]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab.c
checkpatch: don't check .pl files, improve absolute path commit log test
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
76b342bd
JK
216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
e0a42726
IM
221static int slab_early_init = 1;
222
ce8eb6c4 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 224
ce8eb6c4 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
226{
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 230 parent->total_slabs = 0;
f728b0a5 231 parent->free_slabs = 0;
e498be7d
CL
232 parent->shared = NULL;
233 parent->alien = NULL;
2e1217cf 234 parent->colour_next = 0;
e498be7d
CL
235 spin_lock_init(&parent->list_lock);
236 parent->free_objects = 0;
237 parent->free_touched = 0;
238}
239
a737b3e2
AM
240#define MAKE_LIST(cachep, listp, slab, nodeid) \
241 do { \
242 INIT_LIST_HEAD(listp); \
18bf8541 243 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
244 } while (0)
245
a737b3e2
AM
246#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
247 do { \
e498be7d
CL
248 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
251 } while (0)
1da177e4 252
b03a017b 253#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 254#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 255#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
256#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257
258#define BATCHREFILL_LIMIT 16
a737b3e2
AM
259/*
260 * Optimization question: fewer reaps means less probability for unnessary
261 * cpucache drain/refill cycles.
1da177e4 262 *
dc6f3f27 263 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
264 * which could lock up otherwise freeable slabs.
265 */
5f0985bb
JZ
266#define REAPTIMEOUT_AC (2*HZ)
267#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
268
269#if STATS
270#define STATS_INC_ACTIVE(x) ((x)->num_active++)
271#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
272#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
273#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 274#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
275#define STATS_SET_HIGH(x) \
276 do { \
277 if ((x)->num_active > (x)->high_mark) \
278 (x)->high_mark = (x)->num_active; \
279 } while (0)
1da177e4
LT
280#define STATS_INC_ERR(x) ((x)->errors++)
281#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 282#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 283#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
284#define STATS_SET_FREEABLE(x, i) \
285 do { \
286 if ((x)->max_freeable < i) \
287 (x)->max_freeable = i; \
288 } while (0)
1da177e4
LT
289#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
290#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
291#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
292#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
293#else
294#define STATS_INC_ACTIVE(x) do { } while (0)
295#define STATS_DEC_ACTIVE(x) do { } while (0)
296#define STATS_INC_ALLOCED(x) do { } while (0)
297#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 298#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
299#define STATS_SET_HIGH(x) do { } while (0)
300#define STATS_INC_ERR(x) do { } while (0)
301#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 302#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 303#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 304#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
305#define STATS_INC_ALLOCHIT(x) do { } while (0)
306#define STATS_INC_ALLOCMISS(x) do { } while (0)
307#define STATS_INC_FREEHIT(x) do { } while (0)
308#define STATS_INC_FREEMISS(x) do { } while (0)
309#endif
310
311#if DEBUG
1da177e4 312
a737b3e2
AM
313/*
314 * memory layout of objects:
1da177e4 315 * 0 : objp
3dafccf2 316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
317 * the end of an object is aligned with the end of the real
318 * allocation. Catches writes behind the end of the allocation.
3dafccf2 319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 320 * redzone word.
3dafccf2 321 * cachep->obj_offset: The real object.
3b0efdfa
CL
322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
323 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 324 * [BYTES_PER_WORD long]
1da177e4 325 */
343e0d7a 326static int obj_offset(struct kmem_cache *cachep)
1da177e4 327{
3dafccf2 328 return cachep->obj_offset;
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
334 return (unsigned long long*) (objp + obj_offset(cachep) -
335 sizeof(unsigned long long));
1da177e4
LT
336}
337
b46b8f19 338static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
339{
340 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
341 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 342 return (unsigned long long *)(objp + cachep->size -
b46b8f19 343 sizeof(unsigned long long) -
87a927c7 344 REDZONE_ALIGN);
3b0efdfa 345 return (unsigned long long *) (objp + cachep->size -
b46b8f19 346 sizeof(unsigned long long));
1da177e4
LT
347}
348
343e0d7a 349static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
350{
351 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 352 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
353}
354
355#else
356
3dafccf2 357#define obj_offset(x) 0
b46b8f19
DW
358#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
360#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
361
362#endif
363
03787301
JK
364#ifdef CONFIG_DEBUG_SLAB_LEAK
365
d31676df 366static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 367{
d31676df
JK
368 return atomic_read(&cachep->store_user_clean) == 1;
369}
03787301 370
d31676df
JK
371static inline void set_store_user_clean(struct kmem_cache *cachep)
372{
373 atomic_set(&cachep->store_user_clean, 1);
374}
03787301 375
d31676df
JK
376static inline void set_store_user_dirty(struct kmem_cache *cachep)
377{
378 if (is_store_user_clean(cachep))
379 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
380}
381
382#else
d31676df 383static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
384
385#endif
386
1da177e4 387/*
3df1cccd
DR
388 * Do not go above this order unless 0 objects fit into the slab or
389 * overridden on the command line.
1da177e4 390 */
543585cc
DR
391#define SLAB_MAX_ORDER_HI 1
392#define SLAB_MAX_ORDER_LO 0
393static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 394static bool slab_max_order_set __initdata;
1da177e4 395
6ed5eb22
PE
396static inline struct kmem_cache *virt_to_cache(const void *obj)
397{
b49af68f 398 struct page *page = virt_to_head_page(obj);
35026088 399 return page->slab_cache;
6ed5eb22
PE
400}
401
8456a648 402static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
403 unsigned int idx)
404{
8456a648 405 return page->s_mem + cache->size * idx;
8fea4e96
PE
406}
407
6a2d7a95 408/*
3b0efdfa
CL
409 * We want to avoid an expensive divide : (offset / cache->size)
410 * Using the fact that size is a constant for a particular cache,
411 * we can replace (offset / cache->size) by
6a2d7a95
ED
412 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 */
414static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 415 const struct page *page, void *obj)
8fea4e96 416{
8456a648 417 u32 offset = (obj - page->s_mem);
6a2d7a95 418 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
419}
420
6fb92430 421#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 422/* internal cache of cache description objs */
9b030cb8 423static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
424 .batchcount = 1,
425 .limit = BOOT_CPUCACHE_ENTRIES,
426 .shared = 1,
3b0efdfa 427 .size = sizeof(struct kmem_cache),
b28a02de 428 .name = "kmem_cache",
1da177e4
LT
429};
430
1871e52c 431static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 432
343e0d7a 433static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 434{
bf0dea23 435 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
436}
437
a737b3e2
AM
438/*
439 * Calculate the number of objects and left-over bytes for a given buffer size.
440 */
70f75067
JK
441static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
442 unsigned long flags, size_t *left_over)
fbaccacf 443{
70f75067 444 unsigned int num;
fbaccacf 445 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 446
fbaccacf
SR
447 /*
448 * The slab management structure can be either off the slab or
449 * on it. For the latter case, the memory allocated for a
450 * slab is used for:
451 *
fbaccacf 452 * - @buffer_size bytes for each object
2e6b3602
JK
453 * - One freelist_idx_t for each object
454 *
455 * We don't need to consider alignment of freelist because
456 * freelist will be at the end of slab page. The objects will be
457 * at the correct alignment.
fbaccacf
SR
458 *
459 * If the slab management structure is off the slab, then the
460 * alignment will already be calculated into the size. Because
461 * the slabs are all pages aligned, the objects will be at the
462 * correct alignment when allocated.
463 */
b03a017b 464 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 465 num = slab_size / buffer_size;
2e6b3602 466 *left_over = slab_size % buffer_size;
fbaccacf 467 } else {
70f75067 468 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
469 *left_over = slab_size %
470 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 471 }
70f75067
JK
472
473 return num;
1da177e4
LT
474}
475
f28510d3 476#if DEBUG
d40cee24 477#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 478
a737b3e2
AM
479static void __slab_error(const char *function, struct kmem_cache *cachep,
480 char *msg)
1da177e4 481{
1170532b 482 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 483 function, cachep->name, msg);
1da177e4 484 dump_stack();
373d4d09 485 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 486}
f28510d3 487#endif
1da177e4 488
3395ee05
PM
489/*
490 * By default on NUMA we use alien caches to stage the freeing of
491 * objects allocated from other nodes. This causes massive memory
492 * inefficiencies when using fake NUMA setup to split memory into a
493 * large number of small nodes, so it can be disabled on the command
494 * line
495 */
496
497static int use_alien_caches __read_mostly = 1;
498static int __init noaliencache_setup(char *s)
499{
500 use_alien_caches = 0;
501 return 1;
502}
503__setup("noaliencache", noaliencache_setup);
504
3df1cccd
DR
505static int __init slab_max_order_setup(char *str)
506{
507 get_option(&str, &slab_max_order);
508 slab_max_order = slab_max_order < 0 ? 0 :
509 min(slab_max_order, MAX_ORDER - 1);
510 slab_max_order_set = true;
511
512 return 1;
513}
514__setup("slab_max_order=", slab_max_order_setup);
515
8fce4d8e
CL
516#ifdef CONFIG_NUMA
517/*
518 * Special reaping functions for NUMA systems called from cache_reap().
519 * These take care of doing round robin flushing of alien caches (containing
520 * objects freed on different nodes from which they were allocated) and the
521 * flushing of remote pcps by calling drain_node_pages.
522 */
1871e52c 523static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
524
525static void init_reap_node(int cpu)
526{
0edaf86c
AM
527 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
528 node_online_map);
8fce4d8e
CL
529}
530
531static void next_reap_node(void)
532{
909ea964 533 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 534
0edaf86c 535 node = next_node_in(node, node_online_map);
909ea964 536 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
537}
538
539#else
540#define init_reap_node(cpu) do { } while (0)
541#define next_reap_node(void) do { } while (0)
542#endif
543
1da177e4
LT
544/*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
0db0628d 551static void start_cpu_timer(int cpu)
1da177e4 552{
1871e52c 553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
52bad64d 560 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 561 init_reap_node(cpu);
203b42f7 562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
565 }
566}
567
1fe00d50 568static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 569{
d5cff635
CM
570 /*
571 * The array_cache structures contain pointers to free object.
25985edc 572 * However, when such objects are allocated or transferred to another
d5cff635
CM
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
1fe00d50
JK
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
1da177e4 583 }
1fe00d50
JK
584}
585
586static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588{
5e804789 589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
1da177e4
LT
595}
596
f68f8ddd
JK
597static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
072bb0aa 599{
f68f8ddd
JK
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
072bb0aa 603
f68f8ddd
JK
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
381760ea 606
f68f8ddd
JK
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
381760ea 610
f68f8ddd 611 slabs_destroy(cachep, &list);
072bb0aa
MG
612}
613
3ded175a
CL
614/*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622{
623 /* Figure out how many entries to transfer */
732eacc0 624 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
3ded175a
CL
634 return nr;
635}
636
765c4507
CL
637#ifndef CONFIG_NUMA
638
639#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 640#define reap_alien(cachep, n) do { } while (0)
765c4507 641
c8522a3a
JK
642static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
765c4507 644{
8888177e 645 return NULL;
765c4507
CL
646}
647
c8522a3a 648static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
649{
650}
651
652static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653{
654 return 0;
655}
656
657static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659{
660 return NULL;
661}
662
8b98c169 663static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
664 gfp_t flags, int nodeid)
665{
666 return NULL;
667}
668
4167e9b2
DR
669static inline gfp_t gfp_exact_node(gfp_t flags)
670{
444eb2a4 671 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
672}
673
765c4507
CL
674#else /* CONFIG_NUMA */
675
8b98c169 676static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 677static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 678
c8522a3a
JK
679static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681{
5e804789 682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
49dfc304 687 spin_lock_init(&alc->lock);
c8522a3a
JK
688 return alc;
689}
690
691static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 692{
c8522a3a 693 struct alien_cache **alc_ptr;
5e804789 694 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
695 int i;
696
697 if (limit > 1)
698 limit = 12;
c8522a3a
JK
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
e498be7d
CL
712 }
713 }
c8522a3a 714 return alc_ptr;
e498be7d
CL
715}
716
c8522a3a 717static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
718{
719 int i;
720
c8522a3a 721 if (!alc_ptr)
e498be7d 722 return;
e498be7d 723 for_each_node(i)
c8522a3a
JK
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
e498be7d
CL
726}
727
343e0d7a 728static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
729 struct array_cache *ac, int node,
730 struct list_head *list)
e498be7d 731{
18bf8541 732 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
733
734 if (ac->avail) {
ce8eb6c4 735 spin_lock(&n->list_lock);
e00946fe
CL
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
ce8eb6c4
CL
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
e00946fe 743
833b706c 744 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 745 ac->avail = 0;
ce8eb6c4 746 spin_unlock(&n->list_lock);
e498be7d
CL
747 }
748}
749
8fce4d8e
CL
750/*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
ce8eb6c4 753static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 754{
909ea964 755 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 756
ce8eb6c4 757 if (n->alien) {
c8522a3a
JK
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
49dfc304 763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 767 spin_unlock_irq(&alc->lock);
833b706c 768 slabs_destroy(cachep, &list);
c8522a3a 769 }
8fce4d8e
CL
770 }
771 }
772}
773
a737b3e2 774static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 775 struct alien_cache **alien)
e498be7d 776{
b28a02de 777 int i = 0;
c8522a3a 778 struct alien_cache *alc;
e498be7d
CL
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
c8522a3a
JK
783 alc = alien[i];
784 if (alc) {
833b706c
JK
785 LIST_HEAD(list);
786
c8522a3a 787 ac = &alc->ac;
49dfc304 788 spin_lock_irqsave(&alc->lock, flags);
833b706c 789 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 790 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 791 slabs_destroy(cachep, &list);
e498be7d
CL
792 }
793 }
794}
729bd0b7 795
25c4f304
JK
796static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
729bd0b7 798{
ce8eb6c4 799 struct kmem_cache_node *n;
c8522a3a
JK
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
97654dfa 802 LIST_HEAD(list);
1ca4cb24 803
18bf8541 804 n = get_node(cachep, node);
729bd0b7 805 STATS_INC_NODEFREES(cachep);
25c4f304
JK
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
c8522a3a 808 ac = &alien->ac;
49dfc304 809 spin_lock(&alien->lock);
c8522a3a 810 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 811 STATS_INC_ACOVERFLOW(cachep);
25c4f304 812 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 813 }
f68f8ddd 814 ac->entry[ac->avail++] = objp;
49dfc304 815 spin_unlock(&alien->lock);
833b706c 816 slabs_destroy(cachep, &list);
729bd0b7 817 } else {
25c4f304 818 n = get_node(cachep, page_node);
18bf8541 819 spin_lock(&n->list_lock);
25c4f304 820 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 821 spin_unlock(&n->list_lock);
97654dfa 822 slabs_destroy(cachep, &list);
729bd0b7
PE
823 }
824 return 1;
825}
25c4f304
JK
826
827static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828{
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839}
4167e9b2
DR
840
841/*
444eb2a4
MG
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
4167e9b2
DR
844 */
845static inline gfp_t gfp_exact_node(gfp_t flags)
846{
444eb2a4 847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 848}
e498be7d
CL
849#endif
850
ded0ecf6
JK
851static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
852{
853 struct kmem_cache_node *n;
854
855 /*
856 * Set up the kmem_cache_node for cpu before we can
857 * begin anything. Make sure some other cpu on this
858 * node has not already allocated this
859 */
860 n = get_node(cachep, node);
861 if (n) {
862 spin_lock_irq(&n->list_lock);
863 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
864 cachep->num;
865 spin_unlock_irq(&n->list_lock);
866
867 return 0;
868 }
869
870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
871 if (!n)
872 return -ENOMEM;
873
874 kmem_cache_node_init(n);
875 n->next_reap = jiffies + REAPTIMEOUT_NODE +
876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
877
878 n->free_limit =
879 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
880
881 /*
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
884 * protection here.
885 */
886 cachep->node[node] = n;
887
888 return 0;
889}
890
6731d4f1 891#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 892/*
6a67368c 893 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 894 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 895 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 896 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
897 * already in use.
898 *
18004c5d 899 * Must hold slab_mutex.
