]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * (markhe@nextd.demon.co.uk) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
fc0abb14 | 71 | * The global cache-chain is protected by the mutex 'cache_chain_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <shai@scalex86.org>. | |
80 | * Shobhit Dayal <shobhit@calsoftinc.com> | |
81 | * Alok N Kataria <alokk@calsoftinc.com> | |
82 | * Christoph Lameter <christoph@lameter.com> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
1da177e4 LT |
120 | #include <asm/cacheflush.h> |
121 | #include <asm/tlbflush.h> | |
122 | #include <asm/page.h> | |
123 | ||
4dee6b64 SR |
124 | #include <trace/events/kmem.h> |
125 | ||
1da177e4 | 126 | /* |
50953fe9 | 127 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
128 | * 0 for faster, smaller code (especially in the critical paths). |
129 | * | |
130 | * STATS - 1 to collect stats for /proc/slabinfo. | |
131 | * 0 for faster, smaller code (especially in the critical paths). | |
132 | * | |
133 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
134 | */ | |
135 | ||
136 | #ifdef CONFIG_DEBUG_SLAB | |
137 | #define DEBUG 1 | |
138 | #define STATS 1 | |
139 | #define FORCED_DEBUG 1 | |
140 | #else | |
141 | #define DEBUG 0 | |
142 | #define STATS 0 | |
143 | #define FORCED_DEBUG 0 | |
144 | #endif | |
145 | ||
1da177e4 LT |
146 | /* Shouldn't this be in a header file somewhere? */ |
147 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 148 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 149 | |
1da177e4 LT |
150 | #ifndef ARCH_KMALLOC_FLAGS |
151 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
152 | #endif | |
153 | ||
154 | /* Legal flag mask for kmem_cache_create(). */ | |
155 | #if DEBUG | |
50953fe9 | 156 | # define CREATE_MASK (SLAB_RED_ZONE | \ |
1da177e4 | 157 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ |
ac2b898c | 158 | SLAB_CACHE_DMA | \ |
5af60839 | 159 | SLAB_STORE_USER | \ |
1da177e4 | 160 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 161 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 162 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 | 163 | #else |
ac2b898c | 164 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ |
5af60839 | 165 | SLAB_CACHE_DMA | \ |
1da177e4 | 166 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 167 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 168 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 LT |
169 | #endif |
170 | ||
171 | /* | |
172 | * kmem_bufctl_t: | |
173 | * | |
174 | * Bufctl's are used for linking objs within a slab | |
175 | * linked offsets. | |
176 | * | |
177 | * This implementation relies on "struct page" for locating the cache & | |
178 | * slab an object belongs to. | |
179 | * This allows the bufctl structure to be small (one int), but limits | |
180 | * the number of objects a slab (not a cache) can contain when off-slab | |
181 | * bufctls are used. The limit is the size of the largest general cache | |
182 | * that does not use off-slab slabs. | |
183 | * For 32bit archs with 4 kB pages, is this 56. | |
184 | * This is not serious, as it is only for large objects, when it is unwise | |
185 | * to have too many per slab. | |
186 | * Note: This limit can be raised by introducing a general cache whose size | |
187 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
188 | */ | |
189 | ||
fa5b08d5 | 190 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
191 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
192 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
871751e2 AV |
193 | #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) |
194 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) | |
1da177e4 | 195 | |
1da177e4 LT |
196 | /* |
197 | * struct slab_rcu | |
198 | * | |
199 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
200 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
201 | * we need to approach a kernel structure obliquely, from its address | |
202 | * obtained without the usual locking. We can lock the structure to | |
203 | * stabilize it and check it's still at the given address, only if we | |
204 | * can be sure that the memory has not been meanwhile reused for some | |
205 | * other kind of object (which our subsystem's lock might corrupt). | |
206 | * | |
207 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
208 | * taking the spinlock within the structure expected at that address. | |
1da177e4 LT |
209 | */ |
210 | struct slab_rcu { | |
b28a02de | 211 | struct rcu_head head; |
343e0d7a | 212 | struct kmem_cache *cachep; |
b28a02de | 213 | void *addr; |
1da177e4 LT |
214 | }; |
215 | ||
5bfe53a7 LJ |
216 | /* |
217 | * struct slab | |
218 | * | |
219 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
220 | * for a slab, or allocated from an general cache. | |
221 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
222 | */ | |
223 | struct slab { | |
224 | union { | |
225 | struct { | |
226 | struct list_head list; | |
227 | unsigned long colouroff; | |
228 | void *s_mem; /* including colour offset */ | |
229 | unsigned int inuse; /* num of objs active in slab */ | |
230 | kmem_bufctl_t free; | |
231 | unsigned short nodeid; | |
232 | }; | |
233 | struct slab_rcu __slab_cover_slab_rcu; | |
234 | }; | |
235 | }; | |
236 | ||
1da177e4 LT |
237 | /* |
238 | * struct array_cache | |
239 | * | |
1da177e4 LT |
240 | * Purpose: |
241 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
242 | * - reduce the number of linked list operations | |
243 | * - reduce spinlock operations | |
244 | * | |
245 | * The limit is stored in the per-cpu structure to reduce the data cache | |
246 | * footprint. | |
247 | * | |
248 | */ | |
249 | struct array_cache { | |
250 | unsigned int avail; | |
251 | unsigned int limit; | |
252 | unsigned int batchcount; | |
253 | unsigned int touched; | |
e498be7d | 254 | spinlock_t lock; |
bda5b655 | 255 | void *entry[]; /* |
a737b3e2 AM |
256 | * Must have this definition in here for the proper |
257 | * alignment of array_cache. Also simplifies accessing | |
258 | * the entries. | |
a737b3e2 | 259 | */ |
1da177e4 LT |
260 | }; |
261 | ||
a737b3e2 AM |
262 | /* |
263 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
264 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
265 | */ |
266 | #define BOOT_CPUCACHE_ENTRIES 1 | |
267 | struct arraycache_init { | |
268 | struct array_cache cache; | |
b28a02de | 269 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
270 | }; |
271 | ||
272 | /* | |
e498be7d | 273 | * The slab lists for all objects. |
1da177e4 LT |
274 | */ |
275 | struct kmem_list3 { | |
b28a02de PE |
276 | struct list_head slabs_partial; /* partial list first, better asm code */ |
277 | struct list_head slabs_full; | |
278 | struct list_head slabs_free; | |
279 | unsigned long free_objects; | |
b28a02de | 280 | unsigned int free_limit; |
2e1217cf | 281 | unsigned int colour_next; /* Per-node cache coloring */ |
b28a02de PE |
282 | spinlock_t list_lock; |
283 | struct array_cache *shared; /* shared per node */ | |
284 | struct array_cache **alien; /* on other nodes */ | |
35386e3b CL |
285 | unsigned long next_reap; /* updated without locking */ |
286 | int free_touched; /* updated without locking */ | |
1da177e4 LT |
287 | }; |
288 | ||
e498be7d CL |
289 | /* |
290 | * Need this for bootstrapping a per node allocator. | |
291 | */ | |
556a169d | 292 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
68a1b195 | 293 | static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; |
e498be7d | 294 | #define CACHE_CACHE 0 |
556a169d PE |
295 | #define SIZE_AC MAX_NUMNODES |
296 | #define SIZE_L3 (2 * MAX_NUMNODES) | |
e498be7d | 297 | |
ed11d9eb CL |
298 | static int drain_freelist(struct kmem_cache *cache, |
299 | struct kmem_list3 *l3, int tofree); | |
300 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | |
301 | int node); | |
83b519e8 | 302 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 303 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 304 | |
e498be7d | 305 | /* |
a737b3e2 AM |
306 | * This function must be completely optimized away if a constant is passed to |
307 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | |
e498be7d | 308 | */ |
7243cc05 | 309 | static __always_inline int index_of(const size_t size) |
e498be7d | 310 | { |
5ec8a847 SR |
311 | extern void __bad_size(void); |
312 | ||
e498be7d CL |
313 | if (__builtin_constant_p(size)) { |
314 | int i = 0; | |
315 | ||
316 | #define CACHE(x) \ | |
317 | if (size <=x) \ | |
318 | return i; \ | |
319 | else \ | |
320 | i++; | |
1c61fc40 | 321 | #include <linux/kmalloc_sizes.h> |
e498be7d | 322 | #undef CACHE |
5ec8a847 | 323 | __bad_size(); |
7243cc05 | 324 | } else |
5ec8a847 | 325 | __bad_size(); |
e498be7d CL |
326 | return 0; |
327 | } | |
328 | ||
e0a42726 IM |
329 | static int slab_early_init = 1; |
330 | ||
e498be7d CL |
331 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
332 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 333 | |
5295a74c | 334 | static void kmem_list3_init(struct kmem_list3 *parent) |
e498be7d CL |
335 | { |
336 | INIT_LIST_HEAD(&parent->slabs_full); | |
337 | INIT_LIST_HEAD(&parent->slabs_partial); | |
338 | INIT_LIST_HEAD(&parent->slabs_free); | |
339 | parent->shared = NULL; | |
340 | parent->alien = NULL; | |
2e1217cf | 341 | parent->colour_next = 0; |
e498be7d CL |
342 | spin_lock_init(&parent->list_lock); |
343 | parent->free_objects = 0; | |
344 | parent->free_touched = 0; | |
345 | } | |
346 | ||
a737b3e2 AM |
347 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
348 | do { \ | |
349 | INIT_LIST_HEAD(listp); \ | |
350 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
e498be7d CL |
351 | } while (0) |
352 | ||
a737b3e2 AM |
353 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
354 | do { \ | |
e498be7d CL |
355 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
356 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
357 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
358 | } while (0) | |
1da177e4 | 359 | |
1da177e4 LT |
360 | #define CFLGS_OFF_SLAB (0x80000000UL) |
361 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
362 | ||
363 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
364 | /* |
365 | * Optimization question: fewer reaps means less probability for unnessary | |
366 | * cpucache drain/refill cycles. | |
1da177e4 | 367 | * |
dc6f3f27 | 368 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
369 | * which could lock up otherwise freeable slabs. |
370 | */ | |
371 | #define REAPTIMEOUT_CPUC (2*HZ) | |
372 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
373 | ||
374 | #if STATS | |
375 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
376 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
377 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
378 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 379 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
380 | #define STATS_SET_HIGH(x) \ |
381 | do { \ | |
382 | if ((x)->num_active > (x)->high_mark) \ | |
383 | (x)->high_mark = (x)->num_active; \ | |
384 | } while (0) | |
1da177e4 LT |
385 | #define STATS_INC_ERR(x) ((x)->errors++) |
386 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 387 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 388 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
389 | #define STATS_SET_FREEABLE(x, i) \ |
390 | do { \ | |
391 | if ((x)->max_freeable < i) \ | |
392 | (x)->max_freeable = i; \ | |
393 | } while (0) | |
1da177e4 LT |
394 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
395 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
396 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
397 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
398 | #else | |
399 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
400 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
401 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
402 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 403 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
404 | #define STATS_SET_HIGH(x) do { } while (0) |
405 | #define STATS_INC_ERR(x) do { } while (0) | |
406 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 407 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 408 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 409 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
410 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
411 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
412 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
413 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
414 | #endif | |
415 | ||
416 | #if DEBUG | |
1da177e4 | 417 | |
a737b3e2 AM |
418 | /* |
419 | * memory layout of objects: | |
1da177e4 | 420 | * 0 : objp |
3dafccf2 | 421 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
422 | * the end of an object is aligned with the end of the real |
423 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 424 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 425 | * redzone word. |
3dafccf2 MS |
426 | * cachep->obj_offset: The real object. |
427 | * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | |
a737b3e2 AM |
428 | * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address |
429 | * [BYTES_PER_WORD long] | |
1da177e4 | 430 | */ |
343e0d7a | 431 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 432 | { |
3dafccf2 | 433 | return cachep->obj_offset; |
1da177e4 LT |
434 | } |
435 | ||
343e0d7a | 436 | static int obj_size(struct kmem_cache *cachep) |
1da177e4 | 437 | { |
3dafccf2 | 438 | return cachep->obj_size; |
1da177e4 LT |
439 | } |
440 | ||
b46b8f19 | 441 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
442 | { |
443 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
444 | return (unsigned long long*) (objp + obj_offset(cachep) - |
445 | sizeof(unsigned long long)); | |
1da177e4 LT |
446 | } |
447 | ||
b46b8f19 | 448 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
449 | { |
450 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
451 | if (cachep->flags & SLAB_STORE_USER) | |
