]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slab.c
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
d3fb45f3 103#include <linux/kfence.h>
1da177e4
LT
104#include <linux/cpu.h>
105#include <linux/sysctl.h>
106#include <linux/module.h>
107#include <linux/rcupdate.h>
543537bd 108#include <linux/string.h>
138ae663 109#include <linux/uaccess.h>
e498be7d 110#include <linux/nodemask.h>
d5cff635 111#include <linux/kmemleak.h>
dc85da15 112#include <linux/mempolicy.h>
fc0abb14 113#include <linux/mutex.h>
8a8b6502 114#include <linux/fault-inject.h>
e7eebaf6 115#include <linux/rtmutex.h>
6a2d7a95 116#include <linux/reciprocal_div.h>
3ac7fe5a 117#include <linux/debugobjects.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
3f8c2452 120#include <linux/sched/task_stack.h>
1da177e4 121
381760ea
MG
122#include <net/sock.h>
123
1da177e4
LT
124#include <asm/cacheflush.h>
125#include <asm/tlbflush.h>
126#include <asm/page.h>
127
4dee6b64
SR
128#include <trace/events/kmem.h>
129
072bb0aa
MG
130#include "internal.h"
131
b9ce5ef4
GC
132#include "slab.h"
133
1da177e4 134/*
50953fe9 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144#ifdef CONFIG_DEBUG_SLAB
145#define DEBUG 1
146#define STATS 1
147#define FORCED_DEBUG 1
148#else
149#define DEBUG 0
150#define STATS 0
151#define FORCED_DEBUG 0
152#endif
153
1da177e4
LT
154/* Shouldn't this be in a header file somewhere? */
155#define BYTES_PER_WORD sizeof(void *)
87a927c7 156#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 157
1da177e4
LT
158#ifndef ARCH_KMALLOC_FLAGS
159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160#endif
161
f315e3fa
JK
162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165#if FREELIST_BYTE_INDEX
166typedef unsigned char freelist_idx_t;
167#else
168typedef unsigned short freelist_idx_t;
169#endif
170
30321c7b 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 172
1da177e4
LT
173/*
174 * struct array_cache
175 *
1da177e4
LT
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
bda5b655 190 void *entry[]; /*
a737b3e2
AM
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
a737b3e2 194 */
1da177e4
LT
195};
196
c8522a3a
JK
197struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200};
201
e498be7d
CL
202/*
203 * Need this for bootstrapping a per node allocator.
204 */
bf0dea23 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 207#define CACHE_CACHE 0
bf0dea23 208#define SIZE_NODE (MAX_NUMNODES)
e498be7d 209
ed11d9eb 210static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 211 struct kmem_cache_node *n, int tofree);
ed11d9eb 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
213 int node, struct list_head *list);
214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 216static void cache_reap(struct work_struct *unused);
ed11d9eb 217
76b342bd
JK
218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
e0a42726
IM
223static int slab_early_init = 1;
224
ce8eb6c4 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 226
ce8eb6c4 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
228{
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 232 parent->total_slabs = 0;
f728b0a5 233 parent->free_slabs = 0;
e498be7d
CL
234 parent->shared = NULL;
235 parent->alien = NULL;
2e1217cf 236 parent->colour_next = 0;
e498be7d
CL
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240}
241
a737b3e2
AM
242#define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
18bf8541 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
246 } while (0)
247
a737b3e2
AM
248#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
e498be7d
CL
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
1da177e4 254
4fd0b46e
AD
255#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 257#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
258#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260#define BATCHREFILL_LIMIT 16
a737b3e2 261/*
f0953a1b 262 * Optimization question: fewer reaps means less probability for unnecessary
a737b3e2 263 * cpucache drain/refill cycles.
1da177e4 264 *
dc6f3f27 265 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
266 * which could lock up otherwise freeable slabs.
267 */
5f0985bb
JZ
268#define REAPTIMEOUT_AC (2*HZ)
269#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
270
271#if STATS
272#define STATS_INC_ACTIVE(x) ((x)->num_active++)
273#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275#define STATS_INC_GROWN(x) ((x)->grown++)
0b411634 276#define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
a737b3e2
AM
277#define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ERR(x) ((x)->errors++)
283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 284#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 285#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
286#define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
1da177e4
LT
291#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295#else
296#define STATS_INC_ACTIVE(x) do { } while (0)
297#define STATS_DEC_ACTIVE(x) do { } while (0)
298#define STATS_INC_ALLOCED(x) do { } while (0)
299#define STATS_INC_GROWN(x) do { } while (0)
0b411634 300#define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
1da177e4
LT
301#define STATS_SET_HIGH(x) do { } while (0)
302#define STATS_INC_ERR(x) do { } while (0)
303#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 304#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 305#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 306#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
307#define STATS_INC_ALLOCHIT(x) do { } while (0)
308#define STATS_INC_ALLOCMISS(x) do { } while (0)
309#define STATS_INC_FREEHIT(x) do { } while (0)
310#define STATS_INC_FREEMISS(x) do { } while (0)
311#endif
312
313#if DEBUG
1da177e4 314
a737b3e2
AM
315/*
316 * memory layout of objects:
1da177e4 317 * 0 : objp
3dafccf2 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
3dafccf2 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 322 * redzone word.
3dafccf2 323 * cachep->obj_offset: The real object.
3b0efdfa
CL
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 326 * [BYTES_PER_WORD long]
1da177e4 327 */
343e0d7a 328static int obj_offset(struct kmem_cache *cachep)
1da177e4 329{
3dafccf2 330 return cachep->obj_offset;
1da177e4
LT
331}
332
b46b8f19 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
334{
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
0b411634 336 return (unsigned long long *) (objp + obj_offset(cachep) -
b46b8f19 337 sizeof(unsigned long long));
1da177e4
LT
338}
339
b46b8f19 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
341{
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 344 return (unsigned long long *)(objp + cachep->size -
b46b8f19 345 sizeof(unsigned long long) -
87a927c7 346 REDZONE_ALIGN);
3b0efdfa 347 return (unsigned long long *) (objp + cachep->size -
b46b8f19 348 sizeof(unsigned long long));
1da177e4
LT
349}
350
343e0d7a 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
352{
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
355}
356
357#else
358
3dafccf2 359#define obj_offset(x) 0
b46b8f19
DW
360#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
362#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364#endif
365
1da177e4 366/*
3df1cccd
DR
367 * Do not go above this order unless 0 objects fit into the slab or
368 * overridden on the command line.
1da177e4 369 */
543585cc
DR
370#define SLAB_MAX_ORDER_HI 1
371#define SLAB_MAX_ORDER_LO 0
372static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 373static bool slab_max_order_set __initdata;
1da177e4 374
8456a648 375static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
376 unsigned int idx)
377{
8456a648 378 return page->s_mem + cache->size * idx;
8fea4e96
PE
379}
380
6fb92430 381#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 382/* internal cache of cache description objs */
9b030cb8 383static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
384 .batchcount = 1,
385 .limit = BOOT_CPUCACHE_ENTRIES,
386 .shared = 1,
3b0efdfa 387 .size = sizeof(struct kmem_cache),
b28a02de 388 .name = "kmem_cache",
1da177e4
LT
389};
390
1871e52c 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 392
343e0d7a 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 394{
bf0dea23 395 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
396}
397
a737b3e2
AM
398/*
399 * Calculate the number of objects and left-over bytes for a given buffer size.
400 */
70f75067 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 402 slab_flags_t flags, size_t *left_over)
fbaccacf 403{
70f75067 404 unsigned int num;
fbaccacf 405 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 406
fbaccacf
SR
407 /*
408 * The slab management structure can be either off the slab or
409 * on it. For the latter case, the memory allocated for a
410 * slab is used for:
411 *
fbaccacf 412 * - @buffer_size bytes for each object
2e6b3602
JK
413 * - One freelist_idx_t for each object
414 *
415 * We don't need to consider alignment of freelist because
416 * freelist will be at the end of slab page. The objects will be
417 * at the correct alignment.
fbaccacf
SR
418 *
419 * If the slab management structure is off the slab, then the
420 * alignment will already be calculated into the size. Because
421 * the slabs are all pages aligned, the objects will be at the
422 * correct alignment when allocated.
423 */
b03a017b 424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 425 num = slab_size / buffer_size;
2e6b3602 426 *left_over = slab_size % buffer_size;
fbaccacf 427 } else {
70f75067 428 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
429 *left_over = slab_size %
430 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 431 }
70f75067
JK
432
433 return num;
1da177e4
LT
434}
435
f28510d3 436#if DEBUG
d40cee24 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 438
a737b3e2
AM
439static void __slab_error(const char *function, struct kmem_cache *cachep,
440 char *msg)
1da177e4 441{
1170532b 442 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 443 function, cachep->name, msg);
1da177e4 444 dump_stack();
373d4d09 445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 446}
f28510d3 447#endif
1da177e4 448
3395ee05
PM
449/*
450 * By default on NUMA we use alien caches to stage the freeing of
451 * objects allocated from other nodes. This causes massive memory
452 * inefficiencies when using fake NUMA setup to split memory into a
453 * large number of small nodes, so it can be disabled on the command
454 * line
455 */
456
457static int use_alien_caches __read_mostly = 1;
458static int __init noaliencache_setup(char *s)
459{
460 use_alien_caches = 0;
461 return 1;
462}
463__setup("noaliencache", noaliencache_setup);
464
3df1cccd
DR
465static int __init slab_max_order_setup(char *str)
466{
467 get_option(&str, &slab_max_order);
468 slab_max_order = slab_max_order < 0 ? 0 :
469 min(slab_max_order, MAX_ORDER - 1);
470 slab_max_order_set = true;
471
472 return 1;
473}
474__setup("slab_max_order=", slab_max_order_setup);
475
8fce4d8e
CL
476#ifdef CONFIG_NUMA
477/*
478 * Special reaping functions for NUMA systems called from cache_reap().
479 * These take care of doing round robin flushing of alien caches (containing
480 * objects freed on different nodes from which they were allocated) and the
481 * flushing of remote pcps by calling drain_node_pages.
482 */
1871e52c 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
484
485static void init_reap_node(int cpu)
486{
0edaf86c
AM
487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 node_online_map);
8fce4d8e
CL
489}
490
491static void next_reap_node(void)
492{
909ea964 493 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 494
0edaf86c 495 node = next_node_in(node, node_online_map);
909ea964 496 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
497}
498
499#else
500#define init_reap_node(cpu) do { } while (0)
501#define next_reap_node(void) do { } while (0)
502#endif
503
1da177e4
LT
504/*
505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
506 * via the workqueue/eventd.
507 * Add the CPU number into the expiration time to minimize the possibility of
508 * the CPUs getting into lockstep and contending for the global cache chain
509 * lock.
510 */
0db0628d 511static void start_cpu_timer(int cpu)
1da177e4 512{
1871e52c 513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 514
eac0337a 515 if (reap_work->work.func == NULL) {
8fce4d8e 516 init_reap_node(cpu);
203b42f7 517 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
518 schedule_delayed_work_on(cpu, reap_work,
519 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
520 }
521}
522
1fe00d50 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 524{
1fe00d50
JK
525 if (ac) {
526 ac->avail = 0;
527 ac->limit = limit;
528 ac->batchcount = batch;
529 ac->touched = 0;
1da177e4 530 }
1fe00d50
JK
531}
532
533static struct array_cache *alloc_arraycache(int node, int entries,
534 int batchcount, gfp_t gfp)
535{
5e804789 536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
537 struct array_cache *ac = NULL;
538
539 ac = kmalloc_node(memsize, gfp, node);
92d1d07d
QC
540 /*
541 * The array_cache structures contain pointers to free object.
542 * However, when such objects are allocated or transferred to another
543 * cache the pointers are not cleared and they could be counted as
544 * valid references during a kmemleak scan. Therefore, kmemleak must
545 * not scan such objects.
546 */
547 kmemleak_no_scan(ac);
1fe00d50
JK
548 init_arraycache(ac, entries, batchcount);
549 return ac;
1da177e4
LT
550}
551
f68f8ddd
JK
552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
553 struct page *page, void *objp)
072bb0aa 554{
f68f8ddd
JK
555 struct kmem_cache_node *n;
556 int page_node;
557 LIST_HEAD(list);
072bb0aa 558
f68f8ddd
JK
559 page_node = page_to_nid(page);
560 n = get_node(cachep, page_node);
381760ea 561
f68f8ddd
JK
562 spin_lock(&n->list_lock);
563 free_block(cachep, &objp, 1, page_node, &list);
564 spin_unlock(&n->list_lock);
381760ea 565
f68f8ddd 566 slabs_destroy(cachep, &list);
072bb0aa
MG
567}
568
3ded175a
CL
569/*
570 * Transfer objects in one arraycache to another.
571 * Locking must be handled by the caller.
572 *
573 * Return the number of entries transferred.
574 */
575static int transfer_objects(struct array_cache *to,
576 struct array_cache *from, unsigned int max)
577{
578 /* Figure out how many entries to transfer */
732eacc0 579 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
580
581 if (!nr)
582 return 0;
583
0b411634 584 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
3ded175a
CL
585 sizeof(void *) *nr);
586
587 from->avail -= nr;
588 to->avail += nr;
3ded175a
CL
589 return nr;
590}
591
dabc3e29
KC
592/* &alien->lock must be held by alien callers. */
593static __always_inline void __free_one(struct array_cache *ac, void *objp)
594{
595 /* Avoid trivial double-free. */
596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 return;
599 ac->entry[ac->avail++] = objp;
600}
601
765c4507
CL
602#ifndef CONFIG_NUMA
603
604#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 605#define reap_alien(cachep, n) do { } while (0)
765c4507 606
c8522a3a
JK
607static inline struct alien_cache **alloc_alien_cache(int node,
608 int limit, gfp_t gfp)
765c4507 609{
8888177e 610 return NULL;
765c4507
CL
611}
612
c8522a3a 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
614{
615}
616
617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618{
619 return 0;
620}
621
622static inline void *alternate_node_alloc(struct kmem_cache *cachep,
623 gfp_t flags)
624{
625 return NULL;
626}
627
8b98c169 628static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
629 gfp_t flags, int nodeid)
630{
631 return NULL;
632}
633
4167e9b2
DR
634static inline gfp_t gfp_exact_node(gfp_t flags)
635{
444eb2a4 636 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
637}
638
765c4507
CL
639#else /* CONFIG_NUMA */
640
8b98c169 641static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 642static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 643
c8522a3a
JK
644static struct alien_cache *__alloc_alien_cache(int node, int entries,
645 int batch, gfp_t gfp)
646{
5e804789 647 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
648 struct alien_cache *alc = NULL;
649
650 alc = kmalloc_node(memsize, gfp, node);
09c2e76e 651 if (alc) {
92d1d07d 652 kmemleak_no_scan(alc);
09c2e76e
CL
653 init_arraycache(&alc->ac, entries, batch);
654 spin_lock_init(&alc->lock);
655 }
c8522a3a
JK
656 return alc;
657}
658
659static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 660{
c8522a3a 661 struct alien_cache **alc_ptr;
e498be7d
CL
662 int i;
663
664 if (limit > 1)
665 limit = 12;
b9726c26 666 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
c8522a3a
JK
667 if (!alc_ptr)
668 return NULL;
669
670 for_each_node(i) {
671 if (i == node || !node_online(i))
672 continue;
673 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
674 if (!alc_ptr[i]) {
675 for (i--; i >= 0; i--)
676 kfree(alc_ptr[i]);
677 kfree(alc_ptr);
678 return NULL;
e498be7d
CL
679 }
680 }
c8522a3a 681 return alc_ptr;
e498be7d
CL
682}
683
c8522a3a 684static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
685{
686 int i;
687
c8522a3a 688 if (!alc_ptr)
e498be7d 689 return;
e498be7d 690 for_each_node(i)
c8522a3a
JK
691 kfree(alc_ptr[i]);
692 kfree(alc_ptr);
e498be7d
CL
693}
694
343e0d7a 695static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
696 struct array_cache *ac, int node,
697 struct list_head *list)
e498be7d 698{
18bf8541 699 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
700
701 if (ac->avail) {
ce8eb6c4 702 spin_lock(&n->list_lock);
e00946fe
CL
703 /*
704 * Stuff objects into the remote nodes shared array first.
