]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab.c
s390/cio: Convert timers to use timer_setup()
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
3f8c2452 120#include <linux/sched/task_stack.h>
1da177e4 121
381760ea
MG
122#include <net/sock.h>
123
1da177e4
LT
124#include <asm/cacheflush.h>
125#include <asm/tlbflush.h>
126#include <asm/page.h>
127
4dee6b64
SR
128#include <trace/events/kmem.h>
129
072bb0aa
MG
130#include "internal.h"
131
b9ce5ef4
GC
132#include "slab.h"
133
1da177e4 134/*
50953fe9 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144#ifdef CONFIG_DEBUG_SLAB
145#define DEBUG 1
146#define STATS 1
147#define FORCED_DEBUG 1
148#else
149#define DEBUG 0
150#define STATS 0
151#define FORCED_DEBUG 0
152#endif
153
1da177e4
LT
154/* Shouldn't this be in a header file somewhere? */
155#define BYTES_PER_WORD sizeof(void *)
87a927c7 156#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 157
1da177e4
LT
158#ifndef ARCH_KMALLOC_FLAGS
159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160#endif
161
f315e3fa
JK
162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165#if FREELIST_BYTE_INDEX
166typedef unsigned char freelist_idx_t;
167#else
168typedef unsigned short freelist_idx_t;
169#endif
170
30321c7b 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 172
1da177e4
LT
173/*
174 * struct array_cache
175 *
1da177e4
LT
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
bda5b655 190 void *entry[]; /*
a737b3e2
AM
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
a737b3e2 194 */
1da177e4
LT
195};
196
c8522a3a
JK
197struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200};
201
e498be7d
CL
202/*
203 * Need this for bootstrapping a per node allocator.
204 */
bf0dea23 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 207#define CACHE_CACHE 0
bf0dea23 208#define SIZE_NODE (MAX_NUMNODES)
e498be7d 209
ed11d9eb 210static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 211 struct kmem_cache_node *n, int tofree);
ed11d9eb 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
213 int node, struct list_head *list);
214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 216static void cache_reap(struct work_struct *unused);
ed11d9eb 217
76b342bd
JK
218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
e0a42726
IM
223static int slab_early_init = 1;
224
ce8eb6c4 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 226
ce8eb6c4 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
228{
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 232 parent->total_slabs = 0;
f728b0a5 233 parent->free_slabs = 0;
e498be7d
CL
234 parent->shared = NULL;
235 parent->alien = NULL;
2e1217cf 236 parent->colour_next = 0;
e498be7d
CL
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240}
241
a737b3e2
AM
242#define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
18bf8541 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
246 } while (0)
247
a737b3e2
AM
248#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
e498be7d
CL
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
1da177e4 254
b03a017b 255#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 256#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 257#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
258#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260#define BATCHREFILL_LIMIT 16
a737b3e2
AM
261/*
262 * Optimization question: fewer reaps means less probability for unnessary
263 * cpucache drain/refill cycles.
1da177e4 264 *
dc6f3f27 265 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
266 * which could lock up otherwise freeable slabs.
267 */
5f0985bb
JZ
268#define REAPTIMEOUT_AC (2*HZ)
269#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
270
271#if STATS
272#define STATS_INC_ACTIVE(x) ((x)->num_active++)
273#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 276#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
277#define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ERR(x) ((x)->errors++)
283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 284#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 285#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
286#define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
1da177e4
LT
291#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295#else
296#define STATS_INC_ACTIVE(x) do { } while (0)
297#define STATS_DEC_ACTIVE(x) do { } while (0)
298#define STATS_INC_ALLOCED(x) do { } while (0)
299#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 300#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
301#define STATS_SET_HIGH(x) do { } while (0)
302#define STATS_INC_ERR(x) do { } while (0)
303#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 304#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 305#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 306#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
307#define STATS_INC_ALLOCHIT(x) do { } while (0)
308#define STATS_INC_ALLOCMISS(x) do { } while (0)
309#define STATS_INC_FREEHIT(x) do { } while (0)
310#define STATS_INC_FREEMISS(x) do { } while (0)
311#endif
312
313#if DEBUG
1da177e4 314
a737b3e2
AM
315/*
316 * memory layout of objects:
1da177e4 317 * 0 : objp
3dafccf2 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
3dafccf2 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 322 * redzone word.
3dafccf2 323 * cachep->obj_offset: The real object.
3b0efdfa
CL
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 326 * [BYTES_PER_WORD long]
1da177e4 327 */
343e0d7a 328static int obj_offset(struct kmem_cache *cachep)
1da177e4 329{
3dafccf2 330 return cachep->obj_offset;
1da177e4
LT
331}
332
b46b8f19 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
334{
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
336 return (unsigned long long*) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
1da177e4
LT
338}
339
b46b8f19 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
341{
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 344 return (unsigned long long *)(objp + cachep->size -
b46b8f19 345 sizeof(unsigned long long) -
87a927c7 346 REDZONE_ALIGN);
3b0efdfa 347 return (unsigned long long *) (objp + cachep->size -
b46b8f19 348 sizeof(unsigned long long));
1da177e4
LT
349}
350
343e0d7a 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
352{
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
355}
356
357#else
358
3dafccf2 359#define obj_offset(x) 0
b46b8f19
DW
360#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
362#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364#endif
365
03787301
JK
366#ifdef CONFIG_DEBUG_SLAB_LEAK
367
d31676df 368static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 369{
d31676df
JK
370 return atomic_read(&cachep->store_user_clean) == 1;
371}
03787301 372
d31676df
JK
373static inline void set_store_user_clean(struct kmem_cache *cachep)
374{
375 atomic_set(&cachep->store_user_clean, 1);
376}
03787301 377
d31676df
JK
378static inline void set_store_user_dirty(struct kmem_cache *cachep)
379{
380 if (is_store_user_clean(cachep))
381 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
382}
383
384#else
d31676df 385static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
386
387#endif
388
1da177e4 389/*
3df1cccd
DR
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
1da177e4 392 */
543585cc
DR
393#define SLAB_MAX_ORDER_HI 1
394#define SLAB_MAX_ORDER_LO 0
395static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 396static bool slab_max_order_set __initdata;
1da177e4 397
6ed5eb22
PE
398static inline struct kmem_cache *virt_to_cache(const void *obj)
399{
b49af68f 400 struct page *page = virt_to_head_page(obj);
35026088 401 return page->slab_cache;
6ed5eb22
PE
402}
403
8456a648 404static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
405 unsigned int idx)
406{
8456a648 407 return page->s_mem + cache->size * idx;
8fea4e96
PE
408}
409
6a2d7a95 410/*
3b0efdfa
CL
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
6a2d7a95
ED
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
415 */
416static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 417 const struct page *page, void *obj)
8fea4e96 418{
8456a648 419 u32 offset = (obj - page->s_mem);
6a2d7a95 420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
421}
422
6fb92430 423#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 424/* internal cache of cache description objs */
9b030cb8 425static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
426 .batchcount = 1,
427 .limit = BOOT_CPUCACHE_ENTRIES,
428 .shared = 1,
3b0efdfa 429 .size = sizeof(struct kmem_cache),
b28a02de 430 .name = "kmem_cache",
1da177e4
LT
431};
432
1871e52c 433static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 434
343e0d7a 435static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 436{
bf0dea23 437 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
438}
439
a737b3e2
AM
440/*
441 * Calculate the number of objects and left-over bytes for a given buffer size.
442 */
70f75067
JK
443static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
444 unsigned long flags, size_t *left_over)
fbaccacf 445{
70f75067 446 unsigned int num;
fbaccacf 447 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 448
fbaccacf
SR
449 /*
450 * The slab management structure can be either off the slab or
451 * on it. For the latter case, the memory allocated for a
452 * slab is used for:
453 *
fbaccacf 454 * - @buffer_size bytes for each object
2e6b3602
JK
455 * - One freelist_idx_t for each object
456 *
457 * We don't need to consider alignment of freelist because
458 * freelist will be at the end of slab page. The objects will be
459 * at the correct alignment.
fbaccacf
SR
460 *
461 * If the slab management structure is off the slab, then the
462 * alignment will already be calculated into the size. Because
463 * the slabs are all pages aligned, the objects will be at the
464 * correct alignment when allocated.
465 */
b03a017b 466 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 467 num = slab_size / buffer_size;
2e6b3602 468 *left_over = slab_size % buffer_size;
fbaccacf 469 } else {
70f75067 470 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
471 *left_over = slab_size %
472 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 473 }
70f75067
JK
474
475 return num;
1da177e4
LT
476}
477
f28510d3 478#if DEBUG
d40cee24 479#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 480
a737b3e2
AM
481static void __slab_error(const char *function, struct kmem_cache *cachep,
482 char *msg)
1da177e4 483{
1170532b 484 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 485 function, cachep->name, msg);
1da177e4 486 dump_stack();
373d4d09 487 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 488}
f28510d3 489#endif
1da177e4 490
3395ee05
PM
491/*
492 * By default on NUMA we use alien caches to stage the freeing of
493 * objects allocated from other nodes. This causes massive memory
494 * inefficiencies when using fake NUMA setup to split memory into a
495 * large number of small nodes, so it can be disabled on the command
496 * line
497 */
498
499static int use_alien_caches __read_mostly = 1;
500static int __init noaliencache_setup(char *s)
501{
502 use_alien_caches = 0;
503 return 1;
504}
505__setup("noaliencache", noaliencache_setup);
506
3df1cccd
DR
507static int __init slab_max_order_setup(char *str)
508{
509 get_option(&str, &slab_max_order);
510 slab_max_order = slab_max_order < 0 ? 0 :
511 min(slab_max_order, MAX_ORDER - 1);
512 slab_max_order_set = true;
513
514 return 1;
515}
516__setup("slab_max_order=", slab_max_order_setup);
517
8fce4d8e
CL
518#ifdef CONFIG_NUMA
519/*
520 * Special reaping functions for NUMA systems called from cache_reap().
521 * These take care of doing round robin flushing of alien caches (containing
522 * objects freed on different nodes from which they were allocated) and the
523 * flushing of remote pcps by calling drain_node_pages.
524 */
1871e52c 525static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
526
527static void init_reap_node(int cpu)
528{
0edaf86c
AM
529 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
530 node_online_map);
8fce4d8e
CL
531}
532
533static void next_reap_node(void)
534{
909ea964 535 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 536
0edaf86c 537 node = next_node_in(node, node_online_map);
909ea964 538 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
539}
540
541#else
542#define init_reap_node(cpu) do { } while (0)
543#define next_reap_node(void) do { } while (0)
544#endif
545
1da177e4
LT
546/*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
0db0628d 553static void start_cpu_timer(int cpu)
1da177e4 554{
1871e52c 555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 556
eac0337a 557 if (reap_work->work.func == NULL) {
8fce4d8e 558 init_reap_node(cpu);
203b42f7 559 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
560 schedule_delayed_work_on(cpu, reap_work,
561 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
562 }
563}
564
1fe00d50 565static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 566{
d5cff635
CM
567 /*
568 * The array_cache structures contain pointers to free object.
25985edc 569 * However, when such objects are allocated or transferred to another
d5cff635
CM
570 * cache the pointers are not cleared and they could be counted as
571 * valid references during a kmemleak scan. Therefore, kmemleak must
572 * not scan such objects.
573 */
1fe00d50
JK
574 kmemleak_no_scan(ac);
575 if (ac) {
576 ac->avail = 0;
577 ac->limit = limit;
578 ac->batchcount = batch;
579 ac->touched = 0;
1da177e4 580 }
1fe00d50
JK
581}
582
583static struct array_cache *alloc_arraycache(int node, int entries,
584 int batchcount, gfp_t gfp)
585{
5e804789 586 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
587 struct array_cache *ac = NULL;
588
589 ac = kmalloc_node(memsize, gfp, node);
590 init_arraycache(ac, entries, batchcount);
591 return ac;
1da177e4
LT
592}
593
f68f8ddd
JK
594static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
595 struct page *page, void *objp)
072bb0aa 596{
f68f8ddd
JK
597 struct kmem_cache_node *n;
598 int page_node;
599 LIST_HEAD(list);
072bb0aa 600
f68f8ddd
JK
601 page_node = page_to_nid(page);
602 n = get_node(cachep, page_node);
381760ea 603
f68f8ddd
JK
604 spin_lock(&n->list_lock);
605 free_block(cachep, &objp, 1, page_node, &list);
606 spin_unlock(&n->list_lock);
381760ea 607
f68f8ddd 608 slabs_destroy(cachep, &list);
072bb0aa
MG
609}
610
3ded175a
CL
611/*
612 * Transfer objects in one arraycache to another.
613 * Locking must be handled by the caller.
614 *
615 * Return the number of entries transferred.
616 */
617static int transfer_objects(struct array_cache *to,
618 struct array_cache *from, unsigned int max)
619{
620 /* Figure out how many entries to transfer */
732eacc0 621 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
622
623 if (!nr)
624 return 0;
625
626 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
627 sizeof(void *) *nr);
628
629 from->avail -= nr;
630 to->avail += nr;
3ded175a
CL
631 return nr;
632}
633
765c4507
CL
634#ifndef CONFIG_NUMA
635
636#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 637#define reap_alien(cachep, n) do { } while (0)
765c4507 638
c8522a3a
JK
639static inline struct alien_cache **alloc_alien_cache(int node,
640 int limit, gfp_t gfp)
765c4507 641{
8888177e 642 return NULL;
765c4507
CL
643}
644
c8522a3a 645static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
646{
647}
648
649static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
650{
651 return 0;
652}
653
654static inline void *alternate_node_alloc(struct kmem_cache *cachep,
655 gfp_t flags)
656{
657 return NULL;
658}
659
8b98c169 660static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
661 gfp_t flags, int nodeid)
662{
663 return NULL;
664}
665
4167e9b2
DR
666static inline gfp_t gfp_exact_node(gfp_t flags)
667{
444eb2a4 668 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
669}
670
765c4507
CL
671#else /* CONFIG_NUMA */
672
8b98c169 673static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 674static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 675
c8522a3a
JK
676static struct alien_cache *__alloc_alien_cache(int node, int entries,
677 int batch, gfp_t gfp)
678{
5e804789 679 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
680 struct alien_cache *alc = NULL;
681
682 alc = kmalloc_node(memsize, gfp, node);
683 init_arraycache(&alc->ac, entries, batch);
49dfc304 684 spin_lock_init(&alc->lock);
c8522a3a
JK
685 return alc;
686}
687
688static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 689{
c8522a3a 690 struct alien_cache **alc_ptr;
5e804789 691 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
692 int i;
693
694 if (limit > 1)
695 limit = 12;
c8522a3a
JK
696 alc_ptr = kzalloc_node(memsize, gfp, node);
697 if (!alc_ptr)
698 return NULL;
699
700 for_each_node(i) {
701 if (i == node || !node_online(i))
702 continue;
703 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
704 if (!alc_ptr[i]) {
705 for (i--; i >= 0; i--)
706 kfree(alc_ptr[i]);
707 kfree(alc_ptr);
708 return NULL;
e498be7d
CL
709 }
710 }
c8522a3a 711 return alc_ptr;
e498be7d
CL
712}
713
c8522a3a 714static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
715{
716 int i;
717
c8522a3a 718 if (!alc_ptr)
e498be7d 719 return;
e498be7d 720 for_each_node(i)
c8522a3a
JK
721 kfree(alc_ptr[i]);
722 kfree(alc_ptr);
e498be7d
CL
723}
724
343e0d7a 725static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
726 struct array_cache *ac, int node,
727 struct list_head *list)
e498be7d 728{
18bf8541 729 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
730
731 if (ac->avail) {
ce8eb6c4 732 spin_lock(&n->list_lock);
e00946fe
CL
733 /*
734 * Stuff objects into the remote nodes shared array first.
735 * That way we could avoid the overhead of putting the objects
736 * into the free lists and getting them back later.
737 */
ce8eb6c4
CL
738 if (n->shared)
739 transfer_objects(n->shared, ac, ac->limit);
e00946fe 740
833b706c 741 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 742 ac->avail = 0;
ce8eb6c4 743 spin_unlock(&n->list_lock);
e498be7d
CL
744 }
745}
746
8fce4d8e
CL
747/*
748 * Called from cache_reap() to regularly drain alien caches round robin.