b46b8f19 DW |
452 | return (unsigned long long *)(objp + cachep->buffer_size - |
453 | sizeof(unsigned long long) - | |
87a927c7 | 454 | REDZONE_ALIGN); |
b46b8f19 DW |
455 | return (unsigned long long *) (objp + cachep->buffer_size - |
456 | sizeof(unsigned long long)); | |
1da177e4 LT |
457 | } |
458 | ||
343e0d7a | 459 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
460 | { |
461 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3dafccf2 | 462 | return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); |
1da177e4 LT |
463 | } |
464 | ||
465 | #else | |
466 | ||
3dafccf2 MS |
467 | #define obj_offset(x) 0 |
468 | #define obj_size(cachep) (cachep->buffer_size) | |
b46b8f19 DW |
469 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
470 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
471 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
472 | ||
473 | #endif | |
474 | ||
0f24f128 | 475 | #ifdef CONFIG_TRACING |
36555751 EGM |
476 | size_t slab_buffer_size(struct kmem_cache *cachep) |
477 | { | |
478 | return cachep->buffer_size; | |
479 | } | |
480 | EXPORT_SYMBOL(slab_buffer_size); | |
481 | #endif | |
482 | ||
1da177e4 | 483 | /* |
3df1cccd DR |
484 | * Do not go above this order unless 0 objects fit into the slab or |
485 | * overridden on the command line. | |
1da177e4 | 486 | */ |
543585cc DR |
487 | #define SLAB_MAX_ORDER_HI 1 |
488 | #define SLAB_MAX_ORDER_LO 0 | |
489 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 490 | static bool slab_max_order_set __initdata; |
1da177e4 | 491 | |
a737b3e2 AM |
492 | /* |
493 | * Functions for storing/retrieving the cachep and or slab from the page | |
494 | * allocator. These are used to find the slab an obj belongs to. With kfree(), | |
495 | * these are used to find the cache which an obj belongs to. | |
1da177e4 | 496 | */ |
065d41cb PE |
497 | static inline void page_set_cache(struct page *page, struct kmem_cache *cache) |
498 | { | |
499 | page->lru.next = (struct list_head *)cache; | |
500 | } | |
501 | ||
502 | static inline struct kmem_cache *page_get_cache(struct page *page) | |
503 | { | |
d85f3385 | 504 | page = compound_head(page); |
ddc2e812 | 505 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
506 | return (struct kmem_cache *)page->lru.next; |
507 | } | |
508 | ||
509 | static inline void page_set_slab(struct page *page, struct slab *slab) | |
510 | { | |
511 | page->lru.prev = (struct list_head *)slab; | |
512 | } | |
513 | ||
514 | static inline struct slab *page_get_slab(struct page *page) | |
515 | { | |
ddc2e812 | 516 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
517 | return (struct slab *)page->lru.prev; |
518 | } | |
1da177e4 | 519 | |
6ed5eb22 PE |
520 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
521 | { | |
b49af68f | 522 | struct page *page = virt_to_head_page(obj); |
6ed5eb22 PE |
523 | return page_get_cache(page); |
524 | } | |
525 | ||
526 | static inline struct slab *virt_to_slab(const void *obj) | |
527 | { | |
b49af68f | 528 | struct page *page = virt_to_head_page(obj); |
6ed5eb22 PE |
529 | return page_get_slab(page); |
530 | } | |
531 | ||
8fea4e96 PE |
532 | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, |
533 | unsigned int idx) | |
534 | { | |
535 | return slab->s_mem + cache->buffer_size * idx; | |
536 | } | |
537 | ||
6a2d7a95 ED |
538 | /* |
539 | * We want to avoid an expensive divide : (offset / cache->buffer_size) | |
540 | * Using the fact that buffer_size is a constant for a particular cache, | |
541 | * we can replace (offset / cache->buffer_size) by | |
542 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) | |
543 | */ | |
544 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
545 | const struct slab *slab, void *obj) | |
8fea4e96 | 546 | { |
6a2d7a95 ED |
547 | u32 offset = (obj - slab->s_mem); |
548 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | |
8fea4e96 PE |
549 | } |
550 | ||
a737b3e2 AM |
551 | /* |
552 | * These are the default caches for kmalloc. Custom caches can have other sizes. | |
553 | */ | |
1da177e4 LT |
554 | struct cache_sizes malloc_sizes[] = { |
555 | #define CACHE(x) { .cs_size = (x) }, | |
556 | #include <linux/kmalloc_sizes.h> | |
557 | CACHE(ULONG_MAX) | |
558 | #undef CACHE | |
559 | }; | |
560 | EXPORT_SYMBOL(malloc_sizes); | |
561 | ||
562 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
563 | struct cache_names { | |
564 | char *name; | |
565 | char *name_dma; | |
566 | }; | |
567 | ||
568 | static struct cache_names __initdata cache_names[] = { | |
569 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
570 | #include <linux/kmalloc_sizes.h> | |
b28a02de | 571 | {NULL,} |
1da177e4 LT |
572 | #undef CACHE |
573 | }; | |
574 | ||
575 | static struct arraycache_init initarray_cache __initdata = | |
b28a02de | 576 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 | 577 | static struct arraycache_init initarray_generic = |
b28a02de | 578 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
579 | |
580 | /* internal cache of cache description objs */ | |
b56efcf0 | 581 | static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; |
343e0d7a | 582 | static struct kmem_cache cache_cache = { |
b56efcf0 | 583 | .nodelists = cache_cache_nodelists, |
b28a02de PE |
584 | .batchcount = 1, |
585 | .limit = BOOT_CPUCACHE_ENTRIES, | |
586 | .shared = 1, | |
343e0d7a | 587 | .buffer_size = sizeof(struct kmem_cache), |
b28a02de | 588 | .name = "kmem_cache", |
1da177e4 LT |
589 | }; |
590 | ||
056c6241 RT |
591 | #define BAD_ALIEN_MAGIC 0x01020304ul |
592 | ||
ce79ddc8 PE |
593 | /* |
594 | * chicken and egg problem: delay the per-cpu array allocation | |
595 | * until the general caches are up. | |
596 | */ | |
597 | static enum { | |
598 | NONE, | |
599 | PARTIAL_AC, | |
600 | PARTIAL_L3, | |
601 | EARLY, | |
52cef189 | 602 | LATE, |
ce79ddc8 PE |
603 | FULL |
604 | } g_cpucache_up; | |
605 | ||
606 | /* | |
607 | * used by boot code to determine if it can use slab based allocator | |
608 | */ | |
609 | int slab_is_available(void) | |
610 | { | |
611 | return g_cpucache_up >= EARLY; | |
612 | } | |
613 | ||
f1aaee53 AV |
614 | #ifdef CONFIG_LOCKDEP |
615 | ||
616 | /* | |
617 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
618 | * for other slabs "off slab". | |
619 | * The locking for this is tricky in that it nests within the locks | |
620 | * of all other slabs in a few places; to deal with this special | |
621 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
622 | * |
623 | * We set lock class for alien array caches which are up during init. | |
624 | * The lock annotation will be lost if all cpus of a node goes down and | |
625 | * then comes back up during hotplug | |
f1aaee53 | 626 | */ |
056c6241 RT |
627 | static struct lock_class_key on_slab_l3_key; |
628 | static struct lock_class_key on_slab_alc_key; | |
629 | ||
83835b3d PZ |
630 | static struct lock_class_key debugobj_l3_key; |
631 | static struct lock_class_key debugobj_alc_key; | |
632 | ||
633 | static void slab_set_lock_classes(struct kmem_cache *cachep, | |
634 | struct lock_class_key *l3_key, struct lock_class_key *alc_key, | |
635 | int q) | |
636 | { | |
637 | struct array_cache **alc; | |
638 | struct kmem_list3 *l3; | |
639 | int r; | |
640 | ||
641 | l3 = cachep->nodelists[q]; | |
642 | if (!l3) | |
643 | return; | |
644 | ||
645 | lockdep_set_class(&l3->list_lock, l3_key); | |
646 | alc = l3->alien; | |
647 | /* | |
648 | * FIXME: This check for BAD_ALIEN_MAGIC | |
649 | * should go away when common slab code is taught to | |
650 | * work even without alien caches. | |
651 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
652 | * for alloc_alien_cache, | |
653 | */ | |
654 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
655 | return; | |
656 | for_each_node(r) { | |
657 | if (alc[r]) | |
658 | lockdep_set_class(&alc[r]->lock, alc_key); | |
659 | } | |
660 | } | |
661 | ||
662 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
663 | { | |
664 | slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); | |
665 | } | |
666 | ||
667 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
668 | { | |
669 | int node; | |
670 | ||
671 | for_each_online_node(node) | |
672 | slab_set_debugobj_lock_classes_node(cachep, node); | |
673 | } | |
674 | ||
ce79ddc8 | 675 | static void init_node_lock_keys(int q) |
f1aaee53 | 676 | { |
056c6241 RT |
677 | struct cache_sizes *s = malloc_sizes; |
678 | ||
52cef189 | 679 | if (g_cpucache_up < LATE) |
ce79ddc8 PE |
680 | return; |
681 | ||
682 | for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { | |
ce79ddc8 | 683 | struct kmem_list3 *l3; |
ce79ddc8 PE |
684 | |
685 | l3 = s->cs_cachep->nodelists[q]; | |
686 | if (!l3 || OFF_SLAB(s->cs_cachep)) | |
00afa758 | 687 | continue; |
83835b3d PZ |
688 | |
689 | slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, | |
690 | &on_slab_alc_key, q); | |
f1aaee53 AV |
691 | } |
692 | } | |
ce79ddc8 PE |
693 | |
694 | static inline void init_lock_keys(void) | |
695 | { | |
696 | int node; | |
697 | ||
698 | for_each_node(node) | |
699 | init_node_lock_keys(node); | |
700 | } | |
f1aaee53 | 701 | #else |
ce79ddc8 PE |
702 | static void init_node_lock_keys(int q) |
703 | { | |
704 | } | |
705 | ||
056c6241 | 706 | static inline void init_lock_keys(void) |
f1aaee53 AV |
707 | { |
708 | } | |
83835b3d PZ |
709 | |
710 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
711 | { | |
712 | } | |
713 | ||
714 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
715 | { | |
716 | } | |
f1aaee53 AV |
717 | #endif |
718 | ||
8f5be20b | 719 | /* |
95402b38 | 720 | * Guard access to the cache-chain. |
8f5be20b | 721 | */ |
fc0abb14 | 722 | static DEFINE_MUTEX(cache_chain_mutex); |
1da177e4 LT |
723 | static struct list_head cache_chain; |
724 | ||
1871e52c | 725 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 726 | |
343e0d7a | 727 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
728 | { |
729 | return cachep->array[smp_processor_id()]; | |
730 | } | |
731 | ||
a737b3e2 AM |
732 | static inline struct kmem_cache *__find_general_cachep(size_t size, |
733 | gfp_t gfpflags) | |
1da177e4 LT |
734 | { |
735 | struct cache_sizes *csizep = malloc_sizes; | |
736 | ||
737 | #if DEBUG | |
738 | /* This happens if someone tries to call | |
b28a02de PE |
739 | * kmem_cache_create(), or __kmalloc(), before |
740 | * the generic caches are initialized. | |
741 | */ | |
c7e43c78 | 742 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 | 743 | #endif |
6cb8f913 CL |
744 | if (!size) |
745 | return ZERO_SIZE_PTR; | |
746 | ||
1da177e4 LT |
747 | while (size > csizep->cs_size) |
748 | csizep++; | |
749 | ||
750 | /* | |
0abf40c1 | 751 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
752 | * has cs_{dma,}cachep==NULL. Thus no special case |
753 | * for large kmalloc calls required. | |
754 | */ | |
4b51d669 | 755 | #ifdef CONFIG_ZONE_DMA |
1da177e4 LT |
756 | if (unlikely(gfpflags & GFP_DMA)) |
757 | return csizep->cs_dmacachep; | |
4b51d669 | 758 | #endif |
1da177e4 LT |
759 | return csizep->cs_cachep; |
760 | } | |
761 | ||
b221385b | 762 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
763 | { |
764 | return __find_general_cachep(size, gfpflags); | |
765 | } | |
97e2bde4 | 766 | |
fbaccacf | 767 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
1da177e4 | 768 | { |
fbaccacf SR |
769 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
770 | } | |
1da177e4 | 771 | |
a737b3e2 AM |
772 | /* |
773 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
774 | */ | |
fbaccacf SR |
775 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
776 | size_t align, int flags, size_t *left_over, | |
777 | unsigned int *num) | |
778 | { | |
779 | int nr_objs; | |
780 | size_t mgmt_size; | |
781 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 782 | |
fbaccacf SR |
783 | /* |
784 | * The slab management structure can be either off the slab or | |
785 | * on it. For the latter case, the memory allocated for a | |
786 | * slab is used for: | |
787 | * | |
788 | * - The struct slab | |
789 | * - One kmem_bufctl_t for each object | |
790 | * - Padding to respect alignment of @align | |
791 | * - @buffer_size bytes for each object | |
792 | * | |
793 | * If the slab management structure is off the slab, then the | |
794 | * alignment will already be calculated into the size. Because | |
795 | * the slabs are all pages aligned, the objects will be at the | |
796 | * correct alignment when allocated. | |
797 | */ | |
798 | if (flags & CFLGS_OFF_SLAB) { | |
799 | mgmt_size = 0; | |
800 | nr_objs = slab_size / buffer_size; | |
801 | ||
802 | if (nr_objs > SLAB_LIMIT) | |
803 | nr_objs = SLAB_LIMIT; | |
804 | } else { | |
805 | /* | |
806 | * Ignore padding for the initial guess. The padding | |
807 | * is at most @align-1 bytes, and @buffer_size is at | |
808 | * least @align. In the worst case, this result will | |
809 | * be one greater than the number of objects that fit | |
810 | * into the memory allocation when taking the padding | |
811 | * into account. | |
812 | */ | |
813 | nr_objs = (slab_size - sizeof(struct slab)) / | |
814 | (buffer_size + sizeof(kmem_bufctl_t)); | |
815 | ||
816 | /* | |
817 | * This calculated number will be either the right | |
818 | * amount, or one greater than what we want. | |
819 | */ | |
820 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | |
821 | > slab_size) | |
822 | nr_objs--; | |
823 | ||
824 | if (nr_objs > SLAB_LIMIT) | |
825 | nr_objs = SLAB_LIMIT; | |
826 | ||
827 | mgmt_size = slab_mgmt_size(nr_objs, align); | |
828 | } | |
829 | *num = nr_objs; | |
830 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
831 | } |
832 | ||
d40cee24 | 833 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 834 | |
a737b3e2 AM |
835 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
836 | char *msg) | |
1da177e4 LT |
837 | { |
838 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 839 | function, cachep->name, msg); |
1da177e4 LT |
840 | dump_stack(); |
841 | } | |
842 | ||
3395ee05 PM |
843 | /* |