705 * That way we could avoid the overhead of putting the objects
706 * into the free lists and getting them back later.
707 */
ce8eb6c4
CL
708 if (n->shared)
709 transfer_objects(n->shared, ac, ac->limit);
e00946fe 710
833b706c 711 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 712 ac->avail = 0;
ce8eb6c4 713 spin_unlock(&n->list_lock);
e498be7d
CL
714 }
715}
716
8fce4d8e
CL
717/*
718 * Called from cache_reap() to regularly drain alien caches round robin.
719 */
ce8eb6c4 720static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 721{
909ea964 722 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 723
ce8eb6c4 724 if (n->alien) {
c8522a3a
JK
725 struct alien_cache *alc = n->alien[node];
726 struct array_cache *ac;
727
728 if (alc) {
729 ac = &alc->ac;
49dfc304 730 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
731 LIST_HEAD(list);
732
733 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 734 spin_unlock_irq(&alc->lock);
833b706c 735 slabs_destroy(cachep, &list);
c8522a3a 736 }
8fce4d8e
CL
737 }
738 }
739}
740
a737b3e2 741static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 742 struct alien_cache **alien)
e498be7d 743{
b28a02de 744 int i = 0;
c8522a3a 745 struct alien_cache *alc;
e498be7d
CL
746 struct array_cache *ac;
747 unsigned long flags;
748
749 for_each_online_node(i) {
c8522a3a
JK
750 alc = alien[i];
751 if (alc) {
833b706c
JK
752 LIST_HEAD(list);
753
c8522a3a 754 ac = &alc->ac;
49dfc304 755 spin_lock_irqsave(&alc->lock, flags);
833b706c 756 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 757 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 758 slabs_destroy(cachep, &list);
e498be7d
CL
759 }
760 }
761}
729bd0b7 762
25c4f304
JK
763static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
764 int node, int page_node)
729bd0b7 765{
ce8eb6c4 766 struct kmem_cache_node *n;
c8522a3a
JK
767 struct alien_cache *alien = NULL;
768 struct array_cache *ac;
97654dfa 769 LIST_HEAD(list);
1ca4cb24 770
18bf8541 771 n = get_node(cachep, node);
729bd0b7 772 STATS_INC_NODEFREES(cachep);
25c4f304
JK
773 if (n->alien && n->alien[page_node]) {
774 alien = n->alien[page_node];
c8522a3a 775 ac = &alien->ac;
49dfc304 776 spin_lock(&alien->lock);
c8522a3a 777 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 778 STATS_INC_ACOVERFLOW(cachep);
25c4f304 779 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 780 }
dabc3e29 781 __free_one(ac, objp);
49dfc304 782 spin_unlock(&alien->lock);
833b706c 783 slabs_destroy(cachep, &list);
729bd0b7 784 } else {
25c4f304 785 n = get_node(cachep, page_node);
18bf8541 786 spin_lock(&n->list_lock);
25c4f304 787 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 788 spin_unlock(&n->list_lock);
97654dfa 789 slabs_destroy(cachep, &list);
729bd0b7
PE
790 }
791 return 1;
792}
25c4f304
JK
793
794static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
795{
796 int page_node = page_to_nid(virt_to_page(objp));
797 int node = numa_mem_id();
798 /*
799 * Make sure we are not freeing a object from another node to the array
800 * cache on this cpu.
801 */
802 if (likely(node == page_node))
803 return 0;
804
805 return __cache_free_alien(cachep, objp, node, page_node);
806}
4167e9b2
DR
807
808/*
444eb2a4
MG
809 * Construct gfp mask to allocate from a specific node but do not reclaim or
810 * warn about failures.
4167e9b2
DR
811 */
812static inline gfp_t gfp_exact_node(gfp_t flags)
813{
444eb2a4 814 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 815}
e498be7d
CL
816#endif
817
ded0ecf6
JK
818static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
819{
820 struct kmem_cache_node *n;
821
822 /*
823 * Set up the kmem_cache_node for cpu before we can
824 * begin anything. Make sure some other cpu on this
825 * node has not already allocated this
826 */
827 n = get_node(cachep, node);
828 if (n) {
829 spin_lock_irq(&n->list_lock);
830 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
831 cachep->num;
832 spin_unlock_irq(&n->list_lock);
833
834 return 0;
835 }
836
837 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
838 if (!n)
839 return -ENOMEM;
840
841 kmem_cache_node_init(n);
842 n->next_reap = jiffies + REAPTIMEOUT_NODE +
843 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
844
845 n->free_limit =
846 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
847
848 /*
849 * The kmem_cache_nodes don't come and go as CPUs
850 * come and go. slab_mutex is sufficient
851 * protection here.
852 */
853 cachep->node[node] = n;
854
855 return 0;
856}
857
6731d4f1 858#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 859/*
6a67368c 860 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 861 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 862 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 863 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
864 * already in use.
865 *
18004c5d 866 * Must hold slab_mutex.
8f9f8d9e 867 */
6a67368c 868static int init_cache_node_node(int node)
8f9f8d9e 869{
ded0ecf6 870 int ret;
8f9f8d9e 871 struct kmem_cache *cachep;
8f9f8d9e 872
18004c5d 873 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
874 ret = init_cache_node(cachep, node, GFP_KERNEL);
875 if (ret)
876 return ret;
8f9f8d9e 877 }
ded0ecf6 878
8f9f8d9e
DR
879 return 0;
880}
6731d4f1 881#endif
8f9f8d9e 882
c3d332b6
JK
883static int setup_kmem_cache_node(struct kmem_cache *cachep,
884 int node, gfp_t gfp, bool force_change)
885{
886 int ret = -ENOMEM;
887 struct kmem_cache_node *n;
888 struct array_cache *old_shared = NULL;
889 struct array_cache *new_shared = NULL;
890 struct alien_cache **new_alien = NULL;
891 LIST_HEAD(list);
892
893 if (use_alien_caches) {
894 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
895 if (!new_alien)
896 goto fail;
897 }
898
899 if (cachep->shared) {
900 new_shared = alloc_arraycache(node,
901 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
902 if (!new_shared)
903 goto fail;
904 }
905
906 ret = init_cache_node(cachep, node, gfp);
907 if (ret)
908 goto fail;
909
910 n = get_node(cachep, node);
911 spin_lock_irq(&n->list_lock);
912 if (n->shared && force_change) {
913 free_block(cachep, n->shared->entry,
914 n->shared->avail, node, &list);
915 n->shared->avail = 0;
916 }
917
918 if (!n->shared || force_change) {
919 old_shared = n->shared;
920 n->shared = new_shared;
921 new_shared = NULL;
922 }
923
924 if (!n->alien) {
925 n->alien = new_alien;
926 new_alien = NULL;
927 }
928
929 spin_unlock_irq(&n->list_lock);
930 slabs_destroy(cachep, &list);
931
801faf0d
JK
932 /*
933 * To protect lockless access to n->shared during irq disabled context.
934 * If n->shared isn't NULL in irq disabled context, accessing to it is
935 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 936 * freed after synchronize_rcu().
801faf0d 937 */
86d9f485 938 if (old_shared && force_change)
6564a25e 939 synchronize_rcu();
801faf0d 940
c3d332b6
JK
941fail:
942 kfree(old_shared);
943 kfree(new_shared);
944 free_alien_cache(new_alien);
945
946 return ret;
947}
948
6731d4f1
SAS
949#ifdef CONFIG_SMP
950
0db0628d 951static void cpuup_canceled(long cpu)
fbf1e473
AM
952{
953 struct kmem_cache *cachep;
ce8eb6c4 954 struct kmem_cache_node *n = NULL;
7d6e6d09 955 int node = cpu_to_mem(cpu);
a70f7302 956 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 957
18004c5d 958 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
959 struct array_cache *nc;
960 struct array_cache *shared;
c8522a3a 961 struct alien_cache **alien;
97654dfa 962 LIST_HEAD(list);
fbf1e473 963
18bf8541 964 n = get_node(cachep, node);
ce8eb6c4 965 if (!n)
bf0dea23 966 continue;
fbf1e473 967
ce8eb6c4 968 spin_lock_irq(&n->list_lock);
fbf1e473 969
ce8eb6c4
CL
970 /* Free limit for this kmem_cache_node */
971 n->free_limit -= cachep->batchcount;
bf0dea23
JK
972
973 /* cpu is dead; no one can alloc from it. */
974 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
517f9f1e
LR
975 free_block(cachep, nc->entry, nc->avail, node, &list);
976 nc->avail = 0;
fbf1e473 977
58463c1f 978 if (!cpumask_empty(mask)) {
ce8eb6c4 979 spin_unlock_irq(&n->list_lock);
bf0dea23 980 goto free_slab;
fbf1e473
AM
981 }
982
ce8eb6c4 983 shared = n->shared;
fbf1e473
AM
984 if (shared) {
985 free_block(cachep, shared->entry,
97654dfa 986 shared->avail, node, &list);
ce8eb6c4 987 n->shared = NULL;
fbf1e473
AM
988 }
989
ce8eb6c4
CL
990 alien = n->alien;
991 n->alien = NULL;
fbf1e473 992
ce8eb6c4 993 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
994
995 kfree(shared);
996 if (alien) {
997 drain_alien_cache(cachep, alien);
998 free_alien_cache(alien);
999 }
bf0dea23
JK
1000
1001free_slab:
97654dfa 1002 slabs_destroy(cachep, &list);
fbf1e473
AM
1003 }
1004 /*
1005 * In the previous loop, all the objects were freed to
1006 * the respective cache's slabs, now we can go ahead and
1007 * shrink each nodelist to its limit.
1008 */
18004c5d 1009 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1010 n = get_node(cachep, node);
ce8eb6c4 1011 if (!n)
fbf1e473 1012 continue;
a5aa63a5 1013 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1014 }
1015}
1016
0db0628d 1017static int cpuup_prepare(long cpu)
1da177e4 1018{
343e0d7a 1019 struct kmem_cache *cachep;
7d6e6d09 1020 int node = cpu_to_mem(cpu);
8f9f8d9e 1021 int err;
1da177e4 1022
fbf1e473
AM
1023 /*
1024 * We need to do this right in the beginning since
1025 * alloc_arraycache's are going to use this list.
1026 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1027 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1028 */
6a67368c 1029 err = init_cache_node_node(node);
8f9f8d9e
DR
1030 if (err < 0)
1031 goto bad;
fbf1e473
AM
1032
1033 /*
1034 * Now we can go ahead with allocating the shared arrays and
1035 * array caches
1036 */
18004c5d 1037 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1038 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039 if (err)
1040 goto bad;
fbf1e473 1041 }
ce79ddc8 1042
fbf1e473
AM
1043 return 0;
1044bad:
12d00f6a 1045 cpuup_canceled(cpu);
fbf1e473
AM
1046 return -ENOMEM;
1047}
1048
6731d4f1 1049int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1050{
6731d4f1 1051 int err;
fbf1e473 1052
6731d4f1
SAS
1053 mutex_lock(&slab_mutex);
1054 err = cpuup_prepare(cpu);
1055 mutex_unlock(&slab_mutex);
1056 return err;
1057}
1058
1059/*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
221503e1 1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
6731d4f1 1065 * a kmalloc allocation from another cpu for memory from the node of
70b6d25e 1066 * the cpu going down. The kmem_cache_node structure is usually allocated from
6731d4f1
SAS
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
1069int slab_dead_cpu(unsigned int cpu)
1070{
1071 mutex_lock(&slab_mutex);
1072 cpuup_canceled(cpu);
1073 mutex_unlock(&slab_mutex);
1074 return 0;
1075}
8f5be20b 1076#endif
6731d4f1
SAS
1077
1078static int slab_online_cpu(unsigned int cpu)
1079{
1080 start_cpu_timer(cpu);
1081 return 0;
1da177e4
LT
1082}
1083
6731d4f1
SAS
1084static int slab_offline_cpu(unsigned int cpu)
1085{
1086 /*
1087 * Shutdown cache reaper. Note that the slab_mutex is held so
1088 * that if cache_reap() is invoked it cannot do anything
1089 * expensive but will only modify reap_work and reschedule the
1090 * timer.
1091 */
1092 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093 /* Now the cache_reaper is guaranteed to be not running. */
1094 per_cpu(slab_reap_work, cpu).work.func = NULL;
1095 return 0;
1096}
1da177e4 1097
76af6a05 1098#if defined(CONFIG_NUMA)
8f9f8d9e
DR
1099/*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
18004c5d 1104 * Must hold slab_mutex.
8f9f8d9e 1105 */
6a67368c 1106static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1107{
1108 struct kmem_cache *cachep;
1109 int ret = 0;
1110
18004c5d 1111 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1112 struct kmem_cache_node *n;
8f9f8d9e 1113
18bf8541 1114 n = get_node(cachep, node);
ce8eb6c4 1115 if (!n)
8f9f8d9e
DR
1116 continue;
1117
a5aa63a5 1118 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1119
ce8eb6c4
CL
1120 if (!list_empty(&n->slabs_full) ||
1121 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1122 ret = -EBUSY;
1123 break;
1124 }
1125 }
1126 return ret;
1127}
1128
1129static int __meminit slab_memory_callback(struct notifier_block *self,
1130 unsigned long action, void *arg)
1131{
1132 struct memory_notify *mnb = arg;
1133 int ret = 0;
1134 int nid;
1135
1136 nid = mnb->status_change_nid;
1137 if (nid < 0)
1138 goto out;
1139
1140 switch (action) {
1141 case MEM_GOING_ONLINE:
18004c5d 1142 mutex_lock(&slab_mutex);
6a67368c 1143 ret = init_cache_node_node(nid);
18004c5d 1144 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1145 break;
1146 case MEM_GOING_OFFLINE:
18004c5d 1147 mutex_lock(&slab_mutex);
6a67368c 1148 ret = drain_cache_node_node(nid);
18004c5d 1149 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1150 break;
1151 case MEM_ONLINE:
1152 case MEM_OFFLINE:
1153 case MEM_CANCEL_ONLINE:
1154 case MEM_CANCEL_OFFLINE:
1155 break;
1156 }
1157out:
5fda1bd5 1158 return notifier_from_errno(ret);
8f9f8d9e 1159}
76af6a05 1160#endif /* CONFIG_NUMA */
8f9f8d9e 1161
e498be7d 1162/*
ce8eb6c4 1163 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1164 */
6744f087 1165static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1166 int nodeid)
e498be7d 1167{
6744f087 1168 struct kmem_cache_node *ptr;
e498be7d 1169
6744f087 1170 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1171 BUG_ON(!ptr);
1172
6744f087 1173 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1174 /*
1175 * Do not assume that spinlocks can be initialized via memcpy:
1176 */
1177 spin_lock_init(&ptr->list_lock);
1178
e498be7d 1179 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1180 cachep->node[nodeid] = ptr;
e498be7d
CL
1181}
1182
556a169d 1183/*
ce8eb6c4
CL
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
556a169d 1186 */
ce8eb6c4 1187static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1188{
1189 int node;
1190
1191 for_each_online_node(node) {
ce8eb6c4 1192 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1193 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1194 REAPTIMEOUT_NODE +
1195 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1196 }
1197}
1198
a737b3e2
AM
1199/*
1200 * Initialisation. Called after the page allocator have been initialised and
1201 * before smp_init().
