]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/slab.c
f2fs: replace congestion_wait() calls with io_schedule_timeout()
[mirror_ubuntu-kernels.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
d3fb45f3 103#include <linux/kfence.h>
1da177e4
LT
104#include <linux/cpu.h>
105#include <linux/sysctl.h>
106#include <linux/module.h>
107#include <linux/rcupdate.h>
543537bd 108#include <linux/string.h>
138ae663 109#include <linux/uaccess.h>
e498be7d 110#include <linux/nodemask.h>
d5cff635 111#include <linux/kmemleak.h>
dc85da15 112#include <linux/mempolicy.h>
fc0abb14 113#include <linux/mutex.h>
8a8b6502 114#include <linux/fault-inject.h>
e7eebaf6 115#include <linux/rtmutex.h>
6a2d7a95 116#include <linux/reciprocal_div.h>
3ac7fe5a 117#include <linux/debugobjects.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
3f8c2452 120#include <linux/sched/task_stack.h>
1da177e4 121
381760ea
MG
122#include <net/sock.h>
123
1da177e4
LT
124#include <asm/cacheflush.h>
125#include <asm/tlbflush.h>
126#include <asm/page.h>
127
4dee6b64
SR
128#include <trace/events/kmem.h>
129
072bb0aa
MG
130#include "internal.h"
131
b9ce5ef4
GC
132#include "slab.h"
133
1da177e4 134/*
50953fe9 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144#ifdef CONFIG_DEBUG_SLAB
145#define DEBUG 1
146#define STATS 1
147#define FORCED_DEBUG 1
148#else
149#define DEBUG 0
150#define STATS 0
151#define FORCED_DEBUG 0
152#endif
153
1da177e4
LT
154/* Shouldn't this be in a header file somewhere? */
155#define BYTES_PER_WORD sizeof(void *)
87a927c7 156#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 157
1da177e4
LT
158#ifndef ARCH_KMALLOC_FLAGS
159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160#endif
161
f315e3fa
JK
162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165#if FREELIST_BYTE_INDEX
166typedef unsigned char freelist_idx_t;
167#else
168typedef unsigned short freelist_idx_t;
169#endif
170
30321c7b 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 172
1da177e4
LT
173/*
174 * struct array_cache
175 *
1da177e4
LT
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
bda5b655 190 void *entry[]; /*
a737b3e2
AM
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
a737b3e2 194 */
1da177e4
LT
195};
196
c8522a3a
JK
197struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200};
201
e498be7d
CL
202/*
203 * Need this for bootstrapping a per node allocator.
204 */
bf0dea23 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 207#define CACHE_CACHE 0
bf0dea23 208#define SIZE_NODE (MAX_NUMNODES)
e498be7d 209
ed11d9eb 210static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 211 struct kmem_cache_node *n, int tofree);
ed11d9eb 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
213 int node, struct list_head *list);
214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 216static void cache_reap(struct work_struct *unused);
ed11d9eb 217
76b342bd
JK
218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220static inline void fixup_slab_list(struct kmem_cache *cachep,
7981e67e 221 struct kmem_cache_node *n, struct slab *slab,
76b342bd 222 void **list);
e0a42726
IM
223static int slab_early_init = 1;
224
ce8eb6c4 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 226
ce8eb6c4 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
228{
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 232 parent->total_slabs = 0;
f728b0a5 233 parent->free_slabs = 0;
e498be7d
CL
234 parent->shared = NULL;
235 parent->alien = NULL;
2e1217cf 236 parent->colour_next = 0;
e498be7d
CL
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240}
241
a737b3e2
AM
242#define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
18bf8541 245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
246 } while (0)
247
a737b3e2
AM
248#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
e498be7d
CL
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
1da177e4 254
4fd0b46e
AD
255#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 257#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
258#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260#define BATCHREFILL_LIMIT 16
a737b3e2 261/*
f0953a1b 262 * Optimization question: fewer reaps means less probability for unnecessary
a737b3e2 263 * cpucache drain/refill cycles.
1da177e4 264 *
dc6f3f27 265 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
266 * which could lock up otherwise freeable slabs.
267 */
5f0985bb
JZ
268#define REAPTIMEOUT_AC (2*HZ)
269#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
270
271#if STATS
272#define STATS_INC_ACTIVE(x) ((x)->num_active++)
273#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275#define STATS_INC_GROWN(x) ((x)->grown++)
0b411634 276#define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
a737b3e2
AM
277#define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ERR(x) ((x)->errors++)
283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 284#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 285#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
286#define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
1da177e4
LT
291#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295#else
296#define STATS_INC_ACTIVE(x) do { } while (0)
297#define STATS_DEC_ACTIVE(x) do { } while (0)
298#define STATS_INC_ALLOCED(x) do { } while (0)
299#define STATS_INC_GROWN(x) do { } while (0)
0b411634 300#define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
1da177e4
LT
301#define STATS_SET_HIGH(x) do { } while (0)
302#define STATS_INC_ERR(x) do { } while (0)
303#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 304#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 305#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 306#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
307#define STATS_INC_ALLOCHIT(x) do { } while (0)
308#define STATS_INC_ALLOCMISS(x) do { } while (0)
309#define STATS_INC_FREEHIT(x) do { } while (0)
310#define STATS_INC_FREEMISS(x) do { } while (0)
311#endif
312
313#if DEBUG
1da177e4 314
a737b3e2
AM
315/*
316 * memory layout of objects:
1da177e4 317 * 0 : objp
3dafccf2 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
3dafccf2 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 322 * redzone word.
3dafccf2 323 * cachep->obj_offset: The real object.
3b0efdfa
CL
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 326 * [BYTES_PER_WORD long]
1da177e4 327 */
343e0d7a 328static int obj_offset(struct kmem_cache *cachep)
1da177e4 329{
3dafccf2 330 return cachep->obj_offset;
1da177e4
LT
331}
332
b46b8f19 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
334{
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
0b411634 336 return (unsigned long long *) (objp + obj_offset(cachep) -
b46b8f19 337 sizeof(unsigned long long));
1da177e4
LT
338}
339
b46b8f19 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
341{
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 344 return (unsigned long long *)(objp + cachep->size -
b46b8f19 345 sizeof(unsigned long long) -
87a927c7 346 REDZONE_ALIGN);
3b0efdfa 347 return (unsigned long long *) (objp + cachep->size -
b46b8f19 348 sizeof(unsigned long long));
1da177e4
LT
349}
350
343e0d7a 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
352{
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
355}
356
357#else
358
3dafccf2 359#define obj_offset(x) 0
b46b8f19
DW
360#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
362#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364#endif
365
1da177e4 366/*
3df1cccd
DR
367 * Do not go above this order unless 0 objects fit into the slab or
368 * overridden on the command line.
1da177e4 369 */
543585cc
DR
370#define SLAB_MAX_ORDER_HI 1
371#define SLAB_MAX_ORDER_LO 0
372static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 373static bool slab_max_order_set __initdata;
1da177e4 374
0b3eb091 375static inline void *index_to_obj(struct kmem_cache *cache,
7981e67e 376 const struct slab *slab, unsigned int idx)
8fea4e96 377{
7981e67e 378 return slab->s_mem + cache->size * idx;
8fea4e96
PE
379}
380
6fb92430 381#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 382/* internal cache of cache description objs */
9b030cb8 383static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
384 .batchcount = 1,
385 .limit = BOOT_CPUCACHE_ENTRIES,
386 .shared = 1,
3b0efdfa 387 .size = sizeof(struct kmem_cache),
b28a02de 388 .name = "kmem_cache",
1da177e4
LT
389};
390
1871e52c 391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 392
343e0d7a 393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 394{
bf0dea23 395 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
396}
397
a737b3e2
AM
398/*
399 * Calculate the number of objects and left-over bytes for a given buffer size.
400 */
70f75067 401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 402 slab_flags_t flags, size_t *left_over)
fbaccacf 403{
70f75067 404 unsigned int num;
fbaccacf 405 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 406
fbaccacf
SR
407 /*
408 * The slab management structure can be either off the slab or
409 * on it. For the latter case, the memory allocated for a
410 * slab is used for:
411 *
fbaccacf 412 * - @buffer_size bytes for each object
2e6b3602
JK
413 * - One freelist_idx_t for each object
414 *
415 * We don't need to consider alignment of freelist because
416 * freelist will be at the end of slab page. The objects will be
417 * at the correct alignment.
fbaccacf
SR
418 *
419 * If the slab management structure is off the slab, then the
420 * alignment will already be calculated into the size. Because
421 * the slabs are all pages aligned, the objects will be at the
422 * correct alignment when allocated.
423 */
b03a017b 424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 425 num = slab_size / buffer_size;
2e6b3602 426 *left_over = slab_size % buffer_size;
fbaccacf 427 } else {
70f75067 428 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
429 *left_over = slab_size %
430 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 431 }
70f75067
JK
432
433 return num;
1da177e4
LT
434}
435
f28510d3 436#if DEBUG
d40cee24 437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 438
a737b3e2
AM
439static void __slab_error(const char *function, struct kmem_cache *cachep,
440 char *msg)
1da177e4 441{
1170532b 442 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 443 function, cachep->name, msg);
1da177e4 444 dump_stack();
373d4d09 445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 446}
f28510d3 447#endif
1da177e4 448
3395ee05
PM
449/*
450 * By default on NUMA we use alien caches to stage the freeing of
451 * objects allocated from other nodes. This causes massive memory
452 * inefficiencies when using fake NUMA setup to split memory into a
453 * large number of small nodes, so it can be disabled on the command
454 * line
455 */
456
457static int use_alien_caches __read_mostly = 1;
458static int __init noaliencache_setup(char *s)
459{
460 use_alien_caches = 0;
461 return 1;
462}
463__setup("noaliencache", noaliencache_setup);
464
3df1cccd
DR
465static int __init slab_max_order_setup(char *str)
466{
467 get_option(&str, &slab_max_order);
468 slab_max_order = slab_max_order < 0 ? 0 :
469 min(slab_max_order, MAX_ORDER - 1);
470 slab_max_order_set = true;
471
472 return 1;
473}
474__setup("slab_max_order=", slab_max_order_setup);
475
8fce4d8e
CL
476#ifdef CONFIG_NUMA
477/*
478 * Special reaping functions for NUMA systems called from cache_reap().
479 * These take care of doing round robin flushing of alien caches (containing
480 * objects freed on different nodes from which they were allocated) and the
481 * flushing of remote pcps by calling drain_node_pages.
482 */
1871e52c 483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
484
485static void init_reap_node(int cpu)
486{
0edaf86c
AM
487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 node_online_map);
8fce4d8e
CL
489}
490
491static void next_reap_node(void)
492{
909ea964 493 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 494
0edaf86c 495 node = next_node_in(node, node_online_map);
909ea964 496 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
497}
498
499#else
500#define init_reap_node(cpu) do { } while (0)
501#define next_reap_node(void) do { } while (0)
502#endif
503
1da177e4
LT
504/*
505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
506 * via the workqueue/eventd.
507 * Add the CPU number into the expiration time to minimize the possibility of
508 * the CPUs getting into lockstep and contending for the global cache chain
509 * lock.
510 */
0db0628d 511static void start_cpu_timer(int cpu)
1da177e4 512{
1871e52c 513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 514
eac0337a 515 if (reap_work->work.func == NULL) {
8fce4d8e 516 init_reap_node(cpu);
203b42f7 517 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
518 schedule_delayed_work_on(cpu, reap_work,
519 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
520 }
521}
522
1fe00d50 523static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 524{
1fe00d50
JK
525 if (ac) {
526 ac->avail = 0;
527 ac->limit = limit;
528 ac->batchcount = batch;
529 ac->touched = 0;
1da177e4 530 }
1fe00d50
JK
531}
532
533static struct array_cache *alloc_arraycache(int node, int entries,
534 int batchcount, gfp_t gfp)
535{
5e804789 536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
537 struct array_cache *ac = NULL;
538
539 ac = kmalloc_node(memsize, gfp, node);
92d1d07d
QC
540 /*
541 * The array_cache structures contain pointers to free object.
542 * However, when such objects are allocated or transferred to another
543 * cache the pointers are not cleared and they could be counted as
544 * valid references during a kmemleak scan. Therefore, kmemleak must
545 * not scan such objects.
546 */
547 kmemleak_no_scan(ac);
1fe00d50
JK
548 init_arraycache(ac, entries, batchcount);
549 return ac;
1da177e4
LT
550}
551
f68f8ddd 552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
7981e67e 553 struct slab *slab, void *objp)
072bb0aa 554{
f68f8ddd 555 struct kmem_cache_node *n;
7981e67e 556 int slab_node;
f68f8ddd 557 LIST_HEAD(list);
072bb0aa 558
7981e67e
VB
559 slab_node = slab_nid(slab);
560 n = get_node(cachep, slab_node);
381760ea 561
f68f8ddd 562 spin_lock(&n->list_lock);
7981e67e 563 free_block(cachep, &objp, 1, slab_node, &list);
f68f8ddd 564 spin_unlock(&n->list_lock);
381760ea 565
f68f8ddd 566 slabs_destroy(cachep, &list);
072bb0aa
MG
567}
568
3ded175a
CL
569/*
570 * Transfer objects in one arraycache to another.
571 * Locking must be handled by the caller.
572 *
573 * Return the number of entries transferred.
574 */
575static int transfer_objects(struct array_cache *to,
576 struct array_cache *from, unsigned int max)
577{
578 /* Figure out how many entries to transfer */
732eacc0 579 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
580
581 if (!nr)
582 return 0;
583
0b411634 584 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
3ded175a
CL
585 sizeof(void *) *nr);
586
587 from->avail -= nr;
588 to->avail += nr;
3ded175a
CL
589 return nr;
590}
591
dabc3e29
KC
592/* &alien->lock must be held by alien callers. */
593static __always_inline void __free_one(struct array_cache *ac, void *objp)
594{
595 /* Avoid trivial double-free. */
596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 return;
599 ac->entry[ac->avail++] = objp;
600}
601
765c4507
CL
602#ifndef CONFIG_NUMA
603
604#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 605#define reap_alien(cachep, n) do { } while (0)
765c4507 606
c8522a3a
JK
607static inline struct alien_cache **alloc_alien_cache(int node,
608 int limit, gfp_t gfp)
765c4507 609{
8888177e 610 return NULL;
765c4507
CL
611}
612
c8522a3a 613static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
614{
615}
616
617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618{
619 return 0;
620}
621
622static inline void *alternate_node_alloc(struct kmem_cache *cachep,
623 gfp_t flags)
624{
625 return NULL;
626}
627
8b98c169 628static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
629 gfp_t flags, int nodeid)
630{
631 return NULL;
632}
633
4167e9b2
DR
634static inline gfp_t gfp_exact_node(gfp_t flags)
635{
444eb2a4 636 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
637}
638
765c4507
CL
639#else /* CONFIG_NUMA */
640
8b98c169 641static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 642static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 643
c8522a3a
JK
644static struct alien_cache *__alloc_alien_cache(int node, int entries,
645 int batch, gfp_t gfp)
646{
5e804789 647 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
648 struct alien_cache *alc = NULL;
649
650 alc = kmalloc_node(memsize, gfp, node);
09c2e76e 651 if (alc) {
92d1d07d 652 kmemleak_no_scan(alc);
09c2e76e
CL
653 init_arraycache(&alc->ac, entries, batch);
654 spin_lock_init(&alc->lock);
655 }
c8522a3a
JK
656 return alc;
657}
658
659static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 660{
c8522a3a 661 struct alien_cache **alc_ptr;
e498be7d
CL
662 int i;
663
664 if (limit > 1)
665 limit = 12;
b9726c26 666 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
c8522a3a
JK
667 if (!alc_ptr)
668 return NULL;
669
670 for_each_node(i) {
671 if (i == node || !node_online(i))
672 continue;
673 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
674 if (!alc_ptr[i]) {
675 for (i--; i >= 0; i--)
676 kfree(alc_ptr[i]);
677 kfree(alc_ptr);
678 return NULL;
e498be7d
CL
679 }
680 }
c8522a3a 681 return alc_ptr;
e498be7d
CL
682}
683
c8522a3a 684static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
685{
686 int i;
687
c8522a3a 688 if (!alc_ptr)
e498be7d 689 return;
e498be7d 690 for_each_node(i)
c8522a3a
JK
691 kfree(alc_ptr[i]);
692 kfree(alc_ptr);
e498be7d
CL
693}
694
343e0d7a 695static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
696 struct array_cache *ac, int node,
697 struct list_head *list)
e498be7d 698{
18bf8541 699 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
700
701 if (ac->avail) {
ce8eb6c4 702 spin_lock(&n->list_lock);
e00946fe
CL
703 /*
704 * Stuff objects into the remote nodes shared array first.
705 * That way we could avoid the overhead of putting the objects
706 * into the free lists and getting them back later.
707 */
ce8eb6c4
CL
708 if (n->shared)
709 transfer_objects(n->shared, ac, ac->limit);
e00946fe 710
833b706c 711 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 712 ac->avail = 0;
ce8eb6c4 713 spin_unlock(&n->list_lock);
e498be7d
CL
714 }
715}
716
8fce4d8e
CL
717/*
718 * Called from cache_reap() to regularly drain alien caches round robin.