844 | * By default on NUMA we use alien caches to stage the freeing of | |
845 | * objects allocated from other nodes. This causes massive memory | |
846 | * inefficiencies when using fake NUMA setup to split memory into a | |
847 | * large number of small nodes, so it can be disabled on the command | |
848 | * line | |
849 | */ | |
850 | ||
851 | static int use_alien_caches __read_mostly = 1; | |
852 | static int __init noaliencache_setup(char *s) | |
853 | { | |
854 | use_alien_caches = 0; | |
855 | return 1; | |
856 | } | |
857 | __setup("noaliencache", noaliencache_setup); | |
858 | ||
3df1cccd DR |
859 | static int __init slab_max_order_setup(char *str) |
860 | { | |
861 | get_option(&str, &slab_max_order); | |
862 | slab_max_order = slab_max_order < 0 ? 0 : | |
863 | min(slab_max_order, MAX_ORDER - 1); | |
864 | slab_max_order_set = true; | |
865 | ||
866 | return 1; | |
867 | } | |
868 | __setup("slab_max_order=", slab_max_order_setup); | |
869 | ||
8fce4d8e CL |
870 | #ifdef CONFIG_NUMA |
871 | /* | |
872 | * Special reaping functions for NUMA systems called from cache_reap(). | |
873 | * These take care of doing round robin flushing of alien caches (containing | |
874 | * objects freed on different nodes from which they were allocated) and the | |
875 | * flushing of remote pcps by calling drain_node_pages. | |
876 | */ | |
1871e52c | 877 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
878 | |
879 | static void init_reap_node(int cpu) | |
880 | { | |
881 | int node; | |
882 | ||
7d6e6d09 | 883 | node = next_node(cpu_to_mem(cpu), node_online_map); |
8fce4d8e | 884 | if (node == MAX_NUMNODES) |
442295c9 | 885 | node = first_node(node_online_map); |
8fce4d8e | 886 | |
1871e52c | 887 | per_cpu(slab_reap_node, cpu) = node; |
8fce4d8e CL |
888 | } |
889 | ||
890 | static void next_reap_node(void) | |
891 | { | |
909ea964 | 892 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 893 | |
8fce4d8e CL |
894 | node = next_node(node, node_online_map); |
895 | if (unlikely(node >= MAX_NUMNODES)) | |
896 | node = first_node(node_online_map); | |
909ea964 | 897 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
898 | } |
899 | ||
900 | #else | |
901 | #define init_reap_node(cpu) do { } while (0) | |
902 | #define next_reap_node(void) do { } while (0) | |
903 | #endif | |
904 | ||
1da177e4 LT |
905 | /* |
906 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
907 | * via the workqueue/eventd. | |
908 | * Add the CPU number into the expiration time to minimize the possibility of | |
909 | * the CPUs getting into lockstep and contending for the global cache chain | |
910 | * lock. | |
911 | */ | |
897e679b | 912 | static void __cpuinit start_cpu_timer(int cpu) |
1da177e4 | 913 | { |
1871e52c | 914 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
915 | |
916 | /* | |
917 | * When this gets called from do_initcalls via cpucache_init(), | |
918 | * init_workqueues() has already run, so keventd will be setup | |
919 | * at that time. | |
920 | */ | |
52bad64d | 921 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 922 | init_reap_node(cpu); |
78b43536 | 923 | INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); |
2b284214 AV |
924 | schedule_delayed_work_on(cpu, reap_work, |
925 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
926 | } |
927 | } | |
928 | ||
e498be7d | 929 | static struct array_cache *alloc_arraycache(int node, int entries, |
83b519e8 | 930 | int batchcount, gfp_t gfp) |
1da177e4 | 931 | { |
b28a02de | 932 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
933 | struct array_cache *nc = NULL; |
934 | ||
83b519e8 | 935 | nc = kmalloc_node(memsize, gfp, node); |
d5cff635 CM |
936 | /* |
937 | * The array_cache structures contain pointers to free object. | |
25985edc | 938 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
939 | * cache the pointers are not cleared and they could be counted as |
940 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
941 | * not scan such objects. | |
942 | */ | |
943 | kmemleak_no_scan(nc); | |
1da177e4 LT |
944 | if (nc) { |
945 | nc->avail = 0; | |
946 | nc->limit = entries; | |
947 | nc->batchcount = batchcount; | |
948 | nc->touched = 0; | |
e498be7d | 949 | spin_lock_init(&nc->lock); |
1da177e4 LT |
950 | } |
951 | return nc; | |
952 | } | |
953 | ||
3ded175a CL |
954 | /* |
955 | * Transfer objects in one arraycache to another. | |
956 | * Locking must be handled by the caller. | |
957 | * | |
958 | * Return the number of entries transferred. | |
959 | */ | |
960 | static int transfer_objects(struct array_cache *to, | |
961 | struct array_cache *from, unsigned int max) | |
962 | { | |
963 | /* Figure out how many entries to transfer */ | |
732eacc0 | 964 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
965 | |
966 | if (!nr) | |
967 | return 0; | |
968 | ||
969 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
970 | sizeof(void *) *nr); | |
971 | ||
972 | from->avail -= nr; | |
973 | to->avail += nr; | |
3ded175a CL |
974 | return nr; |
975 | } | |
976 | ||
765c4507 CL |
977 | #ifndef CONFIG_NUMA |
978 | ||
979 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
980 | #define reap_alien(cachep, l3) do { } while (0) | |
981 | ||
83b519e8 | 982 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
765c4507 CL |
983 | { |
984 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
985 | } | |
986 | ||
987 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
988 | { | |
989 | } | |
990 | ||
991 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
992 | { | |
993 | return 0; | |
994 | } | |
995 | ||
996 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
997 | gfp_t flags) | |
998 | { | |
999 | return NULL; | |
1000 | } | |
1001 | ||
8b98c169 | 1002 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
1003 | gfp_t flags, int nodeid) |
1004 | { | |
1005 | return NULL; | |
1006 | } | |
1007 | ||
1008 | #else /* CONFIG_NUMA */ | |
1009 | ||
8b98c169 | 1010 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 1011 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 1012 | |
83b519e8 | 1013 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
e498be7d CL |
1014 | { |
1015 | struct array_cache **ac_ptr; | |
8ef82866 | 1016 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
1017 | int i; |
1018 | ||
1019 | if (limit > 1) | |
1020 | limit = 12; | |
f3186a9c | 1021 | ac_ptr = kzalloc_node(memsize, gfp, node); |
e498be7d CL |
1022 | if (ac_ptr) { |
1023 | for_each_node(i) { | |
f3186a9c | 1024 | if (i == node || !node_online(i)) |
e498be7d | 1025 | continue; |
83b519e8 | 1026 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); |
e498be7d | 1027 | if (!ac_ptr[i]) { |
cc550def | 1028 | for (i--; i >= 0; i--) |
e498be7d CL |
1029 | kfree(ac_ptr[i]); |
1030 | kfree(ac_ptr); | |
1031 | return NULL; | |
1032 | } | |
1033 | } | |
1034 | } | |
1035 | return ac_ptr; | |
1036 | } | |
1037 | ||
5295a74c | 1038 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
1039 | { |
1040 | int i; | |
1041 | ||
1042 | if (!ac_ptr) | |
1043 | return; | |
e498be7d | 1044 | for_each_node(i) |
b28a02de | 1045 | kfree(ac_ptr[i]); |
e498be7d CL |
1046 | kfree(ac_ptr); |
1047 | } | |
1048 | ||
343e0d7a | 1049 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 1050 | struct array_cache *ac, int node) |
e498be7d CL |
1051 | { |
1052 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
1053 | ||
1054 | if (ac->avail) { | |
1055 | spin_lock(&rl3->list_lock); | |
e00946fe CL |
1056 | /* |
1057 | * Stuff objects into the remote nodes shared array first. | |
1058 | * That way we could avoid the overhead of putting the objects | |
1059 | * into the free lists and getting them back later. | |
1060 | */ | |
693f7d36 JS |
1061 | if (rl3->shared) |
1062 | transfer_objects(rl3->shared, ac, ac->limit); | |
e00946fe | 1063 | |
ff69416e | 1064 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
1065 | ac->avail = 0; |
1066 | spin_unlock(&rl3->list_lock); | |
1067 | } | |
1068 | } | |
1069 | ||
8fce4d8e CL |
1070 | /* |
1071 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1072 | */ | |
1073 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | |
1074 | { | |
909ea964 | 1075 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e CL |
1076 | |
1077 | if (l3->alien) { | |
1078 | struct array_cache *ac = l3->alien[node]; | |
e00946fe CL |
1079 | |
1080 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1081 | __drain_alien_cache(cachep, ac, node); |
1082 | spin_unlock_irq(&ac->lock); | |
1083 | } | |
1084 | } | |
1085 | } | |
1086 | ||
a737b3e2 AM |
1087 | static void drain_alien_cache(struct kmem_cache *cachep, |
1088 | struct array_cache **alien) | |
e498be7d | 1089 | { |
b28a02de | 1090 | int i = 0; |
e498be7d CL |
1091 | struct array_cache *ac; |
1092 | unsigned long flags; | |
1093 | ||
1094 | for_each_online_node(i) { | |
4484ebf1 | 1095 | ac = alien[i]; |
e498be7d CL |
1096 | if (ac) { |
1097 | spin_lock_irqsave(&ac->lock, flags); | |
1098 | __drain_alien_cache(cachep, ac, i); | |
1099 | spin_unlock_irqrestore(&ac->lock, flags); | |
1100 | } | |
1101 | } | |
1102 | } | |
729bd0b7 | 1103 | |
873623df | 1104 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 PE |
1105 | { |
1106 | struct slab *slabp = virt_to_slab(objp); | |
1107 | int nodeid = slabp->nodeid; | |
1108 | struct kmem_list3 *l3; | |
1109 | struct array_cache *alien = NULL; | |
1ca4cb24 PE |
1110 | int node; |
1111 | ||
7d6e6d09 | 1112 | node = numa_mem_id(); |
729bd0b7 PE |
1113 | |
1114 | /* | |
1115 | * Make sure we are not freeing a object from another node to the array | |
1116 | * cache on this cpu. | |
1117 | */ | |
62918a03 | 1118 | if (likely(slabp->nodeid == node)) |
729bd0b7 PE |
1119 | return 0; |
1120 | ||
1ca4cb24 | 1121 | l3 = cachep->nodelists[node]; |
729bd0b7 PE |
1122 | STATS_INC_NODEFREES(cachep); |
1123 | if (l3->alien && l3->alien[nodeid]) { | |
1124 | alien = l3->alien[nodeid]; | |
873623df | 1125 | spin_lock(&alien->lock); |
729bd0b7 PE |
1126 | if (unlikely(alien->avail == alien->limit)) { |
1127 | STATS_INC_ACOVERFLOW(cachep); | |
1128 | __drain_alien_cache(cachep, alien, nodeid); | |
1129 | } | |
1130 | alien->entry[alien->avail++] = objp; | |
1131 | spin_unlock(&alien->lock); | |
1132 | } else { | |
1133 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | |
1134 | free_block(cachep, &objp, 1, nodeid); | |
1135 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | |
1136 | } | |
1137 | return 1; | |
1138 | } | |
e498be7d CL |
1139 | #endif |
1140 | ||
8f9f8d9e DR |
1141 | /* |
1142 | * Allocates and initializes nodelists for a node on each slab cache, used for | |
1143 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | |
1144 | * will be allocated off-node since memory is not yet online for the new node. | |
1145 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | |
1146 | * already in use. | |
1147 | * | |
1148 | * Must hold cache_chain_mutex. | |
1149 | */ | |
1150 | static int init_cache_nodelists_node(int node) | |
1151 | { | |
1152 | struct kmem_cache *cachep; | |
1153 | struct kmem_list3 *l3; | |
1154 | const int memsize = sizeof(struct kmem_list3); | |
1155 | ||
1156 | list_for_each_entry(cachep, &cache_chain, next) { | |
1157 | /* | |
1158 | * Set up the size64 kmemlist for cpu before we can | |
1159 | * begin anything. Make sure some other cpu on this | |
1160 | * node has not already allocated this | |
1161 | */ | |
1162 | if (!cachep->nodelists[node]) { | |
1163 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | |
1164 | if (!l3) | |
1165 | return -ENOMEM; | |
1166 | kmem_list3_init(l3); | |
1167 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
1168 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1169 | ||
1170 | /* | |
1171 | * The l3s don't come and go as CPUs come and | |
1172 | * go. cache_chain_mutex is sufficient | |
1173 | * protection here. | |
1174 | */ | |
1175 | cachep->nodelists[node] = l3; | |
1176 | } | |
1177 | ||
1178 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | |
1179 | cachep->nodelists[node]->free_limit = | |
1180 | (1 + nr_cpus_node(node)) * | |
1181 | cachep->batchcount + cachep->num; | |
1182 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
1183 | } | |
1184 | return 0; | |
1185 | } | |
1186 | ||
fbf1e473 AM |
1187 | static void __cpuinit cpuup_canceled(long cpu) |
1188 | { | |
1189 | struct kmem_cache *cachep; | |
1190 | struct kmem_list3 *l3 = NULL; | |
7d6e6d09 | 1191 | int node = cpu_to_mem(cpu); |
a70f7302 | 1192 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 AM |
1193 | |
1194 | list_for_each_entry(cachep, &cache_chain, next) { | |
1195 | struct array_cache *nc; | |
1196 | struct array_cache *shared; | |
1197 | struct array_cache **alien; | |
fbf1e473 | 1198 | |
fbf1e473 AM |
1199 | /* cpu is dead; no one can alloc from it. */ |
1200 | nc = cachep->array[cpu]; | |
1201 | cachep->array[cpu] = NULL; | |
1202 | l3 = cachep->nodelists[node]; | |
1203 | ||
1204 | if (!l3) | |
1205 | goto free_array_cache; | |
1206 | ||
1207 | spin_lock_irq(&l3->list_lock); | |
1208 | ||
1209 | /* Free limit for this kmem_list3 */ | |
1210 | l3->free_limit -= cachep->batchcount; | |
1211 | if (nc) | |
1212 | free_block(cachep, nc->entry, nc->avail, node); | |
1213 | ||
58463c1f | 1214 | if (!cpumask_empty(mask)) { |
fbf1e473 AM |
1215 | spin_unlock_irq(&l3->list_lock); |
1216 | goto free_array_cache; | |
1217 | } | |
1218 | ||
1219 | shared = l3->shared; | |
1220 | if (shared) { | |
1221 | free_block(cachep, shared->entry, | |
1222 | shared->avail, node); | |
1223 | l3->shared = NULL; | |
1224 | } | |
1225 | ||
1226 | alien = l3->alien; | |
1227 | l3->alien = NULL; | |
1228 | ||
1229 | spin_unlock_irq(&l3->list_lock); | |
1230 | ||
1231 | kfree(shared); | |
1232 | if (alien) { | |
1233 | drain_alien_cache(cachep, alien); | |
1234 | free_alien_cache(alien); | |
1235 | } | |
1236 | free_array_cache: | |
1237 | kfree(nc); | |
1238 | } | |
1239 | /* | |
1240 | * In the previous loop, all the objects were freed to | |
1241 | * the respective cache's slabs, now we can go ahead and | |
1242 | * shrink each nodelist to its limit. | |
