]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.c
[PATCH] slab: extract __kmem_cache_destroy from kmem_cache_destroy
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316static void enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 */
686static struct lock_class_key on_slab_key;
687
688static inline void init_lock_keys(struct cache_sizes *s)
689{
690 int q;
691
692 for (q = 0; q < MAX_NUMNODES; q++) {
693 if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
694 continue;
695 lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
696 &on_slab_key);
697 }
698}
699
700#else
701static inline void init_lock_keys(struct cache_sizes *s)
702{
703}
704#endif
705
706
707
1da177e4 708/* Guard access to the cache-chain. */
fc0abb14 709static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
710static struct list_head cache_chain;
711
712/*
a737b3e2
AM
713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
1da177e4
LT
715 *
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
717 */
718atomic_t slab_reclaim_pages;
1da177e4
LT
719
720/*
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
723 */
724static enum {
725 NONE,
e498be7d
CL
726 PARTIAL_AC,
727 PARTIAL_L3,
1da177e4
LT
728 FULL
729} g_cpucache_up;
730
39d24e64
MK
731/*
732 * used by boot code to determine if it can use slab based allocator
733 */
734int slab_is_available(void)
735{
736 return g_cpucache_up == FULL;
737}
738
1da177e4
LT
739static DEFINE_PER_CPU(struct work_struct, reap_work);
740
343e0d7a 741static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
742{
743 return cachep->array[smp_processor_id()];
744}
745
a737b3e2
AM
746static inline struct kmem_cache *__find_general_cachep(size_t size,
747 gfp_t gfpflags)
1da177e4
LT
748{
749 struct cache_sizes *csizep = malloc_sizes;
750
751#if DEBUG
752 /* This happens if someone tries to call
b28a02de
PE
753 * kmem_cache_create(), or __kmalloc(), before
754 * the generic caches are initialized.
755 */
c7e43c78 756 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
757#endif
758 while (size > csizep->cs_size)
759 csizep++;
760
761 /*
0abf40c1 762 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
763 * has cs_{dma,}cachep==NULL. Thus no special case
764 * for large kmalloc calls required.
765 */
766 if (unlikely(gfpflags & GFP_DMA))
767 return csizep->cs_dmacachep;
768 return csizep->cs_cachep;
769}
770
b221385b 771static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
772{
773 return __find_general_cachep(size, gfpflags);
774}
97e2bde4 775
fbaccacf 776static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 777{
fbaccacf
SR
778 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
779}
1da177e4 780
a737b3e2
AM
781/*
782 * Calculate the number of objects and left-over bytes for a given buffer size.
783 */
fbaccacf
SR
784static void cache_estimate(unsigned long gfporder, size_t buffer_size,
785 size_t align, int flags, size_t *left_over,
786 unsigned int *num)
787{
788 int nr_objs;
789 size_t mgmt_size;
790 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 791
fbaccacf
SR
792 /*
793 * The slab management structure can be either off the slab or
794 * on it. For the latter case, the memory allocated for a
795 * slab is used for:
796 *
797 * - The struct slab
798 * - One kmem_bufctl_t for each object
799 * - Padding to respect alignment of @align
800 * - @buffer_size bytes for each object
801 *
802 * If the slab management structure is off the slab, then the
803 * alignment will already be calculated into the size. Because
804 * the slabs are all pages aligned, the objects will be at the
805 * correct alignment when allocated.
806 */
807 if (flags & CFLGS_OFF_SLAB) {
808 mgmt_size = 0;
809 nr_objs = slab_size / buffer_size;
810
811 if (nr_objs > SLAB_LIMIT)
812 nr_objs = SLAB_LIMIT;
813 } else {
814 /*
815 * Ignore padding for the initial guess. The padding
816 * is at most @align-1 bytes, and @buffer_size is at
817 * least @align. In the worst case, this result will
818 * be one greater than the number of objects that fit
819 * into the memory allocation when taking the padding
820 * into account.
821 */
822 nr_objs = (slab_size - sizeof(struct slab)) /
823 (buffer_size + sizeof(kmem_bufctl_t));
824
825 /*
826 * This calculated number will be either the right
827 * amount, or one greater than what we want.
828 */
829 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
830 > slab_size)
831 nr_objs--;
832
833 if (nr_objs > SLAB_LIMIT)
834 nr_objs = SLAB_LIMIT;
835
836 mgmt_size = slab_mgmt_size(nr_objs, align);
837 }
838 *num = nr_objs;
839 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
840}
841
842#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
843
a737b3e2
AM
844static void __slab_error(const char *function, struct kmem_cache *cachep,
845 char *msg)
1da177e4
LT
846{
847 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 848 function, cachep->name, msg);
1da177e4
LT
849 dump_stack();
850}
851
8fce4d8e
CL
852#ifdef CONFIG_NUMA
853/*
854 * Special reaping functions for NUMA systems called from cache_reap().
855 * These take care of doing round robin flushing of alien caches (containing
856 * objects freed on different nodes from which they were allocated) and the
857 * flushing of remote pcps by calling drain_node_pages.
858 */
859static DEFINE_PER_CPU(unsigned long, reap_node);
860
861static void init_reap_node(int cpu)
862{
863 int node;
864
865 node = next_node(cpu_to_node(cpu), node_online_map);
866 if (node == MAX_NUMNODES)
442295c9 867 node = first_node(node_online_map);
8fce4d8e
CL
868
869 __get_cpu_var(reap_node) = node;
870}
871
872static void next_reap_node(void)
873{
874 int node = __get_cpu_var(reap_node);
875
876 /*
877 * Also drain per cpu pages on remote zones
878 */
879 if (node != numa_node_id())
880 drain_node_pages(node);
881
882 node = next_node(node, node_online_map);
883 if (unlikely(node >= MAX_NUMNODES))
884 node = first_node(node_online_map);
885 __get_cpu_var(reap_node) = node;
886}
887
888#else
889#define init_reap_node(cpu) do { } while (0)
890#define next_reap_node(void) do { } while (0)
891#endif
892
1da177e4
LT
893/*
894 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
895 * via the workqueue/eventd.
896 * Add the CPU number into the expiration time to minimize the possibility of
897 * the CPUs getting into lockstep and contending for the global cache chain
898 * lock.
899 */
900static void __devinit start_cpu_timer(int cpu)
901{
902 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
903
904 /*
905 * When this gets called from do_initcalls via cpucache_init(),
906 * init_workqueues() has already run, so keventd will be setup
907 * at that time.
908 */
909 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 910 init_reap_node(cpu);
1da177e4
LT
911 INIT_WORK(reap_work, cache_reap, NULL);
912 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
913 }
914}
915
e498be7d 916static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 917 int batchcount)
1da177e4 918{
b28a02de 919 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
920 struct array_cache *nc = NULL;
921
e498be7d 922 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
923 if (nc) {
924 nc->avail = 0;
925 nc->limit = entries;
926 nc->batchcount = batchcount;
927 nc->touched = 0;
e498be7d 928 spin_lock_init(&nc->lock);
1da177e4
LT
929 }
930 return nc;
931}
932
3ded175a
CL
933/*
934 * Transfer objects in one arraycache to another.
935 * Locking must be handled by the caller.
936 *
937 * Return the number of entries transferred.
938 */
939static int transfer_objects(struct array_cache *to,
940 struct array_cache *from, unsigned int max)
941{
942 /* Figure out how many entries to transfer */
943 int nr = min(min(from->avail, max), to->limit - to->avail);
944
945 if (!nr)
946 return 0;
947
948 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
949 sizeof(void *) *nr);
950
951 from->avail -= nr;
952 to->avail += nr;
953 to->touched = 1;
954 return nr;
955}
956
e498be7d 957#ifdef CONFIG_NUMA
343e0d7a 958static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 959static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 960
5295a74c 961static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
962{
963 struct array_cache **ac_ptr;
b28a02de 964 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
965 int i;
966
967 if (limit > 1)
968 limit = 12;
969 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
970 if (ac_ptr) {
971 for_each_node(i) {
972 if (i == node || !node_online(i)) {
973 ac_ptr[i] = NULL;
974 continue;
975 }
976 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
977 if (!ac_ptr[i]) {
b28a02de 978 for (i--; i <= 0; i--)
e498be7d
CL
979 kfree(ac_ptr[i]);
980 kfree(ac_ptr);
981 return NULL;
982 }
983 }
984 }
985 return ac_ptr;
986}
987
5295a74c 988static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
989{
990 int i;
991
992 if (!ac_ptr)
993 return;
e498be7d 994 for_each_node(i)
b28a02de 995 kfree(ac_ptr[i]);
e498be7d
CL
996 kfree(ac_ptr);
997}
998
343e0d7a 999static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1000 struct array_cache *ac, int node)
e498be7d
CL
1001{
1002 struct kmem_list3 *rl3 = cachep->nodelists[node];
1003
1004 if (ac->avail) {
1005 spin_lock(&rl3->list_lock);
e00946fe
CL
1006 /*
1007 * Stuff objects into the remote nodes shared array first.
1008 * That way we could avoid the overhead of putting the objects
1009 * into the free lists and getting them back later.
1010 */
693f7d36
JS
1011 if (rl3->shared)
1012 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1013
ff69416e 1014 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1015 ac->avail = 0;
1016 spin_unlock(&rl3->list_lock);
1017 }
1018}
1019
8fce4d8e
CL
1020/*
1021 * Called from cache_reap() to regularly drain alien caches round robin.
1022 */
1023static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1024{
1025 int node = __get_cpu_var(reap_node);
1026
1027 if (l3->alien) {
1028 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1029
1030 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1031 __drain_alien_cache(cachep, ac, node);
1032 spin_unlock_irq(&ac->lock);
1033 }
1034 }
1035}
1036
a737b3e2
AM
1037static void drain_alien_cache(struct kmem_cache *cachep,
1038 struct array_cache **alien)
e498be7d 1039{
b28a02de 1040 int i = 0;
e498be7d
CL
1041 struct array_cache *ac;
1042 unsigned long flags;
1043
1044 for_each_online_node(i) {
4484ebf1 1045 ac = alien[i];
e498be7d
CL
1046 if (ac) {
1047 spin_lock_irqsave(&ac->lock, flags);
1048 __drain_alien_cache(cachep, ac, i);
1049 spin_unlock_irqrestore(&ac->lock, flags);
1050 }
1051 }
1052}
729bd0b7 1053
873623df 1054static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1055{
1056 struct slab *slabp = virt_to_slab(objp);
1057 int nodeid = slabp->nodeid;
1058 struct kmem_list3 *l3;
1059 struct array_cache *alien = NULL;
1060
1061 /*
1062 * Make sure we are not freeing a object from another node to the array
1063 * cache on this cpu.
1064 */
1065 if (likely(slabp->nodeid == numa_node_id()))
1066 return 0;
1067
1068 l3 = cachep->nodelists[numa_node_id()];
1069 STATS_INC_NODEFREES(cachep);
1070 if (l3->alien && l3->alien[nodeid]) {
1071 alien = l3->alien[nodeid];
873623df 1072 spin_lock(&alien->lock);
729bd0b7
PE
1073 if (unlikely(alien->avail == alien->limit)) {
1074 STATS_INC_ACOVERFLOW(cachep);
1075 __drain_alien_cache(cachep, alien, nodeid);
1076 }
1077 alien->entry[alien->avail++] = objp;
1078 spin_unlock(&alien->lock);
1079 } else {
1080 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1081 free_block(cachep, &objp, 1, nodeid);
1082 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1083 }
1084 return 1;
1085}
1086
e498be7d 1087#else
7a21ef6f 1088
4484ebf1 1089#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1090#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1091
7a21ef6f
LT
1092static inline struct array_cache **alloc_alien_cache(int node, int limit)
1093{
1094 return (struct array_cache **) 0x01020304ul;
1095}
1096
4484ebf1
RT
1097static inline void free_alien_cache(struct array_cache **ac_ptr)
1098{
1099}
7a21ef6f 1100
873623df 1101static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1102{
1103 return 0;
1104}
1105
e498be7d
CL
1106#endif
1107
8c78f307 1108static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1109 unsigned long action, void *hcpu)
1da177e4
LT
1110{
1111 long cpu = (long)hcpu;
343e0d7a 1112 struct kmem_cache *cachep;
e498be7d
CL
1113 struct kmem_list3 *l3 = NULL;
1114 int node = cpu_to_node(cpu);
1115 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1116
1117 switch (action) {
1118 case CPU_UP_PREPARE:
fc0abb14 1119 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1120 /*
1121 * We need to do this right in the beginning since
e498be7d
CL
1122 * alloc_arraycache's are going to use this list.
1123 * kmalloc_node allows us to add the slab to the right
1124 * kmem_list3 and not this cpu's kmem_list3
1125 */
1126
1da177e4 1127 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1128 /*
1129 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1130 * begin anything. Make sure some other cpu on this
1131 * node has not already allocated this
1132 */
1133 if (!cachep->nodelists[node]) {
a737b3e2
AM
1134 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1135 if (!l3)
e498be7d
CL
1136 goto bad;
1137 kmem_list3_init(l3);
1138 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1139 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1140
4484ebf1
RT
1141 /*
1142 * The l3s don't come and go as CPUs come and
1143 * go. cache_chain_mutex is sufficient
1144 * protection here.
1145 */
e498be7d
CL
1146 cachep->nodelists[node] = l3;
1147 }
1da177e4 1148
e498be7d
CL
1149 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1150 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1151 (1 + nr_cpus_node(node)) *
1152 cachep->batchcount + cachep->num;
e498be7d
CL
1153 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1154 }
1155
a737b3e2
AM
1156 /*
1157 * Now we can go ahead with allocating the shared arrays and
1158 * array caches
1159 */
e498be7d 1160 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1161 struct array_cache *nc;
4484ebf1
RT
1162 struct array_cache *shared;
1163 struct array_cache **alien;
cd105df4 1164
e498be7d 1165 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1166 cachep->batchcount);
1da177e4
LT
1167 if (!nc)
1168 goto bad;
4484ebf1
RT
1169 shared = alloc_arraycache(node,
1170 cachep->shared * cachep->batchcount,
1171 0xbaadf00d);
1172 if (!shared)
1173 goto bad;
7a21ef6f 1174
4484ebf1
RT
1175 alien = alloc_alien_cache(node, cachep->limit);
1176 if (!alien)
1177 goto bad;
1da177e4 1178 cachep->array[cpu] = nc;
e498be7d
CL
1179 l3 = cachep->nodelists[node];
1180 BUG_ON(!l3);
e498be7d 1181
4484ebf1
RT
1182 spin_lock_irq(&l3->list_lock);
1183 if (!l3->shared) {
1184 /*
1185 * We are serialised from CPU_DEAD or
1186 * CPU_UP_CANCELLED by the cpucontrol lock
1187 */
1188 l3->shared = shared;
1189 shared = NULL;
e498be7d 1190 }
4484ebf1
RT
1191#ifdef CONFIG_NUMA
1192 if (!l3->alien) {
1193 l3->alien = alien;
1194 alien = NULL;
1195 }
1196#endif
1197 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1198 kfree(shared);
1199 free_alien_cache(alien);
1da177e4 1200 }
fc0abb14 1201 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1202 break;
1203 case CPU_ONLINE:
1204 start_cpu_timer(cpu);
1205 break;
1206#ifdef CONFIG_HOTPLUG_CPU
1207 case CPU_DEAD:
4484ebf1
RT
1208 /*
1209 * Even if all the cpus of a node are down, we don't free the
1210 * kmem_list3 of any cache. This to avoid a race between
1211 * cpu_down, and a kmalloc allocation from another cpu for
1212 * memory from the node of the cpu going down. The list3
1213 * structure is usually allocated from kmem_cache_create() and
1214 * gets destroyed at kmem_cache_destroy().
