]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab.c
timer: Remove unused data arguments from macros
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 443 slab_flags_t flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
49dfc304 683 spin_lock_init(&alc->lock);
c8522a3a
JK
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 688{
c8522a3a 689 struct alien_cache **alc_ptr;
5e804789 690 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
691 int i;
692
693 if (limit > 1)
694 limit = 12;
c8522a3a
JK
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
e498be7d
CL
708 }
709 }
c8522a3a 710 return alc_ptr;
e498be7d
CL
711}
712
c8522a3a 713static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
714{
715 int i;
716
c8522a3a 717 if (!alc_ptr)
e498be7d 718 return;
e498be7d 719 for_each_node(i)
c8522a3a
JK
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
e498be7d
CL
722}
723
343e0d7a 724static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
725 struct array_cache *ac, int node,
726 struct list_head *list)
e498be7d 727{
18bf8541 728 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
729
730 if (ac->avail) {
ce8eb6c4 731 spin_lock(&n->list_lock);
e00946fe
CL
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
ce8eb6c4
CL
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
e00946fe 739
833b706c 740 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 741 ac->avail = 0;
ce8eb6c4 742 spin_unlock(&n->list_lock);
e498be7d
CL
743 }
744}
745
8fce4d8e
CL
746/*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
ce8eb6c4 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 750{
909ea964 751 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 752
ce8eb6c4 753 if (n->alien) {
c8522a3a
JK
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
49dfc304 759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 763 spin_unlock_irq(&alc->lock);
833b706c 764 slabs_destroy(cachep, &list);
c8522a3a 765 }
8fce4d8e
CL
766 }
767 }
768}
769
a737b3e2 770static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 771 struct alien_cache **alien)
e498be7d 772{
b28a02de 773 int i = 0;
c8522a3a 774 struct alien_cache *alc;
e498be7d
CL
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
c8522a3a
JK
779 alc = alien[i];
780 if (alc) {
833b706c
JK
781 LIST_HEAD(list);
782
c8522a3a 783 ac = &alc->ac;
49dfc304 784 spin_lock_irqsave(&alc->lock, flags);
833b706c 785 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 786 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 787 slabs_destroy(cachep, &list);
e498be7d
CL
788 }
789 }
790}
729bd0b7 791
25c4f304
JK
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
729bd0b7 794{
ce8eb6c4 795 struct kmem_cache_node *n;
c8522a3a
JK
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
97654dfa 798 LIST_HEAD(list);
1ca4cb24 799
18bf8541 800 n = get_node(cachep, node);
729bd0b7 801 STATS_INC_NODEFREES(cachep);
25c4f304
JK
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
c8522a3a 804 ac = &alien->ac;
49dfc304 805 spin_lock(&alien->lock);
c8522a3a 806 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 807 STATS_INC_ACOVERFLOW(cachep);
25c4f304 808 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 809 }
f68f8ddd 810 ac->entry[ac->avail++] = objp;
49dfc304 811 spin_unlock(&alien->lock);
833b706c 812 slabs_destroy(cachep, &list);
729bd0b7 813 } else {
25c4f304 814 n = get_node(cachep, page_node);
18bf8541 815 spin_lock(&n->list_lock);
25c4f304 816 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 817 spin_unlock(&n->list_lock);
97654dfa 818 slabs_destroy(cachep, &list);
729bd0b7
PE
819 }
820 return 1;
821}
25c4f304
JK
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
4167e9b2
DR
836
837/*
444eb2a4
MG
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
4167e9b2
DR
840 */
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
444eb2a4 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 844}
e498be7d
CL
845#endif
846
ded0ecf6
JK
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885}
886
6731d4f1 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 888/*
6a67368c 889 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 891 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 892 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
893 * already in use.
894 *
18004c5d 895 * Must hold slab_mutex.
8f9f8d9e 896 */
6a67368c 897static int init_cache_node_node(int node)
8f9f8d9e 898{
ded0ecf6 899 int ret;
8f9f8d9e 900 struct kmem_cache *cachep;
8f9f8d9e 901
18004c5d 902 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
8f9f8d9e 906 }
ded0ecf6 907
8f9f8d9e
DR
908 return 0;
909}
6731d4f1 910#endif
8f9f8d9e 911
c3d332b6
JK
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
801faf0d
JK
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
86d9f485 967 if (old_shared && force_change)
801faf0d
JK
968 synchronize_sched();
969
c3d332b6
JK
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
6731d4f1
SAS
978#ifdef CONFIG_SMP
979
0db0628d 980static void cpuup_canceled(long cpu)
fbf1e473
AM
981{
982 struct kmem_cache *cachep;
ce8eb6c4 983 struct kmem_cache_node *n = NULL;
7d6e6d09 984 int node = cpu_to_mem(cpu);
a70f7302 985 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 986
18004c5d 987 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
988 struct array_cache *nc;
989 struct array_cache *shared;
c8522a3a 990 struct alien_cache **alien;
97654dfa 991 LIST_HEAD(list);
fbf1e473 992
18bf8541 993 n = get_node(cachep, node);
ce8eb6c4 994 if (!n)
bf0dea23 995 continue;
fbf1e473 996
ce8eb6c4 997 spin_lock_irq(&n->list_lock);
fbf1e473 998
ce8eb6c4
CL
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
97654dfa 1005 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1006 nc->avail = 0;
1007 }
fbf1e473 1008
58463c1f 1009 if (!cpumask_empty(mask)) {
ce8eb6c4 1010 spin_unlock_irq(&n->list_lock);
bf0dea23 1011 goto free_slab;
fbf1e473
AM
1012 }
1013
ce8eb6c4 1014 shared = n->shared;
fbf1e473
AM
1015 if (shared) {
1016 free_block(cachep, shared->entry,
97654dfa 1017 shared->avail, node, &list);
ce8eb6c4 1018 n->shared = NULL;
fbf1e473
AM
1019 }
1020
ce8eb6c4
CL
1021 alien = n->alien;
1022 n->alien = NULL;
fbf1e473 1023
ce8eb6c4 1024 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
bf0dea23
JK
1031
1032free_slab:
97654dfa 1033 slabs_destroy(cachep, &list);
fbf1e473
AM
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
18004c5d 1040 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1041 n = get_node(cachep, node);
ce8eb6c4 1042 if (!n)
fbf1e473 1043 continue;
a5aa63a5 1044 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1045 }
1046}
1047
0db0628d 1048static int cpuup_prepare(long cpu)
1da177e4 1049{
343e0d7a 1050 struct kmem_cache *cachep;
7d6e6d09 1051 int node = cpu_to_mem(cpu);
8f9f8d9e 1052 int err;
1da177e4 1053
fbf1e473
AM
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1058 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1059 */
6a67368c 1060 err = init_cache_node_node(node);
8f9f8d9e
DR
1061 if (err < 0)
1062 goto bad;
fbf1e473
AM
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
fbf1e473 1072 }
ce79ddc8 1073
fbf1e473
AM
1074 return 0;
1075bad:
12d00f6a 1076 cpuup_canceled(cpu);
fbf1e473
AM
1077 return -ENOMEM;
1078}
1079
6731d4f1 1080int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1081{
6731d4f1 1082 int err;
fbf1e473 1083
6731d4f1
SAS
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
8f5be20b 1107#endif
6731d4f1
SAS
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1da177e4
LT
1113}
1114
6731d4f1
SAS
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1da177e4 1128
8f9f8d9e
DR
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
18004c5d 1135 * Must hold slab_mutex.
8f9f8d9e 1136 */
6a67368c 1137static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
18004c5d 1142 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1143 struct kmem_cache_node *n;
8f9f8d9e 1144
18bf8541 1145 n = get_node(cachep, node);
ce8eb6c4 1146 if (!n)
8f9f8d9e
DR
1147 continue;
1148
a5aa63a5 1149 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1150
ce8eb6c4
CL
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
18004c5d 1173 mutex_lock(&slab_mutex);
6a67368c 1174 ret = init_cache_node_node(nid);
18004c5d 1175 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1176 break;
1177 case MEM_GOING_OFFLINE:
18004c5d 1178 mutex_lock(&slab_mutex);
6a67368c 1179 ret = drain_cache_node_node(nid);
18004c5d 1180 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
5fda1bd5 1189 return notifier_from_errno(ret);
8f9f8d9e
DR
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
e498be7d 1193/*
ce8eb6c4 1194 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1195 */
6744f087 1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1197 int nodeid)
e498be7d 1198{
6744f087 1199 struct kmem_cache_node *ptr;
e498be7d 1200
6744f087 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1202 BUG_ON(!ptr);
1203
6744f087 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
e498be7d 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1211 cachep->node[nodeid] = ptr;
e498be7d
CL
1212}
1213
556a169d 1214/*
ce8eb6c4
CL
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
556a169d 1217 */
ce8eb6c4 1218static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
ce8eb6c4 1223 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1224 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1227 }
1228}
1229
a737b3e2
AM
1230/*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1da177e4
LT
1233 */
1234void __init kmem_cache_init(void)
1235{
e498be7d
CL
1236 int i;
1237
68126702
JK
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
9b030cb8
CL
1240 kmem_cache = &kmem_cache_boot;
1241
8888177e 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1243 use_alien_caches = 0;
1244
3c583465 1245 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1247
1da177e4
LT
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1da177e4 1252 */
3df1cccd 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1254 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1255
1da177e4
LT
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
9b030cb8
CL
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
e498be7d 1261 * Initially an __init data area is used for the head array and the
ce8eb6c4 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1263 * array at the end of the bootstrap.
1da177e4 1264 * 2) Create the first kmalloc cache.
343e0d7a 1265 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
9b030cb8 1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1270 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1274 */
1275
9b030cb8 1276 /* 1) create the kmem_cache */
1da177e4 1277
8da3430d 1278 /*
b56efcf0 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1280 */
2f9baa9f 1281 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1282 offsetof(struct kmem_cache, node) +
6744f087 1283 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1286 slab_state = PARTIAL;
1da177e4 1287
a737b3e2 1288 /*
bf0dea23
JK
1289 * Initialize the caches that provide memory for the kmem_cache_node
1290 * structures first. Without this, further allocations will bug.
e498be7d 1291 */
af3b5f87
VB
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
ce8eb6c4 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1295 slab_state = PARTIAL_NODE;
34cc6990 1296 setup_kmalloc_cache_index_table();
e498be7d 1297
e0a42726
IM
1298 slab_early_init = 0;
1299
ce8eb6c4 1300 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1301 {
1ca4cb24
PE
1302 int nid;
1303
9c09a95c 1304 for_each_online_node(nid) {
ce8eb6c4 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1306
bf0dea23 1307 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1309 }
1310 }
1da177e4 1311
f97d5f63 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1313}
1314
1315void __init kmem_cache_init_late(void)
1316{
1317 struct kmem_cache *cachep;
1318
97d06609 1319 slab_state = UP;
52cef189 1320
8429db5c 1321 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
18004c5d 1326 mutex_unlock(&slab_mutex);
056c6241 1327
97d06609
CL
1328 /* Done! */
1329 slab_state = FULL;
1330
8f9f8d9e
DR
1331#ifdef CONFIG_NUMA
1332 /*
1333 * Register a memory hotplug callback that initializes and frees
6a67368c 1334 * node.
8f9f8d9e
DR
1335 */
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
a737b3e2
AM
1339 /*
1340 * The reap timers are started later, with a module init call: That part
1341 * of the kernel is not yet operational.
1da177e4
LT
1342 */
1343}
1344
1345static int __init cpucache_init(void)
1346{
6731d4f1 1347 int ret;
1da177e4 1348
a737b3e2
AM
1349 /*
1350 * Register the timers that return unneeded pages to the page allocator
1da177e4 1351 */
6731d4f1
SAS
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
a164f896
GC
1355
1356 /* Done! */
97d06609 1357 slab_state = FULL;
1da177e4
LT
1358 return 0;
1359}
1da177e4
LT
1360__initcall(cpucache_init);
1361
8bdec192
RA
1362static noinline void
1363slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364{
9a02d699 1365#if DEBUG
ce8eb6c4 1366 struct kmem_cache_node *n;
8bdec192
RA
1367 unsigned long flags;
1368 int node;
9a02d699
DR
1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 DEFAULT_RATELIMIT_BURST);
1371
1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 return;
8bdec192 1374
5b3810e5
VB
1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 nodeid, gfpflags, &gfpflags);
1377 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1378 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1379
18bf8541 1380 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1381 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1382
ce8eb6c4 1383 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1384 total_slabs = n->total_slabs;
1385 free_slabs = n->free_slabs;
1386 free_objs = n->free_objects;
ce8eb6c4 1387 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1388
bf00bd34
DR
1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 node, total_slabs - free_slabs, total_slabs,
1391 (total_slabs * cachep->num) - free_objs,
1392 total_slabs * cachep->num);
8bdec192 1393 }
9a02d699 1394#endif
8bdec192
RA
1395}
1396
1da177e4 1397/*
8a7d9b43
WSH
1398 * Interface to system's page allocator. No need to hold the
1399 * kmem_cache_node ->list_lock.
1da177e4
LT
1400 *
1401 * If we requested dmaable memory, we will get it. Even if we
1402 * did not request dmaable memory, we might get it, but that
1403 * would be relatively rare and ignorable.
1404 */
0c3aa83e
JK
1405static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 int nodeid)
1da177e4
LT
1407{
1408 struct page *page;
e1b6aa6f 1409 int nr_pages;
765c4507 1410
a618e89f 1411 flags |= cachep->allocflags;
e1b6aa6f 1412
75f296d9 1413 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1414 if (!page) {
9a02d699 1415 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1416 return NULL;
8bdec192 1417 }
1da177e4 1418
f3ccb2c4
VD
1419 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420 __free_pages(page, cachep->gfporder);
1421 return NULL;
1422 }
1423
e1b6aa6f 1424 nr_pages = (1 << cachep->gfporder);
1da177e4 1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1426 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1427 else
7779f212 1428 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1429
a57a4988 1430 __SetPageSlab(page);
f68f8ddd
JK
1431 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1432 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1433 SetPageSlabPfmemalloc(page);
072bb0aa 1434
0c3aa83e 1435 return page;
1da177e4
LT
1436}
1437
1438/*
1439 * Interface to system's page release.