1243 | */ | |
1244 | list_for_each_entry(cachep, &cache_chain, next) { | |
1245 | l3 = cachep->nodelists[node]; | |
1246 | if (!l3) | |
1247 | continue; | |
1248 | drain_freelist(cachep, l3, l3->free_objects); | |
1249 | } | |
1250 | } | |
1251 | ||
1252 | static int __cpuinit cpuup_prepare(long cpu) | |
1da177e4 | 1253 | { |
343e0d7a | 1254 | struct kmem_cache *cachep; |
e498be7d | 1255 | struct kmem_list3 *l3 = NULL; |
7d6e6d09 | 1256 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1257 | int err; |
1da177e4 | 1258 | |
fbf1e473 AM |
1259 | /* |
1260 | * We need to do this right in the beginning since | |
1261 | * alloc_arraycache's are going to use this list. | |
1262 | * kmalloc_node allows us to add the slab to the right | |
1263 | * kmem_list3 and not this cpu's kmem_list3 | |
1264 | */ | |
8f9f8d9e DR |
1265 | err = init_cache_nodelists_node(node); |
1266 | if (err < 0) | |
1267 | goto bad; | |
fbf1e473 AM |
1268 | |
1269 | /* | |
1270 | * Now we can go ahead with allocating the shared arrays and | |
1271 | * array caches | |
1272 | */ | |
1273 | list_for_each_entry(cachep, &cache_chain, next) { | |
1274 | struct array_cache *nc; | |
1275 | struct array_cache *shared = NULL; | |
1276 | struct array_cache **alien = NULL; | |
1277 | ||
1278 | nc = alloc_arraycache(node, cachep->limit, | |
83b519e8 | 1279 | cachep->batchcount, GFP_KERNEL); |
fbf1e473 AM |
1280 | if (!nc) |
1281 | goto bad; | |
1282 | if (cachep->shared) { | |
1283 | shared = alloc_arraycache(node, | |
1284 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1285 | 0xbaadf00d, GFP_KERNEL); |
12d00f6a AM |
1286 | if (!shared) { |
1287 | kfree(nc); | |
1da177e4 | 1288 | goto bad; |
12d00f6a | 1289 | } |
fbf1e473 AM |
1290 | } |
1291 | if (use_alien_caches) { | |
83b519e8 | 1292 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1293 | if (!alien) { |
1294 | kfree(shared); | |
1295 | kfree(nc); | |
fbf1e473 | 1296 | goto bad; |
12d00f6a | 1297 | } |
fbf1e473 AM |
1298 | } |
1299 | cachep->array[cpu] = nc; | |
1300 | l3 = cachep->nodelists[node]; | |
1301 | BUG_ON(!l3); | |
1302 | ||
1303 | spin_lock_irq(&l3->list_lock); | |
1304 | if (!l3->shared) { | |
1305 | /* | |
1306 | * We are serialised from CPU_DEAD or | |
1307 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1308 | */ | |
1309 | l3->shared = shared; | |
1310 | shared = NULL; | |
1311 | } | |
4484ebf1 | 1312 | #ifdef CONFIG_NUMA |
fbf1e473 AM |
1313 | if (!l3->alien) { |
1314 | l3->alien = alien; | |
1315 | alien = NULL; | |
1da177e4 | 1316 | } |
fbf1e473 AM |
1317 | #endif |
1318 | spin_unlock_irq(&l3->list_lock); | |
1319 | kfree(shared); | |
1320 | free_alien_cache(alien); | |
83835b3d PZ |
1321 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
1322 | slab_set_debugobj_lock_classes_node(cachep, node); | |
fbf1e473 | 1323 | } |
ce79ddc8 PE |
1324 | init_node_lock_keys(node); |
1325 | ||
fbf1e473 AM |
1326 | return 0; |
1327 | bad: | |
12d00f6a | 1328 | cpuup_canceled(cpu); |
fbf1e473 AM |
1329 | return -ENOMEM; |
1330 | } | |
1331 | ||
1332 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |
1333 | unsigned long action, void *hcpu) | |
1334 | { | |
1335 | long cpu = (long)hcpu; | |
1336 | int err = 0; | |
1337 | ||
1338 | switch (action) { | |
fbf1e473 AM |
1339 | case CPU_UP_PREPARE: |
1340 | case CPU_UP_PREPARE_FROZEN: | |
95402b38 | 1341 | mutex_lock(&cache_chain_mutex); |
fbf1e473 | 1342 | err = cpuup_prepare(cpu); |
95402b38 | 1343 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
1344 | break; |
1345 | case CPU_ONLINE: | |
8bb78442 | 1346 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1347 | start_cpu_timer(cpu); |
1348 | break; | |
1349 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1350 | case CPU_DOWN_PREPARE: |
8bb78442 | 1351 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 CL |
1352 | /* |
1353 | * Shutdown cache reaper. Note that the cache_chain_mutex is | |
1354 | * held so that if cache_reap() is invoked it cannot do | |
1355 | * anything expensive but will only modify reap_work | |
1356 | * and reschedule the timer. | |
1357 | */ | |
afe2c511 | 1358 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1359 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1360 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1361 | break; |
1362 | case CPU_DOWN_FAILED: | |
8bb78442 | 1363 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1364 | start_cpu_timer(cpu); |
1365 | break; | |
1da177e4 | 1366 | case CPU_DEAD: |
8bb78442 | 1367 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1368 | /* |
1369 | * Even if all the cpus of a node are down, we don't free the | |
1370 | * kmem_list3 of any cache. This to avoid a race between | |
1371 | * cpu_down, and a kmalloc allocation from another cpu for | |
1372 | * memory from the node of the cpu going down. The list3 | |
1373 | * structure is usually allocated from kmem_cache_create() and | |
1374 | * gets destroyed at kmem_cache_destroy(). | |
1375 | */ | |
183ff22b | 1376 | /* fall through */ |
8f5be20b | 1377 | #endif |
1da177e4 | 1378 | case CPU_UP_CANCELED: |
8bb78442 | 1379 | case CPU_UP_CANCELED_FROZEN: |
95402b38 | 1380 | mutex_lock(&cache_chain_mutex); |
fbf1e473 | 1381 | cpuup_canceled(cpu); |
fc0abb14 | 1382 | mutex_unlock(&cache_chain_mutex); |
1da177e4 | 1383 | break; |
1da177e4 | 1384 | } |
eac40680 | 1385 | return notifier_from_errno(err); |
1da177e4 LT |
1386 | } |
1387 | ||
74b85f37 CS |
1388 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1389 | &cpuup_callback, NULL, 0 | |
1390 | }; | |
1da177e4 | 1391 | |
8f9f8d9e DR |
1392 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1393 | /* | |
1394 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1395 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1396 | * removed. | |
1397 | * | |
1398 | * Must hold cache_chain_mutex. | |
1399 | */ | |
1400 | static int __meminit drain_cache_nodelists_node(int node) | |
1401 | { | |
1402 | struct kmem_cache *cachep; | |
1403 | int ret = 0; | |
1404 | ||
1405 | list_for_each_entry(cachep, &cache_chain, next) { | |
1406 | struct kmem_list3 *l3; | |
1407 | ||
1408 | l3 = cachep->nodelists[node]; | |
1409 | if (!l3) | |
1410 | continue; | |
1411 | ||
1412 | drain_freelist(cachep, l3, l3->free_objects); | |
1413 | ||
1414 | if (!list_empty(&l3->slabs_full) || | |
1415 | !list_empty(&l3->slabs_partial)) { | |
1416 | ret = -EBUSY; | |
1417 | break; | |
1418 | } | |
1419 | } | |
1420 | return ret; | |
1421 | } | |
1422 | ||
1423 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1424 | unsigned long action, void *arg) | |
1425 | { | |
1426 | struct memory_notify *mnb = arg; | |
1427 | int ret = 0; | |
1428 | int nid; | |
1429 | ||
1430 | nid = mnb->status_change_nid; | |
1431 | if (nid < 0) | |
1432 | goto out; | |
1433 | ||
1434 | switch (action) { | |
1435 | case MEM_GOING_ONLINE: | |
1436 | mutex_lock(&cache_chain_mutex); | |
1437 | ret = init_cache_nodelists_node(nid); | |
1438 | mutex_unlock(&cache_chain_mutex); | |
1439 | break; | |
1440 | case MEM_GOING_OFFLINE: | |
1441 | mutex_lock(&cache_chain_mutex); | |
1442 | ret = drain_cache_nodelists_node(nid); | |
1443 | mutex_unlock(&cache_chain_mutex); | |
1444 | break; | |
1445 | case MEM_ONLINE: | |
1446 | case MEM_OFFLINE: | |
1447 | case MEM_CANCEL_ONLINE: | |
1448 | case MEM_CANCEL_OFFLINE: | |
1449 | break; | |
1450 | } | |
1451 | out: | |
5fda1bd5 | 1452 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1453 | } |
1454 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1455 | ||
e498be7d CL |
1456 | /* |
1457 | * swap the static kmem_list3 with kmalloced memory | |
1458 | */ | |
8f9f8d9e DR |
1459 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1460 | int nodeid) | |
e498be7d CL |
1461 | { |
1462 | struct kmem_list3 *ptr; | |
1463 | ||
83b519e8 | 1464 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); |
e498be7d CL |
1465 | BUG_ON(!ptr); |
1466 | ||
e498be7d | 1467 | memcpy(ptr, list, sizeof(struct kmem_list3)); |
2b2d5493 IM |
1468 | /* |
1469 | * Do not assume that spinlocks can be initialized via memcpy: | |
1470 | */ | |
1471 | spin_lock_init(&ptr->list_lock); | |
1472 | ||
e498be7d CL |
1473 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1474 | cachep->nodelists[nodeid] = ptr; | |
e498be7d CL |
1475 | } |
1476 | ||
556a169d PE |
1477 | /* |
1478 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | |
1479 | * size of kmem_list3. | |
1480 | */ | |
1481 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |
1482 | { | |
1483 | int node; | |
1484 | ||
1485 | for_each_online_node(node) { | |
1486 | cachep->nodelists[node] = &initkmem_list3[index + node]; | |
1487 | cachep->nodelists[node]->next_reap = jiffies + | |
1488 | REAPTIMEOUT_LIST3 + | |
1489 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1490 | } | |
1491 | } | |
1492 | ||
a737b3e2 AM |
1493 | /* |
1494 | * Initialisation. Called after the page allocator have been initialised and | |
1495 | * before smp_init(). | |
1da177e4 LT |
1496 | */ |
1497 | void __init kmem_cache_init(void) | |
1498 | { | |
1499 | size_t left_over; | |
1500 | struct cache_sizes *sizes; | |
1501 | struct cache_names *names; | |
e498be7d | 1502 | int i; |
07ed76b2 | 1503 | int order; |
1ca4cb24 | 1504 | int node; |
e498be7d | 1505 | |
b6e68bc1 | 1506 | if (num_possible_nodes() == 1) |
62918a03 SS |
1507 | use_alien_caches = 0; |
1508 | ||
e498be7d CL |
1509 | for (i = 0; i < NUM_INIT_LISTS; i++) { |
1510 | kmem_list3_init(&initkmem_list3[i]); | |
1511 | if (i < MAX_NUMNODES) | |
1512 | cache_cache.nodelists[i] = NULL; | |
1513 | } | |
556a169d | 1514 | set_up_list3s(&cache_cache, CACHE_CACHE); |
1da177e4 LT |
1515 | |
1516 | /* | |
1517 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1518 | * page orders on machines with more than 32MB of memory if |
1519 | * not overridden on the command line. | |
1da177e4 | 1520 | */ |
3df1cccd | 1521 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1522 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1523 | |
1da177e4 LT |
1524 | /* Bootstrap is tricky, because several objects are allocated |
1525 | * from caches that do not exist yet: | |
a737b3e2 AM |
1526 | * 1) initialize the cache_cache cache: it contains the struct |
1527 | * kmem_cache structures of all caches, except cache_cache itself: | |
1528 | * cache_cache is statically allocated. | |
e498be7d CL |
1529 | * Initially an __init data area is used for the head array and the |
1530 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1531 | * array at the end of the bootstrap. | |
1da177e4 | 1532 | * 2) Create the first kmalloc cache. |
343e0d7a | 1533 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1534 | * An __init data area is used for the head array. |
1535 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1536 | * head arrays. | |
1da177e4 LT |
1537 | * 4) Replace the __init data head arrays for cache_cache and the first |
1538 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1539 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1540 | * the other cache's with kmalloc allocated memory. | |
1541 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1542 | */ |
1543 | ||
7d6e6d09 | 1544 | node = numa_mem_id(); |
1ca4cb24 | 1545 | |
1da177e4 | 1546 | /* 1) create the cache_cache */ |
1da177e4 LT |
1547 | INIT_LIST_HEAD(&cache_chain); |
1548 | list_add(&cache_cache.next, &cache_chain); | |
1549 | cache_cache.colour_off = cache_line_size(); | |
1550 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
ec1f5eee | 1551 | cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; |
1da177e4 | 1552 | |
8da3430d | 1553 | /* |
b56efcf0 | 1554 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1555 | */ |
b56efcf0 ED |
1556 | cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + |
1557 | nr_node_ids * sizeof(struct kmem_list3 *); | |
8da3430d ED |
1558 | #if DEBUG |
1559 | cache_cache.obj_size = cache_cache.buffer_size; | |
1560 | #endif | |
a737b3e2 AM |
1561 | cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, |
1562 | cache_line_size()); | |
6a2d7a95 ED |
1563 | cache_cache.reciprocal_buffer_size = |
1564 | reciprocal_value(cache_cache.buffer_size); | |
1da177e4 | 1565 | |
07ed76b2 JS |
1566 | for (order = 0; order < MAX_ORDER; order++) { |
1567 | cache_estimate(order, cache_cache.buffer_size, | |
1568 | cache_line_size(), 0, &left_over, &cache_cache.num); | |
1569 | if (cache_cache.num) | |
1570 | break; | |
1571 | } | |
40094fa6 | 1572 | BUG_ON(!cache_cache.num); |
07ed76b2 | 1573 | cache_cache.gfporder = order; |
b28a02de | 1574 | cache_cache.colour = left_over / cache_cache.colour_off; |
b28a02de PE |
1575 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + |
1576 | sizeof(struct slab), cache_line_size()); | |
1da177e4 LT |
1577 | |
1578 | /* 2+3) create the kmalloc caches */ | |
1579 | sizes = malloc_sizes; | |
1580 | names = cache_names; | |
1581 | ||
a737b3e2 AM |
1582 | /* |
1583 | * Initialize the caches that provide memory for the array cache and the | |
1584 | * kmem_list3 structures first. Without this, further allocations will | |
1585 | * bug. | |
e498be7d CL |
1586 | */ |
1587 | ||
1588 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | |
a737b3e2 AM |
1589 | sizes[INDEX_AC].cs_size, |
1590 | ARCH_KMALLOC_MINALIGN, | |
1591 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1592 | NULL); |
e498be7d | 1593 | |
a737b3e2 | 1594 | if (INDEX_AC != INDEX_L3) { |
e498be7d | 1595 | sizes[INDEX_L3].cs_cachep = |
a737b3e2 AM |
1596 | kmem_cache_create(names[INDEX_L3].name, |
1597 | sizes[INDEX_L3].cs_size, | |
1598 | ARCH_KMALLOC_MINALIGN, | |
1599 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1600 | NULL); |
a737b3e2 | 1601 | } |
e498be7d | 1602 | |
e0a42726 IM |
1603 | slab_early_init = 0; |
1604 | ||
1da177e4 | 1605 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1606 | /* |
1607 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1608 | * This should be particularly beneficial on SMP boxes, as it |
1609 | * eliminates "false sharing". | |
1610 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1611 | * allow tighter packing of the smaller caches. |
