK(lock);
2711 spin_lock(&lock);
1d3382cb 2712 if (inode_unhashed(inode))
91828a40
DG
2713 __insert_inode_hash(inode,
2714 inode->i_ino + inode->i_generation);
2715 spin_unlock(&lock);
2716 }
2717
2718 fh[0] = inode->i_generation;
2719 fh[1] = inode->i_ino;
2720 fh[2] = ((__u64)inode->i_ino) >> 32;
2721
2722 *len = 3;
2723 return 1;
2724}
2725
39655164 2726static const struct export_operations shmem_export_ops = {
91828a40 2727 .get_parent = shmem_get_parent,
91828a40 2728 .encode_fh = shmem_encode_fh,
480b116c 2729 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2730};
2731
680d794b
AM
2732static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2733 bool remount)
1da177e4
LT
2734{
2735 char *this_char, *value, *rest;
49cd0a5c 2736 struct mempolicy *mpol = NULL;
8751e039
EB
2737 uid_t uid;
2738 gid_t gid;
1da177e4 2739
b00dc3ad
HD
2740 while (options != NULL) {
2741 this_char = options;
2742 for (;;) {
2743 /*
2744 * NUL-terminate this option: unfortunately,
2745 * mount options form a comma-separated list,
2746 * but mpol's nodelist may also contain commas.
2747 */
2748 options = strchr(options, ',');
2749 if (options == NULL)
2750 break;
2751 options++;
2752 if (!isdigit(*options)) {
2753 options[-1] = '\0';
2754 break;
2755 }
2756 }
1da177e4
LT
2757 if (!*this_char)
2758 continue;
2759 if ((value = strchr(this_char,'=')) != NULL) {
2760 *value++ = 0;
2761 } else {
2762 printk(KERN_ERR
2763 "tmpfs: No value for mount option '%s'\n",
2764 this_char);
49cd0a5c 2765 goto error;
1da177e4
LT
2766 }
2767
2768 if (!strcmp(this_char,"size")) {
2769 unsigned long long size;
2770 size = memparse(value,&rest);
2771 if (*rest == '%') {
2772 size <<= PAGE_SHIFT;
2773 size *= totalram_pages;
2774 do_div(size, 100);
2775 rest++;
2776 }
2777 if (*rest)
2778 goto bad_val;
680d794b
AM
2779 sbinfo->max_blocks =
2780 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2781 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2782 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2783 if (*rest)
2784 goto bad_val;
2785 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2786 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2787 if (*rest)
2788 goto bad_val;
2789 } else if (!strcmp(this_char,"mode")) {
680d794b 2790 if (remount)
1da177e4 2791 continue;
680d794b 2792 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2793 if (*rest)
2794 goto bad_val;
2795 } else if (!strcmp(this_char,"uid")) {
680d794b 2796 if (remount)
1da177e4 2797 continue;
8751e039 2798 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2799 if (*rest)
2800 goto bad_val;
8751e039
EB
2801 sbinfo->uid = make_kuid(current_user_ns(), uid);
2802 if (!uid_valid(sbinfo->uid))
2803 goto bad_val;
1da177e4 2804 } else if (!strcmp(this_char,"gid")) {
680d794b 2805 if (remount)
1da177e4 2806 continue;
8751e039 2807 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2808 if (*rest)
2809 goto bad_val;
8751e039
EB
2810 sbinfo->gid = make_kgid(current_user_ns(), gid);
2811 if (!gid_valid(sbinfo->gid))
2812 goto bad_val;
7339ff83 2813 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2814 mpol_put(mpol);
2815 mpol = NULL;
2816 if (mpol_parse_str(value, &mpol))
7339ff83 2817 goto bad_val;
1da177e4
LT
2818 } else {
2819 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2820 this_char);
49cd0a5c 2821 goto error;
1da177e4
LT
2822 }
2823 }
49cd0a5c 2824 sbinfo->mpol = mpol;
1da177e4
LT
2825 return 0;
2826
2827bad_val:
2828 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2829 value, this_char);
49cd0a5c
GT
2830error:
2831 mpol_put(mpol);
1da177e4
LT
2832 return 1;
2833
2834}
2835
2836static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2837{
2838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2839 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2840 unsigned long inodes;
2841 int error = -EINVAL;
2842
5f00110f 2843 config.mpol = NULL;
680d794b 2844 if (shmem_parse_options(data, &config, true))
0edd73b3 2845 return error;
1da177e4 2846
0edd73b3 2847 spin_lock(&sbinfo->stat_lock);
0edd73b3 2848 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2849 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2850 goto out;
680d794b 2851 if (config.max_inodes < inodes)
0edd73b3
HD
2852 goto out;
2853 /*
54af6042 2854 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2855 * but we must separately disallow unlimited->limited, because
2856 * in that case we have no record of how much is already in use.