749 */
ce8eb6c4 750static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 751{
909ea964 752 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 753
ce8eb6c4 754 if (n->alien) {
c8522a3a
JK
755 struct alien_cache *alc = n->alien[node];
756 struct array_cache *ac;
757
758 if (alc) {
759 ac = &alc->ac;
49dfc304 760 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
761 LIST_HEAD(list);
762
763 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 764 spin_unlock_irq(&alc->lock);
833b706c 765 slabs_destroy(cachep, &list);
c8522a3a 766 }
8fce4d8e
CL
767 }
768 }
769}
770
a737b3e2 771static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 772 struct alien_cache **alien)
e498be7d 773{
b28a02de 774 int i = 0;
c8522a3a 775 struct alien_cache *alc;
e498be7d
CL
776 struct array_cache *ac;
777 unsigned long flags;
778
779 for_each_online_node(i) {
c8522a3a
JK
780 alc = alien[i];
781 if (alc) {
833b706c
JK
782 LIST_HEAD(list);
783
c8522a3a 784 ac = &alc->ac;
49dfc304 785 spin_lock_irqsave(&alc->lock, flags);
833b706c 786 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 787 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 788 slabs_destroy(cachep, &list);
e498be7d
CL
789 }
790 }
791}
729bd0b7 792
25c4f304
JK
793static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
794 int node, int page_node)
729bd0b7 795{
ce8eb6c4 796 struct kmem_cache_node *n;
c8522a3a
JK
797 struct alien_cache *alien = NULL;
798 struct array_cache *ac;
97654dfa 799 LIST_HEAD(list);
1ca4cb24 800
18bf8541 801 n = get_node(cachep, node);
729bd0b7 802 STATS_INC_NODEFREES(cachep);
25c4f304
JK
803 if (n->alien && n->alien[page_node]) {
804 alien = n->alien[page_node];
c8522a3a 805 ac = &alien->ac;
49dfc304 806 spin_lock(&alien->lock);
c8522a3a 807 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 808 STATS_INC_ACOVERFLOW(cachep);
25c4f304 809 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 810 }
f68f8ddd 811 ac->entry[ac->avail++] = objp;
49dfc304 812 spin_unlock(&alien->lock);
833b706c 813 slabs_destroy(cachep, &list);
729bd0b7 814 } else {
25c4f304 815 n = get_node(cachep, page_node);
18bf8541 816 spin_lock(&n->list_lock);
25c4f304 817 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 818 spin_unlock(&n->list_lock);
97654dfa 819 slabs_destroy(cachep, &list);
729bd0b7
PE
820 }
821 return 1;
822}
25c4f304
JK
823
824static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
825{
826 int page_node = page_to_nid(virt_to_page(objp));
827 int node = numa_mem_id();
828 /*
829 * Make sure we are not freeing a object from another node to the array
830 * cache on this cpu.
831 */
832 if (likely(node == page_node))
833 return 0;
834
835 return __cache_free_alien(cachep, objp, node, page_node);
836}
4167e9b2
DR
837
838/*
444eb2a4
MG
839 * Construct gfp mask to allocate from a specific node but do not reclaim or
840 * warn about failures.
4167e9b2
DR
841 */
842static inline gfp_t gfp_exact_node(gfp_t flags)
843{
444eb2a4 844 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 845}
e498be7d
CL
846#endif
847
ded0ecf6
JK
848static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
849{
850 struct kmem_cache_node *n;
851
852 /*
853 * Set up the kmem_cache_node for cpu before we can
854 * begin anything. Make sure some other cpu on this
855 * node has not already allocated this
856 */
857 n = get_node(cachep, node);
858 if (n) {
859 spin_lock_irq(&n->list_lock);
860 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
861 cachep->num;
862 spin_unlock_irq(&n->list_lock);
863
864 return 0;
865 }
866
867 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
868 if (!n)
869 return -ENOMEM;
870
871 kmem_cache_node_init(n);
872 n->next_reap = jiffies + REAPTIMEOUT_NODE +
873 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
874
875 n->free_limit =
876 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
877
878 /*
879 * The kmem_cache_nodes don't come and go as CPUs
880 * come and go. slab_mutex is sufficient
881 * protection here.
882 */
883 cachep->node[node] = n;
884
885 return 0;
886}
887
6731d4f1 888#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 889/*
6a67368c 890 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 892 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 893 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
894 * already in use.
895 *
18004c5d 896 * Must hold slab_mutex.
8f9f8d9e 897 */
6a67368c 898static int init_cache_node_node(int node)
8f9f8d9e 899{
ded0ecf6 900 int ret;
8f9f8d9e 901 struct kmem_cache *cachep;
8f9f8d9e 902
18004c5d 903 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
8f9f8d9e 907 }
ded0ecf6 908
8f9f8d9e
DR
909 return 0;
910}
6731d4f1 911#endif
8f9f8d9e 912
c3d332b6
JK
913static int setup_kmem_cache_node(struct kmem_cache *cachep,
914 int node, gfp_t gfp, bool force_change)
915{
916 int ret = -ENOMEM;
917 struct kmem_cache_node *n;
918 struct array_cache *old_shared = NULL;
919 struct array_cache *new_shared = NULL;
920 struct alien_cache **new_alien = NULL;
921 LIST_HEAD(list);
922
923 if (use_alien_caches) {
924 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
925 if (!new_alien)
926 goto fail;
927 }
928
929 if (cachep->shared) {
930 new_shared = alloc_arraycache(node,
931 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
932 if (!new_shared)
933 goto fail;
934 }
935
936 ret = init_cache_node(cachep, node, gfp);
937 if (ret)
938 goto fail;
939
940 n = get_node(cachep, node);
941 spin_lock_irq(&n->list_lock);
942 if (n->shared && force_change) {
943 free_block(cachep, n->shared->entry,
944 n->shared->avail, node, &list);
945 n->shared->avail = 0;
946 }
947
948 if (!n->shared || force_change) {
949 old_shared = n->shared;
950 n->shared = new_shared;
951 new_shared = NULL;
952 }
953
954 if (!n->alien) {
955 n->alien = new_alien;
956 new_alien = NULL;
957 }
958
959 spin_unlock_irq(&n->list_lock);
960 slabs_destroy(cachep, &list);
961
801faf0d
JK
962 /*
963 * To protect lockless access to n->shared during irq disabled context.
964 * If n->shared isn't NULL in irq disabled context, accessing to it is
965 * guaranteed to be valid until irq is re-enabled, because it will be
966 * freed after synchronize_sched().
967 */
86d9f485 968 if (old_shared && force_change)
801faf0d
JK
969 synchronize_sched();
970
c3d332b6
JK
971fail:
972 kfree(old_shared);
973 kfree(new_shared);
974 free_alien_cache(new_alien);
975
976 return ret;
977}
978
6731d4f1
SAS
979#ifdef CONFIG_SMP
980
0db0628d 981static void cpuup_canceled(long cpu)
fbf1e473
AM
982{
983 struct kmem_cache *cachep;
ce8eb6c4 984 struct kmem_cache_node *n = NULL;
7d6e6d09 985 int node = cpu_to_mem(cpu);
a70f7302 986 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 987
18004c5d 988 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
989 struct array_cache *nc;
990 struct array_cache *shared;
c8522a3a 991 struct alien_cache **alien;
97654dfa 992 LIST_HEAD(list);
fbf1e473 993
18bf8541 994 n = get_node(cachep, node);
ce8eb6c4 995 if (!n)
bf0dea23 996 continue;
fbf1e473 997
ce8eb6c4 998 spin_lock_irq(&n->list_lock);
fbf1e473 999
ce8eb6c4
CL
1000 /* Free limit for this kmem_cache_node */
1001 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1002
1003 /* cpu is dead; no one can alloc from it. */
1004 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1005 if (nc) {
97654dfa 1006 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1007 nc->avail = 0;
1008 }
fbf1e473 1009
58463c1f 1010 if (!cpumask_empty(mask)) {
ce8eb6c4 1011 spin_unlock_irq(&n->list_lock);
bf0dea23 1012 goto free_slab;
fbf1e473
AM
1013 }
1014
ce8eb6c4 1015 shared = n->shared;
fbf1e473
AM
1016 if (shared) {
1017 free_block(cachep, shared->entry,
97654dfa 1018 shared->avail, node, &list);
ce8eb6c4 1019 n->shared = NULL;
fbf1e473
AM
1020 }
1021
ce8eb6c4
CL
1022 alien = n->alien;
1023 n->alien = NULL;
fbf1e473 1024
ce8eb6c4 1025 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1026
1027 kfree(shared);
1028 if (alien) {
1029 drain_alien_cache(cachep, alien);
1030 free_alien_cache(alien);
1031 }
bf0dea23
JK
1032
1033free_slab:
97654dfa 1034 slabs_destroy(cachep, &list);
fbf1e473
AM
1035 }
1036 /*
1037 * In the previous loop, all the objects were freed to
1038 * the respective cache's slabs, now we can go ahead and
1039 * shrink each nodelist to its limit.
1040 */
18004c5d 1041 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1042 n = get_node(cachep, node);
ce8eb6c4 1043 if (!n)
fbf1e473 1044 continue;
a5aa63a5 1045 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1046 }
1047}
1048
0db0628d 1049static int cpuup_prepare(long cpu)
1da177e4 1050{
343e0d7a 1051 struct kmem_cache *cachep;
7d6e6d09 1052 int node = cpu_to_mem(cpu);
8f9f8d9e 1053 int err;
1da177e4 1054
fbf1e473
AM
1055 /*
1056 * We need to do this right in the beginning since
1057 * alloc_arraycache's are going to use this list.
1058 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1059 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1060 */
6a67368c 1061 err = init_cache_node_node(node);
8f9f8d9e
DR
1062 if (err < 0)
1063 goto bad;
fbf1e473
AM
1064
1065 /*
1066 * Now we can go ahead with allocating the shared arrays and
1067 * array caches
1068 */
18004c5d 1069 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1070 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1071 if (err)
1072 goto bad;
fbf1e473 1073 }
ce79ddc8 1074
fbf1e473
AM
1075 return 0;
1076bad:
12d00f6a 1077 cpuup_canceled(cpu);
fbf1e473
AM
1078 return -ENOMEM;
1079}
1080
6731d4f1 1081int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1082{
6731d4f1 1083 int err;
fbf1e473 1084
6731d4f1
SAS
1085 mutex_lock(&slab_mutex);
1086 err = cpuup_prepare(cpu);
1087 mutex_unlock(&slab_mutex);
1088 return err;
1089}
1090
1091/*
1092 * This is called for a failed online attempt and for a successful
1093 * offline.
1094 *
1095 * Even if all the cpus of a node are down, we don't free the
1096 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1097 * a kmalloc allocation from another cpu for memory from the node of
1098 * the cpu going down. The list3 structure is usually allocated from
1099 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1100 */
1101int slab_dead_cpu(unsigned int cpu)
1102{
1103 mutex_lock(&slab_mutex);
1104 cpuup_canceled(cpu);
1105 mutex_unlock(&slab_mutex);
1106 return 0;
1107}
8f5be20b 1108#endif
6731d4f1
SAS
1109
1110static int slab_online_cpu(unsigned int cpu)
1111{
1112 start_cpu_timer(cpu);
1113 return 0;
1da177e4
LT
1114}
1115
6731d4f1
SAS
1116static int slab_offline_cpu(unsigned int cpu)
1117{
1118 /*
1119 * Shutdown cache reaper. Note that the slab_mutex is held so
1120 * that if cache_reap() is invoked it cannot do anything
1121 * expensive but will only modify reap_work and reschedule the
1122 * timer.
1123 */
1124 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1125 /* Now the cache_reaper is guaranteed to be not running. */
1126 per_cpu(slab_reap_work, cpu).work.func = NULL;
1127 return 0;
1128}
1da177e4 1129
8f9f8d9e
DR
1130#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1131/*
1132 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1133 * Returns -EBUSY if all objects cannot be drained so that the node is not
1134 * removed.
1135 *
18004c5d 1136 * Must hold slab_mutex.
8f9f8d9e 1137 */
6a67368c 1138static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1139{
1140 struct kmem_cache *cachep;
1141 int ret = 0;
1142
18004c5d 1143 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1144 struct kmem_cache_node *n;
8f9f8d9e 1145
18bf8541 1146 n = get_node(cachep, node);
ce8eb6c4 1147 if (!n)
8f9f8d9e
DR
1148 continue;
1149
a5aa63a5 1150 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1151
ce8eb6c4
CL
1152 if (!list_empty(&n->slabs_full) ||
1153 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1154 ret = -EBUSY;
1155 break;
1156 }
1157 }
1158 return ret;
1159}
1160
1161static int __meminit slab_memory_callback(struct notifier_block *self,
1162 unsigned long action, void *arg)
1163{
1164 struct memory_notify *mnb = arg;
1165 int ret = 0;
1166 int nid;
1167
1168 nid = mnb->status_change_nid;
1169 if (nid < 0)
1170 goto out;
1171
1172 switch (action) {
1173 case MEM_GOING_ONLINE:
18004c5d 1174 mutex_lock(&slab_mutex);
6a67368c 1175 ret = init_cache_node_node(nid);
18004c5d 1176 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1177 break;
1178 case MEM_GOING_OFFLINE:
18004c5d 1179 mutex_lock(&slab_mutex);
6a67368c 1180 ret = drain_cache_node_node(nid);
18004c5d 1181 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1182 break;
1183 case MEM_ONLINE:
1184 case MEM_OFFLINE:
1185 case MEM_CANCEL_ONLINE:
1186 case MEM_CANCEL_OFFLINE:
1187 break;
1188 }
1189out:
5fda1bd5 1190 return notifier_from_errno(ret);
8f9f8d9e
DR
1191}
1192#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1193
e498be7d 1194/*
ce8eb6c4 1195 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1196 */
6744f087 1197static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1198 int nodeid)
e498be7d 1199{
6744f087 1200 struct kmem_cache_node *ptr;
e498be7d 1201
6744f087 1202 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1203 BUG_ON(!ptr);
1204
6744f087 1205 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1206 /*
1207 * Do not assume that spinlocks can be initialized via memcpy:
1208 */
1209 spin_lock_init(&ptr->list_lock);
1210
e498be7d 1211 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1212 cachep->node[nodeid] = ptr;
e498be7d
CL
1213}
1214
556a169d 1215/*
ce8eb6c4
CL
1216 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1217 * size of kmem_cache_node.
556a169d 1218 */
ce8eb6c4 1219static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1220{
1221 int node;
1222
1223 for_each_online_node(node) {
ce8eb6c4 1224 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1225 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1226 REAPTIMEOUT_NODE +
1227 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1228 }
1229}
1230
a737b3e2
AM
1231/*
1232 * Initialisation. Called after the page allocator have been initialised and
1233 * before smp_init().
1da177e4
LT
1234 */
1235void __init kmem_cache_init(void)
1236{
e498be7d
CL
1237 int i;
1238
68126702
JK
1239 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1240 sizeof(struct rcu_head));
9b030cb8
CL
1241 kmem_cache = &kmem_cache_boot;
1242
8888177e 1243 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1244 use_alien_caches = 0;
1245
3c583465 1246 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1247 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1248
1da177e4
LT
1249 /*
1250 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1251 * page orders on machines with more than 32MB of memory if
1252 * not overridden on the command line.
1da177e4 1253 */
3df1cccd 1254 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1255 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1256
1da177e4
LT
1257 /* Bootstrap is tricky, because several objects are allocated
1258 * from caches that do not exist yet:
9b030cb8
CL
1259 * 1) initialize the kmem_cache cache: it contains the struct
1260 * kmem_cache structures of all caches, except kmem_cache itself:
1261 * kmem_cache is statically allocated.
e498be7d 1262 * Initially an __init data area is used for the head array and the
ce8eb6c4 1263 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1264 * array at the end of the bootstrap.
1da177e4 1265 * 2) Create the first kmalloc cache.
343e0d7a 1266 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1267 * An __init data area is used for the head array.
1268 * 3) Create the remaining kmalloc caches, with minimally sized
1269 * head arrays.
9b030cb8 1270 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1271 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1272 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1273 * the other cache's with kmalloc allocated memory.
1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1275 */
1276
9b030cb8 1277 /* 1) create the kmem_cache */
1da177e4 1278
8da3430d 1279 /*
b56efcf0 1280 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1281 */
2f9baa9f 1282 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1283 offsetof(struct kmem_cache, node) +
6744f087 1284 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1285 SLAB_HWCACHE_ALIGN);
1286 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1287 slab_state = PARTIAL;
1da177e4 1288
a737b3e2 1289 /*
bf0dea23
JK
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
e498be7d 1292 */
af3b5f87
VB
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
ce8eb6c4 1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1296 slab_state = PARTIAL_NODE;
34cc6990 1297 setup_kmalloc_cache_index_table();
e498be7d 1298
e0a42726
IM
1299 slab_early_init = 0;
1300
ce8eb6c4 1301 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1302 {
1ca4cb24
PE
1303 int nid;
1304
9c09a95c 1305 for_each_online_node(nid) {
ce8eb6c4 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1307
bf0dea23 1308 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1310 }
1311 }
1da177e4 1312
f97d5f63 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1314}
1315
1316void __init kmem_cache_init_late(void)
1317{
1318 struct kmem_cache *cachep;
1319
97d06609 1320 slab_state = UP;
52cef189 1321
8429db5c 1322 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
18004c5d 1327 mutex_unlock(&slab_mutex);
056c6241 1328
97d06609
CL
1329 /* Done! */
1330 slab_state = FULL;
1331
8f9f8d9e
DR
1332#ifdef CONFIG_NUMA
1333 /*
1334 * Register a memory hotplug callback that initializes and frees
6a67368c 1335 * node.