719 */
ce8eb6c4 720static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 721{
909ea964 722 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 723
ce8eb6c4 724 if (n->alien) {
c8522a3a
JK
725 struct alien_cache *alc = n->alien[node];
726 struct array_cache *ac;
727
728 if (alc) {
729 ac = &alc->ac;
49dfc304 730 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
731 LIST_HEAD(list);
732
733 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 734 spin_unlock_irq(&alc->lock);
833b706c 735 slabs_destroy(cachep, &list);
c8522a3a 736 }
8fce4d8e
CL
737 }
738 }
739}
740
a737b3e2 741static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 742 struct alien_cache **alien)
e498be7d 743{
b28a02de 744 int i = 0;
c8522a3a 745 struct alien_cache *alc;
e498be7d
CL
746 struct array_cache *ac;
747 unsigned long flags;
748
749 for_each_online_node(i) {
c8522a3a
JK
750 alc = alien[i];
751 if (alc) {
833b706c
JK
752 LIST_HEAD(list);
753
c8522a3a 754 ac = &alc->ac;
49dfc304 755 spin_lock_irqsave(&alc->lock, flags);
833b706c 756 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 757 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 758 slabs_destroy(cachep, &list);
e498be7d
CL
759 }
760 }
761}
729bd0b7 762
25c4f304 763static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
7981e67e 764 int node, int slab_node)
729bd0b7 765{
ce8eb6c4 766 struct kmem_cache_node *n;
c8522a3a
JK
767 struct alien_cache *alien = NULL;
768 struct array_cache *ac;
97654dfa 769 LIST_HEAD(list);
1ca4cb24 770
18bf8541 771 n = get_node(cachep, node);
729bd0b7 772 STATS_INC_NODEFREES(cachep);
7981e67e
VB
773 if (n->alien && n->alien[slab_node]) {
774 alien = n->alien[slab_node];
c8522a3a 775 ac = &alien->ac;
49dfc304 776 spin_lock(&alien->lock);
c8522a3a 777 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 778 STATS_INC_ACOVERFLOW(cachep);
7981e67e 779 __drain_alien_cache(cachep, ac, slab_node, &list);
729bd0b7 780 }
dabc3e29 781 __free_one(ac, objp);
49dfc304 782 spin_unlock(&alien->lock);
833b706c 783 slabs_destroy(cachep, &list);
729bd0b7 784 } else {
7981e67e 785 n = get_node(cachep, slab_node);
18bf8541 786 spin_lock(&n->list_lock);
7981e67e 787 free_block(cachep, &objp, 1, slab_node, &list);
18bf8541 788 spin_unlock(&n->list_lock);
97654dfa 789 slabs_destroy(cachep, &list);
729bd0b7
PE
790 }
791 return 1;
792}
25c4f304
JK
793
794static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
795{
dd35f71a 796 int slab_node = slab_nid(virt_to_slab(objp));
25c4f304
JK
797 int node = numa_mem_id();
798 /*
799 * Make sure we are not freeing a object from another node to the array
800 * cache on this cpu.
801 */
dd35f71a 802 if (likely(node == slab_node))
25c4f304
JK
803 return 0;
804
dd35f71a 805 return __cache_free_alien(cachep, objp, node, slab_node);
25c4f304 806}
4167e9b2
DR
807
808/*
444eb2a4
MG
809 * Construct gfp mask to allocate from a specific node but do not reclaim or
810 * warn about failures.
4167e9b2
DR
811 */
812static inline gfp_t gfp_exact_node(gfp_t flags)
813{
444eb2a4 814 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 815}
e498be7d
CL
816#endif
817
ded0ecf6
JK
818static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
819{
820 struct kmem_cache_node *n;
821
822 /*
823 * Set up the kmem_cache_node for cpu before we can
824 * begin anything. Make sure some other cpu on this
825 * node has not already allocated this
826 */
827 n = get_node(cachep, node);
828 if (n) {
829 spin_lock_irq(&n->list_lock);
830 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
831 cachep->num;
832 spin_unlock_irq(&n->list_lock);
833
834 return 0;
835 }
836
837 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
838 if (!n)
839 return -ENOMEM;
840
841 kmem_cache_node_init(n);
842 n->next_reap = jiffies + REAPTIMEOUT_NODE +
843 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
844
845 n->free_limit =
846 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
847
848 /*
849 * The kmem_cache_nodes don't come and go as CPUs
850 * come and go. slab_mutex is sufficient
851 * protection here.
852 */
853 cachep->node[node] = n;
854
855 return 0;
856}
857
6731d4f1 858#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 859/*
6a67368c 860 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 861 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 862 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 863 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
864 * already in use.
865 *
18004c5d 866 * Must hold slab_mutex.
8f9f8d9e 867 */
6a67368c 868static int init_cache_node_node(int node)
8f9f8d9e 869{
ded0ecf6 870 int ret;
8f9f8d9e 871 struct kmem_cache *cachep;
8f9f8d9e 872
18004c5d 873 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
874 ret = init_cache_node(cachep, node, GFP_KERNEL);
875 if (ret)
876 return ret;
8f9f8d9e 877 }
ded0ecf6 878
8f9f8d9e
DR
879 return 0;
880}
6731d4f1 881#endif
8f9f8d9e 882
c3d332b6
JK
883static int setup_kmem_cache_node(struct kmem_cache *cachep,
884 int node, gfp_t gfp, bool force_change)
885{
886 int ret = -ENOMEM;
887 struct kmem_cache_node *n;
888 struct array_cache *old_shared = NULL;
889 struct array_cache *new_shared = NULL;
890 struct alien_cache **new_alien = NULL;
891 LIST_HEAD(list);
892
893 if (use_alien_caches) {
894 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
895 if (!new_alien)
896 goto fail;
897 }
898
899 if (cachep->shared) {
900 new_shared = alloc_arraycache(node,
901 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
902 if (!new_shared)
903 goto fail;
904 }
905
906 ret = init_cache_node(cachep, node, gfp);
907 if (ret)
908 goto fail;
909
910 n = get_node(cachep, node);
911 spin_lock_irq(&n->list_lock);
912 if (n->shared && force_change) {
913 free_block(cachep, n->shared->entry,
914 n->shared->avail, node, &list);
915 n->shared->avail = 0;
916 }
917
918 if (!n->shared || force_change) {
919 old_shared = n->shared;
920 n->shared = new_shared;
921 new_shared = NULL;
922 }
923
924 if (!n->alien) {
925 n->alien = new_alien;
926 new_alien = NULL;
927 }
928
929 spin_unlock_irq(&n->list_lock);
930 slabs_destroy(cachep, &list);
931
801faf0d
JK
932 /*
933 * To protect lockless access to n->shared during irq disabled context.
934 * If n->shared isn't NULL in irq disabled context, accessing to it is
935 * guaranteed to be valid until irq is re-enabled, because it will be
6564a25e 936 * freed after synchronize_rcu().
801faf0d 937 */
86d9f485 938 if (old_shared && force_change)
6564a25e 939 synchronize_rcu();
801faf0d 940
c3d332b6
JK
941fail:
942 kfree(old_shared);
943 kfree(new_shared);
944 free_alien_cache(new_alien);
945
946 return ret;
947}
948
6731d4f1
SAS
949#ifdef CONFIG_SMP
950
0db0628d 951static void cpuup_canceled(long cpu)
fbf1e473
AM
952{
953 struct kmem_cache *cachep;
ce8eb6c4 954 struct kmem_cache_node *n = NULL;
7d6e6d09 955 int node = cpu_to_mem(cpu);
a70f7302 956 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 957
18004c5d 958 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
959 struct array_cache *nc;
960 struct array_cache *shared;
c8522a3a 961 struct alien_cache **alien;
97654dfa 962 LIST_HEAD(list);
fbf1e473 963
18bf8541 964 n = get_node(cachep, node);
ce8eb6c4 965 if (!n)
bf0dea23 966 continue;
fbf1e473 967
ce8eb6c4 968 spin_lock_irq(&n->list_lock);
fbf1e473 969
ce8eb6c4
CL
970 /* Free limit for this kmem_cache_node */
971 n->free_limit -= cachep->batchcount;
bf0dea23
JK
972
973 /* cpu is dead; no one can alloc from it. */
974 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
517f9f1e
LR
975 free_block(cachep, nc->entry, nc->avail, node, &list);
976 nc->avail = 0;
fbf1e473 977
58463c1f 978 if (!cpumask_empty(mask)) {
ce8eb6c4 979 spin_unlock_irq(&n->list_lock);
bf0dea23 980 goto free_slab;
fbf1e473
AM
981 }
982
ce8eb6c4 983 shared = n->shared;
fbf1e473
AM
984 if (shared) {
985 free_block(cachep, shared->entry,
97654dfa 986 shared->avail, node, &list);
ce8eb6c4 987 n->shared = NULL;
fbf1e473
AM
988 }
989
ce8eb6c4
CL
990 alien = n->alien;
991 n->alien = NULL;
fbf1e473 992
ce8eb6c4 993 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
994
995 kfree(shared);
996 if (alien) {
997 drain_alien_cache(cachep, alien);
998 free_alien_cache(alien);
999 }
bf0dea23
JK
1000
1001free_slab:
97654dfa 1002 slabs_destroy(cachep, &list);
fbf1e473
AM
1003 }
1004 /*
1005 * In the previous loop, all the objects were freed to
1006 * the respective cache's slabs, now we can go ahead and
1007 * shrink each nodelist to its limit.
1008 */
18004c5d 1009 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1010 n = get_node(cachep, node);
ce8eb6c4 1011 if (!n)
fbf1e473 1012 continue;
a5aa63a5 1013 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1014 }
1015}
1016
0db0628d 1017static int cpuup_prepare(long cpu)
1da177e4 1018{
343e0d7a 1019 struct kmem_cache *cachep;
7d6e6d09 1020 int node = cpu_to_mem(cpu);
8f9f8d9e 1021 int err;
1da177e4 1022
fbf1e473
AM
1023 /*
1024 * We need to do this right in the beginning since
1025 * alloc_arraycache's are going to use this list.
1026 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1027 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1028 */
6a67368c 1029 err = init_cache_node_node(node);
8f9f8d9e
DR
1030 if (err < 0)
1031 goto bad;
fbf1e473
AM
1032
1033 /*
1034 * Now we can go ahead with allocating the shared arrays and
1035 * array caches
1036 */
18004c5d 1037 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1038 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039 if (err)
1040 goto bad;
fbf1e473 1041 }
ce79ddc8 1042
fbf1e473
AM
1043 return 0;
1044bad:
12d00f6a 1045 cpuup_canceled(cpu);
fbf1e473
AM
1046 return -ENOMEM;
1047}
1048
6731d4f1 1049int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1050{
6731d4f1 1051 int err;
fbf1e473 1052
6731d4f1
SAS
1053 mutex_lock(&slab_mutex);
1054 err = cpuup_prepare(cpu);
1055 mutex_unlock(&slab_mutex);
1056 return err;
1057}
1058
1059/*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
221503e1 1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
6731d4f1 1065 * a kmalloc allocation from another cpu for memory from the node of
70b6d25e 1066 * the cpu going down. The kmem_cache_node structure is usually allocated from
6731d4f1
SAS
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
1069int slab_dead_cpu(unsigned int cpu)
1070{
1071 mutex_lock(&slab_mutex);
1072 cpuup_canceled(cpu);
1073 mutex_unlock(&slab_mutex);
1074 return 0;
1075}
8f5be20b 1076#endif
6731d4f1
SAS
1077
1078static int slab_online_cpu(unsigned int cpu)
1079{
1080 start_cpu_timer(cpu);
1081 return 0;
1da177e4
LT
1082}
1083
6731d4f1
SAS
1084static int slab_offline_cpu(unsigned int cpu)
1085{
1086 /*
1087 * Shutdown cache reaper. Note that the slab_mutex is held so
1088 * that if cache_reap() is invoked it cannot do anything
1089 * expensive but will only modify reap_work and reschedule the
1090 * timer.
1091 */
1092 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093 /* Now the cache_reaper is guaranteed to be not running. */
1094 per_cpu(slab_reap_work, cpu).work.func = NULL;
1095 return 0;
1096}
1da177e4 1097
76af6a05 1098#if defined(CONFIG_NUMA)
8f9f8d9e
DR
1099/*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
18004c5d 1104 * Must hold slab_mutex.
8f9f8d9e 1105 */
6a67368c 1106static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1107{
1108 struct kmem_cache *cachep;
1109 int ret = 0;
1110
18004c5d 1111 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1112 struct kmem_cache_node *n;
8f9f8d9e 1113
18bf8541 1114 n = get_node(cachep, node);
ce8eb6c4 1115 if (!n)
8f9f8d9e
DR
1116 continue;
1117
a5aa63a5 1118 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1119
ce8eb6c4
CL
1120 if (!list_empty(&n->slabs_full) ||
1121 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1122 ret = -EBUSY;
1123 break;
1124 }
1125 }
1126 return ret;
1127}
1128
1129static int __meminit slab_memory_callback(struct notifier_block *self,
1130 unsigned long action, void *arg)
1131{
1132 struct memory_notify *mnb = arg;
1133 int ret = 0;
1134 int nid;
1135
1136 nid = mnb->status_change_nid;
1137 if (nid < 0)
1138 goto out;
1139
1140 switch (action) {
1141 case MEM_GOING_ONLINE:
18004c5d 1142 mutex_lock(&slab_mutex);
6a67368c 1143 ret = init_cache_node_node(nid);
18004c5d 1144 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1145 break;
1146 case MEM_GOING_OFFLINE:
18004c5d 1147 mutex_lock(&slab_mutex);
6a67368c 1148 ret = drain_cache_node_node(nid);
18004c5d 1149 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1150 break;
1151 case MEM_ONLINE:
1152 case MEM_OFFLINE:
1153 case MEM_CANCEL_ONLINE:
1154 case MEM_CANCEL_OFFLINE:
1155 break;
1156 }
1157out:
5fda1bd5 1158 return notifier_from_errno(ret);
8f9f8d9e 1159}
76af6a05 1160#endif /* CONFIG_NUMA */
8f9f8d9e 1161
e498be7d 1162/*
ce8eb6c4 1163 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1164 */
6744f087 1165static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1166 int nodeid)
e498be7d 1167{
6744f087 1168 struct kmem_cache_node *ptr;
e498be7d 1169
6744f087 1170 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1171 BUG_ON(!ptr);
1172
6744f087 1173 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1174 /*
1175 * Do not assume that spinlocks can be initialized via memcpy:
1176 */
1177 spin_lock_init(&ptr->list_lock);
1178
e498be7d 1179 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1180 cachep->node[nodeid] = ptr;
e498be7d
CL
1181}
1182
556a169d 1183/*
ce8eb6c4
CL
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
556a169d 1186 */
ce8eb6c4 1187static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1188{
1189 int node;
1190
1191 for_each_online_node(node) {
ce8eb6c4 1192 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1193 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1194 REAPTIMEOUT_NODE +
1195 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1196 }
1197}
1198
a737b3e2
AM
1199/*
1200 * Initialisation. Called after the page allocator have been initialised and
1201 * before smp_init().
1da177e4
LT
1202 */
1203void __init kmem_cache_init(void)
1204{
e498be7d
CL
1205 int i;
1206
9b030cb8
CL
1207 kmem_cache = &kmem_cache_boot;
1208
8888177e 1209 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1210 use_alien_caches = 0;
1211
3c583465 1212 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1213 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1214
1da177e4
LT
1215 /*
1216 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1217 * page orders on machines with more than 32MB of memory if
1218 * not overridden on the command line.
1da177e4 1219 */
ca79b0c2 1220 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
543585cc 1221 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1222
1da177e4
LT
1223 /* Bootstrap is tricky, because several objects are allocated
1224 * from caches that do not exist yet:
9b030cb8
CL
1225 * 1) initialize the kmem_cache cache: it contains the struct
1226 * kmem_cache structures of all caches, except kmem_cache itself:
1227 * kmem_cache is statically allocated.
e498be7d 1228 * Initially an __init data area is used for the head array and the
ce8eb6c4 1229 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1230 * array at the end of the bootstrap.
1da177e4 1231 * 2) Create the first kmalloc cache.
343e0d7a 1232 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1233 * An __init data area is used for the head array.
1234 * 3) Create the remaining kmalloc caches, with minimally sized
1235 * head arrays.
9b030cb8 1236 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1237 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1238 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1239 * the other cache's with kmalloc allocated memory.