8f9f8d9e 900 */
6a67368c 901static int init_cache_node_node(int node)
8f9f8d9e 902{
ded0ecf6 903 int ret;
8f9f8d9e 904 struct kmem_cache *cachep;
8f9f8d9e 905
18004c5d 906 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
907 ret = init_cache_node(cachep, node, GFP_KERNEL);
908 if (ret)
909 return ret;
8f9f8d9e 910 }
ded0ecf6 911
8f9f8d9e
DR
912 return 0;
913}
6731d4f1 914#endif
8f9f8d9e 915
c3d332b6
JK
916static int setup_kmem_cache_node(struct kmem_cache *cachep,
917 int node, gfp_t gfp, bool force_change)
918{
919 int ret = -ENOMEM;
920 struct kmem_cache_node *n;
921 struct array_cache *old_shared = NULL;
922 struct array_cache *new_shared = NULL;
923 struct alien_cache **new_alien = NULL;
924 LIST_HEAD(list);
925
926 if (use_alien_caches) {
927 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
928 if (!new_alien)
929 goto fail;
930 }
931
932 if (cachep->shared) {
933 new_shared = alloc_arraycache(node,
934 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
935 if (!new_shared)
936 goto fail;
937 }
938
939 ret = init_cache_node(cachep, node, gfp);
940 if (ret)
941 goto fail;
942
943 n = get_node(cachep, node);
944 spin_lock_irq(&n->list_lock);
945 if (n->shared && force_change) {
946 free_block(cachep, n->shared->entry,
947 n->shared->avail, node, &list);
948 n->shared->avail = 0;
949 }
950
951 if (!n->shared || force_change) {
952 old_shared = n->shared;
953 n->shared = new_shared;
954 new_shared = NULL;
955 }
956
957 if (!n->alien) {
958 n->alien = new_alien;
959 new_alien = NULL;
960 }
961
962 spin_unlock_irq(&n->list_lock);
963 slabs_destroy(cachep, &list);
964
801faf0d
JK
965 /*
966 * To protect lockless access to n->shared during irq disabled context.
967 * If n->shared isn't NULL in irq disabled context, accessing to it is
968 * guaranteed to be valid until irq is re-enabled, because it will be
969 * freed after synchronize_sched().
970 */
86d9f485 971 if (old_shared && force_change)
801faf0d
JK
972 synchronize_sched();
973
c3d332b6
JK
974fail:
975 kfree(old_shared);
976 kfree(new_shared);
977 free_alien_cache(new_alien);
978
979 return ret;
980}
981
6731d4f1
SAS
982#ifdef CONFIG_SMP
983
0db0628d 984static void cpuup_canceled(long cpu)
fbf1e473
AM
985{
986 struct kmem_cache *cachep;
ce8eb6c4 987 struct kmem_cache_node *n = NULL;
7d6e6d09 988 int node = cpu_to_mem(cpu);
a70f7302 989 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 990
18004c5d 991 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
992 struct array_cache *nc;
993 struct array_cache *shared;
c8522a3a 994 struct alien_cache **alien;
97654dfa 995 LIST_HEAD(list);
fbf1e473 996
18bf8541 997 n = get_node(cachep, node);
ce8eb6c4 998 if (!n)
bf0dea23 999 continue;
fbf1e473 1000
ce8eb6c4 1001 spin_lock_irq(&n->list_lock);
fbf1e473 1002
ce8eb6c4
CL
1003 /* Free limit for this kmem_cache_node */
1004 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1005
1006 /* cpu is dead; no one can alloc from it. */
1007 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1008 if (nc) {
97654dfa 1009 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1010 nc->avail = 0;
1011 }
fbf1e473 1012
58463c1f 1013 if (!cpumask_empty(mask)) {
ce8eb6c4 1014 spin_unlock_irq(&n->list_lock);
bf0dea23 1015 goto free_slab;
fbf1e473
AM
1016 }
1017
ce8eb6c4 1018 shared = n->shared;
fbf1e473
AM
1019 if (shared) {
1020 free_block(cachep, shared->entry,
97654dfa 1021 shared->avail, node, &list);
ce8eb6c4 1022 n->shared = NULL;
fbf1e473
AM
1023 }
1024
ce8eb6c4
CL
1025 alien = n->alien;
1026 n->alien = NULL;
fbf1e473 1027
ce8eb6c4 1028 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1029
1030 kfree(shared);
1031 if (alien) {
1032 drain_alien_cache(cachep, alien);
1033 free_alien_cache(alien);
1034 }
bf0dea23
JK
1035
1036free_slab:
97654dfa 1037 slabs_destroy(cachep, &list);
fbf1e473
AM
1038 }
1039 /*
1040 * In the previous loop, all the objects were freed to
1041 * the respective cache's slabs, now we can go ahead and
1042 * shrink each nodelist to its limit.
1043 */
18004c5d 1044 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1045 n = get_node(cachep, node);
ce8eb6c4 1046 if (!n)
fbf1e473 1047 continue;
a5aa63a5 1048 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1049 }
1050}
1051
0db0628d 1052static int cpuup_prepare(long cpu)
1da177e4 1053{
343e0d7a 1054 struct kmem_cache *cachep;
7d6e6d09 1055 int node = cpu_to_mem(cpu);
8f9f8d9e 1056 int err;
1da177e4 1057
fbf1e473
AM
1058 /*
1059 * We need to do this right in the beginning since
1060 * alloc_arraycache's are going to use this list.
1061 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1062 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1063 */
6a67368c 1064 err = init_cache_node_node(node);
8f9f8d9e
DR
1065 if (err < 0)
1066 goto bad;
fbf1e473
AM
1067
1068 /*
1069 * Now we can go ahead with allocating the shared arrays and
1070 * array caches
1071 */
18004c5d 1072 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1073 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1074 if (err)
1075 goto bad;
fbf1e473 1076 }
ce79ddc8 1077
fbf1e473
AM
1078 return 0;
1079bad:
12d00f6a 1080 cpuup_canceled(cpu);
fbf1e473
AM
1081 return -ENOMEM;
1082}
1083
6731d4f1 1084int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1085{
6731d4f1 1086 int err;
fbf1e473 1087
6731d4f1
SAS
1088 mutex_lock(&slab_mutex);
1089 err = cpuup_prepare(cpu);
1090 mutex_unlock(&slab_mutex);
1091 return err;
1092}
1093
1094/*
1095 * This is called for a failed online attempt and for a successful
1096 * offline.
1097 *
1098 * Even if all the cpus of a node are down, we don't free the
1099 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1100 * a kmalloc allocation from another cpu for memory from the node of
1101 * the cpu going down. The list3 structure is usually allocated from
1102 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1103 */
1104int slab_dead_cpu(unsigned int cpu)
1105{
1106 mutex_lock(&slab_mutex);
1107 cpuup_canceled(cpu);
1108 mutex_unlock(&slab_mutex);
1109 return 0;
1110}
8f5be20b 1111#endif
6731d4f1
SAS
1112
1113static int slab_online_cpu(unsigned int cpu)
1114{
1115 start_cpu_timer(cpu);
1116 return 0;
1da177e4
LT
1117}
1118
6731d4f1
SAS
1119static int slab_offline_cpu(unsigned int cpu)
1120{
1121 /*
1122 * Shutdown cache reaper. Note that the slab_mutex is held so
1123 * that if cache_reap() is invoked it cannot do anything
1124 * expensive but will only modify reap_work and reschedule the
1125 * timer.
1126 */
1127 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1128 /* Now the cache_reaper is guaranteed to be not running. */
1129 per_cpu(slab_reap_work, cpu).work.func = NULL;
1130 return 0;
1131}
1da177e4 1132
8f9f8d9e
DR
1133#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1134/*
1135 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1136 * Returns -EBUSY if all objects cannot be drained so that the node is not
1137 * removed.
1138 *
18004c5d 1139 * Must hold slab_mutex.
8f9f8d9e 1140 */
6a67368c 1141static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1142{
1143 struct kmem_cache *cachep;
1144 int ret = 0;
1145
18004c5d 1146 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1147 struct kmem_cache_node *n;
8f9f8d9e 1148
18bf8541 1149 n = get_node(cachep, node);
ce8eb6c4 1150 if (!n)
8f9f8d9e
DR
1151 continue;
1152
a5aa63a5 1153 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1154
ce8eb6c4
CL
1155 if (!list_empty(&n->slabs_full) ||
1156 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1157 ret = -EBUSY;
1158 break;
1159 }
1160 }
1161 return ret;
1162}
1163
1164static int __meminit slab_memory_callback(struct notifier_block *self,
1165 unsigned long action, void *arg)
1166{
1167 struct memory_notify *mnb = arg;
1168 int ret = 0;
1169 int nid;
1170
1171 nid = mnb->status_change_nid;
1172 if (nid < 0)
1173 goto out;
1174
1175 switch (action) {
1176 case MEM_GOING_ONLINE:
18004c5d 1177 mutex_lock(&slab_mutex);
6a67368c 1178 ret = init_cache_node_node(nid);
18004c5d 1179 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1180 break;
1181 case MEM_GOING_OFFLINE:
18004c5d 1182 mutex_lock(&slab_mutex);
6a67368c 1183 ret = drain_cache_node_node(nid);
18004c5d 1184 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1185 break;
1186 case MEM_ONLINE:
1187 case MEM_OFFLINE:
1188 case MEM_CANCEL_ONLINE:
1189 case MEM_CANCEL_OFFLINE:
1190 break;
1191 }
1192out:
5fda1bd5 1193 return notifier_from_errno(ret);
8f9f8d9e
DR
1194}
1195#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1196
e498be7d 1197/*
ce8eb6c4 1198 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1199 */
6744f087 1200static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1201 int nodeid)
e498be7d 1202{
6744f087 1203 struct kmem_cache_node *ptr;
e498be7d 1204
6744f087 1205 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1206 BUG_ON(!ptr);
1207
6744f087 1208 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1209 /*
1210 * Do not assume that spinlocks can be initialized via memcpy:
1211 */
1212 spin_lock_init(&ptr->list_lock);
1213
e498be7d 1214 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1215 cachep->node[nodeid] = ptr;
e498be7d
CL
1216}
1217
556a169d 1218/*
ce8eb6c4
CL
1219 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1220 * size of kmem_cache_node.
556a169d 1221 */
ce8eb6c4 1222static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1223{
1224 int node;
1225
1226 for_each_online_node(node) {
ce8eb6c4 1227 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1228 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1229 REAPTIMEOUT_NODE +
1230 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1231 }
1232}
1233
a737b3e2
AM
1234/*
1235 * Initialisation. Called after the page allocator have been initialised and
1236 * before smp_init().
1da177e4
LT
1237 */
1238void __init kmem_cache_init(void)
1239{
e498be7d
CL
1240 int i;
1241
68126702
JK
1242 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1243 sizeof(struct rcu_head));
9b030cb8
CL
1244 kmem_cache = &kmem_cache_boot;
1245
8888177e 1246 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1247 use_alien_caches = 0;
1248
3c583465 1249 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1250 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1251
1da177e4
LT
1252 /*
1253 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1254 * page orders on machines with more than 32MB of memory if
1255 * not overridden on the command line.
1da177e4 1256 */
3df1cccd 1257 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1258 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1259
1da177e4
LT
1260 /* Bootstrap is tricky, because several objects are allocated
1261 * from caches that do not exist yet:
9b030cb8
CL
1262 * 1) initialize the kmem_cache cache: it contains the struct
1263 * kmem_cache structures of all caches, except kmem_cache itself:
1264 * kmem_cache is statically allocated.
e498be7d 1265 * Initially an __init data area is used for the head array and the
ce8eb6c4 1266 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1267 * array at the end of the bootstrap.
1da177e4 1268 * 2) Create the first kmalloc cache.
343e0d7a 1269 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1270 * An __init data area is used for the head array.
1271 * 3) Create the remaining kmalloc caches, with minimally sized
1272 * head arrays.
9b030cb8 1273 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1274 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1275 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1276 * the other cache's with kmalloc allocated memory.
1277 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1278 */
1279
9b030cb8 1280 /* 1) create the kmem_cache */
1da177e4 1281
8da3430d 1282 /*
b56efcf0 1283 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1284 */
2f9baa9f 1285 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1286 offsetof(struct kmem_cache, node) +
6744f087 1287 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1288 SLAB_HWCACHE_ALIGN);
1289 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1290 slab_state = PARTIAL;
1da177e4 1291
a737b3e2 1292 /*
bf0dea23
JK
1293 * Initialize the caches that provide memory for the kmem_cache_node
1294 * structures first. Without this, further allocations will bug.
e498be7d 1295 */
bf0dea23 1296 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1297 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1298 slab_state = PARTIAL_NODE;
34cc6990 1299 setup_kmalloc_cache_index_table();
e498be7d 1300
e0a42726
IM
1301 slab_early_init = 0;
1302
ce8eb6c4 1303 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1304 {
1ca4cb24
PE
1305 int nid;
1306
9c09a95c 1307 for_each_online_node(nid) {
ce8eb6c4 1308 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1309
bf0dea23 1310 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1311 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1312 }
1313 }
1da177e4 1314
f97d5f63 1315 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1316}
1317
1318void __init kmem_cache_init_late(void)
1319{
1320 struct kmem_cache *cachep;
1321
97d06609 1322 slab_state = UP;
52cef189 1323
8429db5c 1324 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1325 mutex_lock(&slab_mutex);
1326 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1327 if (enable_cpucache(cachep, GFP_NOWAIT))
1328 BUG();
18004c5d 1329 mutex_unlock(&slab_mutex);
056c6241 1330
97d06609
CL
1331 /* Done! */
1332 slab_state = FULL;
1333
8f9f8d9e
DR
1334#ifdef CONFIG_NUMA
1335 /*
1336 * Register a memory hotplug callback that initializes and frees
6a67368c 1337 * node.
8f9f8d9e
DR
1338 */
1339 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1340#endif
1341
a737b3e2
AM
1342 /*
1343 * The reap timers are started later, with a module init call: That part
1344 * of the kernel is not yet operational.
1da177e4
LT
1345 */
1346}
1347
1348static int __init cpucache_init(void)
1349{
6731d4f1 1350 int ret;
1da177e4 1351
a737b3e2
AM
1352 /*
1353 * Register the timers that return unneeded pages to the page allocator
1da177e4 1354 */
6731d4f1
SAS
1355 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1356 slab_online_cpu, slab_offline_cpu);
1357 WARN_ON(ret < 0);
a164f896
GC
1358
1359 /* Done! */
97d06609 1360 slab_state = FULL;
1da177e4
LT
1361 return 0;
1362}
1da177e4
LT
1363__initcall(cpucache_init);
1364
8bdec192
RA
1365static noinline void
1366slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1367{
9a02d699 1368#if DEBUG
ce8eb6c4 1369 struct kmem_cache_node *n;
8bdec192
RA
1370 unsigned long flags;
1371 int node;
9a02d699
DR
1372 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1373 DEFAULT_RATELIMIT_BURST);
1374
1375 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1376 return;
8bdec192 1377
5b3810e5
VB
1378 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1379 nodeid, gfpflags, &gfpflags);
1380 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1381 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1382
18bf8541 1383 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1384 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1385
ce8eb6c4 1386 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1387 total_slabs = n->total_slabs;
1388 free_slabs = n->free_slabs;
1389 free_objs = n->free_objects;
ce8eb6c4 1390 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1391
bf00bd34
DR
1392 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1393 node, total_slabs - free_slabs, total_slabs,
1394 (total_slabs * cachep->num) - free_objs,
1395 total_slabs * cachep->num);
8bdec192 1396 }
9a02d699 1397#endif
8bdec192
RA
1398}
1399
1da177e4 1400/*
8a7d9b43
WSH
1401 * Interface to system's page allocator. No need to hold the
1402 * kmem_cache_node ->list_lock.
1da177e4
LT
1403 *
1404 * If we requested dmaable memory, we will get it. Even if we
1405 * did not request dmaable memory, we might get it, but that
1406 * would be relatively rare and ignorable.