1440 */
0c3aa83e 1441static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1442{
27ee57c9
VD
1443 int order = cachep->gfporder;
1444 unsigned long nr_freed = (1 << order);
1da177e4 1445
972d1a7b 1446 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1447 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1448 else
7779f212 1449 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1450
a57a4988 1451 BUG_ON(!PageSlab(page));
73293c2f 1452 __ClearPageSlabPfmemalloc(page);
a57a4988 1453 __ClearPageSlab(page);
8456a648
JK
1454 page_mapcount_reset(page);
1455 page->mapping = NULL;
1f458cbf 1456
1da177e4
LT
1457 if (current->reclaim_state)
1458 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1459 memcg_uncharge_slab(page, order, cachep);
1460 __free_pages(page, order);
1da177e4
LT
1461}
1462
1463static void kmem_rcu_free(struct rcu_head *head)
1464{
68126702
JK
1465 struct kmem_cache *cachep;
1466 struct page *page;
1da177e4 1467
68126702
JK
1468 page = container_of(head, struct page, rcu_head);
1469 cachep = page->slab_cache;
1470
1471 kmem_freepages(cachep, page);
1da177e4
LT
1472}
1473
1474#if DEBUG
40b44137
JK
1475static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1476{
1477 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1478 (cachep->size % PAGE_SIZE) == 0)
1479 return true;
1480
1481 return false;
1482}
1da177e4
LT
1483
1484#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1485static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1486 unsigned long caller)
1da177e4 1487{
8c138bc0 1488 int size = cachep->object_size;
1da177e4 1489
3dafccf2 1490 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1491
b28a02de 1492 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1493 return;
1494
b28a02de
PE
1495 *addr++ = 0x12345678;
1496 *addr++ = caller;
1497 *addr++ = smp_processor_id();
1498 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1499 {
1500 unsigned long *sptr = &caller;
1501 unsigned long svalue;
1502
1503 while (!kstack_end(sptr)) {
1504 svalue = *sptr++;
1505 if (kernel_text_address(svalue)) {
b28a02de 1506 *addr++ = svalue;
1da177e4
LT
1507 size -= sizeof(unsigned long);
1508 if (size <= sizeof(unsigned long))
1509 break;
1510 }
1511 }
1512
1513 }
b28a02de 1514 *addr++ = 0x87654321;
1da177e4 1515}
40b44137
JK
1516
1517static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1518 int map, unsigned long caller)
1519{
1520 if (!is_debug_pagealloc_cache(cachep))
1521 return;
1522
1523 if (caller)
1524 store_stackinfo(cachep, objp, caller);
1525
1526 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1527}
1528
1529#else
1530static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1531 int map, unsigned long caller) {}
1532
1da177e4
LT
1533#endif
1534
343e0d7a 1535static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1536{
8c138bc0 1537 int size = cachep->object_size;
3dafccf2 1538 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1539
1540 memset(addr, val, size);
b28a02de 1541 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1542}
1543
1544static void dump_line(char *data, int offset, int limit)
1545{
1546 int i;
aa83aa40
DJ
1547 unsigned char error = 0;
1548 int bad_count = 0;
1549
1170532b 1550 pr_err("%03x: ", offset);
aa83aa40
DJ
1551 for (i = 0; i < limit; i++) {
1552 if (data[offset + i] != POISON_FREE) {
1553 error = data[offset + i];
1554 bad_count++;
1555 }
aa83aa40 1556 }
fdde6abb
SAS
1557 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1558 &data[offset], limit, 1);
aa83aa40
DJ
1559
1560 if (bad_count == 1) {
1561 error ^= POISON_FREE;
1562 if (!(error & (error - 1))) {
1170532b 1563 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1564#ifdef CONFIG_X86
1170532b 1565 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1566#else
1170532b 1567 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1568#endif
1569 }
1570 }
1da177e4
LT
1571}
1572#endif
1573
1574#if DEBUG
1575
343e0d7a 1576static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1577{
1578 int i, size;
1579 char *realobj;
1580
1581 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1582 pr_err("Redzone: 0x%llx/0x%llx\n",
1583 *dbg_redzone1(cachep, objp),
1584 *dbg_redzone2(cachep, objp));
1da177e4
LT
1585 }
1586
1587 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1588 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1589 *dbg_userword(cachep, objp),
1590 *dbg_userword(cachep, objp));
1da177e4 1591 }
3dafccf2 1592 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1593 size = cachep->object_size;
b28a02de 1594 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1595 int limit;
1596 limit = 16;
b28a02de
PE
1597 if (i + limit > size)
1598 limit = size - i;
1da177e4
LT
1599 dump_line(realobj, i, limit);
1600 }
1601}
1602
343e0d7a 1603static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1604{
1605 char *realobj;
1606 int size, i;
1607 int lines = 0;
1608
40b44137
JK
1609 if (is_debug_pagealloc_cache(cachep))
1610 return;
1611
3dafccf2 1612 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1613 size = cachep->object_size;
1da177e4 1614
b28a02de 1615 for (i = 0; i < size; i++) {
1da177e4 1616 char exp = POISON_FREE;
b28a02de 1617 if (i == size - 1)
1da177e4
LT
1618 exp = POISON_END;
1619 if (realobj[i] != exp) {
1620 int limit;
1621 /* Mismatch ! */
1622 /* Print header */
1623 if (lines == 0) {
1170532b
JP
1624 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1625 print_tainted(), cachep->name,
1626 realobj, size);
1da177e4
LT
1627 print_objinfo(cachep, objp, 0);
1628 }
1629 /* Hexdump the affected line */
b28a02de 1630 i = (i / 16) * 16;
1da177e4 1631 limit = 16;
b28a02de
PE
1632 if (i + limit > size)
1633 limit = size - i;
1da177e4
LT
1634 dump_line(realobj, i, limit);
1635 i += 16;
1636 lines++;
1637 /* Limit to 5 lines */
1638 if (lines > 5)
1639 break;
1640 }
1641 }
1642 if (lines != 0) {
1643 /* Print some data about the neighboring objects, if they
1644 * exist:
1645 */
8456a648 1646 struct page *page = virt_to_head_page(objp);
8fea4e96 1647 unsigned int objnr;
1da177e4 1648
8456a648 1649 objnr = obj_to_index(cachep, page, objp);
1da177e4 1650 if (objnr) {
8456a648 1651 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1652 realobj = (char *)objp + obj_offset(cachep);
1170532b 1653 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1654 print_objinfo(cachep, objp, 2);
1655 }
b28a02de 1656 if (objnr + 1 < cachep->num) {
8456a648 1657 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1658 realobj = (char *)objp + obj_offset(cachep);
1170532b 1659 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1660 print_objinfo(cachep, objp, 2);
1661 }
1662 }
1663}
1664#endif
1665
12dd36fa 1666#if DEBUG
8456a648
JK
1667static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1668 struct page *page)
1da177e4 1669{
1da177e4 1670 int i;
b03a017b
JK
1671
1672 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1673 poison_obj(cachep, page->freelist - obj_offset(cachep),
1674 POISON_FREE);
1675 }
1676
1da177e4 1677 for (i = 0; i < cachep->num; i++) {
8456a648 1678 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1679
1680 if (cachep->flags & SLAB_POISON) {
1da177e4 1681 check_poison_obj(cachep, objp);
40b44137 1682 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1683 }
1684 if (cachep->flags & SLAB_RED_ZONE) {
1685 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1686 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1687 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1688 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1689 }
1da177e4 1690 }
12dd36fa 1691}
1da177e4 1692#else
8456a648
JK
1693static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1694 struct page *page)
12dd36fa 1695{
12dd36fa 1696}
1da177e4
LT
1697#endif
1698
911851e6
RD
1699/**
1700 * slab_destroy - destroy and release all objects in a slab
1701 * @cachep: cache pointer being destroyed
cb8ee1a3 1702 * @page: page pointer being destroyed
911851e6 1703 *
8a7d9b43
WSH
1704 * Destroy all the objs in a slab page, and release the mem back to the system.
1705 * Before calling the slab page must have been unlinked from the cache. The
1706 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1707 */
8456a648 1708static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1709{
7e007355 1710 void *freelist;
12dd36fa 1711
8456a648
JK
1712 freelist = page->freelist;
1713 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1714 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1715 call_rcu(&page->rcu_head, kmem_rcu_free);
1716 else
0c3aa83e 1717 kmem_freepages(cachep, page);
68126702
JK
1718
1719 /*
8456a648 1720 * From now on, we don't use freelist
68126702
JK
1721 * although actual page can be freed in rcu context
1722 */
1723 if (OFF_SLAB(cachep))
8456a648 1724 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1725}
1726
97654dfa
JK
1727static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1728{
1729 struct page *page, *n;
1730
1731 list_for_each_entry_safe(page, n, list, lru) {
1732 list_del(&page->lru);
1733 slab_destroy(cachep, page);
1734 }
1735}
1736
4d268eba 1737/**
a70773dd
RD
1738 * calculate_slab_order - calculate size (page order) of slabs
1739 * @cachep: pointer to the cache that is being created
1740 * @size: size of objects to be created in this cache.
a70773dd
RD
1741 * @flags: slab allocation flags
1742 *
1743 * Also calculates the number of objects per slab.
4d268eba
PE
1744 *
1745 * This could be made much more intelligent. For now, try to avoid using
1746 * high order pages for slabs. When the gfp() functions are more friendly
1747 * towards high-order requests, this should be changed.
1748 */
a737b3e2 1749static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1750 size_t size, slab_flags_t flags)
4d268eba
PE
1751{
1752 size_t left_over = 0;
9888e6fa 1753 int gfporder;
4d268eba 1754
0aa817f0 1755 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1756 unsigned int num;
1757 size_t remainder;
1758
70f75067 1759 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1760 if (!num)
1761 continue;
9888e6fa 1762
f315e3fa
JK
1763 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1764 if (num > SLAB_OBJ_MAX_NUM)
1765 break;
1766
b1ab41c4 1767 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1768 struct kmem_cache *freelist_cache;
1769 size_t freelist_size;
1770
1771 freelist_size = num * sizeof(freelist_idx_t);
1772 freelist_cache = kmalloc_slab(freelist_size, 0u);
1773 if (!freelist_cache)
1774 continue;
1775
b1ab41c4 1776 /*
3217fd9b 1777 * Needed to avoid possible looping condition
76b342bd 1778 * in cache_grow_begin()
b1ab41c4 1779 */
3217fd9b
JK
1780 if (OFF_SLAB(freelist_cache))
1781 continue;
b1ab41c4 1782
3217fd9b
JK
1783 /* check if off slab has enough benefit */
1784 if (freelist_cache->size > cachep->size / 2)
1785 continue;
b1ab41c4 1786 }
4d268eba 1787
9888e6fa 1788 /* Found something acceptable - save it away */
4d268eba 1789 cachep->num = num;
9888e6fa 1790 cachep->gfporder = gfporder;
4d268eba
PE
1791 left_over = remainder;
1792
f78bb8ad
LT
1793 /*
1794 * A VFS-reclaimable slab tends to have most allocations
1795 * as GFP_NOFS and we really don't want to have to be allocating
1796 * higher-order pages when we are unable to shrink dcache.
1797 */
1798 if (flags & SLAB_RECLAIM_ACCOUNT)
1799 break;
1800
4d268eba
PE
1801 /*
1802 * Large number of objects is good, but very large slabs are
1803 * currently bad for the gfp()s.
1804 */
543585cc 1805 if (gfporder >= slab_max_order)
4d268eba
PE
1806 break;
1807
9888e6fa
LT
1808 /*
1809 * Acceptable internal fragmentation?
1810 */
a737b3e2 1811 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1812 break;
1813 }
1814 return left_over;
1815}
1816
bf0dea23
JK
1817static struct array_cache __percpu *alloc_kmem_cache_cpus(
1818 struct kmem_cache *cachep, int entries, int batchcount)
1819{
1820 int cpu;
1821 size_t size;
1822 struct array_cache __percpu *cpu_cache;
1823
1824 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1825 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1826
1827 if (!cpu_cache)
1828 return NULL;
1829
1830 for_each_possible_cpu(cpu) {
1831 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1832 entries, batchcount);
1833 }
1834
1835 return cpu_cache;
1836}
1837
bd721ea7 1838static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1839{
97d06609 1840 if (slab_state >= FULL)
83b519e8 1841 return enable_cpucache(cachep, gfp);
2ed3a4ef 1842
bf0dea23
JK
1843 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1844 if (!cachep->cpu_cache)
1845 return 1;
1846
97d06609 1847 if (slab_state == DOWN) {
bf0dea23
JK
1848 /* Creation of first cache (kmem_cache). */
1849 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1850 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1851 /* For kmem_cache_node */
1852 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1853 } else {
bf0dea23 1854 int node;
f30cf7d1 1855
bf0dea23
JK
1856 for_each_online_node(node) {
1857 cachep->node[node] = kmalloc_node(
1858 sizeof(struct kmem_cache_node), gfp, node);
1859 BUG_ON(!cachep->node[node]);
1860 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1861 }
1862 }
bf0dea23 1863
6a67368c 1864 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1865 jiffies + REAPTIMEOUT_NODE +
1866 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1867
1868 cpu_cache_get(cachep)->avail = 0;
1869 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1870 cpu_cache_get(cachep)->batchcount = 1;
1871 cpu_cache_get(cachep)->touched = 0;
1872 cachep->batchcount = 1;
1873 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1874 return 0;
f30cf7d1
PE
1875}
1876
d50112ed
AD
1877slab_flags_t kmem_cache_flags(unsigned long object_size,
1878 slab_flags_t flags, const char *name,
12220dea
JK
1879 void (*ctor)(void *))
1880{
1881 return flags;
1882}
1883
1884struct kmem_cache *
1885__kmem_cache_alias(const char *name, size_t size, size_t align,
d50112ed 1886 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1887{
1888 struct kmem_cache *cachep;
1889
1890 cachep = find_mergeable(size, align, flags, name, ctor);
1891 if (cachep) {
1892 cachep->refcount++;
1893
1894 /*
1895 * Adjust the object sizes so that we clear
1896 * the complete object on kzalloc.
