]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab.c
ALSA: hda/realtek - Fix silent output on MSI-GL73
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 443 slab_flags_t flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
1fe00d50
JK
566 if (ac) {
567 ac->avail = 0;
568 ac->limit = limit;
569 ac->batchcount = batch;
570 ac->touched = 0;
1da177e4 571 }
1fe00d50
JK
572}
573
574static struct array_cache *alloc_arraycache(int node, int entries,
575 int batchcount, gfp_t gfp)
576{
5e804789 577 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
578 struct array_cache *ac = NULL;
579
580 ac = kmalloc_node(memsize, gfp, node);
2a482d87
QC
581 /*
582 * The array_cache structures contain pointers to free object.
583 * However, when such objects are allocated or transferred to another
584 * cache the pointers are not cleared and they could be counted as
585 * valid references during a kmemleak scan. Therefore, kmemleak must
586 * not scan such objects.
587 */
588 kmemleak_no_scan(ac);
1fe00d50
JK
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
a527aabb 682 if (alc) {
2a482d87 683 kmemleak_no_scan(alc);
a527aabb
CL
684 init_arraycache(&alc->ac, entries, batch);
685 spin_lock_init(&alc->lock);
686 }
c8522a3a
JK
687 return alc;
688}
689
690static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 691{
c8522a3a 692 struct alien_cache **alc_ptr;
5e804789 693 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
694 int i;
695
696 if (limit > 1)
697 limit = 12;
c8522a3a
JK
698 alc_ptr = kzalloc_node(memsize, gfp, node);
699 if (!alc_ptr)
700 return NULL;
701
702 for_each_node(i) {
703 if (i == node || !node_online(i))
704 continue;
705 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
706 if (!alc_ptr[i]) {
707 for (i--; i >= 0; i--)
708 kfree(alc_ptr[i]);
709 kfree(alc_ptr);
710 return NULL;
e498be7d
CL
711 }
712 }
c8522a3a 713 return alc_ptr;
e498be7d
CL
714}
715
c8522a3a 716static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
717{
718 int i;
719
c8522a3a 720 if (!alc_ptr)
e498be7d 721 return;
e498be7d 722 for_each_node(i)
c8522a3a
JK
723 kfree(alc_ptr[i]);
724 kfree(alc_ptr);
e498be7d
CL
725}
726
343e0d7a 727static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
728 struct array_cache *ac, int node,
729 struct list_head *list)
e498be7d 730{
18bf8541 731 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
732
733 if (ac->avail) {
ce8eb6c4 734 spin_lock(&n->list_lock);
e00946fe
CL
735 /*
736 * Stuff objects into the remote nodes shared array first.
737 * That way we could avoid the overhead of putting the objects
738 * into the free lists and getting them back later.
739 */
ce8eb6c4
CL
740 if (n->shared)
741 transfer_objects(n->shared, ac, ac->limit);
e00946fe 742
833b706c 743 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 744 ac->avail = 0;
ce8eb6c4 745 spin_unlock(&n->list_lock);
e498be7d
CL
746 }
747}
748
8fce4d8e
CL
749/*
750 * Called from cache_reap() to regularly drain alien caches round robin.
751 */
ce8eb6c4 752static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 753{
909ea964 754 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 755
ce8eb6c4 756 if (n->alien) {
c8522a3a
JK
757 struct alien_cache *alc = n->alien[node];
758 struct array_cache *ac;
759
760 if (alc) {
761 ac = &alc->ac;
49dfc304 762 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
763 LIST_HEAD(list);
764
765 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 766 spin_unlock_irq(&alc->lock);
833b706c 767 slabs_destroy(cachep, &list);
c8522a3a 768 }
8fce4d8e
CL
769 }
770 }
771}
772
a737b3e2 773static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 774 struct alien_cache **alien)
e498be7d 775{
b28a02de 776 int i = 0;
c8522a3a 777 struct alien_cache *alc;
e498be7d
CL
778 struct array_cache *ac;
779 unsigned long flags;
780
781 for_each_online_node(i) {
c8522a3a
JK
782 alc = alien[i];
783 if (alc) {
833b706c
JK
784 LIST_HEAD(list);
785
c8522a3a 786 ac = &alc->ac;
49dfc304 787 spin_lock_irqsave(&alc->lock, flags);
833b706c 788 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 789 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 790 slabs_destroy(cachep, &list);
e498be7d
CL
791 }
792 }
793}
729bd0b7 794
25c4f304
JK
795static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
796 int node, int page_node)
729bd0b7 797{
ce8eb6c4 798 struct kmem_cache_node *n;
c8522a3a
JK
799 struct alien_cache *alien = NULL;
800 struct array_cache *ac;
97654dfa 801 LIST_HEAD(list);
1ca4cb24 802
18bf8541 803 n = get_node(cachep, node);
729bd0b7 804 STATS_INC_NODEFREES(cachep);
25c4f304
JK
805 if (n->alien && n->alien[page_node]) {
806 alien = n->alien[page_node];
c8522a3a 807 ac = &alien->ac;
49dfc304 808 spin_lock(&alien->lock);
c8522a3a 809 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 810 STATS_INC_ACOVERFLOW(cachep);
25c4f304 811 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 812 }
f68f8ddd 813 ac->entry[ac->avail++] = objp;
49dfc304 814 spin_unlock(&alien->lock);
833b706c 815 slabs_destroy(cachep, &list);
729bd0b7 816 } else {
25c4f304 817 n = get_node(cachep, page_node);
18bf8541 818 spin_lock(&n->list_lock);
25c4f304 819 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 820 spin_unlock(&n->list_lock);
97654dfa 821 slabs_destroy(cachep, &list);
729bd0b7
PE
822 }
823 return 1;
824}
25c4f304
JK
825
826static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
827{
828 int page_node = page_to_nid(virt_to_page(objp));
829 int node = numa_mem_id();
830 /*
831 * Make sure we are not freeing a object from another node to the array
832 * cache on this cpu.
833 */
834 if (likely(node == page_node))
835 return 0;
836
837 return __cache_free_alien(cachep, objp, node, page_node);
838}
4167e9b2
DR
839
840/*
444eb2a4
MG
841 * Construct gfp mask to allocate from a specific node but do not reclaim or
842 * warn about failures.
4167e9b2
DR
843 */
844static inline gfp_t gfp_exact_node(gfp_t flags)
845{
444eb2a4 846 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 847}
e498be7d
CL
848#endif
849
ded0ecf6
JK
850static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
851{
852 struct kmem_cache_node *n;
853
854 /*
855 * Set up the kmem_cache_node for cpu before we can
856 * begin anything. Make sure some other cpu on this
857 * node has not already allocated this
858 */
859 n = get_node(cachep, node);
860 if (n) {
861 spin_lock_irq(&n->list_lock);
862 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
863 cachep->num;
864 spin_unlock_irq(&n->list_lock);
865
866 return 0;
867 }
868
869 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
870 if (!n)
871 return -ENOMEM;
872
873 kmem_cache_node_init(n);
874 n->next_reap = jiffies + REAPTIMEOUT_NODE +
875 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
876
877 n->free_limit =
878 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
879
880 /*
881 * The kmem_cache_nodes don't come and go as CPUs
882 * come and go. slab_mutex is sufficient
883 * protection here.
884 */
885 cachep->node[node] = n;
886
887 return 0;
888}
889
6731d4f1 890#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 891/*
6a67368c 892 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 894 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 895 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
896 * already in use.
897 *
18004c5d 898 * Must hold slab_mutex.
8f9f8d9e 899 */
6a67368c 900static int init_cache_node_node(int node)
8f9f8d9e 901{
ded0ecf6 902 int ret;
8f9f8d9e 903 struct kmem_cache *cachep;
8f9f8d9e 904
18004c5d 905 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
8f9f8d9e 909 }
ded0ecf6 910
8f9f8d9e
DR
911 return 0;
912}
6731d4f1 913#endif
8f9f8d9e 914
c3d332b6
JK
915static int setup_kmem_cache_node(struct kmem_cache *cachep,
916 int node, gfp_t gfp, bool force_change)
917{
918 int ret = -ENOMEM;
919 struct kmem_cache_node *n;
920 struct array_cache *old_shared = NULL;
921 struct array_cache *new_shared = NULL;
922 struct alien_cache **new_alien = NULL;
923 LIST_HEAD(list);
924
925 if (use_alien_caches) {
926 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
927 if (!new_alien)
928 goto fail;
929 }
930
931 if (cachep->shared) {
932 new_shared = alloc_arraycache(node,
933 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
934 if (!new_shared)
935 goto fail;
936 }
937
938 ret = init_cache_node(cachep, node, gfp);
939 if (ret)
940 goto fail;
941
942 n = get_node(cachep, node);
943 spin_lock_irq(&n->list_lock);
944 if (n->shared && force_change) {
945 free_block(cachep, n->shared->entry,
946 n->shared->avail, node, &list);
947 n->shared->avail = 0;
948 }
949
950 if (!n->shared || force_change) {
951 old_shared = n->shared;
952 n->shared = new_shared;
953 new_shared = NULL;
954 }
955
956 if (!n->alien) {
957 n->alien = new_alien;
958 new_alien = NULL;
959 }
960
961 spin_unlock_irq(&n->list_lock);
962 slabs_destroy(cachep, &list);
963
801faf0d
JK
964 /*
965 * To protect lockless access to n->shared during irq disabled context.
966 * If n->shared isn't NULL in irq disabled context, accessing to it is
967 * guaranteed to be valid until irq is re-enabled, because it will be
968 * freed after synchronize_sched().
969 */
86d9f485 970 if (old_shared && force_change)
801faf0d
JK
971 synchronize_sched();
972
c3d332b6
JK
973fail:
974 kfree(old_shared);
975 kfree(new_shared);
976 free_alien_cache(new_alien);
977
978 return ret;
979}
980
6731d4f1
SAS
981#ifdef CONFIG_SMP
982
0db0628d 983static void cpuup_canceled(long cpu)
fbf1e473
AM
984{
985 struct kmem_cache *cachep;
ce8eb6c4 986 struct kmem_cache_node *n = NULL;
7d6e6d09 987 int node = cpu_to_mem(cpu);
a70f7302 988 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 989
18004c5d 990 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
991 struct array_cache *nc;
992 struct array_cache *shared;
c8522a3a 993 struct alien_cache **alien;
97654dfa 994 LIST_HEAD(list);
fbf1e473 995
18bf8541 996 n = get_node(cachep, node);
ce8eb6c4 997 if (!n)
bf0dea23 998 continue;
fbf1e473 999
ce8eb6c4 1000 spin_lock_irq(&n->list_lock);
fbf1e473 1001
ce8eb6c4
CL
1002 /* Free limit for this kmem_cache_node */
1003 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1004
1005 /* cpu is dead; no one can alloc from it. */
1006 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1007 if (nc) {
97654dfa 1008 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1009 nc->avail = 0;
1010 }
fbf1e473 1011
58463c1f 1012 if (!cpumask_empty(mask)) {
ce8eb6c4 1013 spin_unlock_irq(&n->list_lock);
bf0dea23 1014 goto free_slab;
fbf1e473
AM
1015 }
1016
ce8eb6c4 1017 shared = n->shared;
fbf1e473
AM
1018 if (shared) {
1019 free_block(cachep, shared->entry,
97654dfa 1020 shared->avail, node, &list);
ce8eb6c4 1021 n->shared = NULL;
fbf1e473
AM
1022 }
1023
ce8eb6c4
CL
1024 alien = n->alien;
1025 n->alien = NULL;
fbf1e473 1026
ce8eb6c4 1027 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1028
1029 kfree(shared);
1030 if (alien) {
1031 drain_alien_cache(cachep, alien);
1032 free_alien_cache(alien);
1033 }
bf0dea23
JK
1034
1035free_slab:
97654dfa 1036 slabs_destroy(cachep, &list);
fbf1e473
AM
1037 }
1038 /*
1039 * In the previous loop, all the objects were freed to
1040 * the respective cache's slabs, now we can go ahead and
1041 * shrink each nodelist to its limit.
1042 */
18004c5d 1043 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1044 n = get_node(cachep, node);
ce8eb6c4 1045 if (!n)
fbf1e473 1046 continue;
a5aa63a5 1047 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1048 }
1049}
1050
0db0628d 1051static int cpuup_prepare(long cpu)
1da177e4 1052{
343e0d7a 1053 struct kmem_cache *cachep;
7d6e6d09 1054 int node = cpu_to_mem(cpu);
8f9f8d9e 1055 int err;
1da177e4 1056
fbf1e473
AM
1057 /*
1058 * We need to do this right in the beginning since
1059 * alloc_arraycache's are going to use this list.
1060 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1061 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1062 */
6a67368c 1063 err = init_cache_node_node(node);
8f9f8d9e
DR
1064 if (err < 0)
1065 goto bad;
fbf1e473
AM
1066
1067 /*
1068 * Now we can go ahead with allocating the shared arrays and
1069 * array caches
1070 */
18004c5d 1071 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1072 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1073 if (err)
1074 goto bad;
fbf1e473 1075 }
ce79ddc8 1076
fbf1e473
AM
1077 return 0;
1078bad:
12d00f6a 1079 cpuup_canceled(cpu);
fbf1e473
AM
1080 return -ENOMEM;
1081}
1082
6731d4f1 1083int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1084{
6731d4f1 1085 int err;
fbf1e473 1086
6731d4f1
SAS
1087 mutex_lock(&slab_mutex);
1088 err = cpuup_prepare(cpu);
1089 mutex_unlock(&slab_mutex);
1090 return err;
1091}
1092
1093/*
1094 * This is called for a failed online attempt and for a successful
1095 * offline.
1096 *
1097 * Even if all the cpus of a node are down, we don't free the
1098 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1099 * a kmalloc allocation from another cpu for memory from the node of
1100 * the cpu going down. The list3 structure is usually allocated from
1101 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1102 */
1103int slab_dead_cpu(unsigned int cpu)
1104{
1105 mutex_lock(&slab_mutex);
1106 cpuup_canceled(cpu);
1107 mutex_unlock(&slab_mutex);
1108 return 0;
1109}
8f5be20b 1110#endif
6731d4f1
SAS
1111
1112static int slab_online_cpu(unsigned int cpu)
1113{
1114 start_cpu_timer(cpu);
1115 return 0;
1da177e4
LT
1116}
1117
6731d4f1
SAS
1118static int slab_offline_cpu(unsigned int cpu)
1119{
1120 /*
1121 * Shutdown cache reaper. Note that the slab_mutex is held so
1122 * that if cache_reap() is invoked it cannot do anything
1123 * expensive but will only modify reap_work and reschedule the
1124 * timer.
1125 */
1126 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1127 /* Now the cache_reaper is guaranteed to be not running. */
1128 per_cpu(slab_reap_work, cpu).work.func = NULL;
1129 return 0;
1130}
1da177e4 1131
8f9f8d9e
DR
1132#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1133/*
1134 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1135 * Returns -EBUSY if all objects cannot be drained so that the node is not
1136 * removed.
1137 *
18004c5d 1138 * Must hold slab_mutex.