1240 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1241 */
1242
9b030cb8 1243 /* 1) create the kmem_cache */
1da177e4 1244
8da3430d 1245 /*
b56efcf0 1246 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1247 */
2f9baa9f 1248 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1249 offsetof(struct kmem_cache, node) +
6744f087 1250 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1251 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1252 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1253 slab_state = PARTIAL;
1da177e4 1254
a737b3e2 1255 /*
bf0dea23
JK
1256 * Initialize the caches that provide memory for the kmem_cache_node
1257 * structures first. Without this, further allocations will bug.
e498be7d 1258 */
cc252eae 1259 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
cb5d9fb3 1260 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
dc0a7f75
PL
1261 kmalloc_info[INDEX_NODE].size,
1262 ARCH_KMALLOC_FLAGS, 0,
1263 kmalloc_info[INDEX_NODE].size);
bf0dea23 1264 slab_state = PARTIAL_NODE;
34cc6990 1265 setup_kmalloc_cache_index_table();
e498be7d 1266
e0a42726
IM
1267 slab_early_init = 0;
1268
ce8eb6c4 1269 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1270 {
1ca4cb24
PE
1271 int nid;
1272
9c09a95c 1273 for_each_online_node(nid) {
ce8eb6c4 1274 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1275
cc252eae 1276 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
ce8eb6c4 1277 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1278 }
1279 }
1da177e4 1280
f97d5f63 1281 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286 struct kmem_cache *cachep;
1287
8429db5c 1288 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1289 mutex_lock(&slab_mutex);
1290 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1291 if (enable_cpucache(cachep, GFP_NOWAIT))
1292 BUG();
18004c5d 1293 mutex_unlock(&slab_mutex);
056c6241 1294
97d06609
CL
1295 /* Done! */
1296 slab_state = FULL;
1297
8f9f8d9e
DR
1298#ifdef CONFIG_NUMA
1299 /*
1300 * Register a memory hotplug callback that initializes and frees
6a67368c 1301 * node.
8f9f8d9e
DR
1302 */
1303 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
a737b3e2
AM
1306 /*
1307 * The reap timers are started later, with a module init call: That part
1308 * of the kernel is not yet operational.
1da177e4
LT
1309 */
1310}
1311
1312static int __init cpucache_init(void)
1313{
6731d4f1 1314 int ret;
1da177e4 1315
a737b3e2
AM
1316 /*
1317 * Register the timers that return unneeded pages to the page allocator
1da177e4 1318 */
6731d4f1
SAS
1319 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320 slab_online_cpu, slab_offline_cpu);
1321 WARN_ON(ret < 0);
a164f896 1322
1da177e4
LT
1323 return 0;
1324}
1da177e4
LT
1325__initcall(cpucache_init);
1326
8bdec192
RA
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
9a02d699 1330#if DEBUG
ce8eb6c4 1331 struct kmem_cache_node *n;
8bdec192
RA
1332 unsigned long flags;
1333 int node;
9a02d699
DR
1334 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335 DEFAULT_RATELIMIT_BURST);
1336
1337 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338 return;
8bdec192 1339
5b3810e5
VB
1340 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341 nodeid, gfpflags, &gfpflags);
1342 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1343 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1344
18bf8541 1345 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1346 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1347
ce8eb6c4 1348 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1349 total_slabs = n->total_slabs;
1350 free_slabs = n->free_slabs;
1351 free_objs = n->free_objects;
ce8eb6c4 1352 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1353
bf00bd34
DR
1354 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355 node, total_slabs - free_slabs, total_slabs,
1356 (total_slabs * cachep->num) - free_objs,
1357 total_slabs * cachep->num);
8bdec192 1358 }
9a02d699 1359#endif
8bdec192
RA
1360}
1361
1da177e4 1362/*
8a7d9b43
WSH
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1da177e4
LT
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
42c0faac 1370static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
0c3aa83e 1371 int nodeid)
1da177e4 1372{
42c0faac
VB
1373 struct folio *folio;
1374 struct slab *slab;
765c4507 1375
a618e89f 1376 flags |= cachep->allocflags;
e1b6aa6f 1377
42c0faac
VB
1378 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1379 if (!folio) {
9a02d699 1380 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1381 return NULL;
8bdec192 1382 }
1da177e4 1383
42c0faac
VB
1384 slab = folio_slab(folio);
1385
1386 account_slab(slab, cachep->gfporder, cachep, flags);
1387 __folio_set_slab(folio);
f68f8ddd 1388 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
42c0faac
VB
1389 if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1390 slab_set_pfmemalloc(slab);
072bb0aa 1391
42c0faac 1392 return slab;
1da177e4
LT
1393}
1394
1395/*
1396 * Interface to system's page release.
1397 */
42c0faac 1398static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1da177e4 1399{
27ee57c9 1400 int order = cachep->gfporder;
42c0faac 1401 struct folio *folio = slab_folio(slab);
73293c2f 1402
42c0faac
VB
1403 BUG_ON(!folio_test_slab(folio));
1404 __slab_clear_pfmemalloc(slab);
1405 __folio_clear_slab(folio);
1406 page_mapcount_reset(folio_page(folio, 0));
1407 folio->mapping = NULL;
1f458cbf 1408
1da177e4 1409 if (current->reclaim_state)
6cea1d56 1410 current->reclaim_state->reclaimed_slab += 1 << order;
42c0faac
VB
1411 unaccount_slab(slab, order, cachep);
1412 __free_pages(folio_page(folio, 0), order);
1da177e4
LT
1413}
1414
1415static void kmem_rcu_free(struct rcu_head *head)
1416{
68126702 1417 struct kmem_cache *cachep;
42c0faac 1418 struct slab *slab;
1da177e4 1419
42c0faac
VB
1420 slab = container_of(head, struct slab, rcu_head);
1421 cachep = slab->slab_cache;
68126702 1422
42c0faac 1423 kmem_freepages(cachep, slab);
1da177e4
LT
1424}
1425
1426#if DEBUG
40b44137
JK
1427static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1428{
8e57f8ac 1429 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
40b44137
JK
1430 (cachep->size % PAGE_SIZE) == 0)
1431 return true;
1432
1433 return false;
1434}
1da177e4
LT
1435
1436#ifdef CONFIG_DEBUG_PAGEALLOC
80552f0f 1437static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
40b44137
JK
1438{
1439 if (!is_debug_pagealloc_cache(cachep))
1440 return;
1441
77bc7fd6 1442 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
40b44137
JK
1443}
1444
1445#else
1446static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
80552f0f 1447 int map) {}
40b44137 1448
1da177e4
LT
1449#endif
1450
343e0d7a 1451static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1452{
8c138bc0 1453 int size = cachep->object_size;
3dafccf2 1454 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1455
1456 memset(addr, val, size);
b28a02de 1457 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1458}
1459
1460static void dump_line(char *data, int offset, int limit)
1461{
1462 int i;
aa83aa40
DJ
1463 unsigned char error = 0;
1464 int bad_count = 0;
1465
1170532b 1466 pr_err("%03x: ", offset);
aa83aa40
DJ
1467 for (i = 0; i < limit; i++) {
1468 if (data[offset + i] != POISON_FREE) {
1469 error = data[offset + i];
1470 bad_count++;
1471 }
aa83aa40 1472 }
fdde6abb
SAS
1473 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1474 &data[offset], limit, 1);
aa83aa40
DJ
1475
1476 if (bad_count == 1) {
1477 error ^= POISON_FREE;
1478 if (!(error & (error - 1))) {
1170532b 1479 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1480#ifdef CONFIG_X86
1170532b 1481 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1482#else
1170532b 1483 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1484#endif
1485 }
1486 }
1da177e4
LT
1487}
1488#endif
1489
1490#if DEBUG
1491
343e0d7a 1492static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1493{
1494 int i, size;
1495 char *realobj;
1496
1497 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1498 pr_err("Redzone: 0x%llx/0x%llx\n",
1499 *dbg_redzone1(cachep, objp),
1500 *dbg_redzone2(cachep, objp));
1da177e4
LT
1501 }
1502
85c3e4a5
GU
1503 if (cachep->flags & SLAB_STORE_USER)
1504 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1505 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1506 size = cachep->object_size;
b28a02de 1507 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1508 int limit;
1509 limit = 16;
b28a02de
PE
1510 if (i + limit > size)
1511 limit = size - i;
1da177e4
LT
1512 dump_line(realobj, i, limit);
1513 }
1514}
1515
343e0d7a 1516static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1517{
1518 char *realobj;
1519 int size, i;
1520 int lines = 0;
1521
40b44137
JK
1522 if (is_debug_pagealloc_cache(cachep))
1523 return;
1524
3dafccf2 1525 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1526 size = cachep->object_size;
1da177e4 1527
b28a02de 1528 for (i = 0; i < size; i++) {
1da177e4 1529 char exp = POISON_FREE;
b28a02de 1530 if (i == size - 1)
1da177e4
LT
1531 exp = POISON_END;
1532 if (realobj[i] != exp) {
1533 int limit;
1534 /* Mismatch ! */
1535 /* Print header */
1536 if (lines == 0) {
85c3e4a5 1537 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1538 print_tainted(), cachep->name,
1539 realobj, size);
1da177e4
LT
1540 print_objinfo(cachep, objp, 0);
1541 }
1542 /* Hexdump the affected line */
b28a02de 1543 i = (i / 16) * 16;
1da177e4 1544 limit = 16;
b28a02de
PE
1545 if (i + limit > size)
1546 limit = size - i;
1da177e4
LT
1547 dump_line(realobj, i, limit);
1548 i += 16;
1549 lines++;
1550 /* Limit to 5 lines */
1551 if (lines > 5)
1552 break;
1553 }
1554 }
1555 if (lines != 0) {
1556 /* Print some data about the neighboring objects, if they
1557 * exist:
1558 */
7981e67e 1559 struct slab *slab = virt_to_slab(objp);
8fea4e96 1560 unsigned int objnr;
1da177e4 1561
40f3bf0c 1562 objnr = obj_to_index(cachep, slab, objp);
1da177e4 1563 if (objnr) {
7981e67e 1564 objp = index_to_obj(cachep, slab, objnr - 1);
3dafccf2 1565 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1566 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1567 print_objinfo(cachep, objp, 2);
1568 }
b28a02de 1569 if (objnr + 1 < cachep->num) {
7981e67e 1570 objp = index_to_obj(cachep, slab, objnr + 1);
3dafccf2 1571 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1572 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1573 print_objinfo(cachep, objp, 2);
1574 }
1575 }
1576}
1577#endif
1578
12dd36fa 1579#if DEBUG
8456a648 1580static void slab_destroy_debugcheck(struct kmem_cache *cachep,
7981e67e 1581 struct slab *slab)
1da177e4 1582{
1da177e4 1583 int i;
b03a017b
JK
1584
1585 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
7981e67e 1586 poison_obj(cachep, slab->freelist - obj_offset(cachep),
b03a017b
JK
1587 POISON_FREE);
1588 }
1589
1da177e4 1590 for (i = 0; i < cachep->num; i++) {
7981e67e 1591 void *objp = index_to_obj(cachep, slab, i);
1da177e4
LT
1592
1593 if (cachep->flags & SLAB_POISON) {
1da177e4 1594 check_poison_obj(cachep, objp);
80552f0f 1595 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
1596 }
1597 if (cachep->flags & SLAB_RED_ZONE) {
1598 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1599 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1600 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1601 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1602 }
1da177e4 1603 }
12dd36fa 1604}
1da177e4 1605#else
8456a648 1606static void slab_destroy_debugcheck(struct kmem_cache *cachep,
7981e67e 1607 struct slab *slab)
12dd36fa 1608{
12dd36fa 1609}
1da177e4
LT
1610#endif
1611
911851e6
RD
1612/**
1613 * slab_destroy - destroy and release all objects in a slab
1614 * @cachep: cache pointer being destroyed
dd35f71a 1615 * @slab: slab being destroyed
911851e6 1616 *
dd35f71a
VB
1617 * Destroy all the objs in a slab, and release the mem back to the system.
1618 * Before calling the slab must have been unlinked from the cache. The
8a7d9b43 1619 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1620 */
7981e67e 1621static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
12dd36fa 1622{
7e007355 1623 void *freelist;
12dd36fa 1624
7981e67e
VB
1625 freelist = slab->freelist;
1626 slab_destroy_debugcheck(cachep, slab);
5f0d5a3a 1627 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
7981e67e 1628 call_rcu(&slab->rcu_head, kmem_rcu_free);
bc4f610d 1629 else
7981e67e 1630 kmem_freepages(cachep, slab);
68126702
JK
1631
1632 /*
8456a648 1633 * From now on, we don't use freelist
68126702
JK
1634 * although actual page can be freed in rcu context
1635 */
1636 if (OFF_SLAB(cachep))
8456a648 1637 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1638}
1639
678ff6a7
SB
1640/*
1641 * Update the size of the caches before calling slabs_destroy as it may
1642 * recursively call kfree.
1643 */
97654dfa
JK
1644static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1645{
7981e67e 1646 struct slab *slab, *n;
97654dfa 1647
7981e67e
VB
1648 list_for_each_entry_safe(slab, n, list, slab_list) {
1649 list_del(&slab->slab_list);
1650 slab_destroy(cachep, slab);
97654dfa
JK
1651 }
1652}
1653
4d268eba 1654/**
a70773dd
RD
1655 * calculate_slab_order - calculate size (page order) of slabs
1656 * @cachep: pointer to the cache that is being created
1657 * @size: size of objects to be created in this cache.
a70773dd
RD
1658 * @flags: slab allocation flags
1659 *
1660 * Also calculates the number of objects per slab.
4d268eba
PE
1661 *
1662 * This could be made much more intelligent. For now, try to avoid using
1663 * high order pages for slabs. When the gfp() functions are more friendly
1664 * towards high-order requests, this should be changed.
a862f68a
MR
1665 *
1666 * Return: number of left-over bytes in a slab
4d268eba 1667 */
a737b3e2 1668static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1669 size_t size, slab_flags_t flags)
4d268eba
PE
1670{
1671 size_t left_over = 0;
9888e6fa 1672 int gfporder;
4d268eba 1673
0aa817f0 1674 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1675 unsigned int num;
1676 size_t remainder;
1677
70f75067 1678 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1679 if (!num)
1680 continue;
9888e6fa 1681
f315e3fa
JK
1682 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1683 if (num > SLAB_OBJ_MAX_NUM)
1684 break;
1685
b1ab41c4 1686 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1687 struct kmem_cache *freelist_cache;
1688 size_t freelist_size;
1689
1690 freelist_size = num * sizeof(freelist_idx_t);
1691 freelist_cache = kmalloc_slab(freelist_size, 0u);
1692 if (!freelist_cache)
1693 continue;
1694
b1ab41c4 1695 /*
3217fd9b 1696 * Needed to avoid possible looping condition
76b342bd 1697 * in cache_grow_begin()
b1ab41c4 1698 */
3217fd9b
JK
1699 if (OFF_SLAB(freelist_cache))
1700 continue;
b1ab41c4 1701
3217fd9b
JK
1702 /* check if off slab has enough benefit */
1703 if (freelist_cache->size > cachep->size / 2)
1704 continue;
b1ab41c4 1705 }
4d268eba 1706
9888e6fa 1707 /* Found something acceptable - save it away */
4d268eba 1708 cachep->num = num;
9888e6fa 1709 cachep->gfporder = gfporder;
4d268eba
PE
1710 left_over = remainder;
1711
f78bb8ad
LT
1712 /*
1713 * A VFS-reclaimable slab tends to have most allocations
1714 * as GFP_NOFS and we really don't want to have to be allocating
1715 * higher-order pages when we are unable to shrink dcache.
1716 */
1717 if (flags & SLAB_RECLAIM_ACCOUNT)
1718 break;
1719
4d268eba
PE
1720 /*
1721 * Large number of objects is good, but very large slabs are
1722 * currently bad for the gfp()s.
1723 */
543585cc 1724 if (gfporder >= slab_max_order)
4d268eba
PE
1725 break;
1726
9888e6fa
LT
1727 /*
1728 * Acceptable internal fragmentation?
1729 */
a737b3e2 1730 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1731 break;
1732 }
1733 return left_over;
1734}
1735
bf0dea23
JK
1736static struct array_cache __percpu *alloc_kmem_cache_cpus(
1737 struct kmem_cache *cachep, int entries, int batchcount)
1738{
1739 int cpu;
1740 size_t size;
1741 struct array_cache __percpu *cpu_cache;
1742
1743 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1744 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1745
1746 if (!cpu_cache)
1747 return NULL;
1748
1749 for_each_possible_cpu(cpu) {
1750 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1751 entries, batchcount);
1752 }
1753
1754 return cpu_cache;
1755}
1756
bd721ea7 1757static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1758{
97d06609 1759 if (slab_state >= FULL)
83b519e8 1760 return enable_cpucache(cachep, gfp);
2ed3a4ef 1761
bf0dea23
JK
1762 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1763 if (!cachep->cpu_cache)
1764 return 1;
1765
97d06609 1766 if (slab_state == DOWN) {
bf0dea23
JK
1767 /* Creation of first cache (kmem_cache). */
1768 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1769 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1770 /* For kmem_cache_node */
1771 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1772 } else {
bf0dea23 1773 int node;
f30cf7d1 1774
bf0dea23
JK
1775 for_each_online_node(node) {
1776 cachep->node[node] = kmalloc_node(
1777 sizeof(struct kmem_cache_node), gfp, node);
1778 BUG_ON(!cachep->node[node]);
1779 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1780 }
1781 }
bf0dea23 1782
6a67368c 1783 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1784 jiffies + REAPTIMEOUT_NODE +
1785 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1786
1787 cpu_cache_get(cachep)->avail = 0;
1788 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1789 cpu_cache_get(cachep)->batchcount = 1;
1790 cpu_cache_get(cachep)->touched = 0;
1791 cachep->batchcount = 1;
1792 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1793 return 0;
f30cf7d1
PE
1794}
1795
0293d1fd 1796slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1797 slab_flags_t flags, const char *name)
12220dea
JK
1798{
1799 return flags;
1800}
1801
1802struct kmem_cache *
f4957d5b 1803__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1804 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1805{
1806 struct kmem_cache *cachep;
1807
1808 cachep = find_mergeable(size, align, flags, name, ctor);
1809 if (cachep) {
1810 cachep->refcount++;
1811
1812 /*
1813 * Adjust the object sizes so that we clear
1814 * the complete object on kzalloc.