1897 */
1898 cachep->object_size = max_t(int, cachep->object_size, size);
1899 }
1900 return cachep;
1901}
1902
b03a017b 1903static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1904 size_t size, slab_flags_t flags)
b03a017b
JK
1905{
1906 size_t left;
1907
1908 cachep->num = 0;
1909
5f0d5a3a 1910 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1911 return false;
1912
1913 left = calculate_slab_order(cachep, size,
1914 flags | CFLGS_OBJFREELIST_SLAB);
1915 if (!cachep->num)
1916 return false;
1917
1918 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1919 return false;
1920
1921 cachep->colour = left / cachep->colour_off;
1922
1923 return true;
1924}
1925
158e319b 1926static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1927 size_t size, slab_flags_t flags)
158e319b
JK
1928{
1929 size_t left;
1930
1931 cachep->num = 0;
1932
1933 /*
3217fd9b
JK
1934 * Always use on-slab management when SLAB_NOLEAKTRACE
1935 * to avoid recursive calls into kmemleak.
158e319b 1936 */
158e319b
JK
1937 if (flags & SLAB_NOLEAKTRACE)
1938 return false;
1939
1940 /*
1941 * Size is large, assume best to place the slab management obj
1942 * off-slab (should allow better packing of objs).
1943 */
1944 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1945 if (!cachep->num)
1946 return false;
1947
1948 /*
1949 * If the slab has been placed off-slab, and we have enough space then
1950 * move it on-slab. This is at the expense of any extra colouring.
1951 */
1952 if (left >= cachep->num * sizeof(freelist_idx_t))
1953 return false;
1954
1955 cachep->colour = left / cachep->colour_off;
1956
1957 return true;
1958}
1959
1960static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1961 size_t size, slab_flags_t flags)
158e319b
JK
1962{
1963 size_t left;
1964
1965 cachep->num = 0;
1966
1967 left = calculate_slab_order(cachep, size, flags);
1968 if (!cachep->num)
1969 return false;
1970
1971 cachep->colour = left / cachep->colour_off;
1972
1973 return true;
1974}
1975
1da177e4 1976/**
039363f3 1977 * __kmem_cache_create - Create a cache.
a755b76a 1978 * @cachep: cache management descriptor
1da177e4 1979 * @flags: SLAB flags
1da177e4
LT
1980 *
1981 * Returns a ptr to the cache on success, NULL on failure.
1982 * Cannot be called within a int, but can be interrupted.
20c2df83 1983 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1984 *
1da177e4
LT
1985 * The flags are
1986 *
1987 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1988 * to catch references to uninitialised memory.
1989 *
1990 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1991 * for buffer overruns.
1992 *
1da177e4
LT
1993 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1994 * cacheline. This can be beneficial if you're counting cycles as closely
1995 * as davem.
1996 */
d50112ed 1997int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1998{
d4a5fca5 1999 size_t ralign = BYTES_PER_WORD;
83b519e8 2000 gfp_t gfp;
278b1bb1 2001 int err;
8a13a4cc 2002 size_t size = cachep->size;
1da177e4 2003
1da177e4 2004#if DEBUG
1da177e4
LT
2005#if FORCED_DEBUG
2006 /*
2007 * Enable redzoning and last user accounting, except for caches with
2008 * large objects, if the increased size would increase the object size
2009 * above the next power of two: caches with object sizes just above a
2010 * power of two have a significant amount of internal fragmentation.
2011 */
87a927c7
DW
2012 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2013 2 * sizeof(unsigned long long)))
b28a02de 2014 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2015 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2016 flags |= SLAB_POISON;
2017#endif
1da177e4 2018#endif
1da177e4 2019
a737b3e2
AM
2020 /*
2021 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2022 * unaligned accesses for some archs when redzoning is used, and makes
2023 * sure any on-slab bufctl's are also correctly aligned.
2024 */
e0771950 2025 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2026
87a927c7
DW
2027 if (flags & SLAB_RED_ZONE) {
2028 ralign = REDZONE_ALIGN;
2029 /* If redzoning, ensure that the second redzone is suitably
2030 * aligned, by adjusting the object size accordingly. */
e0771950 2031 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2032 }
ca5f9703 2033
a44b56d3 2034 /* 3) caller mandated alignment */
8a13a4cc
CL
2035 if (ralign < cachep->align) {
2036 ralign = cachep->align;
1da177e4 2037 }
3ff84a7f
PE
2038 /* disable debug if necessary */
2039 if (ralign > __alignof__(unsigned long long))
a44b56d3 2040 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2041 /*
ca5f9703 2042 * 4) Store it.
1da177e4 2043 */
8a13a4cc 2044 cachep->align = ralign;
158e319b
JK
2045 cachep->colour_off = cache_line_size();
2046 /* Offset must be a multiple of the alignment. */
2047 if (cachep->colour_off < cachep->align)
2048 cachep->colour_off = cachep->align;
1da177e4 2049
83b519e8
PE
2050 if (slab_is_available())
2051 gfp = GFP_KERNEL;
2052 else
2053 gfp = GFP_NOWAIT;
2054
1da177e4 2055#if DEBUG
1da177e4 2056
ca5f9703
PE
2057 /*
2058 * Both debugging options require word-alignment which is calculated
2059 * into align above.
2060 */
1da177e4 2061 if (flags & SLAB_RED_ZONE) {
1da177e4 2062 /* add space for red zone words */
3ff84a7f
PE
2063 cachep->obj_offset += sizeof(unsigned long long);
2064 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2065 }
2066 if (flags & SLAB_STORE_USER) {
ca5f9703 2067 /* user store requires one word storage behind the end of
87a927c7
DW
2068 * the real object. But if the second red zone needs to be
2069 * aligned to 64 bits, we must allow that much space.
1da177e4 2070 */
87a927c7
DW
2071 if (flags & SLAB_RED_ZONE)
2072 size += REDZONE_ALIGN;
2073 else
2074 size += BYTES_PER_WORD;
1da177e4 2075 }
832a15d2
JK
2076#endif
2077
7ed2f9e6
AP
2078 kasan_cache_create(cachep, &size, &flags);
2079
832a15d2
JK
2080 size = ALIGN(size, cachep->align);
2081 /*
2082 * We should restrict the number of objects in a slab to implement
2083 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2084 */
2085 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2086 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2087
2088#if DEBUG
03a2d2a3
JK
2089 /*
2090 * To activate debug pagealloc, off-slab management is necessary
2091 * requirement. In early phase of initialization, small sized slab
2092 * doesn't get initialized so it would not be possible. So, we need
2093 * to check size >= 256. It guarantees that all necessary small
2094 * sized slab is initialized in current slab initialization sequence.
2095 */
40323278 2096 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2097 size >= 256 && cachep->object_size > cache_line_size()) {
2098 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2099 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2100
2101 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2102 flags |= CFLGS_OFF_SLAB;
2103 cachep->obj_offset += tmp_size - size;
2104 size = tmp_size;
2105 goto done;
2106 }
2107 }
1da177e4 2108 }
1da177e4
LT
2109#endif
2110
b03a017b
JK
2111 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2112 flags |= CFLGS_OBJFREELIST_SLAB;
2113 goto done;
2114 }
2115
158e319b 2116 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2117 flags |= CFLGS_OFF_SLAB;
158e319b 2118 goto done;
832a15d2 2119 }
1da177e4 2120
158e319b
JK
2121 if (set_on_slab_cache(cachep, size, flags))
2122 goto done;
1da177e4 2123
158e319b 2124 return -E2BIG;
1da177e4 2125
158e319b
JK
2126done:
2127 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2128 cachep->flags = flags;
a57a4988 2129 cachep->allocflags = __GFP_COMP;
a3187e43 2130 if (flags & SLAB_CACHE_DMA)
a618e89f 2131 cachep->allocflags |= GFP_DMA;
a3ba0744
DR
2132 if (flags & SLAB_RECLAIM_ACCOUNT)
2133 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2134 cachep->size = size;
6a2d7a95 2135 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2136
40b44137
JK
2137#if DEBUG
2138 /*
2139 * If we're going to use the generic kernel_map_pages()
2140 * poisoning, then it's going to smash the contents of
2141 * the redzone and userword anyhow, so switch them off.
2142 */
2143 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2144 (cachep->flags & SLAB_POISON) &&
2145 is_debug_pagealloc_cache(cachep))
2146 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2147#endif
2148
2149 if (OFF_SLAB(cachep)) {
158e319b
JK
2150 cachep->freelist_cache =
2151 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2152 }
1da177e4 2153
278b1bb1
CL
2154 err = setup_cpu_cache(cachep, gfp);
2155 if (err) {
52b4b950 2156 __kmem_cache_release(cachep);
278b1bb1 2157 return err;
2ed3a4ef 2158 }
1da177e4 2159
278b1bb1 2160 return 0;
1da177e4 2161}
1da177e4
LT
2162
2163#if DEBUG
2164static void check_irq_off(void)
2165{
2166 BUG_ON(!irqs_disabled());
2167}
2168
2169static void check_irq_on(void)
2170{
2171 BUG_ON(irqs_disabled());
2172}
2173
18726ca8
JK
2174static void check_mutex_acquired(void)
2175{
2176 BUG_ON(!mutex_is_locked(&slab_mutex));
2177}
2178
343e0d7a 2179static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2180{
2181#ifdef CONFIG_SMP
2182 check_irq_off();
18bf8541 2183 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2184#endif
2185}
e498be7d 2186
343e0d7a 2187static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2188{
2189#ifdef CONFIG_SMP
2190 check_irq_off();
18bf8541 2191 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2192#endif
2193}
2194
1da177e4
LT
2195#else
2196#define check_irq_off() do { } while(0)
2197#define check_irq_on() do { } while(0)
18726ca8 2198#define check_mutex_acquired() do { } while(0)
1da177e4 2199#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2200#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2201#endif
2202
18726ca8
JK
2203static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2204 int node, bool free_all, struct list_head *list)
2205{
2206 int tofree;
2207
2208 if (!ac || !ac->avail)
2209 return;
2210
2211 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2212 if (tofree > ac->avail)
2213 tofree = (ac->avail + 1) / 2;
2214
2215 free_block(cachep, ac->entry, tofree, node, list);
2216 ac->avail -= tofree;
2217 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2218}
aab2207c 2219
1da177e4
LT
2220static void do_drain(void *arg)
2221{
a737b3e2 2222 struct kmem_cache *cachep = arg;
1da177e4 2223 struct array_cache *ac;
7d6e6d09 2224 int node = numa_mem_id();
18bf8541 2225 struct kmem_cache_node *n;
97654dfa 2226 LIST_HEAD(list);
1da177e4
LT
2227
2228 check_irq_off();
9a2dba4b 2229 ac = cpu_cache_get(cachep);
18bf8541
CL
2230 n = get_node(cachep, node);
2231 spin_lock(&n->list_lock);
97654dfa 2232 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2233 spin_unlock(&n->list_lock);
97654dfa 2234 slabs_destroy(cachep, &list);
1da177e4
LT
2235 ac->avail = 0;
2236}
2237
343e0d7a 2238static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2239{
ce8eb6c4 2240 struct kmem_cache_node *n;
e498be7d 2241 int node;
18726ca8 2242 LIST_HEAD(list);
e498be7d 2243
15c8b6c1 2244 on_each_cpu(do_drain, cachep, 1);
1da177e4 2245 check_irq_on();
18bf8541
CL
2246 for_each_kmem_cache_node(cachep, node, n)
2247 if (n->alien)
ce8eb6c4 2248 drain_alien_cache(cachep, n->alien);
a4523a8b 2249
18726ca8
JK
2250 for_each_kmem_cache_node(cachep, node, n) {
2251 spin_lock_irq(&n->list_lock);
2252 drain_array_locked(cachep, n->shared, node, true, &list);
2253 spin_unlock_irq(&n->list_lock);
2254
2255 slabs_destroy(cachep, &list);
2256 }
1da177e4
LT
2257}
2258
ed11d9eb
CL
2259/*
2260 * Remove slabs from the list of free slabs.
2261 * Specify the number of slabs to drain in tofree.
2262 *
2263 * Returns the actual number of slabs released.
2264 */
2265static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2266 struct kmem_cache_node *n, int tofree)
1da177e4 2267{
ed11d9eb
CL
2268 struct list_head *p;
2269 int nr_freed;
8456a648 2270 struct page *page;
1da177e4 2271
ed11d9eb 2272 nr_freed = 0;
ce8eb6c4 2273 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2274
ce8eb6c4
CL
2275 spin_lock_irq(&n->list_lock);
2276 p = n->slabs_free.prev;
2277 if (p == &n->slabs_free) {
2278 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2279 goto out;
2280 }
1da177e4 2281
8456a648 2282 page = list_entry(p, struct page, lru);
8456a648 2283 list_del(&page->lru);
f728b0a5 2284 n->free_slabs--;
bf00bd34 2285 n->total_slabs--;
ed11d9eb
CL
2286 /*
2287 * Safe to drop the lock. The slab is no longer linked
2288 * to the cache.