8f9f8d9e 1139 */
6a67368c 1140static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1141{
1142 struct kmem_cache *cachep;
1143 int ret = 0;
1144
18004c5d 1145 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1146 struct kmem_cache_node *n;
8f9f8d9e 1147
18bf8541 1148 n = get_node(cachep, node);
ce8eb6c4 1149 if (!n)
8f9f8d9e
DR
1150 continue;
1151
a5aa63a5 1152 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1153
ce8eb6c4
CL
1154 if (!list_empty(&n->slabs_full) ||
1155 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1156 ret = -EBUSY;
1157 break;
1158 }
1159 }
1160 return ret;
1161}
1162
1163static int __meminit slab_memory_callback(struct notifier_block *self,
1164 unsigned long action, void *arg)
1165{
1166 struct memory_notify *mnb = arg;
1167 int ret = 0;
1168 int nid;
1169
1170 nid = mnb->status_change_nid;
1171 if (nid < 0)
1172 goto out;
1173
1174 switch (action) {
1175 case MEM_GOING_ONLINE:
18004c5d 1176 mutex_lock(&slab_mutex);
6a67368c 1177 ret = init_cache_node_node(nid);
18004c5d 1178 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1179 break;
1180 case MEM_GOING_OFFLINE:
18004c5d 1181 mutex_lock(&slab_mutex);
6a67368c 1182 ret = drain_cache_node_node(nid);
18004c5d 1183 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1184 break;
1185 case MEM_ONLINE:
1186 case MEM_OFFLINE:
1187 case MEM_CANCEL_ONLINE:
1188 case MEM_CANCEL_OFFLINE:
1189 break;
1190 }
1191out:
5fda1bd5 1192 return notifier_from_errno(ret);
8f9f8d9e
DR
1193}
1194#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1195
e498be7d 1196/*
ce8eb6c4 1197 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1198 */
6744f087 1199static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1200 int nodeid)
e498be7d 1201{
6744f087 1202 struct kmem_cache_node *ptr;
e498be7d 1203
6744f087 1204 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1205 BUG_ON(!ptr);
1206
6744f087 1207 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1208 /*
1209 * Do not assume that spinlocks can be initialized via memcpy:
1210 */
1211 spin_lock_init(&ptr->list_lock);
1212
e498be7d 1213 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1214 cachep->node[nodeid] = ptr;
e498be7d
CL
1215}
1216
556a169d 1217/*
ce8eb6c4
CL
1218 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1219 * size of kmem_cache_node.
556a169d 1220 */
ce8eb6c4 1221static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1222{
1223 int node;
1224
1225 for_each_online_node(node) {
ce8eb6c4 1226 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1227 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1228 REAPTIMEOUT_NODE +
1229 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1230 }
1231}
1232
a737b3e2
AM
1233/*
1234 * Initialisation. Called after the page allocator have been initialised and
1235 * before smp_init().
1da177e4
LT
1236 */
1237void __init kmem_cache_init(void)
1238{
e498be7d
CL
1239 int i;
1240
68126702
JK
1241 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1242 sizeof(struct rcu_head));
9b030cb8
CL
1243 kmem_cache = &kmem_cache_boot;
1244
8888177e 1245 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1246 use_alien_caches = 0;
1247
3c583465 1248 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1249 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1250
1da177e4
LT
1251 /*
1252 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1253 * page orders on machines with more than 32MB of memory if
1254 * not overridden on the command line.
1da177e4 1255 */
3df1cccd 1256 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1257 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1258
1da177e4
LT
1259 /* Bootstrap is tricky, because several objects are allocated
1260 * from caches that do not exist yet:
9b030cb8
CL
1261 * 1) initialize the kmem_cache cache: it contains the struct
1262 * kmem_cache structures of all caches, except kmem_cache itself:
1263 * kmem_cache is statically allocated.
e498be7d 1264 * Initially an __init data area is used for the head array and the
ce8eb6c4 1265 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1266 * array at the end of the bootstrap.
1da177e4 1267 * 2) Create the first kmalloc cache.
343e0d7a 1268 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1269 * An __init data area is used for the head array.
1270 * 3) Create the remaining kmalloc caches, with minimally sized
1271 * head arrays.
9b030cb8 1272 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1273 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1274 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1275 * the other cache's with kmalloc allocated memory.
1276 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1277 */
1278
9b030cb8 1279 /* 1) create the kmem_cache */
1da177e4 1280
8da3430d 1281 /*
b56efcf0 1282 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1283 */
2f9baa9f 1284 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1285 offsetof(struct kmem_cache, node) +
6744f087 1286 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1287 SLAB_HWCACHE_ALIGN);
1288 list_add(&kmem_cache->list, &slab_caches);
eb220838 1289 memcg_link_cache(kmem_cache);
bf0dea23 1290 slab_state = PARTIAL;
1da177e4 1291
a737b3e2 1292 /*
bf0dea23
JK
1293 * Initialize the caches that provide memory for the kmem_cache_node
1294 * structures first. Without this, further allocations will bug.
e498be7d 1295 */
af3b5f87
VB
1296 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1297 kmalloc_info[INDEX_NODE].name,
ce8eb6c4 1298 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1299 slab_state = PARTIAL_NODE;
34cc6990 1300 setup_kmalloc_cache_index_table();
e498be7d 1301
e0a42726
IM
1302 slab_early_init = 0;
1303
ce8eb6c4 1304 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1305 {
1ca4cb24
PE
1306 int nid;
1307
9c09a95c 1308 for_each_online_node(nid) {
ce8eb6c4 1309 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1310
bf0dea23 1311 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1312 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1313 }
1314 }
1da177e4 1315
f97d5f63 1316 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1317}
1318
1319void __init kmem_cache_init_late(void)
1320{
1321 struct kmem_cache *cachep;
1322
97d06609 1323 slab_state = UP;
52cef189 1324
8429db5c 1325 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1326 mutex_lock(&slab_mutex);
1327 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1328 if (enable_cpucache(cachep, GFP_NOWAIT))
1329 BUG();
18004c5d 1330 mutex_unlock(&slab_mutex);
056c6241 1331
97d06609
CL
1332 /* Done! */
1333 slab_state = FULL;
1334
8f9f8d9e
DR
1335#ifdef CONFIG_NUMA
1336 /*
1337 * Register a memory hotplug callback that initializes and frees
6a67368c 1338 * node.
8f9f8d9e
DR
1339 */
1340 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1341#endif
1342
a737b3e2
AM
1343 /*
1344 * The reap timers are started later, with a module init call: That part
1345 * of the kernel is not yet operational.
1da177e4
LT
1346 */
1347}
1348
1349static int __init cpucache_init(void)
1350{
6731d4f1 1351 int ret;
1da177e4 1352
a737b3e2
AM
1353 /*
1354 * Register the timers that return unneeded pages to the page allocator
1da177e4 1355 */
6731d4f1
SAS
1356 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1357 slab_online_cpu, slab_offline_cpu);
1358 WARN_ON(ret < 0);
a164f896
GC
1359
1360 /* Done! */
97d06609 1361 slab_state = FULL;
1da177e4
LT
1362 return 0;
1363}
1da177e4
LT
1364__initcall(cpucache_init);
1365
8bdec192
RA
1366static noinline void
1367slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1368{
9a02d699 1369#if DEBUG
ce8eb6c4 1370 struct kmem_cache_node *n;
8bdec192
RA
1371 unsigned long flags;
1372 int node;
9a02d699
DR
1373 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1374 DEFAULT_RATELIMIT_BURST);
1375
1376 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1377 return;
8bdec192 1378
5b3810e5
VB
1379 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1380 nodeid, gfpflags, &gfpflags);
1381 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1382 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1383
18bf8541 1384 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1385 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1386
ce8eb6c4 1387 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1388 total_slabs = n->total_slabs;
1389 free_slabs = n->free_slabs;
1390 free_objs = n->free_objects;
ce8eb6c4 1391 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1392
bf00bd34
DR
1393 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1394 node, total_slabs - free_slabs, total_slabs,
1395 (total_slabs * cachep->num) - free_objs,
1396 total_slabs * cachep->num);
8bdec192 1397 }
9a02d699 1398#endif
8bdec192
RA
1399}
1400
1da177e4 1401/*
8a7d9b43
WSH
1402 * Interface to system's page allocator. No need to hold the
1403 * kmem_cache_node ->list_lock.
1da177e4
LT
1404 *
1405 * If we requested dmaable memory, we will get it. Even if we
1406 * did not request dmaable memory, we might get it, but that
1407 * would be relatively rare and ignorable.
1408 */
0c3aa83e
JK
1409static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1410 int nodeid)
1da177e4
LT
1411{
1412 struct page *page;
e1b6aa6f 1413 int nr_pages;
765c4507 1414
a618e89f 1415 flags |= cachep->allocflags;
e1b6aa6f 1416
75f296d9 1417 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1418 if (!page) {
9a02d699 1419 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1420 return NULL;
8bdec192 1421 }
1da177e4 1422
f3ccb2c4
VD
1423 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1424 __free_pages(page, cachep->gfporder);
1425 return NULL;
1426 }
1427
e1b6aa6f 1428 nr_pages = (1 << cachep->gfporder);
1da177e4 1429 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1430 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1431 else
7779f212 1432 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1433
a57a4988 1434 __SetPageSlab(page);
f68f8ddd
JK
1435 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1436 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1437 SetPageSlabPfmemalloc(page);
072bb0aa 1438
0c3aa83e 1439 return page;
1da177e4
LT
1440}
1441
1442/*
1443 * Interface to system's page release.
1444 */
0c3aa83e 1445static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1446{
27ee57c9
VD
1447 int order = cachep->gfporder;
1448 unsigned long nr_freed = (1 << order);
1da177e4 1449
972d1a7b 1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1451 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1452 else
7779f212 1453 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1454
a57a4988 1455 BUG_ON(!PageSlab(page));
73293c2f 1456 __ClearPageSlabPfmemalloc(page);
a57a4988 1457 __ClearPageSlab(page);
8456a648
JK
1458 page_mapcount_reset(page);
1459 page->mapping = NULL;
1f458cbf 1460
1da177e4
LT
1461 if (current->reclaim_state)
1462 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1463 memcg_uncharge_slab(page, order, cachep);
1464 __free_pages(page, order);
1da177e4
LT
1465}
1466
1467static void kmem_rcu_free(struct rcu_head *head)
1468{
68126702
JK
1469 struct kmem_cache *cachep;
1470 struct page *page;
1da177e4 1471
68126702
JK
1472 page = container_of(head, struct page, rcu_head);
1473 cachep = page->slab_cache;
1474
1475 kmem_freepages(cachep, page);
1da177e4
LT
1476}
1477
1478#if DEBUG
40b44137
JK
1479static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1480{
1481 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1482 (cachep->size % PAGE_SIZE) == 0)
1483 return true;
1484
1485 return false;
1486}
1da177e4
LT
1487
1488#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1489static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1490 unsigned long caller)
1da177e4 1491{
8c138bc0 1492 int size = cachep->object_size;
1da177e4 1493
3dafccf2 1494 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1495
b28a02de 1496 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1497 return;
1498
b28a02de
PE
1499 *addr++ = 0x12345678;
1500 *addr++ = caller;
1501 *addr++ = smp_processor_id();
1502 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1503 {
1504 unsigned long *sptr = &caller;
1505 unsigned long svalue;
1506
1507 while (!kstack_end(sptr)) {
1508 svalue = *sptr++;
1509 if (kernel_text_address(svalue)) {
b28a02de 1510 *addr++ = svalue;
1da177e4
LT
1511 size -= sizeof(unsigned long);
1512 if (size <= sizeof(unsigned long))
1513 break;
1514 }
1515 }
1516
1517 }
b28a02de 1518 *addr++ = 0x87654321;
1da177e4 1519}
40b44137
JK
1520
1521static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1522 int map, unsigned long caller)
1523{
1524 if (!is_debug_pagealloc_cache(cachep))
1525 return;
1526
1527 if (caller)
1528 store_stackinfo(cachep, objp, caller);
1529
1530 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1531}
1532
1533#else
1534static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 int map, unsigned long caller) {}
1536
1da177e4
LT
1537#endif
1538
343e0d7a 1539static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1540{
8c138bc0 1541 int size = cachep->object_size;
3dafccf2 1542 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1543
1544 memset(addr, val, size);
b28a02de 1545 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1546}
1547
1548static void dump_line(char *data, int offset, int limit)
1549{
1550 int i;
aa83aa40
DJ
1551 unsigned char error = 0;
1552 int bad_count = 0;
1553
1170532b 1554 pr_err("%03x: ", offset);
aa83aa40
DJ
1555 for (i = 0; i < limit; i++) {
1556 if (data[offset + i] != POISON_FREE) {
1557 error = data[offset + i];
1558 bad_count++;
1559 }
aa83aa40 1560 }
fdde6abb
SAS
1561 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1562 &data[offset], limit, 1);
aa83aa40
DJ
1563
1564 if (bad_count == 1) {
1565 error ^= POISON_FREE;
1566 if (!(error & (error - 1))) {
1170532b 1567 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1568#ifdef CONFIG_X86
1170532b 1569 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1570#else
1170532b 1571 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1572#endif
1573 }
1574 }
1da177e4
LT
1575}
1576#endif
1577
1578#if DEBUG
1579
343e0d7a 1580static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1581{
1582 int i, size;
1583 char *realobj;
1584
1585 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1586 pr_err("Redzone: 0x%llx/0x%llx\n",
1587 *dbg_redzone1(cachep, objp),
1588 *dbg_redzone2(cachep, objp));
1da177e4
LT
1589 }
1590
85c3e4a5
GU
1591 if (cachep->flags & SLAB_STORE_USER)
1592 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1593 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1594 size = cachep->object_size;
b28a02de 1595 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1596 int limit;
1597 limit = 16;
b28a02de
PE
1598 if (i + limit > size)
1599 limit = size - i;
1da177e4
LT
1600 dump_line(realobj, i, limit);
1601 }
1602}
1603
343e0d7a 1604static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1605{
1606 char *realobj;
1607 int size, i;
1608 int lines = 0;
1609
40b44137
JK
1610 if (is_debug_pagealloc_cache(cachep))
1611 return;
1612
3dafccf2 1613 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1614 size = cachep->object_size;
1da177e4 1615
b28a02de 1616 for (i = 0; i < size; i++) {
1da177e4 1617 char exp = POISON_FREE;
b28a02de 1618 if (i == size - 1)
1da177e4
LT
1619 exp = POISON_END;
1620 if (realobj[i] != exp) {
1621 int limit;
1622 /* Mismatch ! */
1623 /* Print header */
1624 if (lines == 0) {
85c3e4a5 1625 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1626 print_tainted(), cachep->name,
1627 realobj, size);
1da177e4
LT
1628 print_objinfo(cachep, objp, 0);
1629 }
1630 /* Hexdump the affected line */
b28a02de 1631 i = (i / 16) * 16;
1da177e4 1632 limit = 16;
b28a02de
PE
1633 if (i + limit > size)
1634 limit = size - i;
1da177e4
LT
1635 dump_line(realobj, i, limit);
1636 i += 16;
1637 lines++;
1638 /* Limit to 5 lines */
1639 if (lines > 5)
1640 break;
1641 }
1642 }
1643 if (lines != 0) {
1644 /* Print some data about the neighboring objects, if they
1645 * exist:
1646 */
8456a648 1647 struct page *page = virt_to_head_page(objp);
8fea4e96 1648 unsigned int objnr;
1da177e4 1649
8456a648 1650 objnr = obj_to_index(cachep, page, objp);
1da177e4 1651 if (objnr) {
8456a648 1652 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1653 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1654 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1655 print_objinfo(cachep, objp, 2);
1656 }
b28a02de 1657 if (objnr + 1 < cachep->num) {
8456a648 1658 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1659 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1660 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1661 print_objinfo(cachep, objp, 2);
1662 }
1663 }
1664}
1665#endif
1666
12dd36fa 1667#if DEBUG
8456a648
JK
1668static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1669 struct page *page)
1da177e4 1670{
1da177e4 1671 int i;
b03a017b
JK
1672
1673 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1674 poison_obj(cachep, page->freelist - obj_offset(cachep),
1675 POISON_FREE);
1676 }
1677
1da177e4 1678 for (i = 0; i < cachep->num; i++) {
8456a648 1679 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1680
1681 if (cachep->flags & SLAB_POISON) {
1da177e4 1682 check_poison_obj(cachep, objp);
40b44137 1683 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1684 }
1685 if (cachep->flags & SLAB_RED_ZONE) {
1686 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1687 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1688 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1689 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1690 }
1da177e4 1691 }
12dd36fa 1692}
1da177e4 1693#else
8456a648
JK
1694static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1695 struct page *page)
12dd36fa 1696{
12dd36fa 1697}
1da177e4
LT
1698#endif
1699
911851e6
RD
1700/**
1701 * slab_destroy - destroy and release all objects in a slab
1702 * @cachep: cache pointer being destroyed
cb8ee1a3 1703 * @page: page pointer being destroyed
911851e6 1704 *
8a7d9b43
WSH
1705 * Destroy all the objs in a slab page, and release the mem back to the system.