1612 | */ | |
a737b3e2 | 1613 | if (!sizes->cs_cachep) { |
e498be7d | 1614 | sizes->cs_cachep = kmem_cache_create(names->name, |
a737b3e2 AM |
1615 | sizes->cs_size, |
1616 | ARCH_KMALLOC_MINALIGN, | |
1617 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1618 | NULL); |
a737b3e2 | 1619 | } |
4b51d669 CL |
1620 | #ifdef CONFIG_ZONE_DMA |
1621 | sizes->cs_dmacachep = kmem_cache_create( | |
1622 | names->name_dma, | |
a737b3e2 AM |
1623 | sizes->cs_size, |
1624 | ARCH_KMALLOC_MINALIGN, | |
1625 | ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| | |
1626 | SLAB_PANIC, | |
20c2df83 | 1627 | NULL); |
4b51d669 | 1628 | #endif |
1da177e4 LT |
1629 | sizes++; |
1630 | names++; | |
1631 | } | |
1632 | /* 4) Replace the bootstrap head arrays */ | |
1633 | { | |
2b2d5493 | 1634 | struct array_cache *ptr; |
e498be7d | 1635 | |
83b519e8 | 1636 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1637 | |
9a2dba4b PE |
1638 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1639 | memcpy(ptr, cpu_cache_get(&cache_cache), | |
b28a02de | 1640 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1641 | /* |
1642 | * Do not assume that spinlocks can be initialized via memcpy: | |
1643 | */ | |
1644 | spin_lock_init(&ptr->lock); | |
1645 | ||
1da177e4 | 1646 | cache_cache.array[smp_processor_id()] = ptr; |
e498be7d | 1647 | |
83b519e8 | 1648 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1649 | |
9a2dba4b | 1650 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
b28a02de | 1651 | != &initarray_generic.cache); |
9a2dba4b | 1652 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
b28a02de | 1653 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1654 | /* |
1655 | * Do not assume that spinlocks can be initialized via memcpy: | |
1656 | */ | |
1657 | spin_lock_init(&ptr->lock); | |
1658 | ||
e498be7d | 1659 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
b28a02de | 1660 | ptr; |
1da177e4 | 1661 | } |
e498be7d CL |
1662 | /* 5) Replace the bootstrap kmem_list3's */ |
1663 | { | |
1ca4cb24 PE |
1664 | int nid; |
1665 | ||
9c09a95c | 1666 | for_each_online_node(nid) { |
ec1f5eee | 1667 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); |
556a169d | 1668 | |
e498be7d | 1669 | init_list(malloc_sizes[INDEX_AC].cs_cachep, |
1ca4cb24 | 1670 | &initkmem_list3[SIZE_AC + nid], nid); |
e498be7d CL |
1671 | |
1672 | if (INDEX_AC != INDEX_L3) { | |
1673 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1ca4cb24 | 1674 | &initkmem_list3[SIZE_L3 + nid], nid); |
e498be7d CL |
1675 | } |
1676 | } | |
1677 | } | |
1da177e4 | 1678 | |
8429db5c | 1679 | g_cpucache_up = EARLY; |
8429db5c PE |
1680 | } |
1681 | ||
1682 | void __init kmem_cache_init_late(void) | |
1683 | { | |
1684 | struct kmem_cache *cachep; | |
1685 | ||
52cef189 PZ |
1686 | g_cpucache_up = LATE; |
1687 | ||
30765b92 PZ |
1688 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1689 | init_lock_keys(); | |
1690 | ||
8429db5c PE |
1691 | /* 6) resize the head arrays to their final sizes */ |
1692 | mutex_lock(&cache_chain_mutex); | |
1693 | list_for_each_entry(cachep, &cache_chain, next) | |
1694 | if (enable_cpucache(cachep, GFP_NOWAIT)) | |
1695 | BUG(); | |
1696 | mutex_unlock(&cache_chain_mutex); | |
056c6241 | 1697 | |
1da177e4 LT |
1698 | /* Done! */ |
1699 | g_cpucache_up = FULL; | |
1700 | ||
a737b3e2 AM |
1701 | /* |
1702 | * Register a cpu startup notifier callback that initializes | |
1703 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1704 | */ |
1705 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1706 | |
8f9f8d9e DR |
1707 | #ifdef CONFIG_NUMA |
1708 | /* | |
1709 | * Register a memory hotplug callback that initializes and frees | |
1710 | * nodelists. | |
1711 | */ | |
1712 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1713 | #endif | |
1714 | ||
a737b3e2 AM |
1715 | /* |
1716 | * The reap timers are started later, with a module init call: That part | |
1717 | * of the kernel is not yet operational. | |
1da177e4 LT |
1718 | */ |
1719 | } | |
1720 | ||
1721 | static int __init cpucache_init(void) | |
1722 | { | |
1723 | int cpu; | |
1724 | ||
a737b3e2 AM |
1725 | /* |
1726 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1727 | */ |
e498be7d | 1728 | for_each_online_cpu(cpu) |
a737b3e2 | 1729 | start_cpu_timer(cpu); |
1da177e4 LT |
1730 | return 0; |
1731 | } | |
1da177e4 LT |
1732 | __initcall(cpucache_init); |
1733 | ||
8bdec192 RA |
1734 | static noinline void |
1735 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1736 | { | |
1737 | struct kmem_list3 *l3; | |
1738 | struct slab *slabp; | |
1739 | unsigned long flags; | |
1740 | int node; | |
1741 | ||
1742 | printk(KERN_WARNING | |
1743 | "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1744 | nodeid, gfpflags); | |
1745 | printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", | |
1746 | cachep->name, cachep->buffer_size, cachep->gfporder); | |
1747 | ||
1748 | for_each_online_node(node) { | |
1749 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | |
1750 | unsigned long active_slabs = 0, num_slabs = 0; | |
1751 | ||
1752 | l3 = cachep->nodelists[node]; | |
1753 | if (!l3) | |
1754 | continue; | |
1755 | ||
1756 | spin_lock_irqsave(&l3->list_lock, flags); | |
1757 | list_for_each_entry(slabp, &l3->slabs_full, list) { | |
1758 | active_objs += cachep->num; | |
1759 | active_slabs++; | |
1760 | } | |
1761 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | |
1762 | active_objs += slabp->inuse; | |
1763 | active_slabs++; | |
1764 | } | |
1765 | list_for_each_entry(slabp, &l3->slabs_free, list) | |
1766 | num_slabs++; | |
1767 | ||
1768 | free_objects += l3->free_objects; | |
1769 | spin_unlock_irqrestore(&l3->list_lock, flags); | |
1770 | ||
1771 | num_slabs += active_slabs; | |
1772 | num_objs = num_slabs * cachep->num; | |
1773 | printk(KERN_WARNING | |
1774 | " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | |
1775 | node, active_slabs, num_slabs, active_objs, num_objs, | |
1776 | free_objects); | |
1777 | } | |
1778 | } | |
1779 | ||
1da177e4 LT |
1780 | /* |
1781 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1782 | * | |
1783 | * If we requested dmaable memory, we will get it. Even if we | |
1784 | * did not request dmaable memory, we might get it, but that | |
1785 | * would be relatively rare and ignorable. | |
1786 | */ | |
343e0d7a | 1787 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1788 | { |
1789 | struct page *page; | |
e1b6aa6f | 1790 | int nr_pages; |
1da177e4 LT |
1791 | int i; |
1792 | ||
d6fef9da | 1793 | #ifndef CONFIG_MMU |
e1b6aa6f CH |
1794 | /* |
1795 | * Nommu uses slab's for process anonymous memory allocations, and thus | |
1796 | * requires __GFP_COMP to properly refcount higher order allocations | |
d6fef9da | 1797 | */ |
e1b6aa6f | 1798 | flags |= __GFP_COMP; |
d6fef9da | 1799 | #endif |
765c4507 | 1800 | |
3c517a61 | 1801 | flags |= cachep->gfpflags; |
e12ba74d MG |
1802 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1803 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1804 | |
517d0869 | 1805 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 RA |
1806 | if (!page) { |
1807 | if (!(flags & __GFP_NOWARN) && printk_ratelimit()) | |
1808 | slab_out_of_memory(cachep, flags, nodeid); | |
1da177e4 | 1809 | return NULL; |
8bdec192 | 1810 | } |
1da177e4 | 1811 | |
e1b6aa6f | 1812 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1813 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1814 | add_zone_page_state(page_zone(page), |
1815 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1816 | else | |
1817 | add_zone_page_state(page_zone(page), | |
1818 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
e1b6aa6f CH |
1819 | for (i = 0; i < nr_pages; i++) |
1820 | __SetPageSlab(page + i); | |
c175eea4 | 1821 | |
b1eeab67 VN |
1822 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1823 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1824 | ||
1825 | if (cachep->ctor) | |
1826 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1827 | else | |
1828 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1829 | } | |
c175eea4 | 1830 | |
e1b6aa6f | 1831 | return page_address(page); |
1da177e4 LT |
1832 | } |
1833 | ||
1834 | /* | |
1835 | * Interface to system's page release. | |
1836 | */ | |
343e0d7a | 1837 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1da177e4 | 1838 | { |
b28a02de | 1839 | unsigned long i = (1 << cachep->gfporder); |
1da177e4 LT |
1840 | struct page *page = virt_to_page(addr); |
1841 | const unsigned long nr_freed = i; | |
1842 | ||
b1eeab67 | 1843 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1844 | |
972d1a7b CL |
1845 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1846 | sub_zone_page_state(page_zone(page), | |
1847 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1848 | else | |
1849 | sub_zone_page_state(page_zone(page), | |
1850 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
1da177e4 | 1851 | while (i--) { |
f205b2fe NP |
1852 | BUG_ON(!PageSlab(page)); |
1853 | __ClearPageSlab(page); | |
1da177e4 LT |
1854 | page++; |
1855 | } | |
1da177e4 LT |
1856 | if (current->reclaim_state) |
1857 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1858 | free_pages((unsigned long)addr, cachep->gfporder); | |
1da177e4 LT |
1859 | } |
1860 | ||
1861 | static void kmem_rcu_free(struct rcu_head *head) | |
1862 | { | |
b28a02de | 1863 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
343e0d7a | 1864 | struct kmem_cache *cachep = slab_rcu->cachep; |
1da177e4 LT |
1865 | |
1866 | kmem_freepages(cachep, slab_rcu->addr); | |
1867 | if (OFF_SLAB(cachep)) | |
1868 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1869 | } | |
1870 | ||
1871 | #if DEBUG | |
1872 | ||
1873 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1874 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1875 | unsigned long caller) |
1da177e4 | 1876 | { |
3dafccf2 | 1877 | int size = obj_size(cachep); |
1da177e4 | 1878 | |
3dafccf2 | 1879 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1880 | |
b28a02de | 1881 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1882 | return; |
1883 | ||
b28a02de PE |
1884 | *addr++ = 0x12345678; |
1885 | *addr++ = caller; | |
1886 | *addr++ = smp_processor_id(); | |
1887 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1888 | { |
1889 | unsigned long *sptr = &caller; | |
1890 | unsigned long svalue; | |
1891 | ||
1892 | while (!kstack_end(sptr)) { | |
1893 | svalue = *sptr++; | |
1894 | if (kernel_text_address(svalue)) { | |
b28a02de | 1895 | *addr++ = svalue; |
1da177e4 LT |
1896 | size -= sizeof(unsigned long); |
1897 | if (size <= sizeof(unsigned long)) | |
1898 | break; | |
1899 | } | |
1900 | } | |
1901 | ||
1902 | } | |
b28a02de | 1903 | *addr++ = 0x87654321; |
1da177e4 LT |
1904 | } |
1905 | #endif | |
1906 | ||
343e0d7a | 1907 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1908 | { |
3dafccf2 MS |
1909 | int size = obj_size(cachep); |
1910 | addr = &((char *)addr)[obj_offset(cachep)]; | |
1da177e4 LT |
1911 | |
1912 | memset(addr, val, size); | |
b28a02de | 1913 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1914 | } |
1915 | ||
1916 | static void dump_line(char *data, int offset, int limit) | |
1917 | { | |
1918 | int i; | |
aa83aa40 DJ |
1919 | unsigned char error = 0; |
1920 | int bad_count = 0; | |
1921 | ||
fdde6abb | 1922 | printk(KERN_ERR "%03x: ", offset); |
aa83aa40 DJ |
1923 | for (i = 0; i < limit; i++) { |
1924 | if (data[offset + i] != POISON_FREE) { | |
1925 | error = data[offset + i]; | |
1926 | bad_count++; | |
1927 | } | |
aa83aa40 | 1928 | } |
fdde6abb SAS |
1929 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1930 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1931 | |
1932 | if (bad_count == 1) { | |
1933 | error ^= POISON_FREE; | |
1934 | if (!(error & (error - 1))) { | |
1935 | printk(KERN_ERR "Single bit error detected. Probably " | |
1936 | "bad RAM.\n"); | |
1937 | #ifdef CONFIG_X86 | |
1938 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1939 | "test tool.\n"); | |
1940 | #else | |
1941 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1942 | #endif | |
1943 | } | |
1944 | } | |
1da177e4 LT |
1945 | } |
1946 | #endif | |
1947 | ||
1948 | #if DEBUG | |
1949 | ||
343e0d7a | 1950 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1951 | { |
1952 | int i, size; | |
1953 | char *realobj; | |
1954 | ||
1955 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 1956 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
1957 | *dbg_redzone1(cachep, objp), |
1958 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1959 | } |
1960 | ||
1961 | if (cachep->flags & SLAB_STORE_USER) { | |
1962 | printk(KERN_ERR "Last user: [<%p>]", | |
a737b3e2 | 1963 | *dbg_userword(cachep, objp)); |
1da177e4 | 1964 | print_symbol("(%s)", |
a737b3e2 | 1965 | (unsigned long)*dbg_userword(cachep, objp)); |
1da177e4 LT |
1966 | printk("\n"); |
1967 | } | |
3dafccf2 MS |
1968 | realobj = (char *)objp + obj_offset(cachep); |
1969 | size = obj_size(cachep); | |
b28a02de | 1970 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1971 | int limit; |
1972 | limit = 16; | |
b28a02de PE |
1973 | if (i + limit > size) |
1974 | limit = size - i; | |
1da177e4 LT |
1975 | dump_line(realobj, i, limit); |
1976 | } | |
1977 | } | |
1978 | ||
343e0d7a | 1979 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1980 | { |
1981 | char *realobj; | |
1982 | int size, i; | |
1983 | int lines = 0; | |
1984 | ||
3dafccf2 MS |
1985 | realobj = (char *)objp + obj_offset(cachep); |
1986 | size = obj_size(cachep); | |
1da177e4 | 1987 | |
b28a02de | 1988 | for (i = 0; i < size; i++) { |
1da177e4 | 1989 | char exp = POISON_FREE; |
b28a02de | 1990 | if (i == size - 1) |
1da177e4 LT |
1991 | exp = POISON_END; |
1992 | if (realobj[i] != exp) { | |
1993 | int limit; | |
1994 | /* Mismatch ! */ | |
1995 | /* Print header */ | |
1996 | if (lines == 0) { | |
b28a02de | 1997 | printk(KERN_ERR |
face37f5 DJ |
1998 | "Slab corruption (%s): %s start=%p, len=%d\n", |
1999 | print_tainted(), cachep->name, realobj, size); | |