8f9f8d9e
DR
1336 */
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338#endif
1339
a737b3e2
AM
1340 /*
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1da177e4
LT
1343 */
1344}
1345
1346static int __init cpucache_init(void)
1347{
6731d4f1 1348 int ret;
1da177e4 1349
a737b3e2
AM
1350 /*
1351 * Register the timers that return unneeded pages to the page allocator
1da177e4 1352 */
6731d4f1
SAS
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
a164f896
GC
1356
1357 /* Done! */
97d06609 1358 slab_state = FULL;
1da177e4
LT
1359 return 0;
1360}
1da177e4
LT
1361__initcall(cpucache_init);
1362
8bdec192
RA
1363static noinline void
1364slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365{
9a02d699 1366#if DEBUG
ce8eb6c4 1367 struct kmem_cache_node *n;
8bdec192
RA
1368 unsigned long flags;
1369 int node;
9a02d699
DR
1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371 DEFAULT_RATELIMIT_BURST);
1372
1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374 return;
8bdec192 1375
5b3810e5
VB
1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377 nodeid, gfpflags, &gfpflags);
1378 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1379 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1380
18bf8541 1381 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1382 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1383
ce8eb6c4 1384 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1385 total_slabs = n->total_slabs;
1386 free_slabs = n->free_slabs;
1387 free_objs = n->free_objects;
ce8eb6c4 1388 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1389
bf00bd34
DR
1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391 node, total_slabs - free_slabs, total_slabs,
1392 (total_slabs * cachep->num) - free_objs,
1393 total_slabs * cachep->num);
8bdec192 1394 }
9a02d699 1395#endif
8bdec192
RA
1396}
1397
1da177e4 1398/*
8a7d9b43
WSH
1399 * Interface to system's page allocator. No need to hold the
1400 * kmem_cache_node ->list_lock.
1da177e4
LT
1401 *
1402 * If we requested dmaable memory, we will get it. Even if we
1403 * did not request dmaable memory, we might get it, but that
1404 * would be relatively rare and ignorable.
1405 */
0c3aa83e
JK
1406static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407 int nodeid)
1da177e4
LT
1408{
1409 struct page *page;
e1b6aa6f 1410 int nr_pages;
765c4507 1411
a618e89f 1412 flags |= cachep->allocflags;
e12ba74d
MG
1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1415
96db800f 1416 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1417 if (!page) {
9a02d699 1418 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1419 return NULL;
8bdec192 1420 }
1da177e4 1421
f3ccb2c4
VD
1422 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1423 __free_pages(page, cachep->gfporder);
1424 return NULL;
1425 }
1426
e1b6aa6f 1427 nr_pages = (1 << cachep->gfporder);
1da177e4 1428 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1429 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1430 else
7779f212 1431 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1432
a57a4988 1433 __SetPageSlab(page);
f68f8ddd
JK
1434 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1436 SetPageSlabPfmemalloc(page);
072bb0aa 1437
b1eeab67
VN
1438 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1439 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1440
1441 if (cachep->ctor)
1442 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1443 else
1444 kmemcheck_mark_unallocated_pages(page, nr_pages);
1445 }
c175eea4 1446
0c3aa83e 1447 return page;
1da177e4
LT
1448}
1449
1450/*
1451 * Interface to system's page release.
1452 */
0c3aa83e 1453static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1454{
27ee57c9
VD
1455 int order = cachep->gfporder;
1456 unsigned long nr_freed = (1 << order);
1da177e4 1457
27ee57c9 1458 kmemcheck_free_shadow(page, order);
c175eea4 1459
972d1a7b 1460 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1461 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1462 else
7779f212 1463 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1464
a57a4988 1465 BUG_ON(!PageSlab(page));
73293c2f 1466 __ClearPageSlabPfmemalloc(page);
a57a4988 1467 __ClearPageSlab(page);
8456a648
JK
1468 page_mapcount_reset(page);
1469 page->mapping = NULL;
1f458cbf 1470
1da177e4
LT
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1473 memcg_uncharge_slab(page, order, cachep);
1474 __free_pages(page, order);
1da177e4
LT
1475}
1476
1477static void kmem_rcu_free(struct rcu_head *head)
1478{
68126702
JK
1479 struct kmem_cache *cachep;
1480 struct page *page;
1da177e4 1481
68126702
JK
1482 page = container_of(head, struct page, rcu_head);
1483 cachep = page->slab_cache;
1484
1485 kmem_freepages(cachep, page);
1da177e4
LT
1486}
1487
1488#if DEBUG
40b44137
JK
1489static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1490{
1491 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1492 (cachep->size % PAGE_SIZE) == 0)
1493 return true;
1494
1495 return false;
1496}
1da177e4
LT
1497
1498#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1499static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1500 unsigned long caller)
1da177e4 1501{
8c138bc0 1502 int size = cachep->object_size;
1da177e4 1503
3dafccf2 1504 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1505
b28a02de 1506 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1507 return;
1508
b28a02de
PE
1509 *addr++ = 0x12345678;
1510 *addr++ = caller;
1511 *addr++ = smp_processor_id();
1512 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1513 {
1514 unsigned long *sptr = &caller;
1515 unsigned long svalue;
1516
1517 while (!kstack_end(sptr)) {
1518 svalue = *sptr++;
1519 if (kernel_text_address(svalue)) {
b28a02de 1520 *addr++ = svalue;
1da177e4
LT
1521 size -= sizeof(unsigned long);
1522 if (size <= sizeof(unsigned long))
1523 break;
1524 }
1525 }
1526
1527 }
b28a02de 1528 *addr++ = 0x87654321;
1da177e4 1529}
40b44137
JK
1530
1531static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532 int map, unsigned long caller)
1533{
1534 if (!is_debug_pagealloc_cache(cachep))
1535 return;
1536
1537 if (caller)
1538 store_stackinfo(cachep, objp, caller);
1539
1540 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1541}
1542
1543#else
1544static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1545 int map, unsigned long caller) {}
1546
1da177e4
LT
1547#endif
1548
343e0d7a 1549static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1550{
8c138bc0 1551 int size = cachep->object_size;
3dafccf2 1552 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1553
1554 memset(addr, val, size);
b28a02de 1555 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1556}
1557
1558static void dump_line(char *data, int offset, int limit)
1559{
1560 int i;
aa83aa40
DJ
1561 unsigned char error = 0;
1562 int bad_count = 0;
1563
1170532b 1564 pr_err("%03x: ", offset);
aa83aa40
DJ
1565 for (i = 0; i < limit; i++) {
1566 if (data[offset + i] != POISON_FREE) {
1567 error = data[offset + i];
1568 bad_count++;
1569 }
aa83aa40 1570 }
fdde6abb
SAS
1571 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1572 &data[offset], limit, 1);
aa83aa40
DJ
1573
1574 if (bad_count == 1) {
1575 error ^= POISON_FREE;
1576 if (!(error & (error - 1))) {
1170532b 1577 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1578#ifdef CONFIG_X86
1170532b 1579 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1580#else
1170532b 1581 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1582#endif
1583 }
1584 }
1da177e4
LT
1585}
1586#endif
1587
1588#if DEBUG
1589
343e0d7a 1590static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1591{
1592 int i, size;
1593 char *realobj;
1594
1595 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1596 pr_err("Redzone: 0x%llx/0x%llx\n",
1597 *dbg_redzone1(cachep, objp),
1598 *dbg_redzone2(cachep, objp));
1da177e4
LT
1599 }
1600
1601 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1602 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1603 *dbg_userword(cachep, objp),
1604 *dbg_userword(cachep, objp));
1da177e4 1605 }
3dafccf2 1606 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1607 size = cachep->object_size;
b28a02de 1608 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1609 int limit;
1610 limit = 16;
b28a02de
PE
1611 if (i + limit > size)
1612 limit = size - i;
1da177e4
LT
1613 dump_line(realobj, i, limit);
1614 }
1615}
1616
343e0d7a 1617static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1618{
1619 char *realobj;
1620 int size, i;
1621 int lines = 0;
1622
40b44137
JK
1623 if (is_debug_pagealloc_cache(cachep))
1624 return;
1625
3dafccf2 1626 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1627 size = cachep->object_size;
1da177e4 1628
b28a02de 1629 for (i = 0; i < size; i++) {
1da177e4 1630 char exp = POISON_FREE;
b28a02de 1631 if (i == size - 1)
1da177e4
LT
1632 exp = POISON_END;
1633 if (realobj[i] != exp) {
1634 int limit;
1635 /* Mismatch ! */
1636 /* Print header */
1637 if (lines == 0) {
1170532b
JP
1638 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1639 print_tainted(), cachep->name,
1640 realobj, size);
1da177e4
LT
1641 print_objinfo(cachep, objp, 0);
1642 }
1643 /* Hexdump the affected line */
b28a02de 1644 i = (i / 16) * 16;
1da177e4 1645 limit = 16;
b28a02de
PE
1646 if (i + limit > size)
1647 limit = size - i;
1da177e4
LT
1648 dump_line(realobj, i, limit);
1649 i += 16;
1650 lines++;
1651 /* Limit to 5 lines */
1652 if (lines > 5)
1653 break;
1654 }
1655 }
1656 if (lines != 0) {
1657 /* Print some data about the neighboring objects, if they
1658 * exist:
1659 */
8456a648 1660 struct page *page = virt_to_head_page(objp);
8fea4e96 1661 unsigned int objnr;
1da177e4 1662
8456a648 1663 objnr = obj_to_index(cachep, page, objp);
1da177e4 1664 if (objnr) {
8456a648 1665 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1666 realobj = (char *)objp + obj_offset(cachep);
1170532b 1667 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1668 print_objinfo(cachep, objp, 2);
1669 }
b28a02de 1670 if (objnr + 1 < cachep->num) {
8456a648 1671 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1672 realobj = (char *)objp + obj_offset(cachep);
1170532b 1673 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1674 print_objinfo(cachep, objp, 2);
1675 }
1676 }
1677}
1678#endif
1679
12dd36fa 1680#if DEBUG
8456a648
JK
1681static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682 struct page *page)
1da177e4 1683{
1da177e4 1684 int i;
b03a017b
JK
1685
1686 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1687 poison_obj(cachep, page->freelist - obj_offset(cachep),
1688 POISON_FREE);
1689 }
1690
1da177e4 1691 for (i = 0; i < cachep->num; i++) {
8456a648 1692 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1693
1694 if (cachep->flags & SLAB_POISON) {
1da177e4 1695 check_poison_obj(cachep, objp);
40b44137 1696 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1697 }
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1700 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1701 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1702 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1703 }
1da177e4 1704 }
12dd36fa 1705}
1da177e4 1706#else
8456a648
JK
1707static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708 struct page *page)
12dd36fa 1709{
12dd36fa 1710}
1da177e4
LT
1711#endif
1712
911851e6
RD
1713/**
1714 * slab_destroy - destroy and release all objects in a slab
1715 * @cachep: cache pointer being destroyed
cb8ee1a3 1716 * @page: page pointer being destroyed
911851e6 1717 *
8a7d9b43
WSH
1718 * Destroy all the objs in a slab page, and release the mem back to the system.
1719 * Before calling the slab page must have been unlinked from the cache. The
1720 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1721 */
8456a648 1722static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1723{
7e007355 1724 void *freelist;
12dd36fa 1725
8456a648
JK
1726 freelist = page->freelist;
1727 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1728 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1729 call_rcu(&page->rcu_head, kmem_rcu_free);
1730 else
0c3aa83e 1731 kmem_freepages(cachep, page);
68126702
JK
1732
1733 /*
8456a648 1734 * From now on, we don't use freelist
68126702
JK
1735 * although actual page can be freed in rcu context
1736 */
1737 if (OFF_SLAB(cachep))
8456a648 1738 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1739}
1740
97654dfa
JK
1741static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1742{
1743 struct page *page, *n;
1744
1745 list_for_each_entry_safe(page, n, list, lru) {
1746 list_del(&page->lru);
1747 slab_destroy(cachep, page);
1748 }
1749}
1750
4d268eba 1751/**
a70773dd
RD
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
a70773dd
RD
1755 * @flags: slab allocation flags
1756 *
1757 * Also calculates the number of objects per slab.
4d268eba
PE
1758 *
1759 * This could be made much more intelligent. For now, try to avoid using
1760 * high order pages for slabs. When the gfp() functions are more friendly
1761 * towards high-order requests, this should be changed.
1762 */
a737b3e2 1763static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1764 size_t size, unsigned long flags)
4d268eba
PE
1765{
1766 size_t left_over = 0;
9888e6fa 1767 int gfporder;
4d268eba 1768
0aa817f0 1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1770 unsigned int num;
1771 size_t remainder;
1772
70f75067 1773 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1774 if (!num)
1775 continue;
9888e6fa 1776
f315e3fa
JK
1777 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1778 if (num > SLAB_OBJ_MAX_NUM)
1779 break;
1780
b1ab41c4 1781 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1782 struct kmem_cache *freelist_cache;
1783 size_t freelist_size;
1784
1785 freelist_size = num * sizeof(freelist_idx_t);
1786 freelist_cache = kmalloc_slab(freelist_size, 0u);
1787 if (!freelist_cache)
1788 continue;
1789
b1ab41c4 1790 /*
3217fd9b 1791 * Needed to avoid possible looping condition
76b342bd 1792 * in cache_grow_begin()
b1ab41c4 1793 */
3217fd9b
JK
1794 if (OFF_SLAB(freelist_cache))
1795 continue;
b1ab41c4 1796
3217fd9b
JK
1797 /* check if off slab has enough benefit */
1798 if (freelist_cache->size > cachep->size / 2)
1799 continue;
b1ab41c4 1800 }
4d268eba 1801
9888e6fa 1802 /* Found something acceptable - save it away */
4d268eba 1803 cachep->num = num;
9888e6fa 1804 cachep->gfporder = gfporder;
4d268eba
PE
1805 left_over = remainder;
1806
f78bb8ad
LT
1807 /*
1808 * A VFS-reclaimable slab tends to have most allocations
1809 * as GFP_NOFS and we really don't want to have to be allocating
1810 * higher-order pages when we are unable to shrink dcache.
1811 */
1812 if (flags & SLAB_RECLAIM_ACCOUNT)
1813 break;
1814
4d268eba
PE
1815 /*
1816 * Large number of objects is good, but very large slabs are
1817 * currently bad for the gfp()s.
1818 */
543585cc 1819 if (gfporder >= slab_max_order)
4d268eba
PE
1820 break;
1821
9888e6fa
LT
1822 /*
1823 * Acceptable internal fragmentation?
1824 */
a737b3e2 1825 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1826 break;
1827 }
1828 return left_over;
1829}
1830
bf0dea23
JK
1831static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832 struct kmem_cache *cachep, int entries, int batchcount)
1833{
1834 int cpu;
1835 size_t size;
1836 struct array_cache __percpu *cpu_cache;
1837
1838 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1839 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1840
1841 if (!cpu_cache)
1842 return NULL;
1843
1844 for_each_possible_cpu(cpu) {
1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846 entries, batchcount);
1847 }
1848
1849 return cpu_cache;
1850}
1851
bd721ea7 1852static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1853{
97d06609 1854 if (slab_state >= FULL)
83b519e8 1855 return enable_cpucache(cachep, gfp);
2ed3a4ef 1856
bf0dea23
JK
1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858 if (!cachep->cpu_cache)
1859 return 1;
1860
97d06609 1861 if (slab_state == DOWN) {
bf0dea23
JK
1862 /* Creation of first cache (kmem_cache). */
1863 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1864 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1865 /* For kmem_cache_node */
1866 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1867 } else {
bf0dea23 1868 int node;
f30cf7d1 1869
bf0dea23
JK
1870 for_each_online_node(node) {
1871 cachep->node[node] = kmalloc_node(
1872 sizeof(struct kmem_cache_node), gfp, node);
1873 BUG_ON(!cachep->node[node]);
1874 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1875 }
1876 }
bf0dea23 1877
6a67368c 1878 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1879 jiffies + REAPTIMEOUT_NODE +
1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1881
1882 cpu_cache_get(cachep)->avail = 0;
1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884 cpu_cache_get(cachep)->batchcount = 1;
1885 cpu_cache_get(cachep)->touched = 0;
1886 cachep->batchcount = 1;
1887 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1888 return 0;
f30cf7d1
PE
1889}
1890
12220dea
JK
1891unsigned long kmem_cache_flags(unsigned long object_size,
1892 unsigned long flags, const char *name,
1893 void (*ctor)(void *))
1894{
1895 return flags;
1896}
1897
1898struct kmem_cache *
1899__kmem_cache_alias(const char *name, size_t size, size_t align,
1900 unsigned long flags, void (*ctor)(void *))
1901{
1902 struct kmem_cache *cachep;
1903
1904 cachep = find_mergeable(size, align, flags, name, ctor);
1905 if (cachep) {
1906 cachep->refcount++;
1907
1908 /*
1909 * Adjust the object sizes so that we clear
1910 * the complete object on kzalloc.