1215 */
1da177e4
LT
1216 /* fall thru */
1217 case CPU_UP_CANCELED:
fc0abb14 1218 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1219 list_for_each_entry(cachep, &cache_chain, next) {
1220 struct array_cache *nc;
4484ebf1
RT
1221 struct array_cache *shared;
1222 struct array_cache **alien;
e498be7d 1223 cpumask_t mask;
1da177e4 1224
e498be7d 1225 mask = node_to_cpumask(node);
1da177e4
LT
1226 /* cpu is dead; no one can alloc from it. */
1227 nc = cachep->array[cpu];
1228 cachep->array[cpu] = NULL;
e498be7d
CL
1229 l3 = cachep->nodelists[node];
1230
1231 if (!l3)
4484ebf1 1232 goto free_array_cache;
e498be7d 1233
ca3b9b91 1234 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1235
1236 /* Free limit for this kmem_list3 */
1237 l3->free_limit -= cachep->batchcount;
1238 if (nc)
ff69416e 1239 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1240
1241 if (!cpus_empty(mask)) {
ca3b9b91 1242 spin_unlock_irq(&l3->list_lock);
4484ebf1 1243 goto free_array_cache;
b28a02de 1244 }
e498be7d 1245
4484ebf1
RT
1246 shared = l3->shared;
1247 if (shared) {
e498be7d 1248 free_block(cachep, l3->shared->entry,
b28a02de 1249 l3->shared->avail, node);
e498be7d
CL
1250 l3->shared = NULL;
1251 }
e498be7d 1252
4484ebf1
RT
1253 alien = l3->alien;
1254 l3->alien = NULL;
1255
1256 spin_unlock_irq(&l3->list_lock);
1257
1258 kfree(shared);
1259 if (alien) {
1260 drain_alien_cache(cachep, alien);
1261 free_alien_cache(alien);
e498be7d 1262 }
4484ebf1 1263free_array_cache:
1da177e4
LT
1264 kfree(nc);
1265 }
4484ebf1
RT
1266 /*
1267 * In the previous loop, all the objects were freed to
1268 * the respective cache's slabs, now we can go ahead and
1269 * shrink each nodelist to its limit.
1270 */
1271 list_for_each_entry(cachep, &cache_chain, next) {
1272 l3 = cachep->nodelists[node];
1273 if (!l3)
1274 continue;
ed11d9eb 1275 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1276 }
fc0abb14 1277 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1278 break;
1279#endif
1280 }
1281 return NOTIFY_OK;
a737b3e2 1282bad:
fc0abb14 1283 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1284 return NOTIFY_BAD;
1285}
1286
74b85f37
CS
1287static struct notifier_block __cpuinitdata cpucache_notifier = {
1288 &cpuup_callback, NULL, 0
1289};
1da177e4 1290
e498be7d
CL
1291/*
1292 * swap the static kmem_list3 with kmalloced memory
1293 */
a737b3e2
AM
1294static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1295 int nodeid)
e498be7d
CL
1296{
1297 struct kmem_list3 *ptr;
1298
1299 BUG_ON(cachep->nodelists[nodeid] != list);
1300 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1301 BUG_ON(!ptr);
1302
1303 local_irq_disable();
1304 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1305 /*
1306 * Do not assume that spinlocks can be initialized via memcpy:
1307 */
1308 spin_lock_init(&ptr->list_lock);
1309
e498be7d
CL
1310 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1311 cachep->nodelists[nodeid] = ptr;
1312 local_irq_enable();
1313}
1314
a737b3e2
AM
1315/*
1316 * Initialisation. Called after the page allocator have been initialised and
1317 * before smp_init().
1da177e4
LT
1318 */
1319void __init kmem_cache_init(void)
1320{
1321 size_t left_over;
1322 struct cache_sizes *sizes;
1323 struct cache_names *names;
e498be7d 1324 int i;
07ed76b2 1325 int order;
e498be7d
CL
1326
1327 for (i = 0; i < NUM_INIT_LISTS; i++) {
1328 kmem_list3_init(&initkmem_list3[i]);
1329 if (i < MAX_NUMNODES)
1330 cache_cache.nodelists[i] = NULL;
1331 }
1da177e4
LT
1332
1333 /*
1334 * Fragmentation resistance on low memory - only use bigger
1335 * page orders on machines with more than 32MB of memory.
1336 */
1337 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1338 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1339
1da177e4
LT
1340 /* Bootstrap is tricky, because several objects are allocated
1341 * from caches that do not exist yet:
a737b3e2
AM
1342 * 1) initialize the cache_cache cache: it contains the struct
1343 * kmem_cache structures of all caches, except cache_cache itself:
1344 * cache_cache is statically allocated.
e498be7d
CL
1345 * Initially an __init data area is used for the head array and the
1346 * kmem_list3 structures, it's replaced with a kmalloc allocated
1347 * array at the end of the bootstrap.
1da177e4 1348 * 2) Create the first kmalloc cache.
343e0d7a 1349 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1350 * An __init data area is used for the head array.
1351 * 3) Create the remaining kmalloc caches, with minimally sized
1352 * head arrays.
1da177e4
LT
1353 * 4) Replace the __init data head arrays for cache_cache and the first
1354 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1355 * 5) Replace the __init data for kmem_list3 for cache_cache and
1356 * the other cache's with kmalloc allocated memory.
1357 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1358 */
1359
1360 /* 1) create the cache_cache */
1da177e4
LT
1361 INIT_LIST_HEAD(&cache_chain);
1362 list_add(&cache_cache.next, &cache_chain);
1363 cache_cache.colour_off = cache_line_size();
1364 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1365 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1366
a737b3e2
AM
1367 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1368 cache_line_size());
1da177e4 1369
07ed76b2
JS
1370 for (order = 0; order < MAX_ORDER; order++) {
1371 cache_estimate(order, cache_cache.buffer_size,
1372 cache_line_size(), 0, &left_over, &cache_cache.num);
1373 if (cache_cache.num)
1374 break;
1375 }
40094fa6 1376 BUG_ON(!cache_cache.num);
07ed76b2 1377 cache_cache.gfporder = order;
b28a02de 1378 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1379 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1380 sizeof(struct slab), cache_line_size());
1da177e4
LT
1381
1382 /* 2+3) create the kmalloc caches */
1383 sizes = malloc_sizes;
1384 names = cache_names;
1385
a737b3e2
AM
1386 /*
1387 * Initialize the caches that provide memory for the array cache and the
1388 * kmem_list3 structures first. Without this, further allocations will
1389 * bug.
e498be7d
CL
1390 */
1391
1392 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1393 sizes[INDEX_AC].cs_size,
1394 ARCH_KMALLOC_MINALIGN,
1395 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1396 NULL, NULL);
e498be7d 1397
a737b3e2 1398 if (INDEX_AC != INDEX_L3) {
e498be7d 1399 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1400 kmem_cache_create(names[INDEX_L3].name,
1401 sizes[INDEX_L3].cs_size,
1402 ARCH_KMALLOC_MINALIGN,
1403 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1404 NULL, NULL);
1405 }
e498be7d 1406
e0a42726
IM
1407 slab_early_init = 0;
1408
1da177e4 1409 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1410 /*
1411 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1412 * This should be particularly beneficial on SMP boxes, as it
1413 * eliminates "false sharing".
1414 * Note for systems short on memory removing the alignment will
e498be7d
CL
1415 * allow tighter packing of the smaller caches.
1416 */
a737b3e2 1417 if (!sizes->cs_cachep) {
e498be7d 1418 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1419 sizes->cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
1423 }
f1aaee53 1424 init_lock_keys(sizes);
1da177e4 1425
1da177e4 1426 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1427 sizes->cs_size,
1428 ARCH_KMALLOC_MINALIGN,
1429 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1430 SLAB_PANIC,
1431 NULL, NULL);
1da177e4
LT
1432 sizes++;
1433 names++;
1434 }
1435 /* 4) Replace the bootstrap head arrays */
1436 {
2b2d5493 1437 struct array_cache *ptr;
e498be7d 1438
1da177e4 1439 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1440
1da177e4 1441 local_irq_disable();
9a2dba4b
PE
1442 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1443 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1444 sizeof(struct arraycache_init));
2b2d5493
IM
1445 /*
1446 * Do not assume that spinlocks can be initialized via memcpy:
1447 */
1448 spin_lock_init(&ptr->lock);
1449
1da177e4
LT
1450 cache_cache.array[smp_processor_id()] = ptr;
1451 local_irq_enable();
e498be7d 1452
1da177e4 1453 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1454
1da177e4 1455 local_irq_disable();
9a2dba4b 1456 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1457 != &initarray_generic.cache);
9a2dba4b 1458 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1459 sizeof(struct arraycache_init));
2b2d5493
IM
1460 /*
1461 * Do not assume that spinlocks can be initialized via memcpy:
1462 */
1463 spin_lock_init(&ptr->lock);
1464
e498be7d 1465 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1466 ptr;
1da177e4
LT
1467 local_irq_enable();
1468 }
e498be7d
CL
1469 /* 5) Replace the bootstrap kmem_list3's */
1470 {
1471 int node;
1472 /* Replace the static kmem_list3 structures for the boot cpu */
1473 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1474 numa_node_id());
e498be7d
CL
1475
1476 for_each_online_node(node) {
1477 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1478 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1479
1480 if (INDEX_AC != INDEX_L3) {
1481 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1482 &initkmem_list3[SIZE_L3 + node],
1483 node);
e498be7d
CL
1484 }
1485 }
1486 }
1da177e4 1487
e498be7d 1488 /* 6) resize the head arrays to their final sizes */
1da177e4 1489 {
343e0d7a 1490 struct kmem_cache *cachep;
fc0abb14 1491 mutex_lock(&cache_chain_mutex);
1da177e4 1492 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1493 enable_cpucache(cachep);
fc0abb14 1494 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1495 }
1496
1497 /* Done! */
1498 g_cpucache_up = FULL;
1499
a737b3e2
AM
1500 /*
1501 * Register a cpu startup notifier callback that initializes
1502 * cpu_cache_get for all new cpus
1da177e4
LT
1503 */
1504 register_cpu_notifier(&cpucache_notifier);
1da177e4 1505
a737b3e2
AM
1506 /*
1507 * The reap timers are started later, with a module init call: That part
1508 * of the kernel is not yet operational.
1da177e4
LT
1509 */
1510}
1511
1512static int __init cpucache_init(void)
1513{
1514 int cpu;
1515
a737b3e2
AM
1516 /*
1517 * Register the timers that return unneeded pages to the page allocator
1da177e4 1518 */
e498be7d 1519 for_each_online_cpu(cpu)
a737b3e2 1520 start_cpu_timer(cpu);
1da177e4
LT
1521 return 0;
1522}
1da177e4
LT
1523__initcall(cpucache_init);
1524
1525/*
1526 * Interface to system's page allocator. No need to hold the cache-lock.
1527 *
1528 * If we requested dmaable memory, we will get it. Even if we
1529 * did not request dmaable memory, we might get it, but that
1530 * would be relatively rare and ignorable.
1531 */
343e0d7a 1532static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1533{
1534 struct page *page;
e1b6aa6f 1535 int nr_pages;
1da177e4
LT
1536 int i;
1537
d6fef9da 1538#ifndef CONFIG_MMU
e1b6aa6f
CH
1539 /*
1540 * Nommu uses slab's for process anonymous memory allocations, and thus
1541 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1542 */
e1b6aa6f 1543 flags |= __GFP_COMP;
d6fef9da 1544#endif
e1b6aa6f
CH
1545 flags |= cachep->gfpflags;
1546
1547 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1548 if (!page)
1549 return NULL;
1da177e4 1550
e1b6aa6f 1551 nr_pages = (1 << cachep->gfporder);
1da177e4 1552 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f 1553 atomic_add(nr_pages, &slab_reclaim_pages);
9a865ffa 1554 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
e1b6aa6f
CH
1555 for (i = 0; i < nr_pages; i++)
1556 __SetPageSlab(page + i);
1557 return page_address(page);
1da177e4
LT
1558}
1559
1560/*
1561 * Interface to system's page release.