1da177e4 LT |
2000 | print_objinfo(cachep, objp, 0); |
2001 | } | |
2002 | /* Hexdump the affected line */ | |
b28a02de | 2003 | i = (i / 16) * 16; |
1da177e4 | 2004 | limit = 16; |
b28a02de PE |
2005 | if (i + limit > size) |
2006 | limit = size - i; | |
1da177e4 LT |
2007 | dump_line(realobj, i, limit); |
2008 | i += 16; | |
2009 | lines++; | |
2010 | /* Limit to 5 lines */ | |
2011 | if (lines > 5) | |
2012 | break; | |
2013 | } | |
2014 | } | |
2015 | if (lines != 0) { | |
2016 | /* Print some data about the neighboring objects, if they | |
2017 | * exist: | |
2018 | */ | |
6ed5eb22 | 2019 | struct slab *slabp = virt_to_slab(objp); |
8fea4e96 | 2020 | unsigned int objnr; |
1da177e4 | 2021 | |
8fea4e96 | 2022 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 | 2023 | if (objnr) { |
8fea4e96 | 2024 | objp = index_to_obj(cachep, slabp, objnr - 1); |
3dafccf2 | 2025 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 2026 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 2027 | realobj, size); |
1da177e4 LT |
2028 | print_objinfo(cachep, objp, 2); |
2029 | } | |
b28a02de | 2030 | if (objnr + 1 < cachep->num) { |
8fea4e96 | 2031 | objp = index_to_obj(cachep, slabp, objnr + 1); |
3dafccf2 | 2032 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 2033 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 2034 | realobj, size); |
1da177e4 LT |
2035 | print_objinfo(cachep, objp, 2); |
2036 | } | |
2037 | } | |
2038 | } | |
2039 | #endif | |
2040 | ||
12dd36fa | 2041 | #if DEBUG |
e79aec29 | 2042 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 | 2043 | { |
1da177e4 LT |
2044 | int i; |
2045 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2046 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2047 | |
2048 | if (cachep->flags & SLAB_POISON) { | |
2049 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 AM |
2050 | if (cachep->buffer_size % PAGE_SIZE == 0 && |
2051 | OFF_SLAB(cachep)) | |
b28a02de | 2052 | kernel_map_pages(virt_to_page(objp), |
a737b3e2 | 2053 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
2054 | else |
2055 | check_poison_obj(cachep, objp); | |
2056 | #else | |
2057 | check_poison_obj(cachep, objp); | |
2058 | #endif | |
2059 | } | |
2060 | if (cachep->flags & SLAB_RED_ZONE) { | |
2061 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
2062 | slab_error(cachep, "start of a freed object " | |
b28a02de | 2063 | "was overwritten"); |
1da177e4 LT |
2064 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
2065 | slab_error(cachep, "end of a freed object " | |
b28a02de | 2066 | "was overwritten"); |
1da177e4 | 2067 | } |
1da177e4 | 2068 | } |
12dd36fa | 2069 | } |
1da177e4 | 2070 | #else |
e79aec29 | 2071 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa | 2072 | { |
12dd36fa | 2073 | } |
1da177e4 LT |
2074 | #endif |
2075 | ||
911851e6 RD |
2076 | /** |
2077 | * slab_destroy - destroy and release all objects in a slab | |
2078 | * @cachep: cache pointer being destroyed | |
2079 | * @slabp: slab pointer being destroyed | |
2080 | * | |
12dd36fa | 2081 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
2082 | * Before calling the slab must have been unlinked from the cache. The |
2083 | * cache-lock is not held/needed. | |
12dd36fa | 2084 | */ |
343e0d7a | 2085 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa MD |
2086 | { |
2087 | void *addr = slabp->s_mem - slabp->colouroff; | |
2088 | ||
e79aec29 | 2089 | slab_destroy_debugcheck(cachep, slabp); |
1da177e4 LT |
2090 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
2091 | struct slab_rcu *slab_rcu; | |
2092 | ||
b28a02de | 2093 | slab_rcu = (struct slab_rcu *)slabp; |
1da177e4 LT |
2094 | slab_rcu->cachep = cachep; |
2095 | slab_rcu->addr = addr; | |
2096 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
2097 | } else { | |
2098 | kmem_freepages(cachep, addr); | |
873623df IM |
2099 | if (OFF_SLAB(cachep)) |
2100 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1da177e4 LT |
2101 | } |
2102 | } | |
2103 | ||
117f6eb1 CL |
2104 | static void __kmem_cache_destroy(struct kmem_cache *cachep) |
2105 | { | |
2106 | int i; | |
2107 | struct kmem_list3 *l3; | |
2108 | ||
2109 | for_each_online_cpu(i) | |
2110 | kfree(cachep->array[i]); | |
2111 | ||
2112 | /* NUMA: free the list3 structures */ | |
2113 | for_each_online_node(i) { | |
2114 | l3 = cachep->nodelists[i]; | |
2115 | if (l3) { | |
2116 | kfree(l3->shared); | |
2117 | free_alien_cache(l3->alien); | |
2118 | kfree(l3); | |
2119 | } | |
2120 | } | |
2121 | kmem_cache_free(&cache_cache, cachep); | |
2122 | } | |
2123 | ||
2124 | ||
4d268eba | 2125 | /** |
a70773dd RD |
2126 | * calculate_slab_order - calculate size (page order) of slabs |
2127 | * @cachep: pointer to the cache that is being created | |
2128 | * @size: size of objects to be created in this cache. | |
2129 | * @align: required alignment for the objects. | |
2130 | * @flags: slab allocation flags | |
2131 | * | |
2132 | * Also calculates the number of objects per slab. | |
4d268eba PE |
2133 | * |
2134 | * This could be made much more intelligent. For now, try to avoid using | |
2135 | * high order pages for slabs. When the gfp() functions are more friendly | |
2136 | * towards high-order requests, this should be changed. | |
2137 | */ | |
a737b3e2 | 2138 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 2139 | size_t size, size_t align, unsigned long flags) |
4d268eba | 2140 | { |
b1ab41c4 | 2141 | unsigned long offslab_limit; |
4d268eba | 2142 | size_t left_over = 0; |
9888e6fa | 2143 | int gfporder; |
4d268eba | 2144 | |
0aa817f0 | 2145 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
2146 | unsigned int num; |
2147 | size_t remainder; | |
2148 | ||
9888e6fa | 2149 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
2150 | if (!num) |
2151 | continue; | |
9888e6fa | 2152 | |
b1ab41c4 IM |
2153 | if (flags & CFLGS_OFF_SLAB) { |
2154 | /* | |
2155 | * Max number of objs-per-slab for caches which | |
2156 | * use off-slab slabs. Needed to avoid a possible | |
2157 | * looping condition in cache_grow(). | |
2158 | */ | |
2159 | offslab_limit = size - sizeof(struct slab); | |
2160 | offslab_limit /= sizeof(kmem_bufctl_t); | |
2161 | ||
2162 | if (num > offslab_limit) | |
2163 | break; | |
2164 | } | |
4d268eba | 2165 | |
9888e6fa | 2166 | /* Found something acceptable - save it away */ |
4d268eba | 2167 | cachep->num = num; |
9888e6fa | 2168 | cachep->gfporder = gfporder; |
4d268eba PE |
2169 | left_over = remainder; |
2170 | ||
f78bb8ad LT |
2171 | /* |
2172 | * A VFS-reclaimable slab tends to have most allocations | |
2173 | * as GFP_NOFS and we really don't want to have to be allocating | |
2174 | * higher-order pages when we are unable to shrink dcache. | |
2175 | */ | |
2176 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
2177 | break; | |
2178 | ||
4d268eba PE |
2179 | /* |
2180 | * Large number of objects is good, but very large slabs are | |
2181 | * currently bad for the gfp()s. | |
2182 | */ | |
543585cc | 2183 | if (gfporder >= slab_max_order) |
4d268eba PE |
2184 | break; |
2185 | ||
9888e6fa LT |
2186 | /* |
2187 | * Acceptable internal fragmentation? | |
2188 | */ | |
a737b3e2 | 2189 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2190 | break; |
2191 | } | |
2192 | return left_over; | |
2193 | } | |
2194 | ||
83b519e8 | 2195 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2196 | { |
2ed3a4ef | 2197 | if (g_cpucache_up == FULL) |
83b519e8 | 2198 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2199 | |
f30cf7d1 PE |
2200 | if (g_cpucache_up == NONE) { |
2201 | /* | |
2202 | * Note: the first kmem_cache_create must create the cache | |
2203 | * that's used by kmalloc(24), otherwise the creation of | |
2204 | * further caches will BUG(). | |
2205 | */ | |
2206 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2207 | ||
2208 | /* | |
2209 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | |
2210 | * the first cache, then we need to set up all its list3s, | |
2211 | * otherwise the creation of further caches will BUG(). | |
2212 | */ | |
2213 | set_up_list3s(cachep, SIZE_AC); | |
2214 | if (INDEX_AC == INDEX_L3) | |
2215 | g_cpucache_up = PARTIAL_L3; | |
2216 | else | |
2217 | g_cpucache_up = PARTIAL_AC; | |
2218 | } else { | |
2219 | cachep->array[smp_processor_id()] = | |
83b519e8 | 2220 | kmalloc(sizeof(struct arraycache_init), gfp); |
f30cf7d1 PE |
2221 | |
2222 | if (g_cpucache_up == PARTIAL_AC) { | |
2223 | set_up_list3s(cachep, SIZE_L3); | |
2224 | g_cpucache_up = PARTIAL_L3; | |
2225 | } else { | |
2226 | int node; | |
556a169d | 2227 | for_each_online_node(node) { |
f30cf7d1 PE |
2228 | cachep->nodelists[node] = |
2229 | kmalloc_node(sizeof(struct kmem_list3), | |
eb91f1d0 | 2230 | gfp, node); |
f30cf7d1 PE |
2231 | BUG_ON(!cachep->nodelists[node]); |
2232 | kmem_list3_init(cachep->nodelists[node]); | |
2233 | } | |
2234 | } | |
2235 | } | |
7d6e6d09 | 2236 | cachep->nodelists[numa_mem_id()]->next_reap = |
f30cf7d1 PE |
2237 | jiffies + REAPTIMEOUT_LIST3 + |
2238 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
2239 | ||
2240 | cpu_cache_get(cachep)->avail = 0; | |
2241 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2242 | cpu_cache_get(cachep)->batchcount = 1; | |
2243 | cpu_cache_get(cachep)->touched = 0; | |
2244 | cachep->batchcount = 1; | |
2245 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2246 | return 0; |
f30cf7d1 PE |
2247 | } |
2248 | ||
1da177e4 LT |
2249 | /** |
2250 | * kmem_cache_create - Create a cache. | |
2251 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
2252 | * @size: The size of objects to be created in this cache. | |
2253 | * @align: The required alignment for the objects. | |
2254 | * @flags: SLAB flags | |
2255 | * @ctor: A constructor for the objects. | |
1da177e4 LT |
2256 | * |
2257 | * Returns a ptr to the cache on success, NULL on failure. | |
2258 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2259 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 LT |
2260 | * |
2261 | * @name must be valid until the cache is destroyed. This implies that | |
a737b3e2 AM |
2262 | * the module calling this has to destroy the cache before getting unloaded. |
2263 | * | |
1da177e4 LT |
2264 | * The flags are |
2265 | * | |
2266 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2267 | * to catch references to uninitialised memory. | |
2268 | * | |
2269 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2270 | * for buffer overruns. | |
2271 | * | |
1da177e4 LT |
2272 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2273 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2274 | * as davem. | |
2275 | */ | |
343e0d7a | 2276 | struct kmem_cache * |
1da177e4 | 2277 | kmem_cache_create (const char *name, size_t size, size_t align, |
51cc5068 | 2278 | unsigned long flags, void (*ctor)(void *)) |
1da177e4 LT |
2279 | { |
2280 | size_t left_over, slab_size, ralign; | |
7a7c381d | 2281 | struct kmem_cache *cachep = NULL, *pc; |
83b519e8 | 2282 | gfp_t gfp; |
1da177e4 LT |
2283 | |
2284 | /* | |
2285 | * Sanity checks... these are all serious usage bugs. | |
2286 | */ | |
a737b3e2 | 2287 | if (!name || in_interrupt() || (size < BYTES_PER_WORD) || |
20c2df83 | 2288 | size > KMALLOC_MAX_SIZE) { |
d40cee24 | 2289 | printk(KERN_ERR "%s: Early error in slab %s\n", __func__, |
a737b3e2 | 2290 | name); |
b28a02de PE |
2291 | BUG(); |
2292 | } | |
1da177e4 | 2293 | |
f0188f47 | 2294 | /* |
8f5be20b | 2295 | * We use cache_chain_mutex to ensure a consistent view of |
174596a0 | 2296 | * cpu_online_mask as well. Please see cpuup_callback |
f0188f47 | 2297 | */ |
83b519e8 PE |
2298 | if (slab_is_available()) { |
2299 | get_online_cpus(); | |
2300 | mutex_lock(&cache_chain_mutex); | |
2301 | } | |
4f12bb4f | 2302 | |
7a7c381d | 2303 | list_for_each_entry(pc, &cache_chain, next) { |
4f12bb4f AM |
2304 | char tmp; |
2305 | int res; | |
2306 | ||
2307 | /* | |
2308 | * This happens when the module gets unloaded and doesn't | |
2309 | * destroy its slab cache and no-one else reuses the vmalloc | |
2310 | * area of the module. Print a warning. | |
2311 | */ | |
138ae663 | 2312 | res = probe_kernel_address(pc->name, tmp); |
4f12bb4f | 2313 | if (res) { |
b4169525 | 2314 | printk(KERN_ERR |
2315 | "SLAB: cache with size %d has lost its name\n", | |
3dafccf2 | 2316 | pc->buffer_size); |
4f12bb4f AM |
2317 | continue; |
2318 | } | |
2319 | ||
b28a02de | 2320 | if (!strcmp(pc->name, name)) { |
b4169525 | 2321 | printk(KERN_ERR |
2322 | "kmem_cache_create: duplicate cache %s\n", name); | |
4f12bb4f AM |
2323 | dump_stack(); |
2324 | goto oops; | |
2325 | } | |
2326 | } | |
2327 | ||
1da177e4 LT |
2328 | #if DEBUG |
2329 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
1da177e4 LT |
2330 | #if FORCED_DEBUG |
2331 | /* | |
2332 | * Enable redzoning and last user accounting, except for caches with | |
2333 | * large objects, if the increased size would increase the object size | |
2334 | * above the next power of two: caches with object sizes just above a | |
2335 | * power of two have a significant amount of internal fragmentation. | |
2336 | */ | |
87a927c7 DW |
2337 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2338 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2339 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2340 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2341 | flags |= SLAB_POISON; | |
2342 | #endif | |
2343 | if (flags & SLAB_DESTROY_BY_RCU) | |
2344 | BUG_ON(flags & SLAB_POISON); | |
2345 | #endif | |
1da177e4 | 2346 | /* |
a737b3e2 AM |
2347 | * Always checks flags, a caller might be expecting debug support which |
2348 | * isn't available. | |
1da177e4 | 2349 | */ |
40094fa6 | 2350 | BUG_ON(flags & ~CREATE_MASK); |
1da177e4 | 2351 | |
a737b3e2 AM |
2352 | /* |
2353 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2354 | * unaligned accesses for some archs when redzoning is used, and makes |
2355 | * sure any on-slab bufctl's are also correctly aligned. | |
2356 | */ | |
b28a02de PE |
2357 | if (size & (BYTES_PER_WORD - 1)) { |
2358 | size += (BYTES_PER_WORD - 1); | |