1407 */
0c3aa83e
JK
1408static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1409 int nodeid)
1da177e4
LT
1410{
1411 struct page *page;
e1b6aa6f 1412 int nr_pages;
765c4507 1413
a618e89f 1414 flags |= cachep->allocflags;
e12ba74d
MG
1415 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1416 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1417
96db800f 1418 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1419 if (!page) {
9a02d699 1420 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1421 return NULL;
8bdec192 1422 }
1da177e4 1423
f3ccb2c4
VD
1424 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1425 __free_pages(page, cachep->gfporder);
1426 return NULL;
1427 }
1428
e1b6aa6f 1429 nr_pages = (1 << cachep->gfporder);
1da177e4 1430 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1431 add_zone_page_state(page_zone(page),
1432 NR_SLAB_RECLAIMABLE, nr_pages);
1433 else
1434 add_zone_page_state(page_zone(page),
1435 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1436
a57a4988 1437 __SetPageSlab(page);
f68f8ddd
JK
1438 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1439 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1440 SetPageSlabPfmemalloc(page);
072bb0aa 1441
b1eeab67
VN
1442 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1443 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1444
1445 if (cachep->ctor)
1446 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1447 else
1448 kmemcheck_mark_unallocated_pages(page, nr_pages);
1449 }
c175eea4 1450
0c3aa83e 1451 return page;
1da177e4
LT
1452}
1453
1454/*
1455 * Interface to system's page release.
1456 */
0c3aa83e 1457static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1458{
27ee57c9
VD
1459 int order = cachep->gfporder;
1460 unsigned long nr_freed = (1 << order);
1da177e4 1461
27ee57c9 1462 kmemcheck_free_shadow(page, order);
c175eea4 1463
972d1a7b
CL
1464 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1465 sub_zone_page_state(page_zone(page),
1466 NR_SLAB_RECLAIMABLE, nr_freed);
1467 else
1468 sub_zone_page_state(page_zone(page),
1469 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1470
a57a4988 1471 BUG_ON(!PageSlab(page));
73293c2f 1472 __ClearPageSlabPfmemalloc(page);
a57a4988 1473 __ClearPageSlab(page);
8456a648
JK
1474 page_mapcount_reset(page);
1475 page->mapping = NULL;
1f458cbf 1476
1da177e4
LT
1477 if (current->reclaim_state)
1478 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1479 memcg_uncharge_slab(page, order, cachep);
1480 __free_pages(page, order);
1da177e4
LT
1481}
1482
1483static void kmem_rcu_free(struct rcu_head *head)
1484{
68126702
JK
1485 struct kmem_cache *cachep;
1486 struct page *page;
1da177e4 1487
68126702
JK
1488 page = container_of(head, struct page, rcu_head);
1489 cachep = page->slab_cache;
1490
1491 kmem_freepages(cachep, page);
1da177e4
LT
1492}
1493
1494#if DEBUG
40b44137
JK
1495static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1496{
1497 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1498 (cachep->size % PAGE_SIZE) == 0)
1499 return true;
1500
1501 return false;
1502}
1da177e4
LT
1503
1504#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1505static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1506 unsigned long caller)
1da177e4 1507{
8c138bc0 1508 int size = cachep->object_size;
1da177e4 1509
3dafccf2 1510 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1511
b28a02de 1512 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1513 return;
1514
b28a02de
PE
1515 *addr++ = 0x12345678;
1516 *addr++ = caller;
1517 *addr++ = smp_processor_id();
1518 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1519 {
1520 unsigned long *sptr = &caller;
1521 unsigned long svalue;
1522
1523 while (!kstack_end(sptr)) {
1524 svalue = *sptr++;
1525 if (kernel_text_address(svalue)) {
b28a02de 1526 *addr++ = svalue;
1da177e4
LT
1527 size -= sizeof(unsigned long);
1528 if (size <= sizeof(unsigned long))
1529 break;
1530 }
1531 }
1532
1533 }
b28a02de 1534 *addr++ = 0x87654321;
1da177e4 1535}
40b44137
JK
1536
1537static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1538 int map, unsigned long caller)
1539{
1540 if (!is_debug_pagealloc_cache(cachep))
1541 return;
1542
1543 if (caller)
1544 store_stackinfo(cachep, objp, caller);
1545
1546 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1547}
1548
1549#else
1550static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1551 int map, unsigned long caller) {}
1552
1da177e4
LT
1553#endif
1554
343e0d7a 1555static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1556{
8c138bc0 1557 int size = cachep->object_size;
3dafccf2 1558 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1559
1560 memset(addr, val, size);
b28a02de 1561 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1562}
1563
1564static void dump_line(char *data, int offset, int limit)
1565{
1566 int i;
aa83aa40
DJ
1567 unsigned char error = 0;
1568 int bad_count = 0;
1569
1170532b 1570 pr_err("%03x: ", offset);
aa83aa40
DJ
1571 for (i = 0; i < limit; i++) {
1572 if (data[offset + i] != POISON_FREE) {
1573 error = data[offset + i];
1574 bad_count++;
1575 }
aa83aa40 1576 }
fdde6abb
SAS
1577 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1578 &data[offset], limit, 1);
aa83aa40
DJ
1579
1580 if (bad_count == 1) {
1581 error ^= POISON_FREE;
1582 if (!(error & (error - 1))) {
1170532b 1583 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1584#ifdef CONFIG_X86
1170532b 1585 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1586#else
1170532b 1587 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1588#endif
1589 }
1590 }
1da177e4
LT
1591}
1592#endif
1593
1594#if DEBUG
1595
343e0d7a 1596static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1597{
1598 int i, size;
1599 char *realobj;
1600
1601 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1602 pr_err("Redzone: 0x%llx/0x%llx\n",
1603 *dbg_redzone1(cachep, objp),
1604 *dbg_redzone2(cachep, objp));
1da177e4
LT
1605 }
1606
1607 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1608 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1609 *dbg_userword(cachep, objp),
1610 *dbg_userword(cachep, objp));
1da177e4 1611 }
3dafccf2 1612 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1613 size = cachep->object_size;
b28a02de 1614 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1615 int limit;
1616 limit = 16;
b28a02de
PE
1617 if (i + limit > size)
1618 limit = size - i;
1da177e4
LT
1619 dump_line(realobj, i, limit);
1620 }
1621}
1622
343e0d7a 1623static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1624{
1625 char *realobj;
1626 int size, i;
1627 int lines = 0;
1628
40b44137
JK
1629 if (is_debug_pagealloc_cache(cachep))
1630 return;
1631
3dafccf2 1632 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1633 size = cachep->object_size;
1da177e4 1634
b28a02de 1635 for (i = 0; i < size; i++) {
1da177e4 1636 char exp = POISON_FREE;
b28a02de 1637 if (i == size - 1)
1da177e4
LT
1638 exp = POISON_END;
1639 if (realobj[i] != exp) {
1640 int limit;
1641 /* Mismatch ! */
1642 /* Print header */
1643 if (lines == 0) {
1170532b
JP
1644 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1645 print_tainted(), cachep->name,
1646 realobj, size);
1da177e4
LT
1647 print_objinfo(cachep, objp, 0);
1648 }
1649 /* Hexdump the affected line */
b28a02de 1650 i = (i / 16) * 16;
1da177e4 1651 limit = 16;
b28a02de
PE
1652 if (i + limit > size)
1653 limit = size - i;
1da177e4
LT
1654 dump_line(realobj, i, limit);
1655 i += 16;
1656 lines++;
1657 /* Limit to 5 lines */
1658 if (lines > 5)
1659 break;
1660 }
1661 }
1662 if (lines != 0) {
1663 /* Print some data about the neighboring objects, if they
1664 * exist:
1665 */
8456a648 1666 struct page *page = virt_to_head_page(objp);
8fea4e96 1667 unsigned int objnr;
1da177e4 1668
8456a648 1669 objnr = obj_to_index(cachep, page, objp);
1da177e4 1670 if (objnr) {
8456a648 1671 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1672 realobj = (char *)objp + obj_offset(cachep);
1170532b 1673 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1674 print_objinfo(cachep, objp, 2);
1675 }
b28a02de 1676 if (objnr + 1 < cachep->num) {
8456a648 1677 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1678 realobj = (char *)objp + obj_offset(cachep);
1170532b 1679 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1680 print_objinfo(cachep, objp, 2);
1681 }
1682 }
1683}
1684#endif
1685
12dd36fa 1686#if DEBUG
8456a648
JK
1687static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1688 struct page *page)
1da177e4 1689{
1da177e4 1690 int i;
b03a017b
JK
1691
1692 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1693 poison_obj(cachep, page->freelist - obj_offset(cachep),
1694 POISON_FREE);
1695 }
1696
1da177e4 1697 for (i = 0; i < cachep->num; i++) {
8456a648 1698 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1699
1700 if (cachep->flags & SLAB_POISON) {
1da177e4 1701 check_poison_obj(cachep, objp);
40b44137 1702 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1703 }
1704 if (cachep->flags & SLAB_RED_ZONE) {
1705 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1706 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1707 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1708 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1709 }
1da177e4 1710 }
12dd36fa 1711}
1da177e4 1712#else
8456a648
JK
1713static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1714 struct page *page)
12dd36fa 1715{
12dd36fa 1716}
1da177e4
LT
1717#endif
1718
911851e6
RD
1719/**
1720 * slab_destroy - destroy and release all objects in a slab
1721 * @cachep: cache pointer being destroyed
cb8ee1a3 1722 * @page: page pointer being destroyed
911851e6 1723 *
8a7d9b43
WSH
1724 * Destroy all the objs in a slab page, and release the mem back to the system.
1725 * Before calling the slab page must have been unlinked from the cache. The
1726 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1727 */
8456a648 1728static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1729{
7e007355 1730 void *freelist;
12dd36fa 1731
8456a648
JK
1732 freelist = page->freelist;
1733 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1734 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1735 call_rcu(&page->rcu_head, kmem_rcu_free);
1736 else
0c3aa83e 1737 kmem_freepages(cachep, page);
68126702
JK
1738
1739 /*
8456a648 1740 * From now on, we don't use freelist
68126702
JK
1741 * although actual page can be freed in rcu context
1742 */
1743 if (OFF_SLAB(cachep))
8456a648 1744 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1745}
1746
97654dfa
JK
1747static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1748{
1749 struct page *page, *n;
1750
1751 list_for_each_entry_safe(page, n, list, lru) {
1752 list_del(&page->lru);
1753 slab_destroy(cachep, page);
1754 }
1755}
1756
4d268eba 1757/**
a70773dd
RD
1758 * calculate_slab_order - calculate size (page order) of slabs
1759 * @cachep: pointer to the cache that is being created
1760 * @size: size of objects to be created in this cache.
a70773dd
RD
1761 * @flags: slab allocation flags
1762 *
1763 * Also calculates the number of objects per slab.
4d268eba
PE
1764 *
1765 * This could be made much more intelligent. For now, try to avoid using
1766 * high order pages for slabs. When the gfp() functions are more friendly
1767 * towards high-order requests, this should be changed.
1768 */
a737b3e2 1769static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1770 size_t size, unsigned long flags)
4d268eba
PE
1771{
1772 size_t left_over = 0;
9888e6fa 1773 int gfporder;
4d268eba 1774
0aa817f0 1775 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1776 unsigned int num;
1777 size_t remainder;
1778
70f75067 1779 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1780 if (!num)
1781 continue;
9888e6fa 1782
f315e3fa
JK
1783 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1784 if (num > SLAB_OBJ_MAX_NUM)
1785 break;
1786
b1ab41c4 1787 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1788 struct kmem_cache *freelist_cache;
1789 size_t freelist_size;
1790
1791 freelist_size = num * sizeof(freelist_idx_t);
1792 freelist_cache = kmalloc_slab(freelist_size, 0u);
1793 if (!freelist_cache)
1794 continue;
1795
b1ab41c4 1796 /*
3217fd9b 1797 * Needed to avoid possible looping condition
76b342bd 1798 * in cache_grow_begin()
b1ab41c4 1799 */
3217fd9b
JK
1800 if (OFF_SLAB(freelist_cache))
1801 continue;
b1ab41c4 1802
3217fd9b
JK
1803 /* check if off slab has enough benefit */
1804 if (freelist_cache->size > cachep->size / 2)
1805 continue;
b1ab41c4 1806 }
4d268eba 1807
9888e6fa 1808 /* Found something acceptable - save it away */
4d268eba 1809 cachep->num = num;
9888e6fa 1810 cachep->gfporder = gfporder;
4d268eba
PE
1811 left_over = remainder;
1812
f78bb8ad
LT
1813 /*
1814 * A VFS-reclaimable slab tends to have most allocations
1815 * as GFP_NOFS and we really don't want to have to be allocating
1816 * higher-order pages when we are unable to shrink dcache.
1817 */
1818 if (flags & SLAB_RECLAIM_ACCOUNT)
1819 break;
1820
4d268eba
PE
1821 /*
1822 * Large number of objects is good, but very large slabs are
1823 * currently bad for the gfp()s.
1824 */
543585cc 1825 if (gfporder >= slab_max_order)
4d268eba
PE
1826 break;
1827
9888e6fa
LT
1828 /*
1829 * Acceptable internal fragmentation?
1830 */
a737b3e2 1831 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1832 break;
1833 }
1834 return left_over;
1835}
1836
bf0dea23
JK
1837static struct array_cache __percpu *alloc_kmem_cache_cpus(
1838 struct kmem_cache *cachep, int entries, int batchcount)
1839{
1840 int cpu;
1841 size_t size;
1842 struct array_cache __percpu *cpu_cache;
1843
1844 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1845 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1846
1847 if (!cpu_cache)
1848 return NULL;
1849
1850 for_each_possible_cpu(cpu) {
1851 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1852 entries, batchcount);
1853 }
1854
1855 return cpu_cache;
1856}
1857
bd721ea7 1858static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1859{
97d06609 1860 if (slab_state >= FULL)
83b519e8 1861 return enable_cpucache(cachep, gfp);
2ed3a4ef 1862
bf0dea23
JK
1863 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1864 if (!cachep->cpu_cache)
1865 return 1;
1866
97d06609 1867 if (slab_state == DOWN) {
bf0dea23
JK
1868 /* Creation of first cache (kmem_cache). */
1869 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1870 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1871 /* For kmem_cache_node */
1872 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1873 } else {
bf0dea23 1874 int node;
f30cf7d1 1875
bf0dea23
JK
1876 for_each_online_node(node) {
1877 cachep->node[node] = kmalloc_node(
1878 sizeof(struct kmem_cache_node), gfp, node);
1879 BUG_ON(!cachep->node[node]);
1880 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1881 }
1882 }
bf0dea23 1883
6a67368c 1884 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1885 jiffies + REAPTIMEOUT_NODE +
1886 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1887
1888 cpu_cache_get(cachep)->avail = 0;
1889 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1890 cpu_cache_get(cachep)->batchcount = 1;
1891 cpu_cache_get(cachep)->touched = 0;
1892 cachep->batchcount = 1;
1893 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1894 return 0;
f30cf7d1
PE
1895}
1896
12220dea
JK
1897unsigned long kmem_cache_flags(unsigned long object_size,
1898 unsigned long flags, const char *name,
1899 void (*ctor)(void *))
1900{
1901 return flags;
1902}
1903
1904struct kmem_cache *
1905__kmem_cache_alias(const char *name, size_t size, size_t align,
1906 unsigned long flags, void (*ctor)(void *))
1907{
1908 struct kmem_cache *cachep;
1909
1910 cachep = find_mergeable(size, align, flags, name, ctor);
1911 if (cachep) {
1912 cachep->refcount++;
1913
1914 /*
1915 * Adjust the object sizes so that we clear
1916 * the complete object on kzalloc.
1917 */
1918 cachep->object_size = max_t(int, cachep->object_size, size);
1919 }
1920 return cachep;
1921}
1922
b03a017b
JK
1923static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1924 size_t size, unsigned long flags)
1925{
1926 size_t left;
1927
1928 cachep->num = 0;
1929
1930 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1931 return false;
1932
1933 left = calculate_slab_order(cachep, size,
1934 flags | CFLGS_OBJFREELIST_SLAB);
1935 if (!cachep->num)
1936 return false;
1937
1938 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1939 return false;
1940
1941 cachep->colour = left / cachep->colour_off;
1942
1943 return true;
1944}
1945
158e319b
JK
1946static bool set_off_slab_cache(struct kmem_cache *cachep,
1947 size_t size, unsigned long flags)
1948{
1949 size_t left;
1950
1951 cachep->num = 0;
1952
1953 /*
3217fd9b
JK
1954 * Always use on-slab management when SLAB_NOLEAKTRACE
1955 * to avoid recursive calls into kmemleak.
158e319b 1956 */
158e319b
JK
1957 if (flags & SLAB_NOLEAKTRACE)
1958 return false;
1959
1960 /*
1961 * Size is large, assume best to place the slab management obj
1962 * off-slab (should allow better packing of objs).
1963 */
1964 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1965 if (!cachep->num)
1966 return false;
1967
1968 /*
1969 * If the slab has been placed off-slab, and we have enough space then
1970 * move it on-slab. This is at the expense of any extra colouring.