1706 * Before calling the slab page must have been unlinked from the cache. The
1707 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1708 */
8456a648 1709static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1710{
7e007355 1711 void *freelist;
12dd36fa 1712
8456a648
JK
1713 freelist = page->freelist;
1714 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1715 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1716 call_rcu(&page->rcu_head, kmem_rcu_free);
1717 else
0c3aa83e 1718 kmem_freepages(cachep, page);
68126702
JK
1719
1720 /*
8456a648 1721 * From now on, we don't use freelist
68126702
JK
1722 * although actual page can be freed in rcu context
1723 */
1724 if (OFF_SLAB(cachep))
8456a648 1725 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1726}
1727
97654dfa
JK
1728static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1729{
1730 struct page *page, *n;
1731
1732 list_for_each_entry_safe(page, n, list, lru) {
1733 list_del(&page->lru);
1734 slab_destroy(cachep, page);
1735 }
1736}
1737
4d268eba 1738/**
a70773dd
RD
1739 * calculate_slab_order - calculate size (page order) of slabs
1740 * @cachep: pointer to the cache that is being created
1741 * @size: size of objects to be created in this cache.
a70773dd
RD
1742 * @flags: slab allocation flags
1743 *
1744 * Also calculates the number of objects per slab.
4d268eba
PE
1745 *
1746 * This could be made much more intelligent. For now, try to avoid using
1747 * high order pages for slabs. When the gfp() functions are more friendly
1748 * towards high-order requests, this should be changed.
1749 */
a737b3e2 1750static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1751 size_t size, slab_flags_t flags)
4d268eba
PE
1752{
1753 size_t left_over = 0;
9888e6fa 1754 int gfporder;
4d268eba 1755
0aa817f0 1756 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1757 unsigned int num;
1758 size_t remainder;
1759
70f75067 1760 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1761 if (!num)
1762 continue;
9888e6fa 1763
f315e3fa
JK
1764 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1765 if (num > SLAB_OBJ_MAX_NUM)
1766 break;
1767
b1ab41c4 1768 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1769 struct kmem_cache *freelist_cache;
1770 size_t freelist_size;
1771
1772 freelist_size = num * sizeof(freelist_idx_t);
1773 freelist_cache = kmalloc_slab(freelist_size, 0u);
1774 if (!freelist_cache)
1775 continue;
1776
b1ab41c4 1777 /*
3217fd9b 1778 * Needed to avoid possible looping condition
76b342bd 1779 * in cache_grow_begin()
b1ab41c4 1780 */
3217fd9b
JK
1781 if (OFF_SLAB(freelist_cache))
1782 continue;
b1ab41c4 1783
3217fd9b
JK
1784 /* check if off slab has enough benefit */
1785 if (freelist_cache->size > cachep->size / 2)
1786 continue;
b1ab41c4 1787 }
4d268eba 1788
9888e6fa 1789 /* Found something acceptable - save it away */
4d268eba 1790 cachep->num = num;
9888e6fa 1791 cachep->gfporder = gfporder;
4d268eba
PE
1792 left_over = remainder;
1793
f78bb8ad
LT
1794 /*
1795 * A VFS-reclaimable slab tends to have most allocations
1796 * as GFP_NOFS and we really don't want to have to be allocating
1797 * higher-order pages when we are unable to shrink dcache.
1798 */
1799 if (flags & SLAB_RECLAIM_ACCOUNT)
1800 break;
1801
4d268eba
PE
1802 /*
1803 * Large number of objects is good, but very large slabs are
1804 * currently bad for the gfp()s.
1805 */
543585cc 1806 if (gfporder >= slab_max_order)
4d268eba
PE
1807 break;
1808
9888e6fa
LT
1809 /*
1810 * Acceptable internal fragmentation?
1811 */
a737b3e2 1812 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1813 break;
1814 }
1815 return left_over;
1816}
1817
bf0dea23
JK
1818static struct array_cache __percpu *alloc_kmem_cache_cpus(
1819 struct kmem_cache *cachep, int entries, int batchcount)
1820{
1821 int cpu;
1822 size_t size;
1823 struct array_cache __percpu *cpu_cache;
1824
1825 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1826 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1827
1828 if (!cpu_cache)
1829 return NULL;
1830
1831 for_each_possible_cpu(cpu) {
1832 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1833 entries, batchcount);
1834 }
1835
1836 return cpu_cache;
1837}
1838
bd721ea7 1839static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1840{
97d06609 1841 if (slab_state >= FULL)
83b519e8 1842 return enable_cpucache(cachep, gfp);
2ed3a4ef 1843
bf0dea23
JK
1844 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1845 if (!cachep->cpu_cache)
1846 return 1;
1847
97d06609 1848 if (slab_state == DOWN) {
bf0dea23
JK
1849 /* Creation of first cache (kmem_cache). */
1850 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1851 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1852 /* For kmem_cache_node */
1853 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1854 } else {
bf0dea23 1855 int node;
f30cf7d1 1856
bf0dea23
JK
1857 for_each_online_node(node) {
1858 cachep->node[node] = kmalloc_node(
1859 sizeof(struct kmem_cache_node), gfp, node);
1860 BUG_ON(!cachep->node[node]);
1861 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1862 }
1863 }
bf0dea23 1864
6a67368c 1865 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1866 jiffies + REAPTIMEOUT_NODE +
1867 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1868
1869 cpu_cache_get(cachep)->avail = 0;
1870 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1871 cpu_cache_get(cachep)->batchcount = 1;
1872 cpu_cache_get(cachep)->touched = 0;
1873 cachep->batchcount = 1;
1874 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1875 return 0;
f30cf7d1
PE
1876}
1877
d50112ed
AD
1878slab_flags_t kmem_cache_flags(unsigned long object_size,
1879 slab_flags_t flags, const char *name,
12220dea
JK
1880 void (*ctor)(void *))
1881{
1882 return flags;
1883}
1884
1885struct kmem_cache *
1886__kmem_cache_alias(const char *name, size_t size, size_t align,
d50112ed 1887 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1888{
1889 struct kmem_cache *cachep;
1890
1891 cachep = find_mergeable(size, align, flags, name, ctor);
1892 if (cachep) {
1893 cachep->refcount++;
1894
1895 /*
1896 * Adjust the object sizes so that we clear
1897 * the complete object on kzalloc.
1898 */
1899 cachep->object_size = max_t(int, cachep->object_size, size);
1900 }
1901 return cachep;
1902}
1903
b03a017b 1904static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1905 size_t size, slab_flags_t flags)
b03a017b
JK
1906{
1907 size_t left;
1908
1909 cachep->num = 0;
1910
5f0d5a3a 1911 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1912 return false;
1913
1914 left = calculate_slab_order(cachep, size,
1915 flags | CFLGS_OBJFREELIST_SLAB);
1916 if (!cachep->num)
1917 return false;
1918
1919 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1920 return false;
1921
1922 cachep->colour = left / cachep->colour_off;
1923
1924 return true;
1925}
1926
158e319b 1927static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1928 size_t size, slab_flags_t flags)
158e319b
JK
1929{
1930 size_t left;
1931
1932 cachep->num = 0;
1933
1934 /*
3217fd9b
JK
1935 * Always use on-slab management when SLAB_NOLEAKTRACE
1936 * to avoid recursive calls into kmemleak.
158e319b 1937 */
158e319b
JK
1938 if (flags & SLAB_NOLEAKTRACE)
1939 return false;
1940
1941 /*
1942 * Size is large, assume best to place the slab management obj
1943 * off-slab (should allow better packing of objs).
1944 */
1945 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1946 if (!cachep->num)
1947 return false;
1948
1949 /*
1950 * If the slab has been placed off-slab, and we have enough space then
1951 * move it on-slab. This is at the expense of any extra colouring.
1952 */
1953 if (left >= cachep->num * sizeof(freelist_idx_t))
1954 return false;
1955
1956 cachep->colour = left / cachep->colour_off;
1957
1958 return true;
1959}
1960
1961static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1962 size_t size, slab_flags_t flags)
158e319b
JK
1963{
1964 size_t left;
1965
1966 cachep->num = 0;
1967
1968 left = calculate_slab_order(cachep, size, flags);
1969 if (!cachep->num)
1970 return false;
1971
1972 cachep->colour = left / cachep->colour_off;
1973
1974 return true;
1975}
1976
1da177e4 1977/**
039363f3 1978 * __kmem_cache_create - Create a cache.
a755b76a 1979 * @cachep: cache management descriptor
1da177e4 1980 * @flags: SLAB flags
1da177e4
LT
1981 *
1982 * Returns a ptr to the cache on success, NULL on failure.
1983 * Cannot be called within a int, but can be interrupted.
20c2df83 1984 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1985 *
1da177e4
LT
1986 * The flags are
1987 *
1988 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1989 * to catch references to uninitialised memory.
1990 *
1991 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1992 * for buffer overruns.
1993 *
1da177e4
LT
1994 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1995 * cacheline. This can be beneficial if you're counting cycles as closely
1996 * as davem.
1997 */
d50112ed 1998int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1999{
d4a5fca5 2000 size_t ralign = BYTES_PER_WORD;
83b519e8 2001 gfp_t gfp;
278b1bb1 2002 int err;
8a13a4cc 2003 size_t size = cachep->size;
1da177e4 2004
1da177e4 2005#if DEBUG
1da177e4
LT
2006#if FORCED_DEBUG
2007 /*
2008 * Enable redzoning and last user accounting, except for caches with
2009 * large objects, if the increased size would increase the object size
2010 * above the next power of two: caches with object sizes just above a
2011 * power of two have a significant amount of internal fragmentation.
2012 */
87a927c7
DW
2013 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2014 2 * sizeof(unsigned long long)))
b28a02de 2015 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2016 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2017 flags |= SLAB_POISON;
2018#endif
1da177e4 2019#endif
1da177e4 2020
a737b3e2
AM
2021 /*
2022 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2023 * unaligned accesses for some archs when redzoning is used, and makes
2024 * sure any on-slab bufctl's are also correctly aligned.
2025 */
e0771950 2026 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2027
87a927c7
DW
2028 if (flags & SLAB_RED_ZONE) {
2029 ralign = REDZONE_ALIGN;
2030 /* If redzoning, ensure that the second redzone is suitably
2031 * aligned, by adjusting the object size accordingly. */
e0771950 2032 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2033 }
ca5f9703 2034
a44b56d3 2035 /* 3) caller mandated alignment */
8a13a4cc
CL
2036 if (ralign < cachep->align) {
2037 ralign = cachep->align;
1da177e4 2038 }
3ff84a7f
PE
2039 /* disable debug if necessary */
2040 if (ralign > __alignof__(unsigned long long))
a44b56d3 2041 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2042 /*
ca5f9703 2043 * 4) Store it.
1da177e4 2044 */
8a13a4cc 2045 cachep->align = ralign;
158e319b
JK
2046 cachep->colour_off = cache_line_size();
2047 /* Offset must be a multiple of the alignment. */
2048 if (cachep->colour_off < cachep->align)
2049 cachep->colour_off = cachep->align;
1da177e4 2050
83b519e8
PE
2051 if (slab_is_available())
2052 gfp = GFP_KERNEL;
2053 else
2054 gfp = GFP_NOWAIT;
2055
1da177e4 2056#if DEBUG
1da177e4 2057
ca5f9703
PE
2058 /*
2059 * Both debugging options require word-alignment which is calculated
2060 * into align above.
2061 */
1da177e4 2062 if (flags & SLAB_RED_ZONE) {
1da177e4 2063 /* add space for red zone words */
3ff84a7f
PE
2064 cachep->obj_offset += sizeof(unsigned long long);
2065 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2066 }
2067 if (flags & SLAB_STORE_USER) {
ca5f9703 2068 /* user store requires one word storage behind the end of
87a927c7
DW
2069 * the real object. But if the second red zone needs to be
2070 * aligned to 64 bits, we must allow that much space.
1da177e4 2071 */
87a927c7
DW
2072 if (flags & SLAB_RED_ZONE)
2073 size += REDZONE_ALIGN;
2074 else
2075 size += BYTES_PER_WORD;
1da177e4 2076 }
832a15d2
JK
2077#endif
2078
7ed2f9e6
AP
2079 kasan_cache_create(cachep, &size, &flags);
2080
832a15d2
JK
2081 size = ALIGN(size, cachep->align);
2082 /*
2083 * We should restrict the number of objects in a slab to implement
2084 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2085 */
2086 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2087 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2088
2089#if DEBUG
03a2d2a3
JK
2090 /*
2091 * To activate debug pagealloc, off-slab management is necessary
2092 * requirement. In early phase of initialization, small sized slab
2093 * doesn't get initialized so it would not be possible. So, we need
2094 * to check size >= 256. It guarantees that all necessary small
2095 * sized slab is initialized in current slab initialization sequence.