1562 */
343e0d7a 1563static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1564{
b28a02de 1565 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1566 struct page *page = virt_to_page(addr);
1567 const unsigned long nr_freed = i;
1568
9a865ffa 1569 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1da177e4 1570 while (i--) {
f205b2fe
NP
1571 BUG_ON(!PageSlab(page));
1572 __ClearPageSlab(page);
1da177e4
LT
1573 page++;
1574 }
1da177e4
LT
1575 if (current->reclaim_state)
1576 current->reclaim_state->reclaimed_slab += nr_freed;
1577 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1578 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1579 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1580}
1581
1582static void kmem_rcu_free(struct rcu_head *head)
1583{
b28a02de 1584 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1585 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1586
1587 kmem_freepages(cachep, slab_rcu->addr);
1588 if (OFF_SLAB(cachep))
1589 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1590}
1591
1592#if DEBUG
1593
1594#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1595static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1596 unsigned long caller)
1da177e4 1597{
3dafccf2 1598 int size = obj_size(cachep);
1da177e4 1599
3dafccf2 1600 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1601
b28a02de 1602 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1603 return;
1604
b28a02de
PE
1605 *addr++ = 0x12345678;
1606 *addr++ = caller;
1607 *addr++ = smp_processor_id();
1608 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1609 {
1610 unsigned long *sptr = &caller;
1611 unsigned long svalue;
1612
1613 while (!kstack_end(sptr)) {
1614 svalue = *sptr++;
1615 if (kernel_text_address(svalue)) {
b28a02de 1616 *addr++ = svalue;
1da177e4
LT
1617 size -= sizeof(unsigned long);
1618 if (size <= sizeof(unsigned long))
1619 break;
1620 }
1621 }
1622
1623 }
b28a02de 1624 *addr++ = 0x87654321;
1da177e4
LT
1625}
1626#endif
1627
343e0d7a 1628static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1629{
3dafccf2
MS
1630 int size = obj_size(cachep);
1631 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1632
1633 memset(addr, val, size);
b28a02de 1634 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1635}
1636
1637static void dump_line(char *data, int offset, int limit)
1638{
1639 int i;
1640 printk(KERN_ERR "%03x:", offset);
a737b3e2 1641 for (i = 0; i < limit; i++)
b28a02de 1642 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1643 printk("\n");
1644}
1645#endif
1646
1647#if DEBUG
1648
343e0d7a 1649static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1650{
1651 int i, size;
1652 char *realobj;
1653
1654 if (cachep->flags & SLAB_RED_ZONE) {
1655 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1656 *dbg_redzone1(cachep, objp),
1657 *dbg_redzone2(cachep, objp));
1da177e4
LT
1658 }
1659
1660 if (cachep->flags & SLAB_STORE_USER) {
1661 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1662 *dbg_userword(cachep, objp));
1da177e4 1663 print_symbol("(%s)",
a737b3e2 1664 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1665 printk("\n");
1666 }
3dafccf2
MS
1667 realobj = (char *)objp + obj_offset(cachep);
1668 size = obj_size(cachep);
b28a02de 1669 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1670 int limit;
1671 limit = 16;
b28a02de
PE
1672 if (i + limit > size)
1673 limit = size - i;
1da177e4
LT
1674 dump_line(realobj, i, limit);
1675 }
1676}
1677
343e0d7a 1678static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1679{
1680 char *realobj;
1681 int size, i;
1682 int lines = 0;
1683
3dafccf2
MS
1684 realobj = (char *)objp + obj_offset(cachep);
1685 size = obj_size(cachep);
1da177e4 1686
b28a02de 1687 for (i = 0; i < size; i++) {
1da177e4 1688 char exp = POISON_FREE;
b28a02de 1689 if (i == size - 1)
1da177e4
LT
1690 exp = POISON_END;
1691 if (realobj[i] != exp) {
1692 int limit;
1693 /* Mismatch ! */
1694 /* Print header */
1695 if (lines == 0) {
b28a02de 1696 printk(KERN_ERR
a737b3e2
AM
1697 "Slab corruption: start=%p, len=%d\n",
1698 realobj, size);
1da177e4
LT
1699 print_objinfo(cachep, objp, 0);
1700 }
1701 /* Hexdump the affected line */
b28a02de 1702 i = (i / 16) * 16;
1da177e4 1703 limit = 16;
b28a02de
PE
1704 if (i + limit > size)
1705 limit = size - i;
1da177e4
LT
1706 dump_line(realobj, i, limit);
1707 i += 16;
1708 lines++;
1709 /* Limit to 5 lines */
1710 if (lines > 5)
1711 break;
1712 }
1713 }
1714 if (lines != 0) {
1715 /* Print some data about the neighboring objects, if they
1716 * exist:
1717 */
6ed5eb22 1718 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1719 unsigned int objnr;
1da177e4 1720
8fea4e96 1721 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1722 if (objnr) {
8fea4e96 1723 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1724 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1725 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1726 realobj, size);
1da177e4
LT
1727 print_objinfo(cachep, objp, 2);
1728 }
b28a02de 1729 if (objnr + 1 < cachep->num) {
8fea4e96 1730 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1731 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1732 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1733 realobj, size);
1da177e4
LT
1734 print_objinfo(cachep, objp, 2);
1735 }
1736 }
1737}
1738#endif
1739
12dd36fa
MD
1740#if DEBUG
1741/**
911851e6
RD
1742 * slab_destroy_objs - destroy a slab and its objects
1743 * @cachep: cache pointer being destroyed
1744 * @slabp: slab pointer being destroyed
1745 *
1746 * Call the registered destructor for each object in a slab that is being
1747 * destroyed.
1da177e4 1748 */
343e0d7a 1749static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1750{
1da177e4
LT
1751 int i;
1752 for (i = 0; i < cachep->num; i++) {
8fea4e96 1753 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1754
1755 if (cachep->flags & SLAB_POISON) {
1756#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1757 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1758 OFF_SLAB(cachep))
b28a02de 1759 kernel_map_pages(virt_to_page(objp),
a737b3e2 1760 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1761 else
1762 check_poison_obj(cachep, objp);
1763#else
1764 check_poison_obj(cachep, objp);
1765#endif
1766 }
1767 if (cachep->flags & SLAB_RED_ZONE) {
1768 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1769 slab_error(cachep, "start of a freed object "
b28a02de 1770 "was overwritten");
1da177e4
LT
1771 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1772 slab_error(cachep, "end of a freed object "
b28a02de 1773 "was overwritten");
1da177e4
LT
1774 }
1775 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1776 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1777 }
12dd36fa 1778}
1da177e4 1779#else
343e0d7a 1780static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1781{
1da177e4
LT
1782 if (cachep->dtor) {
1783 int i;
1784 for (i = 0; i < cachep->num; i++) {
8fea4e96 1785 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1786 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1787 }
1788 }
12dd36fa 1789}
1da177e4
LT
1790#endif
1791
911851e6
RD
1792/**
1793 * slab_destroy - destroy and release all objects in a slab
1794 * @cachep: cache pointer being destroyed
1795 * @slabp: slab pointer being destroyed
1796 *
12dd36fa 1797 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1798 * Before calling the slab must have been unlinked from the cache. The
1799 * cache-lock is not held/needed.
12dd36fa 1800 */
343e0d7a 1801static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1802{
1803 void *addr = slabp->s_mem - slabp->colouroff;
1804
1805 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1806 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1807 struct slab_rcu *slab_rcu;
1808
b28a02de 1809 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1810 slab_rcu->cachep = cachep;
1811 slab_rcu->addr = addr;
1812 call_rcu(&slab_rcu->head, kmem_rcu_free);
1813 } else {
1814 kmem_freepages(cachep, addr);
873623df
IM
1815 if (OFF_SLAB(cachep))
1816 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1817 }
1818}
1819
a737b3e2
AM
1820/*
1821 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1822 * size of kmem_list3.
1823 */
343e0d7a 1824static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1825{
1826 int node;
1827
1828 for_each_online_node(node) {
b28a02de 1829 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1830 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1831 REAPTIMEOUT_LIST3 +
1832 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1833 }
1834}
1835
117f6eb1
CL
1836static void __kmem_cache_destroy(struct kmem_cache *cachep)
1837{
1838 int i;
1839 struct kmem_list3 *l3;
1840
1841 for_each_online_cpu(i)
1842 kfree(cachep->array[i]);
1843
1844 /* NUMA: free the list3 structures */
1845 for_each_online_node(i) {
1846 l3 = cachep->nodelists[i];
1847 if (l3) {
1848 kfree(l3->shared);
1849 free_alien_cache(l3->alien);
1850 kfree(l3);
1851 }
1852 }
1853 kmem_cache_free(&cache_cache, cachep);
1854}
1855
1856
4d268eba 1857/**
a70773dd
RD
1858 * calculate_slab_order - calculate size (page order) of slabs
1859 * @cachep: pointer to the cache that is being created
1860 * @size: size of objects to be created in this cache.
1861 * @align: required alignment for the objects.
1862 * @flags: slab allocation flags
1863 *
1864 * Also calculates the number of objects per slab.
4d268eba
PE
1865 *
1866 * This could be made much more intelligent. For now, try to avoid using
1867 * high order pages for slabs. When the gfp() functions are more friendly
1868 * towards high-order requests, this should be changed.
1869 */
a737b3e2 1870static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1871 size_t size, size_t align, unsigned long flags)
4d268eba 1872{
b1ab41c4 1873 unsigned long offslab_limit;
4d268eba 1874 size_t left_over = 0;
9888e6fa 1875 int gfporder;
4d268eba 1876
a737b3e2 1877 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1878 unsigned int num;
1879 size_t remainder;
1880
9888e6fa 1881 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1882 if (!num)
1883 continue;
9888e6fa 1884
b1ab41c4
IM
1885 if (flags & CFLGS_OFF_SLAB) {
1886 /*
1887 * Max number of objs-per-slab for caches which
1888 * use off-slab slabs. Needed to avoid a possible
1889 * looping condition in cache_grow().
1890 */
1891 offslab_limit = size - sizeof(struct slab);
1892 offslab_limit /= sizeof(kmem_bufctl_t);
1893
1894 if (num > offslab_limit)
1895 break;
1896 }
4d268eba 1897
9888e6fa 1898 /* Found something acceptable - save it away */
4d268eba 1899 cachep->num = num;
9888e6fa 1900 cachep->gfporder = gfporder;
4d268eba
PE
1901 left_over = remainder;
1902
f78bb8ad
LT
1903 /*
1904 * A VFS-reclaimable slab tends to have most allocations
1905 * as GFP_NOFS and we really don't want to have to be allocating
1906 * higher-order pages when we are unable to shrink dcache.
1907 */
1908 if (flags & SLAB_RECLAIM_ACCOUNT)
1909 break;
1910
4d268eba
PE
1911 /*
1912 * Large number of objects is good, but very large slabs are
1913 * currently bad for the gfp()s.
1914 */
9888e6fa 1915 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1916 break;
1917
9888e6fa
LT
1918 /*
1919 * Acceptable internal fragmentation?
1920 */
a737b3e2 1921 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1922 break;
1923 }
1924 return left_over;
1925}
1926
f30cf7d1
PE
1927static void setup_cpu_cache(struct kmem_cache *cachep)
1928{
1929 if (g_cpucache_up == FULL) {
1930 enable_cpucache(cachep);
1931 return;
1932 }
1933 if (g_cpucache_up == NONE) {
1934 /*
1935 * Note: the first kmem_cache_create must create the cache
1936 * that's used by kmalloc(24), otherwise the creation of
1937 * further caches will BUG().
1938 */
1939 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1940
1941 /*
1942 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1943 * the first cache, then we need to set up all its list3s,
1944 * otherwise the creation of further caches will BUG().
1945 */
1946 set_up_list3s(cachep, SIZE_AC);
1947 if (INDEX_AC == INDEX_L3)
1948 g_cpucache_up = PARTIAL_L3;
1949 else
1950 g_cpucache_up = PARTIAL_AC;
1951 } else {
1952 cachep->array[smp_processor_id()] =
1953 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1954
1955 if (g_cpucache_up == PARTIAL_AC) {
1956 set_up_list3s(cachep, SIZE_L3);
1957 g_cpucache_up = PARTIAL_L3;
1958 } else {
1959 int node;
1960 for_each_online_node(node) {
1961 cachep->nodelists[node] =
1962 kmalloc_node(sizeof(struct kmem_list3),
1963 GFP_KERNEL, node);
1964 BUG_ON(!cachep->nodelists[node]);
1965 kmem_list3_init(cachep->nodelists[node]);
1966 }
1967 }
1968 }
1969 cachep->nodelists[numa_node_id()]->next_reap =
1970 jiffies + REAPTIMEOUT_LIST3 +
1971 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1972
1973 cpu_cache_get(cachep)->avail = 0;
1974 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1975 cpu_cache_get(cachep)->batchcount = 1;
1976 cpu_cache_get(cachep)->touched = 0;
1977 cachep->batchcount = 1;
1978 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1979}
1980
1da177e4
LT
1981/**
1982 * kmem_cache_create - Create a cache.
1983 * @name: A string which is used in /proc/slabinfo to identify this cache.
1984 * @size: The size of objects to be created in this cache.
1985 * @align: The required alignment for the objects.
1986 * @flags: SLAB flags
1987 * @ctor: A constructor for the objects.
1988 * @dtor: A destructor for the objects.
1989 *
1990 * Returns a ptr to the cache on success, NULL on failure.
1991 * Cannot be called within a int, but can be interrupted.
1992 * The @ctor is run when new pages are allocated by the cache
1993 * and the @dtor is run before the pages are handed back.
1994 *
1995 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1996 * the module calling this has to destroy the cache before getting unloaded.
1997 *
1da177e4
LT
1998 * The flags are
1999 *
2000 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2001 * to catch references to uninitialised memory.
2002 *
2003 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2004 * for buffer overruns.
2005 *
1da177e4
LT
2006 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2007 * cacheline. This can be beneficial if you're counting cycles as closely
2008 * as davem.
2009 */
343e0d7a 2010struct kmem_cache *
1da177e4 2011kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2012 unsigned long flags,
2013 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2014 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2015{
2016 size_t left_over, slab_size, ralign;
7a7c381d 2017 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2018
2019 /*
2020 * Sanity checks... these are all serious usage bugs.
2021 */
a737b3e2 2022 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2023 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2024 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2025 name);
b28a02de
PE
2026 BUG();
2027 }
1da177e4 2028
f0188f47
RT
2029 /*
2030 * Prevent CPUs from coming and going.
2031 * lock_cpu_hotplug() nests outside cache_chain_mutex
2032 */
2033 lock_cpu_hotplug();
2034
fc0abb14 2035 mutex_lock(&cache_chain_mutex);
4f12bb4f 2036
7a7c381d 2037 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2038 mm_segment_t old_fs = get_fs();
2039 char tmp;
2040 int res;
2041
2042 /*
2043 * This happens when the module gets unloaded and doesn't
2044 * destroy its slab cache and no-one else reuses the vmalloc
2045 * area of the module. Print a warning.
2046 */
2047 set_fs(KERNEL_DS);
2048 res = __get_user(tmp, pc->name);
2049 set_fs(old_fs);
2050 if (res) {
2051 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2052 pc->buffer_size);
4f12bb4f
AM
2053 continue;
2054 }
2055
b28a02de 2056 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2057 printk("kmem_cache_create: duplicate cache %s\n", name);
2058 dump_stack();
2059 goto oops;
2060 }
2061 }
2062
1da177e4
LT
2063#if DEBUG
2064 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2065 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2066 /* No constructor, but inital state check requested */
2067 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2068 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2069 flags &= ~SLAB_DEBUG_INITIAL;
2070 }
1da177e4
LT
2071#if FORCED_DEBUG
2072 /*
2073 * Enable redzoning and last user accounting, except for caches with
2074 * large objects, if the increased size would increase the object size
2075 * above the next power of two: caches with object sizes just above a
2076 * power of two have a significant amount of internal fragmentation.