1815 */
1816 cachep->object_size = max_t(int, cachep->object_size, size);
1817 }
1818 return cachep;
1819}
1820
b03a017b 1821static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1822 size_t size, slab_flags_t flags)
b03a017b
JK
1823{
1824 size_t left;
1825
1826 cachep->num = 0;
1827
6471384a
AP
1828 /*
1829 * If slab auto-initialization on free is enabled, store the freelist
1830 * off-slab, so that its contents don't end up in one of the allocated
1831 * objects.
1832 */
1833 if (unlikely(slab_want_init_on_free(cachep)))
1834 return false;
1835
5f0d5a3a 1836 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1837 return false;
1838
1839 left = calculate_slab_order(cachep, size,
1840 flags | CFLGS_OBJFREELIST_SLAB);
1841 if (!cachep->num)
1842 return false;
1843
1844 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1845 return false;
1846
1847 cachep->colour = left / cachep->colour_off;
1848
1849 return true;
1850}
1851
158e319b 1852static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1853 size_t size, slab_flags_t flags)
158e319b
JK
1854{
1855 size_t left;
1856
1857 cachep->num = 0;
1858
1859 /*
3217fd9b
JK
1860 * Always use on-slab management when SLAB_NOLEAKTRACE
1861 * to avoid recursive calls into kmemleak.
158e319b 1862 */
158e319b
JK
1863 if (flags & SLAB_NOLEAKTRACE)
1864 return false;
1865
1866 /*
1867 * Size is large, assume best to place the slab management obj
1868 * off-slab (should allow better packing of objs).
1869 */
1870 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1871 if (!cachep->num)
1872 return false;
1873
1874 /*
1875 * If the slab has been placed off-slab, and we have enough space then
1876 * move it on-slab. This is at the expense of any extra colouring.
1877 */
1878 if (left >= cachep->num * sizeof(freelist_idx_t))
1879 return false;
1880
1881 cachep->colour = left / cachep->colour_off;
1882
1883 return true;
1884}
1885
1886static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1887 size_t size, slab_flags_t flags)
158e319b
JK
1888{
1889 size_t left;
1890
1891 cachep->num = 0;
1892
1893 left = calculate_slab_order(cachep, size, flags);
1894 if (!cachep->num)
1895 return false;
1896
1897 cachep->colour = left / cachep->colour_off;
1898
1899 return true;
1900}
1901
1da177e4 1902/**
039363f3 1903 * __kmem_cache_create - Create a cache.
a755b76a 1904 * @cachep: cache management descriptor
1da177e4 1905 * @flags: SLAB flags
1da177e4
LT
1906 *
1907 * Returns a ptr to the cache on success, NULL on failure.
1908 * Cannot be called within a int, but can be interrupted.
20c2df83 1909 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1910 *
1da177e4
LT
1911 * The flags are
1912 *
1913 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1914 * to catch references to uninitialised memory.
1915 *
1916 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1917 * for buffer overruns.
1918 *
1da177e4
LT
1919 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1920 * cacheline. This can be beneficial if you're counting cycles as closely
1921 * as davem.
a862f68a
MR
1922 *
1923 * Return: a pointer to the created cache or %NULL in case of error
1da177e4 1924 */
d50112ed 1925int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1926{
d4a5fca5 1927 size_t ralign = BYTES_PER_WORD;
83b519e8 1928 gfp_t gfp;
278b1bb1 1929 int err;
be4a7988 1930 unsigned int size = cachep->size;
1da177e4 1931
1da177e4 1932#if DEBUG
1da177e4
LT
1933#if FORCED_DEBUG
1934 /*
1935 * Enable redzoning and last user accounting, except for caches with
1936 * large objects, if the increased size would increase the object size
1937 * above the next power of two: caches with object sizes just above a
1938 * power of two have a significant amount of internal fragmentation.
1939 */
87a927c7
DW
1940 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1941 2 * sizeof(unsigned long long)))
b28a02de 1942 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 1943 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
1944 flags |= SLAB_POISON;
1945#endif
1da177e4 1946#endif
1da177e4 1947
a737b3e2
AM
1948 /*
1949 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1950 * unaligned accesses for some archs when redzoning is used, and makes
1951 * sure any on-slab bufctl's are also correctly aligned.
1952 */
e0771950 1953 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 1954
87a927c7
DW
1955 if (flags & SLAB_RED_ZONE) {
1956 ralign = REDZONE_ALIGN;
1957 /* If redzoning, ensure that the second redzone is suitably
1958 * aligned, by adjusting the object size accordingly. */
e0771950 1959 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 1960 }
ca5f9703 1961
a44b56d3 1962 /* 3) caller mandated alignment */
8a13a4cc
CL
1963 if (ralign < cachep->align) {
1964 ralign = cachep->align;
1da177e4 1965 }
3ff84a7f
PE
1966 /* disable debug if necessary */
1967 if (ralign > __alignof__(unsigned long long))
a44b56d3 1968 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 1969 /*
ca5f9703 1970 * 4) Store it.
1da177e4 1971 */
8a13a4cc 1972 cachep->align = ralign;
158e319b
JK
1973 cachep->colour_off = cache_line_size();
1974 /* Offset must be a multiple of the alignment. */
1975 if (cachep->colour_off < cachep->align)
1976 cachep->colour_off = cachep->align;
1da177e4 1977
83b519e8
PE
1978 if (slab_is_available())
1979 gfp = GFP_KERNEL;
1980 else
1981 gfp = GFP_NOWAIT;
1982
1da177e4 1983#if DEBUG
1da177e4 1984
ca5f9703
PE
1985 /*
1986 * Both debugging options require word-alignment which is calculated
1987 * into align above.
1988 */
1da177e4 1989 if (flags & SLAB_RED_ZONE) {
1da177e4 1990 /* add space for red zone words */
3ff84a7f
PE
1991 cachep->obj_offset += sizeof(unsigned long long);
1992 size += 2 * sizeof(unsigned long long);
1da177e4
LT
1993 }
1994 if (flags & SLAB_STORE_USER) {
ca5f9703 1995 /* user store requires one word storage behind the end of
87a927c7
DW
1996 * the real object. But if the second red zone needs to be
1997 * aligned to 64 bits, we must allow that much space.
1da177e4 1998 */
87a927c7
DW
1999 if (flags & SLAB_RED_ZONE)
2000 size += REDZONE_ALIGN;
2001 else
2002 size += BYTES_PER_WORD;
1da177e4 2003 }
832a15d2
JK
2004#endif
2005
7ed2f9e6
AP
2006 kasan_cache_create(cachep, &size, &flags);
2007
832a15d2
JK
2008 size = ALIGN(size, cachep->align);
2009 /*
2010 * We should restrict the number of objects in a slab to implement
2011 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2012 */
2013 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2014 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2015
2016#if DEBUG
03a2d2a3
JK
2017 /*
2018 * To activate debug pagealloc, off-slab management is necessary
2019 * requirement. In early phase of initialization, small sized slab
2020 * doesn't get initialized so it would not be possible. So, we need
2021 * to check size >= 256. It guarantees that all necessary small
2022 * sized slab is initialized in current slab initialization sequence.
2023 */
8e57f8ac 2024 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
f3a3c320
JK
2025 size >= 256 && cachep->object_size > cache_line_size()) {
2026 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2027 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2028
2029 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2030 flags |= CFLGS_OFF_SLAB;
2031 cachep->obj_offset += tmp_size - size;
2032 size = tmp_size;
2033 goto done;
2034 }
2035 }
1da177e4 2036 }
1da177e4
LT
2037#endif
2038
b03a017b
JK
2039 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2040 flags |= CFLGS_OBJFREELIST_SLAB;
2041 goto done;
2042 }
2043
158e319b 2044 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2045 flags |= CFLGS_OFF_SLAB;
158e319b 2046 goto done;
832a15d2 2047 }
1da177e4 2048
158e319b
JK
2049 if (set_on_slab_cache(cachep, size, flags))
2050 goto done;
1da177e4 2051
158e319b 2052 return -E2BIG;
1da177e4 2053
158e319b
JK
2054done:
2055 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2056 cachep->flags = flags;
a57a4988 2057 cachep->allocflags = __GFP_COMP;
a3187e43 2058 if (flags & SLAB_CACHE_DMA)
a618e89f 2059 cachep->allocflags |= GFP_DMA;
6d6ea1e9
NB
2060 if (flags & SLAB_CACHE_DMA32)
2061 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2062 if (flags & SLAB_RECLAIM_ACCOUNT)
2063 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2064 cachep->size = size;
6a2d7a95 2065 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2066
40b44137
JK
2067#if DEBUG
2068 /*
2069 * If we're going to use the generic kernel_map_pages()
2070 * poisoning, then it's going to smash the contents of
2071 * the redzone and userword anyhow, so switch them off.
2072 */
2073 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2074 (cachep->flags & SLAB_POISON) &&
2075 is_debug_pagealloc_cache(cachep))
2076 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2077#endif
2078
2079 if (OFF_SLAB(cachep)) {
158e319b
JK
2080 cachep->freelist_cache =
2081 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2082 }
1da177e4 2083
278b1bb1
CL
2084 err = setup_cpu_cache(cachep, gfp);
2085 if (err) {
52b4b950 2086 __kmem_cache_release(cachep);
278b1bb1 2087 return err;
2ed3a4ef 2088 }
1da177e4 2089
278b1bb1 2090 return 0;
1da177e4 2091}
1da177e4
LT
2092
2093#if DEBUG
2094static void check_irq_off(void)
2095{
2096 BUG_ON(!irqs_disabled());
2097}
2098
2099static void check_irq_on(void)
2100{
2101 BUG_ON(irqs_disabled());
2102}
2103
18726ca8
JK
2104static void check_mutex_acquired(void)
2105{
2106 BUG_ON(!mutex_is_locked(&slab_mutex));
2107}
2108
343e0d7a 2109static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2110{
2111#ifdef CONFIG_SMP
2112 check_irq_off();
18bf8541 2113 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2114#endif
2115}
e498be7d 2116
343e0d7a 2117static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2118{
2119#ifdef CONFIG_SMP
2120 check_irq_off();
18bf8541 2121 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2122#endif
2123}
2124
1da177e4
LT
2125#else
2126#define check_irq_off() do { } while(0)
2127#define check_irq_on() do { } while(0)
18726ca8 2128#define check_mutex_acquired() do { } while(0)
1da177e4 2129#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2130#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2131#endif
2132
18726ca8
JK
2133static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2134 int node, bool free_all, struct list_head *list)
2135{
2136 int tofree;
2137
2138 if (!ac || !ac->avail)
2139 return;
2140
2141 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2142 if (tofree > ac->avail)
2143 tofree = (ac->avail + 1) / 2;
2144
2145 free_block(cachep, ac->entry, tofree, node, list);
2146 ac->avail -= tofree;
2147 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2148}
aab2207c 2149
1da177e4
LT
2150static void do_drain(void *arg)
2151{
a737b3e2 2152 struct kmem_cache *cachep = arg;
1da177e4 2153 struct array_cache *ac;
7d6e6d09 2154 int node = numa_mem_id();
18bf8541 2155 struct kmem_cache_node *n;
97654dfa 2156 LIST_HEAD(list);
1da177e4
LT
2157
2158 check_irq_off();
9a2dba4b 2159 ac = cpu_cache_get(cachep);
18bf8541
CL
2160 n = get_node(cachep, node);
2161 spin_lock(&n->list_lock);
97654dfa 2162 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2163 spin_unlock(&n->list_lock);
1da177e4 2164 ac->avail = 0;
678ff6a7 2165 slabs_destroy(cachep, &list);
1da177e4
LT
2166}
2167
343e0d7a 2168static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2169{
ce8eb6c4 2170 struct kmem_cache_node *n;
e498be7d 2171 int node;
18726ca8 2172 LIST_HEAD(list);
e498be7d 2173
15c8b6c1 2174 on_each_cpu(do_drain, cachep, 1);
1da177e4 2175 check_irq_on();
18bf8541
CL
2176 for_each_kmem_cache_node(cachep, node, n)
2177 if (n->alien)
ce8eb6c4 2178 drain_alien_cache(cachep, n->alien);
a4523a8b 2179
18726ca8
JK
2180 for_each_kmem_cache_node(cachep, node, n) {
2181 spin_lock_irq(&n->list_lock);
2182 drain_array_locked(cachep, n->shared, node, true, &list);
2183 spin_unlock_irq(&n->list_lock);
2184
2185 slabs_destroy(cachep, &list);
2186 }
1da177e4
LT
2187}
2188
ed11d9eb
CL
2189/*
2190 * Remove slabs from the list of free slabs.
2191 * Specify the number of slabs to drain in tofree.
2192 *
2193 * Returns the actual number of slabs released.
2194 */
2195static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2196 struct kmem_cache_node *n, int tofree)
1da177e4 2197{
ed11d9eb
CL
2198 struct list_head *p;
2199 int nr_freed;
7981e67e 2200 struct slab *slab;
1da177e4 2201
ed11d9eb 2202 nr_freed = 0;
ce8eb6c4 2203 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2204
ce8eb6c4
CL
2205 spin_lock_irq(&n->list_lock);
2206 p = n->slabs_free.prev;
2207 if (p == &n->slabs_free) {
2208 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2209 goto out;
2210 }
1da177e4 2211
7981e67e
VB
2212 slab = list_entry(p, struct slab, slab_list);
2213 list_del(&slab->slab_list);
f728b0a5 2214 n->free_slabs--;
bf00bd34 2215 n->total_slabs--;
ed11d9eb
CL
2216 /*
2217 * Safe to drop the lock. The slab is no longer linked
2218 * to the cache.
2219 */
ce8eb6c4
CL
2220 n->free_objects -= cache->num;
2221 spin_unlock_irq(&n->list_lock);
7981e67e 2222 slab_destroy(cache, slab);
ed11d9eb 2223 nr_freed++;
1da177e4 2224 }
ed11d9eb
CL
2225out:
2226 return nr_freed;
1da177e4
LT
2227}
2228
f9e13c0a
SB
2229bool __kmem_cache_empty(struct kmem_cache *s)
2230{
2231 int node;
2232 struct kmem_cache_node *n;
2233
2234 for_each_kmem_cache_node(s, node, n)
2235 if (!list_empty(&n->slabs_full) ||
2236 !list_empty(&n->slabs_partial))
2237 return false;
2238 return true;
2239}
2240
c9fc5864 2241int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2242{
18bf8541
CL
2243 int ret = 0;
2244 int node;
ce8eb6c4 2245 struct kmem_cache_node *n;
e498be7d
CL
2246
2247 drain_cpu_caches(cachep);
2248
2249 check_irq_on();
18bf8541 2250 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2251 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2252
ce8eb6c4
CL
2253 ret += !list_empty(&n->slabs_full) ||
2254 !list_empty(&n->slabs_partial);
e498be7d
CL
2255 }
2256 return (ret ? 1 : 0);
2257}
2258
945cf2b6 2259int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2260{
c9fc5864 2261 return __kmem_cache_shrink(cachep);
52b4b950
DS
2262}
2263
2264void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2265{
12c3667f 2266 int i;
ce8eb6c4 2267 struct kmem_cache_node *n;
1da177e4 2268
c7ce4f60
TG
2269 cache_random_seq_destroy(cachep);
2270
bf0dea23 2271 free_percpu(cachep->cpu_cache);
1da177e4 2272
ce8eb6c4 2273 /* NUMA: free the node structures */
18bf8541
CL
2274 for_each_kmem_cache_node(cachep, i, n) {
2275 kfree(n->shared);
2276 free_alien_cache(n->alien);
2277 kfree(n);
2278 cachep->node[i] = NULL;
12c3667f 2279 }
1da177e4 2280}
1da177e4 2281
e5ac9c5a
RT
2282/*
2283 * Get the memory for a slab management obj.
5f0985bb
JZ
2284 *
2285 * For a slab cache when the slab descriptor is off-slab, the
2286 * slab descriptor can't come from the same cache which is being created,
2287 * Because if it is the case, that means we defer the creation of
2288 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2289 * And we eventually call down to __kmem_cache_create(), which
80d01558 2290 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
5f0985bb
JZ
2291 * This is a "chicken-and-egg" problem.