1da177e4
LT
1202 */
1203void __init kmem_cache_init(void)
1204{
e498be7d
CL
1205 int i;
1206
9b030cb8
CL
1207 kmem_cache = &kmem_cache_boot;
1208
8888177e 1209 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1210 use_alien_caches = 0;
1211
3c583465 1212 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1213 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1214
1da177e4
LT
1215 /*
1216 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1217 * page orders on machines with more than 32MB of memory if
1218 * not overridden on the command line.
1da177e4 1219 */
ca79b0c2 1220 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1221 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1222
1da177e4
LT
1223 /* Bootstrap is tricky, because several objects are allocated
1224 * from caches that do not exist yet:
9b030cb8
CL
1225 * 1) initialize the kmem_cache cache: it contains the struct
1226 * kmem_cache structures of all caches, except kmem_cache itself:
1227 * kmem_cache is statically allocated.
e498be7d 1228 * Initially an __init data area is used for the head array and the
ce8eb6c4 1229 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1230 * array at the end of the bootstrap.
1da177e4 1231 * 2) Create the first kmalloc cache.
343e0d7a 1232 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1233 * An __init data area is used for the head array.
1234 * 3) Create the remaining kmalloc caches, with minimally sized
1235 * head arrays.
9b030cb8 1236 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1237 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1238 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1239 * the other cache's with kmalloc allocated memory.
1240 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1241 */
1242
9b030cb8 1243 /* 1) create the kmem_cache */
1da177e4 1244
8da3430d 1245 /*
b56efcf0 1246 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1247 */
2f9baa9f 1248 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1249 offsetof(struct kmem_cache, node) +
6744f087 1250 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1251 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1252 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1253 slab_state = PARTIAL;
1da177e4 1254
a737b3e2 1255 /*
bf0dea23
JK
1256 * Initialize the caches that provide memory for the kmem_cache_node
1257 * structures first. Without this, further allocations will bug.
e498be7d 1258 */
cc252eae 1259 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
cb5d9fb3 1260 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
dc0a7f75
PL
1261 kmalloc_info[INDEX_NODE].size,
1262 ARCH_KMALLOC_FLAGS, 0,
1263 kmalloc_info[INDEX_NODE].size);
bf0dea23 1264 slab_state = PARTIAL_NODE;
34cc6990 1265 setup_kmalloc_cache_index_table();
e498be7d 1266
e0a42726
IM
1267 slab_early_init = 0;
1268
ce8eb6c4 1269 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1270 {
1ca4cb24
PE
1271 int nid;
1272
9c09a95c 1273 for_each_online_node(nid) {
ce8eb6c4 1274 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1275
cc252eae 1276 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1277 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1278 }
1279 }
1da177e4 1280
f97d5f63 1281 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286 struct kmem_cache *cachep;
1287
8429db5c 1288 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1289 mutex_lock(&slab_mutex);
1290 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1291 if (enable_cpucache(cachep, GFP_NOWAIT))
1292 BUG();
18004c5d 1293 mutex_unlock(&slab_mutex);
056c6241 1294
97d06609
CL
1295 /* Done! */
1296 slab_state = FULL;
1297
8f9f8d9e
DR
1298#ifdef CONFIG_NUMA
1299 /*
1300 * Register a memory hotplug callback that initializes and frees
6a67368c 1301 * node.
8f9f8d9e
DR
1302 */
1303 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
a737b3e2
AM
1306 /*
1307 * The reap timers are started later, with a module init call: That part
1308 * of the kernel is not yet operational.
1da177e4
LT
1309 */
1310}
1311
1312static int __init cpucache_init(void)
1313{
6731d4f1 1314 int ret;
1da177e4 1315
a737b3e2
AM
1316 /*
1317 * Register the timers that return unneeded pages to the page allocator
1da177e4 1318 */
6731d4f1
SAS
1319 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320 slab_online_cpu, slab_offline_cpu);
1321 WARN_ON(ret < 0);
a164f896 1322
1da177e4
LT
1323 return 0;
1324}
1da177e4
LT
1325__initcall(cpucache_init);
1326
8bdec192
RA
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
9a02d699 1330#if DEBUG
ce8eb6c4 1331 struct kmem_cache_node *n;
8bdec192
RA
1332 unsigned long flags;
1333 int node;
9a02d699
DR
1334 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335 DEFAULT_RATELIMIT_BURST);
1336
1337 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338 return;
8bdec192 1339
5b3810e5
VB
1340 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341 nodeid, gfpflags, &gfpflags);
1342 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1343 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1344
18bf8541 1345 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1346 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1347
ce8eb6c4 1348 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1349 total_slabs = n->total_slabs;
1350 free_slabs = n->free_slabs;
1351 free_objs = n->free_objects;
ce8eb6c4 1352 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1353
bf00bd34
DR
1354 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355 node, total_slabs - free_slabs, total_slabs,
1356 (total_slabs * cachep->num) - free_objs,
1357 total_slabs * cachep->num);
8bdec192 1358 }
9a02d699 1359#endif
8bdec192
RA
1360}
1361
1da177e4 1362/*
8a7d9b43
WSH
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1da177e4
LT
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
0c3aa83e
JK
1370static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371 int nodeid)
1da177e4
LT
1372{
1373 struct page *page;
765c4507 1374
a618e89f 1375 flags |= cachep->allocflags;
e1b6aa6f 1376
75f296d9 1377 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1378 if (!page) {
9a02d699 1379 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1380 return NULL;
8bdec192 1381 }
1da177e4 1382
2e9bd483 1383 account_slab_page(page, cachep->gfporder, cachep, flags);
a57a4988 1384 __SetPageSlab(page);
f68f8ddd
JK
1385 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1387 SetPageSlabPfmemalloc(page);
072bb0aa 1388
0c3aa83e 1389 return page;
1da177e4
LT
1390}
1391
1392/*
1393 * Interface to system's page release.
1394 */
0c3aa83e 1395static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1396{
27ee57c9 1397 int order = cachep->gfporder;
73293c2f 1398
a57a4988 1399 BUG_ON(!PageSlab(page));
73293c2f 1400 __ClearPageSlabPfmemalloc(page);
a57a4988 1401 __ClearPageSlab(page);
8456a648 1402 page_mapcount_reset(page);
0c06dd75
VB
1403 /* In union with page->mapping where page allocator expects NULL */
1404 page->slab_cache = NULL;
1f458cbf 1405
1da177e4 1406 if (current->reclaim_state)
6cea1d56 1407 current->reclaim_state->reclaimed_slab += 1 << order;
74d555be 1408 unaccount_slab_page(page, order, cachep);
27ee57c9 1409 __free_pages(page, order);
1da177e4
LT
1410}
1411
1412static void kmem_rcu_free(struct rcu_head *head)
1413{
68126702
JK
1414 struct kmem_cache *cachep;
1415 struct page *page;
1da177e4 1416
68126702
JK
1417 page = container_of(head, struct page, rcu_head);
1418 cachep = page->slab_cache;
1419
1420 kmem_freepages(cachep, page);
1da177e4
LT
1421}
1422
1423#if DEBUG
40b44137
JK
1424static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1425{
8e57f8ac 1426 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
40b44137
JK
1427 (cachep->size % PAGE_SIZE) == 0)
1428 return true;
1429
1430 return false;
1431}
1da177e4
LT
1432
1433#ifdef CONFIG_DEBUG_PAGEALLOC
80552f0f 1434static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
40b44137
JK
1435{
1436 if (!is_debug_pagealloc_cache(cachep))
1437 return;
1438
77bc7fd6 1439 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
40b44137
JK
1440}
1441
1442#else
1443static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
80552f0f 1444 int map) {}
40b44137 1445
1da177e4
LT
1446#endif
1447
343e0d7a 1448static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1449{
8c138bc0 1450 int size = cachep->object_size;
3dafccf2 1451 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1452
1453 memset(addr, val, size);
b28a02de 1454 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1455}
1456
1457static void dump_line(char *data, int offset, int limit)
1458{
1459 int i;
aa83aa40
DJ
1460 unsigned char error = 0;
1461 int bad_count = 0;
1462
1170532b 1463 pr_err("%03x: ", offset);
aa83aa40
DJ
1464 for (i = 0; i < limit; i++) {
1465 if (data[offset + i] != POISON_FREE) {
1466 error = data[offset + i];
1467 bad_count++;
1468 }
aa83aa40 1469 }
fdde6abb
SAS
1470 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1471 &data[offset], limit, 1);
aa83aa40
DJ
1472
1473 if (bad_count == 1) {
1474 error ^= POISON_FREE;
1475 if (!(error & (error - 1))) {
1170532b 1476 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1477#ifdef CONFIG_X86
1170532b 1478 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1479#else
1170532b 1480 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1481#endif
1482 }
1483 }
1da177e4
LT
1484}
1485#endif
1486
1487#if DEBUG
1488
343e0d7a 1489static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1490{
1491 int i, size;
1492 char *realobj;
1493
1494 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1495 pr_err("Redzone: 0x%llx/0x%llx\n",
1496 *dbg_redzone1(cachep, objp),
1497 *dbg_redzone2(cachep, objp));
1da177e4
LT
1498 }
1499
85c3e4a5
GU
1500 if (cachep->flags & SLAB_STORE_USER)
1501 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1502 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1503 size = cachep->object_size;
b28a02de 1504 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1505 int limit;
1506 limit = 16;
b28a02de
PE
1507 if (i + limit > size)
1508 limit = size - i;
1da177e4
LT
1509 dump_line(realobj, i, limit);
1510 }
1511}
1512
343e0d7a 1513static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1514{
1515 char *realobj;
1516 int size, i;
1517 int lines = 0;
1518
40b44137
JK
1519 if (is_debug_pagealloc_cache(cachep))
1520 return;
1521
3dafccf2 1522 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1523 size = cachep->object_size;
1da177e4 1524
b28a02de 1525 for (i = 0; i < size; i++) {
1da177e4 1526 char exp = POISON_FREE;
b28a02de 1527 if (i == size - 1)
1da177e4
LT
1528 exp = POISON_END;
1529 if (realobj[i] != exp) {
1530 int limit;
1531 /* Mismatch ! */
1532 /* Print header */
1533 if (lines == 0) {
85c3e4a5 1534 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1535 print_tainted(), cachep->name,
1536 realobj, size);
1da177e4
LT
1537 print_objinfo(cachep, objp, 0);
1538 }
1539 /* Hexdump the affected line */
b28a02de 1540 i = (i / 16) * 16;
1da177e4 1541 limit = 16;
b28a02de
PE
1542 if (i + limit > size)
1543 limit = size - i;
1da177e4
LT
1544 dump_line(realobj, i, limit);
1545 i += 16;
1546 lines++;
1547 /* Limit to 5 lines */
1548 if (lines > 5)
1549 break;
1550 }
1551 }
1552 if (lines != 0) {
1553 /* Print some data about the neighboring objects, if they
1554 * exist:
1555 */
8456a648 1556 struct page *page = virt_to_head_page(objp);
8fea4e96 1557 unsigned int objnr;
1da177e4 1558
8456a648 1559 objnr = obj_to_index(cachep, page, objp);
1da177e4 1560 if (objnr) {
8456a648 1561 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1562 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1563 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1564 print_objinfo(cachep, objp, 2);
1565 }
b28a02de 1566 if (objnr + 1 < cachep->num) {
8456a648 1567 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1568 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1569 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1570 print_objinfo(cachep, objp, 2);
1571 }
1572 }
1573}
1574#endif
1575
12dd36fa 1576#if DEBUG
8456a648
JK
1577static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1578 struct page *page)
1da177e4 1579{
1da177e4 1580 int i;
b03a017b
JK
1581
1582 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1583 poison_obj(cachep, page->freelist - obj_offset(cachep),
1584 POISON_FREE);
1585 }
1586
1da177e4 1587 for (i = 0; i < cachep->num; i++) {
8456a648 1588 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1589
1590 if (cachep->flags & SLAB_POISON) {
1da177e4 1591 check_poison_obj(cachep, objp);
80552f0f 1592 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
1593 }
1594 if (cachep->flags & SLAB_RED_ZONE) {
1595 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1596 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1597 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1598 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1599 }
1da177e4 1600 }
12dd36fa 1601}
1da177e4 1602#else
8456a648
JK
1603static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1604 struct page *page)
12dd36fa 1605{
12dd36fa 1606}
1da177e4
LT
1607#endif
1608
911851e6
RD
1609/**
1610 * slab_destroy - destroy and release all objects in a slab
1611 * @cachep: cache pointer being destroyed
cb8ee1a3 1612 * @page: page pointer being destroyed
911851e6 1613 *
8a7d9b43
WSH
1614 * Destroy all the objs in a slab page, and release the mem back to the system.
1615 * Before calling the slab page must have been unlinked from the cache. The
1616 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1617 */
8456a648 1618static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1619{
7e007355 1620 void *freelist;
12dd36fa 1621
8456a648
JK
1622 freelist = page->freelist;
1623 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1624 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1625 call_rcu(&page->rcu_head, kmem_rcu_free);
1626 else
0c3aa83e 1627 kmem_freepages(cachep, page);
68126702
JK
1628
1629 /*
8456a648 1630 * From now on, we don't use freelist
68126702
JK
1631 * although actual page can be freed in rcu context
1632 */
1633 if (OFF_SLAB(cachep))
8456a648 1634 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1635}
1636
678ff6a7
SB
1637/*
1638 * Update the size of the caches before calling slabs_destroy as it may
1639 * recursively call kfree.
1640 */
97654dfa
JK
1641static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642{
1643 struct page *page, *n;
1644
16cb0ec7
TH
1645 list_for_each_entry_safe(page, n, list, slab_list) {
1646 list_del(&page->slab_list);
97654dfa
JK
1647 slab_destroy(cachep, page);
1648 }
1649}
1650
4d268eba 1651/**
a70773dd
RD
1652 * calculate_slab_order - calculate size (page order) of slabs
1653 * @cachep: pointer to the cache that is being created
1654 * @size: size of objects to be created in this cache.
a70773dd
RD
1655 * @flags: slab allocation flags
1656 *
1657 * Also calculates the number of objects per slab.
4d268eba
PE
1658 *
1659 * This could be made much more intelligent. For now, try to avoid using
1660 * high order pages for slabs. When the gfp() functions are more friendly
1661 * towards high-order requests, this should be changed.
a862f68a
MR
1662 *
1663 * Return: number of left-over bytes in a slab
4d268eba 1664 */
a737b3e2 1665static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1666 size_t size, slab_flags_t flags)
4d268eba
PE
1667{
1668 size_t left_over = 0;
9888e6fa 1669 int gfporder;
4d268eba 1670
0aa817f0 1671 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1672 unsigned int num;
1673 size_t remainder;
1674
70f75067 1675 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1676 if (!num)
1677 continue;
9888e6fa 1678
f315e3fa
JK
1679 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1680 if (num > SLAB_OBJ_MAX_NUM)
1681 break;
1682
b1ab41c4 1683 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1684 struct kmem_cache *freelist_cache;
1685 size_t freelist_size;
1686
1687 freelist_size = num * sizeof(freelist_idx_t);
1688 freelist_cache = kmalloc_slab(freelist_size, 0u);
1689 if (!freelist_cache)
1690 continue;
1691
b1ab41c4 1692 /*
3217fd9b 1693 * Needed to avoid possible looping condition
76b342bd 1694 * in cache_grow_begin()
b1ab41c4 1695 */
3217fd9b
JK
1696 if (OFF_SLAB(freelist_cache))
1697 continue;
b1ab41c4 1698
3217fd9b
JK
1699 /* check if off slab has enough benefit */
1700 if (freelist_cache->size > cachep->size / 2)
1701 continue;
b1ab41c4 1702 }
4d268eba 1703
9888e6fa 1704 /* Found something acceptable - save it away */
4d268eba 1705 cachep->num = num;
9888e6fa 1706 cachep->gfporder = gfporder;
4d268eba
PE
1707 left_over = remainder;
1708
f78bb8ad
LT
1709 /*
1710 * A VFS-reclaimable slab tends to have most allocations
1711 * as GFP_NOFS and we really don't want to have to be allocating
1712 * higher-order pages when we are unable to shrink dcache.