1911 */
1912 cachep->object_size = max_t(int, cachep->object_size, size);
1913 }
1914 return cachep;
1915}
1916
b03a017b
JK
1917static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918 size_t size, unsigned long flags)
1919{
1920 size_t left;
1921
1922 cachep->num = 0;
1923
5f0d5a3a 1924 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1925 return false;
1926
1927 left = calculate_slab_order(cachep, size,
1928 flags | CFLGS_OBJFREELIST_SLAB);
1929 if (!cachep->num)
1930 return false;
1931
1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1933 return false;
1934
1935 cachep->colour = left / cachep->colour_off;
1936
1937 return true;
1938}
1939
158e319b
JK
1940static bool set_off_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1942{
1943 size_t left;
1944
1945 cachep->num = 0;
1946
1947 /*
3217fd9b
JK
1948 * Always use on-slab management when SLAB_NOLEAKTRACE
1949 * to avoid recursive calls into kmemleak.
158e319b 1950 */
158e319b
JK
1951 if (flags & SLAB_NOLEAKTRACE)
1952 return false;
1953
1954 /*
1955 * Size is large, assume best to place the slab management obj
1956 * off-slab (should allow better packing of objs).
1957 */
1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1959 if (!cachep->num)
1960 return false;
1961
1962 /*
1963 * If the slab has been placed off-slab, and we have enough space then
1964 * move it on-slab. This is at the expense of any extra colouring.
1965 */
1966 if (left >= cachep->num * sizeof(freelist_idx_t))
1967 return false;
1968
1969 cachep->colour = left / cachep->colour_off;
1970
1971 return true;
1972}
1973
1974static bool set_on_slab_cache(struct kmem_cache *cachep,
1975 size_t size, unsigned long flags)
1976{
1977 size_t left;
1978
1979 cachep->num = 0;
1980
1981 left = calculate_slab_order(cachep, size, flags);
1982 if (!cachep->num)
1983 return false;
1984
1985 cachep->colour = left / cachep->colour_off;
1986
1987 return true;
1988}
1989
1da177e4 1990/**
039363f3 1991 * __kmem_cache_create - Create a cache.
a755b76a 1992 * @cachep: cache management descriptor
1da177e4 1993 * @flags: SLAB flags
1da177e4
LT
1994 *
1995 * Returns a ptr to the cache on success, NULL on failure.
1996 * Cannot be called within a int, but can be interrupted.
20c2df83 1997 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1998 *
1da177e4
LT
1999 * The flags are
2000 *
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2003 *
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2006 *
1da177e4
LT
2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline. This can be beneficial if you're counting cycles as closely
2009 * as davem.
2010 */
278b1bb1 2011int
8a13a4cc 2012__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2013{
d4a5fca5 2014 size_t ralign = BYTES_PER_WORD;
83b519e8 2015 gfp_t gfp;
278b1bb1 2016 int err;
8a13a4cc 2017 size_t size = cachep->size;
1da177e4 2018
1da177e4 2019#if DEBUG
1da177e4
LT
2020#if FORCED_DEBUG
2021 /*
2022 * Enable redzoning and last user accounting, except for caches with
2023 * large objects, if the increased size would increase the object size
2024 * above the next power of two: caches with object sizes just above a
2025 * power of two have a significant amount of internal fragmentation.
2026 */
87a927c7
DW
2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028 2 * sizeof(unsigned long long)))
b28a02de 2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2030 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2031 flags |= SLAB_POISON;
2032#endif
1da177e4 2033#endif
1da177e4 2034
a737b3e2
AM
2035 /*
2036 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2037 * unaligned accesses for some archs when redzoning is used, and makes
2038 * sure any on-slab bufctl's are also correctly aligned.
2039 */
e0771950 2040 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2041
87a927c7
DW
2042 if (flags & SLAB_RED_ZONE) {
2043 ralign = REDZONE_ALIGN;
2044 /* If redzoning, ensure that the second redzone is suitably
2045 * aligned, by adjusting the object size accordingly. */
e0771950 2046 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2047 }
ca5f9703 2048
a44b56d3 2049 /* 3) caller mandated alignment */
8a13a4cc
CL
2050 if (ralign < cachep->align) {
2051 ralign = cachep->align;
1da177e4 2052 }
3ff84a7f
PE
2053 /* disable debug if necessary */
2054 if (ralign > __alignof__(unsigned long long))
a44b56d3 2055 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2056 /*
ca5f9703 2057 * 4) Store it.
1da177e4 2058 */
8a13a4cc 2059 cachep->align = ralign;
158e319b
JK
2060 cachep->colour_off = cache_line_size();
2061 /* Offset must be a multiple of the alignment. */
2062 if (cachep->colour_off < cachep->align)
2063 cachep->colour_off = cachep->align;
1da177e4 2064
83b519e8
PE
2065 if (slab_is_available())
2066 gfp = GFP_KERNEL;
2067 else
2068 gfp = GFP_NOWAIT;
2069
1da177e4 2070#if DEBUG
1da177e4 2071
ca5f9703
PE
2072 /*
2073 * Both debugging options require word-alignment which is calculated
2074 * into align above.
2075 */
1da177e4 2076 if (flags & SLAB_RED_ZONE) {
1da177e4 2077 /* add space for red zone words */
3ff84a7f
PE
2078 cachep->obj_offset += sizeof(unsigned long long);
2079 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2080 }
2081 if (flags & SLAB_STORE_USER) {
ca5f9703 2082 /* user store requires one word storage behind the end of
87a927c7
DW
2083 * the real object. But if the second red zone needs to be
2084 * aligned to 64 bits, we must allow that much space.
1da177e4 2085 */
87a927c7
DW
2086 if (flags & SLAB_RED_ZONE)
2087 size += REDZONE_ALIGN;
2088 else
2089 size += BYTES_PER_WORD;
1da177e4 2090 }
832a15d2
JK
2091#endif
2092
7ed2f9e6
AP
2093 kasan_cache_create(cachep, &size, &flags);
2094
832a15d2
JK
2095 size = ALIGN(size, cachep->align);
2096 /*
2097 * We should restrict the number of objects in a slab to implement
2098 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2099 */
2100 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2101 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2102
2103#if DEBUG
03a2d2a3
JK
2104 /*
2105 * To activate debug pagealloc, off-slab management is necessary
2106 * requirement. In early phase of initialization, small sized slab
2107 * doesn't get initialized so it would not be possible. So, we need
2108 * to check size >= 256. It guarantees that all necessary small
2109 * sized slab is initialized in current slab initialization sequence.
2110 */
40323278 2111 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2112 size >= 256 && cachep->object_size > cache_line_size()) {
2113 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2114 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2115
2116 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2117 flags |= CFLGS_OFF_SLAB;
2118 cachep->obj_offset += tmp_size - size;
2119 size = tmp_size;
2120 goto done;
2121 }
2122 }
1da177e4 2123 }
1da177e4
LT
2124#endif
2125
b03a017b
JK
2126 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2127 flags |= CFLGS_OBJFREELIST_SLAB;
2128 goto done;
2129 }
2130
158e319b 2131 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2132 flags |= CFLGS_OFF_SLAB;
158e319b 2133 goto done;
832a15d2 2134 }
1da177e4 2135
158e319b
JK
2136 if (set_on_slab_cache(cachep, size, flags))
2137 goto done;
1da177e4 2138
158e319b 2139 return -E2BIG;
1da177e4 2140
158e319b
JK
2141done:
2142 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2143 cachep->flags = flags;
a57a4988 2144 cachep->allocflags = __GFP_COMP;
a3187e43 2145 if (flags & SLAB_CACHE_DMA)
a618e89f 2146 cachep->allocflags |= GFP_DMA;
3b0efdfa 2147 cachep->size = size;
6a2d7a95 2148 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2149
40b44137
JK
2150#if DEBUG
2151 /*
2152 * If we're going to use the generic kernel_map_pages()
2153 * poisoning, then it's going to smash the contents of
2154 * the redzone and userword anyhow, so switch them off.
2155 */
2156 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2157 (cachep->flags & SLAB_POISON) &&
2158 is_debug_pagealloc_cache(cachep))
2159 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160#endif
2161
2162 if (OFF_SLAB(cachep)) {
158e319b
JK
2163 cachep->freelist_cache =
2164 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2165 }
1da177e4 2166
278b1bb1
CL
2167 err = setup_cpu_cache(cachep, gfp);
2168 if (err) {
52b4b950 2169 __kmem_cache_release(cachep);
278b1bb1 2170 return err;
2ed3a4ef 2171 }
1da177e4 2172
278b1bb1 2173 return 0;
1da177e4 2174}
1da177e4
LT
2175
2176#if DEBUG
2177static void check_irq_off(void)
2178{
2179 BUG_ON(!irqs_disabled());
2180}
2181
2182static void check_irq_on(void)
2183{
2184 BUG_ON(irqs_disabled());
2185}
2186
18726ca8
JK
2187static void check_mutex_acquired(void)
2188{
2189 BUG_ON(!mutex_is_locked(&slab_mutex));
2190}
2191
343e0d7a 2192static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2193{
2194#ifdef CONFIG_SMP
2195 check_irq_off();
18bf8541 2196 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2197#endif
2198}
e498be7d 2199
343e0d7a 2200static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2201{
2202#ifdef CONFIG_SMP
2203 check_irq_off();
18bf8541 2204 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2205#endif
2206}
2207
1da177e4
LT
2208#else
2209#define check_irq_off() do { } while(0)
2210#define check_irq_on() do { } while(0)
18726ca8 2211#define check_mutex_acquired() do { } while(0)
1da177e4 2212#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2213#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2214#endif
2215
18726ca8
JK
2216static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2217 int node, bool free_all, struct list_head *list)
2218{
2219 int tofree;
2220
2221 if (!ac || !ac->avail)
2222 return;
2223
2224 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2225 if (tofree > ac->avail)
2226 tofree = (ac->avail + 1) / 2;
2227
2228 free_block(cachep, ac->entry, tofree, node, list);
2229 ac->avail -= tofree;
2230 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2231}
aab2207c 2232
1da177e4
LT
2233static void do_drain(void *arg)
2234{
a737b3e2 2235 struct kmem_cache *cachep = arg;
1da177e4 2236 struct array_cache *ac;
7d6e6d09 2237 int node = numa_mem_id();
18bf8541 2238 struct kmem_cache_node *n;
97654dfa 2239 LIST_HEAD(list);
1da177e4
LT
2240
2241 check_irq_off();
9a2dba4b 2242 ac = cpu_cache_get(cachep);
18bf8541
CL
2243 n = get_node(cachep, node);
2244 spin_lock(&n->list_lock);
97654dfa 2245 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2246 spin_unlock(&n->list_lock);
97654dfa 2247 slabs_destroy(cachep, &list);
1da177e4
LT
2248 ac->avail = 0;
2249}
2250
343e0d7a 2251static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2252{
ce8eb6c4 2253 struct kmem_cache_node *n;
e498be7d 2254 int node;
18726ca8 2255 LIST_HEAD(list);
e498be7d 2256
15c8b6c1 2257 on_each_cpu(do_drain, cachep, 1);
1da177e4 2258 check_irq_on();
18bf8541
CL
2259 for_each_kmem_cache_node(cachep, node, n)
2260 if (n->alien)
ce8eb6c4 2261 drain_alien_cache(cachep, n->alien);
a4523a8b 2262
18726ca8
JK
2263 for_each_kmem_cache_node(cachep, node, n) {
2264 spin_lock_irq(&n->list_lock);
2265 drain_array_locked(cachep, n->shared, node, true, &list);
2266 spin_unlock_irq(&n->list_lock);
2267
2268 slabs_destroy(cachep, &list);
2269 }
1da177e4
LT
2270}
2271
ed11d9eb
CL
2272/*
2273 * Remove slabs from the list of free slabs.
2274 * Specify the number of slabs to drain in tofree.
2275 *
2276 * Returns the actual number of slabs released.
2277 */
2278static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2279 struct kmem_cache_node *n, int tofree)
1da177e4 2280{
ed11d9eb
CL
2281 struct list_head *p;
2282 int nr_freed;
8456a648 2283 struct page *page;
1da177e4 2284
ed11d9eb 2285 nr_freed = 0;
ce8eb6c4 2286 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2287
ce8eb6c4
CL
2288 spin_lock_irq(&n->list_lock);
2289 p = n->slabs_free.prev;
2290 if (p == &n->slabs_free) {
2291 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2292 goto out;
2293 }
1da177e4 2294
8456a648 2295 page = list_entry(p, struct page, lru);
8456a648 2296 list_del(&page->lru);
f728b0a5 2297 n->free_slabs--;
bf00bd34 2298 n->total_slabs--;
ed11d9eb
CL
2299 /*
2300 * Safe to drop the lock. The slab is no longer linked
2301 * to the cache.
2302 */
ce8eb6c4
CL
2303 n->free_objects -= cache->num;
2304 spin_unlock_irq(&n->list_lock);
8456a648 2305 slab_destroy(cache, page);
ed11d9eb 2306 nr_freed++;
1da177e4 2307 }
ed11d9eb
CL
2308out:
2309 return nr_freed;
1da177e4
LT
2310}
2311
c9fc5864 2312int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2313{
18bf8541
CL
2314 int ret = 0;
2315 int node;
ce8eb6c4 2316 struct kmem_cache_node *n;
e498be7d
CL
2317
2318 drain_cpu_caches(cachep);
2319
2320 check_irq_on();
18bf8541 2321 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2322 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2323
ce8eb6c4
CL
2324 ret += !list_empty(&n->slabs_full) ||
2325 !list_empty(&n->slabs_partial);
e498be7d
CL
2326 }
2327 return (ret ? 1 : 0);
2328}
2329
c9fc5864
TH
2330#ifdef CONFIG_MEMCG
2331void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2332{
2333 __kmem_cache_shrink(cachep);
2334}
2335#endif
2336
945cf2b6 2337int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2338{
c9fc5864 2339 return __kmem_cache_shrink(cachep);
52b4b950
DS
2340}
2341
2342void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2343{
12c3667f 2344 int i;
ce8eb6c4 2345 struct kmem_cache_node *n;
1da177e4 2346
c7ce4f60
TG
2347 cache_random_seq_destroy(cachep);
2348
bf0dea23 2349 free_percpu(cachep->cpu_cache);
1da177e4 2350
ce8eb6c4 2351 /* NUMA: free the node structures */
18bf8541
CL
2352 for_each_kmem_cache_node(cachep, i, n) {
2353 kfree(n->shared);
2354 free_alien_cache(n->alien);
2355 kfree(n);
2356 cachep->node[i] = NULL;
12c3667f 2357 }
1da177e4 2358}
1da177e4 2359
e5ac9c5a
RT
2360/*
2361 * Get the memory for a slab management obj.
5f0985bb
JZ
2362 *
2363 * For a slab cache when the slab descriptor is off-slab, the
2364 * slab descriptor can't come from the same cache which is being created,
2365 * Because if it is the case, that means we defer the creation of
2366 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2367 * And we eventually call down to __kmem_cache_create(), which
2368 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2369 * This is a "chicken-and-egg" problem.
2370 *
2371 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2372 * which are all initialized during kmem_cache_init().
e5ac9c5a 2373 */
7e007355 2374static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2375 struct page *page, int colour_off,
2376 gfp_t local_flags, int nodeid)
1da177e4 2377{
7e007355 2378 void *freelist;
0c3aa83e 2379 void *addr = page_address(page);
b28a02de 2380
2e6b3602
JK
2381 page->s_mem = addr + colour_off;
2382 page->active = 0;
2383
b03a017b
JK
2384 if (OBJFREELIST_SLAB(cachep))
2385 freelist = NULL;
2386 else if (OFF_SLAB(cachep)) {
1da177e4 2387 /* Slab management obj is off-slab. */
8456a648 2388 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2389 local_flags, nodeid);
8456a648 2390 if (!freelist)
1da177e4
LT
2391 return NULL;
2392 } else {
2e6b3602
JK
2393 /* We will use last bytes at the slab for freelist */
2394 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2395 cachep->freelist_size;
1da177e4 2396 }
2e6b3602 2397
8456a648 2398 return freelist;
1da177e4
LT
2399}
2400
7cc68973 2401static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2402{
a41adfaa 2403 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2404}
2405
2406static inline void set_free_obj(struct page *page,
7cc68973 2407 unsigned int idx, freelist_idx_t val)
e5c58dfd 2408{
a41adfaa 2409 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2410}
2411
10b2e9e8 2412static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2413{
10b2e9e8 2414#if DEBUG
1da177e4
LT
2415 int i;
2416
2417 for (i = 0; i < cachep->num; i++) {
8456a648 2418 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2419
1da177e4
LT
2420 if (cachep->flags & SLAB_STORE_USER)
2421 *dbg_userword(cachep, objp) = NULL;
2422
2423 if (cachep->flags & SLAB_RED_ZONE) {
2424 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2425 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2426 }
2427 /*
a737b3e2
AM
2428 * Constructors are not allowed to allocate memory from the same
2429 * cache which they are a constructor for. Otherwise, deadlock.