1971 */
1972 if (left >= cachep->num * sizeof(freelist_idx_t))
1973 return false;
1974
1975 cachep->colour = left / cachep->colour_off;
1976
1977 return true;
1978}
1979
1980static bool set_on_slab_cache(struct kmem_cache *cachep,
1981 size_t size, unsigned long flags)
1982{
1983 size_t left;
1984
1985 cachep->num = 0;
1986
1987 left = calculate_slab_order(cachep, size, flags);
1988 if (!cachep->num)
1989 return false;
1990
1991 cachep->colour = left / cachep->colour_off;
1992
1993 return true;
1994}
1995
1da177e4 1996/**
039363f3 1997 * __kmem_cache_create - Create a cache.
a755b76a 1998 * @cachep: cache management descriptor
1da177e4 1999 * @flags: SLAB flags
1da177e4
LT
2000 *
2001 * Returns a ptr to the cache on success, NULL on failure.
2002 * Cannot be called within a int, but can be interrupted.
20c2df83 2003 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2004 *
1da177e4
LT
2005 * The flags are
2006 *
2007 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2008 * to catch references to uninitialised memory.
2009 *
2010 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2011 * for buffer overruns.
2012 *
1da177e4
LT
2013 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2014 * cacheline. This can be beneficial if you're counting cycles as closely
2015 * as davem.
2016 */
278b1bb1 2017int
8a13a4cc 2018__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2019{
d4a5fca5 2020 size_t ralign = BYTES_PER_WORD;
83b519e8 2021 gfp_t gfp;
278b1bb1 2022 int err;
8a13a4cc 2023 size_t size = cachep->size;
1da177e4 2024
1da177e4 2025#if DEBUG
1da177e4
LT
2026#if FORCED_DEBUG
2027 /*
2028 * Enable redzoning and last user accounting, except for caches with
2029 * large objects, if the increased size would increase the object size
2030 * above the next power of two: caches with object sizes just above a
2031 * power of two have a significant amount of internal fragmentation.
2032 */
87a927c7
DW
2033 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2034 2 * sizeof(unsigned long long)))
b28a02de 2035 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2036 if (!(flags & SLAB_DESTROY_BY_RCU))
2037 flags |= SLAB_POISON;
2038#endif
1da177e4 2039#endif
1da177e4 2040
a737b3e2
AM
2041 /*
2042 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2043 * unaligned accesses for some archs when redzoning is used, and makes
2044 * sure any on-slab bufctl's are also correctly aligned.
2045 */
b28a02de
PE
2046 if (size & (BYTES_PER_WORD - 1)) {
2047 size += (BYTES_PER_WORD - 1);
2048 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2049 }
2050
87a927c7
DW
2051 if (flags & SLAB_RED_ZONE) {
2052 ralign = REDZONE_ALIGN;
2053 /* If redzoning, ensure that the second redzone is suitably
2054 * aligned, by adjusting the object size accordingly. */
2055 size += REDZONE_ALIGN - 1;
2056 size &= ~(REDZONE_ALIGN - 1);
2057 }
ca5f9703 2058
a44b56d3 2059 /* 3) caller mandated alignment */
8a13a4cc
CL
2060 if (ralign < cachep->align) {
2061 ralign = cachep->align;
1da177e4 2062 }
3ff84a7f
PE
2063 /* disable debug if necessary */
2064 if (ralign > __alignof__(unsigned long long))
a44b56d3 2065 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2066 /*
ca5f9703 2067 * 4) Store it.
1da177e4 2068 */
8a13a4cc 2069 cachep->align = ralign;
158e319b
JK
2070 cachep->colour_off = cache_line_size();
2071 /* Offset must be a multiple of the alignment. */
2072 if (cachep->colour_off < cachep->align)
2073 cachep->colour_off = cachep->align;
1da177e4 2074
83b519e8
PE
2075 if (slab_is_available())
2076 gfp = GFP_KERNEL;
2077 else
2078 gfp = GFP_NOWAIT;
2079
1da177e4 2080#if DEBUG
1da177e4 2081
ca5f9703
PE
2082 /*
2083 * Both debugging options require word-alignment which is calculated
2084 * into align above.
2085 */
1da177e4 2086 if (flags & SLAB_RED_ZONE) {
1da177e4 2087 /* add space for red zone words */
3ff84a7f
PE
2088 cachep->obj_offset += sizeof(unsigned long long);
2089 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2090 }
2091 if (flags & SLAB_STORE_USER) {
ca5f9703 2092 /* user store requires one word storage behind the end of
87a927c7
DW
2093 * the real object. But if the second red zone needs to be
2094 * aligned to 64 bits, we must allow that much space.
1da177e4 2095 */
87a927c7
DW
2096 if (flags & SLAB_RED_ZONE)
2097 size += REDZONE_ALIGN;
2098 else
2099 size += BYTES_PER_WORD;
1da177e4 2100 }
832a15d2
JK
2101#endif
2102
7ed2f9e6
AP
2103 kasan_cache_create(cachep, &size, &flags);
2104
832a15d2
JK
2105 size = ALIGN(size, cachep->align);
2106 /*
2107 * We should restrict the number of objects in a slab to implement
2108 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2109 */
2110 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2111 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2112
2113#if DEBUG
03a2d2a3
JK
2114 /*
2115 * To activate debug pagealloc, off-slab management is necessary
2116 * requirement. In early phase of initialization, small sized slab
2117 * doesn't get initialized so it would not be possible. So, we need
2118 * to check size >= 256. It guarantees that all necessary small
2119 * sized slab is initialized in current slab initialization sequence.
2120 */
40323278 2121 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2122 size >= 256 && cachep->object_size > cache_line_size()) {
2123 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2124 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2125
2126 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2127 flags |= CFLGS_OFF_SLAB;
2128 cachep->obj_offset += tmp_size - size;
2129 size = tmp_size;
2130 goto done;
2131 }
2132 }
1da177e4 2133 }
1da177e4
LT
2134#endif
2135
b03a017b
JK
2136 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2137 flags |= CFLGS_OBJFREELIST_SLAB;
2138 goto done;
2139 }
2140
158e319b 2141 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2142 flags |= CFLGS_OFF_SLAB;
158e319b 2143 goto done;
832a15d2 2144 }
1da177e4 2145
158e319b
JK
2146 if (set_on_slab_cache(cachep, size, flags))
2147 goto done;
1da177e4 2148
158e319b 2149 return -E2BIG;
1da177e4 2150
158e319b
JK
2151done:
2152 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2153 cachep->flags = flags;
a57a4988 2154 cachep->allocflags = __GFP_COMP;
a3187e43 2155 if (flags & SLAB_CACHE_DMA)
a618e89f 2156 cachep->allocflags |= GFP_DMA;
3b0efdfa 2157 cachep->size = size;
6a2d7a95 2158 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2159
40b44137
JK
2160#if DEBUG
2161 /*
2162 * If we're going to use the generic kernel_map_pages()
2163 * poisoning, then it's going to smash the contents of
2164 * the redzone and userword anyhow, so switch them off.
2165 */
2166 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2167 (cachep->flags & SLAB_POISON) &&
2168 is_debug_pagealloc_cache(cachep))
2169 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2170#endif
2171
2172 if (OFF_SLAB(cachep)) {
158e319b
JK
2173 cachep->freelist_cache =
2174 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2175 }
1da177e4 2176
278b1bb1
CL
2177 err = setup_cpu_cache(cachep, gfp);
2178 if (err) {
52b4b950 2179 __kmem_cache_release(cachep);
278b1bb1 2180 return err;
2ed3a4ef 2181 }
1da177e4 2182
278b1bb1 2183 return 0;
1da177e4 2184}
1da177e4
LT
2185
2186#if DEBUG
2187static void check_irq_off(void)
2188{
2189 BUG_ON(!irqs_disabled());
2190}
2191
2192static void check_irq_on(void)
2193{
2194 BUG_ON(irqs_disabled());
2195}
2196
18726ca8
JK
2197static void check_mutex_acquired(void)
2198{
2199 BUG_ON(!mutex_is_locked(&slab_mutex));
2200}
2201
343e0d7a 2202static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2203{
2204#ifdef CONFIG_SMP
2205 check_irq_off();
18bf8541 2206 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2207#endif
2208}
e498be7d 2209
343e0d7a 2210static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2211{
2212#ifdef CONFIG_SMP
2213 check_irq_off();
18bf8541 2214 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2215#endif
2216}
2217
1da177e4
LT
2218#else
2219#define check_irq_off() do { } while(0)
2220#define check_irq_on() do { } while(0)
18726ca8 2221#define check_mutex_acquired() do { } while(0)
1da177e4 2222#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2223#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2224#endif
2225
18726ca8
JK
2226static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2227 int node, bool free_all, struct list_head *list)
2228{
2229 int tofree;
2230
2231 if (!ac || !ac->avail)
2232 return;
2233
2234 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2235 if (tofree > ac->avail)
2236 tofree = (ac->avail + 1) / 2;
2237
2238 free_block(cachep, ac->entry, tofree, node, list);
2239 ac->avail -= tofree;
2240 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2241}
aab2207c 2242
1da177e4
LT
2243static void do_drain(void *arg)
2244{
a737b3e2 2245 struct kmem_cache *cachep = arg;
1da177e4 2246 struct array_cache *ac;
7d6e6d09 2247 int node = numa_mem_id();
18bf8541 2248 struct kmem_cache_node *n;
97654dfa 2249 LIST_HEAD(list);
1da177e4
LT
2250
2251 check_irq_off();
9a2dba4b 2252 ac = cpu_cache_get(cachep);
18bf8541
CL
2253 n = get_node(cachep, node);
2254 spin_lock(&n->list_lock);
97654dfa 2255 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2256 spin_unlock(&n->list_lock);
97654dfa 2257 slabs_destroy(cachep, &list);
1da177e4
LT
2258 ac->avail = 0;
2259}
2260
343e0d7a 2261static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2262{
ce8eb6c4 2263 struct kmem_cache_node *n;
e498be7d 2264 int node;
18726ca8 2265 LIST_HEAD(list);
e498be7d 2266
15c8b6c1 2267 on_each_cpu(do_drain, cachep, 1);
1da177e4 2268 check_irq_on();
18bf8541
CL
2269 for_each_kmem_cache_node(cachep, node, n)
2270 if (n->alien)
ce8eb6c4 2271 drain_alien_cache(cachep, n->alien);
a4523a8b 2272
18726ca8
JK
2273 for_each_kmem_cache_node(cachep, node, n) {
2274 spin_lock_irq(&n->list_lock);
2275 drain_array_locked(cachep, n->shared, node, true, &list);
2276 spin_unlock_irq(&n->list_lock);
2277
2278 slabs_destroy(cachep, &list);
2279 }
1da177e4
LT
2280}
2281
ed11d9eb
CL
2282/*
2283 * Remove slabs from the list of free slabs.
2284 * Specify the number of slabs to drain in tofree.
2285 *
2286 * Returns the actual number of slabs released.
2287 */
2288static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2289 struct kmem_cache_node *n, int tofree)
1da177e4 2290{
ed11d9eb
CL
2291 struct list_head *p;
2292 int nr_freed;
8456a648 2293 struct page *page;
1da177e4 2294
ed11d9eb 2295 nr_freed = 0;
ce8eb6c4 2296 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2297
ce8eb6c4
CL
2298 spin_lock_irq(&n->list_lock);
2299 p = n->slabs_free.prev;
2300 if (p == &n->slabs_free) {
2301 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2302 goto out;
2303 }
1da177e4 2304
8456a648 2305 page = list_entry(p, struct page, lru);
8456a648 2306 list_del(&page->lru);
f728b0a5 2307 n->free_slabs--;
bf00bd34 2308 n->total_slabs--;
ed11d9eb
CL
2309 /*
2310 * Safe to drop the lock. The slab is no longer linked
2311 * to the cache.
2312 */
ce8eb6c4
CL
2313 n->free_objects -= cache->num;
2314 spin_unlock_irq(&n->list_lock);
8456a648 2315 slab_destroy(cache, page);
ed11d9eb 2316 nr_freed++;
1da177e4 2317 }
ed11d9eb
CL
2318out:
2319 return nr_freed;
1da177e4
LT
2320}
2321
89e364db 2322int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2323{
18bf8541
CL
2324 int ret = 0;
2325 int node;
ce8eb6c4 2326 struct kmem_cache_node *n;
e498be7d
CL
2327
2328 drain_cpu_caches(cachep);
2329
2330 check_irq_on();
18bf8541 2331 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2332 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2333
ce8eb6c4
CL
2334 ret += !list_empty(&n->slabs_full) ||
2335 !list_empty(&n->slabs_partial);
e498be7d
CL
2336 }
2337 return (ret ? 1 : 0);
2338}
2339
945cf2b6 2340int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2341{
89e364db 2342 return __kmem_cache_shrink(cachep);
52b4b950
DS
2343}
2344
2345void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2346{
12c3667f 2347 int i;
ce8eb6c4 2348 struct kmem_cache_node *n;
1da177e4 2349
c7ce4f60
TG
2350 cache_random_seq_destroy(cachep);
2351
bf0dea23 2352 free_percpu(cachep->cpu_cache);
1da177e4 2353
ce8eb6c4 2354 /* NUMA: free the node structures */
18bf8541
CL
2355 for_each_kmem_cache_node(cachep, i, n) {
2356 kfree(n->shared);
2357 free_alien_cache(n->alien);
2358 kfree(n);
2359 cachep->node[i] = NULL;
12c3667f 2360 }
1da177e4 2361}
1da177e4 2362
e5ac9c5a
RT
2363/*
2364 * Get the memory for a slab management obj.
5f0985bb
JZ
2365 *
2366 * For a slab cache when the slab descriptor is off-slab, the
2367 * slab descriptor can't come from the same cache which is being created,
2368 * Because if it is the case, that means we defer the creation of
2369 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2370 * And we eventually call down to __kmem_cache_create(), which
2371 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2372 * This is a "chicken-and-egg" problem.
2373 *
2374 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2375 * which are all initialized during kmem_cache_init().
e5ac9c5a 2376 */
7e007355 2377static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2378 struct page *page, int colour_off,
2379 gfp_t local_flags, int nodeid)
1da177e4 2380{
7e007355 2381 void *freelist;
0c3aa83e 2382 void *addr = page_address(page);
b28a02de 2383
2e6b3602
JK
2384 page->s_mem = addr + colour_off;
2385 page->active = 0;
2386
b03a017b
JK
2387 if (OBJFREELIST_SLAB(cachep))
2388 freelist = NULL;
2389 else if (OFF_SLAB(cachep)) {
1da177e4 2390 /* Slab management obj is off-slab. */
8456a648 2391 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2392 local_flags, nodeid);
8456a648 2393 if (!freelist)
1da177e4
LT
2394 return NULL;
2395 } else {
2e6b3602
JK
2396 /* We will use last bytes at the slab for freelist */
2397 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2398 cachep->freelist_size;
1da177e4 2399 }
2e6b3602 2400
8456a648 2401 return freelist;
1da177e4
LT
2402}
2403
7cc68973 2404static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2405{
a41adfaa 2406 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2407}
2408
2409static inline void set_free_obj(struct page *page,
7cc68973 2410 unsigned int idx, freelist_idx_t val)
e5c58dfd 2411{
a41adfaa 2412 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2413}
2414
10b2e9e8 2415static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2416{
10b2e9e8 2417#if DEBUG
1da177e4
LT
2418 int i;
2419
2420 for (i = 0; i < cachep->num; i++) {
8456a648 2421 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2422
1da177e4
LT
2423 if (cachep->flags & SLAB_STORE_USER)
2424 *dbg_userword(cachep, objp) = NULL;
2425
2426 if (cachep->flags & SLAB_RED_ZONE) {
2427 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2428 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2429 }
2430 /*
a737b3e2
AM
2431 * Constructors are not allowed to allocate memory from the same
2432 * cache which they are a constructor for. Otherwise, deadlock.
2433 * They must also be threaded.