1713 */
1714 if (flags & SLAB_RECLAIM_ACCOUNT)
1715 break;
1716
4d268eba
PE
1717 /*
1718 * Large number of objects is good, but very large slabs are
1719 * currently bad for the gfp()s.
1720 */
543585cc 1721 if (gfporder >= slab_max_order)
4d268eba
PE
1722 break;
1723
9888e6fa
LT
1724 /*
1725 * Acceptable internal fragmentation?
1726 */
a737b3e2 1727 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1728 break;
1729 }
1730 return left_over;
1731}
1732
bf0dea23
JK
1733static struct array_cache __percpu *alloc_kmem_cache_cpus(
1734 struct kmem_cache *cachep, int entries, int batchcount)
1735{
1736 int cpu;
1737 size_t size;
1738 struct array_cache __percpu *cpu_cache;
1739
1740 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1741 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1742
1743 if (!cpu_cache)
1744 return NULL;
1745
1746 for_each_possible_cpu(cpu) {
1747 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1748 entries, batchcount);
1749 }
1750
1751 return cpu_cache;
1752}
1753
bd721ea7 1754static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1755{
97d06609 1756 if (slab_state >= FULL)
83b519e8 1757 return enable_cpucache(cachep, gfp);
2ed3a4ef 1758
bf0dea23
JK
1759 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1760 if (!cachep->cpu_cache)
1761 return 1;
1762
97d06609 1763 if (slab_state == DOWN) {
bf0dea23
JK
1764 /* Creation of first cache (kmem_cache). */
1765 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1766 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1767 /* For kmem_cache_node */
1768 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1769 } else {
bf0dea23 1770 int node;
f30cf7d1 1771
bf0dea23
JK
1772 for_each_online_node(node) {
1773 cachep->node[node] = kmalloc_node(
1774 sizeof(struct kmem_cache_node), gfp, node);
1775 BUG_ON(!cachep->node[node]);
1776 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1777 }
1778 }
bf0dea23 1779
6a67368c 1780 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1781 jiffies + REAPTIMEOUT_NODE +
1782 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1783
1784 cpu_cache_get(cachep)->avail = 0;
1785 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1786 cpu_cache_get(cachep)->batchcount = 1;
1787 cpu_cache_get(cachep)->touched = 0;
1788 cachep->batchcount = 1;
1789 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1790 return 0;
f30cf7d1
PE
1791}
1792
0293d1fd 1793slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1794 slab_flags_t flags, const char *name)
12220dea
JK
1795{
1796 return flags;
1797}
1798
1799struct kmem_cache *
f4957d5b 1800__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1801 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1802{
1803 struct kmem_cache *cachep;
1804
1805 cachep = find_mergeable(size, align, flags, name, ctor);
1806 if (cachep) {
1807 cachep->refcount++;
1808
1809 /*
1810 * Adjust the object sizes so that we clear
1811 * the complete object on kzalloc.
1812 */
1813 cachep->object_size = max_t(int, cachep->object_size, size);
1814 }
1815 return cachep;
1816}
1817
b03a017b 1818static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1819 size_t size, slab_flags_t flags)
b03a017b
JK
1820{
1821 size_t left;
1822
1823 cachep->num = 0;
1824
6471384a
AP
1825 /*
1826 * If slab auto-initialization on free is enabled, store the freelist
1827 * off-slab, so that its contents don't end up in one of the allocated
1828 * objects.
1829 */
1830 if (unlikely(slab_want_init_on_free(cachep)))
1831 return false;
1832
5f0d5a3a 1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1834 return false;
1835
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1840
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1843
1844 cachep->colour = left / cachep->colour_off;
1845
1846 return true;
1847}
1848
158e319b 1849static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1850 size_t size, slab_flags_t flags)
158e319b
JK
1851{
1852 size_t left;
1853
1854 cachep->num = 0;
1855
1856 /*
3217fd9b
JK
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
158e319b 1859 */
158e319b
JK
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1862
1863 /*
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1866 */
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1870
1871 /*
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1874 */
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1877
1878 cachep->colour = left / cachep->colour_off;
1879
1880 return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1884 size_t size, slab_flags_t flags)
158e319b
JK
1885{
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1893
1894 cachep->colour = left / cachep->colour_off;
1895
1896 return true;
1897}
1898
1da177e4 1899/**
039363f3 1900 * __kmem_cache_create - Create a cache.
a755b76a 1901 * @cachep: cache management descriptor
1da177e4 1902 * @flags: SLAB flags
1da177e4
LT
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
20c2df83 1906 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1907 *
1da177e4
LT
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1da177e4
LT
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
a862f68a
MR
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1da177e4 1921 */
d50112ed 1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1923{
d4a5fca5 1924 size_t ralign = BYTES_PER_WORD;
83b519e8 1925 gfp_t gfp;
278b1bb1 1926 int err;
be4a7988 1927 unsigned int size = cachep->size;
1da177e4 1928
1da177e4 1929#if DEBUG
1da177e4
LT
1930#if FORCED_DEBUG
1931 /*
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1936 */
87a927c7
DW
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
b28a02de 1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1941 flags |= SLAB_POISON;
1942#endif
1da177e4 1943#endif
1da177e4 1944
a737b3e2
AM
1945 /*
1946 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1949 */
e0771950 1950 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 1951
87a927c7
DW
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
e0771950 1956 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 1957 }
ca5f9703 1958
a44b56d3 1959 /* 3) caller mandated alignment */
8a13a4cc
CL
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1da177e4 1962 }
3ff84a7f
PE
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
a44b56d3 1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 1966 /*
ca5f9703 1967 * 4) Store it.
1da177e4 1968 */
8a13a4cc 1969 cachep->align = ralign;
158e319b
JK
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1da177e4 1974
83b519e8
PE
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1979
1da177e4 1980#if DEBUG
1da177e4 1981
ca5f9703
PE
1982 /*
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1985 */
1da177e4 1986 if (flags & SLAB_RED_ZONE) {
1da177e4 1987 /* add space for red zone words */
3ff84a7f
PE
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1da177e4
LT
1990 }
1991 if (flags & SLAB_STORE_USER) {
ca5f9703 1992 /* user store requires one word storage behind the end of
87a927c7
DW
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1da177e4 1995 */
87a927c7
DW
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
1da177e4 2000 }
832a15d2
JK
2001#endif
2002
7ed2f9e6
AP
2003 kasan_cache_create(cachep, &size, &flags);
2004
832a15d2
JK
2005 size = ALIGN(size, cachep->align);
2006 /*
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 */
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
03a2d2a3
JK
2014 /*
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2020 */
8e57f8ac 2021 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
f3a3c320
JK
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2031 }
2032 }
1da177e4 2033 }
1da177e4
LT
2034#endif
2035
b03a017b
JK
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2039 }
2040
158e319b 2041 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2042 flags |= CFLGS_OFF_SLAB;
158e319b 2043 goto done;
832a15d2 2044 }
1da177e4 2045
158e319b
JK
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
1da177e4 2048
158e319b 2049 return -E2BIG;
1da177e4 2050
158e319b
JK
2051done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2053 cachep->flags = flags;
a57a4988 2054 cachep->allocflags = __GFP_COMP;
a3187e43 2055 if (flags & SLAB_CACHE_DMA)
a618e89f 2056 cachep->allocflags |= GFP_DMA;
6d6ea1e9
NB
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2061 cachep->size = size;
6a2d7a95 2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2063
40b44137
JK
2064#if DEBUG
2065 /*
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2069 */
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076 if (OFF_SLAB(cachep)) {
158e319b
JK
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2079 }
1da177e4 2080
278b1bb1
CL
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
52b4b950 2083 __kmem_cache_release(cachep);
278b1bb1 2084 return err;
2ed3a4ef 2085 }
1da177e4 2086
278b1bb1 2087 return 0;
1da177e4 2088}
1da177e4
LT
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093 BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098 BUG_ON(irqs_disabled());
2099}
2100
18726ca8
JK
2101static void check_mutex_acquired(void)
2102{
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
343e0d7a 2106static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2107{
2108#ifdef CONFIG_SMP
2109 check_irq_off();
18bf8541 2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2111#endif
2112}
e498be7d 2113
343e0d7a 2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2115{
2116#ifdef CONFIG_SMP
2117 check_irq_off();
18bf8541 2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2119#endif
2120}
2121
1da177e4
LT
2122#else
2123#define check_irq_off() do { } while(0)
2124#define check_irq_on() do { } while(0)
18726ca8 2125#define check_mutex_acquired() do { } while(0)
1da177e4 2126#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2127#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2128#endif
2129
18726ca8
JK
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2132{
2133 int tofree;
2134
2135 if (!ac || !ac->avail)
2136 return;
2137
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2141
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
aab2207c 2146
1da177e4
LT
2147static void do_drain(void *arg)
2148{
a737b3e2 2149 struct kmem_cache *cachep = arg;
1da177e4 2150 struct array_cache *ac;
7d6e6d09 2151 int node = numa_mem_id();
18bf8541 2152 struct kmem_cache_node *n;
97654dfa 2153 LIST_HEAD(list);
1da177e4
LT
2154
2155 check_irq_off();
9a2dba4b 2156 ac = cpu_cache_get(cachep);
18bf8541
CL
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
97654dfa 2159 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2160 spin_unlock(&n->list_lock);
1da177e4 2161 ac->avail = 0;
678ff6a7 2162 slabs_destroy(cachep, &list);
1da177e4
LT
2163}
2164
343e0d7a 2165static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2166{
ce8eb6c4 2167 struct kmem_cache_node *n;
e498be7d 2168 int node;
18726ca8 2169 LIST_HEAD(list);
e498be7d 2170
15c8b6c1 2171 on_each_cpu(do_drain, cachep, 1);
1da177e4 2172 check_irq_on();
18bf8541
CL
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
ce8eb6c4 2175 drain_alien_cache(cachep, n->alien);
a4523a8b 2176
18726ca8
JK
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2181
2182 slabs_destroy(cachep, &list);
2183 }
1da177e4
LT
2184}
2185
ed11d9eb
CL
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2193 struct kmem_cache_node *n, int tofree)
1da177e4 2194{
ed11d9eb
CL
2195 struct list_head *p;
2196 int nr_freed;
8456a648 2197 struct page *page;
1da177e4 2198
ed11d9eb 2199 nr_freed = 0;
ce8eb6c4 2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2201
ce8eb6c4
CL
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2206 goto out;
2207 }
1da177e4 2208
16cb0ec7
TH
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
f728b0a5 2211 n->free_slabs--;
bf00bd34 2212 n->total_slabs--;
ed11d9eb
CL
2213 /*
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2216 */
ce8eb6c4
CL
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
8456a648 2219 slab_destroy(cache, page);
ed11d9eb 2220 nr_freed++;
1da177e4 2221 }
ed11d9eb
CL
2222out:
2223 return nr_freed;
1da177e4
LT
2224}
2225
f9e13c0a
SB
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228 int node;
2229 struct kmem_cache_node *n;
2230
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2236}
2237
c9fc5864 2238int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2239{
18bf8541
CL
2240 int ret = 0;
2241 int node;
ce8eb6c4 2242 struct kmem_cache_node *n;
e498be7d
CL
2243
2244 drain_cpu_caches(cachep);
2245
2246 check_irq_on();
18bf8541 2247 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2248 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2249
ce8eb6c4
CL
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
e498be7d
CL
2252 }
2253 return (ret ? 1 : 0);
2254}
2255
945cf2b6 2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2257{
c9fc5864 2258 return __kmem_cache_shrink(cachep);
52b4b950
DS
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2262{
12c3667f 2263 int i;
ce8eb6c4 2264 struct kmem_cache_node *n;
1da177e4 2265
c7ce4f60
TG
2266 cache_random_seq_destroy(cachep);
2267
bf0dea23 2268 free_percpu(cachep->cpu_cache);
1da177e4 2269
ce8eb6c4 2270 /* NUMA: free the node structures */
18bf8541
CL
2271 for_each_kmem_cache_node(cachep, i, n) {
2272 kfree(n->shared);
2273 free_alien_cache(n->alien);
2274 kfree(n);
2275 cachep->node[i] = NULL;
12c3667f 2276 }
1da177e4 2277}
1da177e4 2278
e5ac9c5a
RT
2279/*
2280 * Get the memory for a slab management obj.
5f0985bb
JZ
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
80d01558 2287 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
5f0985bb
JZ
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
e5ac9c5a 2292 */
7e007355 2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2294 struct page *page, int colour_off,
2295 gfp_t local_flags, int nodeid)
1da177e4 2296{
7e007355 2297 void *freelist;
0c3aa83e 2298 void *addr = page_address(page);
b28a02de 2299
51dedad0 2300 page->s_mem = addr + colour_off;
2e6b3602
JK
2301 page->active = 0;
2302
b03a017b
JK
2303 if (OBJFREELIST_SLAB(cachep))
2304 freelist = NULL;
2305 else if (OFF_SLAB(cachep)) {
1da177e4 2306 /* Slab management obj is off-slab. */
8456a648 2307 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2308 local_flags, nodeid);
1da177e4 2309 } else {
2e6b3602
JK
2310 /* We will use last bytes at the slab for freelist */
2311 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312 cachep->freelist_size;
1da177e4 2313 }
2e6b3602 2314
8456a648 2315 return freelist;
1da177e4
LT
2316}
2317
7cc68973 2318static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2319{
a41adfaa 2320 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2321}
2322
2323static inline void set_free_obj(struct page *page,
7cc68973 2324 unsigned int idx, freelist_idx_t val)
e5c58dfd 2325{
a41adfaa 2326 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2327}
2328
10b2e9e8 2329static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2330{
10b2e9e8 2331#if DEBUG
1da177e4
LT
2332 int i;
2333
2334 for (i = 0; i < cachep->num; i++) {
8456a648 2335 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2336
1da177e4
LT
2337 if (cachep->flags & SLAB_STORE_USER)
2338 *dbg_userword(cachep, objp) = NULL;
2339
2340 if (cachep->flags & SLAB_RED_ZONE) {
2341 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343 }
2344 /*
a737b3e2
AM
2345 * Constructors are not allowed to allocate memory from the same
2346 * cache which they are a constructor for. Otherwise, deadlock.
2347 * They must also be threaded.
1da177e4 2348 */
7ed2f9e6
AP
2349 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350 kasan_unpoison_object_data(cachep,
2351 objp + obj_offset(cachep));
51cc5068 2352 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2353 kasan_poison_object_data(
2354 cachep, objp + obj_offset(cachep));
2355 }
1da177e4
LT
2356
2357 if (cachep->flags & SLAB_RED_ZONE) {
2358 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2359 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2360 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2361 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2362 }
40b44137
JK
2363 /* need to poison the objs? */
2364 if (cachep->flags & SLAB_POISON) {
2365 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2366 slab_kernel_map(cachep, objp, 0);
40b44137 2367 }
10b2e9e8 2368 }
1da177e4 2369#endif
10b2e9e8
JK
2370}
2371
c7ce4f60
TG
2372#ifdef CONFIG_SLAB_FREELIST_RANDOM
2373/* Hold information during a freelist initialization */
2374union freelist_init_state {
2375 struct {
2376 unsigned int pos;
7c00fce9 2377 unsigned int *list;
c7ce4f60 2378 unsigned int count;
c7ce4f60
TG
2379 };
2380 struct rnd_state rnd_state;
2381};
2382
2383/*
f0953a1b
IM
2384 * Initialize the state based on the randomization method available.