2359 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2360 | } |
2361 | ||
a737b3e2 AM |
2362 | /* calculate the final buffer alignment: */ |
2363 | ||
1da177e4 LT |
2364 | /* 1) arch recommendation: can be overridden for debug */ |
2365 | if (flags & SLAB_HWCACHE_ALIGN) { | |
a737b3e2 AM |
2366 | /* |
2367 | * Default alignment: as specified by the arch code. Except if | |
2368 | * an object is really small, then squeeze multiple objects into | |
2369 | * one cacheline. | |
1da177e4 LT |
2370 | */ |
2371 | ralign = cache_line_size(); | |
b28a02de | 2372 | while (size <= ralign / 2) |
1da177e4 LT |
2373 | ralign /= 2; |
2374 | } else { | |
2375 | ralign = BYTES_PER_WORD; | |
2376 | } | |
ca5f9703 PE |
2377 | |
2378 | /* | |
87a927c7 DW |
2379 | * Redzoning and user store require word alignment or possibly larger. |
2380 | * Note this will be overridden by architecture or caller mandated | |
2381 | * alignment if either is greater than BYTES_PER_WORD. | |
ca5f9703 | 2382 | */ |
87a927c7 DW |
2383 | if (flags & SLAB_STORE_USER) |
2384 | ralign = BYTES_PER_WORD; | |
2385 | ||
2386 | if (flags & SLAB_RED_ZONE) { | |
2387 | ralign = REDZONE_ALIGN; | |
2388 | /* If redzoning, ensure that the second redzone is suitably | |
2389 | * aligned, by adjusting the object size accordingly. */ | |
2390 | size += REDZONE_ALIGN - 1; | |
2391 | size &= ~(REDZONE_ALIGN - 1); | |
2392 | } | |
ca5f9703 | 2393 | |
a44b56d3 | 2394 | /* 2) arch mandated alignment */ |
1da177e4 LT |
2395 | if (ralign < ARCH_SLAB_MINALIGN) { |
2396 | ralign = ARCH_SLAB_MINALIGN; | |
1da177e4 | 2397 | } |
a44b56d3 | 2398 | /* 3) caller mandated alignment */ |
1da177e4 LT |
2399 | if (ralign < align) { |
2400 | ralign = align; | |
1da177e4 | 2401 | } |
3ff84a7f PE |
2402 | /* disable debug if necessary */ |
2403 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2404 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2405 | /* |
ca5f9703 | 2406 | * 4) Store it. |
1da177e4 LT |
2407 | */ |
2408 | align = ralign; | |
2409 | ||
83b519e8 PE |
2410 | if (slab_is_available()) |
2411 | gfp = GFP_KERNEL; | |
2412 | else | |
2413 | gfp = GFP_NOWAIT; | |
2414 | ||
1da177e4 | 2415 | /* Get cache's description obj. */ |
83b519e8 | 2416 | cachep = kmem_cache_zalloc(&cache_cache, gfp); |
1da177e4 | 2417 | if (!cachep) |
4f12bb4f | 2418 | goto oops; |
1da177e4 | 2419 | |
b56efcf0 | 2420 | cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; |
1da177e4 | 2421 | #if DEBUG |
3dafccf2 | 2422 | cachep->obj_size = size; |
1da177e4 | 2423 | |
ca5f9703 PE |
2424 | /* |
2425 | * Both debugging options require word-alignment which is calculated | |
2426 | * into align above. | |
2427 | */ | |
1da177e4 | 2428 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2429 | /* add space for red zone words */ |
3ff84a7f PE |
2430 | cachep->obj_offset += sizeof(unsigned long long); |
2431 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2432 | } |
2433 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2434 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2435 | * the real object. But if the second red zone needs to be |
2436 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2437 | */ |
87a927c7 DW |
2438 | if (flags & SLAB_RED_ZONE) |
2439 | size += REDZONE_ALIGN; | |
2440 | else | |
2441 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2442 | } |
2443 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
b28a02de | 2444 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
1ab335d8 CO |
2445 | && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { |
2446 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); | |
1da177e4 LT |
2447 | size = PAGE_SIZE; |
2448 | } | |
2449 | #endif | |
2450 | #endif | |
2451 | ||
e0a42726 IM |
2452 | /* |
2453 | * Determine if the slab management is 'on' or 'off' slab. | |
2454 | * (bootstrapping cannot cope with offslab caches so don't do | |
e7cb55b9 CM |
2455 | * it too early on. Always use on-slab management when |
2456 | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | |
e0a42726 | 2457 | */ |
e7cb55b9 CM |
2458 | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && |
2459 | !(flags & SLAB_NOLEAKTRACE)) | |
1da177e4 LT |
2460 | /* |
2461 | * Size is large, assume best to place the slab management obj | |
2462 | * off-slab (should allow better packing of objs). | |
2463 | */ | |
2464 | flags |= CFLGS_OFF_SLAB; | |
2465 | ||
2466 | size = ALIGN(size, align); | |
2467 | ||
f78bb8ad | 2468 | left_over = calculate_slab_order(cachep, size, align, flags); |
1da177e4 LT |
2469 | |
2470 | if (!cachep->num) { | |
b4169525 | 2471 | printk(KERN_ERR |
2472 | "kmem_cache_create: couldn't create cache %s.\n", name); | |
1da177e4 LT |
2473 | kmem_cache_free(&cache_cache, cachep); |
2474 | cachep = NULL; | |
4f12bb4f | 2475 | goto oops; |
1da177e4 | 2476 | } |
b28a02de PE |
2477 | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) |
2478 | + sizeof(struct slab), align); | |
1da177e4 LT |
2479 | |
2480 | /* | |
2481 | * If the slab has been placed off-slab, and we have enough space then | |
2482 | * move it on-slab. This is at the expense of any extra colouring. | |
2483 | */ | |
2484 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
2485 | flags &= ~CFLGS_OFF_SLAB; | |
2486 | left_over -= slab_size; | |
2487 | } | |
2488 | ||
2489 | if (flags & CFLGS_OFF_SLAB) { | |
2490 | /* really off slab. No need for manual alignment */ | |
b28a02de PE |
2491 | slab_size = |
2492 | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | |
67461365 RL |
2493 | |
2494 | #ifdef CONFIG_PAGE_POISONING | |
2495 | /* If we're going to use the generic kernel_map_pages() | |
2496 | * poisoning, then it's going to smash the contents of | |
2497 | * the redzone and userword anyhow, so switch them off. | |
2498 | */ | |
2499 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2500 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2501 | #endif | |
1da177e4 LT |
2502 | } |
2503 | ||
2504 | cachep->colour_off = cache_line_size(); | |
2505 | /* Offset must be a multiple of the alignment. */ | |
2506 | if (cachep->colour_off < align) | |
2507 | cachep->colour_off = align; | |
b28a02de | 2508 | cachep->colour = left_over / cachep->colour_off; |
1da177e4 LT |
2509 | cachep->slab_size = slab_size; |
2510 | cachep->flags = flags; | |
2511 | cachep->gfpflags = 0; | |
4b51d669 | 2512 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
1da177e4 | 2513 | cachep->gfpflags |= GFP_DMA; |
3dafccf2 | 2514 | cachep->buffer_size = size; |
6a2d7a95 | 2515 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2516 | |
e5ac9c5a | 2517 | if (flags & CFLGS_OFF_SLAB) { |
b2d55073 | 2518 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
e5ac9c5a RT |
2519 | /* |
2520 | * This is a possibility for one of the malloc_sizes caches. | |
2521 | * But since we go off slab only for object size greater than | |
2522 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | |
2523 | * this should not happen at all. | |
2524 | * But leave a BUG_ON for some lucky dude. | |
2525 | */ | |
6cb8f913 | 2526 | BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); |
e5ac9c5a | 2527 | } |
1da177e4 | 2528 | cachep->ctor = ctor; |
1da177e4 LT |
2529 | cachep->name = name; |
2530 | ||
83b519e8 | 2531 | if (setup_cpu_cache(cachep, gfp)) { |
2ed3a4ef CL |
2532 | __kmem_cache_destroy(cachep); |
2533 | cachep = NULL; | |
2534 | goto oops; | |
2535 | } | |
1da177e4 | 2536 | |
83835b3d PZ |
2537 | if (flags & SLAB_DEBUG_OBJECTS) { |
2538 | /* | |
2539 | * Would deadlock through slab_destroy()->call_rcu()-> | |
2540 | * debug_object_activate()->kmem_cache_alloc(). | |
2541 | */ | |
2542 | WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); | |
2543 | ||
2544 | slab_set_debugobj_lock_classes(cachep); | |
2545 | } | |
2546 | ||
1da177e4 LT |
2547 | /* cache setup completed, link it into the list */ |
2548 | list_add(&cachep->next, &cache_chain); | |
a737b3e2 | 2549 | oops: |
1da177e4 LT |
2550 | if (!cachep && (flags & SLAB_PANIC)) |
2551 | panic("kmem_cache_create(): failed to create slab `%s'\n", | |
b28a02de | 2552 | name); |
83b519e8 PE |
2553 | if (slab_is_available()) { |
2554 | mutex_unlock(&cache_chain_mutex); | |
2555 | put_online_cpus(); | |
2556 | } | |
1da177e4 LT |
2557 | return cachep; |
2558 | } | |
2559 | EXPORT_SYMBOL(kmem_cache_create); | |
2560 | ||
2561 | #if DEBUG | |
2562 | static void check_irq_off(void) | |
2563 | { | |
2564 | BUG_ON(!irqs_disabled()); | |
2565 | } | |
2566 | ||
2567 | static void check_irq_on(void) | |
2568 | { | |
2569 | BUG_ON(irqs_disabled()); | |
2570 | } | |
2571 | ||
343e0d7a | 2572 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2573 | { |
2574 | #ifdef CONFIG_SMP | |
2575 | check_irq_off(); | |
7d6e6d09 | 2576 | assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); |
1da177e4 LT |
2577 | #endif |
2578 | } | |
e498be7d | 2579 | |
343e0d7a | 2580 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2581 | { |
2582 | #ifdef CONFIG_SMP | |
2583 | check_irq_off(); | |
2584 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
2585 | #endif | |
2586 | } | |
2587 | ||
1da177e4 LT |
2588 | #else |
2589 | #define check_irq_off() do { } while(0) | |
2590 | #define check_irq_on() do { } while(0) | |
2591 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2592 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2593 | #endif |
2594 | ||
aab2207c CL |
2595 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
2596 | struct array_cache *ac, | |
2597 | int force, int node); | |
2598 | ||
1da177e4 LT |
2599 | static void do_drain(void *arg) |
2600 | { | |
a737b3e2 | 2601 | struct kmem_cache *cachep = arg; |
1da177e4 | 2602 | struct array_cache *ac; |
7d6e6d09 | 2603 | int node = numa_mem_id(); |
1da177e4 LT |
2604 | |
2605 | check_irq_off(); | |
9a2dba4b | 2606 | ac = cpu_cache_get(cachep); |
ff69416e CL |
2607 | spin_lock(&cachep->nodelists[node]->list_lock); |
2608 | free_block(cachep, ac->entry, ac->avail, node); | |
2609 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
2610 | ac->avail = 0; |
2611 | } | |
2612 | ||
343e0d7a | 2613 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2614 | { |
e498be7d CL |
2615 | struct kmem_list3 *l3; |
2616 | int node; | |
2617 | ||
15c8b6c1 | 2618 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2619 | check_irq_on(); |
b28a02de | 2620 | for_each_online_node(node) { |
e498be7d | 2621 | l3 = cachep->nodelists[node]; |
a4523a8b RD |
2622 | if (l3 && l3->alien) |
2623 | drain_alien_cache(cachep, l3->alien); | |
2624 | } | |
2625 | ||
2626 | for_each_online_node(node) { | |
2627 | l3 = cachep->nodelists[node]; | |
2628 | if (l3) | |
aab2207c | 2629 | drain_array(cachep, l3, l3->shared, 1, node); |
e498be7d | 2630 | } |
1da177e4 LT |
2631 | } |
2632 | ||
ed11d9eb CL |
2633 | /* |
2634 | * Remove slabs from the list of free slabs. | |
2635 | * Specify the number of slabs to drain in tofree. | |
2636 | * | |
2637 | * Returns the actual number of slabs released. | |
2638 | */ | |
2639 | static int drain_freelist(struct kmem_cache *cache, | |
2640 | struct kmem_list3 *l3, int tofree) | |
1da177e4 | 2641 | { |
ed11d9eb CL |
2642 | struct list_head *p; |
2643 | int nr_freed; | |
1da177e4 | 2644 | struct slab *slabp; |
1da177e4 | 2645 | |
ed11d9eb CL |
2646 | nr_freed = 0; |
2647 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | |
1da177e4 | 2648 | |
ed11d9eb | 2649 | spin_lock_irq(&l3->list_lock); |
e498be7d | 2650 | p = l3->slabs_free.prev; |
ed11d9eb CL |
2651 | if (p == &l3->slabs_free) { |
2652 | spin_unlock_irq(&l3->list_lock); | |
2653 | goto out; | |
2654 | } | |
1da177e4 | 2655 | |
ed11d9eb | 2656 | slabp = list_entry(p, struct slab, list); |
1da177e4 | 2657 | #if DEBUG |
40094fa6 | 2658 | BUG_ON(slabp->inuse); |
1da177e4 LT |
2659 | #endif |
2660 | list_del(&slabp->list); | |
ed11d9eb CL |
2661 | /* |
2662 | * Safe to drop the lock. The slab is no longer linked | |
2663 | * to the cache. | |
2664 | */ | |
2665 | l3->free_objects -= cache->num; | |
e498be7d | 2666 | spin_unlock_irq(&l3->list_lock); |
ed11d9eb CL |
2667 | slab_destroy(cache, slabp); |
2668 | nr_freed++; | |
1da177e4 | 2669 | } |
ed11d9eb CL |
2670 | out: |
2671 | return nr_freed; | |
1da177e4 LT |
2672 | } |
2673 | ||
8f5be20b | 2674 | /* Called with cache_chain_mutex held to protect against cpu hotplug */ |
343e0d7a | 2675 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2676 | { |
2677 | int ret = 0, i = 0; | |
2678 | struct kmem_list3 *l3; | |
2679 | ||
2680 | drain_cpu_caches(cachep); | |
2681 | ||
2682 | check_irq_on(); | |
2683 | for_each_online_node(i) { | |
2684 | l3 = cachep->nodelists[i]; | |
ed11d9eb CL |
2685 | if (!l3) |
2686 | continue; | |
2687 | ||
2688 | drain_freelist(cachep, l3, l3->free_objects); | |
2689 | ||
2690 | ret += !list_empty(&l3->slabs_full) || | |
2691 | !list_empty(&l3->slabs_partial); | |
e498be7d CL |
2692 | } |
2693 | return (ret ? 1 : 0); | |
2694 | } | |
2695 | ||
1da177e4 LT |
2696 | /** |
2697 | * kmem_cache_shrink - Shrink a cache. | |
2698 | * @cachep: The cache to shrink. | |
2699 | * | |
2700 | * Releases as many slabs as possible for a cache. | |
2701 | * To help debugging, a zero exit status indicates all slabs were released. | |
2702 | */ | |
343e0d7a | 2703 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2704 | { |
8f5be20b | 2705 | int ret; |
40094fa6 | 2706 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2707 | |
95402b38 | 2708 | get_online_cpus(); |
8f5be20b RT |
2709 | mutex_lock(&cache_chain_mutex); |
2710 | ret = __cache_shrink(cachep); | |
2711 | mutex_unlock(&cache_chain_mutex); | |
95402b38 | 2712 | put_online_cpus(); |
8f5be20b | 2713 | return ret; |
1da177e4 LT |
2714 | } |
2715 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2716 | ||
2717 | /** | |
2718 | * kmem_cache_destroy - delete a cache | |
2719 | * @cachep: the cache to destroy | |
2720 | * | |
72fd4a35 | 2721 | * Remove a &struct kmem_cache object from the slab cache. |
1da177e4 LT |
2722 | * |
2723 | * It is expected this function will be called by a module when it is | |
2724 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