2857 */
680d794b 2858 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2859 goto out;
680d794b 2860 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2861 goto out;
2862
2863 error = 0;
680d794b 2864 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2865 sbinfo->max_inodes = config.max_inodes;
2866 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2867
5f00110f
GT
2868 /*
2869 * Preserve previous mempolicy unless mpol remount option was specified.
2870 */
2871 if (config.mpol) {
2872 mpol_put(sbinfo->mpol);
2873 sbinfo->mpol = config.mpol; /* transfers initial ref */
2874 }
0edd73b3
HD
2875out:
2876 spin_unlock(&sbinfo->stat_lock);
2877 return error;
1da177e4 2878}
680d794b 2879
34c80b1d 2880static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2881{
34c80b1d 2882 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2883
2884 if (sbinfo->max_blocks != shmem_default_max_blocks())
2885 seq_printf(seq, ",size=%luk",
2886 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2887 if (sbinfo->max_inodes != shmem_default_max_inodes())
2888 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2889 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2890 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2891 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2892 seq_printf(seq, ",uid=%u",
2893 from_kuid_munged(&init_user_ns, sbinfo->uid));
2894 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2895 seq_printf(seq, ",gid=%u",
2896 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2897 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2898 return 0;
2899}
9183df25
DH
2900
2901#define MFD_NAME_PREFIX "memfd:"
2902#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2903#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2904
2905#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2906
2907SYSCALL_DEFINE2(memfd_create,
2908 const char __user *, uname,
2909 unsigned int, flags)
2910{
2911 struct shmem_inode_info *info;
2912 struct file *file;
2913 int fd, error;
2914 char *name;
2915 long len;
2916
2917 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2918 return -EINVAL;
2919
2920 /* length includes terminating zero */
2921 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2922 if (len <= 0)
2923 return -EFAULT;
2924 if (len > MFD_NAME_MAX_LEN + 1)
2925 return -EINVAL;
2926
2927 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2928 if (!name)
2929 return -ENOMEM;
2930
2931 strcpy(name, MFD_NAME_PREFIX);
2932 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2933 error = -EFAULT;
2934 goto err_name;
2935 }
2936
2937 /* terminating-zero may have changed after strnlen_user() returned */
2938 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2939 error = -EFAULT;
2940 goto err_name;
2941 }
2942
2943 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2944 if (fd < 0) {
2945 error = fd;
2946 goto err_name;
2947 }
2948
2949 file = shmem_file_setup(name, 0, VM_NORESERVE);
2950 if (IS_ERR(file)) {
2951 error = PTR_ERR(file);
2952 goto err_fd;
2953 }
2954 info = SHMEM_I(file_inode(file));
2955 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2956 file->f_flags |= O_RDWR | O_LARGEFILE;
2957 if (flags & MFD_ALLOW_SEALING)
2958 info->seals &= ~F_SEAL_SEAL;
2959
2960 fd_install(fd, file);
2961 kfree(name);
2962 return fd;
2963
2964err_fd:
2965 put_unused_fd(fd);
2966err_name:
2967 kfree(name);
2968 return error;
2969}
2970
680d794b 2971#endif /* CONFIG_TMPFS */
1da177e4
LT
2972
2973static void shmem_put_super(struct super_block *sb)
2974{
602586a8
HD
2975 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2976
2977 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2978 mpol_put(sbinfo->mpol);
602586a8 2979 kfree(sbinfo);
1da177e4
LT
2980 sb->s_fs_info = NULL;
2981}
2982
2b2af54a 2983int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2984{
2985 struct inode *inode;
0edd73b3 2986 struct shmem_sb_info *sbinfo;
680d794b
AM
2987 int err = -ENOMEM;
2988
2989 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2990 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2991 L1_CACHE_BYTES), GFP_KERNEL);
2992 if (!sbinfo)
2993 return -ENOMEM;
2994
680d794b 2995 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2996 sbinfo->uid = current_fsuid();
2997 sbinfo->gid = current_fsgid();
680d794b 2998 sb->s_fs_info = sbinfo;
1da177e4 2999
0edd73b3 3000#ifdef CONFIG_TMPFS
1da177e4
LT
3001 /*
3002 * Per default we only allow half of the physical ram per
3003 * tmpfs instance, limiting inodes to one per page of lowmem;
3004 * but the internal instance is left unlimited.