2289 */
ce8eb6c4
CL
2290 n->free_objects -= cache->num;
2291 spin_unlock_irq(&n->list_lock);
8456a648 2292 slab_destroy(cache, page);
ed11d9eb 2293 nr_freed++;
1da177e4 2294 }
ed11d9eb
CL
2295out:
2296 return nr_freed;
1da177e4
LT
2297}
2298
c9fc5864 2299int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2300{
18bf8541
CL
2301 int ret = 0;
2302 int node;
ce8eb6c4 2303 struct kmem_cache_node *n;
e498be7d
CL
2304
2305 drain_cpu_caches(cachep);
2306
2307 check_irq_on();
18bf8541 2308 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2309 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2310
ce8eb6c4
CL
2311 ret += !list_empty(&n->slabs_full) ||
2312 !list_empty(&n->slabs_partial);
e498be7d
CL
2313 }
2314 return (ret ? 1 : 0);
2315}
2316
c9fc5864
TH
2317#ifdef CONFIG_MEMCG
2318void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2319{
2320 __kmem_cache_shrink(cachep);
2321}
2322#endif
2323
945cf2b6 2324int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2325{
c9fc5864 2326 return __kmem_cache_shrink(cachep);
52b4b950
DS
2327}
2328
2329void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2330{
12c3667f 2331 int i;
ce8eb6c4 2332 struct kmem_cache_node *n;
1da177e4 2333
c7ce4f60
TG
2334 cache_random_seq_destroy(cachep);
2335
bf0dea23 2336 free_percpu(cachep->cpu_cache);
1da177e4 2337
ce8eb6c4 2338 /* NUMA: free the node structures */
18bf8541
CL
2339 for_each_kmem_cache_node(cachep, i, n) {
2340 kfree(n->shared);
2341 free_alien_cache(n->alien);
2342 kfree(n);
2343 cachep->node[i] = NULL;
12c3667f 2344 }
1da177e4 2345}
1da177e4 2346
e5ac9c5a
RT
2347/*
2348 * Get the memory for a slab management obj.
5f0985bb
JZ
2349 *
2350 * For a slab cache when the slab descriptor is off-slab, the
2351 * slab descriptor can't come from the same cache which is being created,
2352 * Because if it is the case, that means we defer the creation of
2353 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2354 * And we eventually call down to __kmem_cache_create(), which
2355 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2356 * This is a "chicken-and-egg" problem.
2357 *
2358 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2359 * which are all initialized during kmem_cache_init().
e5ac9c5a 2360 */
7e007355 2361static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2362 struct page *page, int colour_off,
2363 gfp_t local_flags, int nodeid)
1da177e4 2364{
7e007355 2365 void *freelist;
0c3aa83e 2366 void *addr = page_address(page);
b28a02de 2367
2e6b3602
JK
2368 page->s_mem = addr + colour_off;
2369 page->active = 0;
2370
b03a017b
JK
2371 if (OBJFREELIST_SLAB(cachep))
2372 freelist = NULL;
2373 else if (OFF_SLAB(cachep)) {
1da177e4 2374 /* Slab management obj is off-slab. */
8456a648 2375 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2376 local_flags, nodeid);
8456a648 2377 if (!freelist)
1da177e4
LT
2378 return NULL;
2379 } else {
2e6b3602
JK
2380 /* We will use last bytes at the slab for freelist */
2381 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2382 cachep->freelist_size;
1da177e4 2383 }
2e6b3602 2384
8456a648 2385 return freelist;
1da177e4
LT
2386}
2387
7cc68973 2388static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2389{
a41adfaa 2390 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2391}
2392
2393static inline void set_free_obj(struct page *page,
7cc68973 2394 unsigned int idx, freelist_idx_t val)
e5c58dfd 2395{
a41adfaa 2396 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2397}
2398
10b2e9e8 2399static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2400{
10b2e9e8 2401#if DEBUG
1da177e4
LT
2402 int i;
2403
2404 for (i = 0; i < cachep->num; i++) {
8456a648 2405 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2406
1da177e4
LT
2407 if (cachep->flags & SLAB_STORE_USER)
2408 *dbg_userword(cachep, objp) = NULL;
2409
2410 if (cachep->flags & SLAB_RED_ZONE) {
2411 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2412 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2413 }
2414 /*
a737b3e2
AM
2415 * Constructors are not allowed to allocate memory from the same
2416 * cache which they are a constructor for. Otherwise, deadlock.
2417 * They must also be threaded.
1da177e4 2418 */
7ed2f9e6
AP
2419 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2420 kasan_unpoison_object_data(cachep,
2421 objp + obj_offset(cachep));
51cc5068 2422 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2423 kasan_poison_object_data(
2424 cachep, objp + obj_offset(cachep));
2425 }
1da177e4
LT
2426
2427 if (cachep->flags & SLAB_RED_ZONE) {
2428 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2429 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2430 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2431 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2432 }
40b44137
JK
2433 /* need to poison the objs? */
2434 if (cachep->flags & SLAB_POISON) {
2435 poison_obj(cachep, objp, POISON_FREE);
2436 slab_kernel_map(cachep, objp, 0, 0);
2437 }
10b2e9e8 2438 }
1da177e4 2439#endif
10b2e9e8
JK
2440}
2441
c7ce4f60
TG
2442#ifdef CONFIG_SLAB_FREELIST_RANDOM
2443/* Hold information during a freelist initialization */
2444union freelist_init_state {
2445 struct {
2446 unsigned int pos;
7c00fce9 2447 unsigned int *list;
c7ce4f60 2448 unsigned int count;
c7ce4f60
TG
2449 };
2450 struct rnd_state rnd_state;
2451};
2452
2453/*
2454 * Initialize the state based on the randomization methode available.
2455 * return true if the pre-computed list is available, false otherwize.
2456 */
2457static bool freelist_state_initialize(union freelist_init_state *state,
2458 struct kmem_cache *cachep,
2459 unsigned int count)
2460{
2461 bool ret;
2462 unsigned int rand;
2463
2464 /* Use best entropy available to define a random shift */
7c00fce9 2465 rand = get_random_int();
c7ce4f60
TG
2466
2467 /* Use a random state if the pre-computed list is not available */
2468 if (!cachep->random_seq) {
2469 prandom_seed_state(&state->rnd_state, rand);
2470 ret = false;
2471 } else {
2472 state->list = cachep->random_seq;
2473 state->count = count;
c4e490cf 2474 state->pos = rand % count;
c7ce4f60
TG
2475 ret = true;
2476 }
2477 return ret;
2478}
2479
2480/* Get the next entry on the list and randomize it using a random shift */
2481static freelist_idx_t next_random_slot(union freelist_init_state *state)
2482{
c4e490cf
JS
2483 if (state->pos >= state->count)
2484 state->pos = 0;
2485 return state->list[state->pos++];
c7ce4f60
TG
2486}
2487
7c00fce9
TG
2488/* Swap two freelist entries */
2489static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2490{
2491 swap(((freelist_idx_t *)page->freelist)[a],
2492 ((freelist_idx_t *)page->freelist)[b]);
2493}
2494
c7ce4f60
TG
2495/*
2496 * Shuffle the freelist initialization state based on pre-computed lists.
2497 * return true if the list was successfully shuffled, false otherwise.
2498 */
2499static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2500{
7c00fce9 2501 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2502 union freelist_init_state state;
2503 bool precomputed;
2504
2505 if (count < 2)
2506 return false;
2507
2508 precomputed = freelist_state_initialize(&state, cachep, count);
2509
2510 /* Take a random entry as the objfreelist */
2511 if (OBJFREELIST_SLAB(cachep)) {
2512 if (!precomputed)
2513 objfreelist = count - 1;
2514 else
2515 objfreelist = next_random_slot(&state);
2516 page->freelist = index_to_obj(cachep, page, objfreelist) +
2517 obj_offset(cachep);
2518 count--;
2519 }
2520
2521 /*
2522 * On early boot, generate the list dynamically.
2523 * Later use a pre-computed list for speed.
2524 */
2525 if (!precomputed) {
7c00fce9
TG
2526 for (i = 0; i < count; i++)
2527 set_free_obj(page, i, i);
2528
2529 /* Fisher-Yates shuffle */
2530 for (i = count - 1; i > 0; i--) {
2531 rand = prandom_u32_state(&state.rnd_state);
2532 rand %= (i + 1);
2533 swap_free_obj(page, i, rand);
2534 }
c7ce4f60
TG
2535 } else {
2536 for (i = 0; i < count; i++)
2537 set_free_obj(page, i, next_random_slot(&state));
2538 }
2539
2540 if (OBJFREELIST_SLAB(cachep))
2541 set_free_obj(page, cachep->num - 1, objfreelist);
2542
2543 return true;
2544}
2545#else
2546static inline bool shuffle_freelist(struct kmem_cache *cachep,
2547 struct page *page)
2548{
2549 return false;
2550}
2551#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2552
10b2e9e8
JK
2553static void cache_init_objs(struct kmem_cache *cachep,
2554 struct page *page)
2555{
2556 int i;
7ed2f9e6 2557 void *objp;
c7ce4f60 2558 bool shuffled;
10b2e9e8
JK
2559
2560 cache_init_objs_debug(cachep, page);
2561
c7ce4f60
TG
2562 /* Try to randomize the freelist if enabled */
2563 shuffled = shuffle_freelist(cachep, page);
2564
2565 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2566 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2567 obj_offset(cachep);
2568 }
2569
10b2e9e8 2570 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2571 objp = index_to_obj(cachep, page, i);
2572 kasan_init_slab_obj(cachep, objp);
2573
10b2e9e8 2574 /* constructor could break poison info */
7ed2f9e6 2575 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2576 kasan_unpoison_object_data(cachep, objp);
2577 cachep->ctor(objp);
2578 kasan_poison_object_data(cachep, objp);
2579 }
10b2e9e8 2580
c7ce4f60
TG
2581 if (!shuffled)
2582 set_free_obj(page, i, i);
1da177e4 2583 }
1da177e4
LT
2584}
2585
260b61dd 2586static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2587{
b1cb0982 2588 void *objp;
78d382d7 2589
e5c58dfd 2590 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2591 page->active++;
78d382d7 2592
d31676df
JK
2593#if DEBUG
2594 if (cachep->flags & SLAB_STORE_USER)
2595 set_store_user_dirty(cachep);
2596#endif
2597
78d382d7
MD
2598 return objp;
2599}
2600
260b61dd
JK
2601static void slab_put_obj(struct kmem_cache *cachep,
2602 struct page *page, void *objp)
78d382d7 2603{
8456a648 2604 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2605#if DEBUG
16025177 2606 unsigned int i;
b1cb0982 2607
b1cb0982 2608 /* Verify double free bug */
8456a648 2609 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2610 if (get_free_obj(page, i) == objnr) {
1170532b 2611 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2612 cachep->name, objp);
b1cb0982
JK
2613 BUG();
2614 }
78d382d7
MD
2615 }
2616#endif
8456a648 2617 page->active--;
b03a017b
JK
2618 if (!page->freelist)
2619 page->freelist = objp + obj_offset(cachep);
2620
e5c58dfd 2621 set_free_obj(page, page->active, objnr);
78d382d7
MD
2622}
2623
4776874f
PE
2624/*
2625 * Map pages beginning at addr to the given cache and slab. This is required
2626 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2627 * virtual address for kfree, ksize, and slab debugging.
4776874f 2628 */
8456a648 2629static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2630 void *freelist)
1da177e4 2631{
a57a4988 2632 page->slab_cache = cache;
8456a648 2633 page->freelist = freelist;
1da177e4
LT
2634}
2635
2636/*
2637 * Grow (by 1) the number of slabs within a cache. This is called by
2638 * kmem_cache_alloc() when there are no active objs left in a cache.
2639 */
76b342bd
JK
2640static struct page *cache_grow_begin(struct kmem_cache *cachep,
2641 gfp_t flags, int nodeid)
1da177e4 2642{
7e007355 2643 void *freelist;
b28a02de
PE
2644 size_t offset;
2645 gfp_t local_flags;
511e3a05 2646 int page_node;
ce8eb6c4 2647 struct kmem_cache_node *n;
511e3a05 2648 struct page *page;
1da177e4 2649
a737b3e2
AM
2650 /*
2651 * Be lazy and only check for valid flags here, keeping it out of the
2652 * critical path in kmem_cache_alloc().
1da177e4 2653 */
c871ac4e 2654 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2655 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2656 flags &= ~GFP_SLAB_BUG_MASK;
2657 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2658 invalid_mask, &invalid_mask, flags, &flags);
2659 dump_stack();
c871ac4e 2660 }
6cb06229 2661 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2662
1da177e4 2663 check_irq_off();
d0164adc 2664 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2665 local_irq_enable();
2666
a737b3e2
AM
2667 /*
2668 * Get mem for the objs. Attempt to allocate a physical page from
2669 * 'nodeid'.
e498be7d 2670 */
511e3a05 2671 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2672 if (!page)
1da177e4
LT
2673 goto failed;
2674
511e3a05
JK
2675 page_node = page_to_nid(page);
2676 n = get_node(cachep, page_node);
03d1d43a
JK
2677
2678 /* Get colour for the slab, and cal the next value. */
2679 n->colour_next++;
2680 if (n->colour_next >= cachep->colour)
2681 n->colour_next = 0;
2682
2683 offset = n->colour_next;
2684 if (offset >= cachep->colour)
2685 offset = 0;
2686
2687 offset *= cachep->colour_off;
2688
1da177e4 2689 /* Get slab management. */
8456a648 2690 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2691 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2692 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2693 goto opps1;
2694
8456a648 2695 slab_map_pages(cachep, page, freelist);
1da177e4 2696
7ed2f9e6 2697 kasan_poison_slab(page);
8456a648 2698 cache_init_objs(cachep, page);
1da177e4 2699
d0164adc 2700 if (gfpflags_allow_blocking(local_flags))
1da177e4 2701 local_irq_disable();
1da177e4 2702
76b342bd
JK
2703 return page;
2704
a737b3e2 2705opps1:
0c3aa83e 2706 kmem_freepages(cachep, page);
a737b3e2 2707failed:
d0164adc 2708 if (gfpflags_allow_blocking(local_flags))
1da177e4 2709 local_irq_disable();
76b342bd
JK
2710 return NULL;
2711}
2712
2713static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2714{
2715 struct kmem_cache_node *n;
2716 void *list = NULL;
2717
2718 check_irq_off();
2719
2720 if (!page)
2721 return;
2722
2723 INIT_LIST_HEAD(&page->lru);
2724 n = get_node(cachep, page_to_nid(page));
2725
2726 spin_lock(&n->list_lock);
bf00bd34 2727 n->total_slabs++;
f728b0a5 2728 if (!page->active) {
76b342bd 2729 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2730 n->free_slabs++;
bf00bd34 2731 } else
76b342bd 2732 fixup_slab_list(cachep, n, page, &list);
07a63c41 2733
76b342bd
JK
2734 STATS_INC_GROWN(cachep);
2735 n->free_objects += cachep->num - page->active;
2736 spin_unlock(&n->list_lock);
2737
2738 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2739}
2740
2741#if DEBUG
2742
2743/*
2744 * Perform extra freeing checks:
2745 * - detect bad pointers.