2292 *
2293 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2294 * which are all initialized during kmem_cache_init().
e5ac9c5a 2295 */
7e007355 2296static void *alloc_slabmgmt(struct kmem_cache *cachep,
7981e67e 2297 struct slab *slab, int colour_off,
0c3aa83e 2298 gfp_t local_flags, int nodeid)
1da177e4 2299{
7e007355 2300 void *freelist;
7981e67e 2301 void *addr = slab_address(slab);
b28a02de 2302
7981e67e
VB
2303 slab->s_mem = addr + colour_off;
2304 slab->active = 0;
2e6b3602 2305
b03a017b
JK
2306 if (OBJFREELIST_SLAB(cachep))
2307 freelist = NULL;
2308 else if (OFF_SLAB(cachep)) {
1da177e4 2309 /* Slab management obj is off-slab. */
8456a648 2310 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2311 local_flags, nodeid);
1da177e4 2312 } else {
2e6b3602
JK
2313 /* We will use last bytes at the slab for freelist */
2314 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2315 cachep->freelist_size;
1da177e4 2316 }
2e6b3602 2317
8456a648 2318 return freelist;
1da177e4
LT
2319}
2320
7981e67e 2321static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
1da177e4 2322{
7981e67e 2323 return ((freelist_idx_t *) slab->freelist)[idx];
e5c58dfd
JK
2324}
2325
7981e67e 2326static inline void set_free_obj(struct slab *slab,
7cc68973 2327 unsigned int idx, freelist_idx_t val)
e5c58dfd 2328{
7981e67e 2329 ((freelist_idx_t *)(slab->freelist))[idx] = val;
1da177e4
LT
2330}
2331
7981e67e 2332static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
1da177e4 2333{
10b2e9e8 2334#if DEBUG
1da177e4
LT
2335 int i;
2336
2337 for (i = 0; i < cachep->num; i++) {
7981e67e 2338 void *objp = index_to_obj(cachep, slab, i);
10b2e9e8 2339
1da177e4
LT
2340 if (cachep->flags & SLAB_STORE_USER)
2341 *dbg_userword(cachep, objp) = NULL;
2342
2343 if (cachep->flags & SLAB_RED_ZONE) {
2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 }
2347 /*
a737b3e2
AM
2348 * Constructors are not allowed to allocate memory from the same
2349 * cache which they are a constructor for. Otherwise, deadlock.
2350 * They must also be threaded.
1da177e4 2351 */
7ed2f9e6
AP
2352 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2353 kasan_unpoison_object_data(cachep,
2354 objp + obj_offset(cachep));
51cc5068 2355 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2356 kasan_poison_object_data(
2357 cachep, objp + obj_offset(cachep));
2358 }
1da177e4
LT
2359
2360 if (cachep->flags & SLAB_RED_ZONE) {
2361 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2362 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2363 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2364 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2365 }
40b44137
JK
2366 /* need to poison the objs? */
2367 if (cachep->flags & SLAB_POISON) {
2368 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2369 slab_kernel_map(cachep, objp, 0);
40b44137 2370 }
10b2e9e8 2371 }
1da177e4 2372#endif
10b2e9e8
JK
2373}
2374
c7ce4f60
TG
2375#ifdef CONFIG_SLAB_FREELIST_RANDOM
2376/* Hold information during a freelist initialization */
2377union freelist_init_state {
2378 struct {
2379 unsigned int pos;
7c00fce9 2380 unsigned int *list;
c7ce4f60 2381 unsigned int count;
c7ce4f60
TG
2382 };
2383 struct rnd_state rnd_state;
2384};
2385
2386/*
f0953a1b
IM
2387 * Initialize the state based on the randomization method available.
2388 * return true if the pre-computed list is available, false otherwise.
c7ce4f60
TG
2389 */
2390static bool freelist_state_initialize(union freelist_init_state *state,
2391 struct kmem_cache *cachep,
2392 unsigned int count)
2393{
2394 bool ret;
2395 unsigned int rand;
2396
2397 /* Use best entropy available to define a random shift */
7c00fce9 2398 rand = get_random_int();
c7ce4f60
TG
2399
2400 /* Use a random state if the pre-computed list is not available */
2401 if (!cachep->random_seq) {
2402 prandom_seed_state(&state->rnd_state, rand);
2403 ret = false;
2404 } else {
2405 state->list = cachep->random_seq;
2406 state->count = count;
c4e490cf 2407 state->pos = rand % count;
c7ce4f60
TG
2408 ret = true;
2409 }
2410 return ret;
2411}
2412
2413/* Get the next entry on the list and randomize it using a random shift */
2414static freelist_idx_t next_random_slot(union freelist_init_state *state)
2415{
c4e490cf
JS
2416 if (state->pos >= state->count)
2417 state->pos = 0;
2418 return state->list[state->pos++];
c7ce4f60
TG
2419}
2420
7c00fce9 2421/* Swap two freelist entries */
7981e67e 2422static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
7c00fce9 2423{
7981e67e
VB
2424 swap(((freelist_idx_t *) slab->freelist)[a],
2425 ((freelist_idx_t *) slab->freelist)[b]);
7c00fce9
TG
2426}
2427
c7ce4f60
TG
2428/*
2429 * Shuffle the freelist initialization state based on pre-computed lists.
2430 * return true if the list was successfully shuffled, false otherwise.
2431 */
7981e67e 2432static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
c7ce4f60 2433{
7c00fce9 2434 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2435 union freelist_init_state state;
2436 bool precomputed;
2437
2438 if (count < 2)
2439 return false;
2440
2441 precomputed = freelist_state_initialize(&state, cachep, count);
2442
2443 /* Take a random entry as the objfreelist */
2444 if (OBJFREELIST_SLAB(cachep)) {
2445 if (!precomputed)
2446 objfreelist = count - 1;
2447 else
2448 objfreelist = next_random_slot(&state);
7981e67e 2449 slab->freelist = index_to_obj(cachep, slab, objfreelist) +
c7ce4f60
TG
2450 obj_offset(cachep);
2451 count--;
2452 }
2453
2454 /*
2455 * On early boot, generate the list dynamically.
2456 * Later use a pre-computed list for speed.
2457 */
2458 if (!precomputed) {
7c00fce9 2459 for (i = 0; i < count; i++)
7981e67e 2460 set_free_obj(slab, i, i);
7c00fce9
TG
2461
2462 /* Fisher-Yates shuffle */
2463 for (i = count - 1; i > 0; i--) {
2464 rand = prandom_u32_state(&state.rnd_state);
2465 rand %= (i + 1);
7981e67e 2466 swap_free_obj(slab, i, rand);
7c00fce9 2467 }
c7ce4f60
TG
2468 } else {
2469 for (i = 0; i < count; i++)
7981e67e 2470 set_free_obj(slab, i, next_random_slot(&state));
c7ce4f60
TG
2471 }
2472
2473 if (OBJFREELIST_SLAB(cachep))
7981e67e 2474 set_free_obj(slab, cachep->num - 1, objfreelist);
c7ce4f60
TG
2475
2476 return true;
2477}
2478#else
2479static inline bool shuffle_freelist(struct kmem_cache *cachep,
7981e67e 2480 struct slab *slab)
c7ce4f60
TG
2481{
2482 return false;
2483}
2484#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2485
10b2e9e8 2486static void cache_init_objs(struct kmem_cache *cachep,
7981e67e 2487 struct slab *slab)
10b2e9e8
JK
2488{
2489 int i;
7ed2f9e6 2490 void *objp;
c7ce4f60 2491 bool shuffled;
10b2e9e8 2492
7981e67e 2493 cache_init_objs_debug(cachep, slab);
10b2e9e8 2494
c7ce4f60 2495 /* Try to randomize the freelist if enabled */
7981e67e 2496 shuffled = shuffle_freelist(cachep, slab);
c7ce4f60
TG
2497
2498 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
7981e67e 2499 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
b03a017b
JK
2500 obj_offset(cachep);
2501 }
2502
10b2e9e8 2503 for (i = 0; i < cachep->num; i++) {
7981e67e 2504 objp = index_to_obj(cachep, slab, i);
4d176711 2505 objp = kasan_init_slab_obj(cachep, objp);
b3cbd9bf 2506
10b2e9e8 2507 /* constructor could break poison info */
7ed2f9e6 2508 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2509 kasan_unpoison_object_data(cachep, objp);
2510 cachep->ctor(objp);
2511 kasan_poison_object_data(cachep, objp);
2512 }
10b2e9e8 2513
c7ce4f60 2514 if (!shuffled)
7981e67e 2515 set_free_obj(slab, i, i);
1da177e4 2516 }
1da177e4
LT
2517}
2518
7981e67e 2519static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
78d382d7 2520{
b1cb0982 2521 void *objp;
78d382d7 2522
7981e67e
VB
2523 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2524 slab->active++;
78d382d7
MD
2525
2526 return objp;
2527}
2528
260b61dd 2529static void slab_put_obj(struct kmem_cache *cachep,
7981e67e 2530 struct slab *slab, void *objp)
78d382d7 2531{
40f3bf0c 2532 unsigned int objnr = obj_to_index(cachep, slab, objp);
78d382d7 2533#if DEBUG
16025177 2534 unsigned int i;
b1cb0982 2535
b1cb0982 2536 /* Verify double free bug */
7981e67e
VB
2537 for (i = slab->active; i < cachep->num; i++) {
2538 if (get_free_obj(slab, i) == objnr) {
85c3e4a5 2539 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2540 cachep->name, objp);
b1cb0982
JK
2541 BUG();
2542 }
78d382d7
MD
2543 }
2544#endif
7981e67e
VB
2545 slab->active--;
2546 if (!slab->freelist)
2547 slab->freelist = objp + obj_offset(cachep);
b03a017b 2548
7981e67e 2549 set_free_obj(slab, slab->active, objnr);
78d382d7
MD
2550}
2551
1da177e4
LT
2552/*
2553 * Grow (by 1) the number of slabs within a cache. This is called by
2554 * kmem_cache_alloc() when there are no active objs left in a cache.
2555 */
7981e67e 2556static struct slab *cache_grow_begin(struct kmem_cache *cachep,
76b342bd 2557 gfp_t flags, int nodeid)
1da177e4 2558{
7e007355 2559 void *freelist;
b28a02de
PE
2560 size_t offset;
2561 gfp_t local_flags;
dd35f71a 2562 int slab_node;
ce8eb6c4 2563 struct kmem_cache_node *n;
7981e67e 2564 struct slab *slab;
1da177e4 2565
a737b3e2
AM
2566 /*
2567 * Be lazy and only check for valid flags here, keeping it out of the
2568 * critical path in kmem_cache_alloc().
1da177e4 2569 */
44405099
LL
2570 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2571 flags = kmalloc_fix_flags(flags);
2572
128227e7 2573 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
6cb06229 2574 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2575
1da177e4 2576 check_irq_off();
d0164adc 2577 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2578 local_irq_enable();
2579
a737b3e2
AM
2580 /*
2581 * Get mem for the objs. Attempt to allocate a physical page from
2582 * 'nodeid'.
e498be7d 2583 */
7981e67e
VB
2584 slab = kmem_getpages(cachep, local_flags, nodeid);
2585 if (!slab)
1da177e4
LT
2586 goto failed;
2587
dd35f71a
VB
2588 slab_node = slab_nid(slab);
2589 n = get_node(cachep, slab_node);
03d1d43a
JK
2590
2591 /* Get colour for the slab, and cal the next value. */
2592 n->colour_next++;
2593 if (n->colour_next >= cachep->colour)
2594 n->colour_next = 0;
2595
2596 offset = n->colour_next;
2597 if (offset >= cachep->colour)
2598 offset = 0;
2599
2600 offset *= cachep->colour_off;
2601
51dedad0
AK
2602 /*
2603 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2604 * page_address() in the latter returns a non-tagged pointer,
2605 * as it should be for slab pages.
2606 */
6e48a966 2607 kasan_poison_slab(slab);
51dedad0 2608
1da177e4 2609 /* Get slab management. */
7981e67e 2610 freelist = alloc_slabmgmt(cachep, slab, offset,
dd35f71a 2611 local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
b03a017b 2612 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2613 goto opps1;
2614
7981e67e
VB
2615 slab->slab_cache = cachep;
2616 slab->freelist = freelist;
1da177e4 2617
7981e67e 2618 cache_init_objs(cachep, slab);
1da177e4 2619
d0164adc 2620 if (gfpflags_allow_blocking(local_flags))
1da177e4 2621 local_irq_disable();
1da177e4 2622
7981e67e 2623 return slab;
76b342bd 2624
a737b3e2 2625opps1:
7981e67e 2626 kmem_freepages(cachep, slab);
a737b3e2 2627failed:
d0164adc 2628 if (gfpflags_allow_blocking(local_flags))
1da177e4 2629 local_irq_disable();
76b342bd
JK
2630 return NULL;
2631}
2632
7981e67e 2633static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
76b342bd
JK
2634{
2635 struct kmem_cache_node *n;
2636 void *list = NULL;
2637
2638 check_irq_off();
2639
7981e67e 2640 if (!slab)
76b342bd
JK
2641 return;
2642
7981e67e
VB
2643 INIT_LIST_HEAD(&slab->slab_list);
2644 n = get_node(cachep, slab_nid(slab));
76b342bd
JK
2645
2646 spin_lock(&n->list_lock);
bf00bd34 2647 n->total_slabs++;
7981e67e
VB
2648 if (!slab->active) {
2649 list_add_tail(&slab->slab_list, &n->slabs_free);
f728b0a5 2650 n->free_slabs++;
bf00bd34 2651 } else
7981e67e 2652 fixup_slab_list(cachep, n, slab, &list);
07a63c41 2653
76b342bd 2654 STATS_INC_GROWN(cachep);
7981e67e 2655 n->free_objects += cachep->num - slab->active;
76b342bd
JK
2656 spin_unlock(&n->list_lock);
2657
2658 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2659}
2660
2661#if DEBUG
2662
2663/*
2664 * Perform extra freeing checks:
2665 * - detect bad pointers.
2666 * - POISON/RED_ZONE checking
1da177e4
LT
2667 */
2668static void kfree_debugcheck(const void *objp)
2669{
1da177e4 2670 if (!virt_addr_valid(objp)) {
1170532b 2671 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2672 (unsigned long)objp);
2673 BUG();
1da177e4 2674 }
1da177e4
LT
2675}
2676
58ce1fd5
PE
2677static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2678{
b46b8f19 2679 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2680
2681 redzone1 = *dbg_redzone1(cache, obj);
2682 redzone2 = *dbg_redzone2(cache, obj);
2683
2684 /*
2685 * Redzone is ok.