3005 */
ca4e0519 3006 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3007 sbinfo->max_blocks = shmem_default_max_blocks();
3008 sbinfo->max_inodes = shmem_default_max_inodes();
3009 if (shmem_parse_options(data, sbinfo, false)) {
3010 err = -EINVAL;
3011 goto failed;
3012 }
ca4e0519
AV
3013 } else {
3014 sb->s_flags |= MS_NOUSER;
1da177e4 3015 }
91828a40 3016 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3017 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3018#else
3019 sb->s_flags |= MS_NOUSER;
3020#endif
3021
0edd73b3 3022 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3023 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3024 goto failed;
680d794b 3025 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3026
285b2c4f 3027 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3028 sb->s_blocksize = PAGE_CACHE_SIZE;
3029 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3030 sb->s_magic = TMPFS_MAGIC;
3031 sb->s_op = &shmem_ops;
cfd95a9c 3032 sb->s_time_gran = 1;
b09e0fa4 3033#ifdef CONFIG_TMPFS_XATTR
39f0247d 3034 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3035#endif
3036#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3037 sb->s_flags |= MS_POSIXACL;
3038#endif
0edd73b3 3039
454abafe 3040 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3041 if (!inode)
3042 goto failed;
680d794b
AM
3043 inode->i_uid = sbinfo->uid;
3044 inode->i_gid = sbinfo->gid;
318ceed0
AV
3045 sb->s_root = d_make_root(inode);
3046 if (!sb->s_root)
48fde701 3047 goto failed;
1da177e4
LT
3048 return 0;
3049
1da177e4
LT
3050failed:
3051 shmem_put_super(sb);
3052 return err;
3053}
3054
fcc234f8 3055static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3056
3057static struct inode *shmem_alloc_inode(struct super_block *sb)
3058{
41ffe5d5
HD
3059 struct shmem_inode_info *info;
3060 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3061 if (!info)
1da177e4 3062 return NULL;
41ffe5d5 3063 return &info->vfs_inode;
1da177e4
LT
3064}
3065
41ffe5d5 3066static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3067{
3068 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
3069 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3070}
3071
1da177e4
LT
3072static void shmem_destroy_inode(struct inode *inode)
3073{
09208d15 3074 if (S_ISREG(inode->i_mode))
1da177e4 3075 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3076 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3077}
3078
41ffe5d5 3079static void shmem_init_inode(void *foo)
1da177e4 3080{
41ffe5d5
HD
3081 struct shmem_inode_info *info = foo;
3082 inode_init_once(&info->vfs_inode);
1da177e4
LT
3083}
3084
41ffe5d5 3085static int shmem_init_inodecache(void)
1da177e4
LT
3086{
3087 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3088 sizeof(struct shmem_inode_info),
41ffe5d5 3089 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
3090 return 0;
3091}
3092
41ffe5d5 3093static void shmem_destroy_inodecache(void)
1da177e4 3094{
1a1d92c1 3095 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3096}
3097
f5e54d6e 3098static const struct address_space_operations shmem_aops = {
1da177e4 3099 .writepage = shmem_writepage,
76719325 3100 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3101#ifdef CONFIG_TMPFS
800d15a5
NP
3102 .write_begin = shmem_write_begin,
3103 .write_end = shmem_write_end,
1da177e4 3104#endif
1c93923c 3105#ifdef CONFIG_MIGRATION
304dbdb7 3106 .migratepage = migrate_page,
1c93923c 3107#endif
aa261f54 3108 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3109};
3110
15ad7cdc 3111static const struct file_operations shmem_file_operations = {
1da177e4
LT
3112 .mmap = shmem_mmap,
3113#ifdef CONFIG_TMPFS
220f2ac9 3114 .llseek = shmem_file_llseek,