2746 * - POISON/RED_ZONE checking
1da177e4
LT
2747 */
2748static void kfree_debugcheck(const void *objp)
2749{
1da177e4 2750 if (!virt_addr_valid(objp)) {
1170532b 2751 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2752 (unsigned long)objp);
2753 BUG();
1da177e4 2754 }
1da177e4
LT
2755}
2756
58ce1fd5
PE
2757static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2758{
b46b8f19 2759 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2760
2761 redzone1 = *dbg_redzone1(cache, obj);
2762 redzone2 = *dbg_redzone2(cache, obj);
2763
2764 /*
2765 * Redzone is ok.
2766 */
2767 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2768 return;
2769
2770 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2771 slab_error(cache, "double free detected");
2772 else
2773 slab_error(cache, "memory outside object was overwritten");
2774
1170532b
JP
2775 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2776 obj, redzone1, redzone2);
58ce1fd5
PE
2777}
2778
343e0d7a 2779static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2780 unsigned long caller)
1da177e4 2781{
1da177e4 2782 unsigned int objnr;
8456a648 2783 struct page *page;
1da177e4 2784
80cbd911
MW
2785 BUG_ON(virt_to_cache(objp) != cachep);
2786
3dafccf2 2787 objp -= obj_offset(cachep);
1da177e4 2788 kfree_debugcheck(objp);
b49af68f 2789 page = virt_to_head_page(objp);
1da177e4 2790
1da177e4 2791 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2792 verify_redzone_free(cachep, objp);
1da177e4
LT
2793 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2794 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2795 }
d31676df
JK
2796 if (cachep->flags & SLAB_STORE_USER) {
2797 set_store_user_dirty(cachep);
7c0cb9c6 2798 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2799 }
1da177e4 2800
8456a648 2801 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2802
2803 BUG_ON(objnr >= cachep->num);
8456a648 2804 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2805
1da177e4 2806 if (cachep->flags & SLAB_POISON) {
1da177e4 2807 poison_obj(cachep, objp, POISON_FREE);
40b44137 2808 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2809 }
2810 return objp;
2811}
2812
1da177e4
LT
2813#else
2814#define kfree_debugcheck(x) do { } while(0)
2815#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2816#endif
2817
b03a017b
JK
2818static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2819 void **list)
2820{
2821#if DEBUG
2822 void *next = *list;
2823 void *objp;
2824
2825 while (next) {
2826 objp = next - obj_offset(cachep);
2827 next = *(void **)next;
2828 poison_obj(cachep, objp, POISON_FREE);
2829 }
2830#endif
2831}
2832
d8410234 2833static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2834 struct kmem_cache_node *n, struct page *page,
2835 void **list)
d8410234
JK
2836{
2837 /* move slabp to correct slabp list: */
2838 list_del(&page->lru);
b03a017b 2839 if (page->active == cachep->num) {
d8410234 2840 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2841 if (OBJFREELIST_SLAB(cachep)) {
2842#if DEBUG
2843 /* Poisoning will be done without holding the lock */
2844 if (cachep->flags & SLAB_POISON) {
2845 void **objp = page->freelist;
2846
2847 *objp = *list;
2848 *list = objp;
2849 }
2850#endif
2851 page->freelist = NULL;
2852 }
2853 } else
d8410234
JK
2854 list_add(&page->lru, &n->slabs_partial);
2855}
2856
f68f8ddd
JK
2857/* Try to find non-pfmemalloc slab if needed */
2858static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2859 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2860{
2861 if (!page)
2862 return NULL;
2863
2864 if (pfmemalloc)
2865 return page;
2866
2867 if (!PageSlabPfmemalloc(page))
2868 return page;
2869
2870 /* No need to keep pfmemalloc slab if we have enough free objects */
2871 if (n->free_objects > n->free_limit) {
2872 ClearPageSlabPfmemalloc(page);
2873 return page;
2874 }
2875
2876 /* Move pfmemalloc slab to the end of list to speed up next search */
2877 list_del(&page->lru);
bf00bd34 2878 if (!page->active) {
f68f8ddd 2879 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2880 n->free_slabs++;
f728b0a5 2881 } else
f68f8ddd
JK
2882 list_add_tail(&page->lru, &n->slabs_partial);
2883
2884 list_for_each_entry(page, &n->slabs_partial, lru) {
2885 if (!PageSlabPfmemalloc(page))
2886 return page;
2887 }
2888
f728b0a5 2889 n->free_touched = 1;
f68f8ddd 2890 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2891 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2892 n->free_slabs--;
f68f8ddd 2893 return page;
f728b0a5 2894 }
f68f8ddd
JK
2895 }
2896
2897 return NULL;
2898}
2899
2900static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2901{
2902 struct page *page;
2903
f728b0a5 2904 assert_spin_locked(&n->list_lock);
bf00bd34 2905 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2906 if (!page) {
2907 n->free_touched = 1;
bf00bd34
DR
2908 page = list_first_entry_or_null(&n->slabs_free, struct page,
2909 lru);
f728b0a5 2910 if (page)
bf00bd34 2911 n->free_slabs--;
7aa0d227
GT
2912 }
2913
f68f8ddd 2914 if (sk_memalloc_socks())
bf00bd34 2915 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2916
7aa0d227
GT
2917 return page;
2918}
2919
f68f8ddd
JK
2920static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2921 struct kmem_cache_node *n, gfp_t flags)
2922{
2923 struct page *page;
2924 void *obj;
2925 void *list = NULL;
2926
2927 if (!gfp_pfmemalloc_allowed(flags))
2928 return NULL;
2929
2930 spin_lock(&n->list_lock);
2931 page = get_first_slab(n, true);
2932 if (!page) {
2933 spin_unlock(&n->list_lock);
2934 return NULL;
2935 }
2936
2937 obj = slab_get_obj(cachep, page);
2938 n->free_objects--;
2939
2940 fixup_slab_list(cachep, n, page, &list);
2941
2942 spin_unlock(&n->list_lock);
2943 fixup_objfreelist_debug(cachep, &list);
2944
2945 return obj;
2946}
2947
213b4695
JK
2948/*
2949 * Slab list should be fixed up by fixup_slab_list() for existing slab
2950 * or cache_grow_end() for new slab
2951 */
2952static __always_inline int alloc_block(struct kmem_cache *cachep,
2953 struct array_cache *ac, struct page *page, int batchcount)
2954{
2955 /*
2956 * There must be at least one object available for
2957 * allocation.
2958 */
2959 BUG_ON(page->active >= cachep->num);
2960
2961 while (page->active < cachep->num && batchcount--) {
2962 STATS_INC_ALLOCED(cachep);
2963 STATS_INC_ACTIVE(cachep);
2964 STATS_SET_HIGH(cachep);
2965
2966 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2967 }
2968
2969 return batchcount;
2970}
2971
f68f8ddd 2972static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2973{
2974 int batchcount;
ce8eb6c4 2975 struct kmem_cache_node *n;
801faf0d 2976 struct array_cache *ac, *shared;
1ca4cb24 2977 int node;
b03a017b 2978 void *list = NULL;
76b342bd 2979 struct page *page;
1ca4cb24 2980
1da177e4 2981 check_irq_off();
7d6e6d09 2982 node = numa_mem_id();
f68f8ddd 2983
9a2dba4b 2984 ac = cpu_cache_get(cachep);
1da177e4
LT
2985 batchcount = ac->batchcount;
2986 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2987 /*
2988 * If there was little recent activity on this cache, then
2989 * perform only a partial refill. Otherwise we could generate
2990 * refill bouncing.
1da177e4
LT
2991 */
2992 batchcount = BATCHREFILL_LIMIT;
2993 }
18bf8541 2994 n = get_node(cachep, node);
e498be7d 2995
ce8eb6c4 2996 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2997 shared = READ_ONCE(n->shared);
2998 if (!n->free_objects && (!shared || !shared->avail))
2999 goto direct_grow;
3000
ce8eb6c4 3001 spin_lock(&n->list_lock);
801faf0d 3002 shared = READ_ONCE(n->shared);
1da177e4 3003
3ded175a 3004 /* See if we can refill from the shared array */
801faf0d
JK
3005 if (shared && transfer_objects(ac, shared, batchcount)) {
3006 shared->touched = 1;
3ded175a 3007 goto alloc_done;
44b57f1c 3008 }
3ded175a 3009
1da177e4 3010 while (batchcount > 0) {
1da177e4 3011 /* Get slab alloc is to come from. */
f68f8ddd 3012 page = get_first_slab(n, false);
7aa0d227
GT
3013 if (!page)
3014 goto must_grow;
1da177e4 3015
1da177e4 3016 check_spinlock_acquired(cachep);
714b8171 3017
213b4695 3018 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3019 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3020 }
3021
a737b3e2 3022must_grow:
ce8eb6c4 3023 n->free_objects -= ac->avail;
a737b3e2 3024alloc_done:
ce8eb6c4 3025 spin_unlock(&n->list_lock);
b03a017b 3026 fixup_objfreelist_debug(cachep, &list);
1da177e4 3027
801faf0d 3028direct_grow:
1da177e4 3029 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3030 /* Check if we can use obj in pfmemalloc slab */
3031 if (sk_memalloc_socks()) {
3032 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3033
3034 if (obj)
3035 return obj;
3036 }
3037
76b342bd 3038 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3039
76b342bd
JK
3040 /*
3041 * cache_grow_begin() can reenable interrupts,
3042 * then ac could change.
3043 */
9a2dba4b 3044 ac = cpu_cache_get(cachep);
213b4695
JK
3045 if (!ac->avail && page)
3046 alloc_block(cachep, ac, page, batchcount);
3047 cache_grow_end(cachep, page);
072bb0aa 3048
213b4695 3049 if (!ac->avail)
1da177e4 3050 return NULL;
1da177e4
LT
3051 }
3052 ac->touched = 1;
072bb0aa 3053
f68f8ddd 3054 return ac->entry[--ac->avail];
1da177e4
LT
3055}
3056
a737b3e2
AM
3057static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3058 gfp_t flags)
1da177e4 3059{
d0164adc 3060 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3061}
3062
3063#if DEBUG
a737b3e2 3064static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3065 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3066{
b28a02de 3067 if (!objp)
1da177e4 3068 return objp;
b28a02de 3069 if (cachep->flags & SLAB_POISON) {
1da177e4 3070 check_poison_obj(cachep, objp);
40b44137 3071 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3072 poison_obj(cachep, objp, POISON_INUSE);
3073 }
3074 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3075 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3076
3077 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3078 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3079 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3080 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3081 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3082 objp, *dbg_redzone1(cachep, objp),
3083 *dbg_redzone2(cachep, objp));
1da177e4
LT
3084 }
3085 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3086 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3087 }
03787301 3088
3dafccf2 3089 objp += obj_offset(cachep);
4f104934 3090 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3091 cachep->ctor(objp);
7ea466f2
TH
3092 if (ARCH_SLAB_MINALIGN &&
3093 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3094 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3095 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3096 }
1da177e4
LT
3097 return objp;
3098}
3099#else
3100#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3101#endif
3102
343e0d7a 3103static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3104{
b28a02de 3105 void *objp;
1da177e4
LT
3106 struct array_cache *ac;
3107
5c382300 3108 check_irq_off();
8a8b6502 3109
9a2dba4b 3110 ac = cpu_cache_get(cachep);
1da177e4 3111 if (likely(ac->avail)) {
1da177e4 3112 ac->touched = 1;
f68f8ddd 3113 objp = ac->entry[--ac->avail];
072bb0aa 3114
f68f8ddd
JK
3115 STATS_INC_ALLOCHIT(cachep);
3116 goto out;
1da177e4 3117 }
072bb0aa
MG
3118
3119 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3120 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3121 /*
3122 * the 'ac' may be updated by cache_alloc_refill(),
3123 * and kmemleak_erase() requires its correct value.
3124 */
3125 ac = cpu_cache_get(cachep);
3126
3127out:
d5cff635
CM
3128 /*
3129 * To avoid a false negative, if an object that is in one of the
3130 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3131 * treat the array pointers as a reference to the object.
3132 */
f3d8b53a
O
3133 if (objp)
3134 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3135 return objp;
3136}
3137
e498be7d 3138#ifdef CONFIG_NUMA
c61afb18 3139/*
2ad654bc 3140 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3141 *
3142 * If we are in_interrupt, then process context, including cpusets and
3143 * mempolicy, may not apply and should not be used for allocation policy.
3144 */
3145static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146{
3147 int nid_alloc, nid_here;
3148
765c4507 3149 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3150 return NULL;
7d6e6d09 3151 nid_alloc = nid_here = numa_mem_id();
c61afb18 3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3153 nid_alloc = cpuset_slab_spread_node();
c61afb18 3154 else if (current->mempolicy)
2a389610 3155 nid_alloc = mempolicy_slab_node();
c61afb18 3156 if (nid_alloc != nid_here)
8b98c169 3157 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3158 return NULL;
3159}
3160
765c4507
CL
3161/*
3162 * Fallback function if there was no memory available and no objects on a
3c517a61 3163 * certain node and fall back is permitted. First we scan all the
6a67368c 3164 * available node for available objects. If that fails then we
3c517a61
CL
3165 * perform an allocation without specifying a node. This allows the page
3166 * allocator to do its reclaim / fallback magic. We then insert the
3167 * slab into the proper nodelist and then allocate from it.