2096 */
40323278 2097 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2098 size >= 256 && cachep->object_size > cache_line_size()) {
2099 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2100 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2101
2102 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2103 flags |= CFLGS_OFF_SLAB;
2104 cachep->obj_offset += tmp_size - size;
2105 size = tmp_size;
2106 goto done;
2107 }
2108 }
1da177e4 2109 }
1da177e4
LT
2110#endif
2111
b03a017b
JK
2112 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2113 flags |= CFLGS_OBJFREELIST_SLAB;
2114 goto done;
2115 }
2116
158e319b 2117 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2118 flags |= CFLGS_OFF_SLAB;
158e319b 2119 goto done;
832a15d2 2120 }
1da177e4 2121
158e319b
JK
2122 if (set_on_slab_cache(cachep, size, flags))
2123 goto done;
1da177e4 2124
158e319b 2125 return -E2BIG;
1da177e4 2126
158e319b
JK
2127done:
2128 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2129 cachep->flags = flags;
a57a4988 2130 cachep->allocflags = __GFP_COMP;
a3187e43 2131 if (flags & SLAB_CACHE_DMA)
a618e89f 2132 cachep->allocflags |= GFP_DMA;
26f42db9
NB
2133 if (flags & SLAB_CACHE_DMA32)
2134 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2135 if (flags & SLAB_RECLAIM_ACCOUNT)
2136 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2137 cachep->size = size;
6a2d7a95 2138 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2139
40b44137
JK
2140#if DEBUG
2141 /*
2142 * If we're going to use the generic kernel_map_pages()
2143 * poisoning, then it's going to smash the contents of
2144 * the redzone and userword anyhow, so switch them off.
2145 */
2146 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2147 (cachep->flags & SLAB_POISON) &&
2148 is_debug_pagealloc_cache(cachep))
2149 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2150#endif
2151
2152 if (OFF_SLAB(cachep)) {
158e319b
JK
2153 cachep->freelist_cache =
2154 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2155 }
1da177e4 2156
278b1bb1
CL
2157 err = setup_cpu_cache(cachep, gfp);
2158 if (err) {
52b4b950 2159 __kmem_cache_release(cachep);
278b1bb1 2160 return err;
2ed3a4ef 2161 }
1da177e4 2162
278b1bb1 2163 return 0;
1da177e4 2164}
1da177e4
LT
2165
2166#if DEBUG
2167static void check_irq_off(void)
2168{
2169 BUG_ON(!irqs_disabled());
2170}
2171
2172static void check_irq_on(void)
2173{
2174 BUG_ON(irqs_disabled());
2175}
2176
18726ca8
JK
2177static void check_mutex_acquired(void)
2178{
2179 BUG_ON(!mutex_is_locked(&slab_mutex));
2180}
2181
343e0d7a 2182static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2183{
2184#ifdef CONFIG_SMP
2185 check_irq_off();
18bf8541 2186 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2187#endif
2188}
e498be7d 2189
343e0d7a 2190static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2191{
2192#ifdef CONFIG_SMP
2193 check_irq_off();
18bf8541 2194 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2195#endif
2196}
2197
1da177e4
LT
2198#else
2199#define check_irq_off() do { } while(0)
2200#define check_irq_on() do { } while(0)
18726ca8 2201#define check_mutex_acquired() do { } while(0)
1da177e4 2202#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2203#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2204#endif
2205
18726ca8
JK
2206static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2207 int node, bool free_all, struct list_head *list)
2208{
2209 int tofree;
2210
2211 if (!ac || !ac->avail)
2212 return;
2213
2214 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2215 if (tofree > ac->avail)
2216 tofree = (ac->avail + 1) / 2;
2217
2218 free_block(cachep, ac->entry, tofree, node, list);
2219 ac->avail -= tofree;
2220 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2221}
aab2207c 2222
1da177e4
LT
2223static void do_drain(void *arg)
2224{
a737b3e2 2225 struct kmem_cache *cachep = arg;
1da177e4 2226 struct array_cache *ac;
7d6e6d09 2227 int node = numa_mem_id();
18bf8541 2228 struct kmem_cache_node *n;
97654dfa 2229 LIST_HEAD(list);
1da177e4
LT
2230
2231 check_irq_off();
9a2dba4b 2232 ac = cpu_cache_get(cachep);
18bf8541
CL
2233 n = get_node(cachep, node);
2234 spin_lock(&n->list_lock);
97654dfa 2235 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2236 spin_unlock(&n->list_lock);
97654dfa 2237 slabs_destroy(cachep, &list);
1da177e4
LT
2238 ac->avail = 0;
2239}
2240
343e0d7a 2241static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2242{
ce8eb6c4 2243 struct kmem_cache_node *n;
e498be7d 2244 int node;
18726ca8 2245 LIST_HEAD(list);
e498be7d 2246
15c8b6c1 2247 on_each_cpu(do_drain, cachep, 1);
1da177e4 2248 check_irq_on();
18bf8541
CL
2249 for_each_kmem_cache_node(cachep, node, n)
2250 if (n->alien)
ce8eb6c4 2251 drain_alien_cache(cachep, n->alien);
a4523a8b 2252
18726ca8
JK
2253 for_each_kmem_cache_node(cachep, node, n) {
2254 spin_lock_irq(&n->list_lock);
2255 drain_array_locked(cachep, n->shared, node, true, &list);
2256 spin_unlock_irq(&n->list_lock);
2257
2258 slabs_destroy(cachep, &list);
2259 }
1da177e4
LT
2260}
2261
ed11d9eb
CL
2262/*
2263 * Remove slabs from the list of free slabs.
2264 * Specify the number of slabs to drain in tofree.
2265 *
2266 * Returns the actual number of slabs released.
2267 */
2268static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2269 struct kmem_cache_node *n, int tofree)
1da177e4 2270{
ed11d9eb
CL
2271 struct list_head *p;
2272 int nr_freed;
8456a648 2273 struct page *page;
1da177e4 2274
ed11d9eb 2275 nr_freed = 0;
ce8eb6c4 2276 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2277
ce8eb6c4
CL
2278 spin_lock_irq(&n->list_lock);
2279 p = n->slabs_free.prev;
2280 if (p == &n->slabs_free) {
2281 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2282 goto out;
2283 }
1da177e4 2284
8456a648 2285 page = list_entry(p, struct page, lru);
8456a648 2286 list_del(&page->lru);
f728b0a5 2287 n->free_slabs--;
bf00bd34 2288 n->total_slabs--;
ed11d9eb
CL
2289 /*
2290 * Safe to drop the lock. The slab is no longer linked
2291 * to the cache.
2292 */
ce8eb6c4
CL
2293 n->free_objects -= cache->num;
2294 spin_unlock_irq(&n->list_lock);
8456a648 2295 slab_destroy(cache, page);
ed11d9eb 2296 nr_freed++;
1da177e4 2297 }
ed11d9eb
CL
2298out:
2299 return nr_freed;
1da177e4
LT
2300}
2301
c9fc5864 2302int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2303{
18bf8541
CL
2304 int ret = 0;
2305 int node;
ce8eb6c4 2306 struct kmem_cache_node *n;
e498be7d
CL
2307
2308 drain_cpu_caches(cachep);
2309
2310 check_irq_on();
18bf8541 2311 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2312 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2313
ce8eb6c4
CL
2314 ret += !list_empty(&n->slabs_full) ||
2315 !list_empty(&n->slabs_partial);
e498be7d
CL
2316 }
2317 return (ret ? 1 : 0);
2318}
2319
c9fc5864
TH
2320#ifdef CONFIG_MEMCG
2321void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2322{
2323 __kmem_cache_shrink(cachep);
2324}
2325#endif
2326
945cf2b6 2327int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2328{
c9fc5864 2329 return __kmem_cache_shrink(cachep);
52b4b950
DS
2330}
2331
2332void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2333{
12c3667f 2334 int i;
ce8eb6c4 2335 struct kmem_cache_node *n;
1da177e4 2336
c7ce4f60
TG
2337 cache_random_seq_destroy(cachep);
2338
bf0dea23 2339 free_percpu(cachep->cpu_cache);
1da177e4 2340
ce8eb6c4 2341 /* NUMA: free the node structures */
18bf8541
CL
2342 for_each_kmem_cache_node(cachep, i, n) {
2343 kfree(n->shared);
2344 free_alien_cache(n->alien);
2345 kfree(n);
2346 cachep->node[i] = NULL;
12c3667f 2347 }
1da177e4 2348}
1da177e4 2349
e5ac9c5a
RT
2350/*
2351 * Get the memory for a slab management obj.
5f0985bb
JZ
2352 *
2353 * For a slab cache when the slab descriptor is off-slab, the
2354 * slab descriptor can't come from the same cache which is being created,
2355 * Because if it is the case, that means we defer the creation of
2356 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2357 * And we eventually call down to __kmem_cache_create(), which
2358 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2359 * This is a "chicken-and-egg" problem.
2360 *
2361 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2362 * which are all initialized during kmem_cache_init().
e5ac9c5a 2363 */
7e007355 2364static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2365 struct page *page, int colour_off,
2366 gfp_t local_flags, int nodeid)
1da177e4 2367{
7e007355 2368 void *freelist;
0c3aa83e 2369 void *addr = page_address(page);
b28a02de 2370
2e6b3602
JK
2371 page->s_mem = addr + colour_off;
2372 page->active = 0;
2373
b03a017b
JK
2374 if (OBJFREELIST_SLAB(cachep))
2375 freelist = NULL;
2376 else if (OFF_SLAB(cachep)) {
1da177e4 2377 /* Slab management obj is off-slab. */
8456a648 2378 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2379 local_flags, nodeid);
8456a648 2380 if (!freelist)
1da177e4
LT
2381 return NULL;
2382 } else {
2e6b3602
JK
2383 /* We will use last bytes at the slab for freelist */
2384 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2385 cachep->freelist_size;
1da177e4 2386 }
2e6b3602 2387
8456a648 2388 return freelist;
1da177e4
LT
2389}
2390
7cc68973 2391static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2392{
a41adfaa 2393 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2394}
2395
2396static inline void set_free_obj(struct page *page,
7cc68973 2397 unsigned int idx, freelist_idx_t val)
e5c58dfd 2398{
a41adfaa 2399 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2400}
2401
10b2e9e8 2402static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2403{
10b2e9e8 2404#if DEBUG
1da177e4
LT
2405 int i;
2406
2407 for (i = 0; i < cachep->num; i++) {
8456a648 2408 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2409
1da177e4
LT
2410 if (cachep->flags & SLAB_STORE_USER)
2411 *dbg_userword(cachep, objp) = NULL;
2412
2413 if (cachep->flags & SLAB_RED_ZONE) {
2414 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2415 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2416 }
2417 /*
a737b3e2
AM
2418 * Constructors are not allowed to allocate memory from the same
2419 * cache which they are a constructor for. Otherwise, deadlock.
2420 * They must also be threaded.
1da177e4 2421 */
7ed2f9e6
AP
2422 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2423 kasan_unpoison_object_data(cachep,
2424 objp + obj_offset(cachep));
51cc5068 2425 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2426 kasan_poison_object_data(
2427 cachep, objp + obj_offset(cachep));
2428 }
1da177e4
LT
2429
2430 if (cachep->flags & SLAB_RED_ZONE) {
2431 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2432 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2433 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2434 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2435 }
40b44137
JK
2436 /* need to poison the objs? */
2437 if (cachep->flags & SLAB_POISON) {
2438 poison_obj(cachep, objp, POISON_FREE);
2439 slab_kernel_map(cachep, objp, 0, 0);
2440 }
10b2e9e8 2441 }
1da177e4 2442#endif
10b2e9e8
JK
2443}
2444
c7ce4f60
TG
2445#ifdef CONFIG_SLAB_FREELIST_RANDOM
2446/* Hold information during a freelist initialization */
2447union freelist_init_state {
2448 struct {
2449 unsigned int pos;
7c00fce9 2450 unsigned int *list;
c7ce4f60 2451 unsigned int count;
c7ce4f60
TG
2452 };
2453 struct rnd_state rnd_state;
2454};
2455
2456/*
2457 * Initialize the state based on the randomization methode available.
2458 * return true if the pre-computed list is available, false otherwize.
2459 */
2460static bool freelist_state_initialize(union freelist_init_state *state,
2461 struct kmem_cache *cachep,
2462 unsigned int count)
2463{
2464 bool ret;
2465 unsigned int rand;
2466
2467 /* Use best entropy available to define a random shift */
7c00fce9 2468 rand = get_random_int();
c7ce4f60
TG
2469
2470 /* Use a random state if the pre-computed list is not available */
2471 if (!cachep->random_seq) {
2472 prandom_seed_state(&state->rnd_state, rand);
2473 ret = false;
2474 } else {
2475 state->list = cachep->random_seq;
2476 state->count = count;
c4e490cf 2477 state->pos = rand % count;
c7ce4f60
TG
2478 ret = true;
2479 }
2480 return ret;
2481}
2482
2483/* Get the next entry on the list and randomize it using a random shift */
2484static freelist_idx_t next_random_slot(union freelist_init_state *state)
2485{
c4e490cf
JS
2486 if (state->pos >= state->count)
2487 state->pos = 0;
2488 return state->list[state->pos++];
c7ce4f60
TG
2489}
2490
7c00fce9
TG
2491/* Swap two freelist entries */
2492static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2493{
2494 swap(((freelist_idx_t *)page->freelist)[a],
2495 ((freelist_idx_t *)page->freelist)[b]);
2496}
2497
c7ce4f60
TG
2498/*
2499 * Shuffle the freelist initialization state based on pre-computed lists.
2500 * return true if the list was successfully shuffled, false otherwise.
2501 */
2502static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2503{
7c00fce9 2504 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2505 union freelist_init_state state;
2506 bool precomputed;
2507
2508 if (count < 2)
2509 return false;
2510
2511 precomputed = freelist_state_initialize(&state, cachep, count);
2512
2513 /* Take a random entry as the objfreelist */
2514 if (OBJFREELIST_SLAB(cachep)) {
2515 if (!precomputed)
2516 objfreelist = count - 1;
2517 else
2518 objfreelist = next_random_slot(&state);
2519 page->freelist = index_to_obj(cachep, page, objfreelist) +
2520 obj_offset(cachep);
2521 count--;
2522 }
2523
2524 /*
2525 * On early boot, generate the list dynamically.
2526 * Later use a pre-computed list for speed.