2686 */
2687 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2688 return;
2689
2690 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2691 slab_error(cache, "double free detected");
2692 else
2693 slab_error(cache, "memory outside object was overwritten");
2694
85c3e4a5 2695 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2696 obj, redzone1, redzone2);
58ce1fd5
PE
2697}
2698
343e0d7a 2699static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2700 unsigned long caller)
1da177e4 2701{
1da177e4 2702 unsigned int objnr;
7981e67e 2703 struct slab *slab;
1da177e4 2704
80cbd911
MW
2705 BUG_ON(virt_to_cache(objp) != cachep);
2706
3dafccf2 2707 objp -= obj_offset(cachep);
1da177e4 2708 kfree_debugcheck(objp);
7981e67e 2709 slab = virt_to_slab(objp);
1da177e4 2710
1da177e4 2711 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2712 verify_redzone_free(cachep, objp);
1da177e4
LT
2713 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2714 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2715 }
7878c231 2716 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2717 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2718
40f3bf0c 2719 objnr = obj_to_index(cachep, slab, objp);
1da177e4
LT
2720
2721 BUG_ON(objnr >= cachep->num);
7981e67e 2722 BUG_ON(objp != index_to_obj(cachep, slab, objnr));
1da177e4 2723
1da177e4 2724 if (cachep->flags & SLAB_POISON) {
1da177e4 2725 poison_obj(cachep, objp, POISON_FREE);
80552f0f 2726 slab_kernel_map(cachep, objp, 0);
1da177e4
LT
2727 }
2728 return objp;
2729}
2730
1da177e4
LT
2731#else
2732#define kfree_debugcheck(x) do { } while(0)
0b411634 2733#define cache_free_debugcheck(x, objp, z) (objp)
1da177e4
LT
2734#endif
2735
b03a017b
JK
2736static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2737 void **list)
2738{
2739#if DEBUG
2740 void *next = *list;
2741 void *objp;
2742
2743 while (next) {
2744 objp = next - obj_offset(cachep);
2745 next = *(void **)next;
2746 poison_obj(cachep, objp, POISON_FREE);
2747 }
2748#endif
2749}
2750
d8410234 2751static inline void fixup_slab_list(struct kmem_cache *cachep,
7981e67e 2752 struct kmem_cache_node *n, struct slab *slab,
b03a017b 2753 void **list)
d8410234
JK
2754{
2755 /* move slabp to correct slabp list: */
7981e67e
VB
2756 list_del(&slab->slab_list);
2757 if (slab->active == cachep->num) {
2758 list_add(&slab->slab_list, &n->slabs_full);
b03a017b
JK
2759 if (OBJFREELIST_SLAB(cachep)) {
2760#if DEBUG
2761 /* Poisoning will be done without holding the lock */
2762 if (cachep->flags & SLAB_POISON) {
7981e67e 2763 void **objp = slab->freelist;
b03a017b
JK
2764
2765 *objp = *list;
2766 *list = objp;
2767 }
2768#endif
7981e67e 2769 slab->freelist = NULL;
b03a017b
JK
2770 }
2771 } else
7981e67e 2772 list_add(&slab->slab_list, &n->slabs_partial);
d8410234
JK
2773}
2774
f68f8ddd 2775/* Try to find non-pfmemalloc slab if needed */
7981e67e
VB
2776static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2777 struct slab *slab, bool pfmemalloc)
f68f8ddd 2778{
7981e67e 2779 if (!slab)
f68f8ddd
JK
2780 return NULL;
2781
2782 if (pfmemalloc)
7981e67e 2783 return slab;
f68f8ddd 2784
7981e67e
VB
2785 if (!slab_test_pfmemalloc(slab))
2786 return slab;
f68f8ddd
JK
2787
2788 /* No need to keep pfmemalloc slab if we have enough free objects */
2789 if (n->free_objects > n->free_limit) {
7981e67e
VB
2790 slab_clear_pfmemalloc(slab);
2791 return slab;
f68f8ddd
JK
2792 }
2793
2794 /* Move pfmemalloc slab to the end of list to speed up next search */
7981e67e
VB
2795 list_del(&slab->slab_list);
2796 if (!slab->active) {
2797 list_add_tail(&slab->slab_list, &n->slabs_free);
bf00bd34 2798 n->free_slabs++;
f728b0a5 2799 } else
7981e67e 2800 list_add_tail(&slab->slab_list, &n->slabs_partial);
f68f8ddd 2801
7981e67e
VB
2802 list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2803 if (!slab_test_pfmemalloc(slab))
2804 return slab;
f68f8ddd
JK
2805 }
2806
f728b0a5 2807 n->free_touched = 1;
7981e67e
VB
2808 list_for_each_entry(slab, &n->slabs_free, slab_list) {
2809 if (!slab_test_pfmemalloc(slab)) {
bf00bd34 2810 n->free_slabs--;
7981e67e 2811 return slab;
f728b0a5 2812 }
f68f8ddd
JK
2813 }
2814
2815 return NULL;
2816}
2817
7981e67e 2818static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227 2819{
7981e67e 2820 struct slab *slab;
7aa0d227 2821
f728b0a5 2822 assert_spin_locked(&n->list_lock);
7981e67e 2823 slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
16cb0ec7 2824 slab_list);
7981e67e 2825 if (!slab) {
7aa0d227 2826 n->free_touched = 1;
7981e67e 2827 slab = list_first_entry_or_null(&n->slabs_free, struct slab,
16cb0ec7 2828 slab_list);
7981e67e 2829 if (slab)
bf00bd34 2830 n->free_slabs--;
7aa0d227
GT
2831 }
2832
f68f8ddd 2833 if (sk_memalloc_socks())
7981e67e 2834 slab = get_valid_first_slab(n, slab, pfmemalloc);
f68f8ddd 2835
7981e67e 2836 return slab;
7aa0d227
GT
2837}
2838
f68f8ddd
JK
2839static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2840 struct kmem_cache_node *n, gfp_t flags)
2841{
7981e67e 2842 struct slab *slab;
f68f8ddd
JK
2843 void *obj;
2844 void *list = NULL;
2845
2846 if (!gfp_pfmemalloc_allowed(flags))
2847 return NULL;
2848
2849 spin_lock(&n->list_lock);
7981e67e
VB
2850 slab = get_first_slab(n, true);
2851 if (!slab) {
f68f8ddd
JK
2852 spin_unlock(&n->list_lock);
2853 return NULL;
2854 }
2855
7981e67e 2856 obj = slab_get_obj(cachep, slab);
f68f8ddd
JK
2857 n->free_objects--;
2858
7981e67e 2859 fixup_slab_list(cachep, n, slab, &list);
f68f8ddd
JK
2860
2861 spin_unlock(&n->list_lock);
2862 fixup_objfreelist_debug(cachep, &list);
2863
2864 return obj;
2865}
2866
213b4695
JK
2867/*
2868 * Slab list should be fixed up by fixup_slab_list() for existing slab
2869 * or cache_grow_end() for new slab
2870 */
2871static __always_inline int alloc_block(struct kmem_cache *cachep,
7981e67e 2872 struct array_cache *ac, struct slab *slab, int batchcount)
213b4695
JK
2873{
2874 /*
2875 * There must be at least one object available for
2876 * allocation.
2877 */
7981e67e 2878 BUG_ON(slab->active >= cachep->num);
213b4695 2879
7981e67e 2880 while (slab->active < cachep->num && batchcount--) {
213b4695
JK
2881 STATS_INC_ALLOCED(cachep);
2882 STATS_INC_ACTIVE(cachep);
2883 STATS_SET_HIGH(cachep);
2884
7981e67e 2885 ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
213b4695
JK
2886 }
2887
2888 return batchcount;
2889}
2890
f68f8ddd 2891static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2892{
2893 int batchcount;
ce8eb6c4 2894 struct kmem_cache_node *n;
801faf0d 2895 struct array_cache *ac, *shared;
1ca4cb24 2896 int node;
b03a017b 2897 void *list = NULL;
7981e67e 2898 struct slab *slab;
1ca4cb24 2899
1da177e4 2900 check_irq_off();
7d6e6d09 2901 node = numa_mem_id();
f68f8ddd 2902
9a2dba4b 2903 ac = cpu_cache_get(cachep);
1da177e4
LT
2904 batchcount = ac->batchcount;
2905 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2906 /*
2907 * If there was little recent activity on this cache, then
2908 * perform only a partial refill. Otherwise we could generate
2909 * refill bouncing.
1da177e4
LT
2910 */
2911 batchcount = BATCHREFILL_LIMIT;
2912 }
18bf8541 2913 n = get_node(cachep, node);
e498be7d 2914
ce8eb6c4 2915 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2916 shared = READ_ONCE(n->shared);
2917 if (!n->free_objects && (!shared || !shared->avail))
2918 goto direct_grow;
2919
ce8eb6c4 2920 spin_lock(&n->list_lock);
801faf0d 2921 shared = READ_ONCE(n->shared);
1da177e4 2922
3ded175a 2923 /* See if we can refill from the shared array */
801faf0d
JK
2924 if (shared && transfer_objects(ac, shared, batchcount)) {
2925 shared->touched = 1;
3ded175a 2926 goto alloc_done;
44b57f1c 2927 }
3ded175a 2928
1da177e4 2929 while (batchcount > 0) {
1da177e4 2930 /* Get slab alloc is to come from. */
7981e67e
VB
2931 slab = get_first_slab(n, false);
2932 if (!slab)
7aa0d227 2933 goto must_grow;
1da177e4 2934
1da177e4 2935 check_spinlock_acquired(cachep);
714b8171 2936
7981e67e
VB
2937 batchcount = alloc_block(cachep, ac, slab, batchcount);
2938 fixup_slab_list(cachep, n, slab, &list);
1da177e4
LT
2939 }
2940
a737b3e2 2941must_grow:
ce8eb6c4 2942 n->free_objects -= ac->avail;
a737b3e2 2943alloc_done:
ce8eb6c4 2944 spin_unlock(&n->list_lock);
b03a017b 2945 fixup_objfreelist_debug(cachep, &list);
1da177e4 2946
801faf0d 2947direct_grow:
1da177e4 2948 if (unlikely(!ac->avail)) {
f68f8ddd
JK
2949 /* Check if we can use obj in pfmemalloc slab */
2950 if (sk_memalloc_socks()) {
2951 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2952
2953 if (obj)
2954 return obj;
2955 }
2956
7981e67e 2957 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 2958
76b342bd
JK
2959 /*
2960 * cache_grow_begin() can reenable interrupts,
2961 * then ac could change.
2962 */
9a2dba4b 2963 ac = cpu_cache_get(cachep);
7981e67e
VB
2964 if (!ac->avail && slab)
2965 alloc_block(cachep, ac, slab, batchcount);
2966 cache_grow_end(cachep, slab);
072bb0aa 2967
213b4695 2968 if (!ac->avail)
1da177e4 2969 return NULL;
1da177e4
LT
2970 }
2971 ac->touched = 1;
072bb0aa 2972
f68f8ddd 2973 return ac->entry[--ac->avail];
1da177e4
LT
2974}
2975
a737b3e2
AM
2976static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2977 gfp_t flags)
1da177e4 2978{
d0164adc 2979 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2980}
2981
2982#if DEBUG
a737b3e2 2983static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2984 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2985{
128227e7 2986 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
df3ae2c9 2987 if (!objp || is_kfence_address(objp))
1da177e4 2988 return objp;
b28a02de 2989 if (cachep->flags & SLAB_POISON) {
1da177e4 2990 check_poison_obj(cachep, objp);
80552f0f 2991 slab_kernel_map(cachep, objp, 1);
1da177e4
LT
2992 poison_obj(cachep, objp, POISON_INUSE);
2993 }
2994 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2995 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2996
2997 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2998 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2999 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3000 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3001 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3002 objp, *dbg_redzone1(cachep, objp),
3003 *dbg_redzone2(cachep, objp));
1da177e4
LT
3004 }
3005 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3006 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3007 }
03787301 3008
3dafccf2 3009 objp += obj_offset(cachep);
4f104934 3010 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3011 cachep->ctor(objp);
7ea466f2
TH
3012 if (ARCH_SLAB_MINALIGN &&
3013 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3014 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3015 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3016 }
1da177e4
LT
3017 return objp;
3018}
3019#else
0b411634 3020#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
1da177e4
LT
3021#endif
3022
343e0d7a 3023static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3024{
b28a02de 3025 void *objp;
1da177e4
LT
3026 struct array_cache *ac;
3027
5c382300 3028 check_irq_off();
8a8b6502 3029
9a2dba4b 3030 ac = cpu_cache_get(cachep);
1da177e4 3031 if (likely(ac->avail)) {
1da177e4 3032 ac->touched = 1;
f68f8ddd 3033 objp = ac->entry[--ac->avail];
072bb0aa 3034
f68f8ddd
JK
3035 STATS_INC_ALLOCHIT(cachep);
3036 goto out;
1da177e4 3037 }
072bb0aa
MG
3038
3039 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3040 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3041 /*
3042 * the 'ac' may be updated by cache_alloc_refill(),
3043 * and kmemleak_erase() requires its correct value.
3044 */
3045 ac = cpu_cache_get(cachep);
3046
3047out:
d5cff635
CM
3048 /*
3049 * To avoid a false negative, if an object that is in one of the
3050 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3051 * treat the array pointers as a reference to the object.
3052 */
f3d8b53a
O
3053 if (objp)
3054 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3055 return objp;
3056}
3057
e498be7d 3058#ifdef CONFIG_NUMA
c61afb18 3059/*
2ad654bc 3060 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3061 *
3062 * If we are in_interrupt, then process context, including cpusets and
3063 * mempolicy, may not apply and should not be used for allocation policy.
3064 */
3065static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3066{
3067 int nid_alloc, nid_here;
3068
765c4507 3069 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3070 return NULL;
7d6e6d09 3071 nid_alloc = nid_here = numa_mem_id();
c61afb18 3072 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3073 nid_alloc = cpuset_slab_spread_node();
c61afb18 3074 else if (current->mempolicy)
2a389610 3075 nid_alloc = mempolicy_slab_node();
c61afb18 3076 if (nid_alloc != nid_here)
8b98c169 3077 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3078 return NULL;
3079}
3080
765c4507
CL
3081/*
3082 * Fallback function if there was no memory available and no objects on a
3c517a61 3083 * certain node and fall back is permitted. First we scan all the
6a67368c 3084 * available node for available objects. If that fails then we
3c517a61
CL
3085 * perform an allocation without specifying a node. This allows the page
3086 * allocator to do its reclaim / fallback magic. We then insert the
3087 * slab into the proper nodelist and then allocate from it.
765c4507 3088 */
8c8cc2c1 3089static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3090{
8c8cc2c1 3091 struct zonelist *zonelist;
dd1a239f 3092 struct zoneref *z;
54a6eb5c 3093 struct zone *zone;
97a225e6 3094 enum zone_type highest_zoneidx = gfp_zone(flags);
765c4507 3095 void *obj = NULL;
7981e67e 3096 struct slab *slab;
3c517a61 3097 int nid;
cc9a6c87 3098 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3099
3100 if (flags & __GFP_THISNODE)
3101 return NULL;
3102
cc9a6c87 3103retry_cpuset:
d26914d1 3104 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3105 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3106
3c517a61
CL
3107retry:
3108 /*
3109 * Look through allowed nodes for objects available
3110 * from existing per node queues.
3111 */
97a225e6 3112 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
54a6eb5c 3113 nid = zone_to_nid(zone);
aedb0eb1 3114
061d7074 3115 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3116 get_node(cache, nid) &&
3117 get_node(cache, nid)->free_objects) {
3c517a61 3118 obj = ____cache_alloc_node(cache,
4167e9b2 3119 gfp_exact_node(flags), nid);
481c5346
CL
3120 if (obj)
3121 break;
3122 }
3c517a61
CL
3123 }
3124
cfce6604 3125 if (!obj) {
3c517a61
CL
3126 /*
3127 * This allocation will be performed within the constraints
3128 * of the current cpuset / memory policy requirements.
3129 * We may trigger various forms of reclaim on the allowed
3130 * set and go into memory reserves if necessary.
3131 */
7981e67e
VB
3132 slab = cache_grow_begin(cache, flags, numa_mem_id());
3133 cache_grow_end(cache, slab);
3134 if (slab) {
3135 nid = slab_nid(slab);
511e3a05
JK
3136 obj = ____cache_alloc_node(cache,
3137 gfp_exact_node(flags), nid);
0c3aa83e 3138
3c517a61 3139 /*
511e3a05
JK
3140 * Another processor may allocate the objects in
3141 * the slab since we are not holding any locks.
3c517a61 3142 */
511e3a05
JK
3143 if (!obj)
3144 goto retry;
3c517a61 3145 }
aedb0eb1 3146 }
cc9a6c87 3147
d26914d1 3148 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3149 goto retry_cpuset;
765c4507
CL
3150 return obj;
3151}
3152
e498be7d
CL
3153/*
3154 * A interface to enable slab creation on nodeid
1da177e4 3155 */
8b98c169 3156static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3157 int nodeid)
e498be7d 3158{
7981e67e 3159 struct slab *slab;
ce8eb6c4 3160 struct kmem_cache_node *n;
213b4695 3161 void *obj = NULL;
b03a017b 3162 void *list = NULL;
b28a02de 3163
7c3fbbdd 3164 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3165 n = get_node(cachep, nodeid);
ce8eb6c4 3166 BUG_ON(!n);
b28a02de 3167
ca3b9b91 3168 check_irq_off();
ce8eb6c4 3169 spin_lock(&n->list_lock);
7981e67e
VB
3170 slab = get_first_slab(n, false);
3171 if (!slab)
7aa0d227 3172 goto must_grow;
b28a02de 3173
b28a02de 3174 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3175
3176 STATS_INC_NODEALLOCS(cachep);
3177 STATS_INC_ACTIVE(cachep);
3178 STATS_SET_HIGH(cachep);
3179
7981e67e 3180 BUG_ON(slab->active == cachep->num);
b28a02de 3181
7981e67e 3182 obj = slab_get_obj(cachep, slab);
ce8eb6c4 3183 n->free_objects--;
b28a02de 3184
7981e67e 3185 fixup_slab_list(cachep, n, slab, &list);
e498be7d 3186
ce8eb6c4 3187 spin_unlock(&n->list_lock);
b03a017b 3188 fixup_objfreelist_debug(cachep, &list);
213b4695 3189 return obj;
e498be7d 3190
a737b3e2 3191must_grow:
ce8eb6c4 3192 spin_unlock(&n->list_lock);
7981e67e
VB
3193 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3194 if (slab) {
213b4695 3195 /* This slab isn't counted yet so don't update free_objects */
7981e67e 3196 obj = slab_get_obj(cachep, slab);
213b4695 3197 }
7981e67e 3198 cache_grow_end(cachep, slab);
1da177e4 3199
213b4695 3200 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3201}
8c8cc2c1 3202
8c8cc2c1 3203static __always_inline void *
d3fb45f3 3204slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
7c0cb9c6 3205 unsigned long caller)
8c8cc2c1
PE
3206{
3207 unsigned long save_flags;
3208 void *ptr;
7d6e6d09 3209 int slab_node = numa_mem_id();
964d4bd3 3210 struct obj_cgroup *objcg = NULL;
da844b78 3211 bool init = false;
8c8cc2c1 3212
dcce284a 3213 flags &= gfp_allowed_mask;
964d4bd3 3214 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
011eceaf 3215 if (unlikely(!cachep))
824ebef1
AM
3216 return NULL;
3217
d3fb45f3
AP
3218 ptr = kfence_alloc(cachep, orig_size, flags);
3219 if (unlikely(ptr))
3220 goto out_hooks;
3221
8c8cc2c1
PE
3222 cache_alloc_debugcheck_before(cachep, flags);
3223 local_irq_save(save_flags);
3224
eacbbae3 3225 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3226 nodeid = slab_node;
8c8cc2c1 3227
18bf8541 3228 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3229 /* Node not bootstrapped yet */
3230 ptr = fallback_alloc(cachep, flags);
3231 goto out;
3232 }
3233
7d6e6d09 3234 if (nodeid == slab_node) {
8c8cc2c1
PE
3235 /*
3236 * Use the locally cached objects if possible.
3237 * However ____cache_alloc does not allow fallback
3238 * to other nodes. It may fail while we still have
3239 * objects on other nodes available.