2430 * They must also be threaded.
1da177e4 2431 */
7ed2f9e6
AP
2432 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2433 kasan_unpoison_object_data(cachep,
2434 objp + obj_offset(cachep));
51cc5068 2435 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2436 kasan_poison_object_data(
2437 cachep, objp + obj_offset(cachep));
2438 }
1da177e4
LT
2439
2440 if (cachep->flags & SLAB_RED_ZONE) {
2441 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2442 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2443 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2444 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2445 }
40b44137
JK
2446 /* need to poison the objs? */
2447 if (cachep->flags & SLAB_POISON) {
2448 poison_obj(cachep, objp, POISON_FREE);
2449 slab_kernel_map(cachep, objp, 0, 0);
2450 }
10b2e9e8 2451 }
1da177e4 2452#endif
10b2e9e8
JK
2453}
2454
c7ce4f60
TG
2455#ifdef CONFIG_SLAB_FREELIST_RANDOM
2456/* Hold information during a freelist initialization */
2457union freelist_init_state {
2458 struct {
2459 unsigned int pos;
7c00fce9 2460 unsigned int *list;
c7ce4f60 2461 unsigned int count;
c7ce4f60
TG
2462 };
2463 struct rnd_state rnd_state;
2464};
2465
2466/*
2467 * Initialize the state based on the randomization methode available.
2468 * return true if the pre-computed list is available, false otherwize.
2469 */
2470static bool freelist_state_initialize(union freelist_init_state *state,
2471 struct kmem_cache *cachep,
2472 unsigned int count)
2473{
2474 bool ret;
2475 unsigned int rand;
2476
2477 /* Use best entropy available to define a random shift */
7c00fce9 2478 rand = get_random_int();
c7ce4f60
TG
2479
2480 /* Use a random state if the pre-computed list is not available */
2481 if (!cachep->random_seq) {
2482 prandom_seed_state(&state->rnd_state, rand);
2483 ret = false;
2484 } else {
2485 state->list = cachep->random_seq;
2486 state->count = count;
c4e490cf 2487 state->pos = rand % count;
c7ce4f60
TG
2488 ret = true;
2489 }
2490 return ret;
2491}
2492
2493/* Get the next entry on the list and randomize it using a random shift */
2494static freelist_idx_t next_random_slot(union freelist_init_state *state)
2495{
c4e490cf
JS
2496 if (state->pos >= state->count)
2497 state->pos = 0;
2498 return state->list[state->pos++];
c7ce4f60
TG
2499}
2500
7c00fce9
TG
2501/* Swap two freelist entries */
2502static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2503{
2504 swap(((freelist_idx_t *)page->freelist)[a],
2505 ((freelist_idx_t *)page->freelist)[b]);
2506}
2507
c7ce4f60
TG
2508/*
2509 * Shuffle the freelist initialization state based on pre-computed lists.
2510 * return true if the list was successfully shuffled, false otherwise.
2511 */
2512static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2513{
7c00fce9 2514 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2515 union freelist_init_state state;
2516 bool precomputed;
2517
2518 if (count < 2)
2519 return false;
2520
2521 precomputed = freelist_state_initialize(&state, cachep, count);
2522
2523 /* Take a random entry as the objfreelist */
2524 if (OBJFREELIST_SLAB(cachep)) {
2525 if (!precomputed)
2526 objfreelist = count - 1;
2527 else
2528 objfreelist = next_random_slot(&state);
2529 page->freelist = index_to_obj(cachep, page, objfreelist) +
2530 obj_offset(cachep);
2531 count--;
2532 }
2533
2534 /*
2535 * On early boot, generate the list dynamically.
2536 * Later use a pre-computed list for speed.
2537 */
2538 if (!precomputed) {
7c00fce9
TG
2539 for (i = 0; i < count; i++)
2540 set_free_obj(page, i, i);
2541
2542 /* Fisher-Yates shuffle */
2543 for (i = count - 1; i > 0; i--) {
2544 rand = prandom_u32_state(&state.rnd_state);
2545 rand %= (i + 1);
2546 swap_free_obj(page, i, rand);
2547 }
c7ce4f60
TG
2548 } else {
2549 for (i = 0; i < count; i++)
2550 set_free_obj(page, i, next_random_slot(&state));
2551 }
2552
2553 if (OBJFREELIST_SLAB(cachep))
2554 set_free_obj(page, cachep->num - 1, objfreelist);
2555
2556 return true;
2557}
2558#else
2559static inline bool shuffle_freelist(struct kmem_cache *cachep,
2560 struct page *page)
2561{
2562 return false;
2563}
2564#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2565
10b2e9e8
JK
2566static void cache_init_objs(struct kmem_cache *cachep,
2567 struct page *page)
2568{
2569 int i;
7ed2f9e6 2570 void *objp;
c7ce4f60 2571 bool shuffled;
10b2e9e8
JK
2572
2573 cache_init_objs_debug(cachep, page);
2574
c7ce4f60
TG
2575 /* Try to randomize the freelist if enabled */
2576 shuffled = shuffle_freelist(cachep, page);
2577
2578 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2579 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2580 obj_offset(cachep);
2581 }
2582
10b2e9e8 2583 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2584 objp = index_to_obj(cachep, page, i);
2585 kasan_init_slab_obj(cachep, objp);
2586
10b2e9e8 2587 /* constructor could break poison info */
7ed2f9e6 2588 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2589 kasan_unpoison_object_data(cachep, objp);
2590 cachep->ctor(objp);
2591 kasan_poison_object_data(cachep, objp);
2592 }
10b2e9e8 2593
c7ce4f60
TG
2594 if (!shuffled)
2595 set_free_obj(page, i, i);
1da177e4 2596 }
1da177e4
LT
2597}
2598
260b61dd 2599static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2600{
b1cb0982 2601 void *objp;
78d382d7 2602
e5c58dfd 2603 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2604 page->active++;
78d382d7 2605
d31676df
JK
2606#if DEBUG
2607 if (cachep->flags & SLAB_STORE_USER)
2608 set_store_user_dirty(cachep);
2609#endif
2610
78d382d7
MD
2611 return objp;
2612}
2613
260b61dd
JK
2614static void slab_put_obj(struct kmem_cache *cachep,
2615 struct page *page, void *objp)
78d382d7 2616{
8456a648 2617 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2618#if DEBUG
16025177 2619 unsigned int i;
b1cb0982 2620
b1cb0982 2621 /* Verify double free bug */
8456a648 2622 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2623 if (get_free_obj(page, i) == objnr) {
1170532b 2624 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2625 cachep->name, objp);
b1cb0982
JK
2626 BUG();
2627 }
78d382d7
MD
2628 }
2629#endif
8456a648 2630 page->active--;
b03a017b
JK
2631 if (!page->freelist)
2632 page->freelist = objp + obj_offset(cachep);
2633
e5c58dfd 2634 set_free_obj(page, page->active, objnr);
78d382d7
MD
2635}
2636
4776874f
PE
2637/*
2638 * Map pages beginning at addr to the given cache and slab. This is required
2639 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2640 * virtual address for kfree, ksize, and slab debugging.
4776874f 2641 */
8456a648 2642static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2643 void *freelist)
1da177e4 2644{
a57a4988 2645 page->slab_cache = cache;
8456a648 2646 page->freelist = freelist;
1da177e4
LT
2647}
2648
2649/*
2650 * Grow (by 1) the number of slabs within a cache. This is called by
2651 * kmem_cache_alloc() when there are no active objs left in a cache.
2652 */
76b342bd
JK
2653static struct page *cache_grow_begin(struct kmem_cache *cachep,
2654 gfp_t flags, int nodeid)
1da177e4 2655{
7e007355 2656 void *freelist;
b28a02de
PE
2657 size_t offset;
2658 gfp_t local_flags;
511e3a05 2659 int page_node;
ce8eb6c4 2660 struct kmem_cache_node *n;
511e3a05 2661 struct page *page;
1da177e4 2662
a737b3e2
AM
2663 /*
2664 * Be lazy and only check for valid flags here, keeping it out of the
2665 * critical path in kmem_cache_alloc().
1da177e4 2666 */
c871ac4e 2667 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2668 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2669 flags &= ~GFP_SLAB_BUG_MASK;
2670 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2671 invalid_mask, &invalid_mask, flags, &flags);
2672 dump_stack();
c871ac4e 2673 }
6cb06229 2674 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2675
1da177e4 2676 check_irq_off();
d0164adc 2677 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2678 local_irq_enable();
2679
a737b3e2
AM
2680 /*
2681 * Get mem for the objs. Attempt to allocate a physical page from
2682 * 'nodeid'.
e498be7d 2683 */
511e3a05 2684 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2685 if (!page)
1da177e4
LT
2686 goto failed;
2687
511e3a05
JK
2688 page_node = page_to_nid(page);
2689 n = get_node(cachep, page_node);
03d1d43a
JK
2690
2691 /* Get colour for the slab, and cal the next value. */
2692 n->colour_next++;
2693 if (n->colour_next >= cachep->colour)
2694 n->colour_next = 0;
2695
2696 offset = n->colour_next;
2697 if (offset >= cachep->colour)
2698 offset = 0;
2699
2700 offset *= cachep->colour_off;
2701
1da177e4 2702 /* Get slab management. */
8456a648 2703 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2704 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2705 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2706 goto opps1;
2707
8456a648 2708 slab_map_pages(cachep, page, freelist);
1da177e4 2709
7ed2f9e6 2710 kasan_poison_slab(page);
8456a648 2711 cache_init_objs(cachep, page);
1da177e4 2712
d0164adc 2713 if (gfpflags_allow_blocking(local_flags))
1da177e4 2714 local_irq_disable();
1da177e4 2715
76b342bd
JK
2716 return page;
2717
a737b3e2 2718opps1:
0c3aa83e 2719 kmem_freepages(cachep, page);
a737b3e2 2720failed:
d0164adc 2721 if (gfpflags_allow_blocking(local_flags))
1da177e4 2722 local_irq_disable();
76b342bd
JK
2723 return NULL;
2724}
2725
2726static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2727{
2728 struct kmem_cache_node *n;
2729 void *list = NULL;
2730
2731 check_irq_off();
2732
2733 if (!page)
2734 return;
2735
2736 INIT_LIST_HEAD(&page->lru);
2737 n = get_node(cachep, page_to_nid(page));
2738
2739 spin_lock(&n->list_lock);
bf00bd34 2740 n->total_slabs++;
f728b0a5 2741 if (!page->active) {
76b342bd 2742 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2743 n->free_slabs++;
bf00bd34 2744 } else
76b342bd 2745 fixup_slab_list(cachep, n, page, &list);
07a63c41 2746
76b342bd
JK
2747 STATS_INC_GROWN(cachep);
2748 n->free_objects += cachep->num - page->active;
2749 spin_unlock(&n->list_lock);
2750
2751 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2752}
2753
2754#if DEBUG
2755
2756/*
2757 * Perform extra freeing checks:
2758 * - detect bad pointers.
2759 * - POISON/RED_ZONE checking
1da177e4
LT
2760 */
2761static void kfree_debugcheck(const void *objp)
2762{
1da177e4 2763 if (!virt_addr_valid(objp)) {
1170532b 2764 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2765 (unsigned long)objp);
2766 BUG();
1da177e4 2767 }
1da177e4
LT
2768}
2769
58ce1fd5
PE
2770static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2771{
b46b8f19 2772 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2773
2774 redzone1 = *dbg_redzone1(cache, obj);
2775 redzone2 = *dbg_redzone2(cache, obj);
2776
2777 /*
2778 * Redzone is ok.
2779 */
2780 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2781 return;
2782
2783 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2784 slab_error(cache, "double free detected");
2785 else
2786 slab_error(cache, "memory outside object was overwritten");
2787
1170532b
JP
2788 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2789 obj, redzone1, redzone2);
58ce1fd5
PE
2790}
2791
343e0d7a 2792static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2793 unsigned long caller)
1da177e4 2794{
1da177e4 2795 unsigned int objnr;
8456a648 2796 struct page *page;
1da177e4 2797
80cbd911
MW
2798 BUG_ON(virt_to_cache(objp) != cachep);
2799
3dafccf2 2800 objp -= obj_offset(cachep);
1da177e4 2801 kfree_debugcheck(objp);
b49af68f 2802 page = virt_to_head_page(objp);
1da177e4 2803
1da177e4 2804 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2805 verify_redzone_free(cachep, objp);
1da177e4
LT
2806 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2807 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2808 }
d31676df
JK
2809 if (cachep->flags & SLAB_STORE_USER) {
2810 set_store_user_dirty(cachep);
7c0cb9c6 2811 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2812 }
1da177e4 2813
8456a648 2814 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2815
2816 BUG_ON(objnr >= cachep->num);
8456a648 2817 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2818
1da177e4 2819 if (cachep->flags & SLAB_POISON) {
1da177e4 2820 poison_obj(cachep, objp, POISON_FREE);
40b44137 2821 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2822 }
2823 return objp;
2824}
2825
1da177e4
LT
2826#else
2827#define kfree_debugcheck(x) do { } while(0)
2828#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2829#endif
2830
b03a017b
JK
2831static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2832 void **list)
2833{
2834#if DEBUG
2835 void *next = *list;
2836 void *objp;
2837
2838 while (next) {
2839 objp = next - obj_offset(cachep);
2840 next = *(void **)next;
2841 poison_obj(cachep, objp, POISON_FREE);
2842 }
2843#endif
2844}
2845
d8410234 2846static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2847 struct kmem_cache_node *n, struct page *page,
2848 void **list)
d8410234
JK
2849{
2850 /* move slabp to correct slabp list: */
2851 list_del(&page->lru);
b03a017b 2852 if (page->active == cachep->num) {
d8410234 2853 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2854 if (OBJFREELIST_SLAB(cachep)) {
2855#if DEBUG
2856 /* Poisoning will be done without holding the lock */
2857 if (cachep->flags & SLAB_POISON) {
2858 void **objp = page->freelist;
2859
2860 *objp = *list;
2861 *list = objp;
2862 }
2863#endif
2864 page->freelist = NULL;
2865 }
2866 } else
d8410234
JK
2867 list_add(&page->lru, &n->slabs_partial);
2868}
2869
f68f8ddd
JK
2870/* Try to find non-pfmemalloc slab if needed */
2871static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2872 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2873{
2874 if (!page)
2875 return NULL;
2876
2877 if (pfmemalloc)
2878 return page;
2879
2880 if (!PageSlabPfmemalloc(page))
2881 return page;
2882
2883 /* No need to keep pfmemalloc slab if we have enough free objects */
2884 if (n->free_objects > n->free_limit) {
2885 ClearPageSlabPfmemalloc(page);
2886 return page;
2887 }
2888
2889 /* Move pfmemalloc slab to the end of list to speed up next search */
2890 list_del(&page->lru);
bf00bd34 2891 if (!page->active) {
f68f8ddd 2892 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2893 n->free_slabs++;
f728b0a5 2894 } else
f68f8ddd
JK
2895 list_add_tail(&page->lru, &n->slabs_partial);
2896
2897 list_for_each_entry(page, &n->slabs_partial, lru) {
2898 if (!PageSlabPfmemalloc(page))
2899 return page;
2900 }
2901
f728b0a5 2902 n->free_touched = 1;
f68f8ddd 2903 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2904 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2905 n->free_slabs--;
f68f8ddd 2906 return page;
f728b0a5 2907 }
f68f8ddd
JK
2908 }
2909
2910 return NULL;
2911}
2912
2913static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2914{
2915 struct page *page;
2916
f728b0a5 2917 assert_spin_locked(&n->list_lock);
bf00bd34 2918 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2919 if (!page) {
2920 n->free_touched = 1;
bf00bd34
DR
2921 page = list_first_entry_or_null(&n->slabs_free, struct page,
2922 lru);
f728b0a5 2923 if (page)
bf00bd34 2924 n->free_slabs--;
7aa0d227
GT
2925 }
2926
f68f8ddd 2927 if (sk_memalloc_socks())
bf00bd34 2928 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2929
7aa0d227
GT
2930 return page;
2931}
2932
f68f8ddd
JK
2933static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2934 struct kmem_cache_node *n, gfp_t flags)
2935{
2936 struct page *page;
2937 void *obj;
2938 void *list = NULL;
2939
2940 if (!gfp_pfmemalloc_allowed(flags))
2941 return NULL;
2942
2943 spin_lock(&n->list_lock);
2944 page = get_first_slab(n, true);
2945 if (!page) {
2946 spin_unlock(&n->list_lock);
2947 return NULL;
2948 }
2949
2950 obj = slab_get_obj(cachep, page);
2951 n->free_objects--;
2952
2953 fixup_slab_list(cachep, n, page, &list);
2954
2955 spin_unlock(&n->list_lock);
2956 fixup_objfreelist_debug(cachep, &list);
2957
2958 return obj;
2959}
2960
213b4695
JK
2961/*
2962 * Slab list should be fixed up by fixup_slab_list() for existing slab
2963 * or cache_grow_end() for new slab
2964 */
2965static __always_inline int alloc_block(struct kmem_cache *cachep,
2966 struct array_cache *ac, struct page *page, int batchcount)
2967{
2968 /*
2969 * There must be at least one object available for
2970 * allocation.