2527 */
2528 if (!precomputed) {
7c00fce9
TG
2529 for (i = 0; i < count; i++)
2530 set_free_obj(page, i, i);
2531
2532 /* Fisher-Yates shuffle */
2533 for (i = count - 1; i > 0; i--) {
2534 rand = prandom_u32_state(&state.rnd_state);
2535 rand %= (i + 1);
2536 swap_free_obj(page, i, rand);
2537 }
c7ce4f60
TG
2538 } else {
2539 for (i = 0; i < count; i++)
2540 set_free_obj(page, i, next_random_slot(&state));
2541 }
2542
2543 if (OBJFREELIST_SLAB(cachep))
2544 set_free_obj(page, cachep->num - 1, objfreelist);
2545
2546 return true;
2547}
2548#else
2549static inline bool shuffle_freelist(struct kmem_cache *cachep,
2550 struct page *page)
2551{
2552 return false;
2553}
2554#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2555
10b2e9e8
JK
2556static void cache_init_objs(struct kmem_cache *cachep,
2557 struct page *page)
2558{
2559 int i;
7ed2f9e6 2560 void *objp;
c7ce4f60 2561 bool shuffled;
10b2e9e8
JK
2562
2563 cache_init_objs_debug(cachep, page);
2564
c7ce4f60
TG
2565 /* Try to randomize the freelist if enabled */
2566 shuffled = shuffle_freelist(cachep, page);
2567
2568 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2569 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2570 obj_offset(cachep);
2571 }
2572
10b2e9e8 2573 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2574 objp = index_to_obj(cachep, page, i);
2575 kasan_init_slab_obj(cachep, objp);
2576
10b2e9e8 2577 /* constructor could break poison info */
7ed2f9e6 2578 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2579 kasan_unpoison_object_data(cachep, objp);
2580 cachep->ctor(objp);
2581 kasan_poison_object_data(cachep, objp);
2582 }
10b2e9e8 2583
c7ce4f60
TG
2584 if (!shuffled)
2585 set_free_obj(page, i, i);
1da177e4 2586 }
1da177e4
LT
2587}
2588
260b61dd 2589static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2590{
b1cb0982 2591 void *objp;
78d382d7 2592
e5c58dfd 2593 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2594 page->active++;
78d382d7 2595
d31676df
JK
2596#if DEBUG
2597 if (cachep->flags & SLAB_STORE_USER)
2598 set_store_user_dirty(cachep);
2599#endif
2600
78d382d7
MD
2601 return objp;
2602}
2603
260b61dd
JK
2604static void slab_put_obj(struct kmem_cache *cachep,
2605 struct page *page, void *objp)
78d382d7 2606{
8456a648 2607 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2608#if DEBUG
16025177 2609 unsigned int i;
b1cb0982 2610
b1cb0982 2611 /* Verify double free bug */
8456a648 2612 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2613 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2614 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2615 cachep->name, objp);
b1cb0982
JK
2616 BUG();
2617 }
78d382d7
MD
2618 }
2619#endif
8456a648 2620 page->active--;
b03a017b
JK
2621 if (!page->freelist)
2622 page->freelist = objp + obj_offset(cachep);
2623
e5c58dfd 2624 set_free_obj(page, page->active, objnr);
78d382d7
MD
2625}
2626
4776874f
PE
2627/*
2628 * Map pages beginning at addr to the given cache and slab. This is required
2629 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2630 * virtual address for kfree, ksize, and slab debugging.
4776874f 2631 */
8456a648 2632static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2633 void *freelist)
1da177e4 2634{
a57a4988 2635 page->slab_cache = cache;
8456a648 2636 page->freelist = freelist;
1da177e4
LT
2637}
2638
2639/*
2640 * Grow (by 1) the number of slabs within a cache. This is called by
2641 * kmem_cache_alloc() when there are no active objs left in a cache.
2642 */
76b342bd
JK
2643static struct page *cache_grow_begin(struct kmem_cache *cachep,
2644 gfp_t flags, int nodeid)
1da177e4 2645{
7e007355 2646 void *freelist;
b28a02de
PE
2647 size_t offset;
2648 gfp_t local_flags;
511e3a05 2649 int page_node;
ce8eb6c4 2650 struct kmem_cache_node *n;
511e3a05 2651 struct page *page;
1da177e4 2652
a737b3e2
AM
2653 /*
2654 * Be lazy and only check for valid flags here, keeping it out of the
2655 * critical path in kmem_cache_alloc().
1da177e4 2656 */
c871ac4e 2657 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2658 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2659 flags &= ~GFP_SLAB_BUG_MASK;
2660 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2661 invalid_mask, &invalid_mask, flags, &flags);
2662 dump_stack();
c871ac4e 2663 }
6cb06229 2664 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2665
1da177e4 2666 check_irq_off();
d0164adc 2667 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2668 local_irq_enable();
2669
a737b3e2
AM
2670 /*
2671 * Get mem for the objs. Attempt to allocate a physical page from
2672 * 'nodeid'.
e498be7d 2673 */
511e3a05 2674 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2675 if (!page)
1da177e4
LT
2676 goto failed;
2677
511e3a05
JK
2678 page_node = page_to_nid(page);
2679 n = get_node(cachep, page_node);
03d1d43a
JK
2680
2681 /* Get colour for the slab, and cal the next value. */
2682 n->colour_next++;
2683 if (n->colour_next >= cachep->colour)
2684 n->colour_next = 0;
2685
2686 offset = n->colour_next;
2687 if (offset >= cachep->colour)
2688 offset = 0;
2689
2690 offset *= cachep->colour_off;
2691
1da177e4 2692 /* Get slab management. */
8456a648 2693 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2694 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2695 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2696 goto opps1;
2697
8456a648 2698 slab_map_pages(cachep, page, freelist);
1da177e4 2699
7ed2f9e6 2700 kasan_poison_slab(page);
8456a648 2701 cache_init_objs(cachep, page);
1da177e4 2702
d0164adc 2703 if (gfpflags_allow_blocking(local_flags))
1da177e4 2704 local_irq_disable();
1da177e4 2705
76b342bd
JK
2706 return page;
2707
a737b3e2 2708opps1:
0c3aa83e 2709 kmem_freepages(cachep, page);
a737b3e2 2710failed:
d0164adc 2711 if (gfpflags_allow_blocking(local_flags))
1da177e4 2712 local_irq_disable();
76b342bd
JK
2713 return NULL;
2714}
2715
2716static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2717{
2718 struct kmem_cache_node *n;
2719 void *list = NULL;
2720
2721 check_irq_off();
2722
2723 if (!page)
2724 return;
2725
2726 INIT_LIST_HEAD(&page->lru);
2727 n = get_node(cachep, page_to_nid(page));
2728
2729 spin_lock(&n->list_lock);
bf00bd34 2730 n->total_slabs++;
f728b0a5 2731 if (!page->active) {
76b342bd 2732 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2733 n->free_slabs++;
bf00bd34 2734 } else
76b342bd 2735 fixup_slab_list(cachep, n, page, &list);
07a63c41 2736
76b342bd
JK
2737 STATS_INC_GROWN(cachep);
2738 n->free_objects += cachep->num - page->active;
2739 spin_unlock(&n->list_lock);
2740
2741 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2742}
2743
2744#if DEBUG
2745
2746/*
2747 * Perform extra freeing checks:
2748 * - detect bad pointers.
2749 * - POISON/RED_ZONE checking
1da177e4
LT
2750 */
2751static void kfree_debugcheck(const void *objp)
2752{
1da177e4 2753 if (!virt_addr_valid(objp)) {
1170532b 2754 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2755 (unsigned long)objp);
2756 BUG();
1da177e4 2757 }
1da177e4
LT
2758}
2759
58ce1fd5
PE
2760static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2761{
b46b8f19 2762 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2763
2764 redzone1 = *dbg_redzone1(cache, obj);
2765 redzone2 = *dbg_redzone2(cache, obj);
2766
2767 /*
2768 * Redzone is ok.
2769 */
2770 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2771 return;
2772
2773 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2774 slab_error(cache, "double free detected");
2775 else
2776 slab_error(cache, "memory outside object was overwritten");
2777
85c3e4a5 2778 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2779 obj, redzone1, redzone2);
58ce1fd5
PE
2780}
2781
343e0d7a 2782static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2783 unsigned long caller)
1da177e4 2784{
1da177e4 2785 unsigned int objnr;
8456a648 2786 struct page *page;
1da177e4 2787
80cbd911
MW
2788 BUG_ON(virt_to_cache(objp) != cachep);
2789
3dafccf2 2790 objp -= obj_offset(cachep);
1da177e4 2791 kfree_debugcheck(objp);
b49af68f 2792 page = virt_to_head_page(objp);
1da177e4 2793
1da177e4 2794 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2795 verify_redzone_free(cachep, objp);
1da177e4
LT
2796 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2797 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2798 }
d31676df
JK
2799 if (cachep->flags & SLAB_STORE_USER) {
2800 set_store_user_dirty(cachep);
7c0cb9c6 2801 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2802 }
1da177e4 2803
8456a648 2804 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2805
2806 BUG_ON(objnr >= cachep->num);
8456a648 2807 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2808
1da177e4 2809 if (cachep->flags & SLAB_POISON) {
1da177e4 2810 poison_obj(cachep, objp, POISON_FREE);
40b44137 2811 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2812 }
2813 return objp;
2814}
2815
1da177e4
LT
2816#else
2817#define kfree_debugcheck(x) do { } while(0)
2818#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2819#endif
2820
b03a017b
JK
2821static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2822 void **list)
2823{
2824#if DEBUG
2825 void *next = *list;
2826 void *objp;
2827
2828 while (next) {
2829 objp = next - obj_offset(cachep);
2830 next = *(void **)next;
2831 poison_obj(cachep, objp, POISON_FREE);
2832 }
2833#endif
2834}
2835
d8410234 2836static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2837 struct kmem_cache_node *n, struct page *page,
2838 void **list)
d8410234
JK
2839{
2840 /* move slabp to correct slabp list: */
2841 list_del(&page->lru);
b03a017b 2842 if (page->active == cachep->num) {
d8410234 2843 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2844 if (OBJFREELIST_SLAB(cachep)) {
2845#if DEBUG
2846 /* Poisoning will be done without holding the lock */
2847 if (cachep->flags & SLAB_POISON) {
2848 void **objp = page->freelist;
2849
2850 *objp = *list;
2851 *list = objp;
2852 }
2853#endif
2854 page->freelist = NULL;
2855 }
2856 } else
d8410234
JK
2857 list_add(&page->lru, &n->slabs_partial);
2858}
2859
f68f8ddd
JK
2860/* Try to find non-pfmemalloc slab if needed */
2861static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2862 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2863{
2864 if (!page)
2865 return NULL;
2866
2867 if (pfmemalloc)
2868 return page;
2869
2870 if (!PageSlabPfmemalloc(page))
2871 return page;
2872
2873 /* No need to keep pfmemalloc slab if we have enough free objects */
2874 if (n->free_objects > n->free_limit) {
2875 ClearPageSlabPfmemalloc(page);
2876 return page;
2877 }
2878
2879 /* Move pfmemalloc slab to the end of list to speed up next search */
2880 list_del(&page->lru);
bf00bd34 2881 if (!page->active) {
f68f8ddd 2882 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2883 n->free_slabs++;
f728b0a5 2884 } else
f68f8ddd
JK
2885 list_add_tail(&page->lru, &n->slabs_partial);
2886
2887 list_for_each_entry(page, &n->slabs_partial, lru) {
2888 if (!PageSlabPfmemalloc(page))
2889 return page;
2890 }
2891
f728b0a5 2892 n->free_touched = 1;
f68f8ddd 2893 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2894 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2895 n->free_slabs--;
f68f8ddd 2896 return page;
f728b0a5 2897 }
f68f8ddd
JK
2898 }
2899
2900 return NULL;
2901}
2902
2903static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2904{
2905 struct page *page;
2906
f728b0a5 2907 assert_spin_locked(&n->list_lock);
bf00bd34 2908 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2909 if (!page) {
2910 n->free_touched = 1;
bf00bd34
DR
2911 page = list_first_entry_or_null(&n->slabs_free, struct page,
2912 lru);
f728b0a5 2913 if (page)
bf00bd34 2914 n->free_slabs--;
7aa0d227
GT
2915 }
2916
f68f8ddd 2917 if (sk_memalloc_socks())
bf00bd34 2918 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2919
7aa0d227
GT
2920 return page;
2921}
2922
f68f8ddd
JK
2923static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2924 struct kmem_cache_node *n, gfp_t flags)
2925{
2926 struct page *page;
2927 void *obj;
2928 void *list = NULL;
2929
2930 if (!gfp_pfmemalloc_allowed(flags))
2931 return NULL;
2932
2933 spin_lock(&n->list_lock);
2934 page = get_first_slab(n, true);
2935 if (!page) {
2936 spin_unlock(&n->list_lock);
2937 return NULL;
2938 }
2939
2940 obj = slab_get_obj(cachep, page);
2941 n->free_objects--;
2942
2943 fixup_slab_list(cachep, n, page, &list);
2944
2945 spin_unlock(&n->list_lock);
2946 fixup_objfreelist_debug(cachep, &list);
2947
2948 return obj;
2949}
2950
213b4695
JK
2951/*
2952 * Slab list should be fixed up by fixup_slab_list() for existing slab
2953 * or cache_grow_end() for new slab
2954 */
2955static __always_inline int alloc_block(struct kmem_cache *cachep,
2956 struct array_cache *ac, struct page *page, int batchcount)
2957{
2958 /*
2959 * There must be at least one object available for
2960 * allocation.
2961 */
2962 BUG_ON(page->active >= cachep->num);
2963
2964 while (page->active < cachep->num && batchcount--) {
2965 STATS_INC_ALLOCED(cachep);
2966 STATS_INC_ACTIVE(cachep);
2967 STATS_SET_HIGH(cachep);
2968
2969 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2970 }
2971
2972 return batchcount;
2973}
2974
f68f8ddd 2975static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2976{
2977 int batchcount;
ce8eb6c4 2978 struct kmem_cache_node *n;
801faf0d 2979 struct array_cache *ac, *shared;
1ca4cb24 2980 int node;
b03a017b 2981 void *list = NULL;
76b342bd 2982 struct page *page;
1ca4cb24 2983
1da177e4 2984 check_irq_off();
7d6e6d09 2985 node = numa_mem_id();
f68f8ddd 2986
9a2dba4b 2987 ac = cpu_cache_get(cachep);
1da177e4
LT
2988 batchcount = ac->batchcount;
2989 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2990 /*
2991 * If there was little recent activity on this cache, then
2992 * perform only a partial refill. Otherwise we could generate
2993 * refill bouncing.
1da177e4
LT
2994 */
2995 batchcount = BATCHREFILL_LIMIT;
2996 }
18bf8541 2997 n = get_node(cachep, node);
e498be7d 2998
ce8eb6c4 2999 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3000 shared = READ_ONCE(n->shared);
3001 if (!n->free_objects && (!shared || !shared->avail))
3002 goto direct_grow;
3003
ce8eb6c4 3004 spin_lock(&n->list_lock);
801faf0d 3005 shared = READ_ONCE(n->shared);
1da177e4 3006
3ded175a 3007 /* See if we can refill from the shared array */
801faf0d
JK
3008 if (shared && transfer_objects(ac, shared, batchcount)) {
3009 shared->touched = 1;
3ded175a 3010 goto alloc_done;
44b57f1c 3011 }
3ded175a 3012
1da177e4 3013 while (batchcount > 0) {
1da177e4 3014 /* Get slab alloc is to come from. */
f68f8ddd 3015 page = get_first_slab(n, false);
7aa0d227
GT
3016 if (!page)
3017 goto must_grow;
1da177e4 3018
1da177e4 3019 check_spinlock_acquired(cachep);
714b8171 3020
213b4695 3021 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3022 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3023 }
3024
a737b3e2 3025must_grow:
ce8eb6c4 3026 n->free_objects -= ac->avail;
a737b3e2 3027alloc_done:
ce8eb6c4 3028 spin_unlock(&n->list_lock);
b03a017b 3029 fixup_objfreelist_debug(cachep, &list);
1da177e4 3030
801faf0d 3031direct_grow:
1da177e4 3032 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3033 /* Check if we can use obj in pfmemalloc slab */
3034 if (sk_memalloc_socks()) {
3035 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3036
3037 if (obj)
3038 return obj;
3039 }
3040
76b342bd 3041 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3042
76b342bd
JK
3043 /*
3044 * cache_grow_begin() can reenable interrupts,
3045 * then ac could change.