2077 */
a737b3e2 2078 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2079 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2080 if (!(flags & SLAB_DESTROY_BY_RCU))
2081 flags |= SLAB_POISON;
2082#endif
2083 if (flags & SLAB_DESTROY_BY_RCU)
2084 BUG_ON(flags & SLAB_POISON);
2085#endif
2086 if (flags & SLAB_DESTROY_BY_RCU)
2087 BUG_ON(dtor);
2088
2089 /*
a737b3e2
AM
2090 * Always checks flags, a caller might be expecting debug support which
2091 * isn't available.
1da177e4 2092 */
40094fa6 2093 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2094
a737b3e2
AM
2095 /*
2096 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2097 * unaligned accesses for some archs when redzoning is used, and makes
2098 * sure any on-slab bufctl's are also correctly aligned.
2099 */
b28a02de
PE
2100 if (size & (BYTES_PER_WORD - 1)) {
2101 size += (BYTES_PER_WORD - 1);
2102 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2103 }
2104
a737b3e2
AM
2105 /* calculate the final buffer alignment: */
2106
1da177e4
LT
2107 /* 1) arch recommendation: can be overridden for debug */
2108 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2109 /*
2110 * Default alignment: as specified by the arch code. Except if
2111 * an object is really small, then squeeze multiple objects into
2112 * one cacheline.
1da177e4
LT
2113 */
2114 ralign = cache_line_size();
b28a02de 2115 while (size <= ralign / 2)
1da177e4
LT
2116 ralign /= 2;
2117 } else {
2118 ralign = BYTES_PER_WORD;
2119 }
ca5f9703
PE
2120
2121 /*
2122 * Redzoning and user store require word alignment. Note this will be
2123 * overridden by architecture or caller mandated alignment if either
2124 * is greater than BYTES_PER_WORD.
2125 */
2126 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2127 ralign = BYTES_PER_WORD;
2128
1da177e4
LT
2129 /* 2) arch mandated alignment: disables debug if necessary */
2130 if (ralign < ARCH_SLAB_MINALIGN) {
2131 ralign = ARCH_SLAB_MINALIGN;
2132 if (ralign > BYTES_PER_WORD)
b28a02de 2133 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2134 }
2135 /* 3) caller mandated alignment: disables debug if necessary */
2136 if (ralign < align) {
2137 ralign = align;
2138 if (ralign > BYTES_PER_WORD)
b28a02de 2139 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2140 }
a737b3e2 2141 /*
ca5f9703 2142 * 4) Store it.
1da177e4
LT
2143 */
2144 align = ralign;
2145
2146 /* Get cache's description obj. */
c5e3b83e 2147 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2148 if (!cachep)
4f12bb4f 2149 goto oops;
1da177e4
LT
2150
2151#if DEBUG
3dafccf2 2152 cachep->obj_size = size;
1da177e4 2153
ca5f9703
PE
2154 /*
2155 * Both debugging options require word-alignment which is calculated
2156 * into align above.
2157 */
1da177e4 2158 if (flags & SLAB_RED_ZONE) {
1da177e4 2159 /* add space for red zone words */
3dafccf2 2160 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2161 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2162 }
2163 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2164 /* user store requires one word storage behind the end of
2165 * the real object.
1da177e4 2166 */
1da177e4
LT
2167 size += BYTES_PER_WORD;
2168 }
2169#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2170 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2171 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2172 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2173 size = PAGE_SIZE;
2174 }
2175#endif
2176#endif
2177
e0a42726
IM
2178 /*
2179 * Determine if the slab management is 'on' or 'off' slab.
2180 * (bootstrapping cannot cope with offslab caches so don't do
2181 * it too early on.)
2182 */
2183 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2184 /*
2185 * Size is large, assume best to place the slab management obj
2186 * off-slab (should allow better packing of objs).
2187 */
2188 flags |= CFLGS_OFF_SLAB;
2189
2190 size = ALIGN(size, align);
2191
f78bb8ad 2192 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2193
2194 if (!cachep->num) {
2195 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2196 kmem_cache_free(&cache_cache, cachep);
2197 cachep = NULL;
4f12bb4f 2198 goto oops;
1da177e4 2199 }
b28a02de
PE
2200 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2201 + sizeof(struct slab), align);
1da177e4
LT
2202
2203 /*
2204 * If the slab has been placed off-slab, and we have enough space then
2205 * move it on-slab. This is at the expense of any extra colouring.
2206 */
2207 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2208 flags &= ~CFLGS_OFF_SLAB;
2209 left_over -= slab_size;
2210 }
2211
2212 if (flags & CFLGS_OFF_SLAB) {
2213 /* really off slab. No need for manual alignment */
b28a02de
PE
2214 slab_size =
2215 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2216 }
2217
2218 cachep->colour_off = cache_line_size();
2219 /* Offset must be a multiple of the alignment. */
2220 if (cachep->colour_off < align)
2221 cachep->colour_off = align;
b28a02de 2222 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2223 cachep->slab_size = slab_size;
2224 cachep->flags = flags;
2225 cachep->gfpflags = 0;
2226 if (flags & SLAB_CACHE_DMA)
2227 cachep->gfpflags |= GFP_DMA;
3dafccf2 2228 cachep->buffer_size = size;
1da177e4 2229
e5ac9c5a 2230 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2231 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2232 /*
2233 * This is a possibility for one of the malloc_sizes caches.
2234 * But since we go off slab only for object size greater than
2235 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2236 * this should not happen at all.
2237 * But leave a BUG_ON for some lucky dude.
2238 */
2239 BUG_ON(!cachep->slabp_cache);
2240 }
1da177e4
LT
2241 cachep->ctor = ctor;
2242 cachep->dtor = dtor;
2243 cachep->name = name;
2244
1da177e4 2245
f30cf7d1 2246 setup_cpu_cache(cachep);
1da177e4 2247
1da177e4
LT
2248 /* cache setup completed, link it into the list */
2249 list_add(&cachep->next, &cache_chain);
a737b3e2 2250oops:
1da177e4
LT
2251 if (!cachep && (flags & SLAB_PANIC))
2252 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2253 name);
fc0abb14 2254 mutex_unlock(&cache_chain_mutex);
f0188f47 2255 unlock_cpu_hotplug();
1da177e4
LT
2256 return cachep;
2257}
2258EXPORT_SYMBOL(kmem_cache_create);
2259
2260#if DEBUG
2261static void check_irq_off(void)
2262{
2263 BUG_ON(!irqs_disabled());
2264}
2265
2266static void check_irq_on(void)
2267{
2268 BUG_ON(irqs_disabled());
2269}
2270
343e0d7a 2271static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2272{
2273#ifdef CONFIG_SMP
2274 check_irq_off();
e498be7d 2275 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2276#endif
2277}
e498be7d 2278
343e0d7a 2279static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2280{
2281#ifdef CONFIG_SMP
2282 check_irq_off();
2283 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2284#endif
2285}
2286
1da177e4
LT
2287#else
2288#define check_irq_off() do { } while(0)
2289#define check_irq_on() do { } while(0)
2290#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2291#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2292#endif
2293
aab2207c
CL
2294static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2295 struct array_cache *ac,
2296 int force, int node);
2297
1da177e4
LT
2298static void do_drain(void *arg)
2299{
a737b3e2 2300 struct kmem_cache *cachep = arg;
1da177e4 2301 struct array_cache *ac;
ff69416e 2302 int node = numa_node_id();
1da177e4
LT
2303
2304 check_irq_off();
9a2dba4b 2305 ac = cpu_cache_get(cachep);
ff69416e
CL
2306 spin_lock(&cachep->nodelists[node]->list_lock);
2307 free_block(cachep, ac->entry, ac->avail, node);
2308 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2309 ac->avail = 0;
2310}
2311
343e0d7a 2312static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2313{
e498be7d
CL
2314 struct kmem_list3 *l3;
2315 int node;
2316
a07fa394 2317 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2318 check_irq_on();
b28a02de 2319 for_each_online_node(node) {
e498be7d 2320 l3 = cachep->nodelists[node];
a4523a8b
RD
2321 if (l3 && l3->alien)
2322 drain_alien_cache(cachep, l3->alien);
2323 }
2324
2325 for_each_online_node(node) {
2326 l3 = cachep->nodelists[node];
2327 if (l3)
aab2207c 2328 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2329 }
1da177e4
LT
2330}
2331
ed11d9eb
CL
2332/*
2333 * Remove slabs from the list of free slabs.
2334 * Specify the number of slabs to drain in tofree.
2335 *
2336 * Returns the actual number of slabs released.
2337 */
2338static int drain_freelist(struct kmem_cache *cache,
2339 struct kmem_list3 *l3, int tofree)
1da177e4 2340{
ed11d9eb
CL
2341 struct list_head *p;
2342 int nr_freed;
1da177e4 2343 struct slab *slabp;
1da177e4 2344
ed11d9eb
CL
2345 nr_freed = 0;
2346 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2347
ed11d9eb 2348 spin_lock_irq(&l3->list_lock);
e498be7d 2349 p = l3->slabs_free.prev;
ed11d9eb
CL
2350 if (p == &l3->slabs_free) {
2351 spin_unlock_irq(&l3->list_lock);
2352 goto out;
2353 }
1da177e4 2354
ed11d9eb 2355 slabp = list_entry(p, struct slab, list);
1da177e4 2356#if DEBUG
40094fa6 2357 BUG_ON(slabp->inuse);
1da177e4
LT
2358#endif
2359 list_del(&slabp->list);
ed11d9eb
CL
2360 /*
2361 * Safe to drop the lock. The slab is no longer linked
2362 * to the cache.
2363 */
2364 l3->free_objects -= cache->num;
e498be7d 2365 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2366 slab_destroy(cache, slabp);
2367 nr_freed++;
1da177e4 2368 }
ed11d9eb
CL
2369out:
2370 return nr_freed;
1da177e4
LT
2371}
2372
343e0d7a 2373static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2374{
2375 int ret = 0, i = 0;
2376 struct kmem_list3 *l3;
2377
2378 drain_cpu_caches(cachep);
2379
2380 check_irq_on();
2381 for_each_online_node(i) {
2382 l3 = cachep->nodelists[i];
ed11d9eb
CL
2383 if (!l3)
2384 continue;
2385
2386 drain_freelist(cachep, l3, l3->free_objects);
2387
2388 ret += !list_empty(&l3->slabs_full) ||
2389 !list_empty(&l3->slabs_partial);
e498be7d
CL
2390 }
2391 return (ret ? 1 : 0);
2392}
2393
1da177e4
LT
2394/**
2395 * kmem_cache_shrink - Shrink a cache.
2396 * @cachep: The cache to shrink.
2397 *
2398 * Releases as many slabs as possible for a cache.
2399 * To help debugging, a zero exit status indicates all slabs were released.
2400 */
343e0d7a 2401int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2402{
40094fa6 2403 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2404
2405 return __cache_shrink(cachep);
2406}
2407EXPORT_SYMBOL(kmem_cache_shrink);
2408
2409/**
2410 * kmem_cache_destroy - delete a cache
2411 * @cachep: the cache to destroy
2412 *
343e0d7a 2413 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2414 * Returns 0 on success.
2415 *
2416 * It is expected this function will be called by a module when it is
2417 * unloaded. This will remove the cache completely, and avoid a duplicate
2418 * cache being allocated each time a module is loaded and unloaded, if the
2419 * module doesn't have persistent in-kernel storage across loads and unloads.
2420 *
2421 * The cache must be empty before calling this function.
2422 *
2423 * The caller must guarantee that noone will allocate memory from the cache
2424 * during the kmem_cache_destroy().
2425 */
343e0d7a 2426int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2427{
40094fa6 2428 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2429
2430 /* Don't let CPUs to come and go */
2431 lock_cpu_hotplug();
2432
2433 /* Find the cache in the chain of caches. */
fc0abb14 2434 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2435 /*
2436 * the chain is never empty, cache_cache is never destroyed
2437 */
2438 list_del(&cachep->next);
fc0abb14 2439 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2440
2441 if (__cache_shrink(cachep)) {
2442 slab_error(cachep, "Can't free all objects");
fc0abb14 2443 mutex_lock(&cache_chain_mutex);
b28a02de 2444 list_add(&cachep->next, &cache_chain);
fc0abb14 2445 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2446 unlock_cpu_hotplug();
2447 return 1;
2448 }
2449
2450 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2451 synchronize_rcu();
1da177e4 2452
117f6eb1 2453 __kmem_cache_destroy(cachep);
1da177e4 2454 unlock_cpu_hotplug();
1da177e4
LT
2455 return 0;
2456}
2457EXPORT_SYMBOL(kmem_cache_destroy);
2458
e5ac9c5a
RT
2459/*
2460 * Get the memory for a slab management obj.
2461 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2462 * always come from malloc_sizes caches. The slab descriptor cannot
2463 * come from the same cache which is getting created because,
2464 * when we are searching for an appropriate cache for these
2465 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2466 * If we are creating a malloc_sizes cache here it would not be visible to
2467 * kmem_find_general_cachep till the initialization is complete.
2468 * Hence we cannot have slabp_cache same as the original cache.
2469 */
343e0d7a 2470static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2471 int colour_off, gfp_t local_flags,
2472 int nodeid)
1da177e4
LT
2473{
2474 struct slab *slabp;
b28a02de 2475
1da177e4
LT
2476 if (OFF_SLAB(cachep)) {
2477 /* Slab management obj is off-slab. */
5b74ada7
RT
2478 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2479 local_flags, nodeid);
1da177e4
LT
2480 if (!slabp)
2481 return NULL;
2482 } else {
b28a02de 2483 slabp = objp + colour_off;
1da177e4
LT
2484 colour_off += cachep->slab_size;
2485 }
2486 slabp->inuse = 0;
2487 slabp->colouroff = colour_off;
b28a02de 2488 slabp->s_mem = objp + colour_off;
5b74ada7 2489 slabp->nodeid = nodeid;
1da177e4
LT
2490 return slabp;
2491}
2492
2493static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2494{
b28a02de 2495 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2496}
2497
343e0d7a 2498static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2499 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2500{
2501 int i;
2502
2503 for (i = 0; i < cachep->num; i++) {
8fea4e96 2504 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2505#if DEBUG
2506 /* need to poison the objs? */
2507 if (cachep->flags & SLAB_POISON)
2508 poison_obj(cachep, objp, POISON_FREE);
2509 if (cachep->flags & SLAB_STORE_USER)
2510 *dbg_userword(cachep, objp) = NULL;
2511
2512 if (cachep->flags & SLAB_RED_ZONE) {
2513 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2514 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2515 }
2516 /*
a737b3e2
AM
2517 * Constructors are not allowed to allocate memory from the same
2518 * cache which they are a constructor for. Otherwise, deadlock.