1da177e4 2434 */
7ed2f9e6
AP
2435 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2436 kasan_unpoison_object_data(cachep,
2437 objp + obj_offset(cachep));
51cc5068 2438 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2439 kasan_poison_object_data(
2440 cachep, objp + obj_offset(cachep));
2441 }
1da177e4
LT
2442
2443 if (cachep->flags & SLAB_RED_ZONE) {
2444 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2445 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2446 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2447 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2448 }
40b44137
JK
2449 /* need to poison the objs? */
2450 if (cachep->flags & SLAB_POISON) {
2451 poison_obj(cachep, objp, POISON_FREE);
2452 slab_kernel_map(cachep, objp, 0, 0);
2453 }
10b2e9e8 2454 }
1da177e4 2455#endif
10b2e9e8
JK
2456}
2457
c7ce4f60
TG
2458#ifdef CONFIG_SLAB_FREELIST_RANDOM
2459/* Hold information during a freelist initialization */
2460union freelist_init_state {
2461 struct {
2462 unsigned int pos;
7c00fce9 2463 unsigned int *list;
c7ce4f60
TG
2464 unsigned int count;
2465 unsigned int rand;
2466 };
2467 struct rnd_state rnd_state;
2468};
2469
2470/*
2471 * Initialize the state based on the randomization methode available.
2472 * return true if the pre-computed list is available, false otherwize.
2473 */
2474static bool freelist_state_initialize(union freelist_init_state *state,
2475 struct kmem_cache *cachep,
2476 unsigned int count)
2477{
2478 bool ret;
2479 unsigned int rand;
2480
2481 /* Use best entropy available to define a random shift */
7c00fce9 2482 rand = get_random_int();
c7ce4f60
TG
2483
2484 /* Use a random state if the pre-computed list is not available */
2485 if (!cachep->random_seq) {
2486 prandom_seed_state(&state->rnd_state, rand);
2487 ret = false;
2488 } else {
2489 state->list = cachep->random_seq;
2490 state->count = count;
2491 state->pos = 0;
2492 state->rand = rand;
2493 ret = true;
2494 }
2495 return ret;
2496}
2497
2498/* Get the next entry on the list and randomize it using a random shift */
2499static freelist_idx_t next_random_slot(union freelist_init_state *state)
2500{
2501 return (state->list[state->pos++] + state->rand) % state->count;
2502}
2503
7c00fce9
TG
2504/* Swap two freelist entries */
2505static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2506{
2507 swap(((freelist_idx_t *)page->freelist)[a],
2508 ((freelist_idx_t *)page->freelist)[b]);
2509}
2510
c7ce4f60
TG
2511/*
2512 * Shuffle the freelist initialization state based on pre-computed lists.
2513 * return true if the list was successfully shuffled, false otherwise.
2514 */
2515static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2516{
7c00fce9 2517 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2518 union freelist_init_state state;
2519 bool precomputed;
2520
2521 if (count < 2)
2522 return false;
2523
2524 precomputed = freelist_state_initialize(&state, cachep, count);
2525
2526 /* Take a random entry as the objfreelist */
2527 if (OBJFREELIST_SLAB(cachep)) {
2528 if (!precomputed)
2529 objfreelist = count - 1;
2530 else
2531 objfreelist = next_random_slot(&state);
2532 page->freelist = index_to_obj(cachep, page, objfreelist) +
2533 obj_offset(cachep);
2534 count--;
2535 }
2536
2537 /*
2538 * On early boot, generate the list dynamically.
2539 * Later use a pre-computed list for speed.
2540 */
2541 if (!precomputed) {
7c00fce9
TG
2542 for (i = 0; i < count; i++)
2543 set_free_obj(page, i, i);
2544
2545 /* Fisher-Yates shuffle */
2546 for (i = count - 1; i > 0; i--) {
2547 rand = prandom_u32_state(&state.rnd_state);
2548 rand %= (i + 1);
2549 swap_free_obj(page, i, rand);
2550 }
c7ce4f60
TG
2551 } else {
2552 for (i = 0; i < count; i++)
2553 set_free_obj(page, i, next_random_slot(&state));
2554 }
2555
2556 if (OBJFREELIST_SLAB(cachep))
2557 set_free_obj(page, cachep->num - 1, objfreelist);
2558
2559 return true;
2560}
2561#else
2562static inline bool shuffle_freelist(struct kmem_cache *cachep,
2563 struct page *page)
2564{
2565 return false;
2566}
2567#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2568
10b2e9e8
JK
2569static void cache_init_objs(struct kmem_cache *cachep,
2570 struct page *page)
2571{
2572 int i;
7ed2f9e6 2573 void *objp;
c7ce4f60 2574 bool shuffled;
10b2e9e8
JK
2575
2576 cache_init_objs_debug(cachep, page);
2577
c7ce4f60
TG
2578 /* Try to randomize the freelist if enabled */
2579 shuffled = shuffle_freelist(cachep, page);
2580
2581 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2582 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2583 obj_offset(cachep);
2584 }
2585
10b2e9e8 2586 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2587 objp = index_to_obj(cachep, page, i);
2588 kasan_init_slab_obj(cachep, objp);
2589
10b2e9e8 2590 /* constructor could break poison info */
7ed2f9e6 2591 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2592 kasan_unpoison_object_data(cachep, objp);
2593 cachep->ctor(objp);
2594 kasan_poison_object_data(cachep, objp);
2595 }
10b2e9e8 2596
c7ce4f60
TG
2597 if (!shuffled)
2598 set_free_obj(page, i, i);
1da177e4 2599 }
1da177e4
LT
2600}
2601
260b61dd 2602static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2603{
b1cb0982 2604 void *objp;
78d382d7 2605
e5c58dfd 2606 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2607 page->active++;
78d382d7 2608
d31676df
JK
2609#if DEBUG
2610 if (cachep->flags & SLAB_STORE_USER)
2611 set_store_user_dirty(cachep);
2612#endif
2613
78d382d7
MD
2614 return objp;
2615}
2616
260b61dd
JK
2617static void slab_put_obj(struct kmem_cache *cachep,
2618 struct page *page, void *objp)
78d382d7 2619{
8456a648 2620 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2621#if DEBUG
16025177 2622 unsigned int i;
b1cb0982 2623
b1cb0982 2624 /* Verify double free bug */
8456a648 2625 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2626 if (get_free_obj(page, i) == objnr) {
1170532b 2627 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2628 cachep->name, objp);
b1cb0982
JK
2629 BUG();
2630 }
78d382d7
MD
2631 }
2632#endif
8456a648 2633 page->active--;
b03a017b
JK
2634 if (!page->freelist)
2635 page->freelist = objp + obj_offset(cachep);
2636
e5c58dfd 2637 set_free_obj(page, page->active, objnr);
78d382d7
MD
2638}
2639
4776874f
PE
2640/*
2641 * Map pages beginning at addr to the given cache and slab. This is required
2642 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2643 * virtual address for kfree, ksize, and slab debugging.
4776874f 2644 */
8456a648 2645static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2646 void *freelist)
1da177e4 2647{
a57a4988 2648 page->slab_cache = cache;
8456a648 2649 page->freelist = freelist;
1da177e4
LT
2650}
2651
2652/*
2653 * Grow (by 1) the number of slabs within a cache. This is called by
2654 * kmem_cache_alloc() when there are no active objs left in a cache.
2655 */
76b342bd
JK
2656static struct page *cache_grow_begin(struct kmem_cache *cachep,
2657 gfp_t flags, int nodeid)
1da177e4 2658{
7e007355 2659 void *freelist;
b28a02de
PE
2660 size_t offset;
2661 gfp_t local_flags;
511e3a05 2662 int page_node;
ce8eb6c4 2663 struct kmem_cache_node *n;
511e3a05 2664 struct page *page;
1da177e4 2665
a737b3e2
AM
2666 /*
2667 * Be lazy and only check for valid flags here, keeping it out of the
2668 * critical path in kmem_cache_alloc().
1da177e4 2669 */
c871ac4e 2670 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2671 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2672 flags &= ~GFP_SLAB_BUG_MASK;
2673 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2674 invalid_mask, &invalid_mask, flags, &flags);
2675 dump_stack();
c871ac4e 2676 }
6cb06229 2677 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2678
1da177e4 2679 check_irq_off();
d0164adc 2680 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2681 local_irq_enable();
2682
a737b3e2
AM
2683 /*
2684 * Get mem for the objs. Attempt to allocate a physical page from
2685 * 'nodeid'.
e498be7d 2686 */
511e3a05 2687 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2688 if (!page)
1da177e4
LT
2689 goto failed;
2690
511e3a05
JK
2691 page_node = page_to_nid(page);
2692 n = get_node(cachep, page_node);
03d1d43a
JK
2693
2694 /* Get colour for the slab, and cal the next value. */
2695 n->colour_next++;
2696 if (n->colour_next >= cachep->colour)
2697 n->colour_next = 0;
2698
2699 offset = n->colour_next;
2700 if (offset >= cachep->colour)
2701 offset = 0;
2702
2703 offset *= cachep->colour_off;
2704
1da177e4 2705 /* Get slab management. */
8456a648 2706 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2707 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2708 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2709 goto opps1;
2710
8456a648 2711 slab_map_pages(cachep, page, freelist);
1da177e4 2712
7ed2f9e6 2713 kasan_poison_slab(page);
8456a648 2714 cache_init_objs(cachep, page);
1da177e4 2715
d0164adc 2716 if (gfpflags_allow_blocking(local_flags))
1da177e4 2717 local_irq_disable();
1da177e4 2718
76b342bd
JK
2719 return page;
2720
a737b3e2 2721opps1:
0c3aa83e 2722 kmem_freepages(cachep, page);
a737b3e2 2723failed:
d0164adc 2724 if (gfpflags_allow_blocking(local_flags))
1da177e4 2725 local_irq_disable();
76b342bd
JK
2726 return NULL;
2727}
2728
2729static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2730{
2731 struct kmem_cache_node *n;
2732 void *list = NULL;
2733
2734 check_irq_off();
2735
2736 if (!page)
2737 return;
2738
2739 INIT_LIST_HEAD(&page->lru);
2740 n = get_node(cachep, page_to_nid(page));
2741
2742 spin_lock(&n->list_lock);
bf00bd34 2743 n->total_slabs++;
f728b0a5 2744 if (!page->active) {
76b342bd 2745 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2746 n->free_slabs++;
bf00bd34 2747 } else
76b342bd 2748 fixup_slab_list(cachep, n, page, &list);
07a63c41 2749
76b342bd
JK
2750 STATS_INC_GROWN(cachep);
2751 n->free_objects += cachep->num - page->active;
2752 spin_unlock(&n->list_lock);
2753
2754 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2755}
2756
2757#if DEBUG
2758
2759/*
2760 * Perform extra freeing checks:
2761 * - detect bad pointers.
2762 * - POISON/RED_ZONE checking
1da177e4
LT
2763 */
2764static void kfree_debugcheck(const void *objp)
2765{
1da177e4 2766 if (!virt_addr_valid(objp)) {
1170532b 2767 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2768 (unsigned long)objp);
2769 BUG();
1da177e4 2770 }
1da177e4
LT
2771}
2772
58ce1fd5
PE
2773static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2774{
b46b8f19 2775 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2776
2777 redzone1 = *dbg_redzone1(cache, obj);
2778 redzone2 = *dbg_redzone2(cache, obj);
2779
2780 /*
2781 * Redzone is ok.
2782 */
2783 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2784 return;
2785
2786 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2787 slab_error(cache, "double free detected");
2788 else
2789 slab_error(cache, "memory outside object was overwritten");
2790
1170532b
JP
2791 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2792 obj, redzone1, redzone2);
58ce1fd5
PE
2793}
2794
343e0d7a 2795static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2796 unsigned long caller)
1da177e4 2797{
1da177e4 2798 unsigned int objnr;
8456a648 2799 struct page *page;
1da177e4 2800
80cbd911
MW
2801 BUG_ON(virt_to_cache(objp) != cachep);
2802
3dafccf2 2803 objp -= obj_offset(cachep);
1da177e4 2804 kfree_debugcheck(objp);
b49af68f 2805 page = virt_to_head_page(objp);
1da177e4 2806
1da177e4 2807 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2808 verify_redzone_free(cachep, objp);
1da177e4
LT
2809 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2810 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2811 }
d31676df
JK
2812 if (cachep->flags & SLAB_STORE_USER) {
2813 set_store_user_dirty(cachep);
7c0cb9c6 2814 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2815 }
1da177e4 2816
8456a648 2817 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2818
2819 BUG_ON(objnr >= cachep->num);
8456a648 2820 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2821
1da177e4 2822 if (cachep->flags & SLAB_POISON) {
1da177e4 2823 poison_obj(cachep, objp, POISON_FREE);
40b44137 2824 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2825 }
2826 return objp;
2827}
2828
1da177e4
LT
2829#else
2830#define kfree_debugcheck(x) do { } while(0)
2831#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2832#endif
2833
b03a017b
JK
2834static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2835 void **list)
2836{
2837#if DEBUG
2838 void *next = *list;
2839 void *objp;
2840
2841 while (next) {
2842 objp = next - obj_offset(cachep);
2843 next = *(void **)next;
2844 poison_obj(cachep, objp, POISON_FREE);
2845 }
2846#endif
2847}
2848
d8410234 2849static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2850 struct kmem_cache_node *n, struct page *page,
2851 void **list)
d8410234
JK
2852{
2853 /* move slabp to correct slabp list: */
2854 list_del(&page->lru);
b03a017b 2855 if (page->active == cachep->num) {
d8410234 2856 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2857 if (OBJFREELIST_SLAB(cachep)) {
2858#if DEBUG
2859 /* Poisoning will be done without holding the lock */
2860 if (cachep->flags & SLAB_POISON) {
2861 void **objp = page->freelist;
2862
2863 *objp = *list;
2864 *list = objp;
2865 }
2866#endif
2867 page->freelist = NULL;
2868 }
2869 } else
d8410234
JK
2870 list_add(&page->lru, &n->slabs_partial);
2871}
2872
f68f8ddd
JK
2873/* Try to find non-pfmemalloc slab if needed */
2874static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2875 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2876{
2877 if (!page)
2878 return NULL;
2879
2880 if (pfmemalloc)
2881 return page;
2882
2883 if (!PageSlabPfmemalloc(page))
2884 return page;
2885
2886 /* No need to keep pfmemalloc slab if we have enough free objects */
2887 if (n->free_objects > n->free_limit) {
2888 ClearPageSlabPfmemalloc(page);
2889 return page;
2890 }
2891
2892 /* Move pfmemalloc slab to the end of list to speed up next search */
2893 list_del(&page->lru);
bf00bd34 2894 if (!page->active) {
f68f8ddd 2895 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2896 n->free_slabs++;
f728b0a5 2897 } else
f68f8ddd
JK
2898 list_add_tail(&page->lru, &n->slabs_partial);
2899
2900 list_for_each_entry(page, &n->slabs_partial, lru) {
2901 if (!PageSlabPfmemalloc(page))
2902 return page;
2903 }
2904
f728b0a5 2905 n->free_touched = 1;
f68f8ddd 2906 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2907 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2908 n->free_slabs--;
f68f8ddd 2909 return page;
f728b0a5 2910 }
f68f8ddd
JK
2911 }
2912
2913 return NULL;
2914}
2915
2916static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2917{
2918 struct page *page;
2919
f728b0a5 2920 assert_spin_locked(&n->list_lock);
bf00bd34 2921 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2922 if (!page) {
2923 n->free_touched = 1;
bf00bd34
DR
2924 page = list_first_entry_or_null(&n->slabs_free, struct page,
2925 lru);
f728b0a5 2926 if (page)
bf00bd34 2927 n->free_slabs--;
7aa0d227
GT
2928 }
2929
f68f8ddd 2930 if (sk_memalloc_socks())
bf00bd34 2931 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2932
7aa0d227
GT
2933 return page;
2934}
2935
f68f8ddd
JK
2936static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2937 struct kmem_cache_node *n, gfp_t flags)
2938{
2939 struct page *page;
2940 void *obj;
2941 void *list = NULL;
2942
2943 if (!gfp_pfmemalloc_allowed(flags))
2944 return NULL;
2945
2946 spin_lock(&n->list_lock);
2947 page = get_first_slab(n, true);
2948 if (!page) {
2949 spin_unlock(&n->list_lock);
2950 return NULL;
2951 }
2952
2953 obj = slab_get_obj(cachep, page);
2954 n->free_objects--;
2955
2956 fixup_slab_list(cachep, n, page, &list);
2957
2958 spin_unlock(&n->list_lock);
2959 fixup_objfreelist_debug(cachep, &list);
2960
2961 return obj;
2962}
2963
213b4695
JK
2964/*
2965 * Slab list should be fixed up by fixup_slab_list() for existing slab
2966 * or cache_grow_end() for new slab
2967 */
2968static __always_inline int alloc_block(struct kmem_cache *cachep,
2969 struct array_cache *ac, struct page *page, int batchcount)
2970{
2971 /*
2972 * There must be at least one object available for
2973 * allocation.