765c4507 3168 */
8c8cc2c1 3169static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3170{
8c8cc2c1 3171 struct zonelist *zonelist;
dd1a239f 3172 struct zoneref *z;
54a6eb5c
MG
3173 struct zone *zone;
3174 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3175 void *obj = NULL;
76b342bd 3176 struct page *page;
3c517a61 3177 int nid;
cc9a6c87 3178 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3179
3180 if (flags & __GFP_THISNODE)
3181 return NULL;
3182
cc9a6c87 3183retry_cpuset:
d26914d1 3184 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3185 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3186
3c517a61
CL
3187retry:
3188 /*
3189 * Look through allowed nodes for objects available
3190 * from existing per node queues.
3191 */
54a6eb5c
MG
3192 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3193 nid = zone_to_nid(zone);
aedb0eb1 3194
061d7074 3195 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3196 get_node(cache, nid) &&
3197 get_node(cache, nid)->free_objects) {
3c517a61 3198 obj = ____cache_alloc_node(cache,
4167e9b2 3199 gfp_exact_node(flags), nid);
481c5346
CL
3200 if (obj)
3201 break;
3202 }
3c517a61
CL
3203 }
3204
cfce6604 3205 if (!obj) {
3c517a61
CL
3206 /*
3207 * This allocation will be performed within the constraints
3208 * of the current cpuset / memory policy requirements.
3209 * We may trigger various forms of reclaim on the allowed
3210 * set and go into memory reserves if necessary.
3211 */
76b342bd
JK
3212 page = cache_grow_begin(cache, flags, numa_mem_id());
3213 cache_grow_end(cache, page);
3214 if (page) {
3215 nid = page_to_nid(page);
511e3a05
JK
3216 obj = ____cache_alloc_node(cache,
3217 gfp_exact_node(flags), nid);
0c3aa83e 3218
3c517a61 3219 /*
511e3a05
JK
3220 * Another processor may allocate the objects in
3221 * the slab since we are not holding any locks.
3c517a61 3222 */
511e3a05
JK
3223 if (!obj)
3224 goto retry;
3c517a61 3225 }
aedb0eb1 3226 }
cc9a6c87 3227
d26914d1 3228 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3229 goto retry_cpuset;
765c4507
CL
3230 return obj;
3231}
3232
e498be7d
CL
3233/*
3234 * A interface to enable slab creation on nodeid
1da177e4 3235 */
8b98c169 3236static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3237 int nodeid)
e498be7d 3238{
8456a648 3239 struct page *page;
ce8eb6c4 3240 struct kmem_cache_node *n;
213b4695 3241 void *obj = NULL;
b03a017b 3242 void *list = NULL;
b28a02de 3243
7c3fbbdd 3244 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3245 n = get_node(cachep, nodeid);
ce8eb6c4 3246 BUG_ON(!n);
b28a02de 3247
ca3b9b91 3248 check_irq_off();
ce8eb6c4 3249 spin_lock(&n->list_lock);
f68f8ddd 3250 page = get_first_slab(n, false);
7aa0d227
GT
3251 if (!page)
3252 goto must_grow;
b28a02de 3253
b28a02de 3254 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3255
3256 STATS_INC_NODEALLOCS(cachep);
3257 STATS_INC_ACTIVE(cachep);
3258 STATS_SET_HIGH(cachep);
3259
8456a648 3260 BUG_ON(page->active == cachep->num);
b28a02de 3261
260b61dd 3262 obj = slab_get_obj(cachep, page);
ce8eb6c4 3263 n->free_objects--;
b28a02de 3264
b03a017b 3265 fixup_slab_list(cachep, n, page, &list);
e498be7d 3266
ce8eb6c4 3267 spin_unlock(&n->list_lock);
b03a017b 3268 fixup_objfreelist_debug(cachep, &list);
213b4695 3269 return obj;
e498be7d 3270
a737b3e2 3271must_grow:
ce8eb6c4 3272 spin_unlock(&n->list_lock);
76b342bd 3273 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3274 if (page) {
3275 /* This slab isn't counted yet so don't update free_objects */
3276 obj = slab_get_obj(cachep, page);
3277 }
76b342bd 3278 cache_grow_end(cachep, page);
1da177e4 3279
213b4695 3280 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3281}
8c8cc2c1 3282
8c8cc2c1 3283static __always_inline void *
48356303 3284slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3285 unsigned long caller)
8c8cc2c1
PE
3286{
3287 unsigned long save_flags;
3288 void *ptr;
7d6e6d09 3289 int slab_node = numa_mem_id();
8c8cc2c1 3290
dcce284a 3291 flags &= gfp_allowed_mask;
011eceaf
JDB
3292 cachep = slab_pre_alloc_hook(cachep, flags);
3293 if (unlikely(!cachep))
824ebef1
AM
3294 return NULL;
3295
8c8cc2c1
PE
3296 cache_alloc_debugcheck_before(cachep, flags);
3297 local_irq_save(save_flags);
3298
eacbbae3 3299 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3300 nodeid = slab_node;
8c8cc2c1 3301
18bf8541 3302 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3303 /* Node not bootstrapped yet */
3304 ptr = fallback_alloc(cachep, flags);
3305 goto out;
3306 }
3307
7d6e6d09 3308 if (nodeid == slab_node) {
8c8cc2c1
PE
3309 /*
3310 * Use the locally cached objects if possible.
3311 * However ____cache_alloc does not allow fallback
3312 * to other nodes. It may fail while we still have
3313 * objects on other nodes available.
3314 */
3315 ptr = ____cache_alloc(cachep, flags);
3316 if (ptr)
3317 goto out;
3318 }
3319 /* ___cache_alloc_node can fall back to other nodes */
3320 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3321 out:
3322 local_irq_restore(save_flags);
3323 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3324
d5e3ed66
JDB
3325 if (unlikely(flags & __GFP_ZERO) && ptr)
3326 memset(ptr, 0, cachep->object_size);
d07dbea4 3327
d5e3ed66 3328 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3329 return ptr;
3330}
3331
3332static __always_inline void *
3333__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3334{
3335 void *objp;
3336
2ad654bc 3337 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3338 objp = alternate_node_alloc(cache, flags);
3339 if (objp)
3340 goto out;
3341 }
3342 objp = ____cache_alloc(cache, flags);
3343
3344 /*
3345 * We may just have run out of memory on the local node.
3346 * ____cache_alloc_node() knows how to locate memory on other nodes
3347 */
7d6e6d09
LS
3348 if (!objp)
3349 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3350
3351 out:
3352 return objp;
3353}
3354#else
3355
3356static __always_inline void *
3357__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3358{
3359 return ____cache_alloc(cachep, flags);
3360}
3361
3362#endif /* CONFIG_NUMA */
3363
3364static __always_inline void *
48356303 3365slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3366{
3367 unsigned long save_flags;
3368 void *objp;
3369
dcce284a 3370 flags &= gfp_allowed_mask;
011eceaf
JDB
3371 cachep = slab_pre_alloc_hook(cachep, flags);
3372 if (unlikely(!cachep))
824ebef1
AM
3373 return NULL;
3374
8c8cc2c1
PE
3375 cache_alloc_debugcheck_before(cachep, flags);
3376 local_irq_save(save_flags);
3377 objp = __do_cache_alloc(cachep, flags);
3378 local_irq_restore(save_flags);
3379 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3380 prefetchw(objp);
3381
d5e3ed66
JDB
3382 if (unlikely(flags & __GFP_ZERO) && objp)
3383 memset(objp, 0, cachep->object_size);
d07dbea4 3384
d5e3ed66 3385 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3386 return objp;
3387}
e498be7d
CL
3388
3389/*
5f0985bb 3390 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3391 * @list: List of detached free slabs should be freed by caller
e498be7d 3392 */
97654dfa
JK
3393static void free_block(struct kmem_cache *cachep, void **objpp,
3394 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3395{
3396 int i;
25c063fb 3397 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3398 struct page *page;
3399
3400 n->free_objects += nr_objects;
1da177e4
LT
3401
3402 for (i = 0; i < nr_objects; i++) {
072bb0aa 3403 void *objp;
8456a648 3404 struct page *page;
1da177e4 3405
072bb0aa
MG
3406 objp = objpp[i];
3407
8456a648 3408 page = virt_to_head_page(objp);
8456a648 3409 list_del(&page->lru);
ff69416e 3410 check_spinlock_acquired_node(cachep, node);
260b61dd 3411 slab_put_obj(cachep, page, objp);
1da177e4 3412 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3413
3414 /* fixup slab chains */
f728b0a5 3415 if (page->active == 0) {
6052b788 3416 list_add(&page->lru, &n->slabs_free);
f728b0a5 3417 n->free_slabs++;
f728b0a5 3418 } else {
1da177e4
LT
3419 /* Unconditionally move a slab to the end of the
3420 * partial list on free - maximum time for the
3421 * other objects to be freed, too.
3422 */
8456a648 3423 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3424 }
3425 }
6052b788
JK
3426
3427 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3428 n->free_objects -= cachep->num;
3429
3430 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3431 list_move(&page->lru, list);
f728b0a5 3432 n->free_slabs--;
bf00bd34 3433 n->total_slabs--;
6052b788 3434 }
1da177e4
LT
3435}
3436
343e0d7a 3437static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3438{
3439 int batchcount;
ce8eb6c4 3440 struct kmem_cache_node *n;
7d6e6d09 3441 int node = numa_mem_id();
97654dfa 3442 LIST_HEAD(list);
1da177e4
LT
3443
3444 batchcount = ac->batchcount;
260b61dd 3445
1da177e4 3446 check_irq_off();
18bf8541 3447 n = get_node(cachep, node);
ce8eb6c4
CL
3448 spin_lock(&n->list_lock);
3449 if (n->shared) {
3450 struct array_cache *shared_array = n->shared;
b28a02de 3451 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3452 if (max) {
3453 if (batchcount > max)
3454 batchcount = max;
e498be7d 3455 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3456 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3457 shared_array->avail += batchcount;
3458 goto free_done;
3459 }
3460 }
3461
97654dfa 3462 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3463free_done:
1da177e4
LT
3464#if STATS
3465 {
3466 int i = 0;
73c0219d 3467 struct page *page;
1da177e4 3468
73c0219d 3469 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3470 BUG_ON(page->active);
1da177e4
LT
3471
3472 i++;
1da177e4
LT
3473 }
3474 STATS_SET_FREEABLE(cachep, i);
3475 }
3476#endif
ce8eb6c4 3477 spin_unlock(&n->list_lock);
97654dfa 3478 slabs_destroy(cachep, &list);
1da177e4 3479 ac->avail -= batchcount;
a737b3e2 3480 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3481}
3482
3483/*
a737b3e2
AM
3484 * Release an obj back to its cache. If the obj has a constructed state, it must
3485 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3486 */
a947eb95 3487static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3488 unsigned long caller)
1da177e4 3489{
55834c59
AP
3490 /* Put the object into the quarantine, don't touch it for now. */
3491 if (kasan_slab_free(cachep, objp))
3492 return;
3493
3494 ___cache_free(cachep, objp, caller);
3495}
1da177e4 3496
55834c59
AP
3497void ___cache_free(struct kmem_cache *cachep, void *objp,
3498 unsigned long caller)
3499{
3500 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3501
1da177e4 3502 check_irq_off();
d5cff635 3503 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3504 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3505
1807a1aa
SS
3506 /*
3507 * Skip calling cache_free_alien() when the platform is not numa.
3508 * This will avoid cache misses that happen while accessing slabp (which
3509 * is per page memory reference) to get nodeid. Instead use a global
3510 * variable to skip the call, which is mostly likely to be present in
3511 * the cache.
3512 */
b6e68bc1 3513 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3514 return;
3515
3d880194 3516 if (ac->avail < ac->limit) {
1da177e4 3517 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3518 } else {
3519 STATS_INC_FREEMISS(cachep);
3520 cache_flusharray(cachep, ac);
1da177e4 3521 }
42c8c99c 3522
f68f8ddd
JK
3523 if (sk_memalloc_socks()) {
3524 struct page *page = virt_to_head_page(objp);
3525
3526 if (unlikely(PageSlabPfmemalloc(page))) {
3527 cache_free_pfmemalloc(cachep, page, objp);
3528 return;
3529 }
3530 }
3531
3532 ac->entry[ac->avail++] = objp;
1da177e4
LT
3533}
3534
3535/**
3536 * kmem_cache_alloc - Allocate an object
3537 * @cachep: The cache to allocate from.
3538 * @flags: See kmalloc().
3539 *
3540 * Allocate an object from this cache. The flags are only relevant
3541 * if the cache has no available objects.
3542 */
343e0d7a 3543void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3544{
48356303 3545 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3546
505f5dcb 3547 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3548 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3549 cachep->object_size, cachep->size, flags);
36555751
EGM
3550
3551 return ret;
1da177e4
LT
3552}
3553EXPORT_SYMBOL(kmem_cache_alloc);
3554
7b0501dd
JDB
3555static __always_inline void
3556cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3557 size_t size, void **p, unsigned long caller)
3558{
3559 size_t i;
3560
3561 for (i = 0; i < size; i++)
3562 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3563}
3564
865762a8 3565int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3566 void **p)
484748f0 3567{
2a777eac
JDB
3568 size_t i;
3569
3570 s = slab_pre_alloc_hook(s, flags);
3571 if (!s)
3572 return 0;
3573
3574 cache_alloc_debugcheck_before(s, flags);
3575
3576 local_irq_disable();
3577 for (i = 0; i < size; i++) {
3578 void *objp = __do_cache_alloc(s, flags);
3579
2a777eac
JDB
3580 if (unlikely(!objp))
3581 goto error;
3582 p[i] = objp;
3583 }
3584 local_irq_enable();
3585
7b0501dd
JDB
3586 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3587
2a777eac
JDB
3588 /* Clear memory outside IRQ disabled section */
3589 if (unlikely(flags & __GFP_ZERO))
3590 for (i = 0; i < size; i++)
3591 memset(p[i], 0, s->object_size);
3592
3593 slab_post_alloc_hook(s, flags, size, p);
3594 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3595 return size;
3596error:
3597 local_irq_enable();
7b0501dd 3598 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3599 slab_post_alloc_hook(s, flags, i, p);
3600 __kmem_cache_free_bulk(s, i, p);
3601 return 0;
484748f0
CL
3602}
3603EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3604
0f24f128 3605#ifdef CONFIG_TRACING
85beb586 3606void *
4052147c 3607kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3608{
85beb586
SR
3609 void *ret;
3610
48356303 3611 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3612
505f5dcb 3613 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3614 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3615 size, cachep->size, flags);
85beb586 3616 return ret;
36555751 3617}
85beb586 3618EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3619#endif
3620
1da177e4 3621#ifdef CONFIG_NUMA
d0d04b78
ZL
3622/**
3623 * kmem_cache_alloc_node - Allocate an object on the specified node
3624 * @cachep: The cache to allocate from.