2385 * return true if the pre-computed list is available, false otherwise.
c7ce4f60
TG
2386 */
2387static bool freelist_state_initialize(union freelist_init_state *state,
2388 struct kmem_cache *cachep,
2389 unsigned int count)
2390{
2391 bool ret;
2392 unsigned int rand;
2393
2394 /* Use best entropy available to define a random shift */
7c00fce9 2395 rand = get_random_int();
c7ce4f60
TG
2396
2397 /* Use a random state if the pre-computed list is not available */
2398 if (!cachep->random_seq) {
2399 prandom_seed_state(&state->rnd_state, rand);
2400 ret = false;
2401 } else {
2402 state->list = cachep->random_seq;
2403 state->count = count;
c4e490cf 2404 state->pos = rand % count;
c7ce4f60
TG
2405 ret = true;
2406 }
2407 return ret;
2408}
2409
2410/* Get the next entry on the list and randomize it using a random shift */
2411static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412{
c4e490cf
JS
2413 if (state->pos >= state->count)
2414 state->pos = 0;
2415 return state->list[state->pos++];
c7ce4f60
TG
2416}
2417
7c00fce9
TG
2418/* Swap two freelist entries */
2419static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420{
2421 swap(((freelist_idx_t *)page->freelist)[a],
2422 ((freelist_idx_t *)page->freelist)[b]);
2423}
2424
c7ce4f60
TG
2425/*
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2428 */
2429static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430{
7c00fce9 2431 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2432 union freelist_init_state state;
2433 bool precomputed;
2434
2435 if (count < 2)
2436 return false;
2437
2438 precomputed = freelist_state_initialize(&state, cachep, count);
2439
2440 /* Take a random entry as the objfreelist */
2441 if (OBJFREELIST_SLAB(cachep)) {
2442 if (!precomputed)
2443 objfreelist = count - 1;
2444 else
2445 objfreelist = next_random_slot(&state);
2446 page->freelist = index_to_obj(cachep, page, objfreelist) +
2447 obj_offset(cachep);
2448 count--;
2449 }
2450
2451 /*
2452 * On early boot, generate the list dynamically.
2453 * Later use a pre-computed list for speed.
2454 */
2455 if (!precomputed) {
7c00fce9
TG
2456 for (i = 0; i < count; i++)
2457 set_free_obj(page, i, i);
2458
2459 /* Fisher-Yates shuffle */
2460 for (i = count - 1; i > 0; i--) {
2461 rand = prandom_u32_state(&state.rnd_state);
2462 rand %= (i + 1);
2463 swap_free_obj(page, i, rand);
2464 }
c7ce4f60
TG
2465 } else {
2466 for (i = 0; i < count; i++)
2467 set_free_obj(page, i, next_random_slot(&state));
2468 }
2469
2470 if (OBJFREELIST_SLAB(cachep))
2471 set_free_obj(page, cachep->num - 1, objfreelist);
2472
2473 return true;
2474}
2475#else
2476static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477 struct page *page)
2478{
2479 return false;
2480}
2481#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482
10b2e9e8
JK
2483static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2485{
2486 int i;
7ed2f9e6 2487 void *objp;
c7ce4f60 2488 bool shuffled;
10b2e9e8
JK
2489
2490 cache_init_objs_debug(cachep, page);
2491
c7ce4f60
TG
2492 /* Try to randomize the freelist if enabled */
2493 shuffled = shuffle_freelist(cachep, page);
2494
2495 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2496 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497 obj_offset(cachep);
2498 }
2499
10b2e9e8 2500 for (i = 0; i < cachep->num; i++) {
b3cbd9bf 2501 objp = index_to_obj(cachep, page, i);
4d176711 2502 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2503
10b2e9e8 2504 /* constructor could break poison info */
7ed2f9e6 2505 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2506 kasan_unpoison_object_data(cachep, objp);
2507 cachep->ctor(objp);
2508 kasan_poison_object_data(cachep, objp);
2509 }
10b2e9e8 2510
c7ce4f60
TG
2511 if (!shuffled)
2512 set_free_obj(page, i, i);
1da177e4 2513 }
1da177e4
LT
2514}
2515
260b61dd 2516static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2517{
b1cb0982 2518 void *objp;
78d382d7 2519
e5c58dfd 2520 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2521 page->active++;
78d382d7
MD
2522
2523 return objp;
2524}
2525
260b61dd
JK
2526static void slab_put_obj(struct kmem_cache *cachep,
2527 struct page *page, void *objp)
78d382d7 2528{
8456a648 2529 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2530#if DEBUG
16025177 2531 unsigned int i;
b1cb0982 2532
b1cb0982 2533 /* Verify double free bug */
8456a648 2534 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2535 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2536 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2537 cachep->name, objp);
b1cb0982
JK
2538 BUG();
2539 }
78d382d7
MD
2540 }
2541#endif
8456a648 2542 page->active--;
b03a017b
JK
2543 if (!page->freelist)
2544 page->freelist = objp + obj_offset(cachep);
2545
e5c58dfd 2546 set_free_obj(page, page->active, objnr);
78d382d7
MD
2547}
2548
4776874f
PE
2549/*
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2552 * virtual address for kfree, ksize, and slab debugging.
4776874f 2553 */
8456a648 2554static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2555 void *freelist)
1da177e4 2556{
a57a4988 2557 page->slab_cache = cache;
8456a648 2558 page->freelist = freelist;
1da177e4
LT
2559}
2560
2561/*
2562 * Grow (by 1) the number of slabs within a cache. This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2564 */
76b342bd
JK
2565static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566 gfp_t flags, int nodeid)
1da177e4 2567{
7e007355 2568 void *freelist;
b28a02de
PE
2569 size_t offset;
2570 gfp_t local_flags;
511e3a05 2571 int page_node;
ce8eb6c4 2572 struct kmem_cache_node *n;
511e3a05 2573 struct page *page;
1da177e4 2574
a737b3e2
AM
2575 /*
2576 * Be lazy and only check for valid flags here, keeping it out of the
2577 * critical path in kmem_cache_alloc().
1da177e4 2578 */
44405099
LL
2579 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580 flags = kmalloc_fix_flags(flags);
2581
128227e7 2582 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2583 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2584
1da177e4 2585 check_irq_off();
d0164adc 2586 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2587 local_irq_enable();
2588
a737b3e2
AM
2589 /*
2590 * Get mem for the objs. Attempt to allocate a physical page from
2591 * 'nodeid'.
e498be7d 2592 */
511e3a05 2593 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2594 if (!page)
1da177e4
LT
2595 goto failed;
2596
511e3a05
JK
2597 page_node = page_to_nid(page);
2598 n = get_node(cachep, page_node);
03d1d43a
JK
2599
2600 /* Get colour for the slab, and cal the next value. */
2601 n->colour_next++;
2602 if (n->colour_next >= cachep->colour)
2603 n->colour_next = 0;
2604
2605 offset = n->colour_next;
2606 if (offset >= cachep->colour)
2607 offset = 0;
2608
2609 offset *= cachep->colour_off;
2610
51dedad0
AK
2611 /*
2612 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613 * page_address() in the latter returns a non-tagged pointer,
2614 * as it should be for slab pages.
2615 */
2616 kasan_poison_slab(page);
2617
1da177e4 2618 /* Get slab management. */
8456a648 2619 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2620 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2621 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2622 goto opps1;
2623
8456a648 2624 slab_map_pages(cachep, page, freelist);
1da177e4 2625
8456a648 2626 cache_init_objs(cachep, page);
1da177e4 2627
d0164adc 2628 if (gfpflags_allow_blocking(local_flags))
1da177e4 2629 local_irq_disable();
1da177e4 2630
76b342bd
JK
2631 return page;
2632
a737b3e2 2633opps1:
0c3aa83e 2634 kmem_freepages(cachep, page);
a737b3e2 2635failed:
d0164adc 2636 if (gfpflags_allow_blocking(local_flags))
1da177e4 2637 local_irq_disable();
76b342bd
JK
2638 return NULL;
2639}
2640
2641static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642{
2643 struct kmem_cache_node *n;
2644 void *list = NULL;
2645
2646 check_irq_off();
2647
2648 if (!page)
2649 return;
2650
16cb0ec7 2651 INIT_LIST_HEAD(&page->slab_list);
76b342bd
JK
2652 n = get_node(cachep, page_to_nid(page));
2653
2654 spin_lock(&n->list_lock);
bf00bd34 2655 n->total_slabs++;
f728b0a5 2656 if (!page->active) {
16cb0ec7 2657 list_add_tail(&page->slab_list, &n->slabs_free);
f728b0a5 2658 n->free_slabs++;
bf00bd34 2659 } else
76b342bd 2660 fixup_slab_list(cachep, n, page, &list);
07a63c41 2661
76b342bd
JK
2662 STATS_INC_GROWN(cachep);
2663 n->free_objects += cachep->num - page->active;
2664 spin_unlock(&n->list_lock);
2665
2666 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2667}
2668
2669#if DEBUG
2670
2671/*
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
1da177e4
LT
2675 */
2676static void kfree_debugcheck(const void *objp)
2677{
1da177e4 2678 if (!virt_addr_valid(objp)) {
1170532b 2679 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2680 (unsigned long)objp);
2681 BUG();
1da177e4 2682 }
1da177e4
LT
2683}
2684
58ce1fd5
PE
2685static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686{
b46b8f19 2687 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2688
2689 redzone1 = *dbg_redzone1(cache, obj);
2690 redzone2 = *dbg_redzone2(cache, obj);
2691
2692 /*
2693 * Redzone is ok.
2694 */
2695 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696 return;
2697
2698 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699 slab_error(cache, "double free detected");
2700 else
2701 slab_error(cache, "memory outside object was overwritten");
2702
85c3e4a5 2703 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2704 obj, redzone1, redzone2);
58ce1fd5
PE
2705}
2706
343e0d7a 2707static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2708 unsigned long caller)
1da177e4 2709{
1da177e4 2710 unsigned int objnr;
8456a648 2711 struct page *page;
1da177e4 2712
80cbd911
MW
2713 BUG_ON(virt_to_cache(objp) != cachep);
2714
3dafccf2 2715 objp -= obj_offset(cachep);
1da177e4 2716 kfree_debugcheck(objp);
b49af68f 2717 page = virt_to_head_page(objp);
1da177e4 2718
1da177e4 2719 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2720 verify_redzone_free(cachep, objp);
1da177e4
LT
2721 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723 }
7878c231 2724 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2725 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2726
8456a648 2727 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2728
2729 BUG_ON(objnr >= cachep->num);
8456a648 2730 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2731
1da177e4 2732 if (cachep->flags & SLAB_POISON) {
1da177e4 2733 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2734 slab_kernel_map(cachep, objp, 0);
1da177e4
LT
2735 }
2736 return objp;
2737}
2738
1da177e4
LT
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
0b411634 2741#define cache_free_debugcheck(x, objp, z) (objp)
1da177e4
LT
2742#endif
2743
b03a017b
JK
2744static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745 void **list)
2746{
2747#if DEBUG
2748 void *next = *list;
2749 void *objp;
2750
2751 while (next) {
2752 objp = next - obj_offset(cachep);
2753 next = *(void **)next;
2754 poison_obj(cachep, objp, POISON_FREE);
2755 }
2756#endif
2757}
2758
d8410234 2759static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2760 struct kmem_cache_node *n, struct page *page,
2761 void **list)
d8410234
JK
2762{
2763 /* move slabp to correct slabp list: */
16cb0ec7 2764 list_del(&page->slab_list);
b03a017b 2765 if (page->active == cachep->num) {
16cb0ec7 2766 list_add(&page->slab_list, &n->slabs_full);
b03a017b
JK
2767 if (OBJFREELIST_SLAB(cachep)) {
2768#if DEBUG
2769 /* Poisoning will be done without holding the lock */
2770 if (cachep->flags & SLAB_POISON) {
2771 void **objp = page->freelist;
2772
2773 *objp = *list;
2774 *list = objp;
2775 }
2776#endif
2777 page->freelist = NULL;
2778 }
2779 } else
16cb0ec7 2780 list_add(&page->slab_list, &n->slabs_partial);
d8410234
JK
2781}
2782
f68f8ddd
JK
2783/* Try to find non-pfmemalloc slab if needed */
2784static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2785 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2786{
2787 if (!page)
2788 return NULL;
2789
2790 if (pfmemalloc)
2791 return page;
2792
2793 if (!PageSlabPfmemalloc(page))
2794 return page;
2795
2796 /* No need to keep pfmemalloc slab if we have enough free objects */
2797 if (n->free_objects > n->free_limit) {
2798 ClearPageSlabPfmemalloc(page);
2799 return page;
2800 }
2801
2802 /* Move pfmemalloc slab to the end of list to speed up next search */
16cb0ec7 2803 list_del(&page->slab_list);
bf00bd34 2804 if (!page->active) {
16cb0ec7 2805 list_add_tail(&page->slab_list, &n->slabs_free);
bf00bd34 2806 n->free_slabs++;
f728b0a5 2807 } else
16cb0ec7 2808 list_add_tail(&page->slab_list, &n->slabs_partial);
f68f8ddd 2809
16cb0ec7 2810 list_for_each_entry(page, &n->slabs_partial, slab_list) {
f68f8ddd
JK
2811 if (!PageSlabPfmemalloc(page))
2812 return page;
2813 }
2814
f728b0a5 2815 n->free_touched = 1;
16cb0ec7 2816 list_for_each_entry(page, &n->slabs_free, slab_list) {
f728b0a5 2817 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2818 n->free_slabs--;
f68f8ddd 2819 return page;
f728b0a5 2820 }
f68f8ddd
JK
2821 }
2822
2823 return NULL;
2824}
2825
2826static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2827{
2828 struct page *page;
2829
f728b0a5 2830 assert_spin_locked(&n->list_lock);
16cb0ec7
TH
2831 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832 slab_list);
7aa0d227
GT
2833 if (!page) {
2834 n->free_touched = 1;
bf00bd34 2835 page = list_first_entry_or_null(&n->slabs_free, struct page,
16cb0ec7 2836 slab_list);
f728b0a5 2837 if (page)
bf00bd34 2838 n->free_slabs--;
7aa0d227
GT
2839 }
2840
f68f8ddd 2841 if (sk_memalloc_socks())
bf00bd34 2842 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2843
7aa0d227
GT
2844 return page;
2845}
2846
f68f8ddd
JK
2847static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848 struct kmem_cache_node *n, gfp_t flags)
2849{
2850 struct page *page;
2851 void *obj;
2852 void *list = NULL;
2853
2854 if (!gfp_pfmemalloc_allowed(flags))
2855 return NULL;
2856
2857 spin_lock(&n->list_lock);
2858 page = get_first_slab(n, true);
2859 if (!page) {
2860 spin_unlock(&n->list_lock);
2861 return NULL;
2862 }
2863
2864 obj = slab_get_obj(cachep, page);
2865 n->free_objects--;
2866
2867 fixup_slab_list(cachep, n, page, &list);
2868
2869 spin_unlock(&n->list_lock);
2870 fixup_objfreelist_debug(cachep, &list);
2871
2872 return obj;
2873}
2874
213b4695
JK
2875/*
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2878 */
2879static __always_inline int alloc_block(struct kmem_cache *cachep,
2880 struct array_cache *ac, struct page *page, int batchcount)
2881{
2882 /*
2883 * There must be at least one object available for
2884 * allocation.