2ba5bbed 3115 .read_iter = shmem_file_read_iter,
8174202b 3116 .write_iter = generic_file_write_iter,
1b061d92 3117 .fsync = noop_fsync,
708e3508 3118 .splice_read = shmem_file_splice_read,
f6cb85d0 3119 .splice_write = iter_file_splice_write,
83e4fa9c 3120 .fallocate = shmem_fallocate,
1da177e4
LT
3121#endif
3122};
3123
92e1d5be 3124static const struct inode_operations shmem_inode_operations = {
94c1e62d 3125 .setattr = shmem_setattr,
b09e0fa4
EP
3126#ifdef CONFIG_TMPFS_XATTR
3127 .setxattr = shmem_setxattr,
3128 .getxattr = shmem_getxattr,
3129 .listxattr = shmem_listxattr,
3130 .removexattr = shmem_removexattr,
feda821e 3131 .set_acl = simple_set_acl,
b09e0fa4 3132#endif
1da177e4
LT
3133};
3134
92e1d5be 3135static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3136#ifdef CONFIG_TMPFS
3137 .create = shmem_create,
3138 .lookup = simple_lookup,
3139 .link = shmem_link,
3140 .unlink = shmem_unlink,
3141 .symlink = shmem_symlink,
3142 .mkdir = shmem_mkdir,
3143 .rmdir = shmem_rmdir,
3144 .mknod = shmem_mknod,
3b69ff51 3145 .rename2 = shmem_rename2,
60545d0d 3146 .tmpfile = shmem_tmpfile,
1da177e4 3147#endif
b09e0fa4
EP
3148#ifdef CONFIG_TMPFS_XATTR
3149 .setxattr = shmem_setxattr,
3150 .getxattr = shmem_getxattr,
3151 .listxattr = shmem_listxattr,
3152 .removexattr = shmem_removexattr,
3153#endif
39f0247d 3154#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3155 .setattr = shmem_setattr,
feda821e 3156 .set_acl = simple_set_acl,
39f0247d
AG
3157#endif
3158};
3159
92e1d5be 3160static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
3161#ifdef CONFIG_TMPFS_XATTR
3162 .setxattr = shmem_setxattr,
3163 .getxattr = shmem_getxattr,
3164 .listxattr = shmem_listxattr,
3165 .removexattr = shmem_removexattr,
3166#endif
39f0247d 3167#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3168 .setattr = shmem_setattr,
feda821e 3169 .set_acl = simple_set_acl,
39f0247d 3170#endif
1da177e4
LT
3171};
3172
759b9775 3173static const struct super_operations shmem_ops = {
1da177e4
LT
3174 .alloc_inode = shmem_alloc_inode,
3175 .destroy_inode = shmem_destroy_inode,
3176#ifdef CONFIG_TMPFS
3177 .statfs = shmem_statfs,
3178 .remount_fs = shmem_remount_fs,
680d794b 3179 .show_options = shmem_show_options,
1da177e4 3180#endif
1f895f75 3181 .evict_inode = shmem_evict_inode,
1da177e4
LT
3182 .drop_inode = generic_delete_inode,
3183 .put_super = shmem_put_super,
3184};
3185
f0f37e2f 3186static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3187 .fault = shmem_fault,
d7c17551 3188 .map_pages = filemap_map_pages,
1da177e4
LT
3189#ifdef CONFIG_NUMA
3190 .set_policy = shmem_set_policy,
3191 .get_policy = shmem_get_policy,
3192#endif
3193};
3194
3c26ff6e
AV
3195static struct dentry *shmem_mount(struct file_system_type *fs_type,
3196 int flags, const char *dev_name, void *data)
1da177e4 3197{
3c26ff6e 3198 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3199}
3200
41ffe5d5 3201static struct file_system_type shmem_fs_type = {
1da177e4
LT
3202 .owner = THIS_MODULE,
3203 .name = "tmpfs",
3c26ff6e 3204 .mount = shmem_mount,
1da177e4 3205 .kill_sb = kill_litter_super,
2b8576cb 3206 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3207};
1da177e4 3208
41ffe5d5 3209int __init shmem_init(void)
1da177e4
LT
3210{
3211 int error;
3212
16203a7a
RL
3213 /* If rootfs called this, don't re-init */
3214 if (shmem_inode_cachep)
3215 return 0;
3216
41ffe5d5 3217 error = shmem_init_inodecache();
1da177e4
LT
3218 if (error)
3219 goto out3;
3220
41ffe5d5 3221 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
3222 if (error) {
3223 printk(KERN_ERR "Could not register tmpfs\n");
3224 goto out2;
3225 }
95dc112a 3226
ca4e0519 3227 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3228 if (IS_ERR(shm_mnt)) {