2974 */
2975 BUG_ON(page->active >= cachep->num);
2976
2977 while (page->active < cachep->num && batchcount--) {
2978 STATS_INC_ALLOCED(cachep);
2979 STATS_INC_ACTIVE(cachep);
2980 STATS_SET_HIGH(cachep);
2981
2982 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2983 }
2984
2985 return batchcount;
2986}
2987
f68f8ddd 2988static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2989{
2990 int batchcount;
ce8eb6c4 2991 struct kmem_cache_node *n;
801faf0d 2992 struct array_cache *ac, *shared;
1ca4cb24 2993 int node;
b03a017b 2994 void *list = NULL;
76b342bd 2995 struct page *page;
1ca4cb24 2996
1da177e4 2997 check_irq_off();
7d6e6d09 2998 node = numa_mem_id();
f68f8ddd 2999
9a2dba4b 3000 ac = cpu_cache_get(cachep);
1da177e4
LT
3001 batchcount = ac->batchcount;
3002 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3003 /*
3004 * If there was little recent activity on this cache, then
3005 * perform only a partial refill. Otherwise we could generate
3006 * refill bouncing.
1da177e4
LT
3007 */
3008 batchcount = BATCHREFILL_LIMIT;
3009 }
18bf8541 3010 n = get_node(cachep, node);
e498be7d 3011
ce8eb6c4 3012 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3013 shared = READ_ONCE(n->shared);
3014 if (!n->free_objects && (!shared || !shared->avail))
3015 goto direct_grow;
3016
ce8eb6c4 3017 spin_lock(&n->list_lock);
801faf0d 3018 shared = READ_ONCE(n->shared);
1da177e4 3019
3ded175a 3020 /* See if we can refill from the shared array */
801faf0d
JK
3021 if (shared && transfer_objects(ac, shared, batchcount)) {
3022 shared->touched = 1;
3ded175a 3023 goto alloc_done;
44b57f1c 3024 }
3ded175a 3025
1da177e4 3026 while (batchcount > 0) {
1da177e4 3027 /* Get slab alloc is to come from. */
f68f8ddd 3028 page = get_first_slab(n, false);
7aa0d227
GT
3029 if (!page)
3030 goto must_grow;
1da177e4 3031
1da177e4 3032 check_spinlock_acquired(cachep);
714b8171 3033
213b4695 3034 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3035 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3036 }
3037
a737b3e2 3038must_grow:
ce8eb6c4 3039 n->free_objects -= ac->avail;
a737b3e2 3040alloc_done:
ce8eb6c4 3041 spin_unlock(&n->list_lock);
b03a017b 3042 fixup_objfreelist_debug(cachep, &list);
1da177e4 3043
801faf0d 3044direct_grow:
1da177e4 3045 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3046 /* Check if we can use obj in pfmemalloc slab */
3047 if (sk_memalloc_socks()) {
3048 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3049
3050 if (obj)
3051 return obj;
3052 }
3053
76b342bd 3054 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3055
76b342bd
JK
3056 /*
3057 * cache_grow_begin() can reenable interrupts,
3058 * then ac could change.
3059 */
9a2dba4b 3060 ac = cpu_cache_get(cachep);
213b4695
JK
3061 if (!ac->avail && page)
3062 alloc_block(cachep, ac, page, batchcount);
3063 cache_grow_end(cachep, page);
072bb0aa 3064
213b4695 3065 if (!ac->avail)
1da177e4 3066 return NULL;
1da177e4
LT
3067 }
3068 ac->touched = 1;
072bb0aa 3069
f68f8ddd 3070 return ac->entry[--ac->avail];
1da177e4
LT
3071}
3072
a737b3e2
AM
3073static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3074 gfp_t flags)
1da177e4 3075{
d0164adc 3076 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3077}
3078
3079#if DEBUG
a737b3e2 3080static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3081 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3082{
b28a02de 3083 if (!objp)
1da177e4 3084 return objp;
b28a02de 3085 if (cachep->flags & SLAB_POISON) {
1da177e4 3086 check_poison_obj(cachep, objp);
40b44137 3087 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3088 poison_obj(cachep, objp, POISON_INUSE);
3089 }
3090 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3091 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3092
3093 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3094 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3095 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3096 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3097 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3098 objp, *dbg_redzone1(cachep, objp),
3099 *dbg_redzone2(cachep, objp));
1da177e4
LT
3100 }
3101 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3102 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3103 }
03787301 3104
3dafccf2 3105 objp += obj_offset(cachep);
4f104934 3106 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3107 cachep->ctor(objp);
7ea466f2
TH
3108 if (ARCH_SLAB_MINALIGN &&
3109 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3110 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3111 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3112 }
1da177e4
LT
3113 return objp;
3114}
3115#else
3116#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3117#endif
3118
343e0d7a 3119static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3120{
b28a02de 3121 void *objp;
1da177e4
LT
3122 struct array_cache *ac;
3123
5c382300 3124 check_irq_off();
8a8b6502 3125
9a2dba4b 3126 ac = cpu_cache_get(cachep);
1da177e4 3127 if (likely(ac->avail)) {
1da177e4 3128 ac->touched = 1;
f68f8ddd 3129 objp = ac->entry[--ac->avail];
072bb0aa 3130
f68f8ddd
JK
3131 STATS_INC_ALLOCHIT(cachep);
3132 goto out;
1da177e4 3133 }
072bb0aa
MG
3134
3135 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3136 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3137 /*
3138 * the 'ac' may be updated by cache_alloc_refill(),
3139 * and kmemleak_erase() requires its correct value.
3140 */
3141 ac = cpu_cache_get(cachep);
3142
3143out:
d5cff635
CM
3144 /*
3145 * To avoid a false negative, if an object that is in one of the
3146 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3147 * treat the array pointers as a reference to the object.
3148 */
f3d8b53a
O
3149 if (objp)
3150 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3151 return objp;
3152}
3153
e498be7d 3154#ifdef CONFIG_NUMA
c61afb18 3155/*
2ad654bc 3156 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3157 *
3158 * If we are in_interrupt, then process context, including cpusets and
3159 * mempolicy, may not apply and should not be used for allocation policy.
3160 */
3161static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3162{
3163 int nid_alloc, nid_here;
3164
765c4507 3165 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3166 return NULL;
7d6e6d09 3167 nid_alloc = nid_here = numa_mem_id();
c61afb18 3168 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3169 nid_alloc = cpuset_slab_spread_node();
c61afb18 3170 else if (current->mempolicy)
2a389610 3171 nid_alloc = mempolicy_slab_node();
c61afb18 3172 if (nid_alloc != nid_here)
8b98c169 3173 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3174 return NULL;
3175}
3176
765c4507
CL
3177/*
3178 * Fallback function if there was no memory available and no objects on a
3c517a61 3179 * certain node and fall back is permitted. First we scan all the
6a67368c 3180 * available node for available objects. If that fails then we
3c517a61
CL
3181 * perform an allocation without specifying a node. This allows the page
3182 * allocator to do its reclaim / fallback magic. We then insert the
3183 * slab into the proper nodelist and then allocate from it.
765c4507 3184 */
8c8cc2c1 3185static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3186{
8c8cc2c1 3187 struct zonelist *zonelist;
dd1a239f 3188 struct zoneref *z;
54a6eb5c
MG
3189 struct zone *zone;
3190 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3191 void *obj = NULL;
76b342bd 3192 struct page *page;
3c517a61 3193 int nid;
cc9a6c87 3194 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3195
3196 if (flags & __GFP_THISNODE)
3197 return NULL;
3198
cc9a6c87 3199retry_cpuset:
d26914d1 3200 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3201 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3202
3c517a61
CL
3203retry:
3204 /*
3205 * Look through allowed nodes for objects available
3206 * from existing per node queues.
3207 */
54a6eb5c
MG
3208 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3209 nid = zone_to_nid(zone);
aedb0eb1 3210
061d7074 3211 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3212 get_node(cache, nid) &&
3213 get_node(cache, nid)->free_objects) {
3c517a61 3214 obj = ____cache_alloc_node(cache,
4167e9b2 3215 gfp_exact_node(flags), nid);
481c5346
CL
3216 if (obj)
3217 break;
3218 }
3c517a61
CL
3219 }
3220
cfce6604 3221 if (!obj) {
3c517a61
CL
3222 /*
3223 * This allocation will be performed within the constraints
3224 * of the current cpuset / memory policy requirements.
3225 * We may trigger various forms of reclaim on the allowed
3226 * set and go into memory reserves if necessary.
3227 */
76b342bd
JK
3228 page = cache_grow_begin(cache, flags, numa_mem_id());
3229 cache_grow_end(cache, page);
3230 if (page) {
3231 nid = page_to_nid(page);
511e3a05
JK
3232 obj = ____cache_alloc_node(cache,
3233 gfp_exact_node(flags), nid);
0c3aa83e 3234
3c517a61 3235 /*
511e3a05
JK
3236 * Another processor may allocate the objects in
3237 * the slab since we are not holding any locks.
3c517a61 3238 */
511e3a05
JK
3239 if (!obj)
3240 goto retry;
3c517a61 3241 }
aedb0eb1 3242 }
cc9a6c87 3243
d26914d1 3244 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3245 goto retry_cpuset;
765c4507
CL
3246 return obj;
3247}
3248
e498be7d
CL
3249/*
3250 * A interface to enable slab creation on nodeid
1da177e4 3251 */
8b98c169 3252static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3253 int nodeid)
e498be7d 3254{
8456a648 3255 struct page *page;
ce8eb6c4 3256 struct kmem_cache_node *n;
213b4695 3257 void *obj = NULL;
b03a017b 3258 void *list = NULL;
b28a02de 3259
7c3fbbdd 3260 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3261 n = get_node(cachep, nodeid);
ce8eb6c4 3262 BUG_ON(!n);
b28a02de 3263
ca3b9b91 3264 check_irq_off();
ce8eb6c4 3265 spin_lock(&n->list_lock);
f68f8ddd 3266 page = get_first_slab(n, false);
7aa0d227
GT
3267 if (!page)
3268 goto must_grow;
b28a02de 3269
b28a02de 3270 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3271
3272 STATS_INC_NODEALLOCS(cachep);
3273 STATS_INC_ACTIVE(cachep);
3274 STATS_SET_HIGH(cachep);
3275
8456a648 3276 BUG_ON(page->active == cachep->num);
b28a02de 3277
260b61dd 3278 obj = slab_get_obj(cachep, page);
ce8eb6c4 3279 n->free_objects--;
b28a02de 3280
b03a017b 3281 fixup_slab_list(cachep, n, page, &list);
e498be7d 3282
ce8eb6c4 3283 spin_unlock(&n->list_lock);
b03a017b 3284 fixup_objfreelist_debug(cachep, &list);
213b4695 3285 return obj;
e498be7d 3286
a737b3e2 3287must_grow:
ce8eb6c4 3288 spin_unlock(&n->list_lock);
76b342bd 3289 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3290 if (page) {
3291 /* This slab isn't counted yet so don't update free_objects */
3292 obj = slab_get_obj(cachep, page);
3293 }
76b342bd 3294 cache_grow_end(cachep, page);
1da177e4 3295
213b4695 3296 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3297}
8c8cc2c1 3298
8c8cc2c1 3299static __always_inline void *
48356303 3300slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3301 unsigned long caller)
8c8cc2c1
PE
3302{
3303 unsigned long save_flags;
3304 void *ptr;
7d6e6d09 3305 int slab_node = numa_mem_id();
8c8cc2c1 3306
dcce284a 3307 flags &= gfp_allowed_mask;
011eceaf
JDB
3308 cachep = slab_pre_alloc_hook(cachep, flags);
3309 if (unlikely(!cachep))
824ebef1
AM
3310 return NULL;
3311
8c8cc2c1
PE
3312 cache_alloc_debugcheck_before(cachep, flags);
3313 local_irq_save(save_flags);
3314
eacbbae3 3315 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3316 nodeid = slab_node;
8c8cc2c1 3317
18bf8541 3318 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3319 /* Node not bootstrapped yet */
3320 ptr = fallback_alloc(cachep, flags);
3321 goto out;
3322 }
3323
7d6e6d09 3324 if (nodeid == slab_node) {
8c8cc2c1
PE
3325 /*
3326 * Use the locally cached objects if possible.
3327 * However ____cache_alloc does not allow fallback
3328 * to other nodes. It may fail while we still have
3329 * objects on other nodes available.
3330 */
3331 ptr = ____cache_alloc(cachep, flags);
3332 if (ptr)
3333 goto out;
3334 }
3335 /* ___cache_alloc_node can fall back to other nodes */
3336 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3337 out:
3338 local_irq_restore(save_flags);
3339 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3340
d5e3ed66
JDB
3341 if (unlikely(flags & __GFP_ZERO) && ptr)
3342 memset(ptr, 0, cachep->object_size);
d07dbea4 3343
d5e3ed66 3344 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3345 return ptr;
3346}
3347
3348static __always_inline void *
3349__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3350{
3351 void *objp;
3352
2ad654bc 3353 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3354 objp = alternate_node_alloc(cache, flags);
3355 if (objp)
3356 goto out;
3357 }
3358 objp = ____cache_alloc(cache, flags);
3359
3360 /*
3361 * We may just have run out of memory on the local node.
3362 * ____cache_alloc_node() knows how to locate memory on other nodes
3363 */
7d6e6d09
LS
3364 if (!objp)
3365 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3366
3367 out:
3368 return objp;
3369}
3370#else
3371
3372static __always_inline void *
3373__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3374{
3375 return ____cache_alloc(cachep, flags);
3376}
3377
3378#endif /* CONFIG_NUMA */
3379
3380static __always_inline void *
48356303 3381slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3382{
3383 unsigned long save_flags;
3384 void *objp;
3385
dcce284a 3386 flags &= gfp_allowed_mask;
011eceaf
JDB
3387 cachep = slab_pre_alloc_hook(cachep, flags);
3388 if (unlikely(!cachep))
824ebef1
AM
3389 return NULL;
3390
8c8cc2c1
PE
3391 cache_alloc_debugcheck_before(cachep, flags);
3392 local_irq_save(save_flags);
3393 objp = __do_cache_alloc(cachep, flags);
3394 local_irq_restore(save_flags);
3395 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3396 prefetchw(objp);
3397
d5e3ed66
JDB
3398 if (unlikely(flags & __GFP_ZERO) && objp)
3399 memset(objp, 0, cachep->object_size);
d07dbea4 3400
d5e3ed66 3401 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3402 return objp;
3403}
e498be7d
CL
3404
3405/*
5f0985bb 3406 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3407 * @list: List of detached free slabs should be freed by caller
e498be7d 3408 */
97654dfa
JK
3409static void free_block(struct kmem_cache *cachep, void **objpp,
3410 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3411{
3412 int i;
25c063fb 3413 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3414 struct page *page;
3415
3416 n->free_objects += nr_objects;
1da177e4
LT
3417
3418 for (i = 0; i < nr_objects; i++) {
072bb0aa 3419 void *objp;
8456a648 3420 struct page *page;
1da177e4 3421
072bb0aa
MG
3422 objp = objpp[i];
3423
8456a648 3424 page = virt_to_head_page(objp);
8456a648 3425 list_del(&page->lru);
ff69416e 3426 check_spinlock_acquired_node(cachep, node);
260b61dd 3427 slab_put_obj(cachep, page, objp);
1da177e4 3428 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3429
3430 /* fixup slab chains */
f728b0a5 3431 if (page->active == 0) {
6052b788 3432 list_add(&page->lru, &n->slabs_free);
f728b0a5 3433 n->free_slabs++;
f728b0a5 3434 } else {
1da177e4
LT
3435 /* Unconditionally move a slab to the end of the
3436 * partial list on free - maximum time for the
3437 * other objects to be freed, too.