3625 * @flags: See kmalloc().
3626 * @nodeid: node number of the target node.
3627 *
3628 * Identical to kmem_cache_alloc but it will allocate memory on the given
3629 * node, which can improve the performance for cpu bound structures.
3630 *
3631 * Fallback to other node is possible if __GFP_THISNODE is not set.
3632 */
8b98c169
CH
3633void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3634{
48356303 3635 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3636
505f5dcb 3637 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3638 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3639 cachep->object_size, cachep->size,
ca2b84cb 3640 flags, nodeid);
36555751
EGM
3641
3642 return ret;
8b98c169 3643}
1da177e4
LT
3644EXPORT_SYMBOL(kmem_cache_alloc_node);
3645
0f24f128 3646#ifdef CONFIG_TRACING
4052147c 3647void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3648 gfp_t flags,
4052147c
EG
3649 int nodeid,
3650 size_t size)
36555751 3651{
85beb586
SR
3652 void *ret;
3653
592f4145 3654 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3655
3656 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3657 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3658 size, cachep->size,
85beb586
SR
3659 flags, nodeid);
3660 return ret;
36555751 3661}
85beb586 3662EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3663#endif
3664
8b98c169 3665static __always_inline void *
7c0cb9c6 3666__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3667{
343e0d7a 3668 struct kmem_cache *cachep;
7ed2f9e6 3669 void *ret;
97e2bde4 3670
2c59dd65 3671 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3672 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3673 return cachep;
7ed2f9e6 3674 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3675 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3676
3677 return ret;
97e2bde4 3678}
8b98c169 3679
8b98c169
CH
3680void *__kmalloc_node(size_t size, gfp_t flags, int node)
3681{
7c0cb9c6 3682 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3683}
dbe5e69d 3684EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3685
3686void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3687 int node, unsigned long caller)
8b98c169 3688{
7c0cb9c6 3689 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3690}
3691EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3692#endif /* CONFIG_NUMA */
1da177e4
LT
3693
3694/**
800590f5 3695 * __do_kmalloc - allocate memory
1da177e4 3696 * @size: how many bytes of memory are required.
800590f5 3697 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3698 * @caller: function caller for debug tracking of the caller
1da177e4 3699 */
7fd6b141 3700static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3701 unsigned long caller)
1da177e4 3702{
343e0d7a 3703 struct kmem_cache *cachep;
36555751 3704 void *ret;
1da177e4 3705
2c59dd65 3706 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3707 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3708 return cachep;
48356303 3709 ret = slab_alloc(cachep, flags, caller);
36555751 3710
505f5dcb 3711 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3712 trace_kmalloc(caller, ret,
3b0efdfa 3713 size, cachep->size, flags);
36555751
EGM
3714
3715 return ret;
7fd6b141
PE
3716}
3717
7fd6b141
PE
3718void *__kmalloc(size_t size, gfp_t flags)
3719{
7c0cb9c6 3720 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3721}
3722EXPORT_SYMBOL(__kmalloc);
3723
ce71e27c 3724void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3725{
7c0cb9c6 3726 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3727}
3728EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3729
1da177e4
LT
3730/**
3731 * kmem_cache_free - Deallocate an object
3732 * @cachep: The cache the allocation was from.
3733 * @objp: The previously allocated object.
3734 *
3735 * Free an object which was previously allocated from this
3736 * cache.
3737 */
343e0d7a 3738void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3739{
3740 unsigned long flags;
b9ce5ef4
GC
3741 cachep = cache_from_obj(cachep, objp);
3742 if (!cachep)
3743 return;
1da177e4
LT
3744
3745 local_irq_save(flags);
d97d476b 3746 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3747 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3748 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3749 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3750 local_irq_restore(flags);
36555751 3751
ca2b84cb 3752 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3753}
3754EXPORT_SYMBOL(kmem_cache_free);
3755
e6cdb58d
JDB
3756void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3757{
3758 struct kmem_cache *s;
3759 size_t i;
3760
3761 local_irq_disable();
3762 for (i = 0; i < size; i++) {
3763 void *objp = p[i];
3764
ca257195
JDB
3765 if (!orig_s) /* called via kfree_bulk */
3766 s = virt_to_cache(objp);
3767 else
3768 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3769
3770 debug_check_no_locks_freed(objp, s->object_size);
3771 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3772 debug_check_no_obj_freed(objp, s->object_size);
3773
3774 __cache_free(s, objp, _RET_IP_);
3775 }
3776 local_irq_enable();
3777
3778 /* FIXME: add tracing */
3779}
3780EXPORT_SYMBOL(kmem_cache_free_bulk);
3781
1da177e4
LT
3782/**
3783 * kfree - free previously allocated memory
3784 * @objp: pointer returned by kmalloc.
3785 *
80e93eff
PE
3786 * If @objp is NULL, no operation is performed.
3787 *
1da177e4
LT
3788 * Don't free memory not originally allocated by kmalloc()
3789 * or you will run into trouble.
3790 */
3791void kfree(const void *objp)
3792{
343e0d7a 3793 struct kmem_cache *c;
1da177e4
LT
3794 unsigned long flags;
3795
2121db74
PE
3796 trace_kfree(_RET_IP_, objp);
3797
6cb8f913 3798 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3799 return;
3800 local_irq_save(flags);
3801 kfree_debugcheck(objp);
6ed5eb22 3802 c = virt_to_cache(objp);
8c138bc0
CL
3803 debug_check_no_locks_freed(objp, c->object_size);
3804
3805 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3806 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3807 local_irq_restore(flags);
3808}
3809EXPORT_SYMBOL(kfree);
3810
e498be7d 3811/*
ce8eb6c4 3812 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3813 */
c3d332b6 3814static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3815{
c3d332b6 3816 int ret;
e498be7d 3817 int node;
ce8eb6c4 3818 struct kmem_cache_node *n;
e498be7d 3819
9c09a95c 3820 for_each_online_node(node) {
c3d332b6
JK
3821 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3822 if (ret)
e498be7d
CL
3823 goto fail;
3824
e498be7d 3825 }
c3d332b6 3826
cafeb02e 3827 return 0;
0718dc2a 3828
a737b3e2 3829fail:
3b0efdfa 3830 if (!cachep->list.next) {
0718dc2a
CL
3831 /* Cache is not active yet. Roll back what we did */
3832 node--;
3833 while (node >= 0) {
18bf8541
CL
3834 n = get_node(cachep, node);
3835 if (n) {
ce8eb6c4
CL
3836 kfree(n->shared);
3837 free_alien_cache(n->alien);
3838 kfree(n);
6a67368c 3839 cachep->node[node] = NULL;
0718dc2a
CL
3840 }
3841 node--;
3842 }
3843 }
cafeb02e 3844 return -ENOMEM;
e498be7d
CL
3845}
3846
18004c5d 3847/* Always called with the slab_mutex held */
943a451a 3848static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3849 int batchcount, int shared, gfp_t gfp)
1da177e4 3850{
bf0dea23
JK
3851 struct array_cache __percpu *cpu_cache, *prev;
3852 int cpu;
1da177e4 3853
bf0dea23
JK
3854 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3855 if (!cpu_cache)
d2e7b7d0
SS
3856 return -ENOMEM;
3857
bf0dea23
JK
3858 prev = cachep->cpu_cache;
3859 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3860 /*
3861 * Without a previous cpu_cache there's no need to synchronize remote
3862 * cpus, so skip the IPIs.
3863 */
3864 if (prev)
3865 kick_all_cpus_sync();
e498be7d 3866
1da177e4 3867 check_irq_on();
1da177e4
LT
3868 cachep->batchcount = batchcount;
3869 cachep->limit = limit;
e498be7d 3870 cachep->shared = shared;
1da177e4 3871
bf0dea23 3872 if (!prev)
c3d332b6 3873 goto setup_node;
bf0dea23
JK
3874
3875 for_each_online_cpu(cpu) {
97654dfa 3876 LIST_HEAD(list);
18bf8541
CL
3877 int node;
3878 struct kmem_cache_node *n;
bf0dea23 3879 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3880
bf0dea23 3881 node = cpu_to_mem(cpu);
18bf8541
CL
3882 n = get_node(cachep, node);
3883 spin_lock_irq(&n->list_lock);
bf0dea23 3884 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3885 spin_unlock_irq(&n->list_lock);
97654dfa 3886 slabs_destroy(cachep, &list);
1da177e4 3887 }
bf0dea23
JK
3888 free_percpu(prev);
3889
c3d332b6
JK
3890setup_node:
3891 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3892}
3893
943a451a
GC
3894static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3895 int batchcount, int shared, gfp_t gfp)
3896{
3897 int ret;
426589f5 3898 struct kmem_cache *c;
943a451a
GC
3899
3900 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3901
3902 if (slab_state < FULL)
3903 return ret;
3904
3905 if ((ret < 0) || !is_root_cache(cachep))
3906 return ret;
3907
426589f5
VD
3908 lockdep_assert_held(&slab_mutex);
3909 for_each_memcg_cache(c, cachep) {
3910 /* return value determined by the root cache only */
3911 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3912 }
3913
3914 return ret;
3915}
3916
18004c5d 3917/* Called with slab_mutex held always */
83b519e8 3918static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3919{
3920 int err;
943a451a
GC
3921 int limit = 0;
3922 int shared = 0;
3923 int batchcount = 0;
3924
7c00fce9 3925 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3926 if (err)
3927 goto end;
3928
943a451a
GC
3929 if (!is_root_cache(cachep)) {
3930 struct kmem_cache *root = memcg_root_cache(cachep);
3931 limit = root->limit;
3932 shared = root->shared;
3933 batchcount = root->batchcount;
3934 }
1da177e4 3935
943a451a
GC
3936 if (limit && shared && batchcount)
3937 goto skip_setup;
a737b3e2
AM
3938 /*
3939 * The head array serves three purposes:
1da177e4
LT
3940 * - create a LIFO ordering, i.e. return objects that are cache-warm
3941 * - reduce the number of spinlock operations.
a737b3e2 3942 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3943 * bufctl chains: array operations are cheaper.
3944 * The numbers are guessed, we should auto-tune as described by
3945 * Bonwick.
3946 */
3b0efdfa 3947 if (cachep->size > 131072)
1da177e4 3948 limit = 1;
3b0efdfa 3949 else if (cachep->size > PAGE_SIZE)
1da177e4 3950 limit = 8;
3b0efdfa 3951 else if (cachep->size > 1024)
1da177e4 3952 limit = 24;
3b0efdfa 3953 else if (cachep->size > 256)
1da177e4
LT
3954 limit = 54;
3955 else
3956 limit = 120;
3957
a737b3e2
AM
3958 /*
3959 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3960 * allocation behaviour: Most allocs on one cpu, most free operations
3961 * on another cpu. For these cases, an efficient object passing between
3962 * cpus is necessary. This is provided by a shared array. The array
3963 * replaces Bonwick's magazine layer.
3964 * On uniprocessor, it's functionally equivalent (but less efficient)
3965 * to a larger limit. Thus disabled by default.
3966 */
3967 shared = 0;
3b0efdfa 3968 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3969 shared = 8;
1da177e4
LT
3970
3971#if DEBUG
a737b3e2
AM
3972 /*
3973 * With debugging enabled, large batchcount lead to excessively long
3974 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3975 */
3976 if (limit > 32)
3977 limit = 32;
3978#endif
943a451a
GC
3979 batchcount = (limit + 1) / 2;
3980skip_setup:
3981 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3982end:
1da177e4 3983 if (err)
1170532b 3984 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3985 cachep->name, -err);
2ed3a4ef 3986 return err;
1da177e4
LT
3987}
3988
1b55253a 3989/*
ce8eb6c4
CL
3990 * Drain an array if it contains any elements taking the node lock only if
3991 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3992 * if drain_array() is used on the shared array.
1b55253a 3993 */
ce8eb6c4 3994static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3995 struct array_cache *ac, int node)
1da177e4 3996{
97654dfa 3997 LIST_HEAD(list);
18726ca8
JK
3998
3999 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4000 check_mutex_acquired();
1da177e4 4001
1b55253a
CL
4002 if (!ac || !ac->avail)
4003 return;
18726ca8
JK
4004
4005 if (ac->touched) {
1da177e4 4006 ac->touched = 0;
18726ca8 4007 return;
1da177e4 4008 }
18726ca8
JK
4009
4010 spin_lock_irq(&n->list_lock);
4011 drain_array_locked(cachep, ac, node, false, &list);
4012 spin_unlock_irq(&n->list_lock);
4013
4014 slabs_destroy(cachep, &list);
1da177e4
LT
4015}
4016
4017/**
4018 * cache_reap - Reclaim memory from caches.
05fb6bf0 4019 * @w: work descriptor
1da177e4
LT
4020 *
4021 * Called from workqueue/eventd every few seconds.
4022 * Purpose:
4023 * - clear the per-cpu caches for this CPU.
4024 * - return freeable pages to the main free memory pool.
4025 *
a737b3e2
AM
4026 * If we cannot acquire the cache chain mutex then just give up - we'll try
4027 * again on the next iteration.