3046 */
9a2dba4b 3047 ac = cpu_cache_get(cachep);
213b4695
JK
3048 if (!ac->avail && page)
3049 alloc_block(cachep, ac, page, batchcount);
3050 cache_grow_end(cachep, page);
072bb0aa 3051
213b4695 3052 if (!ac->avail)
1da177e4 3053 return NULL;
1da177e4
LT
3054 }
3055 ac->touched = 1;
072bb0aa 3056
f68f8ddd 3057 return ac->entry[--ac->avail];
1da177e4
LT
3058}
3059
a737b3e2
AM
3060static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3061 gfp_t flags)
1da177e4 3062{
d0164adc 3063 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3064}
3065
3066#if DEBUG
a737b3e2 3067static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3068 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3069{
b28a02de 3070 if (!objp)
1da177e4 3071 return objp;
b28a02de 3072 if (cachep->flags & SLAB_POISON) {
1da177e4 3073 check_poison_obj(cachep, objp);
40b44137 3074 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3075 poison_obj(cachep, objp, POISON_INUSE);
3076 }
3077 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3078 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3079
3080 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3081 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3082 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3083 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3084 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3085 objp, *dbg_redzone1(cachep, objp),
3086 *dbg_redzone2(cachep, objp));
1da177e4
LT
3087 }
3088 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3089 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3090 }
03787301 3091
3dafccf2 3092 objp += obj_offset(cachep);
4f104934 3093 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3094 cachep->ctor(objp);
7ea466f2
TH
3095 if (ARCH_SLAB_MINALIGN &&
3096 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3097 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3098 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3099 }
1da177e4
LT
3100 return objp;
3101}
3102#else
3103#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3104#endif
3105
343e0d7a 3106static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3107{
b28a02de 3108 void *objp;
1da177e4
LT
3109 struct array_cache *ac;
3110
5c382300 3111 check_irq_off();
8a8b6502 3112
9a2dba4b 3113 ac = cpu_cache_get(cachep);
1da177e4 3114 if (likely(ac->avail)) {
1da177e4 3115 ac->touched = 1;
f68f8ddd 3116 objp = ac->entry[--ac->avail];
072bb0aa 3117
f68f8ddd
JK
3118 STATS_INC_ALLOCHIT(cachep);
3119 goto out;
1da177e4 3120 }
072bb0aa
MG
3121
3122 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3123 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3124 /*
3125 * the 'ac' may be updated by cache_alloc_refill(),
3126 * and kmemleak_erase() requires its correct value.
3127 */
3128 ac = cpu_cache_get(cachep);
3129
3130out:
d5cff635
CM
3131 /*
3132 * To avoid a false negative, if an object that is in one of the
3133 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3134 * treat the array pointers as a reference to the object.
3135 */
f3d8b53a
O
3136 if (objp)
3137 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3138 return objp;
3139}
3140
e498be7d 3141#ifdef CONFIG_NUMA
c61afb18 3142/*
2ad654bc 3143 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3144 *
3145 * If we are in_interrupt, then process context, including cpusets and
3146 * mempolicy, may not apply and should not be used for allocation policy.
3147 */
3148static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3149{
3150 int nid_alloc, nid_here;
3151
765c4507 3152 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3153 return NULL;
7d6e6d09 3154 nid_alloc = nid_here = numa_mem_id();
c61afb18 3155 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3156 nid_alloc = cpuset_slab_spread_node();
c61afb18 3157 else if (current->mempolicy)
2a389610 3158 nid_alloc = mempolicy_slab_node();
c61afb18 3159 if (nid_alloc != nid_here)
8b98c169 3160 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3161 return NULL;
3162}
3163
765c4507
CL
3164/*
3165 * Fallback function if there was no memory available and no objects on a
3c517a61 3166 * certain node and fall back is permitted. First we scan all the
6a67368c 3167 * available node for available objects. If that fails then we
3c517a61
CL
3168 * perform an allocation without specifying a node. This allows the page
3169 * allocator to do its reclaim / fallback magic. We then insert the
3170 * slab into the proper nodelist and then allocate from it.
765c4507 3171 */
8c8cc2c1 3172static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3173{
8c8cc2c1 3174 struct zonelist *zonelist;
dd1a239f 3175 struct zoneref *z;
54a6eb5c
MG
3176 struct zone *zone;
3177 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3178 void *obj = NULL;
76b342bd 3179 struct page *page;
3c517a61 3180 int nid;
cc9a6c87 3181 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3182
3183 if (flags & __GFP_THISNODE)
3184 return NULL;
3185
cc9a6c87 3186retry_cpuset:
d26914d1 3187 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3188 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3189
3c517a61
CL
3190retry:
3191 /*
3192 * Look through allowed nodes for objects available
3193 * from existing per node queues.
3194 */
54a6eb5c
MG
3195 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3196 nid = zone_to_nid(zone);
aedb0eb1 3197
061d7074 3198 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3199 get_node(cache, nid) &&
3200 get_node(cache, nid)->free_objects) {
3c517a61 3201 obj = ____cache_alloc_node(cache,
4167e9b2 3202 gfp_exact_node(flags), nid);
481c5346
CL
3203 if (obj)
3204 break;
3205 }
3c517a61
CL
3206 }
3207
cfce6604 3208 if (!obj) {
3c517a61
CL
3209 /*
3210 * This allocation will be performed within the constraints
3211 * of the current cpuset / memory policy requirements.
3212 * We may trigger various forms of reclaim on the allowed
3213 * set and go into memory reserves if necessary.
3214 */
76b342bd
JK
3215 page = cache_grow_begin(cache, flags, numa_mem_id());
3216 cache_grow_end(cache, page);
3217 if (page) {
3218 nid = page_to_nid(page);
511e3a05
JK
3219 obj = ____cache_alloc_node(cache,
3220 gfp_exact_node(flags), nid);
0c3aa83e 3221
3c517a61 3222 /*
511e3a05
JK
3223 * Another processor may allocate the objects in
3224 * the slab since we are not holding any locks.
3c517a61 3225 */
511e3a05
JK
3226 if (!obj)
3227 goto retry;
3c517a61 3228 }
aedb0eb1 3229 }
cc9a6c87 3230
d26914d1 3231 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3232 goto retry_cpuset;
765c4507
CL
3233 return obj;
3234}
3235
e498be7d
CL
3236/*
3237 * A interface to enable slab creation on nodeid
1da177e4 3238 */
8b98c169 3239static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3240 int nodeid)
e498be7d 3241{
8456a648 3242 struct page *page;
ce8eb6c4 3243 struct kmem_cache_node *n;
213b4695 3244 void *obj = NULL;
b03a017b 3245 void *list = NULL;
b28a02de 3246
7c3fbbdd 3247 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3248 n = get_node(cachep, nodeid);
ce8eb6c4 3249 BUG_ON(!n);
b28a02de 3250
ca3b9b91 3251 check_irq_off();
ce8eb6c4 3252 spin_lock(&n->list_lock);
f68f8ddd 3253 page = get_first_slab(n, false);
7aa0d227
GT
3254 if (!page)
3255 goto must_grow;
b28a02de 3256
b28a02de 3257 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3258
3259 STATS_INC_NODEALLOCS(cachep);
3260 STATS_INC_ACTIVE(cachep);
3261 STATS_SET_HIGH(cachep);
3262
8456a648 3263 BUG_ON(page->active == cachep->num);
b28a02de 3264
260b61dd 3265 obj = slab_get_obj(cachep, page);
ce8eb6c4 3266 n->free_objects--;
b28a02de 3267
b03a017b 3268 fixup_slab_list(cachep, n, page, &list);
e498be7d 3269
ce8eb6c4 3270 spin_unlock(&n->list_lock);
b03a017b 3271 fixup_objfreelist_debug(cachep, &list);
213b4695 3272 return obj;
e498be7d 3273
a737b3e2 3274must_grow:
ce8eb6c4 3275 spin_unlock(&n->list_lock);
76b342bd 3276 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3277 if (page) {
3278 /* This slab isn't counted yet so don't update free_objects */
3279 obj = slab_get_obj(cachep, page);
3280 }
76b342bd 3281 cache_grow_end(cachep, page);
1da177e4 3282
213b4695 3283 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3284}
8c8cc2c1 3285
8c8cc2c1 3286static __always_inline void *
48356303 3287slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3288 unsigned long caller)
8c8cc2c1
PE
3289{
3290 unsigned long save_flags;
3291 void *ptr;
7d6e6d09 3292 int slab_node = numa_mem_id();
8c8cc2c1 3293
dcce284a 3294 flags &= gfp_allowed_mask;
011eceaf
JDB
3295 cachep = slab_pre_alloc_hook(cachep, flags);
3296 if (unlikely(!cachep))
824ebef1
AM
3297 return NULL;
3298
8c8cc2c1
PE
3299 cache_alloc_debugcheck_before(cachep, flags);
3300 local_irq_save(save_flags);
3301
eacbbae3 3302 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3303 nodeid = slab_node;
8c8cc2c1 3304
18bf8541 3305 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3306 /* Node not bootstrapped yet */
3307 ptr = fallback_alloc(cachep, flags);
3308 goto out;
3309 }
3310
7d6e6d09 3311 if (nodeid == slab_node) {
8c8cc2c1
PE
3312 /*
3313 * Use the locally cached objects if possible.
3314 * However ____cache_alloc does not allow fallback
3315 * to other nodes. It may fail while we still have
3316 * objects on other nodes available.
3317 */
3318 ptr = ____cache_alloc(cachep, flags);
3319 if (ptr)
3320 goto out;
3321 }
3322 /* ___cache_alloc_node can fall back to other nodes */
3323 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3324 out:
3325 local_irq_restore(save_flags);
3326 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3327
d5e3ed66
JDB
3328 if (unlikely(flags & __GFP_ZERO) && ptr)
3329 memset(ptr, 0, cachep->object_size);
d07dbea4 3330
d5e3ed66 3331 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3332 return ptr;
3333}
3334
3335static __always_inline void *
3336__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3337{
3338 void *objp;
3339
2ad654bc 3340 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3341 objp = alternate_node_alloc(cache, flags);
3342 if (objp)
3343 goto out;
3344 }
3345 objp = ____cache_alloc(cache, flags);
3346
3347 /*
3348 * We may just have run out of memory on the local node.
3349 * ____cache_alloc_node() knows how to locate memory on other nodes
3350 */
7d6e6d09
LS
3351 if (!objp)
3352 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3353
3354 out:
3355 return objp;
3356}
3357#else
3358
3359static __always_inline void *
3360__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3361{
3362 return ____cache_alloc(cachep, flags);
3363}
3364
3365#endif /* CONFIG_NUMA */
3366
3367static __always_inline void *
48356303 3368slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3369{
3370 unsigned long save_flags;
3371 void *objp;
3372
dcce284a 3373 flags &= gfp_allowed_mask;
011eceaf
JDB
3374 cachep = slab_pre_alloc_hook(cachep, flags);
3375 if (unlikely(!cachep))
824ebef1
AM
3376 return NULL;
3377
8c8cc2c1
PE
3378 cache_alloc_debugcheck_before(cachep, flags);
3379 local_irq_save(save_flags);
3380 objp = __do_cache_alloc(cachep, flags);
3381 local_irq_restore(save_flags);
3382 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3383 prefetchw(objp);
3384
d5e3ed66
JDB
3385 if (unlikely(flags & __GFP_ZERO) && objp)
3386 memset(objp, 0, cachep->object_size);
d07dbea4 3387
d5e3ed66 3388 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3389 return objp;
3390}
e498be7d
CL
3391
3392/*
5f0985bb 3393 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3394 * @list: List of detached free slabs should be freed by caller
e498be7d 3395 */
97654dfa
JK
3396static void free_block(struct kmem_cache *cachep, void **objpp,
3397 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3398{
3399 int i;
25c063fb 3400 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3401 struct page *page;
3402
3403 n->free_objects += nr_objects;
1da177e4
LT
3404
3405 for (i = 0; i < nr_objects; i++) {
072bb0aa 3406 void *objp;
8456a648 3407 struct page *page;
1da177e4 3408
072bb0aa
MG
3409 objp = objpp[i];
3410
8456a648 3411 page = virt_to_head_page(objp);
8456a648 3412 list_del(&page->lru);
ff69416e 3413 check_spinlock_acquired_node(cachep, node);
260b61dd 3414 slab_put_obj(cachep, page, objp);
1da177e4 3415 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3416
3417 /* fixup slab chains */
f728b0a5 3418 if (page->active == 0) {
6052b788 3419 list_add(&page->lru, &n->slabs_free);
f728b0a5 3420 n->free_slabs++;
f728b0a5 3421 } else {
1da177e4
LT
3422 /* Unconditionally move a slab to the end of the
3423 * partial list on free - maximum time for the
3424 * other objects to be freed, too.
3425 */
8456a648 3426 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3427 }
3428 }
6052b788
JK
3429
3430 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3431 n->free_objects -= cachep->num;
3432
3433 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3434 list_move(&page->lru, list);
f728b0a5 3435 n->free_slabs--;
bf00bd34 3436 n->total_slabs--;
6052b788 3437 }
1da177e4
LT
3438}
3439
343e0d7a 3440static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3441{
3442 int batchcount;
ce8eb6c4 3443 struct kmem_cache_node *n;
7d6e6d09 3444 int node = numa_mem_id();
97654dfa 3445 LIST_HEAD(list);
1da177e4
LT
3446
3447 batchcount = ac->batchcount;
260b61dd 3448
1da177e4 3449 check_irq_off();
18bf8541 3450 n = get_node(cachep, node);
ce8eb6c4
CL
3451 spin_lock(&n->list_lock);
3452 if (n->shared) {
3453 struct array_cache *shared_array = n->shared;
b28a02de 3454 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3455 if (max) {
3456 if (batchcount > max)
3457 batchcount = max;
e498be7d 3458 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3459 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3460 shared_array->avail += batchcount;
3461 goto free_done;
3462 }
3463 }
3464
97654dfa 3465 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3466free_done:
1da177e4
LT
3467#if STATS
3468 {
3469 int i = 0;
73c0219d 3470 struct page *page;
1da177e4 3471
73c0219d 3472 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3473 BUG_ON(page->active);
1da177e4
LT
3474
3475 i++;
1da177e4
LT
3476 }
3477 STATS_SET_FREEABLE(cachep, i);
3478 }
3479#endif
ce8eb6c4 3480 spin_unlock(&n->list_lock);
97654dfa 3481 slabs_destroy(cachep, &list);
1da177e4 3482 ac->avail -= batchcount;
a737b3e2 3483 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3484}
3485
3486/*
a737b3e2
AM
3487 * Release an obj back to its cache. If the obj has a constructed state, it must
3488 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3489 */
a947eb95 3490static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3491 unsigned long caller)
1da177e4 3492{
55834c59
AP
3493 /* Put the object into the quarantine, don't touch it for now. */
3494 if (kasan_slab_free(cachep, objp))
3495 return;
3496
3497 ___cache_free(cachep, objp, caller);
3498}
1da177e4 3499
55834c59
AP
3500void ___cache_free(struct kmem_cache *cachep, void *objp,
3501 unsigned long caller)
3502{
3503 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3504
1da177e4 3505 check_irq_off();
d5cff635 3506 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3507 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3508
1807a1aa
SS
3509 /*
3510 * Skip calling cache_free_alien() when the platform is not numa.