2885 */
2886 BUG_ON(page->active >= cachep->num);
2887
2888 while (page->active < cachep->num && batchcount--) {
2889 STATS_INC_ALLOCED(cachep);
2890 STATS_INC_ACTIVE(cachep);
2891 STATS_SET_HIGH(cachep);
2892
2893 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894 }
2895
2896 return batchcount;
2897}
2898
f68f8ddd 2899static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2900{
2901 int batchcount;
ce8eb6c4 2902 struct kmem_cache_node *n;
801faf0d 2903 struct array_cache *ac, *shared;
1ca4cb24 2904 int node;
b03a017b 2905 void *list = NULL;
76b342bd 2906 struct page *page;
1ca4cb24 2907
1da177e4 2908 check_irq_off();
7d6e6d09 2909 node = numa_mem_id();
f68f8ddd 2910
9a2dba4b 2911 ac = cpu_cache_get(cachep);
1da177e4
LT
2912 batchcount = ac->batchcount;
2913 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2914 /*
2915 * If there was little recent activity on this cache, then
2916 * perform only a partial refill. Otherwise we could generate
2917 * refill bouncing.
1da177e4
LT
2918 */
2919 batchcount = BATCHREFILL_LIMIT;
2920 }
18bf8541 2921 n = get_node(cachep, node);
e498be7d 2922
ce8eb6c4 2923 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2924 shared = READ_ONCE(n->shared);
2925 if (!n->free_objects && (!shared || !shared->avail))
2926 goto direct_grow;
2927
ce8eb6c4 2928 spin_lock(&n->list_lock);
801faf0d 2929 shared = READ_ONCE(n->shared);
1da177e4 2930
3ded175a 2931 /* See if we can refill from the shared array */
801faf0d
JK
2932 if (shared && transfer_objects(ac, shared, batchcount)) {
2933 shared->touched = 1;
3ded175a 2934 goto alloc_done;
44b57f1c 2935 }
3ded175a 2936
1da177e4 2937 while (batchcount > 0) {
1da177e4 2938 /* Get slab alloc is to come from. */
f68f8ddd 2939 page = get_first_slab(n, false);
7aa0d227
GT
2940 if (!page)
2941 goto must_grow;
1da177e4 2942
1da177e4 2943 check_spinlock_acquired(cachep);
714b8171 2944
213b4695 2945 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 2946 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2947 }
2948
a737b3e2 2949must_grow:
ce8eb6c4 2950 n->free_objects -= ac->avail;
a737b3e2 2951alloc_done:
ce8eb6c4 2952 spin_unlock(&n->list_lock);
b03a017b 2953 fixup_objfreelist_debug(cachep, &list);
1da177e4 2954
801faf0d 2955direct_grow:
1da177e4 2956 if (unlikely(!ac->avail)) {
f68f8ddd
JK
2957 /* Check if we can use obj in pfmemalloc slab */
2958 if (sk_memalloc_socks()) {
2959 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960
2961 if (obj)
2962 return obj;
2963 }
2964
76b342bd 2965 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 2966
76b342bd
JK
2967 /*
2968 * cache_grow_begin() can reenable interrupts,
2969 * then ac could change.
2970 */
9a2dba4b 2971 ac = cpu_cache_get(cachep);
213b4695
JK
2972 if (!ac->avail && page)
2973 alloc_block(cachep, ac, page, batchcount);
2974 cache_grow_end(cachep, page);
072bb0aa 2975
213b4695 2976 if (!ac->avail)
1da177e4 2977 return NULL;
1da177e4
LT
2978 }
2979 ac->touched = 1;
072bb0aa 2980
f68f8ddd 2981 return ac->entry[--ac->avail];
1da177e4
LT
2982}
2983
a737b3e2
AM
2984static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985 gfp_t flags)
1da177e4 2986{
d0164adc 2987 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2988}
2989
2990#if DEBUG
a737b3e2 2991static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2992 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2993{
128227e7 2994 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
df3ae2c9 2995 if (!objp || is_kfence_address(objp))
1da177e4 2996 return objp;
b28a02de 2997 if (cachep->flags & SLAB_POISON) {
1da177e4 2998 check_poison_obj(cachep, objp);
80552f0f 2999 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
3000 poison_obj(cachep, objp, POISON_INUSE);
3001 }
3002 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3003 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3004
3005 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3006 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3008 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3009 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3010 objp, *dbg_redzone1(cachep, objp),
3011 *dbg_redzone2(cachep, objp));
1da177e4
LT
3012 }
3013 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015 }
03787301 3016
3dafccf2 3017 objp += obj_offset(cachep);
4f104934 3018 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3019 cachep->ctor(objp);
7ea466f2
TH
3020 if (ARCH_SLAB_MINALIGN &&
3021 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3022 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3023 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3024 }
1da177e4
LT
3025 return objp;
3026}
3027#else
0b411634 3028#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
1da177e4
LT
3029#endif
3030
343e0d7a 3031static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3032{
b28a02de 3033 void *objp;
1da177e4
LT
3034 struct array_cache *ac;
3035
5c382300 3036 check_irq_off();
8a8b6502 3037
9a2dba4b 3038 ac = cpu_cache_get(cachep);
1da177e4 3039 if (likely(ac->avail)) {
1da177e4 3040 ac->touched = 1;
f68f8ddd 3041 objp = ac->entry[--ac->avail];
072bb0aa 3042
f68f8ddd
JK
3043 STATS_INC_ALLOCHIT(cachep);
3044 goto out;
1da177e4 3045 }
072bb0aa
MG
3046
3047 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3048 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3049 /*
3050 * the 'ac' may be updated by cache_alloc_refill(),
3051 * and kmemleak_erase() requires its correct value.
3052 */
3053 ac = cpu_cache_get(cachep);
3054
3055out:
d5cff635
CM
3056 /*
3057 * To avoid a false negative, if an object that is in one of the
3058 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059 * treat the array pointers as a reference to the object.
3060 */
f3d8b53a
O
3061 if (objp)
3062 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3063 return objp;
3064}
3065
e498be7d 3066#ifdef CONFIG_NUMA
c61afb18 3067/*
2ad654bc 3068 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3069 *
3070 * If we are in_interrupt, then process context, including cpusets and
3071 * mempolicy, may not apply and should not be used for allocation policy.
3072 */
3073static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3074{
3075 int nid_alloc, nid_here;
3076
765c4507 3077 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3078 return NULL;
7d6e6d09 3079 nid_alloc = nid_here = numa_mem_id();
c61afb18 3080 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3081 nid_alloc = cpuset_slab_spread_node();
c61afb18 3082 else if (current->mempolicy)
2a389610 3083 nid_alloc = mempolicy_slab_node();
c61afb18 3084 if (nid_alloc != nid_here)
8b98c169 3085 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3086 return NULL;
3087}
3088
765c4507
CL
3089/*
3090 * Fallback function if there was no memory available and no objects on a
3c517a61 3091 * certain node and fall back is permitted. First we scan all the
6a67368c 3092 * available node for available objects. If that fails then we
3c517a61
CL
3093 * perform an allocation without specifying a node. This allows the page
3094 * allocator to do its reclaim / fallback magic. We then insert the
3095 * slab into the proper nodelist and then allocate from it.
765c4507 3096 */
8c8cc2c1 3097static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3098{
8c8cc2c1 3099 struct zonelist *zonelist;
dd1a239f 3100 struct zoneref *z;
54a6eb5c 3101 struct zone *zone;
97a225e6 3102 enum zone_type highest_zoneidx = gfp_zone(flags);
765c4507 3103 void *obj = NULL;
76b342bd 3104 struct page *page;
3c517a61 3105 int nid;
cc9a6c87 3106 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3107
3108 if (flags & __GFP_THISNODE)
3109 return NULL;
3110
cc9a6c87 3111retry_cpuset:
d26914d1 3112 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3113 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3114
3c517a61
CL
3115retry:
3116 /*
3117 * Look through allowed nodes for objects available
3118 * from existing per node queues.
3119 */
97a225e6 3120 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
54a6eb5c 3121 nid = zone_to_nid(zone);
aedb0eb1 3122
061d7074 3123 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3124 get_node(cache, nid) &&
3125 get_node(cache, nid)->free_objects) {
3c517a61 3126 obj = ____cache_alloc_node(cache,
4167e9b2 3127 gfp_exact_node(flags), nid);
481c5346
CL
3128 if (obj)
3129 break;
3130 }
3c517a61
CL
3131 }
3132
cfce6604 3133 if (!obj) {
3c517a61
CL
3134 /*
3135 * This allocation will be performed within the constraints
3136 * of the current cpuset / memory policy requirements.
3137 * We may trigger various forms of reclaim on the allowed
3138 * set and go into memory reserves if necessary.
3139 */
76b342bd
JK
3140 page = cache_grow_begin(cache, flags, numa_mem_id());
3141 cache_grow_end(cache, page);
3142 if (page) {
3143 nid = page_to_nid(page);
511e3a05
JK
3144 obj = ____cache_alloc_node(cache,
3145 gfp_exact_node(flags), nid);
0c3aa83e 3146
3c517a61 3147 /*
511e3a05
JK
3148 * Another processor may allocate the objects in
3149 * the slab since we are not holding any locks.
3c517a61 3150 */
511e3a05
JK
3151 if (!obj)
3152 goto retry;
3c517a61 3153 }
aedb0eb1 3154 }
cc9a6c87 3155
d26914d1 3156 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3157 goto retry_cpuset;
765c4507
CL
3158 return obj;
3159}
3160
e498be7d
CL
3161/*
3162 * A interface to enable slab creation on nodeid
1da177e4 3163 */
8b98c169 3164static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3165 int nodeid)
e498be7d 3166{
8456a648 3167 struct page *page;
ce8eb6c4 3168 struct kmem_cache_node *n;
213b4695 3169 void *obj = NULL;
b03a017b 3170 void *list = NULL;
b28a02de 3171
7c3fbbdd 3172 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3173 n = get_node(cachep, nodeid);
ce8eb6c4 3174 BUG_ON(!n);
b28a02de 3175
ca3b9b91 3176 check_irq_off();
ce8eb6c4 3177 spin_lock(&n->list_lock);
f68f8ddd 3178 page = get_first_slab(n, false);
7aa0d227
GT
3179 if (!page)
3180 goto must_grow;
b28a02de 3181
b28a02de 3182 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3183
3184 STATS_INC_NODEALLOCS(cachep);
3185 STATS_INC_ACTIVE(cachep);
3186 STATS_SET_HIGH(cachep);
3187
8456a648 3188 BUG_ON(page->active == cachep->num);
b28a02de 3189
260b61dd 3190 obj = slab_get_obj(cachep, page);
ce8eb6c4 3191 n->free_objects--;
b28a02de 3192
b03a017b 3193 fixup_slab_list(cachep, n, page, &list);
e498be7d 3194
ce8eb6c4 3195 spin_unlock(&n->list_lock);
b03a017b 3196 fixup_objfreelist_debug(cachep, &list);
213b4695 3197 return obj;
e498be7d 3198
a737b3e2 3199must_grow:
ce8eb6c4 3200 spin_unlock(&n->list_lock);
76b342bd 3201 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3202 if (page) {
3203 /* This slab isn't counted yet so don't update free_objects */
3204 obj = slab_get_obj(cachep, page);
3205 }
76b342bd 3206 cache_grow_end(cachep, page);
1da177e4 3207
213b4695 3208 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3209}
8c8cc2c1 3210
8c8cc2c1 3211static __always_inline void *
d3fb45f3 3212slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
7c0cb9c6 3213 unsigned long caller)
8c8cc2c1
PE
3214{
3215 unsigned long save_flags;
3216 void *ptr;
7d6e6d09 3217 int slab_node = numa_mem_id();
964d4bd3 3218 struct obj_cgroup *objcg = NULL;
da844b78 3219 bool init = false;
8c8cc2c1 3220
dcce284a 3221 flags &= gfp_allowed_mask;
964d4bd3 3222 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
011eceaf 3223 if (unlikely(!cachep))
824ebef1
AM
3224 return NULL;
3225
d3fb45f3
AP
3226 ptr = kfence_alloc(cachep, orig_size, flags);
3227 if (unlikely(ptr))
3228 goto out_hooks;
3229
8c8cc2c1
PE
3230 cache_alloc_debugcheck_before(cachep, flags);
3231 local_irq_save(save_flags);
3232
eacbbae3 3233 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3234 nodeid = slab_node;
8c8cc2c1 3235
18bf8541 3236 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3237 /* Node not bootstrapped yet */
3238 ptr = fallback_alloc(cachep, flags);
3239 goto out;
3240 }
3241
7d6e6d09 3242 if (nodeid == slab_node) {
8c8cc2c1
PE
3243 /*
3244 * Use the locally cached objects if possible.
3245 * However ____cache_alloc does not allow fallback
3246 * to other nodes. It may fail while we still have
3247 * objects on other nodes available.
3248 */
3249 ptr = ____cache_alloc(cachep, flags);
3250 if (ptr)
3251 goto out;
3252 }
3253 /* ___cache_alloc_node can fall back to other nodes */
3254 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255 out:
3256 local_irq_restore(save_flags);
3257 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
da844b78 3258 init = slab_want_init_on_alloc(flags, cachep);
d07dbea4 3259
d3fb45f3 3260out_hooks:
da844b78 3261 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
8c8cc2c1
PE
3262 return ptr;
3263}
3264
3265static __always_inline void *
3266__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3267{
3268 void *objp;
3269
2ad654bc 3270 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3271 objp = alternate_node_alloc(cache, flags);
3272 if (objp)
3273 goto out;
3274 }
3275 objp = ____cache_alloc(cache, flags);
3276
3277 /*
3278 * We may just have run out of memory on the local node.
3279 * ____cache_alloc_node() knows how to locate memory on other nodes
3280 */
7d6e6d09
LS
3281 if (!objp)
3282 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3283
3284 out:
3285 return objp;
3286}
3287#else
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3291{
3292 return ____cache_alloc(cachep, flags);
3293}
3294
3295#endif /* CONFIG_NUMA */
3296
3297static __always_inline void *
d3fb45f3 3298slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
8c8cc2c1
PE
3299{
3300 unsigned long save_flags;
3301 void *objp;
964d4bd3 3302 struct obj_cgroup *objcg = NULL;
da844b78 3303 bool init = false;
8c8cc2c1 3304
dcce284a 3305 flags &= gfp_allowed_mask;
964d4bd3 3306 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
011eceaf 3307 if (unlikely(!cachep))
824ebef1
AM
3308 return NULL;
3309
d3fb45f3
AP
3310 objp = kfence_alloc(cachep, orig_size, flags);
3311 if (unlikely(objp))
3312 goto out;
3313
8c8cc2c1
PE
3314 cache_alloc_debugcheck_before(cachep, flags);
3315 local_irq_save(save_flags);
3316 objp = __do_cache_alloc(cachep, flags);
3317 local_irq_restore(save_flags);
3318 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3319 prefetchw(objp);
da844b78 3320 init = slab_want_init_on_alloc(flags, cachep);
d07dbea4 3321
d3fb45f3 3322out:
da844b78 3323 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
8c8cc2c1
PE
3324 return objp;
3325}
e498be7d
CL
3326
3327/*
5f0985bb 3328 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3329 * @list: List of detached free slabs should be freed by caller
e498be7d 3330 */
97654dfa
JK
3331static void free_block(struct kmem_cache *cachep, void **objpp,
3332 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3333{
3334 int i;
25c063fb 3335 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3336 struct page *page;
3337
3338 n->free_objects += nr_objects;
1da177e4
LT
3339
3340 for (i = 0; i < nr_objects; i++) {
072bb0aa 3341 void *objp;
8456a648 3342 struct page *page;
1da177e4 3343
072bb0aa
MG
3344 objp = objpp[i];
3345
8456a648 3346 page = virt_to_head_page(objp);
16cb0ec7 3347 list_del(&page->slab_list);
ff69416e 3348 check_spinlock_acquired_node(cachep, node);
260b61dd 3349 slab_put_obj(cachep, page, objp);
1da177e4 3350 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3351
3352 /* fixup slab chains */
f728b0a5 3353 if (page->active == 0) {
16cb0ec7 3354 list_add(&page->slab_list, &n->slabs_free);
f728b0a5 3355 n->free_slabs++;
f728b0a5 3356 } else {
1da177e4
LT
3357 /* Unconditionally move a slab to the end of the
3358 * partial list on free - maximum time for the
3359 * other objects to be freed, too.