3438 */
8456a648 3439 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3440 }
3441 }
6052b788
JK
3442
3443 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3444 n->free_objects -= cachep->num;
3445
3446 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3447 list_move(&page->lru, list);
f728b0a5 3448 n->free_slabs--;
bf00bd34 3449 n->total_slabs--;
6052b788 3450 }
1da177e4
LT
3451}
3452
343e0d7a 3453static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3454{
3455 int batchcount;
ce8eb6c4 3456 struct kmem_cache_node *n;
7d6e6d09 3457 int node = numa_mem_id();
97654dfa 3458 LIST_HEAD(list);
1da177e4
LT
3459
3460 batchcount = ac->batchcount;
260b61dd 3461
1da177e4 3462 check_irq_off();
18bf8541 3463 n = get_node(cachep, node);
ce8eb6c4
CL
3464 spin_lock(&n->list_lock);
3465 if (n->shared) {
3466 struct array_cache *shared_array = n->shared;
b28a02de 3467 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3468 if (max) {
3469 if (batchcount > max)
3470 batchcount = max;
e498be7d 3471 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3472 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3473 shared_array->avail += batchcount;
3474 goto free_done;
3475 }
3476 }
3477
97654dfa 3478 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3479free_done:
1da177e4
LT
3480#if STATS
3481 {
3482 int i = 0;
73c0219d 3483 struct page *page;
1da177e4 3484
73c0219d 3485 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3486 BUG_ON(page->active);
1da177e4
LT
3487
3488 i++;
1da177e4
LT
3489 }
3490 STATS_SET_FREEABLE(cachep, i);
3491 }
3492#endif
ce8eb6c4 3493 spin_unlock(&n->list_lock);
97654dfa 3494 slabs_destroy(cachep, &list);
1da177e4 3495 ac->avail -= batchcount;
a737b3e2 3496 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3497}
3498
3499/*
a737b3e2
AM
3500 * Release an obj back to its cache. If the obj has a constructed state, it must
3501 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3502 */
a947eb95 3503static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3504 unsigned long caller)
1da177e4 3505{
55834c59
AP
3506 /* Put the object into the quarantine, don't touch it for now. */
3507 if (kasan_slab_free(cachep, objp))
3508 return;
3509
3510 ___cache_free(cachep, objp, caller);
3511}
1da177e4 3512
55834c59
AP
3513void ___cache_free(struct kmem_cache *cachep, void *objp,
3514 unsigned long caller)
3515{
3516 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3517
1da177e4 3518 check_irq_off();
d5cff635 3519 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3520 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3521
8c138bc0 3522 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3523
1807a1aa
SS
3524 /*
3525 * Skip calling cache_free_alien() when the platform is not numa.
3526 * This will avoid cache misses that happen while accessing slabp (which
3527 * is per page memory reference) to get nodeid. Instead use a global
3528 * variable to skip the call, which is mostly likely to be present in
3529 * the cache.
3530 */
b6e68bc1 3531 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3532 return;
3533
3d880194 3534 if (ac->avail < ac->limit) {
1da177e4 3535 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3536 } else {
3537 STATS_INC_FREEMISS(cachep);
3538 cache_flusharray(cachep, ac);
1da177e4 3539 }
42c8c99c 3540
f68f8ddd
JK
3541 if (sk_memalloc_socks()) {
3542 struct page *page = virt_to_head_page(objp);
3543
3544 if (unlikely(PageSlabPfmemalloc(page))) {
3545 cache_free_pfmemalloc(cachep, page, objp);
3546 return;
3547 }
3548 }
3549
3550 ac->entry[ac->avail++] = objp;
1da177e4
LT
3551}
3552
3553/**
3554 * kmem_cache_alloc - Allocate an object
3555 * @cachep: The cache to allocate from.
3556 * @flags: See kmalloc().
3557 *
3558 * Allocate an object from this cache. The flags are only relevant
3559 * if the cache has no available objects.
3560 */
343e0d7a 3561void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3562{
48356303 3563 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3564
505f5dcb 3565 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3566 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3567 cachep->object_size, cachep->size, flags);
36555751
EGM
3568
3569 return ret;
1da177e4
LT
3570}
3571EXPORT_SYMBOL(kmem_cache_alloc);
3572
7b0501dd
JDB
3573static __always_inline void
3574cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3575 size_t size, void **p, unsigned long caller)
3576{
3577 size_t i;
3578
3579 for (i = 0; i < size; i++)
3580 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3581}
3582
865762a8 3583int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3584 void **p)
484748f0 3585{
2a777eac
JDB
3586 size_t i;
3587
3588 s = slab_pre_alloc_hook(s, flags);
3589 if (!s)
3590 return 0;
3591
3592 cache_alloc_debugcheck_before(s, flags);
3593
3594 local_irq_disable();
3595 for (i = 0; i < size; i++) {
3596 void *objp = __do_cache_alloc(s, flags);
3597
2a777eac
JDB
3598 if (unlikely(!objp))
3599 goto error;
3600 p[i] = objp;
3601 }
3602 local_irq_enable();
3603
7b0501dd
JDB
3604 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3605
2a777eac
JDB
3606 /* Clear memory outside IRQ disabled section */
3607 if (unlikely(flags & __GFP_ZERO))
3608 for (i = 0; i < size; i++)
3609 memset(p[i], 0, s->object_size);
3610
3611 slab_post_alloc_hook(s, flags, size, p);
3612 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3613 return size;
3614error:
3615 local_irq_enable();
7b0501dd 3616 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3617 slab_post_alloc_hook(s, flags, i, p);
3618 __kmem_cache_free_bulk(s, i, p);
3619 return 0;
484748f0
CL
3620}
3621EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3622
0f24f128 3623#ifdef CONFIG_TRACING
85beb586 3624void *
4052147c 3625kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3626{
85beb586
SR
3627 void *ret;
3628
48356303 3629 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3630
505f5dcb 3631 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3632 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3633 size, cachep->size, flags);
85beb586 3634 return ret;
36555751 3635}
85beb586 3636EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3637#endif
3638
1da177e4 3639#ifdef CONFIG_NUMA
d0d04b78
ZL
3640/**
3641 * kmem_cache_alloc_node - Allocate an object on the specified node
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 * @nodeid: node number of the target node.
3645 *
3646 * Identical to kmem_cache_alloc but it will allocate memory on the given
3647 * node, which can improve the performance for cpu bound structures.
3648 *
3649 * Fallback to other node is possible if __GFP_THISNODE is not set.
3650 */
8b98c169
CH
3651void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3652{
48356303 3653 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3654
505f5dcb 3655 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3656 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3657 cachep->object_size, cachep->size,
ca2b84cb 3658 flags, nodeid);
36555751
EGM
3659
3660 return ret;
8b98c169 3661}
1da177e4
LT
3662EXPORT_SYMBOL(kmem_cache_alloc_node);
3663
0f24f128 3664#ifdef CONFIG_TRACING
4052147c 3665void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3666 gfp_t flags,
4052147c
EG
3667 int nodeid,
3668 size_t size)
36555751 3669{
85beb586
SR
3670 void *ret;
3671
592f4145 3672 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3673
3674 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3675 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3676 size, cachep->size,
85beb586
SR
3677 flags, nodeid);
3678 return ret;
36555751 3679}
85beb586 3680EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3681#endif
3682
8b98c169 3683static __always_inline void *
7c0cb9c6 3684__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3685{
343e0d7a 3686 struct kmem_cache *cachep;
7ed2f9e6 3687 void *ret;
97e2bde4 3688
2c59dd65 3689 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3690 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3691 return cachep;
7ed2f9e6 3692 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3693 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3694
3695 return ret;
97e2bde4 3696}
8b98c169 3697
8b98c169
CH
3698void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699{
7c0cb9c6 3700 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3701}
dbe5e69d 3702EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3703
3704void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3705 int node, unsigned long caller)
8b98c169 3706{
7c0cb9c6 3707 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3708}
3709EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3710#endif /* CONFIG_NUMA */
1da177e4
LT
3711
3712/**
800590f5 3713 * __do_kmalloc - allocate memory
1da177e4 3714 * @size: how many bytes of memory are required.
800590f5 3715 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3716 * @caller: function caller for debug tracking of the caller
1da177e4 3717 */
7fd6b141 3718static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3719 unsigned long caller)
1da177e4 3720{
343e0d7a 3721 struct kmem_cache *cachep;
36555751 3722 void *ret;
1da177e4 3723
2c59dd65 3724 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3725 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3726 return cachep;
48356303 3727 ret = slab_alloc(cachep, flags, caller);
36555751 3728
505f5dcb 3729 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3730 trace_kmalloc(caller, ret,
3b0efdfa 3731 size, cachep->size, flags);
36555751
EGM
3732
3733 return ret;
7fd6b141
PE
3734}
3735
7fd6b141
PE
3736void *__kmalloc(size_t size, gfp_t flags)
3737{
7c0cb9c6 3738 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3739}
3740EXPORT_SYMBOL(__kmalloc);
3741
ce71e27c 3742void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3743{
7c0cb9c6 3744 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3745}
3746EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3747
1da177e4
LT
3748/**
3749 * kmem_cache_free - Deallocate an object
3750 * @cachep: The cache the allocation was from.
3751 * @objp: The previously allocated object.
3752 *
3753 * Free an object which was previously allocated from this
3754 * cache.
3755 */
343e0d7a 3756void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3757{
3758 unsigned long flags;
b9ce5ef4
GC
3759 cachep = cache_from_obj(cachep, objp);
3760 if (!cachep)
3761 return;
1da177e4
LT
3762
3763 local_irq_save(flags);
d97d476b 3764 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3765 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3766 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3767 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3768 local_irq_restore(flags);
36555751 3769
ca2b84cb 3770 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3771}
3772EXPORT_SYMBOL(kmem_cache_free);
3773
e6cdb58d
JDB
3774void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3775{
3776 struct kmem_cache *s;
3777 size_t i;
3778
3779 local_irq_disable();
3780 for (i = 0; i < size; i++) {
3781 void *objp = p[i];
3782
ca257195
JDB
3783 if (!orig_s) /* called via kfree_bulk */
3784 s = virt_to_cache(objp);
3785 else
3786 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3787
3788 debug_check_no_locks_freed(objp, s->object_size);
3789 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3790 debug_check_no_obj_freed(objp, s->object_size);
3791
3792 __cache_free(s, objp, _RET_IP_);
3793 }
3794 local_irq_enable();
3795
3796 /* FIXME: add tracing */
3797}
3798EXPORT_SYMBOL(kmem_cache_free_bulk);
3799
1da177e4
LT
3800/**
3801 * kfree - free previously allocated memory
3802 * @objp: pointer returned by kmalloc.
3803 *
80e93eff
PE
3804 * If @objp is NULL, no operation is performed.
3805 *
1da177e4
LT
3806 * Don't free memory not originally allocated by kmalloc()
3807 * or you will run into trouble.
3808 */
3809void kfree(const void *objp)
3810{
343e0d7a 3811 struct kmem_cache *c;
1da177e4
LT
3812 unsigned long flags;
3813
2121db74
PE
3814 trace_kfree(_RET_IP_, objp);
3815
6cb8f913 3816 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3817 return;
3818 local_irq_save(flags);
3819 kfree_debugcheck(objp);
6ed5eb22 3820 c = virt_to_cache(objp);
8c138bc0
CL
3821 debug_check_no_locks_freed(objp, c->object_size);
3822
3823 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3824 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3825 local_irq_restore(flags);
3826}
3827EXPORT_SYMBOL(kfree);
3828
e498be7d 3829/*
ce8eb6c4 3830 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3831 */
c3d332b6 3832static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3833{
c3d332b6 3834 int ret;
e498be7d 3835 int node;
ce8eb6c4 3836 struct kmem_cache_node *n;
e498be7d 3837
9c09a95c 3838 for_each_online_node(node) {
c3d332b6
JK
3839 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3840 if (ret)
e498be7d
CL
3841 goto fail;
3842
e498be7d 3843 }
c3d332b6 3844
cafeb02e 3845 return 0;
0718dc2a 3846
a737b3e2 3847fail:
3b0efdfa 3848 if (!cachep->list.next) {
0718dc2a
CL
3849 /* Cache is not active yet. Roll back what we did */
3850 node--;
3851 while (node >= 0) {
18bf8541
CL
3852 n = get_node(cachep, node);
3853 if (n) {
ce8eb6c4
CL
3854 kfree(n->shared);
3855 free_alien_cache(n->alien);
3856 kfree(n);
6a67368c 3857 cachep->node[node] = NULL;
0718dc2a
CL
3858 }
3859 node--;
3860 }
3861 }
cafeb02e 3862 return -ENOMEM;
e498be7d
CL
3863}
3864
18004c5d 3865/* Always called with the slab_mutex held */
943a451a 3866static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3867 int batchcount, int shared, gfp_t gfp)
1da177e4 3868{
bf0dea23
JK
3869 struct array_cache __percpu *cpu_cache, *prev;
3870 int cpu;
1da177e4 3871
bf0dea23
JK
3872 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3873 if (!cpu_cache)
d2e7b7d0
SS
3874 return -ENOMEM;
3875
bf0dea23
JK
3876 prev = cachep->cpu_cache;
3877 cachep->cpu_cache = cpu_cache;
3878 kick_all_cpus_sync();
e498be7d 3879
1da177e4 3880 check_irq_on();
1da177e4
LT
3881 cachep->batchcount = batchcount;
3882 cachep->limit = limit;
e498be7d 3883 cachep->shared = shared;
1da177e4 3884
bf0dea23 3885 if (!prev)
c3d332b6 3886 goto setup_node;
bf0dea23
JK
3887
3888 for_each_online_cpu(cpu) {
97654dfa 3889 LIST_HEAD(list);
18bf8541
CL
3890 int node;
3891 struct kmem_cache_node *n;
bf0dea23 3892 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3893
bf0dea23 3894 node = cpu_to_mem(cpu);
18bf8541
CL
3895 n = get_node(cachep, node);
3896 spin_lock_irq(&n->list_lock);
bf0dea23 3897 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3898 spin_unlock_irq(&n->list_lock);
97654dfa 3899 slabs_destroy(cachep, &list);
1da177e4 3900 }
bf0dea23
JK
3901 free_percpu(prev);
3902
c3d332b6
JK
3903setup_node:
3904 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3905}
3906
943a451a
GC
3907static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3908 int batchcount, int shared, gfp_t gfp)
3909{
3910 int ret;
426589f5 3911 struct kmem_cache *c;
943a451a
GC
3912
3913 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3914
3915 if (slab_state < FULL)
3916 return ret;
3917
3918 if ((ret < 0) || !is_root_cache(cachep))
3919 return ret;
3920
426589f5
VD
3921 lockdep_assert_held(&slab_mutex);
3922 for_each_memcg_cache(c, cachep) {
3923 /* return value determined by the root cache only */
3924 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3925 }
3926
3927 return ret;
3928}
3929
18004c5d 3930/* Called with slab_mutex held always */
83b519e8 3931static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3932{
3933 int err;
943a451a
GC
3934 int limit = 0;
3935 int shared = 0;
3936 int batchcount = 0;
3937
7c00fce9 3938 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3939 if (err)
3940 goto end;
3941
943a451a
GC
3942 if (!is_root_cache(cachep)) {
3943 struct kmem_cache *root = memcg_root_cache(cachep);
3944 limit = root->limit;
3945 shared = root->shared;
3946 batchcount = root->batchcount;
3947 }
1da177e4 3948
943a451a
GC
3949 if (limit && shared && batchcount)
3950 goto skip_setup;
a737b3e2
AM
3951 /*
3952 * The head array serves three purposes:
1da177e4
LT
3953 * - create a LIFO ordering, i.e. return objects that are cache-warm
3954 * - reduce the number of spinlock operations.
a737b3e2 3955 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3956 * bufctl chains: array operations are cheaper.
3957 * The numbers are guessed, we should auto-tune as described by
3958 * Bonwick.
3959 */
3b0efdfa 3960 if (cachep->size > 131072)
1da177e4 3961 limit = 1;
3b0efdfa 3962 else if (cachep->size > PAGE_SIZE)
1da177e4 3963 limit = 8;
3b0efdfa 3964 else if (cachep->size > 1024)
1da177e4 3965 limit = 24;
3b0efdfa 3966 else if (cachep->size > 256)
1da177e4
LT
3967 limit = 54;
3968 else
3969 limit = 120;
3970
a737b3e2
AM
3971 /*
3972 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3973 * allocation behaviour: Most allocs on one cpu, most free operations
3974 * on another cpu. For these cases, an efficient object passing between
3975 * cpus is necessary. This is provided by a shared array. The array
3976 * replaces Bonwick's magazine layer.