2519 * They must also be threaded.
1da177e4
LT
2520 */
2521 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2522 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2523 ctor_flags);
1da177e4
LT
2524
2525 if (cachep->flags & SLAB_RED_ZONE) {
2526 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2527 slab_error(cachep, "constructor overwrote the"
b28a02de 2528 " end of an object");
1da177e4
LT
2529 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2530 slab_error(cachep, "constructor overwrote the"
b28a02de 2531 " start of an object");
1da177e4 2532 }
a737b3e2
AM
2533 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2534 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2535 kernel_map_pages(virt_to_page(objp),
3dafccf2 2536 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2537#else
2538 if (cachep->ctor)
2539 cachep->ctor(objp, cachep, ctor_flags);
2540#endif
b28a02de 2541 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2542 }
b28a02de 2543 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2544 slabp->free = 0;
2545}
2546
343e0d7a 2547static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2548{
a737b3e2
AM
2549 if (flags & SLAB_DMA)
2550 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2551 else
2552 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2553}
2554
a737b3e2
AM
2555static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2556 int nodeid)
78d382d7 2557{
8fea4e96 2558 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2559 kmem_bufctl_t next;
2560
2561 slabp->inuse++;
2562 next = slab_bufctl(slabp)[slabp->free];
2563#if DEBUG
2564 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2565 WARN_ON(slabp->nodeid != nodeid);
2566#endif
2567 slabp->free = next;
2568
2569 return objp;
2570}
2571
a737b3e2
AM
2572static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2573 void *objp, int nodeid)
78d382d7 2574{
8fea4e96 2575 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2576
2577#if DEBUG
2578 /* Verify that the slab belongs to the intended node */
2579 WARN_ON(slabp->nodeid != nodeid);
2580
871751e2 2581 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2582 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2583 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2584 BUG();
2585 }
2586#endif
2587 slab_bufctl(slabp)[objnr] = slabp->free;
2588 slabp->free = objnr;
2589 slabp->inuse--;
2590}
2591
4776874f
PE
2592/*
2593 * Map pages beginning at addr to the given cache and slab. This is required
2594 * for the slab allocator to be able to lookup the cache and slab of a
2595 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2596 */
2597static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2598 void *addr)
1da177e4 2599{
4776874f 2600 int nr_pages;
1da177e4
LT
2601 struct page *page;
2602
4776874f 2603 page = virt_to_page(addr);
84097518 2604
4776874f 2605 nr_pages = 1;
84097518 2606 if (likely(!PageCompound(page)))
4776874f
PE
2607 nr_pages <<= cache->gfporder;
2608
1da177e4 2609 do {
4776874f
PE
2610 page_set_cache(page, cache);
2611 page_set_slab(page, slab);
1da177e4 2612 page++;
4776874f 2613 } while (--nr_pages);
1da177e4
LT
2614}
2615
2616/*
2617 * Grow (by 1) the number of slabs within a cache. This is called by
2618 * kmem_cache_alloc() when there are no active objs left in a cache.
2619 */
343e0d7a 2620static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2621{
b28a02de
PE
2622 struct slab *slabp;
2623 void *objp;
2624 size_t offset;
2625 gfp_t local_flags;
2626 unsigned long ctor_flags;
e498be7d 2627 struct kmem_list3 *l3;
1da177e4 2628
a737b3e2
AM
2629 /*
2630 * Be lazy and only check for valid flags here, keeping it out of the
2631 * critical path in kmem_cache_alloc().
1da177e4 2632 */
40094fa6 2633 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2634 if (flags & SLAB_NO_GROW)
2635 return 0;
2636
2637 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2638 local_flags = (flags & SLAB_LEVEL_MASK);
2639 if (!(local_flags & __GFP_WAIT))
2640 /*
2641 * Not allowed to sleep. Need to tell a constructor about
2642 * this - it might need to know...
2643 */
2644 ctor_flags |= SLAB_CTOR_ATOMIC;
2645
2e1217cf 2646 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2647 check_irq_off();
2e1217cf
RT
2648 l3 = cachep->nodelists[nodeid];
2649 spin_lock(&l3->list_lock);
1da177e4
LT
2650
2651 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2652 offset = l3->colour_next;
2653 l3->colour_next++;
2654 if (l3->colour_next >= cachep->colour)
2655 l3->colour_next = 0;
2656 spin_unlock(&l3->list_lock);
1da177e4 2657
2e1217cf 2658 offset *= cachep->colour_off;
1da177e4
LT
2659
2660 if (local_flags & __GFP_WAIT)
2661 local_irq_enable();
2662
2663 /*
2664 * The test for missing atomic flag is performed here, rather than
2665 * the more obvious place, simply to reduce the critical path length
2666 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2667 * will eventually be caught here (where it matters).
2668 */
2669 kmem_flagcheck(cachep, flags);
2670
a737b3e2
AM
2671 /*
2672 * Get mem for the objs. Attempt to allocate a physical page from
2673 * 'nodeid'.
e498be7d 2674 */
a737b3e2
AM
2675 objp = kmem_getpages(cachep, flags, nodeid);
2676 if (!objp)
1da177e4
LT
2677 goto failed;
2678
2679 /* Get slab management. */
5b74ada7 2680 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2681 if (!slabp)
1da177e4
LT
2682 goto opps1;
2683
e498be7d 2684 slabp->nodeid = nodeid;
4776874f 2685 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2686
2687 cache_init_objs(cachep, slabp, ctor_flags);
2688
2689 if (local_flags & __GFP_WAIT)
2690 local_irq_disable();
2691 check_irq_off();
e498be7d 2692 spin_lock(&l3->list_lock);
1da177e4
LT
2693
2694 /* Make slab active. */
e498be7d 2695 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2696 STATS_INC_GROWN(cachep);
e498be7d
CL
2697 l3->free_objects += cachep->num;
2698 spin_unlock(&l3->list_lock);
1da177e4 2699 return 1;
a737b3e2 2700opps1:
1da177e4 2701 kmem_freepages(cachep, objp);
a737b3e2 2702failed:
1da177e4
LT
2703 if (local_flags & __GFP_WAIT)
2704 local_irq_disable();
2705 return 0;
2706}
2707
2708#if DEBUG
2709
2710/*
2711 * Perform extra freeing checks:
2712 * - detect bad pointers.
2713 * - POISON/RED_ZONE checking
2714 * - destructor calls, for caches with POISON+dtor
2715 */
2716static void kfree_debugcheck(const void *objp)
2717{
2718 struct page *page;
2719
2720 if (!virt_addr_valid(objp)) {
2721 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2722 (unsigned long)objp);
2723 BUG();
1da177e4
LT
2724 }
2725 page = virt_to_page(objp);
2726 if (!PageSlab(page)) {
b28a02de
PE
2727 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2728 (unsigned long)objp);
1da177e4
LT
2729 BUG();
2730 }
2731}
2732
58ce1fd5
PE
2733static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2734{
2735 unsigned long redzone1, redzone2;
2736
2737 redzone1 = *dbg_redzone1(cache, obj);
2738 redzone2 = *dbg_redzone2(cache, obj);
2739
2740 /*
2741 * Redzone is ok.
2742 */
2743 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2744 return;
2745
2746 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2747 slab_error(cache, "double free detected");
2748 else
2749 slab_error(cache, "memory outside object was overwritten");
2750
2751 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2752 obj, redzone1, redzone2);
2753}
2754
343e0d7a 2755static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2756 void *caller)
1da177e4
LT
2757{
2758 struct page *page;
2759 unsigned int objnr;
2760 struct slab *slabp;
2761
3dafccf2 2762 objp -= obj_offset(cachep);
1da177e4
LT
2763 kfree_debugcheck(objp);
2764 page = virt_to_page(objp);
2765
065d41cb 2766 slabp = page_get_slab(page);
1da177e4
LT
2767
2768 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2769 verify_redzone_free(cachep, objp);
1da177e4
LT
2770 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2771 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2772 }
2773 if (cachep->flags & SLAB_STORE_USER)
2774 *dbg_userword(cachep, objp) = caller;
2775
8fea4e96 2776 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2777
2778 BUG_ON(objnr >= cachep->num);
8fea4e96 2779 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2780
2781 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2782 /*
2783 * Need to call the slab's constructor so the caller can
2784 * perform a verify of its state (debugging). Called without
2785 * the cache-lock held.
1da177e4 2786 */
3dafccf2 2787 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2788 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2789 }
2790 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2791 /* we want to cache poison the object,
2792 * call the destruction callback
2793 */
3dafccf2 2794 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2795 }
871751e2
AV
2796#ifdef CONFIG_DEBUG_SLAB_LEAK
2797 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2798#endif
1da177e4
LT
2799 if (cachep->flags & SLAB_POISON) {
2800#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2801 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2802 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2803 kernel_map_pages(virt_to_page(objp),
3dafccf2 2804 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2805 } else {
2806 poison_obj(cachep, objp, POISON_FREE);
2807 }
2808#else
2809 poison_obj(cachep, objp, POISON_FREE);
2810#endif
2811 }
2812 return objp;
2813}
2814
343e0d7a 2815static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2816{
2817 kmem_bufctl_t i;
2818 int entries = 0;
b28a02de 2819
1da177e4
LT
2820 /* Check slab's freelist to see if this obj is there. */
2821 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2822 entries++;
2823 if (entries > cachep->num || i >= cachep->num)
2824 goto bad;
2825 }
2826 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2827bad:
2828 printk(KERN_ERR "slab: Internal list corruption detected in "
2829 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2830 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2831 for (i = 0;
264132bc 2832 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2833 i++) {
a737b3e2 2834 if (i % 16 == 0)
1da177e4 2835 printk("\n%03x:", i);
b28a02de 2836 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2837 }
2838 printk("\n");
2839 BUG();
2840 }
2841}
2842#else
2843#define kfree_debugcheck(x) do { } while(0)
2844#define cache_free_debugcheck(x,objp,z) (objp)
2845#define check_slabp(x,y) do { } while(0)
2846#endif
2847
343e0d7a 2848static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2849{
2850 int batchcount;
2851 struct kmem_list3 *l3;
2852 struct array_cache *ac;
2853
2854 check_irq_off();
9a2dba4b 2855 ac = cpu_cache_get(cachep);
a737b3e2 2856retry:
1da177e4
LT
2857 batchcount = ac->batchcount;
2858 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2859 /*
2860 * If there was little recent activity on this cache, then
2861 * perform only a partial refill. Otherwise we could generate
2862 * refill bouncing.
1da177e4
LT
2863 */
2864 batchcount = BATCHREFILL_LIMIT;
2865 }
e498be7d
CL
2866 l3 = cachep->nodelists[numa_node_id()];
2867
2868 BUG_ON(ac->avail > 0 || !l3);
2869 spin_lock(&l3->list_lock);
1da177e4 2870
3ded175a
CL
2871 /* See if we can refill from the shared array */
2872 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2873 goto alloc_done;
2874
1da177e4
LT
2875 while (batchcount > 0) {
2876 struct list_head *entry;
2877 struct slab *slabp;
2878 /* Get slab alloc is to come from. */
2879 entry = l3->slabs_partial.next;
2880 if (entry == &l3->slabs_partial) {
2881 l3->free_touched = 1;
2882 entry = l3->slabs_free.next;
2883 if (entry == &l3->slabs_free)
2884 goto must_grow;
2885 }
2886
2887 slabp = list_entry(entry, struct slab, list);
2888 check_slabp(cachep, slabp);
2889 check_spinlock_acquired(cachep);
2890 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2891 STATS_INC_ALLOCED(cachep);
2892 STATS_INC_ACTIVE(cachep);
2893 STATS_SET_HIGH(cachep);
2894
78d382d7
MD
2895 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2896 numa_node_id());
1da177e4
LT
2897 }
2898 check_slabp(cachep, slabp);
2899
2900 /* move slabp to correct slabp list: */
2901 list_del(&slabp->list);
2902 if (slabp->free == BUFCTL_END)
2903 list_add(&slabp->list, &l3->slabs_full);
2904 else
2905 list_add(&slabp->list, &l3->slabs_partial);
2906 }
2907
a737b3e2 2908must_grow:
1da177e4 2909 l3->free_objects -= ac->avail;
a737b3e2 2910alloc_done:
e498be7d 2911 spin_unlock(&l3->list_lock);
1da177e4
LT
2912
2913 if (unlikely(!ac->avail)) {
2914 int x;
e498be7d
CL
2915 x = cache_grow(cachep, flags, numa_node_id());
2916
a737b3e2 2917 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2918 ac = cpu_cache_get(cachep);
a737b3e2 2919 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2920 return NULL;
2921
a737b3e2 2922 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2923 goto retry;
2924 }
2925 ac->touched = 1;
e498be7d 2926 return ac->entry[--ac->avail];
1da177e4
LT
2927}
2928
a737b3e2
AM
2929static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2930 gfp_t flags)
1da177e4
LT
2931{
2932 might_sleep_if(flags & __GFP_WAIT);
2933#if DEBUG
2934 kmem_flagcheck(cachep, flags);
2935#endif
2936}
2937
2938#if DEBUG
a737b3e2
AM
2939static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2940 gfp_t flags, void *objp, void *caller)
1da177e4 2941{
b28a02de 2942 if (!objp)
1da177e4 2943 return objp;
b28a02de 2944 if (cachep->flags & SLAB_POISON) {
1da177e4 2945#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2946 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2947 kernel_map_pages(virt_to_page(objp),
3dafccf2 2948 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2949 else
2950 check_poison_obj(cachep, objp);
2951#else
2952 check_poison_obj(cachep, objp);
2953#endif
2954 poison_obj(cachep, objp, POISON_INUSE);
2955 }
2956 if (cachep->flags & SLAB_STORE_USER)
2957 *dbg_userword(cachep, objp) = caller;
2958
2959 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2960 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2961 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2962 slab_error(cachep, "double free, or memory outside"
2963 " object was overwritten");
b28a02de 2964 printk(KERN_ERR
a737b3e2
AM
2965 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2966 objp, *dbg_redzone1(cachep, objp),
2967 *dbg_redzone2(cachep, objp));
1da177e4
LT
2968 }
2969 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2970 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2971 }
871751e2
AV
2972#ifdef CONFIG_DEBUG_SLAB_LEAK
2973 {
2974 struct slab *slabp;
2975 unsigned objnr;
2976
2977 slabp = page_get_slab(virt_to_page(objp));
2978 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2979 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2980 }
2981#endif
3dafccf2 2982 objp += obj_offset(cachep);
1da177e4 2983 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2984 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2985
2986 if (!(flags & __GFP_WAIT))
2987 ctor_flags |= SLAB_CTOR_ATOMIC;
2988
2989 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2990 }
1da177e4
LT
2991 return objp;
2992}
2993#else
2994#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2995#endif
2996
343e0d7a 2997static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2998{
b28a02de 2999 void *objp;
1da177e4
LT
3000 struct array_cache *ac;
3001
dc85da15 3002#ifdef CONFIG_NUMA
b2455396 3003 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
3004 objp = alternate_node_alloc(cachep, flags);
3005 if (objp != NULL)
3006 return objp;
dc85da15
CL
3007 }
3008#endif
3009
5c382300 3010 check_irq_off();
9a2dba4b 3011 ac = cpu_cache_get(cachep);
1da177e4
LT
3012 if (likely(ac->avail)) {
3013 STATS_INC_ALLOCHIT(cachep);
3014 ac->touched = 1;
e498be7d 3015 objp = ac->entry[--ac->avail];
1da177e4
LT
3016 } else {
3017 STATS_INC_ALLOCMISS(cachep);
3018 objp = cache_alloc_refill(cachep, flags);
3019 }
5c382300
AK
3020 return objp;
3021}
3022
a737b3e2
AM
3023static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3024 gfp_t flags, void *caller)
5c382300
AK
3025{
3026 unsigned long save_flags;
b28a02de 3027 void *objp;
5c382300
AK
3028
3029 cache_alloc_debugcheck_before(cachep, flags);
3030
3031 local_irq_save(save_flags);
3032 objp = ____cache_alloc(cachep, flags);
1da177e4 3033 local_irq_restore(save_flags);
34342e86 3034 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3035 caller);
34342e86 3036 prefetchw(objp);
1da177e4
LT
3037 return objp;
3038}
3039
e498be7d 3040#ifdef CONFIG_NUMA
c61afb18 3041/*
b2455396 3042 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3043 *
3044 * If we are in_interrupt, then process context, including cpusets and
3045 * mempolicy, may not apply and should not be used for allocation policy.