2971 */
2972 BUG_ON(page->active >= cachep->num);
2973
2974 while (page->active < cachep->num && batchcount--) {
2975 STATS_INC_ALLOCED(cachep);
2976 STATS_INC_ACTIVE(cachep);
2977 STATS_SET_HIGH(cachep);
2978
2979 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2980 }
2981
2982 return batchcount;
2983}
2984
f68f8ddd 2985static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2986{
2987 int batchcount;
ce8eb6c4 2988 struct kmem_cache_node *n;
801faf0d 2989 struct array_cache *ac, *shared;
1ca4cb24 2990 int node;
b03a017b 2991 void *list = NULL;
76b342bd 2992 struct page *page;
1ca4cb24 2993
1da177e4 2994 check_irq_off();
7d6e6d09 2995 node = numa_mem_id();
f68f8ddd 2996
9a2dba4b 2997 ac = cpu_cache_get(cachep);
1da177e4
LT
2998 batchcount = ac->batchcount;
2999 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3000 /*
3001 * If there was little recent activity on this cache, then
3002 * perform only a partial refill. Otherwise we could generate
3003 * refill bouncing.
1da177e4
LT
3004 */
3005 batchcount = BATCHREFILL_LIMIT;
3006 }
18bf8541 3007 n = get_node(cachep, node);
e498be7d 3008
ce8eb6c4 3009 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3010 shared = READ_ONCE(n->shared);
3011 if (!n->free_objects && (!shared || !shared->avail))
3012 goto direct_grow;
3013
ce8eb6c4 3014 spin_lock(&n->list_lock);
801faf0d 3015 shared = READ_ONCE(n->shared);
1da177e4 3016
3ded175a 3017 /* See if we can refill from the shared array */
801faf0d
JK
3018 if (shared && transfer_objects(ac, shared, batchcount)) {
3019 shared->touched = 1;
3ded175a 3020 goto alloc_done;
44b57f1c 3021 }
3ded175a 3022
1da177e4 3023 while (batchcount > 0) {
1da177e4 3024 /* Get slab alloc is to come from. */
f68f8ddd 3025 page = get_first_slab(n, false);
7aa0d227
GT
3026 if (!page)
3027 goto must_grow;
1da177e4 3028
1da177e4 3029 check_spinlock_acquired(cachep);
714b8171 3030
213b4695 3031 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3032 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3033 }
3034
a737b3e2 3035must_grow:
ce8eb6c4 3036 n->free_objects -= ac->avail;
a737b3e2 3037alloc_done:
ce8eb6c4 3038 spin_unlock(&n->list_lock);
b03a017b 3039 fixup_objfreelist_debug(cachep, &list);
1da177e4 3040
801faf0d 3041direct_grow:
1da177e4 3042 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3043 /* Check if we can use obj in pfmemalloc slab */
3044 if (sk_memalloc_socks()) {
3045 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3046
3047 if (obj)
3048 return obj;
3049 }
3050
76b342bd 3051 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3052
76b342bd
JK
3053 /*
3054 * cache_grow_begin() can reenable interrupts,
3055 * then ac could change.
3056 */
9a2dba4b 3057 ac = cpu_cache_get(cachep);
213b4695
JK
3058 if (!ac->avail && page)
3059 alloc_block(cachep, ac, page, batchcount);
3060 cache_grow_end(cachep, page);
072bb0aa 3061
213b4695 3062 if (!ac->avail)
1da177e4 3063 return NULL;
1da177e4
LT
3064 }
3065 ac->touched = 1;
072bb0aa 3066
f68f8ddd 3067 return ac->entry[--ac->avail];
1da177e4
LT
3068}
3069
a737b3e2
AM
3070static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3071 gfp_t flags)
1da177e4 3072{
d0164adc 3073 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3074}
3075
3076#if DEBUG
a737b3e2 3077static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3078 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3079{
b28a02de 3080 if (!objp)
1da177e4 3081 return objp;
b28a02de 3082 if (cachep->flags & SLAB_POISON) {
1da177e4 3083 check_poison_obj(cachep, objp);
40b44137 3084 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3085 poison_obj(cachep, objp, POISON_INUSE);
3086 }
3087 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3088 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3089
3090 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3091 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3092 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3093 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3094 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3095 objp, *dbg_redzone1(cachep, objp),
3096 *dbg_redzone2(cachep, objp));
1da177e4
LT
3097 }
3098 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3099 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3100 }
03787301 3101
3dafccf2 3102 objp += obj_offset(cachep);
4f104934 3103 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3104 cachep->ctor(objp);
7ea466f2
TH
3105 if (ARCH_SLAB_MINALIGN &&
3106 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3107 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3108 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3109 }
1da177e4
LT
3110 return objp;
3111}
3112#else
3113#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3114#endif
3115
343e0d7a 3116static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3117{
b28a02de 3118 void *objp;
1da177e4
LT
3119 struct array_cache *ac;
3120
5c382300 3121 check_irq_off();
8a8b6502 3122
9a2dba4b 3123 ac = cpu_cache_get(cachep);
1da177e4 3124 if (likely(ac->avail)) {
1da177e4 3125 ac->touched = 1;
f68f8ddd 3126 objp = ac->entry[--ac->avail];
072bb0aa 3127
f68f8ddd
JK
3128 STATS_INC_ALLOCHIT(cachep);
3129 goto out;
1da177e4 3130 }
072bb0aa
MG
3131
3132 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3133 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3134 /*
3135 * the 'ac' may be updated by cache_alloc_refill(),
3136 * and kmemleak_erase() requires its correct value.
3137 */
3138 ac = cpu_cache_get(cachep);
3139
3140out:
d5cff635
CM
3141 /*
3142 * To avoid a false negative, if an object that is in one of the
3143 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3144 * treat the array pointers as a reference to the object.
3145 */
f3d8b53a
O
3146 if (objp)
3147 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3148 return objp;
3149}
3150
e498be7d 3151#ifdef CONFIG_NUMA
c61afb18 3152/*
2ad654bc 3153 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3154 *
3155 * If we are in_interrupt, then process context, including cpusets and
3156 * mempolicy, may not apply and should not be used for allocation policy.
3157 */
3158static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3159{
3160 int nid_alloc, nid_here;
3161
765c4507 3162 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3163 return NULL;
7d6e6d09 3164 nid_alloc = nid_here = numa_mem_id();
c61afb18 3165 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3166 nid_alloc = cpuset_slab_spread_node();
c61afb18 3167 else if (current->mempolicy)
2a389610 3168 nid_alloc = mempolicy_slab_node();
c61afb18 3169 if (nid_alloc != nid_here)
8b98c169 3170 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3171 return NULL;
3172}
3173
765c4507
CL
3174/*
3175 * Fallback function if there was no memory available and no objects on a
3c517a61 3176 * certain node and fall back is permitted. First we scan all the
6a67368c 3177 * available node for available objects. If that fails then we
3c517a61
CL
3178 * perform an allocation without specifying a node. This allows the page
3179 * allocator to do its reclaim / fallback magic. We then insert the
3180 * slab into the proper nodelist and then allocate from it.
765c4507 3181 */
8c8cc2c1 3182static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3183{
8c8cc2c1 3184 struct zonelist *zonelist;
dd1a239f 3185 struct zoneref *z;
54a6eb5c
MG
3186 struct zone *zone;
3187 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3188 void *obj = NULL;
76b342bd 3189 struct page *page;
3c517a61 3190 int nid;
cc9a6c87 3191 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3192
3193 if (flags & __GFP_THISNODE)
3194 return NULL;
3195
cc9a6c87 3196retry_cpuset:
d26914d1 3197 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3198 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3199
3c517a61
CL
3200retry:
3201 /*
3202 * Look through allowed nodes for objects available
3203 * from existing per node queues.
3204 */
54a6eb5c
MG
3205 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3206 nid = zone_to_nid(zone);
aedb0eb1 3207
061d7074 3208 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3209 get_node(cache, nid) &&
3210 get_node(cache, nid)->free_objects) {
3c517a61 3211 obj = ____cache_alloc_node(cache,
4167e9b2 3212 gfp_exact_node(flags), nid);
481c5346
CL
3213 if (obj)
3214 break;
3215 }
3c517a61
CL
3216 }
3217
cfce6604 3218 if (!obj) {
3c517a61
CL
3219 /*
3220 * This allocation will be performed within the constraints
3221 * of the current cpuset / memory policy requirements.
3222 * We may trigger various forms of reclaim on the allowed
3223 * set and go into memory reserves if necessary.
3224 */
76b342bd
JK
3225 page = cache_grow_begin(cache, flags, numa_mem_id());
3226 cache_grow_end(cache, page);
3227 if (page) {
3228 nid = page_to_nid(page);
511e3a05
JK
3229 obj = ____cache_alloc_node(cache,
3230 gfp_exact_node(flags), nid);
0c3aa83e 3231
3c517a61 3232 /*
511e3a05
JK
3233 * Another processor may allocate the objects in
3234 * the slab since we are not holding any locks.
3c517a61 3235 */
511e3a05
JK
3236 if (!obj)
3237 goto retry;
3c517a61 3238 }
aedb0eb1 3239 }
cc9a6c87 3240
d26914d1 3241 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3242 goto retry_cpuset;
765c4507
CL
3243 return obj;
3244}
3245
e498be7d
CL
3246/*
3247 * A interface to enable slab creation on nodeid
1da177e4 3248 */
8b98c169 3249static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3250 int nodeid)
e498be7d 3251{
8456a648 3252 struct page *page;
ce8eb6c4 3253 struct kmem_cache_node *n;
213b4695 3254 void *obj = NULL;
b03a017b 3255 void *list = NULL;
b28a02de 3256
7c3fbbdd 3257 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3258 n = get_node(cachep, nodeid);
ce8eb6c4 3259 BUG_ON(!n);
b28a02de 3260
ca3b9b91 3261 check_irq_off();
ce8eb6c4 3262 spin_lock(&n->list_lock);
f68f8ddd 3263 page = get_first_slab(n, false);
7aa0d227
GT
3264 if (!page)
3265 goto must_grow;
b28a02de 3266
b28a02de 3267 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3268
3269 STATS_INC_NODEALLOCS(cachep);
3270 STATS_INC_ACTIVE(cachep);
3271 STATS_SET_HIGH(cachep);
3272
8456a648 3273 BUG_ON(page->active == cachep->num);
b28a02de 3274
260b61dd 3275 obj = slab_get_obj(cachep, page);
ce8eb6c4 3276 n->free_objects--;
b28a02de 3277
b03a017b 3278 fixup_slab_list(cachep, n, page, &list);
e498be7d 3279
ce8eb6c4 3280 spin_unlock(&n->list_lock);
b03a017b 3281 fixup_objfreelist_debug(cachep, &list);
213b4695 3282 return obj;
e498be7d 3283
a737b3e2 3284must_grow:
ce8eb6c4 3285 spin_unlock(&n->list_lock);
76b342bd 3286 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3287 if (page) {
3288 /* This slab isn't counted yet so don't update free_objects */
3289 obj = slab_get_obj(cachep, page);
3290 }
76b342bd 3291 cache_grow_end(cachep, page);
1da177e4 3292
213b4695 3293 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3294}
8c8cc2c1 3295
8c8cc2c1 3296static __always_inline void *
48356303 3297slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3298 unsigned long caller)
8c8cc2c1
PE
3299{
3300 unsigned long save_flags;
3301 void *ptr;
7d6e6d09 3302 int slab_node = numa_mem_id();
8c8cc2c1 3303
dcce284a 3304 flags &= gfp_allowed_mask;
011eceaf
JDB
3305 cachep = slab_pre_alloc_hook(cachep, flags);
3306 if (unlikely(!cachep))
824ebef1
AM
3307 return NULL;
3308
8c8cc2c1
PE
3309 cache_alloc_debugcheck_before(cachep, flags);
3310 local_irq_save(save_flags);
3311
eacbbae3 3312 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3313 nodeid = slab_node;
8c8cc2c1 3314
18bf8541 3315 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3316 /* Node not bootstrapped yet */
3317 ptr = fallback_alloc(cachep, flags);
3318 goto out;
3319 }
3320
7d6e6d09 3321 if (nodeid == slab_node) {
8c8cc2c1
PE
3322 /*
3323 * Use the locally cached objects if possible.
3324 * However ____cache_alloc does not allow fallback
3325 * to other nodes. It may fail while we still have
3326 * objects on other nodes available.
3327 */
3328 ptr = ____cache_alloc(cachep, flags);
3329 if (ptr)
3330 goto out;
3331 }
3332 /* ___cache_alloc_node can fall back to other nodes */
3333 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3334 out:
3335 local_irq_restore(save_flags);
3336 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3337
d5e3ed66
JDB
3338 if (unlikely(flags & __GFP_ZERO) && ptr)
3339 memset(ptr, 0, cachep->object_size);
d07dbea4 3340
d5e3ed66 3341 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3342 return ptr;
3343}
3344
3345static __always_inline void *
3346__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3347{
3348 void *objp;
3349
2ad654bc 3350 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3351 objp = alternate_node_alloc(cache, flags);
3352 if (objp)
3353 goto out;
3354 }
3355 objp = ____cache_alloc(cache, flags);
3356
3357 /*
3358 * We may just have run out of memory on the local node.
3359 * ____cache_alloc_node() knows how to locate memory on other nodes
3360 */
7d6e6d09
LS
3361 if (!objp)
3362 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3363
3364 out:
3365 return objp;
3366}
3367#else
3368
3369static __always_inline void *
3370__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3371{
3372 return ____cache_alloc(cachep, flags);
3373}
3374
3375#endif /* CONFIG_NUMA */
3376
3377static __always_inline void *
48356303 3378slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3379{
3380 unsigned long save_flags;
3381 void *objp;
3382
dcce284a 3383 flags &= gfp_allowed_mask;
011eceaf
JDB
3384 cachep = slab_pre_alloc_hook(cachep, flags);
3385 if (unlikely(!cachep))
824ebef1
AM
3386 return NULL;
3387
8c8cc2c1
PE
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390 objp = __do_cache_alloc(cachep, flags);
3391 local_irq_restore(save_flags);
3392 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393 prefetchw(objp);
3394
d5e3ed66
JDB
3395 if (unlikely(flags & __GFP_ZERO) && objp)
3396 memset(objp, 0, cachep->object_size);
d07dbea4 3397
d5e3ed66 3398 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3399 return objp;
3400}
e498be7d
CL
3401
3402/*
5f0985bb 3403 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3404 * @list: List of detached free slabs should be freed by caller
e498be7d 3405 */
97654dfa
JK
3406static void free_block(struct kmem_cache *cachep, void **objpp,
3407 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3408{
3409 int i;
25c063fb 3410 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3411 struct page *page;
3412
3413 n->free_objects += nr_objects;
1da177e4
LT
3414
3415 for (i = 0; i < nr_objects; i++) {
072bb0aa 3416 void *objp;
8456a648 3417 struct page *page;
1da177e4 3418
072bb0aa
MG
3419 objp = objpp[i];
3420
8456a648 3421 page = virt_to_head_page(objp);
8456a648 3422 list_del(&page->lru);
ff69416e 3423 check_spinlock_acquired_node(cachep, node);
260b61dd 3424 slab_put_obj(cachep, page, objp);
1da177e4 3425 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3426
3427 /* fixup slab chains */
f728b0a5 3428 if (page->active == 0) {
6052b788 3429 list_add(&page->lru, &n->slabs_free);
f728b0a5 3430 n->free_slabs++;
f728b0a5 3431 } else {
1da177e4
LT
3432 /* Unconditionally move a slab to the end of the
3433 * partial list on free - maximum time for the
3434 * other objects to be freed, too.