3240 */
3241 ptr = ____cache_alloc(cachep, flags);
3242 if (ptr)
3243 goto out;
3244 }
3245 /* ___cache_alloc_node can fall back to other nodes */
3246 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3247 out:
3248 local_irq_restore(save_flags);
3249 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
da844b78 3250 init = slab_want_init_on_alloc(flags, cachep);
d07dbea4 3251
d3fb45f3 3252out_hooks:
da844b78 3253 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
8c8cc2c1
PE
3254 return ptr;
3255}
3256
3257static __always_inline void *
3258__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3259{
3260 void *objp;
3261
2ad654bc 3262 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3263 objp = alternate_node_alloc(cache, flags);
3264 if (objp)
3265 goto out;
3266 }
3267 objp = ____cache_alloc(cache, flags);
3268
3269 /*
3270 * We may just have run out of memory on the local node.
3271 * ____cache_alloc_node() knows how to locate memory on other nodes
3272 */
7d6e6d09
LS
3273 if (!objp)
3274 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3275
3276 out:
3277 return objp;
3278}
3279#else
3280
3281static __always_inline void *
3282__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3283{
3284 return ____cache_alloc(cachep, flags);
3285}
3286
3287#endif /* CONFIG_NUMA */
3288
3289static __always_inline void *
d3fb45f3 3290slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
8c8cc2c1
PE
3291{
3292 unsigned long save_flags;
3293 void *objp;
964d4bd3 3294 struct obj_cgroup *objcg = NULL;
da844b78 3295 bool init = false;
8c8cc2c1 3296
dcce284a 3297 flags &= gfp_allowed_mask;
964d4bd3 3298 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
011eceaf 3299 if (unlikely(!cachep))
824ebef1
AM
3300 return NULL;
3301
d3fb45f3
AP
3302 objp = kfence_alloc(cachep, orig_size, flags);
3303 if (unlikely(objp))
3304 goto out;
3305
8c8cc2c1
PE
3306 cache_alloc_debugcheck_before(cachep, flags);
3307 local_irq_save(save_flags);
3308 objp = __do_cache_alloc(cachep, flags);
3309 local_irq_restore(save_flags);
3310 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3311 prefetchw(objp);
da844b78 3312 init = slab_want_init_on_alloc(flags, cachep);
d07dbea4 3313
d3fb45f3 3314out:
da844b78 3315 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
8c8cc2c1
PE
3316 return objp;
3317}
e498be7d
CL
3318
3319/*
5f0985bb 3320 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3321 * @list: List of detached free slabs should be freed by caller
e498be7d 3322 */
97654dfa
JK
3323static void free_block(struct kmem_cache *cachep, void **objpp,
3324 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3325{
3326 int i;
25c063fb 3327 struct kmem_cache_node *n = get_node(cachep, node);
7981e67e 3328 struct slab *slab;
6052b788
JK
3329
3330 n->free_objects += nr_objects;
1da177e4
LT
3331
3332 for (i = 0; i < nr_objects; i++) {
072bb0aa 3333 void *objp;
7981e67e 3334 struct slab *slab;
1da177e4 3335
072bb0aa
MG
3336 objp = objpp[i];
3337
7981e67e
VB
3338 slab = virt_to_slab(objp);
3339 list_del(&slab->slab_list);
ff69416e 3340 check_spinlock_acquired_node(cachep, node);
7981e67e 3341 slab_put_obj(cachep, slab, objp);
1da177e4 3342 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3343
3344 /* fixup slab chains */
7981e67e
VB
3345 if (slab->active == 0) {
3346 list_add(&slab->slab_list, &n->slabs_free);
f728b0a5 3347 n->free_slabs++;
f728b0a5 3348 } else {
1da177e4
LT
3349 /* Unconditionally move a slab to the end of the
3350 * partial list on free - maximum time for the
3351 * other objects to be freed, too.
3352 */
7981e67e 3353 list_add_tail(&slab->slab_list, &n->slabs_partial);
1da177e4
LT
3354 }
3355 }
6052b788
JK
3356
3357 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3358 n->free_objects -= cachep->num;
3359
7981e67e
VB
3360 slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3361 list_move(&slab->slab_list, list);
f728b0a5 3362 n->free_slabs--;
bf00bd34 3363 n->total_slabs--;
6052b788 3364 }
1da177e4
LT
3365}
3366
343e0d7a 3367static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3368{
3369 int batchcount;
ce8eb6c4 3370 struct kmem_cache_node *n;
7d6e6d09 3371 int node = numa_mem_id();
97654dfa 3372 LIST_HEAD(list);
1da177e4
LT
3373
3374 batchcount = ac->batchcount;
260b61dd 3375
1da177e4 3376 check_irq_off();
18bf8541 3377 n = get_node(cachep, node);
ce8eb6c4
CL
3378 spin_lock(&n->list_lock);
3379 if (n->shared) {
3380 struct array_cache *shared_array = n->shared;
b28a02de 3381 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3382 if (max) {
3383 if (batchcount > max)
3384 batchcount = max;
e498be7d 3385 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3386 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3387 shared_array->avail += batchcount;
3388 goto free_done;
3389 }
3390 }
3391
97654dfa 3392 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3393free_done:
1da177e4
LT
3394#if STATS
3395 {
3396 int i = 0;
7981e67e 3397 struct slab *slab;
1da177e4 3398
7981e67e
VB
3399 list_for_each_entry(slab, &n->slabs_free, slab_list) {
3400 BUG_ON(slab->active);
1da177e4
LT
3401
3402 i++;
1da177e4
LT
3403 }
3404 STATS_SET_FREEABLE(cachep, i);
3405 }
3406#endif
ce8eb6c4 3407 spin_unlock(&n->list_lock);
1da177e4 3408 ac->avail -= batchcount;
a737b3e2 3409 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
678ff6a7 3410 slabs_destroy(cachep, &list);
1da177e4
LT
3411}
3412
3413/*
a737b3e2
AM
3414 * Release an obj back to its cache. If the obj has a constructed state, it must
3415 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3416 */
ee3ce779
DV
3417static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3418 unsigned long caller)
1da177e4 3419{
d57a964e
AK
3420 bool init;
3421
d3fb45f3
AP
3422 if (is_kfence_address(objp)) {
3423 kmemleak_free_recursive(objp, cachep->flags);
3424 __kfence_free(objp);
3425 return;
3426 }
3427
d57a964e
AK
3428 /*
3429 * As memory initialization might be integrated into KASAN,
3430 * kasan_slab_free and initialization memset must be
3431 * kept together to avoid discrepancies in behavior.
3432 */
3433 init = slab_want_init_on_free(cachep);
3434 if (init && !kasan_has_integrated_init())
a32d654d 3435 memset(objp, 0, cachep->object_size);
d57a964e
AK
3436 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3437 if (kasan_slab_free(cachep, objp, init))
55834c59
AP
3438 return;
3439
cfbe1636
ME
3440 /* Use KCSAN to help debug racy use-after-free. */
3441 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3442 __kcsan_check_access(objp, cachep->object_size,
3443 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3444
55834c59
AP
3445 ___cache_free(cachep, objp, caller);
3446}
1da177e4 3447
55834c59
AP
3448void ___cache_free(struct kmem_cache *cachep, void *objp,
3449 unsigned long caller)
3450{
3451 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3452
1da177e4 3453 check_irq_off();
d5cff635 3454 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3455 objp = cache_free_debugcheck(cachep, objp, caller);
d1b2cf6c 3456 memcg_slab_free_hook(cachep, &objp, 1);
1da177e4 3457
1807a1aa
SS
3458 /*
3459 * Skip calling cache_free_alien() when the platform is not numa.
3460 * This will avoid cache misses that happen while accessing slabp (which
3461 * is per page memory reference) to get nodeid. Instead use a global
3462 * variable to skip the call, which is mostly likely to be present in
3463 * the cache.
3464 */
b6e68bc1 3465 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3466 return;
3467
3d880194 3468 if (ac->avail < ac->limit) {
1da177e4 3469 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3470 } else {
3471 STATS_INC_FREEMISS(cachep);
3472 cache_flusharray(cachep, ac);
1da177e4 3473 }
42c8c99c 3474
f68f8ddd 3475 if (sk_memalloc_socks()) {
7981e67e 3476 struct slab *slab = virt_to_slab(objp);
f68f8ddd 3477
7981e67e
VB
3478 if (unlikely(slab_test_pfmemalloc(slab))) {
3479 cache_free_pfmemalloc(cachep, slab, objp);
f68f8ddd
JK
3480 return;
3481 }
3482 }
3483
dabc3e29 3484 __free_one(ac, objp);
1da177e4
LT
3485}
3486
3487/**
3488 * kmem_cache_alloc - Allocate an object
3489 * @cachep: The cache to allocate from.
3490 * @flags: See kmalloc().
3491 *
3492 * Allocate an object from this cache. The flags are only relevant
3493 * if the cache has no available objects.
a862f68a
MR
3494 *
3495 * Return: pointer to the new object or %NULL in case of error
1da177e4 3496 */
343e0d7a 3497void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3498{
d3fb45f3 3499 void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
36555751 3500
ca2b84cb 3501 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3502 cachep->object_size, cachep->size, flags);
36555751
EGM
3503
3504 return ret;
1da177e4
LT
3505}
3506EXPORT_SYMBOL(kmem_cache_alloc);
3507
7b0501dd
JDB
3508static __always_inline void
3509cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3510 size_t size, void **p, unsigned long caller)
3511{
3512 size_t i;
3513
3514 for (i = 0; i < size; i++)
3515 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3516}
3517
865762a8 3518int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3519 void **p)
484748f0 3520{
2a777eac 3521 size_t i;
964d4bd3 3522 struct obj_cgroup *objcg = NULL;
2a777eac 3523
964d4bd3 3524 s = slab_pre_alloc_hook(s, &objcg, size, flags);
2a777eac
JDB
3525 if (!s)
3526 return 0;
3527
3528 cache_alloc_debugcheck_before(s, flags);
3529
3530 local_irq_disable();
3531 for (i = 0; i < size; i++) {
d3fb45f3 3532 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
2a777eac 3533
2a777eac
JDB
3534 if (unlikely(!objp))
3535 goto error;
3536 p[i] = objp;
3537 }
3538 local_irq_enable();
3539
7b0501dd
JDB
3540 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3541
da844b78
AK
3542 /*
3543 * memcg and kmem_cache debug support and memory initialization.
3544 * Done outside of the IRQ disabled section.
3545 */
3546 slab_post_alloc_hook(s, objcg, flags, size, p,
3547 slab_want_init_on_alloc(flags, s));
2a777eac
JDB
3548 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3549 return size;
3550error:
3551 local_irq_enable();
7b0501dd 3552 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
da844b78 3553 slab_post_alloc_hook(s, objcg, flags, i, p, false);
2a777eac
JDB
3554 __kmem_cache_free_bulk(s, i, p);
3555 return 0;
484748f0
CL
3556}
3557EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3558
0f24f128 3559#ifdef CONFIG_TRACING
85beb586 3560void *
4052147c 3561kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3562{
85beb586
SR
3563 void *ret;
3564
d3fb45f3 3565 ret = slab_alloc(cachep, flags, size, _RET_IP_);
85beb586 3566
0116523c 3567 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3568 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3569 size, cachep->size, flags);
85beb586 3570 return ret;
36555751 3571}
85beb586 3572EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3573#endif
3574
1da177e4 3575#ifdef CONFIG_NUMA
d0d04b78
ZL
3576/**
3577 * kmem_cache_alloc_node - Allocate an object on the specified node
3578 * @cachep: The cache to allocate from.
3579 * @flags: See kmalloc().
3580 * @nodeid: node number of the target node.
3581 *
3582 * Identical to kmem_cache_alloc but it will allocate memory on the given
3583 * node, which can improve the performance for cpu bound structures.
3584 *
3585 * Fallback to other node is possible if __GFP_THISNODE is not set.
a862f68a
MR
3586 *
3587 * Return: pointer to the new object or %NULL in case of error
d0d04b78 3588 */
8b98c169
CH
3589void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3590{
d3fb45f3 3591 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
36555751 3592
ca2b84cb 3593 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3594 cachep->object_size, cachep->size,
ca2b84cb 3595 flags, nodeid);
36555751
EGM
3596
3597 return ret;
8b98c169 3598}
1da177e4
LT
3599EXPORT_SYMBOL(kmem_cache_alloc_node);
3600
0f24f128 3601#ifdef CONFIG_TRACING
4052147c 3602void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3603 gfp_t flags,
4052147c
EG
3604 int nodeid,
3605 size_t size)
36555751 3606{
85beb586
SR
3607 void *ret;
3608
d3fb45f3 3609 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
505f5dcb 3610
0116523c 3611 ret = kasan_kmalloc(cachep, ret, size, flags);
85beb586 3612 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3613 size, cachep->size,
85beb586
SR
3614 flags, nodeid);
3615 return ret;
36555751 3616}
85beb586 3617EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3618#endif
3619
8b98c169 3620static __always_inline void *
7c0cb9c6 3621__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3622{
343e0d7a 3623 struct kmem_cache *cachep;
7ed2f9e6 3624 void *ret;
97e2bde4 3625
61448479
DV
3626 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3627 return NULL;
2c59dd65 3628 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3629 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3630 return cachep;
7ed2f9e6 3631 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
0116523c 3632 ret = kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3633
3634 return ret;
97e2bde4 3635}
8b98c169 3636
8b98c169
CH
3637void *__kmalloc_node(size_t size, gfp_t flags, int node)
3638{
7c0cb9c6 3639 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3640}
dbe5e69d 3641EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3642
3643void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3644 int node, unsigned long caller)
8b98c169 3645{
7c0cb9c6 3646 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3647}
3648EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3649#endif /* CONFIG_NUMA */
1da177e4 3650
5bb1bb35 3651#ifdef CONFIG_PRINTK
7213230a 3652void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8e7f37f2
PM
3653{
3654 struct kmem_cache *cachep;
3655 unsigned int objnr;
3656 void *objp;
3657
3658 kpp->kp_ptr = object;
7213230a
MWO
3659 kpp->kp_slab = slab;
3660 cachep = slab->slab_cache;
8e7f37f2
PM
3661 kpp->kp_slab_cache = cachep;
3662 objp = object - obj_offset(cachep);
3663 kpp->kp_data_offset = obj_offset(cachep);
7213230a 3664 slab = virt_to_slab(objp);
40f3bf0c 3665 objnr = obj_to_index(cachep, slab, objp);
7981e67e 3666 objp = index_to_obj(cachep, slab, objnr);
8e7f37f2
PM
3667 kpp->kp_objp = objp;
3668 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3669 kpp->kp_ret = *dbg_userword(cachep, objp);
3670}
5bb1bb35 3671#endif
8e7f37f2 3672
1da177e4 3673/**
800590f5 3674 * __do_kmalloc - allocate memory
1da177e4 3675 * @size: how many bytes of memory are required.
800590f5 3676 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3677 * @caller: function caller for debug tracking of the caller
a862f68a
MR
3678 *
3679 * Return: pointer to the allocated memory or %NULL in case of error
1da177e4 3680 */
7fd6b141 3681static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3682 unsigned long caller)
1da177e4 3683{
343e0d7a 3684 struct kmem_cache *cachep;
36555751 3685 void *ret;
1da177e4 3686
61448479
DV
3687 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3688 return NULL;
2c59dd65 3689 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3690 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3691 return cachep;
d3fb45f3 3692 ret = slab_alloc(cachep, flags, size, caller);
36555751 3693
0116523c 3694 ret = kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3695 trace_kmalloc(caller, ret,
3b0efdfa 3696 size, cachep->size, flags);
36555751
EGM
3697
3698 return ret;
7fd6b141
PE
3699}
3700
7fd6b141
PE
3701void *__kmalloc(size_t size, gfp_t flags)
3702{
7c0cb9c6 3703 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3704}
3705EXPORT_SYMBOL(__kmalloc);
3706
ce71e27c 3707void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3708{
7c0cb9c6 3709 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3710}
3711EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3712
1da177e4
LT
3713/**
3714 * kmem_cache_free - Deallocate an object
3715 * @cachep: The cache the allocation was from.
3716 * @objp: The previously allocated object.
3717 *
3718 * Free an object which was previously allocated from this
3719 * cache.
3720 */
343e0d7a 3721void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3722{
3723 unsigned long flags;
b9ce5ef4
GC
3724 cachep = cache_from_obj(cachep, objp);
3725 if (!cachep)
3726 return;
1da177e4 3727
9a543f00 3728 trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
1da177e4 3729 local_irq_save(flags);
d97d476b 3730 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3731 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3732 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3733 __cache_free(cachep, objp, _RET_IP_);
1da177e4
LT
3734 local_irq_restore(flags);
3735}
3736EXPORT_SYMBOL(kmem_cache_free);
3737
e6cdb58d
JDB
3738void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3739{
3740 struct kmem_cache *s;
3741 size_t i;
3742
3743 local_irq_disable();
3744 for (i = 0; i < size; i++) {
3745 void *objp = p[i];
3746
ca257195
JDB
3747 if (!orig_s) /* called via kfree_bulk */
3748 s = virt_to_cache(objp);
3749 else
3750 s = cache_from_obj(orig_s, objp);
a64b5378
KC
3751 if (!s)
3752 continue;
e6cdb58d
JDB
3753
3754 debug_check_no_locks_freed(objp, s->object_size);
3755 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3756 debug_check_no_obj_freed(objp, s->object_size);
3757
3758 __cache_free(s, objp, _RET_IP_);
3759 }
3760 local_irq_enable();
3761
3762 /* FIXME: add tracing */
3763}
3764EXPORT_SYMBOL(kmem_cache_free_bulk);
3765
1da177e4
LT
3766/**
3767 * kfree - free previously allocated memory
3768 * @objp: pointer returned by kmalloc.