3046 */
3047static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3048{
3049 int nid_alloc, nid_here;
3050
3051 if (in_interrupt())
3052 return NULL;
3053 nid_alloc = nid_here = numa_node_id();
3054 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3055 nid_alloc = cpuset_mem_spread_node();
3056 else if (current->mempolicy)
3057 nid_alloc = slab_node(current->mempolicy);
3058 if (nid_alloc != nid_here)
3059 return __cache_alloc_node(cachep, flags, nid_alloc);
3060 return NULL;
3061}
3062
e498be7d
CL
3063/*
3064 * A interface to enable slab creation on nodeid
1da177e4 3065 */
a737b3e2
AM
3066static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3067 int nodeid)
e498be7d
CL
3068{
3069 struct list_head *entry;
b28a02de
PE
3070 struct slab *slabp;
3071 struct kmem_list3 *l3;
3072 void *obj;
b28a02de
PE
3073 int x;
3074
3075 l3 = cachep->nodelists[nodeid];
3076 BUG_ON(!l3);
3077
a737b3e2 3078retry:
ca3b9b91 3079 check_irq_off();
b28a02de
PE
3080 spin_lock(&l3->list_lock);
3081 entry = l3->slabs_partial.next;
3082 if (entry == &l3->slabs_partial) {
3083 l3->free_touched = 1;
3084 entry = l3->slabs_free.next;
3085 if (entry == &l3->slabs_free)
3086 goto must_grow;
3087 }
3088
3089 slabp = list_entry(entry, struct slab, list);
3090 check_spinlock_acquired_node(cachep, nodeid);
3091 check_slabp(cachep, slabp);
3092
3093 STATS_INC_NODEALLOCS(cachep);
3094 STATS_INC_ACTIVE(cachep);
3095 STATS_SET_HIGH(cachep);
3096
3097 BUG_ON(slabp->inuse == cachep->num);
3098
78d382d7 3099 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3100 check_slabp(cachep, slabp);
3101 l3->free_objects--;
3102 /* move slabp to correct slabp list: */
3103 list_del(&slabp->list);
3104
a737b3e2 3105 if (slabp->free == BUFCTL_END)
b28a02de 3106 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3107 else
b28a02de 3108 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3109
b28a02de
PE
3110 spin_unlock(&l3->list_lock);
3111 goto done;
e498be7d 3112
a737b3e2 3113must_grow:
b28a02de
PE
3114 spin_unlock(&l3->list_lock);
3115 x = cache_grow(cachep, flags, nodeid);
1da177e4 3116
b28a02de
PE
3117 if (!x)
3118 return NULL;
e498be7d 3119
b28a02de 3120 goto retry;
a737b3e2 3121done:
b28a02de 3122 return obj;
e498be7d
CL
3123}
3124#endif
3125
3126/*
3127 * Caller needs to acquire correct kmem_list's list_lock
3128 */
343e0d7a 3129static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3130 int node)
1da177e4
LT
3131{
3132 int i;
e498be7d 3133 struct kmem_list3 *l3;
1da177e4
LT
3134
3135 for (i = 0; i < nr_objects; i++) {
3136 void *objp = objpp[i];
3137 struct slab *slabp;
1da177e4 3138
6ed5eb22 3139 slabp = virt_to_slab(objp);
ff69416e 3140 l3 = cachep->nodelists[node];
1da177e4 3141 list_del(&slabp->list);
ff69416e 3142 check_spinlock_acquired_node(cachep, node);
1da177e4 3143 check_slabp(cachep, slabp);
78d382d7 3144 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3145 STATS_DEC_ACTIVE(cachep);
e498be7d 3146 l3->free_objects++;
1da177e4
LT
3147 check_slabp(cachep, slabp);
3148
3149 /* fixup slab chains */
3150 if (slabp->inuse == 0) {
e498be7d
CL
3151 if (l3->free_objects > l3->free_limit) {
3152 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3153 /* No need to drop any previously held
3154 * lock here, even if we have a off-slab slab
3155 * descriptor it is guaranteed to come from
3156 * a different cache, refer to comments before
3157 * alloc_slabmgmt.
3158 */
1da177e4
LT
3159 slab_destroy(cachep, slabp);
3160 } else {
e498be7d 3161 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3162 }
3163 } else {
3164 /* Unconditionally move a slab to the end of the
3165 * partial list on free - maximum time for the
3166 * other objects to be freed, too.
3167 */
e498be7d 3168 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3169 }
3170 }
3171}
3172
343e0d7a 3173static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3174{
3175 int batchcount;
e498be7d 3176 struct kmem_list3 *l3;
ff69416e 3177 int node = numa_node_id();
1da177e4
LT
3178
3179 batchcount = ac->batchcount;
3180#if DEBUG
3181 BUG_ON(!batchcount || batchcount > ac->avail);
3182#endif
3183 check_irq_off();
ff69416e 3184 l3 = cachep->nodelists[node];
873623df 3185 spin_lock(&l3->list_lock);
e498be7d
CL
3186 if (l3->shared) {
3187 struct array_cache *shared_array = l3->shared;
b28a02de 3188 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3189 if (max) {
3190 if (batchcount > max)
3191 batchcount = max;
e498be7d 3192 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3193 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3194 shared_array->avail += batchcount;
3195 goto free_done;
3196 }
3197 }
3198
ff69416e 3199 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3200free_done:
1da177e4
LT
3201#if STATS
3202 {
3203 int i = 0;
3204 struct list_head *p;
3205
e498be7d
CL
3206 p = l3->slabs_free.next;
3207 while (p != &(l3->slabs_free)) {
1da177e4
LT
3208 struct slab *slabp;
3209
3210 slabp = list_entry(p, struct slab, list);
3211 BUG_ON(slabp->inuse);
3212
3213 i++;
3214 p = p->next;
3215 }
3216 STATS_SET_FREEABLE(cachep, i);
3217 }
3218#endif
e498be7d 3219 spin_unlock(&l3->list_lock);
1da177e4 3220 ac->avail -= batchcount;
a737b3e2 3221 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3222}
3223
3224/*
a737b3e2
AM
3225 * Release an obj back to its cache. If the obj has a constructed state, it must
3226 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3227 */
873623df 3228static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3229{
9a2dba4b 3230 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3231
3232 check_irq_off();
3233 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3234
873623df 3235 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3236 return;
3237
1da177e4
LT
3238 if (likely(ac->avail < ac->limit)) {
3239 STATS_INC_FREEHIT(cachep);
e498be7d 3240 ac->entry[ac->avail++] = objp;
1da177e4
LT
3241 return;
3242 } else {
3243 STATS_INC_FREEMISS(cachep);
3244 cache_flusharray(cachep, ac);
e498be7d 3245 ac->entry[ac->avail++] = objp;
1da177e4
LT
3246 }
3247}
3248
3249/**
3250 * kmem_cache_alloc - Allocate an object
3251 * @cachep: The cache to allocate from.
3252 * @flags: See kmalloc().
3253 *
3254 * Allocate an object from this cache. The flags are only relevant
3255 * if the cache has no available objects.
3256 */
343e0d7a 3257void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3258{
7fd6b141 3259 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3260}
3261EXPORT_SYMBOL(kmem_cache_alloc);
3262
a8c0f9a4 3263/**
b8008b2b 3264 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3265 * @cache: The cache to allocate from.
3266 * @flags: See kmalloc().
3267 *
3268 * Allocate an object from this cache and set the allocated memory to zero.
3269 * The flags are only relevant if the cache has no available objects.
3270 */
3271void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3272{
3273 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3274 if (ret)
3275 memset(ret, 0, obj_size(cache));
3276 return ret;
3277}
3278EXPORT_SYMBOL(kmem_cache_zalloc);
3279
1da177e4
LT
3280/**
3281 * kmem_ptr_validate - check if an untrusted pointer might
3282 * be a slab entry.
3283 * @cachep: the cache we're checking against
3284 * @ptr: pointer to validate
3285 *
3286 * This verifies that the untrusted pointer looks sane:
3287 * it is _not_ a guarantee that the pointer is actually
3288 * part of the slab cache in question, but it at least
3289 * validates that the pointer can be dereferenced and
3290 * looks half-way sane.
3291 *
3292 * Currently only used for dentry validation.
3293 */
343e0d7a 3294int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3295{
b28a02de 3296 unsigned long addr = (unsigned long)ptr;
1da177e4 3297 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3298 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3299 unsigned long size = cachep->buffer_size;
1da177e4
LT
3300 struct page *page;
3301
3302 if (unlikely(addr < min_addr))
3303 goto out;
3304 if (unlikely(addr > (unsigned long)high_memory - size))
3305 goto out;
3306 if (unlikely(addr & align_mask))
3307 goto out;
3308 if (unlikely(!kern_addr_valid(addr)))
3309 goto out;
3310 if (unlikely(!kern_addr_valid(addr + size - 1)))
3311 goto out;
3312 page = virt_to_page(ptr);
3313 if (unlikely(!PageSlab(page)))
3314 goto out;
065d41cb 3315 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3316 goto out;
3317 return 1;
a737b3e2 3318out:
1da177e4
LT
3319 return 0;
3320}
3321
3322#ifdef CONFIG_NUMA
3323/**
3324 * kmem_cache_alloc_node - Allocate an object on the specified node
3325 * @cachep: The cache to allocate from.
3326 * @flags: See kmalloc().
3327 * @nodeid: node number of the target node.
3328 *
3329 * Identical to kmem_cache_alloc, except that this function is slow
3330 * and can sleep. And it will allocate memory on the given node, which
3331 * can improve the performance for cpu bound structures.
e498be7d
CL
3332 * New and improved: it will now make sure that the object gets
3333 * put on the correct node list so that there is no false sharing.
1da177e4 3334 */
343e0d7a 3335void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3336{
e498be7d
CL
3337 unsigned long save_flags;
3338 void *ptr;
1da177e4 3339
e498be7d
CL
3340 cache_alloc_debugcheck_before(cachep, flags);
3341 local_irq_save(save_flags);
18f820f6
CL
3342
3343 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3344 !cachep->nodelists[nodeid])
5c382300
AK
3345 ptr = ____cache_alloc(cachep, flags);
3346 else
3347 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3348 local_irq_restore(save_flags);
18f820f6
CL
3349
3350 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3351 __builtin_return_address(0));
1da177e4 3352
e498be7d 3353 return ptr;
1da177e4
LT
3354}
3355EXPORT_SYMBOL(kmem_cache_alloc_node);
3356
dbe5e69d 3357void *__kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3358{
343e0d7a 3359 struct kmem_cache *cachep;
97e2bde4
MS
3360
3361 cachep = kmem_find_general_cachep(size, flags);
3362 if (unlikely(cachep == NULL))
3363 return NULL;
3364 return kmem_cache_alloc_node(cachep, flags, node);
3365}
dbe5e69d 3366EXPORT_SYMBOL(__kmalloc_node);
1da177e4
LT
3367#endif
3368
3369/**
800590f5 3370 * __do_kmalloc - allocate memory
1da177e4 3371 * @size: how many bytes of memory are required.
800590f5 3372 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3373 * @caller: function caller for debug tracking of the caller
1da177e4 3374 */
7fd6b141
PE
3375static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3376 void *caller)
1da177e4 3377{
343e0d7a 3378 struct kmem_cache *cachep;
1da177e4 3379
97e2bde4
MS
3380 /* If you want to save a few bytes .text space: replace
3381 * __ with kmem_.
3382 * Then kmalloc uses the uninlined functions instead of the inline
3383 * functions.
3384 */
3385 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3386 if (unlikely(cachep == NULL))
3387 return NULL;
7fd6b141
PE
3388 return __cache_alloc(cachep, flags, caller);
3389}
3390
7fd6b141
PE
3391
3392void *__kmalloc(size_t size, gfp_t flags)
3393{
871751e2 3394#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3395 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3396#else
3397 return __do_kmalloc(size, flags, __builtin_return_address(0));
3398#endif
1da177e4
LT
3399}
3400EXPORT_SYMBOL(__kmalloc);
3401
871751e2 3402#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3403void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3404{
3405 return __do_kmalloc(size, flags, caller);
3406}
3407EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3408#endif
3409
1da177e4
LT
3410#ifdef CONFIG_SMP
3411/**
7ff6f082
MP
3412 * percpu_depopulate - depopulate per-cpu data for given cpu
3413 * @__pdata: per-cpu data to depopulate
3414 * @cpu: depopulate per-cpu data for this cpu
1da177e4 3415 *
7ff6f082
MP
3416 * Depopulating per-cpu data for a cpu going offline would be a typical
3417 * use case. You need to register a cpu hotplug handler for that purpose.