3229 error = PTR_ERR(shm_mnt);
3230 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3231 goto out1;
3232 }
3233 return 0;
3234
3235out1:
41ffe5d5 3236 unregister_filesystem(&shmem_fs_type);
1da177e4 3237out2:
41ffe5d5 3238 shmem_destroy_inodecache();
1da177e4
LT
3239out3:
3240 shm_mnt = ERR_PTR(error);
3241 return error;
3242}
853ac43a
MM
3243
3244#else /* !CONFIG_SHMEM */
3245
3246/*
3247 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3248 *
3249 * This is intended for small system where the benefits of the full
3250 * shmem code (swap-backed and resource-limited) are outweighed by
3251 * their complexity. On systems without swap this code should be
3252 * effectively equivalent, but much lighter weight.
3253 */
3254
41ffe5d5 3255static struct file_system_type shmem_fs_type = {
853ac43a 3256 .name = "tmpfs",
3c26ff6e 3257 .mount = ramfs_mount,
853ac43a 3258 .kill_sb = kill_litter_super,
2b8576cb 3259 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3260};
3261
41ffe5d5 3262int __init shmem_init(void)
853ac43a 3263{
41ffe5d5 3264 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3265
41ffe5d5 3266 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3267 BUG_ON(IS_ERR(shm_mnt));
3268
3269 return 0;
3270}
3271
41ffe5d5 3272int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3273{
3274 return 0;
3275}
3276
3f96b79a
HD
3277int shmem_lock(struct file *file, int lock, struct user_struct *user)
3278{
3279 return 0;
3280}
3281
24513264
HD
3282void shmem_unlock_mapping(struct address_space *mapping)
3283{
3284}
3285
41ffe5d5 3286void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3287{
41ffe5d5 3288 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3289}
3290EXPORT_SYMBOL_GPL(shmem_truncate_range);
3291
0b0a0806
HD
3292#define shmem_vm_ops generic_file_vm_ops
3293#define shmem_file_operations ramfs_file_operations
454abafe 3294#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3295#define shmem_acct_size(flags, size) 0
3296#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3297
3298#endif /* CONFIG_SHMEM */
3299
3300/* common code */
1da177e4 3301
3451538a 3302static struct dentry_operations anon_ops = {
118b2302 3303 .d_dname = simple_dname
3451538a
AV
3304};
3305
c7277090
EP
3306static struct file *__shmem_file_setup(const char *name, loff_t size,
3307 unsigned long flags, unsigned int i_flags)
1da177e4 3308{
6b4d0b27 3309 struct file *res;
1da177e4 3310 struct inode *inode;
2c48b9c4 3311 struct path path;
3451538a 3312 struct super_block *sb;
1da177e4
LT
3313 struct qstr this;
3314
3315 if (IS_ERR(shm_mnt))
6b4d0b27 3316 return ERR_CAST(shm_mnt);
1da177e4 3317
285b2c4f 3318 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3319 return ERR_PTR(-EINVAL);
3320
3321 if (shmem_acct_size(flags, size))
3322 return ERR_PTR(-ENOMEM);
3323
6b4d0b27 3324 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3325 this.name = name;
3326 this.len = strlen(name);
3327 this.hash = 0; /* will go */
3451538a 3328 sb = shm_mnt->mnt_sb;
66ee4b88 3329 path.mnt = mntget(shm_mnt);
3451538a 3330 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3331 if (!path.dentry)
1da177e4 3332 goto put_memory;
3451538a 3333 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3334
6b4d0b27 3335 res = ERR_PTR(-ENOSPC);
3451538a 3336 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3337 if (!inode)
66ee4b88 3338 goto put_memory;
1da177e4 3339
c7277090 3340 inode->i_flags |= i_flags;
2c48b9c4 3341 d_instantiate(path.dentry, inode);
1da177e4 3342 inode->i_size = size;
6d6b77f1 3343 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3344 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3345 if (IS_ERR(res))