3360 */
16cb0ec7 3361 list_add_tail(&page->slab_list, &n->slabs_partial);
1da177e4
LT
3362 }
3363 }
6052b788
JK
3364
3365 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3366 n->free_objects -= cachep->num;
3367
16cb0ec7
TH
3368 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3369 list_move(&page->slab_list, list);
f728b0a5 3370 n->free_slabs--;
bf00bd34 3371 n->total_slabs--;
6052b788 3372 }
1da177e4
LT
3373}
3374
343e0d7a 3375static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3376{
3377 int batchcount;
ce8eb6c4 3378 struct kmem_cache_node *n;
7d6e6d09 3379 int node = numa_mem_id();
97654dfa 3380 LIST_HEAD(list);
1da177e4
LT
3381
3382 batchcount = ac->batchcount;
260b61dd 3383
1da177e4 3384 check_irq_off();
18bf8541 3385 n = get_node(cachep, node);
ce8eb6c4
CL
3386 spin_lock(&n->list_lock);
3387 if (n->shared) {
3388 struct array_cache *shared_array = n->shared;
b28a02de 3389 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3390 if (max) {
3391 if (batchcount > max)
3392 batchcount = max;
e498be7d 3393 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3394 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3395 shared_array->avail += batchcount;
3396 goto free_done;
3397 }
3398 }
3399
97654dfa 3400 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3401free_done:
1da177e4
LT
3402#if STATS
3403 {
3404 int i = 0;
73c0219d 3405 struct page *page;
1da177e4 3406
16cb0ec7 3407 list_for_each_entry(page, &n->slabs_free, slab_list) {
8456a648 3408 BUG_ON(page->active);
1da177e4
LT
3409
3410 i++;
1da177e4
LT
3411 }
3412 STATS_SET_FREEABLE(cachep, i);
3413 }
3414#endif
ce8eb6c4 3415 spin_unlock(&n->list_lock);
1da177e4 3416 ac->avail -= batchcount;
a737b3e2 3417 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
678ff6a7 3418 slabs_destroy(cachep, &list);
1da177e4
LT
3419}
3420
3421/*
a737b3e2
AM
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3424 */
ee3ce779
DV
3425static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426 unsigned long caller)
1da177e4 3427{
d57a964e
AK
3428 bool init;
3429
d3fb45f3
AP
3430 if (is_kfence_address(objp)) {
3431 kmemleak_free_recursive(objp, cachep->flags);
8f8c81d9 3432 memcg_slab_free_hook(cachep, &objp, 1);
d3fb45f3
AP
3433 __kfence_free(objp);
3434 return;
3435 }
3436
d57a964e
AK
3437 /*
3438 * As memory initialization might be integrated into KASAN,
3439 * kasan_slab_free and initialization memset must be
3440 * kept together to avoid discrepancies in behavior.
3441 */
3442 init = slab_want_init_on_free(cachep);
3443 if (init && !kasan_has_integrated_init())
a32d654d 3444 memset(objp, 0, cachep->object_size);
d57a964e
AK
3445 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3446 if (kasan_slab_free(cachep, objp, init))
55834c59
AP
3447 return;
3448
cfbe1636
ME
3449 /* Use KCSAN to help debug racy use-after-free. */
3450 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3451 __kcsan_check_access(objp, cachep->object_size,
3452 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3453
55834c59
AP
3454 ___cache_free(cachep, objp, caller);
3455}
1da177e4 3456
55834c59
AP
3457void ___cache_free(struct kmem_cache *cachep, void *objp,
3458 unsigned long caller)
3459{
3460 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3461
1da177e4 3462 check_irq_off();
d5cff635 3463 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3464 objp = cache_free_debugcheck(cachep, objp, caller);
d1b2cf6c 3465 memcg_slab_free_hook(cachep, &objp, 1);
1da177e4 3466
1807a1aa
SS
3467 /*
3468 * Skip calling cache_free_alien() when the platform is not numa.
3469 * This will avoid cache misses that happen while accessing slabp (which
3470 * is per page memory reference) to get nodeid. Instead use a global
3471 * variable to skip the call, which is mostly likely to be present in
3472 * the cache.
3473 */
b6e68bc1 3474 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3475 return;
3476
3d880194 3477 if (ac->avail < ac->limit) {
1da177e4 3478 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3479 } else {
3480 STATS_INC_FREEMISS(cachep);
3481 cache_flusharray(cachep, ac);
1da177e4 3482 }
42c8c99c 3483
f68f8ddd
JK
3484 if (sk_memalloc_socks()) {
3485 struct page *page = virt_to_head_page(objp);
3486
3487 if (unlikely(PageSlabPfmemalloc(page))) {
3488 cache_free_pfmemalloc(cachep, page, objp);
3489 return;
3490 }
3491 }
3492
dabc3e29 3493 __free_one(ac, objp);
1da177e4
LT
3494}
3495
3496/**
3497 * kmem_cache_alloc - Allocate an object
3498 * @cachep: The cache to allocate from.
3499 * @flags: See kmalloc().
3500 *
3501 * Allocate an object from this cache. The flags are only relevant
3502 * if the cache has no available objects.
a862f68a
MR
3503 *
3504 * Return: pointer to the new object or %NULL in case of error
1da177e4 3505 */
343e0d7a 3506void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3507{
d3fb45f3 3508 void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
36555751 3509
ca2b84cb 3510 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3511 cachep->object_size, cachep->size, flags);
36555751
EGM
3512
3513 return ret;
1da177e4
LT
3514}
3515EXPORT_SYMBOL(kmem_cache_alloc);
3516
7b0501dd
JDB
3517static __always_inline void
3518cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3519 size_t size, void **p, unsigned long caller)
3520{
3521 size_t i;
3522
3523 for (i = 0; i < size; i++)
3524 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3525}
3526
865762a8 3527int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3528 void **p)
484748f0 3529{
2a777eac 3530 size_t i;
964d4bd3 3531 struct obj_cgroup *objcg = NULL;
2a777eac 3532
964d4bd3 3533 s = slab_pre_alloc_hook(s, &objcg, size, flags);
2a777eac
JDB
3534 if (!s)
3535 return 0;
3536
3537 cache_alloc_debugcheck_before(s, flags);
3538
3539 local_irq_disable();
3540 for (i = 0; i < size; i++) {
d3fb45f3 3541 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
2a777eac 3542
2a777eac
JDB
3543 if (unlikely(!objp))
3544 goto error;
3545 p[i] = objp;
3546 }
3547 local_irq_enable();
3548
7b0501dd
JDB
3549 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3550
da844b78
AK
3551 /*
3552 * memcg and kmem_cache debug support and memory initialization.
3553 * Done outside of the IRQ disabled section.
3554 */
3555 slab_post_alloc_hook(s, objcg, flags, size, p,
3556 slab_want_init_on_alloc(flags, s));
2a777eac
JDB
3557 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3558 return size;
3559error:
3560 local_irq_enable();
7b0501dd 3561 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
da844b78 3562 slab_post_alloc_hook(s, objcg, flags, i, p, false);
2a777eac
JDB
3563 __kmem_cache_free_bulk(s, i, p);
3564 return 0;
484748f0
CL
3565}
3566EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3567
0f24f128 3568#ifdef CONFIG_TRACING
85beb586 3569void *
4052147c 3570kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3571{
85beb586
SR
3572 void *ret;
3573
d3fb45f3 3574 ret = slab_alloc(cachep, flags, size, _RET_IP_);
85beb586 3575
0116523c 3576 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3577 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3578 size, cachep->size, flags);
85beb586 3579 return ret;
36555751 3580}
85beb586 3581EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3582#endif
3583
1da177e4 3584#ifdef CONFIG_NUMA
d0d04b78
ZL
3585/**
3586 * kmem_cache_alloc_node - Allocate an object on the specified node
3587 * @cachep: The cache to allocate from.
3588 * @flags: See kmalloc().
3589 * @nodeid: node number of the target node.
3590 *
3591 * Identical to kmem_cache_alloc but it will allocate memory on the given
3592 * node, which can improve the performance for cpu bound structures.
3593 *
3594 * Fallback to other node is possible if __GFP_THISNODE is not set.
a862f68a
MR
3595 *
3596 * Return: pointer to the new object or %NULL in case of error
d0d04b78 3597 */
8b98c169
CH
3598void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3599{
d3fb45f3 3600 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
36555751 3601
ca2b84cb 3602 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3603 cachep->object_size, cachep->size,
ca2b84cb 3604 flags, nodeid);
36555751
EGM
3605
3606 return ret;
8b98c169 3607}
1da177e4
LT
3608EXPORT_SYMBOL(kmem_cache_alloc_node);
3609
0f24f128 3610#ifdef CONFIG_TRACING
4052147c 3611void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3612 gfp_t flags,
4052147c
EG
3613 int nodeid,
3614 size_t size)
36555751 3615{
85beb586
SR
3616 void *ret;
3617
d3fb45f3 3618 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
505f5dcb 3619
0116523c 3620 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3621 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3622 size, cachep->size,
85beb586
SR
3623 flags, nodeid);
3624 return ret;
36555751 3625}
85beb586 3626EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3627#endif
3628
8b98c169 3629static __always_inline void *
7c0cb9c6 3630__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3631{
343e0d7a 3632 struct kmem_cache *cachep;
7ed2f9e6 3633 void *ret;
97e2bde4 3634
61448479
DV
3635 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3636 return NULL;
2c59dd65 3637 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3638 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3639 return cachep;
7ed2f9e6 3640 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3641 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3642
3643 return ret;
97e2bde4 3644}
8b98c169 3645
8b98c169
CH
3646void *__kmalloc_node(size_t size, gfp_t flags, int node)
3647{
7c0cb9c6 3648 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3649}
dbe5e69d 3650EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3651
3652void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3653 int node, unsigned long caller)
8b98c169 3654{
7c0cb9c6 3655 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3656}
3657EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3658#endif /* CONFIG_NUMA */
1da177e4 3659
5bb1bb35 3660#ifdef CONFIG_PRINTK
8e7f37f2
PM
3661void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3662{
3663 struct kmem_cache *cachep;
3664 unsigned int objnr;
3665 void *objp;
3666
3667 kpp->kp_ptr = object;
3668 kpp->kp_page = page;
3669 cachep = page->slab_cache;
3670 kpp->kp_slab_cache = cachep;
3671 objp = object - obj_offset(cachep);
3672 kpp->kp_data_offset = obj_offset(cachep);
3673 page = virt_to_head_page(objp);
3674 objnr = obj_to_index(cachep, page, objp);
3675 objp = index_to_obj(cachep, page, objnr);
3676 kpp->kp_objp = objp;
3677 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3678 kpp->kp_ret = *dbg_userword(cachep, objp);
3679}
5bb1bb35 3680#endif
8e7f37f2 3681
1da177e4 3682/**
800590f5 3683 * __do_kmalloc - allocate memory
1da177e4 3684 * @size: how many bytes of memory are required.
800590f5 3685 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3686 * @caller: function caller for debug tracking of the caller
a862f68a
MR
3687 *
3688 * Return: pointer to the allocated memory or %NULL in case of error
1da177e4 3689 */
7fd6b141 3690static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3691 unsigned long caller)
1da177e4 3692{
343e0d7a 3693 struct kmem_cache *cachep;
36555751 3694 void *ret;
1da177e4 3695
61448479
DV
3696 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3697 return NULL;
2c59dd65 3698 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3699 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3700 return cachep;
d3fb45f3 3701 ret = slab_alloc(cachep, flags, size, caller);
36555751 3702
0116523c 3703 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3704 trace_kmalloc(caller, ret,
3b0efdfa 3705 size, cachep->size, flags);
36555751
EGM
3706
3707 return ret;
7fd6b141
PE
3708}
3709
7fd6b141
PE
3710void *__kmalloc(size_t size, gfp_t flags)
3711{
7c0cb9c6 3712 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3713}
3714EXPORT_SYMBOL(__kmalloc);
3715
ce71e27c 3716void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3717{
7c0cb9c6 3718 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3719}
3720EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3721
1da177e4
LT
3722/**
3723 * kmem_cache_free - Deallocate an object
3724 * @cachep: The cache the allocation was from.
3725 * @objp: The previously allocated object.
3726 *
3727 * Free an object which was previously allocated from this
3728 * cache.
3729 */
343e0d7a 3730void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3731{
3732 unsigned long flags;
b9ce5ef4
GC
3733 cachep = cache_from_obj(cachep, objp);
3734 if (!cachep)
3735 return;
1da177e4
LT
3736
3737 local_irq_save(flags);
d97d476b 3738 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3739 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3740 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3741 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3742 local_irq_restore(flags);
36555751 3743
3544de8e 3744 trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
1da177e4
LT
3745}
3746EXPORT_SYMBOL(kmem_cache_free);
3747
e6cdb58d
JDB
3748void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3749{
3750 struct kmem_cache *s;
3751 size_t i;
3752
3753 local_irq_disable();
3754 for (i = 0; i < size; i++) {
3755 void *objp = p[i];
3756
ca257195
JDB
3757 if (!orig_s) /* called via kfree_bulk */
3758 s = virt_to_cache(objp);
3759 else
3760 s = cache_from_obj(orig_s, objp);
a64b5378
KC
3761 if (!s)
3762 continue;
e6cdb58d
JDB
3763
3764 debug_check_no_locks_freed(objp, s->object_size);
3765 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3766 debug_check_no_obj_freed(objp, s->object_size);
3767
3768 __cache_free(s, objp, _RET_IP_);
3769 }
3770 local_irq_enable();
3771
3772 /* FIXME: add tracing */
3773}
3774EXPORT_SYMBOL(kmem_cache_free_bulk);
3775
1da177e4
LT
3776/**
3777 * kfree - free previously allocated memory
3778 * @objp: pointer returned by kmalloc.
3779 *
80e93eff
PE
3780 * If @objp is NULL, no operation is performed.
3781 *
1da177e4
LT
3782 * Don't free memory not originally allocated by kmalloc()
3783 * or you will run into trouble.