1da177e4 3418 */
7ff6f082 3419void percpu_depopulate(void *__pdata, int cpu)
1da177e4 3420{
7ff6f082
MP
3421 struct percpu_data *pdata = __percpu_disguise(__pdata);
3422 if (pdata->ptrs[cpu]) {
3423 kfree(pdata->ptrs[cpu]);
3424 pdata->ptrs[cpu] = NULL;
3425 }
3426}
3427EXPORT_SYMBOL_GPL(percpu_depopulate);
1da177e4 3428
7ff6f082
MP
3429/**
3430 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
3431 * @__pdata: per-cpu data to depopulate
3432 * @mask: depopulate per-cpu data for cpu's selected through mask bits
3433 */
3434void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
3435{
3436 int cpu;
3437 for_each_cpu_mask(cpu, *mask)
3438 percpu_depopulate(__pdata, cpu);
3439}
3440EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
1da177e4 3441
7ff6f082
MP
3442/**
3443 * percpu_populate - populate per-cpu data for given cpu
3444 * @__pdata: per-cpu data to populate further
3445 * @size: size of per-cpu object
3446 * @gfp: may sleep or not etc.
3447 * @cpu: populate per-data for this cpu
3448 *
3449 * Populating per-cpu data for a cpu coming online would be a typical
3450 * use case. You need to register a cpu hotplug handler for that purpose.
3451 * Per-cpu object is populated with zeroed buffer.
3452 */
3453void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
3454{
3455 struct percpu_data *pdata = __percpu_disguise(__pdata);
3456 int node = cpu_to_node(cpu);
e498be7d 3457
7ff6f082
MP
3458 BUG_ON(pdata->ptrs[cpu]);
3459 if (node_online(node)) {
3460 /* FIXME: kzalloc_node(size, gfp, node) */
3461 pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
3462 if (pdata->ptrs[cpu])
3463 memset(pdata->ptrs[cpu], 0, size);
3464 } else
3465 pdata->ptrs[cpu] = kzalloc(size, gfp);
3466 return pdata->ptrs[cpu];
3467}
3468EXPORT_SYMBOL_GPL(percpu_populate);
1da177e4 3469
7ff6f082
MP
3470/**
3471 * percpu_populate_mask - populate per-cpu data for more cpu's
3472 * @__pdata: per-cpu data to populate further
3473 * @size: size of per-cpu object
3474 * @gfp: may sleep or not etc.
3475 * @mask: populate per-cpu data for cpu's selected through mask bits
3476 *
3477 * Per-cpu objects are populated with zeroed buffers.
3478 */
3479int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
3480 cpumask_t *mask)
3481{
3482 cpumask_t populated = CPU_MASK_NONE;
3483 int cpu;
1da177e4 3484
7ff6f082
MP
3485 for_each_cpu_mask(cpu, *mask)
3486 if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
3487 __percpu_depopulate_mask(__pdata, &populated);
3488 return -ENOMEM;
3489 } else
3490 cpu_set(cpu, populated);
3491 return 0;
3492}
3493EXPORT_SYMBOL_GPL(__percpu_populate_mask);
1da177e4 3494
7ff6f082
MP
3495/**
3496 * percpu_alloc_mask - initial setup of per-cpu data
3497 * @size: size of per-cpu object
3498 * @gfp: may sleep or not etc.
3499 * @mask: populate per-data for cpu's selected through mask bits
3500 *
3501 * Populating per-cpu data for all online cpu's would be a typical use case,
3502 * which is simplified by the percpu_alloc() wrapper.
3503 * Per-cpu objects are populated with zeroed buffers.
3504 */
3505void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
3506{
3507 void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
3508 void *__pdata = __percpu_disguise(pdata);
3509
3510 if (unlikely(!pdata))
3511 return NULL;
3512 if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
3513 return __pdata;
1da177e4
LT
3514 kfree(pdata);
3515 return NULL;
3516}
7ff6f082
MP
3517EXPORT_SYMBOL_GPL(__percpu_alloc_mask);
3518
3519/**
3520 * percpu_free - final cleanup of per-cpu data
3521 * @__pdata: object to clean up
3522 *
3523 * We simply clean up any per-cpu object left. No need for the client to
3524 * track and specify through a bis mask which per-cpu objects are to free.
3525 */
3526void percpu_free(void *__pdata)
3527{
3528 __percpu_depopulate_mask(__pdata, &cpu_possible_map);
3529 kfree(__percpu_disguise(__pdata));
3530}
3531EXPORT_SYMBOL_GPL(percpu_free);
3532#endif /* CONFIG_SMP */
1da177e4
LT
3533
3534/**
3535 * kmem_cache_free - Deallocate an object
3536 * @cachep: The cache the allocation was from.
3537 * @objp: The previously allocated object.
3538 *
3539 * Free an object which was previously allocated from this
3540 * cache.
3541 */
343e0d7a 3542void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3543{
3544 unsigned long flags;
3545
ddc2e812
PE
3546 BUG_ON(virt_to_cache(objp) != cachep);
3547
1da177e4 3548 local_irq_save(flags);
873623df 3549 __cache_free(cachep, objp);
1da177e4
LT
3550 local_irq_restore(flags);
3551}
3552EXPORT_SYMBOL(kmem_cache_free);
3553
1da177e4
LT
3554/**
3555 * kfree - free previously allocated memory
3556 * @objp: pointer returned by kmalloc.
3557 *
80e93eff
PE
3558 * If @objp is NULL, no operation is performed.
3559 *
1da177e4
LT
3560 * Don't free memory not originally allocated by kmalloc()
3561 * or you will run into trouble.
3562 */
3563void kfree(const void *objp)
3564{
343e0d7a 3565 struct kmem_cache *c;
1da177e4
LT
3566 unsigned long flags;
3567
3568 if (unlikely(!objp))
3569 return;
3570 local_irq_save(flags);
3571 kfree_debugcheck(objp);
6ed5eb22 3572 c = virt_to_cache(objp);
f9b8404c 3573 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3574 __cache_free(c, (void *)objp);
1da177e4
LT
3575 local_irq_restore(flags);
3576}
3577EXPORT_SYMBOL(kfree);
3578
343e0d7a 3579unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3580{
3dafccf2 3581 return obj_size(cachep);
1da177e4
LT
3582}
3583EXPORT_SYMBOL(kmem_cache_size);
3584
343e0d7a 3585const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3586{
3587 return cachep->name;
3588}
3589EXPORT_SYMBOL_GPL(kmem_cache_name);
3590
e498be7d 3591/*
0718dc2a 3592 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3593 */
343e0d7a 3594static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3595{
3596 int node;
3597 struct kmem_list3 *l3;
cafeb02e
CL
3598 struct array_cache *new_shared;
3599 struct array_cache **new_alien;
e498be7d
CL
3600
3601 for_each_online_node(node) {
cafeb02e 3602
a737b3e2
AM
3603 new_alien = alloc_alien_cache(node, cachep->limit);
3604 if (!new_alien)
e498be7d 3605 goto fail;
cafeb02e 3606
0718dc2a
CL
3607 new_shared = alloc_arraycache(node,
3608 cachep->shared*cachep->batchcount,
a737b3e2 3609 0xbaadf00d);
0718dc2a
CL
3610 if (!new_shared) {
3611 free_alien_cache(new_alien);
e498be7d 3612 goto fail;
0718dc2a 3613 }
cafeb02e 3614
a737b3e2
AM
3615 l3 = cachep->nodelists[node];
3616 if (l3) {
cafeb02e
CL
3617 struct array_cache *shared = l3->shared;
3618
e498be7d
CL
3619 spin_lock_irq(&l3->list_lock);
3620
cafeb02e 3621 if (shared)
0718dc2a
CL
3622 free_block(cachep, shared->entry,
3623 shared->avail, node);
e498be7d 3624
cafeb02e
CL
3625 l3->shared = new_shared;
3626 if (!l3->alien) {
e498be7d
CL
3627 l3->alien = new_alien;
3628 new_alien = NULL;
3629 }
b28a02de 3630 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3631 cachep->batchcount + cachep->num;
e498be7d 3632 spin_unlock_irq(&l3->list_lock);
cafeb02e 3633 kfree(shared);
e498be7d
CL
3634 free_alien_cache(new_alien);
3635 continue;
3636 }
a737b3e2 3637 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3638 if (!l3) {
3639 free_alien_cache(new_alien);
3640 kfree(new_shared);
e498be7d 3641 goto fail;
0718dc2a 3642 }
e498be7d
CL
3643
3644 kmem_list3_init(l3);
3645 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3646 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3647 l3->shared = new_shared;
e498be7d 3648 l3->alien = new_alien;
b28a02de 3649 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3650 cachep->batchcount + cachep->num;
e498be7d
CL
3651 cachep->nodelists[node] = l3;
3652 }
cafeb02e 3653 return 0;
0718dc2a 3654
a737b3e2 3655fail:
0718dc2a
CL
3656 if (!cachep->next.next) {
3657 /* Cache is not active yet. Roll back what we did */
3658 node--;
3659 while (node >= 0) {
3660 if (cachep->nodelists[node]) {
3661 l3 = cachep->nodelists[node];
3662
3663 kfree(l3->shared);
3664 free_alien_cache(l3->alien);
3665 kfree(l3);
3666 cachep->nodelists[node] = NULL;
3667 }
3668 node--;
3669 }
3670 }
cafeb02e 3671 return -ENOMEM;
e498be7d
CL
3672}
3673
1da177e4 3674struct ccupdate_struct {
343e0d7a 3675 struct kmem_cache *cachep;
1da177e4
LT
3676 struct array_cache *new[NR_CPUS];
3677};
3678
3679static void do_ccupdate_local(void *info)
3680{
a737b3e2 3681 struct ccupdate_struct *new = info;
1da177e4
LT
3682 struct array_cache *old;
3683
3684 check_irq_off();
9a2dba4b 3685 old = cpu_cache_get(new->cachep);
e498be7d 3686
1da177e4
LT
3687 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3688 new->new[smp_processor_id()] = old;
3689}
3690
b5d8ca7c 3691/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3692static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3693 int batchcount, int shared)
1da177e4
LT
3694{
3695 struct ccupdate_struct new;
e498be7d 3696 int i, err;
1da177e4 3697
b28a02de 3698 memset(&new.new, 0, sizeof(new.new));
e498be7d 3699 for_each_online_cpu(i) {
a737b3e2
AM
3700 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3701 batchcount);
e498be7d 3702 if (!new.new[i]) {
b28a02de
PE
3703 for (i--; i >= 0; i--)
3704 kfree(new.new[i]);
e498be7d 3705 return -ENOMEM;
1da177e4
LT
3706 }
3707 }
3708 new.cachep = cachep;
3709
a07fa394 3710 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3711
1da177e4 3712 check_irq_on();
1da177e4
LT
3713 cachep->batchcount = batchcount;
3714 cachep->limit = limit;
e498be7d 3715 cachep->shared = shared;
1da177e4 3716
e498be7d 3717 for_each_online_cpu(i) {
1da177e4
LT
3718 struct array_cache *ccold = new.new[i];
3719 if (!ccold)
3720 continue;
e498be7d 3721 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3722 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3723 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3724 kfree(ccold);
3725 }
1da177e4 3726
e498be7d
CL
3727 err = alloc_kmemlist(cachep);
3728 if (err) {
3729 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3730 cachep->name, -err);
e498be7d 3731 BUG();
1da177e4 3732 }
1da177e4
LT
3733 return 0;
3734}
3735
b5d8ca7c 3736/* Called with cache_chain_mutex held always */
343e0d7a 3737static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3738{
3739 int err;
3740 int limit, shared;
3741
a737b3e2
AM
3742 /*
3743 * The head array serves three purposes:
1da177e4
LT
3744 * - create a LIFO ordering, i.e. return objects that are cache-warm
3745 * - reduce the number of spinlock operations.
a737b3e2 3746 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3747 * bufctl chains: array operations are cheaper.
3748 * The numbers are guessed, we should auto-tune as described by
3749 * Bonwick.
3750 */
3dafccf2 3751 if (cachep->buffer_size > 131072)
1da177e4 3752 limit = 1;
3dafccf2 3753 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3754 limit = 8;
3dafccf2 3755 else if (cachep->buffer_size > 1024)
1da177e4 3756 limit = 24;
3dafccf2 3757 else if (cachep->buffer_size > 256)
1da177e4
LT
3758 limit = 54;
3759 else
3760 limit = 120;
3761
a737b3e2
AM
3762 /*
3763 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3764 * allocation behaviour: Most allocs on one cpu, most free operations
3765 * on another cpu. For these cases, an efficient object passing between
3766 * cpus is necessary. This is provided by a shared array. The array
3767 * replaces Bonwick's magazine layer.
3768 * On uniprocessor, it's functionally equivalent (but less efficient)
3769 * to a larger limit. Thus disabled by default.
3770 */
3771 shared = 0;
3772#ifdef CONFIG_SMP
3dafccf2 3773 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3774 shared = 8;
3775#endif
3776
3777#if DEBUG
a737b3e2
AM
3778 /*
3779 * With debugging enabled, large batchcount lead to excessively long
3780 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3781 */
3782 if (limit > 32)
3783 limit = 32;
3784#endif
b28a02de 3785 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3786 if (err)
3787 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3788 cachep->name, -err);
1da177e4
LT
3789}
3790
1b55253a
CL
3791/*
3792 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3793 * necessary. Note that the l3 listlock also protects the array_cache
3794 * if drain_array() is used on the shared array.
1b55253a
CL
3795 */
3796void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3797 struct array_cache *ac, int force, int node)
1da177e4
LT
3798{
3799 int tofree;
3800
1b55253a
CL
3801 if (!ac || !ac->avail)
3802 return;
1da177e4
LT
3803 if (ac->touched && !force) {
3804 ac->touched = 0;
b18e7e65 3805 } else {
1b55253a 3806 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3807 if (ac->avail) {
3808 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3809 if (tofree > ac->avail)
3810 tofree = (ac->avail + 1) / 2;
3811 free_block(cachep, ac->entry, tofree, node);
3812 ac->avail -= tofree;
3813 memmove(ac->entry, &(ac->entry[tofree]),
3814 sizeof(void *) * ac->avail);
3815 }
1b55253a 3816 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3817 }
3818}
3819
3820/**
3821 * cache_reap - Reclaim memory from caches.