3435 */
8456a648 3436 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3437 }
3438 }
6052b788
JK
3439
3440 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3441 n->free_objects -= cachep->num;
3442
3443 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3444 list_move(&page->lru, list);
f728b0a5 3445 n->free_slabs--;
bf00bd34 3446 n->total_slabs--;
6052b788 3447 }
1da177e4
LT
3448}
3449
343e0d7a 3450static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3451{
3452 int batchcount;
ce8eb6c4 3453 struct kmem_cache_node *n;
7d6e6d09 3454 int node = numa_mem_id();
97654dfa 3455 LIST_HEAD(list);
1da177e4
LT
3456
3457 batchcount = ac->batchcount;
260b61dd 3458
1da177e4 3459 check_irq_off();
18bf8541 3460 n = get_node(cachep, node);
ce8eb6c4
CL
3461 spin_lock(&n->list_lock);
3462 if (n->shared) {
3463 struct array_cache *shared_array = n->shared;
b28a02de 3464 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3465 if (max) {
3466 if (batchcount > max)
3467 batchcount = max;
e498be7d 3468 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3469 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3470 shared_array->avail += batchcount;
3471 goto free_done;
3472 }
3473 }
3474
97654dfa 3475 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3476free_done:
1da177e4
LT
3477#if STATS
3478 {
3479 int i = 0;
73c0219d 3480 struct page *page;
1da177e4 3481
73c0219d 3482 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3483 BUG_ON(page->active);
1da177e4
LT
3484
3485 i++;
1da177e4
LT
3486 }
3487 STATS_SET_FREEABLE(cachep, i);
3488 }
3489#endif
ce8eb6c4 3490 spin_unlock(&n->list_lock);
97654dfa 3491 slabs_destroy(cachep, &list);
1da177e4 3492 ac->avail -= batchcount;
a737b3e2 3493 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3494}
3495
3496/*
a737b3e2
AM
3497 * Release an obj back to its cache. If the obj has a constructed state, it must
3498 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3499 */
a947eb95 3500static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3501 unsigned long caller)
1da177e4 3502{
55834c59
AP
3503 /* Put the object into the quarantine, don't touch it for now. */
3504 if (kasan_slab_free(cachep, objp))
3505 return;
3506
3507 ___cache_free(cachep, objp, caller);
3508}
1da177e4 3509
55834c59
AP
3510void ___cache_free(struct kmem_cache *cachep, void *objp,
3511 unsigned long caller)
3512{
3513 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3514
1da177e4 3515 check_irq_off();
d5cff635 3516 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3517 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3518
8c138bc0 3519 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3520
1807a1aa
SS
3521 /*
3522 * Skip calling cache_free_alien() when the platform is not numa.
3523 * This will avoid cache misses that happen while accessing slabp (which
3524 * is per page memory reference) to get nodeid. Instead use a global
3525 * variable to skip the call, which is mostly likely to be present in
3526 * the cache.
3527 */
b6e68bc1 3528 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3529 return;
3530
3d880194 3531 if (ac->avail < ac->limit) {
1da177e4 3532 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3533 } else {
3534 STATS_INC_FREEMISS(cachep);
3535 cache_flusharray(cachep, ac);
1da177e4 3536 }
42c8c99c 3537
f68f8ddd
JK
3538 if (sk_memalloc_socks()) {
3539 struct page *page = virt_to_head_page(objp);
3540
3541 if (unlikely(PageSlabPfmemalloc(page))) {
3542 cache_free_pfmemalloc(cachep, page, objp);
3543 return;
3544 }
3545 }
3546
3547 ac->entry[ac->avail++] = objp;
1da177e4
LT
3548}
3549
3550/**
3551 * kmem_cache_alloc - Allocate an object
3552 * @cachep: The cache to allocate from.
3553 * @flags: See kmalloc().
3554 *
3555 * Allocate an object from this cache. The flags are only relevant
3556 * if the cache has no available objects.
3557 */
343e0d7a 3558void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3559{
48356303 3560 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3561
505f5dcb 3562 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3563 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3564 cachep->object_size, cachep->size, flags);
36555751
EGM
3565
3566 return ret;
1da177e4
LT
3567}
3568EXPORT_SYMBOL(kmem_cache_alloc);
3569
7b0501dd
JDB
3570static __always_inline void
3571cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3572 size_t size, void **p, unsigned long caller)
3573{
3574 size_t i;
3575
3576 for (i = 0; i < size; i++)
3577 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3578}
3579
865762a8 3580int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3581 void **p)
484748f0 3582{
2a777eac
JDB
3583 size_t i;
3584
3585 s = slab_pre_alloc_hook(s, flags);
3586 if (!s)
3587 return 0;
3588
3589 cache_alloc_debugcheck_before(s, flags);
3590
3591 local_irq_disable();
3592 for (i = 0; i < size; i++) {
3593 void *objp = __do_cache_alloc(s, flags);
3594
2a777eac
JDB
3595 if (unlikely(!objp))
3596 goto error;
3597 p[i] = objp;
3598 }
3599 local_irq_enable();
3600
7b0501dd
JDB
3601 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3602
2a777eac
JDB
3603 /* Clear memory outside IRQ disabled section */
3604 if (unlikely(flags & __GFP_ZERO))
3605 for (i = 0; i < size; i++)
3606 memset(p[i], 0, s->object_size);
3607
3608 slab_post_alloc_hook(s, flags, size, p);
3609 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3610 return size;
3611error:
3612 local_irq_enable();
7b0501dd 3613 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3614 slab_post_alloc_hook(s, flags, i, p);
3615 __kmem_cache_free_bulk(s, i, p);
3616 return 0;
484748f0
CL
3617}
3618EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3619
0f24f128 3620#ifdef CONFIG_TRACING
85beb586 3621void *
4052147c 3622kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3623{
85beb586
SR
3624 void *ret;
3625
48356303 3626 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3627
505f5dcb 3628 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3629 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3630 size, cachep->size, flags);
85beb586 3631 return ret;
36555751 3632}
85beb586 3633EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3634#endif
3635
1da177e4 3636#ifdef CONFIG_NUMA
d0d04b78
ZL
3637/**
3638 * kmem_cache_alloc_node - Allocate an object on the specified node
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 * @nodeid: node number of the target node.
3642 *
3643 * Identical to kmem_cache_alloc but it will allocate memory on the given
3644 * node, which can improve the performance for cpu bound structures.
3645 *
3646 * Fallback to other node is possible if __GFP_THISNODE is not set.
3647 */
8b98c169
CH
3648void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3649{
48356303 3650 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3651
505f5dcb 3652 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3653 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3654 cachep->object_size, cachep->size,
ca2b84cb 3655 flags, nodeid);
36555751
EGM
3656
3657 return ret;
8b98c169 3658}
1da177e4
LT
3659EXPORT_SYMBOL(kmem_cache_alloc_node);
3660
0f24f128 3661#ifdef CONFIG_TRACING
4052147c 3662void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3663 gfp_t flags,
4052147c
EG
3664 int nodeid,
3665 size_t size)
36555751 3666{
85beb586
SR
3667 void *ret;
3668
592f4145 3669 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3670
3671 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3672 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3673 size, cachep->size,
85beb586
SR
3674 flags, nodeid);
3675 return ret;
36555751 3676}
85beb586 3677EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3678#endif
3679
8b98c169 3680static __always_inline void *
7c0cb9c6 3681__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3682{
343e0d7a 3683 struct kmem_cache *cachep;
7ed2f9e6 3684 void *ret;
97e2bde4 3685
2c59dd65 3686 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3687 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 return cachep;
7ed2f9e6 3689 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3690 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3691
3692 return ret;
97e2bde4 3693}
8b98c169 3694
8b98c169
CH
3695void *__kmalloc_node(size_t size, gfp_t flags, int node)
3696{
7c0cb9c6 3697 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3698}
dbe5e69d 3699EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3700
3701void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3702 int node, unsigned long caller)
8b98c169 3703{
7c0cb9c6 3704 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3705}
3706EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3707#endif /* CONFIG_NUMA */
1da177e4
LT
3708
3709/**
800590f5 3710 * __do_kmalloc - allocate memory
1da177e4 3711 * @size: how many bytes of memory are required.
800590f5 3712 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3713 * @caller: function caller for debug tracking of the caller
1da177e4 3714 */
7fd6b141 3715static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3716 unsigned long caller)
1da177e4 3717{
343e0d7a 3718 struct kmem_cache *cachep;
36555751 3719 void *ret;
1da177e4 3720
2c59dd65 3721 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3722 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3723 return cachep;
48356303 3724 ret = slab_alloc(cachep, flags, caller);
36555751 3725
505f5dcb 3726 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3727 trace_kmalloc(caller, ret,
3b0efdfa 3728 size, cachep->size, flags);
36555751
EGM
3729
3730 return ret;
7fd6b141
PE
3731}
3732
7fd6b141
PE
3733void *__kmalloc(size_t size, gfp_t flags)
3734{
7c0cb9c6 3735 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3736}
3737EXPORT_SYMBOL(__kmalloc);
3738
ce71e27c 3739void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3740{
7c0cb9c6 3741 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3742}
3743EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3744
1da177e4
LT
3745/**
3746 * kmem_cache_free - Deallocate an object
3747 * @cachep: The cache the allocation was from.
3748 * @objp: The previously allocated object.
3749 *
3750 * Free an object which was previously allocated from this
3751 * cache.
3752 */
343e0d7a 3753void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3754{
3755 unsigned long flags;
b9ce5ef4
GC
3756 cachep = cache_from_obj(cachep, objp);
3757 if (!cachep)
3758 return;
1da177e4
LT
3759
3760 local_irq_save(flags);
d97d476b 3761 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3762 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3763 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3764 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3765 local_irq_restore(flags);
36555751 3766
ca2b84cb 3767 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3768}
3769EXPORT_SYMBOL(kmem_cache_free);
3770
e6cdb58d
JDB
3771void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3772{
3773 struct kmem_cache *s;
3774 size_t i;
3775
3776 local_irq_disable();
3777 for (i = 0; i < size; i++) {
3778 void *objp = p[i];
3779
ca257195
JDB
3780 if (!orig_s) /* called via kfree_bulk */
3781 s = virt_to_cache(objp);
3782 else
3783 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3784
3785 debug_check_no_locks_freed(objp, s->object_size);
3786 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3787 debug_check_no_obj_freed(objp, s->object_size);
3788
3789 __cache_free(s, objp, _RET_IP_);
3790 }
3791 local_irq_enable();
3792
3793 /* FIXME: add tracing */
3794}
3795EXPORT_SYMBOL(kmem_cache_free_bulk);
3796
1da177e4
LT
3797/**
3798 * kfree - free previously allocated memory
3799 * @objp: pointer returned by kmalloc.
3800 *
80e93eff
PE
3801 * If @objp is NULL, no operation is performed.
3802 *
1da177e4
LT
3803 * Don't free memory not originally allocated by kmalloc()
3804 * or you will run into trouble.
3805 */
3806void kfree(const void *objp)
3807{
343e0d7a 3808 struct kmem_cache *c;
1da177e4
LT
3809 unsigned long flags;
3810
2121db74
PE
3811 trace_kfree(_RET_IP_, objp);
3812
6cb8f913 3813 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3814 return;
3815 local_irq_save(flags);
3816 kfree_debugcheck(objp);
6ed5eb22 3817 c = virt_to_cache(objp);
8c138bc0
CL
3818 debug_check_no_locks_freed(objp, c->object_size);
3819
3820 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3821 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3822 local_irq_restore(flags);
3823}
3824EXPORT_SYMBOL(kfree);
3825
e498be7d 3826/*
ce8eb6c4 3827 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3828 */
c3d332b6 3829static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3830{
c3d332b6 3831 int ret;
e498be7d 3832 int node;
ce8eb6c4 3833 struct kmem_cache_node *n;
e498be7d 3834
9c09a95c 3835 for_each_online_node(node) {
c3d332b6
JK
3836 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3837 if (ret)
e498be7d
CL
3838 goto fail;
3839
e498be7d 3840 }
c3d332b6 3841
cafeb02e 3842 return 0;
0718dc2a 3843
a737b3e2 3844fail:
3b0efdfa 3845 if (!cachep->list.next) {
0718dc2a
CL
3846 /* Cache is not active yet. Roll back what we did */
3847 node--;
3848 while (node >= 0) {
18bf8541
CL
3849 n = get_node(cachep, node);
3850 if (n) {
ce8eb6c4
CL
3851 kfree(n->shared);
3852 free_alien_cache(n->alien);
3853 kfree(n);
6a67368c 3854 cachep->node[node] = NULL;
0718dc2a
CL
3855 }
3856 node--;
3857 }
3858 }
cafeb02e 3859 return -ENOMEM;
e498be7d
CL
3860}
3861
18004c5d 3862/* Always called with the slab_mutex held */
943a451a 3863static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3864 int batchcount, int shared, gfp_t gfp)
1da177e4 3865{
bf0dea23
JK
3866 struct array_cache __percpu *cpu_cache, *prev;
3867 int cpu;
1da177e4 3868
bf0dea23
JK
3869 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3870 if (!cpu_cache)
d2e7b7d0
SS
3871 return -ENOMEM;
3872
bf0dea23
JK
3873 prev = cachep->cpu_cache;
3874 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3875 /*
3876 * Without a previous cpu_cache there's no need to synchronize remote
3877 * cpus, so skip the IPIs.
3878 */
3879 if (prev)
3880 kick_all_cpus_sync();
e498be7d 3881
1da177e4 3882 check_irq_on();
1da177e4
LT
3883 cachep->batchcount = batchcount;
3884 cachep->limit = limit;
e498be7d 3885 cachep->shared = shared;
1da177e4 3886
bf0dea23 3887 if (!prev)
c3d332b6 3888 goto setup_node;
bf0dea23
JK
3889
3890 for_each_online_cpu(cpu) {
97654dfa 3891 LIST_HEAD(list);
18bf8541
CL
3892 int node;
3893 struct kmem_cache_node *n;
bf0dea23 3894 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3895
bf0dea23 3896 node = cpu_to_mem(cpu);
18bf8541
CL
3897 n = get_node(cachep, node);
3898 spin_lock_irq(&n->list_lock);
bf0dea23 3899 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3900 spin_unlock_irq(&n->list_lock);
97654dfa 3901 slabs_destroy(cachep, &list);
1da177e4 3902 }
bf0dea23
JK
3903 free_percpu(prev);
3904
c3d332b6
JK
3905setup_node:
3906 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3907}
3908
943a451a
GC
3909static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3910 int batchcount, int shared, gfp_t gfp)
3911{
3912 int ret;
426589f5 3913 struct kmem_cache *c;
943a451a
GC
3914
3915 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3916
3917 if (slab_state < FULL)
3918 return ret;
3919
3920 if ((ret < 0) || !is_root_cache(cachep))
3921 return ret;
3922
426589f5
VD
3923 lockdep_assert_held(&slab_mutex);
3924 for_each_memcg_cache(c, cachep) {
3925 /* return value determined by the root cache only */
3926 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3927 }
3928
3929 return ret;
3930}
3931
18004c5d 3932/* Called with slab_mutex held always */
83b519e8 3933static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3934{
3935 int err;
943a451a
GC
3936 int limit = 0;
3937 int shared = 0;
3938 int batchcount = 0;
3939
7c00fce9 3940 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3941 if (err)
3942 goto end;
3943
943a451a
GC
3944 if (!is_root_cache(cachep)) {
3945 struct kmem_cache *root = memcg_root_cache(cachep);
3946 limit = root->limit;
3947 shared = root->shared;
3948 batchcount = root->batchcount;
3949 }
1da177e4 3950
943a451a
GC
3951 if (limit && shared && batchcount)
3952 goto skip_setup;
a737b3e2
AM
3953 /*
3954 * The head array serves three purposes:
1da177e4
LT
3955 * - create a LIFO ordering, i.e. return objects that are cache-warm
3956 * - reduce the number of spinlock operations.
a737b3e2 3957 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3958 * bufctl chains: array operations are cheaper.
3959 * The numbers are guessed, we should auto-tune as described by
3960 * Bonwick.
3961 */
3b0efdfa 3962 if (cachep->size > 131072)
1da177e4 3963 limit = 1;
3b0efdfa 3964 else if (cachep->size > PAGE_SIZE)
1da177e4 3965 limit = 8;
3b0efdfa 3966 else if (cachep->size > 1024)
1da177e4 3967 limit = 24;
3b0efdfa 3968 else if (cachep->size > 256)
1da177e4
LT
3969 limit = 54;
3970 else
3971 limit = 120;
3972
a737b3e2
AM
3973 /*
3974 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3975 * allocation behaviour: Most allocs on one cpu, most free operations
3976 * on another cpu. For these cases, an efficient object passing between
3977 * cpus is necessary. This is provided by a shared array. The array
3978 * replaces Bonwick's magazine layer.