3784 */
3785void kfree(const void *objp)
3786{
343e0d7a 3787 struct kmem_cache *c;
1da177e4
LT
3788 unsigned long flags;
3789
2121db74
PE
3790 trace_kfree(_RET_IP_, objp);
3791
6cb8f913 3792 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3793 return;
3794 local_irq_save(flags);
3795 kfree_debugcheck(objp);
6ed5eb22 3796 c = virt_to_cache(objp);
a64b5378
KC
3797 if (!c) {
3798 local_irq_restore(flags);
3799 return;
3800 }
8c138bc0
CL
3801 debug_check_no_locks_freed(objp, c->object_size);
3802
3803 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3804 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3805 local_irq_restore(flags);
3806}
3807EXPORT_SYMBOL(kfree);
3808
e498be7d 3809/*
ce8eb6c4 3810 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3811 */
c3d332b6 3812static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3813{
c3d332b6 3814 int ret;
e498be7d 3815 int node;
ce8eb6c4 3816 struct kmem_cache_node *n;
e498be7d 3817
9c09a95c 3818 for_each_online_node(node) {
c3d332b6
JK
3819 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3820 if (ret)
e498be7d
CL
3821 goto fail;
3822
e498be7d 3823 }
c3d332b6 3824
cafeb02e 3825 return 0;
0718dc2a 3826
a737b3e2 3827fail:
3b0efdfa 3828 if (!cachep->list.next) {
0718dc2a
CL
3829 /* Cache is not active yet. Roll back what we did */
3830 node--;
3831 while (node >= 0) {
18bf8541
CL
3832 n = get_node(cachep, node);
3833 if (n) {
ce8eb6c4
CL
3834 kfree(n->shared);
3835 free_alien_cache(n->alien);
3836 kfree(n);
6a67368c 3837 cachep->node[node] = NULL;
0718dc2a
CL
3838 }
3839 node--;
3840 }
3841 }
cafeb02e 3842 return -ENOMEM;
e498be7d
CL
3843}
3844
18004c5d 3845/* Always called with the slab_mutex held */
10befea9
RG
3846static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3847 int batchcount, int shared, gfp_t gfp)
1da177e4 3848{
bf0dea23
JK
3849 struct array_cache __percpu *cpu_cache, *prev;
3850 int cpu;
1da177e4 3851
bf0dea23
JK
3852 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3853 if (!cpu_cache)
d2e7b7d0
SS
3854 return -ENOMEM;
3855
bf0dea23
JK
3856 prev = cachep->cpu_cache;
3857 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3858 /*
3859 * Without a previous cpu_cache there's no need to synchronize remote
3860 * cpus, so skip the IPIs.
3861 */
3862 if (prev)
3863 kick_all_cpus_sync();
e498be7d 3864
1da177e4 3865 check_irq_on();
1da177e4
LT
3866 cachep->batchcount = batchcount;
3867 cachep->limit = limit;
e498be7d 3868 cachep->shared = shared;
1da177e4 3869
bf0dea23 3870 if (!prev)
c3d332b6 3871 goto setup_node;
bf0dea23
JK
3872
3873 for_each_online_cpu(cpu) {
97654dfa 3874 LIST_HEAD(list);
18bf8541
CL
3875 int node;
3876 struct kmem_cache_node *n;
bf0dea23 3877 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3878
bf0dea23 3879 node = cpu_to_mem(cpu);
18bf8541
CL
3880 n = get_node(cachep, node);
3881 spin_lock_irq(&n->list_lock);
bf0dea23 3882 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3883 spin_unlock_irq(&n->list_lock);
97654dfa 3884 slabs_destroy(cachep, &list);
1da177e4 3885 }
bf0dea23
JK
3886 free_percpu(prev);
3887
c3d332b6
JK
3888setup_node:
3889 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3890}
3891
18004c5d 3892/* Called with slab_mutex held always */
83b519e8 3893static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3894{
3895 int err;
943a451a
GC
3896 int limit = 0;
3897 int shared = 0;
3898 int batchcount = 0;
3899
7c00fce9 3900 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3901 if (err)
3902 goto end;
3903
943a451a
GC
3904 if (limit && shared && batchcount)
3905 goto skip_setup;
a737b3e2
AM
3906 /*
3907 * The head array serves three purposes:
1da177e4
LT
3908 * - create a LIFO ordering, i.e. return objects that are cache-warm
3909 * - reduce the number of spinlock operations.
a737b3e2 3910 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3911 * bufctl chains: array operations are cheaper.
3912 * The numbers are guessed, we should auto-tune as described by
3913 * Bonwick.
3914 */
3b0efdfa 3915 if (cachep->size > 131072)
1da177e4 3916 limit = 1;
3b0efdfa 3917 else if (cachep->size > PAGE_SIZE)
1da177e4 3918 limit = 8;
3b0efdfa 3919 else if (cachep->size > 1024)
1da177e4 3920 limit = 24;
3b0efdfa 3921 else if (cachep->size > 256)
1da177e4
LT
3922 limit = 54;
3923 else
3924 limit = 120;
3925
a737b3e2
AM
3926 /*
3927 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3928 * allocation behaviour: Most allocs on one cpu, most free operations
3929 * on another cpu. For these cases, an efficient object passing between
3930 * cpus is necessary. This is provided by a shared array. The array
3931 * replaces Bonwick's magazine layer.
3932 * On uniprocessor, it's functionally equivalent (but less efficient)
3933 * to a larger limit. Thus disabled by default.
3934 */
3935 shared = 0;
3b0efdfa 3936 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3937 shared = 8;
1da177e4
LT
3938
3939#if DEBUG
a737b3e2
AM
3940 /*
3941 * With debugging enabled, large batchcount lead to excessively long
3942 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3943 */
3944 if (limit > 32)
3945 limit = 32;
3946#endif
943a451a
GC
3947 batchcount = (limit + 1) / 2;
3948skip_setup:
3949 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3950end:
1da177e4 3951 if (err)
1170532b 3952 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3953 cachep->name, -err);
2ed3a4ef 3954 return err;
1da177e4
LT
3955}
3956
1b55253a 3957/*
ce8eb6c4
CL
3958 * Drain an array if it contains any elements taking the node lock only if
3959 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3960 * if drain_array() is used on the shared array.
1b55253a 3961 */
ce8eb6c4 3962static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3963 struct array_cache *ac, int node)
1da177e4 3964{
97654dfa 3965 LIST_HEAD(list);
18726ca8
JK
3966
3967 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3968 check_mutex_acquired();
1da177e4 3969
1b55253a
CL
3970 if (!ac || !ac->avail)
3971 return;
18726ca8
JK
3972
3973 if (ac->touched) {
1da177e4 3974 ac->touched = 0;
18726ca8 3975 return;
1da177e4 3976 }
18726ca8
JK
3977
3978 spin_lock_irq(&n->list_lock);
3979 drain_array_locked(cachep, ac, node, false, &list);
3980 spin_unlock_irq(&n->list_lock);
3981
3982 slabs_destroy(cachep, &list);
1da177e4
LT
3983}
3984
3985/**
3986 * cache_reap - Reclaim memory from caches.
05fb6bf0 3987 * @w: work descriptor
1da177e4
LT
3988 *
3989 * Called from workqueue/eventd every few seconds.
3990 * Purpose:
3991 * - clear the per-cpu caches for this CPU.
3992 * - return freeable pages to the main free memory pool.
3993 *
a737b3e2
AM
3994 * If we cannot acquire the cache chain mutex then just give up - we'll try
3995 * again on the next iteration.
1da177e4 3996 */
7c5cae36 3997static void cache_reap(struct work_struct *w)
1da177e4 3998{
7a7c381d 3999 struct kmem_cache *searchp;
ce8eb6c4 4000 struct kmem_cache_node *n;
7d6e6d09 4001 int node = numa_mem_id();
bf6aede7 4002 struct delayed_work *work = to_delayed_work(w);
1da177e4 4003
18004c5d 4004 if (!mutex_trylock(&slab_mutex))
1da177e4 4005 /* Give up. Setup the next iteration. */
7c5cae36 4006 goto out;
1da177e4 4007
18004c5d 4008 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4009 check_irq_on();
4010
35386e3b 4011 /*
ce8eb6c4 4012 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4013 * have established with reasonable certainty that
4014 * we can do some work if the lock was obtained.
4015 */
18bf8541 4016 n = get_node(searchp, node);
35386e3b 4017
ce8eb6c4 4018 reap_alien(searchp, n);
1da177e4 4019
18726ca8 4020 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4021
35386e3b
CL
4022 /*
4023 * These are racy checks but it does not matter
4024 * if we skip one check or scan twice.
4025 */
ce8eb6c4 4026 if (time_after(n->next_reap, jiffies))
35386e3b 4027 goto next;
1da177e4 4028
5f0985bb 4029 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4030
18726ca8 4031 drain_array(searchp, n, n->shared, node);
1da177e4 4032
ce8eb6c4
CL
4033 if (n->free_touched)
4034 n->free_touched = 0;
ed11d9eb
CL
4035 else {
4036 int freed;
1da177e4 4037
ce8eb6c4 4038 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4039 5 * searchp->num - 1) / (5 * searchp->num));
4040 STATS_ADD_REAPED(searchp, freed);
4041 }
35386e3b 4042next:
1da177e4
LT
4043 cond_resched();
4044 }
4045 check_irq_on();
18004c5d 4046 mutex_unlock(&slab_mutex);
8fce4d8e 4047 next_reap_node();
7c5cae36 4048out:
a737b3e2 4049 /* Set up the next iteration */
a9f2a846
VB
4050 schedule_delayed_work_on(smp_processor_id(), work,
4051 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4052}
4053
0d7561c6 4054void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4055{
f728b0a5 4056 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4057 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4058 unsigned long free_slabs = 0;
e498be7d 4059 int node;
ce8eb6c4 4060 struct kmem_cache_node *n;
1da177e4 4061
18bf8541 4062 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4063 check_irq_on();
ce8eb6c4 4064 spin_lock_irq(&n->list_lock);
e498be7d 4065
bf00bd34
DR
4066 total_slabs += n->total_slabs;
4067 free_slabs += n->free_slabs;
f728b0a5 4068 free_objs += n->free_objects;
07a63c41 4069
ce8eb6c4
CL
4070 if (n->shared)
4071 shared_avail += n->shared->avail;
e498be7d 4072
ce8eb6c4 4073 spin_unlock_irq(&n->list_lock);
1da177e4 4074 }
bf00bd34
DR
4075 num_objs = total_slabs * cachep->num;
4076 active_slabs = total_slabs - free_slabs;
f728b0a5 4077 active_objs = num_objs - free_objs;
1da177e4 4078
0d7561c6
GC
4079 sinfo->active_objs = active_objs;
4080 sinfo->num_objs = num_objs;
4081 sinfo->active_slabs = active_slabs;
bf00bd34 4082 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4083 sinfo->shared_avail = shared_avail;
4084 sinfo->limit = cachep->limit;
4085 sinfo->batchcount = cachep->batchcount;
4086 sinfo->shared = cachep->shared;
4087 sinfo->objects_per_slab = cachep->num;
4088 sinfo->cache_order = cachep->gfporder;
4089}
4090
4091void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4092{
1da177e4 4093#if STATS
ce8eb6c4 4094 { /* node stats */
1da177e4
LT
4095 unsigned long high = cachep->high_mark;
4096 unsigned long allocs = cachep->num_allocations;
4097 unsigned long grown = cachep->grown;
4098 unsigned long reaped = cachep->reaped;
4099 unsigned long errors = cachep->errors;
4100 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4101 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4102 unsigned long node_frees = cachep->node_frees;
fb7faf33 4103 unsigned long overflows = cachep->node_overflow;
1da177e4 4104
756a025f 4105 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4106 allocs, high, grown,
4107 reaped, errors, max_freeable, node_allocs,
4108 node_frees, overflows);
1da177e4
LT
4109 }
4110 /* cpu stats */
4111 {
4112 unsigned long allochit = atomic_read(&cachep->allochit);
4113 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4114 unsigned long freehit = atomic_read(&cachep->freehit);
4115 unsigned long freemiss = atomic_read(&cachep->freemiss);
4116
4117 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4118 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4119 }
4120#endif
1da177e4
LT
4121}
4122
1da177e4
LT
4123#define MAX_SLABINFO_WRITE 128
4124/**
4125 * slabinfo_write - Tuning for the slab allocator
4126 * @file: unused
4127 * @buffer: user buffer
4128 * @count: data length
4129 * @ppos: unused
a862f68a
MR
4130 *
4131 * Return: %0 on success, negative error code otherwise.
1da177e4 4132 */
b7454ad3 4133ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4134 size_t count, loff_t *ppos)
1da177e4 4135{
b28a02de 4136 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4137 int limit, batchcount, shared, res;
7a7c381d 4138 struct kmem_cache *cachep;
b28a02de 4139
1da177e4
LT
4140 if (count > MAX_SLABINFO_WRITE)
4141 return -EINVAL;
4142 if (copy_from_user(&kbuf, buffer, count))
4143 return -EFAULT;
b28a02de 4144 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4145
4146 tmp = strchr(kbuf, ' ');
4147 if (!tmp)
4148 return -EINVAL;
4149 *tmp = '\0';
4150 tmp++;
4151 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4152 return -EINVAL;
4153
4154 /* Find the cache in the chain of caches. */
18004c5d 4155 mutex_lock(&slab_mutex);
1da177e4 4156 res = -EINVAL;
18004c5d 4157 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4158 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4159 if (limit < 1 || batchcount < 1 ||
4160 batchcount > limit || shared < 0) {
e498be7d 4161 res = 0;
1da177e4 4162 } else {
e498be7d 4163 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4164 batchcount, shared,
4165 GFP_KERNEL);
1da177e4
LT
4166 }
4167 break;
4168 }
4169 }
18004c5d 4170 mutex_unlock(&slab_mutex);
1da177e4
LT
4171 if (res >= 0)
4172 res = count;
4173 return res;
4174}
871751e2 4175
04385fc5
KC
4176#ifdef CONFIG_HARDENED_USERCOPY
4177/*
afcc90f8
KC
4178 * Rejects incorrectly sized objects and objects that are to be copied
4179 * to/from userspace but do not fall entirely within the containing slab
4180 * cache's usercopy region.
04385fc5
KC
4181 *
4182 * Returns NULL if check passes, otherwise const char * to name of cache
4183 * to indicate an error.
4184 */
f4e6e289
KC
4185void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4186 bool to_user)
04385fc5
KC
4187{
4188 struct kmem_cache *cachep;
4189 unsigned int objnr;
4190 unsigned long offset;
4191
219667c2
AK
4192 ptr = kasan_reset_tag(ptr);
4193
04385fc5
KC
4194 /* Find and validate object. */
4195 cachep = page->slab_cache;
4196 objnr = obj_to_index(cachep, page, (void *)ptr);
4197 BUG_ON(objnr >= cachep->num);
4198
4199 /* Find offset within object. */
d3fb45f3
AP
4200 if (is_kfence_address(ptr))
4201 offset = ptr - kfence_object_start(ptr);
4202 else
4203 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
04385fc5 4204
afcc90f8
KC
4205 /* Allow address range falling entirely within usercopy region. */
4206 if (offset >= cachep->useroffset &&
4207 offset - cachep->useroffset <= cachep->usersize &&
4208 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4209 return;
04385fc5 4210
afcc90f8
KC
4211 /*
4212 * If the copy is still within the allocated object, produce
4213 * a warning instead of rejecting the copy. This is intended
4214 * to be a temporary method to find any missing usercopy
4215 * whitelists.
4216 */
2d891fbc
KC
4217 if (usercopy_fallback &&
4218 offset <= cachep->object_size &&
afcc90f8
KC
4219 n <= cachep->object_size - offset) {
4220 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4221 return;
4222 }
04385fc5 4223
f4e6e289 4224 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4225}
4226#endif /* CONFIG_HARDENED_USERCOPY */
4227
00e145b6 4228/**
10d1f8cb 4229 * __ksize -- Uninstrumented ksize.
87bf4f71 4230 * @objp: pointer to the object
00e145b6 4231 *
10d1f8cb
ME
4232 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4233 * safety checks as ksize() with KASAN instrumentation enabled.
87bf4f71
RD
4234 *
4235 * Return: size of the actual memory used by @objp in bytes
00e145b6 4236 */
10d1f8cb 4237size_t __ksize(const void *objp)
1da177e4 4238{
a64b5378 4239 struct kmem_cache *c;
7ed2f9e6
AP
4240 size_t size;
4241
ef8b4520
CL
4242 BUG_ON(!objp);
4243 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4244 return 0;
1da177e4 4245
a64b5378
KC
4246 c = virt_to_cache(objp);
4247 size = c ? c->object_size : 0;
7ed2f9e6
AP
4248
4249 return size;
1da177e4 4250}
10d1f8cb 4251EXPORT_SYMBOL(__ksize);