1e5d5331 3822 * @unused: unused parameter
1da177e4
LT
3823 *
3824 * Called from workqueue/eventd every few seconds.
3825 * Purpose:
3826 * - clear the per-cpu caches for this CPU.
3827 * - return freeable pages to the main free memory pool.
3828 *
a737b3e2
AM
3829 * If we cannot acquire the cache chain mutex then just give up - we'll try
3830 * again on the next iteration.
1da177e4
LT
3831 */
3832static void cache_reap(void *unused)
3833{
7a7c381d 3834 struct kmem_cache *searchp;
e498be7d 3835 struct kmem_list3 *l3;
aab2207c 3836 int node = numa_node_id();
1da177e4 3837
fc0abb14 3838 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3839 /* Give up. Setup the next iteration. */
b28a02de
PE
3840 schedule_delayed_work(&__get_cpu_var(reap_work),
3841 REAPTIMEOUT_CPUC);
1da177e4
LT
3842 return;
3843 }
3844
7a7c381d 3845 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3846 check_irq_on();
3847
35386e3b
CL
3848 /*
3849 * We only take the l3 lock if absolutely necessary and we
3850 * have established with reasonable certainty that
3851 * we can do some work if the lock was obtained.
3852 */
aab2207c 3853 l3 = searchp->nodelists[node];
35386e3b 3854
8fce4d8e 3855 reap_alien(searchp, l3);
1da177e4 3856
aab2207c 3857 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3858
35386e3b
CL
3859 /*
3860 * These are racy checks but it does not matter
3861 * if we skip one check or scan twice.
3862 */
e498be7d 3863 if (time_after(l3->next_reap, jiffies))
35386e3b 3864 goto next;
1da177e4 3865
e498be7d 3866 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3867
aab2207c 3868 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3869
ed11d9eb 3870 if (l3->free_touched)
e498be7d 3871 l3->free_touched = 0;
ed11d9eb
CL
3872 else {
3873 int freed;
1da177e4 3874
ed11d9eb
CL
3875 freed = drain_freelist(searchp, l3, (l3->free_limit +
3876 5 * searchp->num - 1) / (5 * searchp->num));
3877 STATS_ADD_REAPED(searchp, freed);
3878 }
35386e3b 3879next:
1da177e4
LT
3880 cond_resched();
3881 }
3882 check_irq_on();
fc0abb14 3883 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3884 next_reap_node();
2244b95a 3885 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3886 /* Set up the next iteration */
cd61ef62 3887 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3888}
3889
3890#ifdef CONFIG_PROC_FS
3891
85289f98 3892static void print_slabinfo_header(struct seq_file *m)
1da177e4 3893{
85289f98
PE
3894 /*
3895 * Output format version, so at least we can change it
3896 * without _too_ many complaints.
3897 */
1da177e4 3898#if STATS
85289f98 3899 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3900#else
85289f98 3901 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3902#endif
85289f98
PE
3903 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3904 "<objperslab> <pagesperslab>");
3905 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3906 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3907#if STATS
85289f98 3908 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3909 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3910 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3911#endif
85289f98
PE
3912 seq_putc(m, '\n');
3913}
3914
3915static void *s_start(struct seq_file *m, loff_t *pos)
3916{
3917 loff_t n = *pos;
3918 struct list_head *p;
3919
fc0abb14 3920 mutex_lock(&cache_chain_mutex);
85289f98
PE
3921 if (!n)
3922 print_slabinfo_header(m);
1da177e4
LT
3923 p = cache_chain.next;
3924 while (n--) {
3925 p = p->next;
3926 if (p == &cache_chain)
3927 return NULL;
3928 }
343e0d7a 3929 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3930}
3931
3932static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3933{
343e0d7a 3934 struct kmem_cache *cachep = p;
1da177e4 3935 ++*pos;
a737b3e2
AM
3936 return cachep->next.next == &cache_chain ?
3937 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3938}
3939
3940static void s_stop(struct seq_file *m, void *p)
3941{
fc0abb14 3942 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3943}
3944
3945static int s_show(struct seq_file *m, void *p)
3946{
343e0d7a 3947 struct kmem_cache *cachep = p;
b28a02de
PE
3948 struct slab *slabp;
3949 unsigned long active_objs;
3950 unsigned long num_objs;
3951 unsigned long active_slabs = 0;
3952 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3953 const char *name;
1da177e4 3954 char *error = NULL;
e498be7d
CL
3955 int node;
3956 struct kmem_list3 *l3;
1da177e4 3957
1da177e4
LT
3958 active_objs = 0;
3959 num_slabs = 0;
e498be7d
CL
3960 for_each_online_node(node) {
3961 l3 = cachep->nodelists[node];
3962 if (!l3)
3963 continue;
3964
ca3b9b91
RT
3965 check_irq_on();
3966 spin_lock_irq(&l3->list_lock);
e498be7d 3967
7a7c381d 3968 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3969 if (slabp->inuse != cachep->num && !error)
3970 error = "slabs_full accounting error";
3971 active_objs += cachep->num;
3972 active_slabs++;
3973 }
7a7c381d 3974 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3975 if (slabp->inuse == cachep->num && !error)
3976 error = "slabs_partial inuse accounting error";
3977 if (!slabp->inuse && !error)
3978 error = "slabs_partial/inuse accounting error";
3979 active_objs += slabp->inuse;
3980 active_slabs++;
3981 }
7a7c381d 3982 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3983 if (slabp->inuse && !error)
3984 error = "slabs_free/inuse accounting error";
3985 num_slabs++;
3986 }
3987 free_objects += l3->free_objects;
4484ebf1
RT
3988 if (l3->shared)
3989 shared_avail += l3->shared->avail;
e498be7d 3990
ca3b9b91 3991 spin_unlock_irq(&l3->list_lock);
1da177e4 3992 }
b28a02de
PE
3993 num_slabs += active_slabs;
3994 num_objs = num_slabs * cachep->num;
e498be7d 3995 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3996 error = "free_objects accounting error";
3997
b28a02de 3998 name = cachep->name;
1da177e4
LT
3999 if (error)
4000 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4001
4002 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4003 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4004 cachep->num, (1 << cachep->gfporder));
1da177e4 4005 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4006 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4007 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4008 active_slabs, num_slabs, shared_avail);
1da177e4 4009#if STATS
b28a02de 4010 { /* list3 stats */
1da177e4
LT
4011 unsigned long high = cachep->high_mark;
4012 unsigned long allocs = cachep->num_allocations;
4013 unsigned long grown = cachep->grown;
4014 unsigned long reaped = cachep->reaped;
4015 unsigned long errors = cachep->errors;
4016 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4017 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4018 unsigned long node_frees = cachep->node_frees;
fb7faf33 4019 unsigned long overflows = cachep->node_overflow;
1da177e4 4020
e498be7d 4021 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4022 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4023 reaped, errors, max_freeable, node_allocs,
fb7faf33 4024 node_frees, overflows);
1da177e4
LT
4025 }
4026 /* cpu stats */
4027 {
4028 unsigned long allochit = atomic_read(&cachep->allochit);
4029 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4030 unsigned long freehit = atomic_read(&cachep->freehit);
4031 unsigned long freemiss = atomic_read(&cachep->freemiss);
4032
4033 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4034 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4035 }
4036#endif
4037 seq_putc(m, '\n');
1da177e4
LT
4038 return 0;
4039}
4040
4041/*
4042 * slabinfo_op - iterator that generates /proc/slabinfo
4043 *
4044 * Output layout:
4045 * cache-name
4046 * num-active-objs
4047 * total-objs
4048 * object size
4049 * num-active-slabs
4050 * total-slabs
4051 * num-pages-per-slab
4052 * + further values on SMP and with statistics enabled
4053 */
4054
4055struct seq_operations slabinfo_op = {
b28a02de
PE
4056 .start = s_start,
4057 .next = s_next,
4058 .stop = s_stop,
4059 .show = s_show,
1da177e4
LT
4060};
4061
4062#define MAX_SLABINFO_WRITE 128
4063/**
4064 * slabinfo_write - Tuning for the slab allocator
4065 * @file: unused
4066 * @buffer: user buffer
4067 * @count: data length
4068 * @ppos: unused
4069 */
b28a02de
PE
4070ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4071 size_t count, loff_t *ppos)
1da177e4 4072{
b28a02de 4073 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4074 int limit, batchcount, shared, res;
7a7c381d 4075 struct kmem_cache *cachep;
b28a02de 4076
1da177e4
LT
4077 if (count > MAX_SLABINFO_WRITE)
4078 return -EINVAL;
4079 if (copy_from_user(&kbuf, buffer, count))
4080 return -EFAULT;
b28a02de 4081 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4082
4083 tmp = strchr(kbuf, ' ');
4084 if (!tmp)
4085 return -EINVAL;
4086 *tmp = '\0';
4087 tmp++;
4088 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4089 return -EINVAL;
4090
4091 /* Find the cache in the chain of caches. */
fc0abb14 4092 mutex_lock(&cache_chain_mutex);
1da177e4 4093 res = -EINVAL;
7a7c381d 4094 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4095 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4096 if (limit < 1 || batchcount < 1 ||
4097 batchcount > limit || shared < 0) {
e498be7d 4098 res = 0;
1da177e4 4099 } else {
e498be7d 4100 res = do_tune_cpucache(cachep, limit,
b28a02de 4101 batchcount, shared);
1da177e4
LT
4102 }
4103 break;
4104 }
4105 }
fc0abb14 4106 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4107 if (res >= 0)
4108 res = count;
4109 return res;
4110}
871751e2
AV
4111
4112#ifdef CONFIG_DEBUG_SLAB_LEAK
4113
4114static void *leaks_start(struct seq_file *m, loff_t *pos)
4115{
4116 loff_t n = *pos;
4117 struct list_head *p;
4118
4119 mutex_lock(&cache_chain_mutex);
4120 p = cache_chain.next;
4121 while (n--) {
4122 p = p->next;
4123 if (p == &cache_chain)
4124 return NULL;
4125 }
4126 return list_entry(p, struct kmem_cache, next);
4127}
4128
4129static inline int add_caller(unsigned long *n, unsigned long v)
4130{
4131 unsigned long *p;
4132 int l;
4133 if (!v)
4134 return 1;
4135 l = n[1];
4136 p = n + 2;
4137 while (l) {
4138 int i = l/2;
4139 unsigned long *q = p + 2 * i;
4140 if (*q == v) {
4141 q[1]++;
4142 return 1;
4143 }
4144 if (*q > v) {
4145 l = i;
4146 } else {
4147 p = q + 2;
4148 l -= i + 1;
4149 }
4150 }
4151 if (++n[1] == n[0])
4152 return 0;
4153 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4154 p[0] = v;
4155 p[1] = 1;
4156 return 1;
4157}
4158
4159static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4160{
4161 void *p;
4162 int i;
4163 if (n[0] == n[1])
4164 return;
4165 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4166 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4167 continue;
4168 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4169 return;
4170 }
4171}
4172
4173static void show_symbol(struct seq_file *m, unsigned long address)
4174{
4175#ifdef CONFIG_KALLSYMS
4176 char *modname;
4177 const char *name;
4178 unsigned long offset, size;
4179 char namebuf[KSYM_NAME_LEN+1];
4180
4181 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4182
4183 if (name) {
4184 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4185 if (modname)
4186 seq_printf(m, " [%s]", modname);
4187 return;
4188 }
4189#endif
4190 seq_printf(m, "%p", (void *)address);
4191}
4192
4193static int leaks_show(struct seq_file *m, void *p)
4194{
4195 struct kmem_cache *cachep = p;
871751e2
AV
4196 struct slab *slabp;
4197 struct kmem_list3 *l3;
4198 const char *name;
4199 unsigned long *n = m->private;
4200 int node;
4201 int i;
4202
4203 if (!(cachep->flags & SLAB_STORE_USER))
4204 return 0;
4205 if (!(cachep->flags & SLAB_RED_ZONE))
4206 return 0;
4207
4208 /* OK, we can do it */
4209
4210 n[1] = 0;
4211
4212 for_each_online_node(node) {
4213 l3 = cachep->nodelists[node];
4214 if (!l3)
4215 continue;
4216
4217 check_irq_on();
4218 spin_lock_irq(&l3->list_lock);
4219
7a7c381d 4220 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4221 handle_slab(n, cachep, slabp);
7a7c381d 4222 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4223 handle_slab(n, cachep, slabp);
871751e2
AV
4224 spin_unlock_irq(&l3->list_lock);
4225 }
4226 name = cachep->name;
4227 if (n[0] == n[1]) {
4228 /* Increase the buffer size */
4229 mutex_unlock(&cache_chain_mutex);
4230 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4231 if (!m->private) {
4232 /* Too bad, we are really out */
4233 m->private = n;
4234 mutex_lock(&cache_chain_mutex);
4235 return -ENOMEM;
4236 }
4237 *(unsigned long *)m->private = n[0] * 2;
4238 kfree(n);
4239 mutex_lock(&cache_chain_mutex);
4240 /* Now make sure this entry will be retried */
4241 m->count = m->size;
4242 return 0;
4243 }
4244 for (i = 0; i < n[1]; i++) {
4245 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4246 show_symbol(m, n[2*i+2]);
4247 seq_putc(m, '\n');
4248 }
4249 return 0;
4250}
4251
4252struct seq_operations slabstats_op = {
4253 .start = leaks_start,
4254 .next = s_next,
4255 .stop = s_stop,
4256 .show = leaks_show,
4257};
4258#endif
1da177e4
LT
4259#endif
4260
00e145b6
MS
4261/**
4262 * ksize - get the actual amount of memory allocated for a given object
4263 * @objp: Pointer to the object
4264 *
4265 * kmalloc may internally round up allocations and return more memory
4266 * than requested. ksize() can be used to determine the actual amount of
4267 * memory allocated. The caller may use this additional memory, even though
4268 * a smaller amount of memory was initially specified with the kmalloc call.
4269 * The caller must guarantee that objp points to a valid object previously
4270 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4271 * must not be freed during the duration of the call.
4272 */
1da177e4
LT
4273unsigned int ksize(const void *objp)
4274{
00e145b6
MS
4275 if (unlikely(objp == NULL))
4276 return 0;
1da177e4 4277
6ed5eb22 4278 return obj_size(virt_to_cache(objp));
1da177e4 4279}