66ee4b88 3346 goto put_path;
4b42af81 3347
6b4d0b27 3348 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3349 &shmem_file_operations);
6b4d0b27 3350 if (IS_ERR(res))
66ee4b88 3351 goto put_path;
4b42af81 3352
6b4d0b27 3353 return res;
1da177e4 3354
1da177e4
LT
3355put_memory:
3356 shmem_unacct_size(flags, size);
66ee4b88
KK
3357put_path:
3358 path_put(&path);
6b4d0b27 3359 return res;
1da177e4 3360}
c7277090
EP
3361
3362/**
3363 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3364 * kernel internal. There will be NO LSM permission checks against the
3365 * underlying inode. So users of this interface must do LSM checks at a
3366 * higher layer. The one user is the big_key implementation. LSM checks
3367 * are provided at the key level rather than the inode level.
3368 * @name: name for dentry (to be seen in /proc/<pid>/maps
3369 * @size: size to be set for the file
3370 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3371 */
3372struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3373{
3374 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3375}
3376
3377/**
3378 * shmem_file_setup - get an unlinked file living in tmpfs
3379 * @name: name for dentry (to be seen in /proc/<pid>/maps
3380 * @size: size to be set for the file
3381 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3382 */
3383struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3384{
3385 return __shmem_file_setup(name, size, flags, 0);
3386}
395e0ddc 3387EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3388
46711810 3389/**
1da177e4 3390 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3391 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3392 */
3393int shmem_zero_setup(struct vm_area_struct *vma)
3394{
3395 struct file *file;
3396 loff_t size = vma->vm_end - vma->vm_start;
3397
66fc1303
HD
3398 /*
3399 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3400 * between XFS directory reading and selinux: since this file is only
3401 * accessible to the user through its mapping, use S_PRIVATE flag to
3402 * bypass file security, in the same way as shmem_kernel_file_setup().
3403 */
3404 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3405 if (IS_ERR(file))
3406 return PTR_ERR(file);
3407
3408 if (vma->vm_file)
3409 fput(vma->vm_file);
3410 vma->vm_file = file;
3411 vma->vm_ops = &shmem_vm_ops;
3412 return 0;
3413}
d9d90e5e
HD
3414
3415/**
3416 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3417 * @mapping: the page's address_space
3418 * @index: the page index
3419 * @gfp: the page allocator flags to use if allocating
3420 *
3421 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3422 * with any new page allocations done using the specified allocation flags.
3423 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3424 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3425 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3426 *
68da9f05
HD
3427 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3428 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3429 */
3430struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3431 pgoff_t index, gfp_t gfp)
3432{
68da9f05
HD
3433#ifdef CONFIG_SHMEM
3434 struct inode *inode = mapping->host;
9276aad6 3435 struct page *page;
68da9f05
HD
3436 int error;
3437
3438 BUG_ON(mapping->a_ops != &shmem_aops);
3439 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3440 if (error)
3441 page = ERR_PTR(error);
3442 else
3443 unlock_page(page);
3444 return page;
3445#else
3446 /*
3447 * The tiny !SHMEM case uses ramfs without swap
3448 */
d9d90e5e 3449 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3450#endif
d9d90e5e
HD
3451}
3452EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);