3769 *
80e93eff
PE
3770 * If @objp is NULL, no operation is performed.
3771 *
1da177e4
LT
3772 * Don't free memory not originally allocated by kmalloc()
3773 * or you will run into trouble.
3774 */
3775void kfree(const void *objp)
3776{
343e0d7a 3777 struct kmem_cache *c;
1da177e4
LT
3778 unsigned long flags;
3779
2121db74
PE
3780 trace_kfree(_RET_IP_, objp);
3781
6cb8f913 3782 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3783 return;
3784 local_irq_save(flags);
3785 kfree_debugcheck(objp);
6ed5eb22 3786 c = virt_to_cache(objp);
a64b5378
KC
3787 if (!c) {
3788 local_irq_restore(flags);
3789 return;
3790 }
8c138bc0
CL
3791 debug_check_no_locks_freed(objp, c->object_size);
3792
3793 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3794 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3795 local_irq_restore(flags);
3796}
3797EXPORT_SYMBOL(kfree);
3798
e498be7d 3799/*
ce8eb6c4 3800 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3801 */
c3d332b6 3802static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3803{
c3d332b6 3804 int ret;
e498be7d 3805 int node;
ce8eb6c4 3806 struct kmem_cache_node *n;
e498be7d 3807
9c09a95c 3808 for_each_online_node(node) {
c3d332b6
JK
3809 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3810 if (ret)
e498be7d
CL
3811 goto fail;
3812
e498be7d 3813 }
c3d332b6 3814
cafeb02e 3815 return 0;
0718dc2a 3816
a737b3e2 3817fail:
3b0efdfa 3818 if (!cachep->list.next) {
0718dc2a
CL
3819 /* Cache is not active yet. Roll back what we did */
3820 node--;
3821 while (node >= 0) {
18bf8541
CL
3822 n = get_node(cachep, node);
3823 if (n) {
ce8eb6c4
CL
3824 kfree(n->shared);
3825 free_alien_cache(n->alien);
3826 kfree(n);
6a67368c 3827 cachep->node[node] = NULL;
0718dc2a
CL
3828 }
3829 node--;
3830 }
3831 }
cafeb02e 3832 return -ENOMEM;
e498be7d
CL
3833}
3834
18004c5d 3835/* Always called with the slab_mutex held */
10befea9
RG
3836static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3837 int batchcount, int shared, gfp_t gfp)
1da177e4 3838{
bf0dea23
JK
3839 struct array_cache __percpu *cpu_cache, *prev;
3840 int cpu;
1da177e4 3841
bf0dea23
JK
3842 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3843 if (!cpu_cache)
d2e7b7d0
SS
3844 return -ENOMEM;
3845
bf0dea23
JK
3846 prev = cachep->cpu_cache;
3847 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3848 /*
3849 * Without a previous cpu_cache there's no need to synchronize remote
3850 * cpus, so skip the IPIs.
3851 */
3852 if (prev)
3853 kick_all_cpus_sync();
e498be7d 3854
1da177e4 3855 check_irq_on();
1da177e4
LT
3856 cachep->batchcount = batchcount;
3857 cachep->limit = limit;
e498be7d 3858 cachep->shared = shared;
1da177e4 3859
bf0dea23 3860 if (!prev)
c3d332b6 3861 goto setup_node;
bf0dea23
JK
3862
3863 for_each_online_cpu(cpu) {
97654dfa 3864 LIST_HEAD(list);
18bf8541
CL
3865 int node;
3866 struct kmem_cache_node *n;
bf0dea23 3867 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3868
bf0dea23 3869 node = cpu_to_mem(cpu);
18bf8541
CL
3870 n = get_node(cachep, node);
3871 spin_lock_irq(&n->list_lock);
bf0dea23 3872 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3873 spin_unlock_irq(&n->list_lock);
97654dfa 3874 slabs_destroy(cachep, &list);
1da177e4 3875 }
bf0dea23
JK
3876 free_percpu(prev);
3877
c3d332b6
JK
3878setup_node:
3879 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3880}
3881
18004c5d 3882/* Called with slab_mutex held always */
83b519e8 3883static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3884{
3885 int err;
943a451a
GC
3886 int limit = 0;
3887 int shared = 0;
3888 int batchcount = 0;
3889
7c00fce9 3890 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3891 if (err)
3892 goto end;
3893
a737b3e2
AM
3894 /*
3895 * The head array serves three purposes:
1da177e4
LT
3896 * - create a LIFO ordering, i.e. return objects that are cache-warm
3897 * - reduce the number of spinlock operations.
a737b3e2 3898 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3899 * bufctl chains: array operations are cheaper.
3900 * The numbers are guessed, we should auto-tune as described by
3901 * Bonwick.
3902 */
3b0efdfa 3903 if (cachep->size > 131072)
1da177e4 3904 limit = 1;
3b0efdfa 3905 else if (cachep->size > PAGE_SIZE)
1da177e4 3906 limit = 8;
3b0efdfa 3907 else if (cachep->size > 1024)
1da177e4 3908 limit = 24;
3b0efdfa 3909 else if (cachep->size > 256)
1da177e4
LT
3910 limit = 54;
3911 else
3912 limit = 120;
3913
a737b3e2
AM
3914 /*
3915 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3916 * allocation behaviour: Most allocs on one cpu, most free operations
3917 * on another cpu. For these cases, an efficient object passing between
3918 * cpus is necessary. This is provided by a shared array. The array
3919 * replaces Bonwick's magazine layer.
3920 * On uniprocessor, it's functionally equivalent (but less efficient)
3921 * to a larger limit. Thus disabled by default.
3922 */
3923 shared = 0;
3b0efdfa 3924 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3925 shared = 8;
1da177e4
LT
3926
3927#if DEBUG
a737b3e2
AM
3928 /*
3929 * With debugging enabled, large batchcount lead to excessively long
3930 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3931 */
3932 if (limit > 32)
3933 limit = 32;
3934#endif
943a451a 3935 batchcount = (limit + 1) / 2;
943a451a 3936 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3937end:
1da177e4 3938 if (err)
1170532b 3939 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3940 cachep->name, -err);
2ed3a4ef 3941 return err;
1da177e4
LT
3942}
3943
1b55253a 3944/*
ce8eb6c4
CL
3945 * Drain an array if it contains any elements taking the node lock only if
3946 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3947 * if drain_array() is used on the shared array.
1b55253a 3948 */
ce8eb6c4 3949static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3950 struct array_cache *ac, int node)
1da177e4 3951{
97654dfa 3952 LIST_HEAD(list);
18726ca8
JK
3953
3954 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3955 check_mutex_acquired();
1da177e4 3956
1b55253a
CL
3957 if (!ac || !ac->avail)
3958 return;
18726ca8
JK
3959
3960 if (ac->touched) {
1da177e4 3961 ac->touched = 0;
18726ca8 3962 return;
1da177e4 3963 }
18726ca8
JK
3964
3965 spin_lock_irq(&n->list_lock);
3966 drain_array_locked(cachep, ac, node, false, &list);
3967 spin_unlock_irq(&n->list_lock);
3968
3969 slabs_destroy(cachep, &list);
1da177e4
LT
3970}
3971
3972/**
3973 * cache_reap - Reclaim memory from caches.
05fb6bf0 3974 * @w: work descriptor
1da177e4
LT
3975 *
3976 * Called from workqueue/eventd every few seconds.
3977 * Purpose:
3978 * - clear the per-cpu caches for this CPU.
3979 * - return freeable pages to the main free memory pool.
3980 *
a737b3e2
AM
3981 * If we cannot acquire the cache chain mutex then just give up - we'll try
3982 * again on the next iteration.
1da177e4 3983 */
7c5cae36 3984static void cache_reap(struct work_struct *w)
1da177e4 3985{
7a7c381d 3986 struct kmem_cache *searchp;
ce8eb6c4 3987 struct kmem_cache_node *n;
7d6e6d09 3988 int node = numa_mem_id();
bf6aede7 3989 struct delayed_work *work = to_delayed_work(w);
1da177e4 3990
18004c5d 3991 if (!mutex_trylock(&slab_mutex))
1da177e4 3992 /* Give up. Setup the next iteration. */
7c5cae36 3993 goto out;
1da177e4 3994
18004c5d 3995 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3996 check_irq_on();
3997
35386e3b 3998 /*
ce8eb6c4 3999 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4000 * have established with reasonable certainty that
4001 * we can do some work if the lock was obtained.
4002 */
18bf8541 4003 n = get_node(searchp, node);
35386e3b 4004
ce8eb6c4 4005 reap_alien(searchp, n);
1da177e4 4006
18726ca8 4007 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4008
35386e3b
CL
4009 /*
4010 * These are racy checks but it does not matter
4011 * if we skip one check or scan twice.
4012 */
ce8eb6c4 4013 if (time_after(n->next_reap, jiffies))
35386e3b 4014 goto next;
1da177e4 4015
5f0985bb 4016 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4017
18726ca8 4018 drain_array(searchp, n, n->shared, node);
1da177e4 4019
ce8eb6c4
CL
4020 if (n->free_touched)
4021 n->free_touched = 0;
ed11d9eb
CL
4022 else {
4023 int freed;
1da177e4 4024
ce8eb6c4 4025 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4026 5 * searchp->num - 1) / (5 * searchp->num));
4027 STATS_ADD_REAPED(searchp, freed);
4028 }
35386e3b 4029next:
1da177e4
LT
4030 cond_resched();
4031 }
4032 check_irq_on();
18004c5d 4033 mutex_unlock(&slab_mutex);
8fce4d8e 4034 next_reap_node();
7c5cae36 4035out:
a737b3e2 4036 /* Set up the next iteration */
a9f2a846
VB
4037 schedule_delayed_work_on(smp_processor_id(), work,
4038 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4039}
4040
0d7561c6 4041void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4042{
f728b0a5 4043 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4044 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4045 unsigned long free_slabs = 0;
e498be7d 4046 int node;
ce8eb6c4 4047 struct kmem_cache_node *n;
1da177e4 4048
18bf8541 4049 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4050 check_irq_on();
ce8eb6c4 4051 spin_lock_irq(&n->list_lock);
e498be7d 4052
bf00bd34
DR
4053 total_slabs += n->total_slabs;
4054 free_slabs += n->free_slabs;
f728b0a5 4055 free_objs += n->free_objects;
07a63c41 4056
ce8eb6c4
CL
4057 if (n->shared)
4058 shared_avail += n->shared->avail;
e498be7d 4059
ce8eb6c4 4060 spin_unlock_irq(&n->list_lock);
1da177e4 4061 }
bf00bd34
DR
4062 num_objs = total_slabs * cachep->num;
4063 active_slabs = total_slabs - free_slabs;
f728b0a5 4064 active_objs = num_objs - free_objs;
1da177e4 4065
0d7561c6
GC
4066 sinfo->active_objs = active_objs;
4067 sinfo->num_objs = num_objs;
4068 sinfo->active_slabs = active_slabs;
bf00bd34 4069 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4070 sinfo->shared_avail = shared_avail;
4071 sinfo->limit = cachep->limit;
4072 sinfo->batchcount = cachep->batchcount;
4073 sinfo->shared = cachep->shared;
4074 sinfo->objects_per_slab = cachep->num;
4075 sinfo->cache_order = cachep->gfporder;
4076}
4077
4078void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4079{
1da177e4 4080#if STATS
ce8eb6c4 4081 { /* node stats */
1da177e4
LT
4082 unsigned long high = cachep->high_mark;
4083 unsigned long allocs = cachep->num_allocations;
4084 unsigned long grown = cachep->grown;
4085 unsigned long reaped = cachep->reaped;
4086 unsigned long errors = cachep->errors;
4087 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4088 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4089 unsigned long node_frees = cachep->node_frees;
fb7faf33 4090 unsigned long overflows = cachep->node_overflow;
1da177e4 4091
756a025f 4092 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4093 allocs, high, grown,
4094 reaped, errors, max_freeable, node_allocs,
4095 node_frees, overflows);
1da177e4
LT
4096 }
4097 /* cpu stats */
4098 {
4099 unsigned long allochit = atomic_read(&cachep->allochit);
4100 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4101 unsigned long freehit = atomic_read(&cachep->freehit);
4102 unsigned long freemiss = atomic_read(&cachep->freemiss);
4103
4104 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4105 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4106 }
4107#endif
1da177e4
LT
4108}
4109
1da177e4
LT
4110#define MAX_SLABINFO_WRITE 128
4111/**
4112 * slabinfo_write - Tuning for the slab allocator
4113 * @file: unused
4114 * @buffer: user buffer
4115 * @count: data length
4116 * @ppos: unused
a862f68a
MR
4117 *
4118 * Return: %0 on success, negative error code otherwise.
1da177e4 4119 */
b7454ad3 4120ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4121 size_t count, loff_t *ppos)
1da177e4 4122{
b28a02de 4123 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4124 int limit, batchcount, shared, res;
7a7c381d 4125 struct kmem_cache *cachep;
b28a02de 4126
1da177e4
LT
4127 if (count > MAX_SLABINFO_WRITE)
4128 return -EINVAL;
4129 if (copy_from_user(&kbuf, buffer, count))
4130 return -EFAULT;
b28a02de 4131 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4132
4133 tmp = strchr(kbuf, ' ');
4134 if (!tmp)
4135 return -EINVAL;
4136 *tmp = '\0';
4137 tmp++;
4138 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4139 return -EINVAL;
4140
4141 /* Find the cache in the chain of caches. */
18004c5d 4142 mutex_lock(&slab_mutex);
1da177e4 4143 res = -EINVAL;
18004c5d 4144 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4145 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4146 if (limit < 1 || batchcount < 1 ||
4147 batchcount > limit || shared < 0) {
e498be7d 4148 res = 0;
1da177e4 4149 } else {
e498be7d 4150 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4151 batchcount, shared,
4152 GFP_KERNEL);
1da177e4
LT
4153 }
4154 break;
4155 }
4156 }
18004c5d 4157 mutex_unlock(&slab_mutex);
1da177e4
LT
4158 if (res >= 0)
4159 res = count;
4160 return res;
4161}
871751e2 4162
04385fc5
KC
4163#ifdef CONFIG_HARDENED_USERCOPY
4164/*
afcc90f8
KC
4165 * Rejects incorrectly sized objects and objects that are to be copied
4166 * to/from userspace but do not fall entirely within the containing slab
4167 * cache's usercopy region.
04385fc5
KC
4168 *
4169 * Returns NULL if check passes, otherwise const char * to name of cache
4170 * to indicate an error.
4171 */
0b3eb091
MWO
4172void __check_heap_object(const void *ptr, unsigned long n,
4173 const struct slab *slab, bool to_user)
04385fc5
KC
4174{
4175 struct kmem_cache *cachep;
4176 unsigned int objnr;
4177 unsigned long offset;
4178
219667c2
AK
4179 ptr = kasan_reset_tag(ptr);
4180
04385fc5 4181 /* Find and validate object. */
0b3eb091 4182 cachep = slab->slab_cache;
40f3bf0c 4183 objnr = obj_to_index(cachep, slab, (void *)ptr);
04385fc5
KC
4184 BUG_ON(objnr >= cachep->num);
4185
4186 /* Find offset within object. */
d3fb45f3
AP
4187 if (is_kfence_address(ptr))
4188 offset = ptr - kfence_object_start(ptr);
4189 else
7981e67e 4190 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
04385fc5 4191
afcc90f8
KC
4192 /* Allow address range falling entirely within usercopy region. */
4193 if (offset >= cachep->useroffset &&
4194 offset - cachep->useroffset <= cachep->usersize &&
4195 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4196 return;
04385fc5 4197
f4e6e289 4198 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4199}
4200#endif /* CONFIG_HARDENED_USERCOPY */
4201
00e145b6 4202/**
10d1f8cb 4203 * __ksize -- Uninstrumented ksize.
87bf4f71 4204 * @objp: pointer to the object
00e145b6 4205 *
10d1f8cb
ME
4206 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4207 * safety checks as ksize() with KASAN instrumentation enabled.
87bf4f71
RD
4208 *
4209 * Return: size of the actual memory used by @objp in bytes
00e145b6 4210 */
10d1f8cb 4211size_t __ksize(const void *objp)
1da177e4 4212{
a64b5378 4213 struct kmem_cache *c;
7ed2f9e6
AP
4214 size_t size;
4215
ef8b4520
CL
4216 BUG_ON(!objp);
4217 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4218 return 0;
1da177e4 4219
a64b5378
KC
4220 c = virt_to_cache(objp);
4221 size = c ? c->object_size : 0;
7ed2f9e6
AP
4222
4223 return size;
1da177e4 4224}
10d1f8cb 4225EXPORT_SYMBOL(__ksize);