3979 * On uniprocessor, it's functionally equivalent (but less efficient)
3980 * to a larger limit. Thus disabled by default.
3981 */
3982 shared = 0;
3b0efdfa 3983 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3984 shared = 8;
1da177e4
LT
3985
3986#if DEBUG
a737b3e2
AM
3987 /*
3988 * With debugging enabled, large batchcount lead to excessively long
3989 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3990 */
3991 if (limit > 32)
3992 limit = 32;
3993#endif
943a451a
GC
3994 batchcount = (limit + 1) / 2;
3995skip_setup:
3996 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3997end:
1da177e4 3998 if (err)
1170532b 3999 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 4000 cachep->name, -err);
2ed3a4ef 4001 return err;
1da177e4
LT
4002}
4003
1b55253a 4004/*
ce8eb6c4
CL
4005 * Drain an array if it contains any elements taking the node lock only if
4006 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4007 * if drain_array() is used on the shared array.
1b55253a 4008 */
ce8eb6c4 4009static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4010 struct array_cache *ac, int node)
1da177e4 4011{
97654dfa 4012 LIST_HEAD(list);
18726ca8
JK
4013
4014 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4015 check_mutex_acquired();
1da177e4 4016
1b55253a
CL
4017 if (!ac || !ac->avail)
4018 return;
18726ca8
JK
4019
4020 if (ac->touched) {
1da177e4 4021 ac->touched = 0;
18726ca8 4022 return;
1da177e4 4023 }
18726ca8
JK
4024
4025 spin_lock_irq(&n->list_lock);
4026 drain_array_locked(cachep, ac, node, false, &list);
4027 spin_unlock_irq(&n->list_lock);
4028
4029 slabs_destroy(cachep, &list);
1da177e4
LT
4030}
4031
4032/**
4033 * cache_reap - Reclaim memory from caches.
05fb6bf0 4034 * @w: work descriptor
1da177e4
LT
4035 *
4036 * Called from workqueue/eventd every few seconds.
4037 * Purpose:
4038 * - clear the per-cpu caches for this CPU.
4039 * - return freeable pages to the main free memory pool.
4040 *
a737b3e2
AM
4041 * If we cannot acquire the cache chain mutex then just give up - we'll try
4042 * again on the next iteration.
1da177e4 4043 */
7c5cae36 4044static void cache_reap(struct work_struct *w)
1da177e4 4045{
7a7c381d 4046 struct kmem_cache *searchp;
ce8eb6c4 4047 struct kmem_cache_node *n;
7d6e6d09 4048 int node = numa_mem_id();
bf6aede7 4049 struct delayed_work *work = to_delayed_work(w);
1da177e4 4050
18004c5d 4051 if (!mutex_trylock(&slab_mutex))
1da177e4 4052 /* Give up. Setup the next iteration. */
7c5cae36 4053 goto out;
1da177e4 4054
18004c5d 4055 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4056 check_irq_on();
4057
35386e3b 4058 /*
ce8eb6c4 4059 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4060 * have established with reasonable certainty that
4061 * we can do some work if the lock was obtained.
4062 */
18bf8541 4063 n = get_node(searchp, node);
35386e3b 4064
ce8eb6c4 4065 reap_alien(searchp, n);
1da177e4 4066
18726ca8 4067 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4068
35386e3b
CL
4069 /*
4070 * These are racy checks but it does not matter
4071 * if we skip one check or scan twice.
4072 */
ce8eb6c4 4073 if (time_after(n->next_reap, jiffies))
35386e3b 4074 goto next;
1da177e4 4075
5f0985bb 4076 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4077
18726ca8 4078 drain_array(searchp, n, n->shared, node);
1da177e4 4079
ce8eb6c4
CL
4080 if (n->free_touched)
4081 n->free_touched = 0;
ed11d9eb
CL
4082 else {
4083 int freed;
1da177e4 4084
ce8eb6c4 4085 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4086 5 * searchp->num - 1) / (5 * searchp->num));
4087 STATS_ADD_REAPED(searchp, freed);
4088 }
35386e3b 4089next:
1da177e4
LT
4090 cond_resched();
4091 }
4092 check_irq_on();
18004c5d 4093 mutex_unlock(&slab_mutex);
8fce4d8e 4094 next_reap_node();
7c5cae36 4095out:
a737b3e2 4096 /* Set up the next iteration */
5f0985bb 4097 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4098}
4099
158a9624 4100#ifdef CONFIG_SLABINFO
0d7561c6 4101void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4102{
f728b0a5 4103 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4104 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4105 unsigned long free_slabs = 0;
e498be7d 4106 int node;
ce8eb6c4 4107 struct kmem_cache_node *n;
1da177e4 4108
18bf8541 4109 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4110 check_irq_on();
ce8eb6c4 4111 spin_lock_irq(&n->list_lock);
e498be7d 4112
bf00bd34
DR
4113 total_slabs += n->total_slabs;
4114 free_slabs += n->free_slabs;
f728b0a5 4115 free_objs += n->free_objects;
07a63c41 4116
ce8eb6c4
CL
4117 if (n->shared)
4118 shared_avail += n->shared->avail;
e498be7d 4119
ce8eb6c4 4120 spin_unlock_irq(&n->list_lock);
1da177e4 4121 }
bf00bd34
DR
4122 num_objs = total_slabs * cachep->num;
4123 active_slabs = total_slabs - free_slabs;
f728b0a5 4124 active_objs = num_objs - free_objs;
1da177e4 4125
0d7561c6
GC
4126 sinfo->active_objs = active_objs;
4127 sinfo->num_objs = num_objs;
4128 sinfo->active_slabs = active_slabs;
bf00bd34 4129 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4130 sinfo->shared_avail = shared_avail;
4131 sinfo->limit = cachep->limit;
4132 sinfo->batchcount = cachep->batchcount;
4133 sinfo->shared = cachep->shared;
4134 sinfo->objects_per_slab = cachep->num;
4135 sinfo->cache_order = cachep->gfporder;
4136}
4137
4138void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4139{
1da177e4 4140#if STATS
ce8eb6c4 4141 { /* node stats */
1da177e4
LT
4142 unsigned long high = cachep->high_mark;
4143 unsigned long allocs = cachep->num_allocations;
4144 unsigned long grown = cachep->grown;
4145 unsigned long reaped = cachep->reaped;
4146 unsigned long errors = cachep->errors;
4147 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4148 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4149 unsigned long node_frees = cachep->node_frees;
fb7faf33 4150 unsigned long overflows = cachep->node_overflow;
1da177e4 4151
756a025f 4152 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4153 allocs, high, grown,
4154 reaped, errors, max_freeable, node_allocs,
4155 node_frees, overflows);
1da177e4
LT
4156 }
4157 /* cpu stats */
4158 {
4159 unsigned long allochit = atomic_read(&cachep->allochit);
4160 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4161 unsigned long freehit = atomic_read(&cachep->freehit);
4162 unsigned long freemiss = atomic_read(&cachep->freemiss);
4163
4164 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4165 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4166 }
4167#endif
1da177e4
LT
4168}
4169
1da177e4
LT
4170#define MAX_SLABINFO_WRITE 128
4171/**
4172 * slabinfo_write - Tuning for the slab allocator
4173 * @file: unused
4174 * @buffer: user buffer
4175 * @count: data length
4176 * @ppos: unused
4177 */
b7454ad3 4178ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4179 size_t count, loff_t *ppos)
1da177e4 4180{
b28a02de 4181 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4182 int limit, batchcount, shared, res;
7a7c381d 4183 struct kmem_cache *cachep;
b28a02de 4184
1da177e4
LT
4185 if (count > MAX_SLABINFO_WRITE)
4186 return -EINVAL;
4187 if (copy_from_user(&kbuf, buffer, count))
4188 return -EFAULT;
b28a02de 4189 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4190
4191 tmp = strchr(kbuf, ' ');
4192 if (!tmp)
4193 return -EINVAL;
4194 *tmp = '\0';
4195 tmp++;
4196 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4197 return -EINVAL;
4198
4199 /* Find the cache in the chain of caches. */
18004c5d 4200 mutex_lock(&slab_mutex);
1da177e4 4201 res = -EINVAL;
18004c5d 4202 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4203 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4204 if (limit < 1 || batchcount < 1 ||
4205 batchcount > limit || shared < 0) {
e498be7d 4206 res = 0;
1da177e4 4207 } else {
e498be7d 4208 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4209 batchcount, shared,
4210 GFP_KERNEL);
1da177e4
LT
4211 }
4212 break;
4213 }
4214 }
18004c5d 4215 mutex_unlock(&slab_mutex);
1da177e4
LT
4216 if (res >= 0)
4217 res = count;
4218 return res;
4219}
871751e2
AV
4220
4221#ifdef CONFIG_DEBUG_SLAB_LEAK
4222
871751e2
AV
4223static inline int add_caller(unsigned long *n, unsigned long v)
4224{
4225 unsigned long *p;
4226 int l;
4227 if (!v)
4228 return 1;
4229 l = n[1];
4230 p = n + 2;
4231 while (l) {
4232 int i = l/2;
4233 unsigned long *q = p + 2 * i;
4234 if (*q == v) {
4235 q[1]++;
4236 return 1;
4237 }
4238 if (*q > v) {
4239 l = i;
4240 } else {
4241 p = q + 2;
4242 l -= i + 1;
4243 }
4244 }
4245 if (++n[1] == n[0])
4246 return 0;
4247 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4248 p[0] = v;
4249 p[1] = 1;
4250 return 1;
4251}
4252
8456a648
JK
4253static void handle_slab(unsigned long *n, struct kmem_cache *c,
4254 struct page *page)
871751e2
AV
4255{
4256 void *p;
d31676df
JK
4257 int i, j;
4258 unsigned long v;
b1cb0982 4259
871751e2
AV
4260 if (n[0] == n[1])
4261 return;
8456a648 4262 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4263 bool active = true;
4264
4265 for (j = page->active; j < c->num; j++) {
4266 if (get_free_obj(page, j) == i) {
4267 active = false;
4268 break;
4269 }
4270 }
4271
4272 if (!active)
871751e2 4273 continue;
b1cb0982 4274
d31676df
JK
4275 /*
4276 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4277 * mapping is established when actual object allocation and
4278 * we could mistakenly access the unmapped object in the cpu
4279 * cache.
4280 */
4281 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4282 continue;
4283
4284 if (!add_caller(n, v))
871751e2
AV
4285 return;
4286 }
4287}
4288
4289static void show_symbol(struct seq_file *m, unsigned long address)
4290{
4291#ifdef CONFIG_KALLSYMS
871751e2 4292 unsigned long offset, size;
9281acea 4293 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4294
a5c43dae 4295 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4296 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4297 if (modname[0])
871751e2
AV
4298 seq_printf(m, " [%s]", modname);
4299 return;
4300 }
4301#endif
4302 seq_printf(m, "%p", (void *)address);
4303}
4304
4305static int leaks_show(struct seq_file *m, void *p)
4306{
0672aa7c 4307 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4308 struct page *page;
ce8eb6c4 4309 struct kmem_cache_node *n;
871751e2 4310 const char *name;
db845067 4311 unsigned long *x = m->private;
871751e2
AV
4312 int node;
4313 int i;
4314
4315 if (!(cachep->flags & SLAB_STORE_USER))
4316 return 0;
4317 if (!(cachep->flags & SLAB_RED_ZONE))
4318 return 0;
4319
d31676df
JK
4320 /*
4321 * Set store_user_clean and start to grab stored user information
4322 * for all objects on this cache. If some alloc/free requests comes
4323 * during the processing, information would be wrong so restart
4324 * whole processing.
4325 */
4326 do {
4327 set_store_user_clean(cachep);
4328 drain_cpu_caches(cachep);
4329
4330 x[1] = 0;
871751e2 4331
d31676df 4332 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4333
d31676df
JK
4334 check_irq_on();
4335 spin_lock_irq(&n->list_lock);
871751e2 4336
d31676df
JK
4337 list_for_each_entry(page, &n->slabs_full, lru)
4338 handle_slab(x, cachep, page);
4339 list_for_each_entry(page, &n->slabs_partial, lru)
4340 handle_slab(x, cachep, page);
4341 spin_unlock_irq(&n->list_lock);
4342 }
4343 } while (!is_store_user_clean(cachep));
871751e2 4344
871751e2 4345 name = cachep->name;
db845067 4346 if (x[0] == x[1]) {
871751e2 4347 /* Increase the buffer size */
18004c5d 4348 mutex_unlock(&slab_mutex);
db845067 4349 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4350 if (!m->private) {
4351 /* Too bad, we are really out */
db845067 4352 m->private = x;
18004c5d 4353 mutex_lock(&slab_mutex);
871751e2
AV
4354 return -ENOMEM;
4355 }
db845067
CL
4356 *(unsigned long *)m->private = x[0] * 2;
4357 kfree(x);
18004c5d 4358 mutex_lock(&slab_mutex);
871751e2
AV
4359 /* Now make sure this entry will be retried */
4360 m->count = m->size;
4361 return 0;
4362 }
db845067
CL
4363 for (i = 0; i < x[1]; i++) {
4364 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365 show_symbol(m, x[2*i+2]);
871751e2
AV
4366 seq_putc(m, '\n');
4367 }
d2e7b7d0 4368
871751e2
AV
4369 return 0;
4370}
4371
a0ec95a8 4372static const struct seq_operations slabstats_op = {
1df3b26f 4373 .start = slab_start,
276a2439
WL
4374 .next = slab_next,
4375 .stop = slab_stop,
871751e2
AV
4376 .show = leaks_show,
4377};
a0ec95a8
AD
4378
4379static int slabstats_open(struct inode *inode, struct file *file)
4380{
b208ce32
RJ
4381 unsigned long *n;
4382
4383 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4384 if (!n)
4385 return -ENOMEM;
4386
4387 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4388
4389 return 0;
a0ec95a8
AD
4390}
4391
4392static const struct file_operations proc_slabstats_operations = {
4393 .open = slabstats_open,
4394 .read = seq_read,
4395 .llseek = seq_lseek,
4396 .release = seq_release_private,
4397};
4398#endif
4399
4400static int __init slab_proc_init(void)
4401{
4402#ifdef CONFIG_DEBUG_SLAB_LEAK
4403 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4404#endif
a0ec95a8
AD
4405 return 0;
4406}
4407module_init(slab_proc_init);
1da177e4
LT
4408#endif
4409
04385fc5
KC
4410#ifdef CONFIG_HARDENED_USERCOPY
4411/*
4412 * Rejects objects that are incorrectly sized.
4413 *
4414 * Returns NULL if check passes, otherwise const char * to name of cache
4415 * to indicate an error.
4416 */
4417const char *__check_heap_object(const void *ptr, unsigned long n,
4418 struct page *page)
4419{
4420 struct kmem_cache *cachep;
4421 unsigned int objnr;
4422 unsigned long offset;
4423
4424 /* Find and validate object. */
4425 cachep = page->slab_cache;
4426 objnr = obj_to_index(cachep, page, (void *)ptr);
4427 BUG_ON(objnr >= cachep->num);
4428
4429 /* Find offset within object. */
4430 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4431
4432 /* Allow address range falling entirely within object size. */
4433 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4434 return NULL;
4435
4436 return cachep->name;
4437}
4438#endif /* CONFIG_HARDENED_USERCOPY */
4439
00e145b6
MS
4440/**
4441 * ksize - get the actual amount of memory allocated for a given object
4442 * @objp: Pointer to the object
4443 *
4444 * kmalloc may internally round up allocations and return more memory
4445 * than requested. ksize() can be used to determine the actual amount of
4446 * memory allocated. The caller may use this additional memory, even though
4447 * a smaller amount of memory was initially specified with the kmalloc call.
4448 * The caller must guarantee that objp points to a valid object previously
4449 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4450 * must not be freed during the duration of the call.
4451 */
fd76bab2 4452size_t ksize(const void *objp)
1da177e4 4453{
7ed2f9e6
AP
4454 size_t size;
4455
ef8b4520
CL
4456 BUG_ON(!objp);
4457 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4458 return 0;
1da177e4 4459
7ed2f9e6
AP
4460 size = virt_to_cache(objp)->object_size;
4461 /* We assume that ksize callers could use the whole allocated area,
4462 * so we need to unpoison this area.
4463 */
4ebb31a4 4464 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4465
4466 return size;
1da177e4 4467}
b1aabecd 4468EXPORT_SYMBOL(ksize);