1da177e4 4028 */
7c5cae36 4029static void cache_reap(struct work_struct *w)
1da177e4 4030{
7a7c381d 4031 struct kmem_cache *searchp;
ce8eb6c4 4032 struct kmem_cache_node *n;
7d6e6d09 4033 int node = numa_mem_id();
bf6aede7 4034 struct delayed_work *work = to_delayed_work(w);
1da177e4 4035
18004c5d 4036 if (!mutex_trylock(&slab_mutex))
1da177e4 4037 /* Give up. Setup the next iteration. */
7c5cae36 4038 goto out;
1da177e4 4039
18004c5d 4040 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4041 check_irq_on();
4042
35386e3b 4043 /*
ce8eb6c4 4044 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4045 * have established with reasonable certainty that
4046 * we can do some work if the lock was obtained.
4047 */
18bf8541 4048 n = get_node(searchp, node);
35386e3b 4049
ce8eb6c4 4050 reap_alien(searchp, n);
1da177e4 4051
18726ca8 4052 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4053
35386e3b
CL
4054 /*
4055 * These are racy checks but it does not matter
4056 * if we skip one check or scan twice.
4057 */
ce8eb6c4 4058 if (time_after(n->next_reap, jiffies))
35386e3b 4059 goto next;
1da177e4 4060
5f0985bb 4061 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4062
18726ca8 4063 drain_array(searchp, n, n->shared, node);
1da177e4 4064
ce8eb6c4
CL
4065 if (n->free_touched)
4066 n->free_touched = 0;
ed11d9eb
CL
4067 else {
4068 int freed;
1da177e4 4069
ce8eb6c4 4070 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4071 5 * searchp->num - 1) / (5 * searchp->num));
4072 STATS_ADD_REAPED(searchp, freed);
4073 }
35386e3b 4074next:
1da177e4
LT
4075 cond_resched();
4076 }
4077 check_irq_on();
18004c5d 4078 mutex_unlock(&slab_mutex);
8fce4d8e 4079 next_reap_node();
7c5cae36 4080out:
a737b3e2 4081 /* Set up the next iteration */
5f0985bb 4082 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4083}
4084
0d7561c6 4085void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4086{
f728b0a5 4087 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4088 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4089 unsigned long free_slabs = 0;
e498be7d 4090 int node;
ce8eb6c4 4091 struct kmem_cache_node *n;
1da177e4 4092
18bf8541 4093 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4094 check_irq_on();
ce8eb6c4 4095 spin_lock_irq(&n->list_lock);
e498be7d 4096
bf00bd34
DR
4097 total_slabs += n->total_slabs;
4098 free_slabs += n->free_slabs;
f728b0a5 4099 free_objs += n->free_objects;
07a63c41 4100
ce8eb6c4
CL
4101 if (n->shared)
4102 shared_avail += n->shared->avail;
e498be7d 4103
ce8eb6c4 4104 spin_unlock_irq(&n->list_lock);
1da177e4 4105 }
bf00bd34
DR
4106 num_objs = total_slabs * cachep->num;
4107 active_slabs = total_slabs - free_slabs;
f728b0a5 4108 active_objs = num_objs - free_objs;
1da177e4 4109
0d7561c6
GC
4110 sinfo->active_objs = active_objs;
4111 sinfo->num_objs = num_objs;
4112 sinfo->active_slabs = active_slabs;
bf00bd34 4113 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4114 sinfo->shared_avail = shared_avail;
4115 sinfo->limit = cachep->limit;
4116 sinfo->batchcount = cachep->batchcount;
4117 sinfo->shared = cachep->shared;
4118 sinfo->objects_per_slab = cachep->num;
4119 sinfo->cache_order = cachep->gfporder;
4120}
4121
4122void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4123{
1da177e4 4124#if STATS
ce8eb6c4 4125 { /* node stats */
1da177e4
LT
4126 unsigned long high = cachep->high_mark;
4127 unsigned long allocs = cachep->num_allocations;
4128 unsigned long grown = cachep->grown;
4129 unsigned long reaped = cachep->reaped;
4130 unsigned long errors = cachep->errors;
4131 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4132 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4133 unsigned long node_frees = cachep->node_frees;
fb7faf33 4134 unsigned long overflows = cachep->node_overflow;
1da177e4 4135
756a025f 4136 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4137 allocs, high, grown,
4138 reaped, errors, max_freeable, node_allocs,
4139 node_frees, overflows);
1da177e4
LT
4140 }
4141 /* cpu stats */
4142 {
4143 unsigned long allochit = atomic_read(&cachep->allochit);
4144 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4145 unsigned long freehit = atomic_read(&cachep->freehit);
4146 unsigned long freemiss = atomic_read(&cachep->freemiss);
4147
4148 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4149 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4150 }
4151#endif
1da177e4
LT
4152}
4153
1da177e4
LT
4154#define MAX_SLABINFO_WRITE 128
4155/**
4156 * slabinfo_write - Tuning for the slab allocator
4157 * @file: unused
4158 * @buffer: user buffer
4159 * @count: data length
4160 * @ppos: unused
4161 */
b7454ad3 4162ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4163 size_t count, loff_t *ppos)
1da177e4 4164{
b28a02de 4165 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4166 int limit, batchcount, shared, res;
7a7c381d 4167 struct kmem_cache *cachep;
b28a02de 4168
1da177e4
LT
4169 if (count > MAX_SLABINFO_WRITE)
4170 return -EINVAL;
4171 if (copy_from_user(&kbuf, buffer, count))
4172 return -EFAULT;
b28a02de 4173 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4174
4175 tmp = strchr(kbuf, ' ');
4176 if (!tmp)
4177 return -EINVAL;
4178 *tmp = '\0';
4179 tmp++;
4180 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4181 return -EINVAL;
4182
4183 /* Find the cache in the chain of caches. */
18004c5d 4184 mutex_lock(&slab_mutex);
1da177e4 4185 res = -EINVAL;
18004c5d 4186 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4187 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4188 if (limit < 1 || batchcount < 1 ||
4189 batchcount > limit || shared < 0) {
e498be7d 4190 res = 0;
1da177e4 4191 } else {
e498be7d 4192 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4193 batchcount, shared,
4194 GFP_KERNEL);
1da177e4
LT
4195 }
4196 break;
4197 }
4198 }
18004c5d 4199 mutex_unlock(&slab_mutex);
1da177e4
LT
4200 if (res >= 0)
4201 res = count;
4202 return res;
4203}
871751e2
AV
4204
4205#ifdef CONFIG_DEBUG_SLAB_LEAK
4206
871751e2
AV
4207static inline int add_caller(unsigned long *n, unsigned long v)
4208{
4209 unsigned long *p;
4210 int l;
4211 if (!v)
4212 return 1;
4213 l = n[1];
4214 p = n + 2;
4215 while (l) {
4216 int i = l/2;
4217 unsigned long *q = p + 2 * i;
4218 if (*q == v) {
4219 q[1]++;
4220 return 1;
4221 }
4222 if (*q > v) {
4223 l = i;
4224 } else {
4225 p = q + 2;
4226 l -= i + 1;
4227 }
4228 }
4229 if (++n[1] == n[0])
4230 return 0;
4231 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4232 p[0] = v;
4233 p[1] = 1;
4234 return 1;
4235}
4236
8456a648
JK
4237static void handle_slab(unsigned long *n, struct kmem_cache *c,
4238 struct page *page)
871751e2
AV
4239{
4240 void *p;
d31676df
JK
4241 int i, j;
4242 unsigned long v;
b1cb0982 4243
871751e2
AV
4244 if (n[0] == n[1])
4245 return;
8456a648 4246 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4247 bool active = true;
4248
4249 for (j = page->active; j < c->num; j++) {
4250 if (get_free_obj(page, j) == i) {
4251 active = false;
4252 break;
4253 }
4254 }
4255
4256 if (!active)
871751e2 4257 continue;
b1cb0982 4258
d31676df
JK
4259 /*
4260 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4261 * mapping is established when actual object allocation and
4262 * we could mistakenly access the unmapped object in the cpu
4263 * cache.
4264 */
4265 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4266 continue;
4267
4268 if (!add_caller(n, v))
871751e2
AV
4269 return;
4270 }
4271}
4272
4273static void show_symbol(struct seq_file *m, unsigned long address)
4274{
4275#ifdef CONFIG_KALLSYMS
871751e2 4276 unsigned long offset, size;
9281acea 4277 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4278
a5c43dae 4279 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4280 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4281 if (modname[0])
871751e2
AV
4282 seq_printf(m, " [%s]", modname);
4283 return;
4284 }
4285#endif
4286 seq_printf(m, "%p", (void *)address);
4287}
4288
4289static int leaks_show(struct seq_file *m, void *p)
4290{
0672aa7c 4291 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4292 struct page *page;
ce8eb6c4 4293 struct kmem_cache_node *n;
871751e2 4294 const char *name;
db845067 4295 unsigned long *x = m->private;
871751e2
AV
4296 int node;
4297 int i;
4298
4299 if (!(cachep->flags & SLAB_STORE_USER))
4300 return 0;
4301 if (!(cachep->flags & SLAB_RED_ZONE))
4302 return 0;
4303
d31676df
JK
4304 /*
4305 * Set store_user_clean and start to grab stored user information
4306 * for all objects on this cache. If some alloc/free requests comes
4307 * during the processing, information would be wrong so restart
4308 * whole processing.
4309 */
4310 do {
4311 set_store_user_clean(cachep);
4312 drain_cpu_caches(cachep);
4313
4314 x[1] = 0;
871751e2 4315
d31676df 4316 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4317
d31676df
JK
4318 check_irq_on();
4319 spin_lock_irq(&n->list_lock);
871751e2 4320
d31676df
JK
4321 list_for_each_entry(page, &n->slabs_full, lru)
4322 handle_slab(x, cachep, page);
4323 list_for_each_entry(page, &n->slabs_partial, lru)
4324 handle_slab(x, cachep, page);
4325 spin_unlock_irq(&n->list_lock);
4326 }
4327 } while (!is_store_user_clean(cachep));
871751e2 4328
871751e2 4329 name = cachep->name;
db845067 4330 if (x[0] == x[1]) {
871751e2 4331 /* Increase the buffer size */
18004c5d 4332 mutex_unlock(&slab_mutex);
db845067 4333 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4334 if (!m->private) {
4335 /* Too bad, we are really out */
db845067 4336 m->private = x;
18004c5d 4337 mutex_lock(&slab_mutex);
871751e2
AV
4338 return -ENOMEM;
4339 }
db845067
CL
4340 *(unsigned long *)m->private = x[0] * 2;
4341 kfree(x);
18004c5d 4342 mutex_lock(&slab_mutex);
871751e2
AV
4343 /* Now make sure this entry will be retried */
4344 m->count = m->size;
4345 return 0;
4346 }
db845067
CL
4347 for (i = 0; i < x[1]; i++) {
4348 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4349 show_symbol(m, x[2*i+2]);
871751e2
AV
4350 seq_putc(m, '\n');
4351 }
d2e7b7d0 4352
871751e2
AV
4353 return 0;
4354}
4355
a0ec95a8 4356static const struct seq_operations slabstats_op = {
1df3b26f 4357 .start = slab_start,
276a2439
WL
4358 .next = slab_next,
4359 .stop = slab_stop,
871751e2
AV
4360 .show = leaks_show,
4361};
a0ec95a8
AD
4362
4363static int slabstats_open(struct inode *inode, struct file *file)
4364{
b208ce32
RJ
4365 unsigned long *n;
4366
4367 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4368 if (!n)
4369 return -ENOMEM;
4370
4371 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4372
4373 return 0;
a0ec95a8
AD
4374}
4375
4376static const struct file_operations proc_slabstats_operations = {
4377 .open = slabstats_open,
4378 .read = seq_read,
4379 .llseek = seq_lseek,
4380 .release = seq_release_private,
4381};
4382#endif
4383
4384static int __init slab_proc_init(void)
4385{
4386#ifdef CONFIG_DEBUG_SLAB_LEAK
4387 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4388#endif
a0ec95a8
AD
4389 return 0;
4390}
4391module_init(slab_proc_init);
1da177e4 4392
04385fc5
KC
4393#ifdef CONFIG_HARDENED_USERCOPY
4394/*
4395 * Rejects objects that are incorrectly sized.
4396 *
4397 * Returns NULL if check passes, otherwise const char * to name of cache
4398 * to indicate an error.
4399 */
4400const char *__check_heap_object(const void *ptr, unsigned long n,
4401 struct page *page)
4402{
4403 struct kmem_cache *cachep;
4404 unsigned int objnr;
4405 unsigned long offset;
4406
4407 /* Find and validate object. */
4408 cachep = page->slab_cache;
4409 objnr = obj_to_index(cachep, page, (void *)ptr);
4410 BUG_ON(objnr >= cachep->num);
4411
4412 /* Find offset within object. */
4413 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4414
4415 /* Allow address range falling entirely within object size. */
4416 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4417 return NULL;
4418
4419 return cachep->name;
4420}
4421#endif /* CONFIG_HARDENED_USERCOPY */
4422
00e145b6
MS
4423/**
4424 * ksize - get the actual amount of memory allocated for a given object
4425 * @objp: Pointer to the object
4426 *
4427 * kmalloc may internally round up allocations and return more memory
4428 * than requested. ksize() can be used to determine the actual amount of
4429 * memory allocated. The caller may use this additional memory, even though
4430 * a smaller amount of memory was initially specified with the kmalloc call.
4431 * The caller must guarantee that objp points to a valid object previously
4432 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4433 * must not be freed during the duration of the call.
4434 */
fd76bab2 4435size_t ksize(const void *objp)
1da177e4 4436{
7ed2f9e6
AP
4437 size_t size;
4438
ef8b4520
CL
4439 BUG_ON(!objp);
4440 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4441 return 0;
1da177e4 4442
7ed2f9e6
AP
4443 size = virt_to_cache(objp)->object_size;
4444 /* We assume that ksize callers could use the whole allocated area,
4445 * so we need to unpoison this area.
4446 */
4ebb31a4 4447 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4448
4449 return size;
1da177e4 4450}
b1aabecd 4451EXPORT_SYMBOL(ksize);