3977 * On uniprocessor, it's functionally equivalent (but less efficient)
3978 * to a larger limit. Thus disabled by default.
3979 */
3980 shared = 0;
3b0efdfa 3981 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3982 shared = 8;
1da177e4
LT
3983
3984#if DEBUG
a737b3e2
AM
3985 /*
3986 * With debugging enabled, large batchcount lead to excessively long
3987 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3988 */
3989 if (limit > 32)
3990 limit = 32;
3991#endif
943a451a
GC
3992 batchcount = (limit + 1) / 2;
3993skip_setup:
3994 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3995end:
1da177e4 3996 if (err)
1170532b 3997 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3998 cachep->name, -err);
2ed3a4ef 3999 return err;
1da177e4
LT
4000}
4001
1b55253a 4002/*
ce8eb6c4
CL
4003 * Drain an array if it contains any elements taking the node lock only if
4004 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4005 * if drain_array() is used on the shared array.
1b55253a 4006 */
ce8eb6c4 4007static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4008 struct array_cache *ac, int node)
1da177e4 4009{
97654dfa 4010 LIST_HEAD(list);
18726ca8
JK
4011
4012 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4013 check_mutex_acquired();
1da177e4 4014
1b55253a
CL
4015 if (!ac || !ac->avail)
4016 return;
18726ca8
JK
4017
4018 if (ac->touched) {
1da177e4 4019 ac->touched = 0;
18726ca8 4020 return;
1da177e4 4021 }
18726ca8
JK
4022
4023 spin_lock_irq(&n->list_lock);
4024 drain_array_locked(cachep, ac, node, false, &list);
4025 spin_unlock_irq(&n->list_lock);
4026
4027 slabs_destroy(cachep, &list);
1da177e4
LT
4028}
4029
4030/**
4031 * cache_reap - Reclaim memory from caches.
05fb6bf0 4032 * @w: work descriptor
1da177e4
LT
4033 *
4034 * Called from workqueue/eventd every few seconds.
4035 * Purpose:
4036 * - clear the per-cpu caches for this CPU.
4037 * - return freeable pages to the main free memory pool.
4038 *
a737b3e2
AM
4039 * If we cannot acquire the cache chain mutex then just give up - we'll try
4040 * again on the next iteration.
1da177e4 4041 */
7c5cae36 4042static void cache_reap(struct work_struct *w)
1da177e4 4043{
7a7c381d 4044 struct kmem_cache *searchp;
ce8eb6c4 4045 struct kmem_cache_node *n;
7d6e6d09 4046 int node = numa_mem_id();
bf6aede7 4047 struct delayed_work *work = to_delayed_work(w);
1da177e4 4048
18004c5d 4049 if (!mutex_trylock(&slab_mutex))
1da177e4 4050 /* Give up. Setup the next iteration. */
7c5cae36 4051 goto out;
1da177e4 4052
18004c5d 4053 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4054 check_irq_on();
4055
35386e3b 4056 /*
ce8eb6c4 4057 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4058 * have established with reasonable certainty that
4059 * we can do some work if the lock was obtained.
4060 */
18bf8541 4061 n = get_node(searchp, node);
35386e3b 4062
ce8eb6c4 4063 reap_alien(searchp, n);
1da177e4 4064
18726ca8 4065 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4066
35386e3b
CL
4067 /*
4068 * These are racy checks but it does not matter
4069 * if we skip one check or scan twice.
4070 */
ce8eb6c4 4071 if (time_after(n->next_reap, jiffies))
35386e3b 4072 goto next;
1da177e4 4073
5f0985bb 4074 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4075
18726ca8 4076 drain_array(searchp, n, n->shared, node);
1da177e4 4077
ce8eb6c4
CL
4078 if (n->free_touched)
4079 n->free_touched = 0;
ed11d9eb
CL
4080 else {
4081 int freed;
1da177e4 4082
ce8eb6c4 4083 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4084 5 * searchp->num - 1) / (5 * searchp->num));
4085 STATS_ADD_REAPED(searchp, freed);
4086 }
35386e3b 4087next:
1da177e4
LT
4088 cond_resched();
4089 }
4090 check_irq_on();
18004c5d 4091 mutex_unlock(&slab_mutex);
8fce4d8e 4092 next_reap_node();
7c5cae36 4093out:
a737b3e2 4094 /* Set up the next iteration */
5f0985bb 4095 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4096}
4097
158a9624 4098#ifdef CONFIG_SLABINFO
0d7561c6 4099void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4100{
f728b0a5 4101 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4102 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4103 unsigned long free_slabs = 0;
e498be7d 4104 int node;
ce8eb6c4 4105 struct kmem_cache_node *n;
1da177e4 4106
18bf8541 4107 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4108 check_irq_on();
ce8eb6c4 4109 spin_lock_irq(&n->list_lock);
e498be7d 4110
bf00bd34
DR
4111 total_slabs += n->total_slabs;
4112 free_slabs += n->free_slabs;
f728b0a5 4113 free_objs += n->free_objects;
07a63c41 4114
ce8eb6c4
CL
4115 if (n->shared)
4116 shared_avail += n->shared->avail;
e498be7d 4117
ce8eb6c4 4118 spin_unlock_irq(&n->list_lock);
1da177e4 4119 }
bf00bd34
DR
4120 num_objs = total_slabs * cachep->num;
4121 active_slabs = total_slabs - free_slabs;
f728b0a5 4122 active_objs = num_objs - free_objs;
1da177e4 4123
0d7561c6
GC
4124 sinfo->active_objs = active_objs;
4125 sinfo->num_objs = num_objs;
4126 sinfo->active_slabs = active_slabs;
bf00bd34 4127 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4128 sinfo->shared_avail = shared_avail;
4129 sinfo->limit = cachep->limit;
4130 sinfo->batchcount = cachep->batchcount;
4131 sinfo->shared = cachep->shared;
4132 sinfo->objects_per_slab = cachep->num;
4133 sinfo->cache_order = cachep->gfporder;
4134}
4135
4136void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4137{
1da177e4 4138#if STATS
ce8eb6c4 4139 { /* node stats */
1da177e4
LT
4140 unsigned long high = cachep->high_mark;
4141 unsigned long allocs = cachep->num_allocations;
4142 unsigned long grown = cachep->grown;
4143 unsigned long reaped = cachep->reaped;
4144 unsigned long errors = cachep->errors;
4145 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4146 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4147 unsigned long node_frees = cachep->node_frees;
fb7faf33 4148 unsigned long overflows = cachep->node_overflow;
1da177e4 4149
756a025f 4150 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4151 allocs, high, grown,
4152 reaped, errors, max_freeable, node_allocs,
4153 node_frees, overflows);
1da177e4
LT
4154 }
4155 /* cpu stats */
4156 {
4157 unsigned long allochit = atomic_read(&cachep->allochit);
4158 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4159 unsigned long freehit = atomic_read(&cachep->freehit);
4160 unsigned long freemiss = atomic_read(&cachep->freemiss);
4161
4162 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4163 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4164 }
4165#endif
1da177e4
LT
4166}
4167
1da177e4
LT
4168#define MAX_SLABINFO_WRITE 128
4169/**
4170 * slabinfo_write - Tuning for the slab allocator
4171 * @file: unused
4172 * @buffer: user buffer
4173 * @count: data length
4174 * @ppos: unused
4175 */
b7454ad3 4176ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4177 size_t count, loff_t *ppos)
1da177e4 4178{
b28a02de 4179 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4180 int limit, batchcount, shared, res;
7a7c381d 4181 struct kmem_cache *cachep;
b28a02de 4182
1da177e4
LT
4183 if (count > MAX_SLABINFO_WRITE)
4184 return -EINVAL;
4185 if (copy_from_user(&kbuf, buffer, count))
4186 return -EFAULT;
b28a02de 4187 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4188
4189 tmp = strchr(kbuf, ' ');
4190 if (!tmp)
4191 return -EINVAL;
4192 *tmp = '\0';
4193 tmp++;
4194 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4195 return -EINVAL;
4196
4197 /* Find the cache in the chain of caches. */
18004c5d 4198 mutex_lock(&slab_mutex);
1da177e4 4199 res = -EINVAL;
18004c5d 4200 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4201 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4202 if (limit < 1 || batchcount < 1 ||
4203 batchcount > limit || shared < 0) {
e498be7d 4204 res = 0;
1da177e4 4205 } else {
e498be7d 4206 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4207 batchcount, shared,
4208 GFP_KERNEL);
1da177e4
LT
4209 }
4210 break;
4211 }
4212 }
18004c5d 4213 mutex_unlock(&slab_mutex);
1da177e4
LT
4214 if (res >= 0)
4215 res = count;
4216 return res;
4217}
871751e2
AV
4218
4219#ifdef CONFIG_DEBUG_SLAB_LEAK
4220
871751e2
AV
4221static inline int add_caller(unsigned long *n, unsigned long v)
4222{
4223 unsigned long *p;
4224 int l;
4225 if (!v)
4226 return 1;
4227 l = n[1];
4228 p = n + 2;
4229 while (l) {
4230 int i = l/2;
4231 unsigned long *q = p + 2 * i;
4232 if (*q == v) {
4233 q[1]++;
4234 return 1;
4235 }
4236 if (*q > v) {
4237 l = i;
4238 } else {
4239 p = q + 2;
4240 l -= i + 1;
4241 }
4242 }
4243 if (++n[1] == n[0])
4244 return 0;
4245 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4246 p[0] = v;
4247 p[1] = 1;
4248 return 1;
4249}
4250
8456a648
JK
4251static void handle_slab(unsigned long *n, struct kmem_cache *c,
4252 struct page *page)
871751e2
AV
4253{
4254 void *p;
d31676df
JK
4255 int i, j;
4256 unsigned long v;
b1cb0982 4257
871751e2
AV
4258 if (n[0] == n[1])
4259 return;
8456a648 4260 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4261 bool active = true;
4262
4263 for (j = page->active; j < c->num; j++) {
4264 if (get_free_obj(page, j) == i) {
4265 active = false;
4266 break;
4267 }
4268 }
4269
4270 if (!active)
871751e2 4271 continue;
b1cb0982 4272
d31676df
JK
4273 /*
4274 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4275 * mapping is established when actual object allocation and
4276 * we could mistakenly access the unmapped object in the cpu
4277 * cache.
4278 */
4279 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4280 continue;
4281
4282 if (!add_caller(n, v))
871751e2
AV
4283 return;
4284 }
4285}
4286
4287static void show_symbol(struct seq_file *m, unsigned long address)
4288{
4289#ifdef CONFIG_KALLSYMS
871751e2 4290 unsigned long offset, size;
9281acea 4291 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4292
a5c43dae 4293 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4294 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4295 if (modname[0])
871751e2
AV
4296 seq_printf(m, " [%s]", modname);
4297 return;
4298 }
4299#endif
4300 seq_printf(m, "%p", (void *)address);
4301}
4302
4303static int leaks_show(struct seq_file *m, void *p)
4304{
0672aa7c 4305 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4306 struct page *page;
ce8eb6c4 4307 struct kmem_cache_node *n;
871751e2 4308 const char *name;
db845067 4309 unsigned long *x = m->private;
871751e2
AV
4310 int node;
4311 int i;
4312
4313 if (!(cachep->flags & SLAB_STORE_USER))
4314 return 0;
4315 if (!(cachep->flags & SLAB_RED_ZONE))
4316 return 0;
4317
d31676df
JK
4318 /*
4319 * Set store_user_clean and start to grab stored user information
4320 * for all objects on this cache. If some alloc/free requests comes
4321 * during the processing, information would be wrong so restart
4322 * whole processing.
4323 */
4324 do {
4325 set_store_user_clean(cachep);
4326 drain_cpu_caches(cachep);
4327
4328 x[1] = 0;
871751e2 4329
d31676df 4330 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4331
d31676df
JK
4332 check_irq_on();
4333 spin_lock_irq(&n->list_lock);
871751e2 4334
d31676df
JK
4335 list_for_each_entry(page, &n->slabs_full, lru)
4336 handle_slab(x, cachep, page);
4337 list_for_each_entry(page, &n->slabs_partial, lru)
4338 handle_slab(x, cachep, page);
4339 spin_unlock_irq(&n->list_lock);
4340 }
4341 } while (!is_store_user_clean(cachep));
871751e2 4342
871751e2 4343 name = cachep->name;
db845067 4344 if (x[0] == x[1]) {
871751e2 4345 /* Increase the buffer size */
18004c5d 4346 mutex_unlock(&slab_mutex);
db845067 4347 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4348 if (!m->private) {
4349 /* Too bad, we are really out */
db845067 4350 m->private = x;
18004c5d 4351 mutex_lock(&slab_mutex);
871751e2
AV
4352 return -ENOMEM;
4353 }
db845067
CL
4354 *(unsigned long *)m->private = x[0] * 2;
4355 kfree(x);
18004c5d 4356 mutex_lock(&slab_mutex);
871751e2
AV
4357 /* Now make sure this entry will be retried */
4358 m->count = m->size;
4359 return 0;
4360 }
db845067
CL
4361 for (i = 0; i < x[1]; i++) {
4362 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4363 show_symbol(m, x[2*i+2]);
871751e2
AV
4364 seq_putc(m, '\n');
4365 }
d2e7b7d0 4366
871751e2
AV
4367 return 0;
4368}
4369
a0ec95a8 4370static const struct seq_operations slabstats_op = {
1df3b26f 4371 .start = slab_start,
276a2439
WL
4372 .next = slab_next,
4373 .stop = slab_stop,
871751e2
AV
4374 .show = leaks_show,
4375};
a0ec95a8
AD
4376
4377static int slabstats_open(struct inode *inode, struct file *file)
4378{
b208ce32
RJ
4379 unsigned long *n;
4380
4381 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4382 if (!n)
4383 return -ENOMEM;
4384
4385 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4386
4387 return 0;
a0ec95a8
AD
4388}
4389
4390static const struct file_operations proc_slabstats_operations = {
4391 .open = slabstats_open,
4392 .read = seq_read,
4393 .llseek = seq_lseek,
4394 .release = seq_release_private,
4395};
4396#endif
4397
4398static int __init slab_proc_init(void)
4399{
4400#ifdef CONFIG_DEBUG_SLAB_LEAK
4401 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4402#endif
a0ec95a8
AD
4403 return 0;
4404}
4405module_init(slab_proc_init);
1da177e4
LT
4406#endif
4407
04385fc5
KC
4408#ifdef CONFIG_HARDENED_USERCOPY
4409/*
4410 * Rejects objects that are incorrectly sized.
4411 *
4412 * Returns NULL if check passes, otherwise const char * to name of cache
4413 * to indicate an error.
4414 */
4415const char *__check_heap_object(const void *ptr, unsigned long n,
4416 struct page *page)
4417{
4418 struct kmem_cache *cachep;
4419 unsigned int objnr;
4420 unsigned long offset;
4421
4422 /* Find and validate object. */
4423 cachep = page->slab_cache;
4424 objnr = obj_to_index(cachep, page, (void *)ptr);
4425 BUG_ON(objnr >= cachep->num);
4426
4427 /* Find offset within object. */
4428 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4429
4430 /* Allow address range falling entirely within object size. */
4431 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4432 return NULL;
4433
4434 return cachep->name;
4435}
4436#endif /* CONFIG_HARDENED_USERCOPY */
4437
00e145b6
MS
4438/**
4439 * ksize - get the actual amount of memory allocated for a given object
4440 * @objp: Pointer to the object
4441 *
4442 * kmalloc may internally round up allocations and return more memory
4443 * than requested. ksize() can be used to determine the actual amount of
4444 * memory allocated. The caller may use this additional memory, even though
4445 * a smaller amount of memory was initially specified with the kmalloc call.
4446 * The caller must guarantee that objp points to a valid object previously
4447 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4448 * must not be freed during the duration of the call.
4449 */
fd76bab2 4450size_t ksize(const void *objp)
1da177e4 4451{
7ed2f9e6
AP
4452 size_t size;
4453
ef8b4520
CL
4454 BUG_ON(!objp);
4455 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4456 return 0;
1da177e4 4457
7ed2f9e6
AP
4458 size = virt_to_cache(objp)->object_size;
4459 /* We assume that ksize callers could use the whole allocated area,
4460 * so we need to unpoison this area.
4461 */
4ebb31a4 4462 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4463
4464 return size;
1da177e4 4465}
b1aabecd 4466EXPORT_SYMBOL(ksize);