3511 * This will avoid cache misses that happen while accessing slabp (which
3512 * is per page memory reference) to get nodeid. Instead use a global
3513 * variable to skip the call, which is mostly likely to be present in
3514 * the cache.
3515 */
b6e68bc1 3516 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3517 return;
3518
3d880194 3519 if (ac->avail < ac->limit) {
1da177e4 3520 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3521 } else {
3522 STATS_INC_FREEMISS(cachep);
3523 cache_flusharray(cachep, ac);
1da177e4 3524 }
42c8c99c 3525
f68f8ddd
JK
3526 if (sk_memalloc_socks()) {
3527 struct page *page = virt_to_head_page(objp);
3528
3529 if (unlikely(PageSlabPfmemalloc(page))) {
3530 cache_free_pfmemalloc(cachep, page, objp);
3531 return;
3532 }
3533 }
3534
3535 ac->entry[ac->avail++] = objp;
1da177e4
LT
3536}
3537
3538/**
3539 * kmem_cache_alloc - Allocate an object
3540 * @cachep: The cache to allocate from.
3541 * @flags: See kmalloc().
3542 *
3543 * Allocate an object from this cache. The flags are only relevant
3544 * if the cache has no available objects.
3545 */
343e0d7a 3546void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3547{
48356303 3548 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3549
505f5dcb 3550 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3551 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3552 cachep->object_size, cachep->size, flags);
36555751
EGM
3553
3554 return ret;
1da177e4
LT
3555}
3556EXPORT_SYMBOL(kmem_cache_alloc);
3557
7b0501dd
JDB
3558static __always_inline void
3559cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3560 size_t size, void **p, unsigned long caller)
3561{
3562 size_t i;
3563
3564 for (i = 0; i < size; i++)
3565 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3566}
3567
865762a8 3568int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3569 void **p)
484748f0 3570{
2a777eac
JDB
3571 size_t i;
3572
3573 s = slab_pre_alloc_hook(s, flags);
3574 if (!s)
3575 return 0;
3576
3577 cache_alloc_debugcheck_before(s, flags);
3578
3579 local_irq_disable();
3580 for (i = 0; i < size; i++) {
3581 void *objp = __do_cache_alloc(s, flags);
3582
2a777eac
JDB
3583 if (unlikely(!objp))
3584 goto error;
3585 p[i] = objp;
3586 }
3587 local_irq_enable();
3588
7b0501dd
JDB
3589 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3590
2a777eac
JDB
3591 /* Clear memory outside IRQ disabled section */
3592 if (unlikely(flags & __GFP_ZERO))
3593 for (i = 0; i < size; i++)
3594 memset(p[i], 0, s->object_size);
3595
3596 slab_post_alloc_hook(s, flags, size, p);
3597 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3598 return size;
3599error:
3600 local_irq_enable();
7b0501dd 3601 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3602 slab_post_alloc_hook(s, flags, i, p);
3603 __kmem_cache_free_bulk(s, i, p);
3604 return 0;
484748f0
CL
3605}
3606EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3607
0f24f128 3608#ifdef CONFIG_TRACING
85beb586 3609void *
4052147c 3610kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3611{
85beb586
SR
3612 void *ret;
3613
48356303 3614 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3615
505f5dcb 3616 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3617 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3618 size, cachep->size, flags);
85beb586 3619 return ret;
36555751 3620}
85beb586 3621EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3622#endif
3623
1da177e4 3624#ifdef CONFIG_NUMA
d0d04b78
ZL
3625/**
3626 * kmem_cache_alloc_node - Allocate an object on the specified node
3627 * @cachep: The cache to allocate from.
3628 * @flags: See kmalloc().
3629 * @nodeid: node number of the target node.
3630 *
3631 * Identical to kmem_cache_alloc but it will allocate memory on the given
3632 * node, which can improve the performance for cpu bound structures.
3633 *
3634 * Fallback to other node is possible if __GFP_THISNODE is not set.
3635 */
8b98c169
CH
3636void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3637{
48356303 3638 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3639
505f5dcb 3640 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3641 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3642 cachep->object_size, cachep->size,
ca2b84cb 3643 flags, nodeid);
36555751
EGM
3644
3645 return ret;
8b98c169 3646}
1da177e4
LT
3647EXPORT_SYMBOL(kmem_cache_alloc_node);
3648
0f24f128 3649#ifdef CONFIG_TRACING
4052147c 3650void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3651 gfp_t flags,
4052147c
EG
3652 int nodeid,
3653 size_t size)
36555751 3654{
85beb586
SR
3655 void *ret;
3656
592f4145 3657 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3658
3659 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3660 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3661 size, cachep->size,
85beb586
SR
3662 flags, nodeid);
3663 return ret;
36555751 3664}
85beb586 3665EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3666#endif
3667
8b98c169 3668static __always_inline void *
7c0cb9c6 3669__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3670{
343e0d7a 3671 struct kmem_cache *cachep;
7ed2f9e6 3672 void *ret;
97e2bde4 3673
333cfbd3
DV
3674 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3675 return NULL;
2c59dd65 3676 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3677 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3678 return cachep;
7ed2f9e6 3679 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3680 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3681
3682 return ret;
97e2bde4 3683}
8b98c169 3684
8b98c169
CH
3685void *__kmalloc_node(size_t size, gfp_t flags, int node)
3686{
7c0cb9c6 3687 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3688}
dbe5e69d 3689EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3690
3691void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3692 int node, unsigned long caller)
8b98c169 3693{
7c0cb9c6 3694 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3695}
3696EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3697#endif /* CONFIG_NUMA */
1da177e4
LT
3698
3699/**
800590f5 3700 * __do_kmalloc - allocate memory
1da177e4 3701 * @size: how many bytes of memory are required.
800590f5 3702 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3703 * @caller: function caller for debug tracking of the caller
1da177e4 3704 */
7fd6b141 3705static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3706 unsigned long caller)
1da177e4 3707{
343e0d7a 3708 struct kmem_cache *cachep;
36555751 3709 void *ret;
1da177e4 3710
333cfbd3
DV
3711 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3712 return NULL;
2c59dd65 3713 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3714 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3715 return cachep;
48356303 3716 ret = slab_alloc(cachep, flags, caller);
36555751 3717
505f5dcb 3718 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3719 trace_kmalloc(caller, ret,
3b0efdfa 3720 size, cachep->size, flags);
36555751
EGM
3721
3722 return ret;
7fd6b141
PE
3723}
3724
7fd6b141
PE
3725void *__kmalloc(size_t size, gfp_t flags)
3726{
7c0cb9c6 3727 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3728}
3729EXPORT_SYMBOL(__kmalloc);
3730
ce71e27c 3731void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3732{
7c0cb9c6 3733 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3734}
3735EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3736
1da177e4
LT
3737/**
3738 * kmem_cache_free - Deallocate an object
3739 * @cachep: The cache the allocation was from.
3740 * @objp: The previously allocated object.
3741 *
3742 * Free an object which was previously allocated from this
3743 * cache.
3744 */
343e0d7a 3745void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3746{
3747 unsigned long flags;
b9ce5ef4
GC
3748 cachep = cache_from_obj(cachep, objp);
3749 if (!cachep)
3750 return;
1da177e4
LT
3751
3752 local_irq_save(flags);
d97d476b 3753 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3754 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3755 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3756 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3757 local_irq_restore(flags);
36555751 3758
ca2b84cb 3759 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3760}
3761EXPORT_SYMBOL(kmem_cache_free);
3762
e6cdb58d
JDB
3763void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3764{
3765 struct kmem_cache *s;
3766 size_t i;
3767
3768 local_irq_disable();
3769 for (i = 0; i < size; i++) {
3770 void *objp = p[i];
3771
ca257195
JDB
3772 if (!orig_s) /* called via kfree_bulk */
3773 s = virt_to_cache(objp);
3774 else
3775 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3776
3777 debug_check_no_locks_freed(objp, s->object_size);
3778 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3779 debug_check_no_obj_freed(objp, s->object_size);
3780
3781 __cache_free(s, objp, _RET_IP_);
3782 }
3783 local_irq_enable();
3784
3785 /* FIXME: add tracing */
3786}
3787EXPORT_SYMBOL(kmem_cache_free_bulk);
3788
1da177e4
LT
3789/**
3790 * kfree - free previously allocated memory
3791 * @objp: pointer returned by kmalloc.
3792 *
80e93eff
PE
3793 * If @objp is NULL, no operation is performed.
3794 *
1da177e4
LT
3795 * Don't free memory not originally allocated by kmalloc()
3796 * or you will run into trouble.
3797 */
3798void kfree(const void *objp)
3799{
343e0d7a 3800 struct kmem_cache *c;
1da177e4
LT
3801 unsigned long flags;
3802
2121db74
PE
3803 trace_kfree(_RET_IP_, objp);
3804
6cb8f913 3805 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3806 return;
3807 local_irq_save(flags);
3808 kfree_debugcheck(objp);
6ed5eb22 3809 c = virt_to_cache(objp);
8c138bc0
CL
3810 debug_check_no_locks_freed(objp, c->object_size);
3811
3812 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3813 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3814 local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL(kfree);
3817
e498be7d 3818/*
ce8eb6c4 3819 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3820 */
c3d332b6 3821static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3822{
c3d332b6 3823 int ret;
e498be7d 3824 int node;
ce8eb6c4 3825 struct kmem_cache_node *n;
e498be7d 3826
9c09a95c 3827 for_each_online_node(node) {
c3d332b6
JK
3828 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3829 if (ret)
e498be7d
CL
3830 goto fail;
3831
e498be7d 3832 }
c3d332b6 3833
cafeb02e 3834 return 0;
0718dc2a 3835
a737b3e2 3836fail:
3b0efdfa 3837 if (!cachep->list.next) {
0718dc2a
CL
3838 /* Cache is not active yet. Roll back what we did */
3839 node--;
3840 while (node >= 0) {
18bf8541
CL
3841 n = get_node(cachep, node);
3842 if (n) {
ce8eb6c4
CL
3843 kfree(n->shared);
3844 free_alien_cache(n->alien);
3845 kfree(n);
6a67368c 3846 cachep->node[node] = NULL;
0718dc2a
CL
3847 }
3848 node--;
3849 }
3850 }
cafeb02e 3851 return -ENOMEM;
e498be7d
CL
3852}
3853
18004c5d 3854/* Always called with the slab_mutex held */
943a451a 3855static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3856 int batchcount, int shared, gfp_t gfp)
1da177e4 3857{
bf0dea23
JK
3858 struct array_cache __percpu *cpu_cache, *prev;
3859 int cpu;
1da177e4 3860
bf0dea23
JK
3861 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3862 if (!cpu_cache)
d2e7b7d0
SS
3863 return -ENOMEM;
3864
bf0dea23
JK
3865 prev = cachep->cpu_cache;
3866 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3867 /*
3868 * Without a previous cpu_cache there's no need to synchronize remote
3869 * cpus, so skip the IPIs.
3870 */
3871 if (prev)
3872 kick_all_cpus_sync();
e498be7d 3873
1da177e4 3874 check_irq_on();
1da177e4
LT
3875 cachep->batchcount = batchcount;
3876 cachep->limit = limit;
e498be7d 3877 cachep->shared = shared;
1da177e4 3878
bf0dea23 3879 if (!prev)
c3d332b6 3880 goto setup_node;
bf0dea23
JK
3881
3882 for_each_online_cpu(cpu) {
97654dfa 3883 LIST_HEAD(list);
18bf8541
CL
3884 int node;
3885 struct kmem_cache_node *n;
bf0dea23 3886 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3887
bf0dea23 3888 node = cpu_to_mem(cpu);
18bf8541
CL
3889 n = get_node(cachep, node);
3890 spin_lock_irq(&n->list_lock);
bf0dea23 3891 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3892 spin_unlock_irq(&n->list_lock);
97654dfa 3893 slabs_destroy(cachep, &list);
1da177e4 3894 }
bf0dea23
JK
3895 free_percpu(prev);
3896
c3d332b6
JK
3897setup_node:
3898 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3899}
3900
943a451a
GC
3901static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3902 int batchcount, int shared, gfp_t gfp)
3903{
3904 int ret;
426589f5 3905 struct kmem_cache *c;
943a451a
GC
3906
3907 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3908
3909 if (slab_state < FULL)
3910 return ret;
3911
3912 if ((ret < 0) || !is_root_cache(cachep))
3913 return ret;
3914
426589f5
VD
3915 lockdep_assert_held(&slab_mutex);
3916 for_each_memcg_cache(c, cachep) {
3917 /* return value determined by the root cache only */
3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3919 }
3920
3921 return ret;
3922}
3923
18004c5d 3924/* Called with slab_mutex held always */
83b519e8 3925static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3926{
3927 int err;
943a451a
GC
3928 int limit = 0;
3929 int shared = 0;
3930 int batchcount = 0;
3931
7c00fce9 3932 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3933 if (err)
3934 goto end;
3935
943a451a
GC
3936 if (!is_root_cache(cachep)) {
3937 struct kmem_cache *root = memcg_root_cache(cachep);
3938 limit = root->limit;
3939 shared = root->shared;
3940 batchcount = root->batchcount;
3941 }
1da177e4 3942
943a451a
GC
3943 if (limit && shared && batchcount)
3944 goto skip_setup;
a737b3e2
AM
3945 /*
3946 * The head array serves three purposes:
1da177e4
LT
3947 * - create a LIFO ordering, i.e. return objects that are cache-warm
3948 * - reduce the number of spinlock operations.
a737b3e2 3949 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3950 * bufctl chains: array operations are cheaper.
3951 * The numbers are guessed, we should auto-tune as described by
3952 * Bonwick.
3953 */
3b0efdfa 3954 if (cachep->size > 131072)
1da177e4 3955 limit = 1;
3b0efdfa 3956 else if (cachep->size > PAGE_SIZE)
1da177e4 3957 limit = 8;
3b0efdfa 3958 else if (cachep->size > 1024)
1da177e4 3959 limit = 24;
3b0efdfa 3960 else if (cachep->size > 256)
1da177e4
LT
3961 limit = 54;
3962 else
3963 limit = 120;
3964
a737b3e2
AM
3965 /*
3966 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3967 * allocation behaviour: Most allocs on one cpu, most free operations
3968 * on another cpu. For these cases, an efficient object passing between
3969 * cpus is necessary. This is provided by a shared array. The array
3970 * replaces Bonwick's magazine layer.
3971 * On uniprocessor, it's functionally equivalent (but less efficient)
3972 * to a larger limit. Thus disabled by default.
3973 */
3974 shared = 0;
3b0efdfa 3975 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3976 shared = 8;
1da177e4
LT
3977
3978#if DEBUG
a737b3e2
AM
3979 /*
3980 * With debugging enabled, large batchcount lead to excessively long
3981 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3982 */
3983 if (limit > 32)
3984 limit = 32;
3985#endif
943a451a
GC
3986 batchcount = (limit + 1) / 2;
3987skip_setup:
3988 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3989end:
1da177e4 3990 if (err)
1170532b 3991 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3992 cachep->name, -err);
2ed3a4ef 3993 return err;
1da177e4
LT
3994}
3995
1b55253a 3996/*
ce8eb6c4
CL
3997 * Drain an array if it contains any elements taking the node lock only if
3998 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3999 * if drain_array() is used on the shared array.
1b55253a 4000 */
ce8eb6c4 4001static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4002 struct array_cache *ac, int node)
1da177e4 4003{
97654dfa 4004 LIST_HEAD(list);
18726ca8
JK
4005
4006 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4007 check_mutex_acquired();
1da177e4 4008
1b55253a
CL
4009 if (!ac || !ac->avail)
4010 return;
18726ca8
JK
4011
4012 if (ac->touched) {
1da177e4 4013 ac->touched = 0;
18726ca8 4014 return;
1da177e4 4015 }
18726ca8
JK
4016
4017 spin_lock_irq(&n->list_lock);
4018 drain_array_locked(cachep, ac, node, false, &list);
4019 spin_unlock_irq(&n->list_lock);
4020
4021 slabs_destroy(cachep, &list);
1da177e4
LT
4022}
4023
4024/**
4025 * cache_reap - Reclaim memory from caches.
05fb6bf0 4026 * @w: work descriptor
1da177e4
LT
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
a737b3e2
AM
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
1da177e4 4035 */
7c5cae36 4036static void cache_reap(struct work_struct *w)
1da177e4 4037{
7a7c381d 4038 struct kmem_cache *searchp;
ce8eb6c4 4039 struct kmem_cache_node *n;
7d6e6d09 4040 int node = numa_mem_id();
bf6aede7 4041 struct delayed_work *work = to_delayed_work(w);
1da177e4 4042
18004c5d 4043 if (!mutex_trylock(&slab_mutex))
1da177e4 4044 /* Give up. Setup the next iteration. */
7c5cae36 4045 goto out;
1da177e4 4046
18004c5d 4047 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4048 check_irq_on();
4049
35386e3b 4050 /*
ce8eb6c4 4051 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4052 * have established with reasonable certainty that
4053 * we can do some work if the lock was obtained.
4054 */
18bf8541 4055 n = get_node(searchp, node);
35386e3b 4056
ce8eb6c4 4057 reap_alien(searchp, n);
1da177e4 4058
18726ca8 4059 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4060
35386e3b
CL
4061 /*
4062 * These are racy checks but it does not matter
4063 * if we skip one check or scan twice.
4064 */
ce8eb6c4 4065 if (time_after(n->next_reap, jiffies))
35386e3b 4066 goto next;
1da177e4 4067
5f0985bb 4068 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4069
18726ca8 4070 drain_array(searchp, n, n->shared, node);
1da177e4 4071
ce8eb6c4
CL
4072 if (n->free_touched)
4073 n->free_touched = 0;
ed11d9eb
CL
4074 else {
4075 int freed;
1da177e4 4076
ce8eb6c4 4077 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4078 5 * searchp->num - 1) / (5 * searchp->num));
4079 STATS_ADD_REAPED(searchp, freed);
4080 }
35386e3b 4081next:
1da177e4
LT
4082 cond_resched();
4083 }
4084 check_irq_on();
18004c5d 4085 mutex_unlock(&slab_mutex);
8fce4d8e 4086 next_reap_node();
7c5cae36 4087out:
a737b3e2 4088 /* Set up the next iteration */
7f251b20
VB
4089 schedule_delayed_work_on(smp_processor_id(), work,
4090 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4091}
4092
0d7561c6 4093void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4094{
f728b0a5 4095 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4096 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097 unsigned long free_slabs = 0;
e498be7d 4098 int node;
ce8eb6c4 4099 struct kmem_cache_node *n;
1da177e4 4100
18bf8541 4101 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4102 check_irq_on();
ce8eb6c4 4103 spin_lock_irq(&n->list_lock);
e498be7d 4104
bf00bd34
DR
4105 total_slabs += n->total_slabs;
4106 free_slabs += n->free_slabs;
f728b0a5 4107 free_objs += n->free_objects;
07a63c41 4108
ce8eb6c4
CL
4109 if (n->shared)
4110 shared_avail += n->shared->avail;
e498be7d 4111
ce8eb6c4 4112 spin_unlock_irq(&n->list_lock);
1da177e4 4113 }
bf00bd34
DR
4114 num_objs = total_slabs * cachep->num;
4115 active_slabs = total_slabs - free_slabs;
f728b0a5 4116 active_objs = num_objs - free_objs;
1da177e4 4117
0d7561c6
GC
4118 sinfo->active_objs = active_objs;
4119 sinfo->num_objs = num_objs;
4120 sinfo->active_slabs = active_slabs;
bf00bd34 4121 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4122 sinfo->shared_avail = shared_avail;
4123 sinfo->limit = cachep->limit;
4124 sinfo->batchcount = cachep->batchcount;
4125 sinfo->shared = cachep->shared;
4126 sinfo->objects_per_slab = cachep->num;
4127 sinfo->cache_order = cachep->gfporder;
4128}
4129
4130void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131{
1da177e4 4132#if STATS
ce8eb6c4 4133 { /* node stats */
1da177e4
LT
4134 unsigned long high = cachep->high_mark;
4135 unsigned long allocs = cachep->num_allocations;
4136 unsigned long grown = cachep->grown;
4137 unsigned long reaped = cachep->reaped;
4138 unsigned long errors = cachep->errors;
4139 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4140 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4141 unsigned long node_frees = cachep->node_frees;
fb7faf33 4142 unsigned long overflows = cachep->node_overflow;
1da177e4 4143
756a025f 4144 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4145 allocs, high, grown,
4146 reaped, errors, max_freeable, node_allocs,
4147 node_frees, overflows);
1da177e4
LT
4148 }
4149 /* cpu stats */
4150 {
4151 unsigned long allochit = atomic_read(&cachep->allochit);
4152 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153 unsigned long freehit = atomic_read(&cachep->freehit);
4154 unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4157 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4158 }
4159#endif
1da177e4
LT
4160}
4161
1da177e4
LT
4162#define MAX_SLABINFO_WRITE 128
4163/**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
b7454ad3 4170ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4171 size_t count, loff_t *ppos)
1da177e4 4172{
b28a02de 4173 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4174 int limit, batchcount, shared, res;
7a7c381d 4175 struct kmem_cache *cachep;
b28a02de 4176
1da177e4
LT
4177 if (count > MAX_SLABINFO_WRITE)
4178 return -EINVAL;
4179 if (copy_from_user(&kbuf, buffer, count))
4180 return -EFAULT;
b28a02de 4181 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4182
4183 tmp = strchr(kbuf, ' ');
4184 if (!tmp)
4185 return -EINVAL;
4186 *tmp = '\0';
4187 tmp++;
4188 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189 return -EINVAL;
4190
4191 /* Find the cache in the chain of caches. */
18004c5d 4192 mutex_lock(&slab_mutex);
1da177e4 4193 res = -EINVAL;
18004c5d 4194 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4195 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4196 if (limit < 1 || batchcount < 1 ||
4197 batchcount > limit || shared < 0) {
e498be7d 4198 res = 0;
1da177e4 4199 } else {
e498be7d 4200 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4201 batchcount, shared,
4202 GFP_KERNEL);
1da177e4
LT
4203 }
4204 break;
4205 }
4206 }
18004c5d 4207 mutex_unlock(&slab_mutex);
1da177e4
LT
4208 if (res >= 0)
4209 res = count;
4210 return res;
4211}
871751e2
AV
4212
4213#ifdef CONFIG_DEBUG_SLAB_LEAK
4214
871751e2
AV
4215static inline int add_caller(unsigned long *n, unsigned long v)
4216{
4217 unsigned long *p;
4218 int l;
4219 if (!v)
4220 return 1;
4221 l = n[1];
4222 p = n + 2;
4223 while (l) {
4224 int i = l/2;
4225 unsigned long *q = p + 2 * i;
4226 if (*q == v) {
4227 q[1]++;
4228 return 1;
4229 }
4230 if (*q > v) {
4231 l = i;
4232 } else {
4233 p = q + 2;
4234 l -= i + 1;
4235 }
4236 }
4237 if (++n[1] == n[0])
4238 return 0;
4239 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240 p[0] = v;
4241 p[1] = 1;
4242 return 1;
4243}
4244
8456a648
JK
4245static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246 struct page *page)
871751e2
AV
4247{
4248 void *p;
d31676df
JK
4249 int i, j;
4250 unsigned long v;
b1cb0982 4251
871751e2
AV
4252 if (n[0] == n[1])
4253 return;
8456a648 4254 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4255 bool active = true;
4256
4257 for (j = page->active; j < c->num; j++) {
4258 if (get_free_obj(page, j) == i) {
4259 active = false;
4260 break;
4261 }
4262 }
4263
4264 if (!active)
871751e2 4265 continue;
b1cb0982 4266
d31676df
JK
4267 /*
4268 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269 * mapping is established when actual object allocation and
4270 * we could mistakenly access the unmapped object in the cpu
4271 * cache.
4272 */
4273 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274 continue;
4275
4276 if (!add_caller(n, v))
871751e2
AV
4277 return;
4278 }
4279}
4280
4281static void show_symbol(struct seq_file *m, unsigned long address)
4282{
4283#ifdef CONFIG_KALLSYMS
871751e2 4284 unsigned long offset, size;
9281acea 4285 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4286
a5c43dae 4287 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4288 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4289 if (modname[0])
871751e2
AV
4290 seq_printf(m, " [%s]", modname);
4291 return;
4292 }
4293#endif
85c3e4a5 4294 seq_printf(m, "%px", (void *)address);
871751e2
AV
4295}
4296
4297static int leaks_show(struct seq_file *m, void *p)
4298{
8f9e8117
QC
4299 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4300 root_caches_node);
8456a648 4301 struct page *page;
ce8eb6c4 4302 struct kmem_cache_node *n;
871751e2 4303 const char *name;
db845067 4304 unsigned long *x = m->private;
871751e2
AV
4305 int node;
4306 int i;
4307
4308 if (!(cachep->flags & SLAB_STORE_USER))
4309 return 0;
4310 if (!(cachep->flags & SLAB_RED_ZONE))
4311 return 0;
4312
d31676df
JK
4313 /*
4314 * Set store_user_clean and start to grab stored user information
4315 * for all objects on this cache. If some alloc/free requests comes
4316 * during the processing, information would be wrong so restart
4317 * whole processing.
4318 */
4319 do {
d31676df 4320 drain_cpu_caches(cachep);
35cec021
QC
4321 /*
4322 * drain_cpu_caches() could make kmemleak_object and
4323 * debug_objects_cache dirty, so reset afterwards.
4324 */
4325 set_store_user_clean(cachep);
d31676df
JK
4326
4327 x[1] = 0;
871751e2 4328
d31676df 4329 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4330
d31676df
JK
4331 check_irq_on();
4332 spin_lock_irq(&n->list_lock);
871751e2 4333
d31676df
JK
4334 list_for_each_entry(page, &n->slabs_full, lru)
4335 handle_slab(x, cachep, page);
4336 list_for_each_entry(page, &n->slabs_partial, lru)
4337 handle_slab(x, cachep, page);
4338 spin_unlock_irq(&n->list_lock);
4339 }
4340 } while (!is_store_user_clean(cachep));
871751e2 4341
871751e2 4342 name = cachep->name;
db845067 4343 if (x[0] == x[1]) {
871751e2 4344 /* Increase the buffer size */
18004c5d 4345 mutex_unlock(&slab_mutex);
db845067 4346 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4347 if (!m->private) {
4348 /* Too bad, we are really out */
db845067 4349 m->private = x;
18004c5d 4350 mutex_lock(&slab_mutex);
871751e2
AV
4351 return -ENOMEM;
4352 }
db845067
CL
4353 *(unsigned long *)m->private = x[0] * 2;
4354 kfree(x);
18004c5d 4355 mutex_lock(&slab_mutex);
871751e2
AV
4356 /* Now make sure this entry will be retried */
4357 m->count = m->size;
4358 return 0;
4359 }
db845067
CL
4360 for (i = 0; i < x[1]; i++) {
4361 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4362 show_symbol(m, x[2*i+2]);
871751e2
AV
4363 seq_putc(m, '\n');
4364 }
d2e7b7d0 4365
871751e2
AV
4366 return 0;
4367}
4368
a0ec95a8 4369static const struct seq_operations slabstats_op = {
1df3b26f 4370 .start = slab_start,
276a2439
WL
4371 .next = slab_next,
4372 .stop = slab_stop,
871751e2
AV
4373 .show = leaks_show,
4374};
a0ec95a8
AD
4375
4376static int slabstats_open(struct inode *inode, struct file *file)
4377{
b208ce32
RJ
4378 unsigned long *n;
4379
4380 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4381 if (!n)
4382 return -ENOMEM;
4383
4384 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4385
4386 return 0;
a0ec95a8
AD
4387}
4388
4389static const struct file_operations proc_slabstats_operations = {
4390 .open = slabstats_open,
4391 .read = seq_read,
4392 .llseek = seq_lseek,
4393 .release = seq_release_private,
4394};
4395#endif
4396
4397static int __init slab_proc_init(void)
4398{
4399#ifdef CONFIG_DEBUG_SLAB_LEAK
4400 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4401#endif
a0ec95a8
AD
4402 return 0;
4403}
4404module_init(slab_proc_init);
1da177e4 4405
04385fc5
KC
4406#ifdef CONFIG_HARDENED_USERCOPY
4407/*
4408 * Rejects objects that are incorrectly sized.
4409 *
4410 * Returns NULL if check passes, otherwise const char * to name of cache
4411 * to indicate an error.
4412 */
4413const char *__check_heap_object(const void *ptr, unsigned long n,
4414 struct page *page)
4415{
4416 struct kmem_cache *cachep;
4417 unsigned int objnr;
4418 unsigned long offset;
4419
4420 /* Find and validate object. */
4421 cachep = page->slab_cache;
4422 objnr = obj_to_index(cachep, page, (void *)ptr);
4423 BUG_ON(objnr >= cachep->num);
4424
4425 /* Find offset within object. */
4426 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4427
4428 /* Allow address range falling entirely within object size. */
4429 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4430 return NULL;
4431
4432 return cachep->name;
4433}
4434#endif /* CONFIG_HARDENED_USERCOPY */
4435
00e145b6
MS
4436/**
4437 * ksize - get the actual amount of memory allocated for a given object
4438 * @objp: Pointer to the object
4439 *
4440 * kmalloc may internally round up allocations and return more memory
4441 * than requested. ksize() can be used to determine the actual amount of
4442 * memory allocated. The caller may use this additional memory, even though
4443 * a smaller amount of memory was initially specified with the kmalloc call.
4444 * The caller must guarantee that objp points to a valid object previously
4445 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4446 * must not be freed during the duration of the call.
4447 */
fd76bab2 4448size_t ksize(const void *objp)
1da177e4 4449{
7ed2f9e6
AP
4450 size_t size;
4451
ef8b4520
CL
4452 BUG_ON(!objp);
4453 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4454 return 0;
1da177e4 4455
7ed2f9e6
AP
4456 size = virt_to_cache(objp)->object_size;
4457 /* We assume that ksize callers could use the whole allocated area,
4458 * so we need to unpoison this area.
4459 */
4ebb31a4 4460 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4461
4462 return size;
1da177e4 4463}
b1aabecd 4464EXPORT_SYMBOL(ksize);