2725 | * cache being allocated each time a module is loaded and unloaded, if the | |
2726 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
2727 | * | |
2728 | * The cache must be empty before calling this function. | |
2729 | * | |
25985edc | 2730 | * The caller must guarantee that no one will allocate memory from the cache |
1da177e4 LT |
2731 | * during the kmem_cache_destroy(). |
2732 | */ | |
133d205a | 2733 | void kmem_cache_destroy(struct kmem_cache *cachep) |
1da177e4 | 2734 | { |
40094fa6 | 2735 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2736 | |
1da177e4 | 2737 | /* Find the cache in the chain of caches. */ |
95402b38 | 2738 | get_online_cpus(); |
fc0abb14 | 2739 | mutex_lock(&cache_chain_mutex); |
1da177e4 LT |
2740 | /* |
2741 | * the chain is never empty, cache_cache is never destroyed | |
2742 | */ | |
2743 | list_del(&cachep->next); | |
1da177e4 LT |
2744 | if (__cache_shrink(cachep)) { |
2745 | slab_error(cachep, "Can't free all objects"); | |
b28a02de | 2746 | list_add(&cachep->next, &cache_chain); |
fc0abb14 | 2747 | mutex_unlock(&cache_chain_mutex); |
95402b38 | 2748 | put_online_cpus(); |
133d205a | 2749 | return; |
1da177e4 LT |
2750 | } |
2751 | ||
2752 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
7ed9f7e5 | 2753 | rcu_barrier(); |
1da177e4 | 2754 | |
117f6eb1 | 2755 | __kmem_cache_destroy(cachep); |
8f5be20b | 2756 | mutex_unlock(&cache_chain_mutex); |
95402b38 | 2757 | put_online_cpus(); |
1da177e4 LT |
2758 | } |
2759 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2760 | ||
e5ac9c5a RT |
2761 | /* |
2762 | * Get the memory for a slab management obj. | |
2763 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | |
2764 | * always come from malloc_sizes caches. The slab descriptor cannot | |
2765 | * come from the same cache which is getting created because, | |
2766 | * when we are searching for an appropriate cache for these | |
2767 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | |
2768 | * If we are creating a malloc_sizes cache here it would not be visible to | |
2769 | * kmem_find_general_cachep till the initialization is complete. | |
2770 | * Hence we cannot have slabp_cache same as the original cache. | |
2771 | */ | |
343e0d7a | 2772 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
5b74ada7 RT |
2773 | int colour_off, gfp_t local_flags, |
2774 | int nodeid) | |
1da177e4 LT |
2775 | { |
2776 | struct slab *slabp; | |
b28a02de | 2777 | |
1da177e4 LT |
2778 | if (OFF_SLAB(cachep)) { |
2779 | /* Slab management obj is off-slab. */ | |
5b74ada7 | 2780 | slabp = kmem_cache_alloc_node(cachep->slabp_cache, |
8759ec50 | 2781 | local_flags, nodeid); |
d5cff635 CM |
2782 | /* |
2783 | * If the first object in the slab is leaked (it's allocated | |
2784 | * but no one has a reference to it), we want to make sure | |
2785 | * kmemleak does not treat the ->s_mem pointer as a reference | |
2786 | * to the object. Otherwise we will not report the leak. | |
2787 | */ | |
c017b4be CM |
2788 | kmemleak_scan_area(&slabp->list, sizeof(struct list_head), |
2789 | local_flags); | |
1da177e4 LT |
2790 | if (!slabp) |
2791 | return NULL; | |
2792 | } else { | |
b28a02de | 2793 | slabp = objp + colour_off; |
1da177e4 LT |
2794 | colour_off += cachep->slab_size; |
2795 | } | |
2796 | slabp->inuse = 0; | |
2797 | slabp->colouroff = colour_off; | |
b28a02de | 2798 | slabp->s_mem = objp + colour_off; |
5b74ada7 | 2799 | slabp->nodeid = nodeid; |
e51bfd0a | 2800 | slabp->free = 0; |
1da177e4 LT |
2801 | return slabp; |
2802 | } | |
2803 | ||
2804 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2805 | { | |
b28a02de | 2806 | return (kmem_bufctl_t *) (slabp + 1); |
1da177e4 LT |
2807 | } |
2808 | ||
343e0d7a | 2809 | static void cache_init_objs(struct kmem_cache *cachep, |
a35afb83 | 2810 | struct slab *slabp) |
1da177e4 LT |
2811 | { |
2812 | int i; | |
2813 | ||
2814 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2815 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2816 | #if DEBUG |
2817 | /* need to poison the objs? */ | |
2818 | if (cachep->flags & SLAB_POISON) | |
2819 | poison_obj(cachep, objp, POISON_FREE); | |
2820 | if (cachep->flags & SLAB_STORE_USER) | |
2821 | *dbg_userword(cachep, objp) = NULL; | |
2822 | ||
2823 | if (cachep->flags & SLAB_RED_ZONE) { | |
2824 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2825 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2826 | } | |
2827 | /* | |
a737b3e2 AM |
2828 | * Constructors are not allowed to allocate memory from the same |
2829 | * cache which they are a constructor for. Otherwise, deadlock. | |
2830 | * They must also be threaded. | |
1da177e4 LT |
2831 | */ |
2832 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2833 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2834 | |
2835 | if (cachep->flags & SLAB_RED_ZONE) { | |
2836 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2837 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2838 | " end of an object"); |
1da177e4 LT |
2839 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2840 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2841 | " start of an object"); |
1da177e4 | 2842 | } |
a737b3e2 AM |
2843 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && |
2844 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | |
b28a02de | 2845 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 2846 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
2847 | #else |
2848 | if (cachep->ctor) | |
51cc5068 | 2849 | cachep->ctor(objp); |
1da177e4 | 2850 | #endif |
b28a02de | 2851 | slab_bufctl(slabp)[i] = i + 1; |
1da177e4 | 2852 | } |
b28a02de | 2853 | slab_bufctl(slabp)[i - 1] = BUFCTL_END; |
1da177e4 LT |
2854 | } |
2855 | ||
343e0d7a | 2856 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2857 | { |
4b51d669 CL |
2858 | if (CONFIG_ZONE_DMA_FLAG) { |
2859 | if (flags & GFP_DMA) | |
2860 | BUG_ON(!(cachep->gfpflags & GFP_DMA)); | |
2861 | else | |
2862 | BUG_ON(cachep->gfpflags & GFP_DMA); | |
2863 | } | |
1da177e4 LT |
2864 | } |
2865 | ||
a737b3e2 AM |
2866 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, |
2867 | int nodeid) | |
78d382d7 | 2868 | { |
8fea4e96 | 2869 | void *objp = index_to_obj(cachep, slabp, slabp->free); |
78d382d7 MD |
2870 | kmem_bufctl_t next; |
2871 | ||
2872 | slabp->inuse++; | |
2873 | next = slab_bufctl(slabp)[slabp->free]; | |
2874 | #if DEBUG | |
2875 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2876 | WARN_ON(slabp->nodeid != nodeid); | |
2877 | #endif | |
2878 | slabp->free = next; | |
2879 | ||
2880 | return objp; | |
2881 | } | |
2882 | ||
a737b3e2 AM |
2883 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, |
2884 | void *objp, int nodeid) | |
78d382d7 | 2885 | { |
8fea4e96 | 2886 | unsigned int objnr = obj_to_index(cachep, slabp, objp); |
78d382d7 MD |
2887 | |
2888 | #if DEBUG | |
2889 | /* Verify that the slab belongs to the intended node */ | |
2890 | WARN_ON(slabp->nodeid != nodeid); | |
2891 | ||
871751e2 | 2892 | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { |
78d382d7 | 2893 | printk(KERN_ERR "slab: double free detected in cache " |
a737b3e2 | 2894 | "'%s', objp %p\n", cachep->name, objp); |
78d382d7 MD |
2895 | BUG(); |
2896 | } | |
2897 | #endif | |
2898 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2899 | slabp->free = objnr; | |
2900 | slabp->inuse--; | |
2901 | } | |
2902 | ||
4776874f PE |
2903 | /* |
2904 | * Map pages beginning at addr to the given cache and slab. This is required | |
2905 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2906 | * virtual address for kfree, ksize, and slab debugging. |
4776874f PE |
2907 | */ |
2908 | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | |
2909 | void *addr) | |
1da177e4 | 2910 | { |
4776874f | 2911 | int nr_pages; |
1da177e4 LT |
2912 | struct page *page; |
2913 | ||
4776874f | 2914 | page = virt_to_page(addr); |
84097518 | 2915 | |
4776874f | 2916 | nr_pages = 1; |
84097518 | 2917 | if (likely(!PageCompound(page))) |
4776874f PE |
2918 | nr_pages <<= cache->gfporder; |
2919 | ||
1da177e4 | 2920 | do { |
4776874f PE |
2921 | page_set_cache(page, cache); |
2922 | page_set_slab(page, slab); | |
1da177e4 | 2923 | page++; |
4776874f | 2924 | } while (--nr_pages); |
1da177e4 LT |
2925 | } |
2926 | ||
2927 | /* | |
2928 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2929 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2930 | */ | |
3c517a61 CL |
2931 | static int cache_grow(struct kmem_cache *cachep, |
2932 | gfp_t flags, int nodeid, void *objp) | |
1da177e4 | 2933 | { |
b28a02de | 2934 | struct slab *slabp; |
b28a02de PE |
2935 | size_t offset; |
2936 | gfp_t local_flags; | |
e498be7d | 2937 | struct kmem_list3 *l3; |
1da177e4 | 2938 | |
a737b3e2 AM |
2939 | /* |
2940 | * Be lazy and only check for valid flags here, keeping it out of the | |
2941 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2942 | */ |
6cb06229 CL |
2943 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2944 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | |
1da177e4 | 2945 | |
2e1217cf | 2946 | /* Take the l3 list lock to change the colour_next on this node */ |
1da177e4 | 2947 | check_irq_off(); |
2e1217cf RT |
2948 | l3 = cachep->nodelists[nodeid]; |
2949 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2950 | |
2951 | /* Get colour for the slab, and cal the next value. */ | |
2e1217cf RT |
2952 | offset = l3->colour_next; |
2953 | l3->colour_next++; | |
2954 | if (l3->colour_next >= cachep->colour) | |
2955 | l3->colour_next = 0; | |
2956 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2957 | |
2e1217cf | 2958 | offset *= cachep->colour_off; |
1da177e4 LT |
2959 | |
2960 | if (local_flags & __GFP_WAIT) | |
2961 | local_irq_enable(); | |
2962 | ||
2963 | /* | |
2964 | * The test for missing atomic flag is performed here, rather than | |
2965 | * the more obvious place, simply to reduce the critical path length | |
2966 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2967 | * will eventually be caught here (where it matters). | |
2968 | */ | |
2969 | kmem_flagcheck(cachep, flags); | |
2970 | ||
a737b3e2 AM |
2971 | /* |
2972 | * Get mem for the objs. Attempt to allocate a physical page from | |
2973 | * 'nodeid'. | |
e498be7d | 2974 | */ |
3c517a61 | 2975 | if (!objp) |
b8c1c5da | 2976 | objp = kmem_getpages(cachep, local_flags, nodeid); |
a737b3e2 | 2977 | if (!objp) |
1da177e4 LT |
2978 | goto failed; |
2979 | ||
2980 | /* Get slab management. */ | |
3c517a61 | 2981 | slabp = alloc_slabmgmt(cachep, objp, offset, |
6cb06229 | 2982 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
a737b3e2 | 2983 | if (!slabp) |
1da177e4 LT |
2984 | goto opps1; |
2985 | ||
4776874f | 2986 | slab_map_pages(cachep, slabp, objp); |
1da177e4 | 2987 | |
a35afb83 | 2988 | cache_init_objs(cachep, slabp); |
1da177e4 LT |
2989 | |
2990 | if (local_flags & __GFP_WAIT) | |
2991 | local_irq_disable(); | |
2992 | check_irq_off(); | |
e498be7d | 2993 | spin_lock(&l3->list_lock); |
1da177e4 LT |
2994 | |
2995 | /* Make slab active. */ | |
e498be7d | 2996 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2997 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2998 | l3->free_objects += cachep->num; |
2999 | spin_unlock(&l3->list_lock); | |
1da177e4 | 3000 | return 1; |
a737b3e2 | 3001 | opps1: |
1da177e4 | 3002 | kmem_freepages(cachep, objp); |
a737b3e2 | 3003 | failed: |
1da177e4 LT |
3004 | if (local_flags & __GFP_WAIT) |
3005 | local_irq_disable(); | |
3006 | return 0; | |
3007 | } | |
3008 | ||
3009 | #if DEBUG | |
3010 | ||
3011 | /* | |
3012 | * Perform extra freeing checks: | |
3013 | * - detect bad pointers. | |
3014 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
3015 | */ |
3016 | static void kfree_debugcheck(const void *objp) | |
3017 | { | |
1da177e4 LT |
3018 | if (!virt_addr_valid(objp)) { |
3019 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
3020 | (unsigned long)objp); |
3021 | BUG(); | |
1da177e4 | 3022 | } |
1da177e4 LT |
3023 | } |
3024 | ||
58ce1fd5 PE |
3025 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
3026 | { | |
b46b8f19 | 3027 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
3028 | |
3029 | redzone1 = *dbg_redzone1(cache, obj); | |
3030 | redzone2 = *dbg_redzone2(cache, obj); | |
3031 | ||
3032 | /* | |
3033 | * Redzone is ok. | |
3034 | */ | |
3035 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
3036 | return; | |
3037 | ||
3038 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
3039 | slab_error(cache, "double free detected"); | |
3040 | else | |
3041 | slab_error(cache, "memory outside object was overwritten"); | |
3042 | ||
b46b8f19 | 3043 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
3044 | obj, redzone1, redzone2); |
3045 | } | |
3046 | ||
343e0d7a | 3047 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
b28a02de | 3048 | void *caller) |
1da177e4 LT |
3049 | { |
3050 | struct page *page; | |
3051 | unsigned int objnr; | |
3052 | struct slab *slabp; | |
3053 | ||
80cbd911 MW |
3054 | BUG_ON(virt_to_cache(objp) != cachep); |
3055 | ||
3dafccf2 | 3056 | objp -= obj_offset(cachep); |
1da177e4 | 3057 | kfree_debugcheck(objp); |
b49af68f | 3058 | page = virt_to_head_page(objp); |
1da177e4 | 3059 | |
065d41cb | 3060 | slabp = page_get_slab(page); |
1da177e4 LT |
3061 | |
3062 | if (cachep->flags & SLAB_RED_ZONE) { | |
58ce1fd5 | 3063 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
3064 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
3065 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
3066 | } | |
3067 | if (cachep->flags & SLAB_STORE_USER) | |
3068 | *dbg_userword(cachep, objp) = caller; | |
3069 | ||
8fea4e96 | 3070 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 LT |
3071 | |
3072 | BUG_ON(objnr >= cachep->num); | |
8fea4e96 | 3073 | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); |
1da177e4 | 3074 | |
871751e2 AV |
3075 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3076 | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | |
3077 | #endif | |
1da177e4 LT |
3078 | if (cachep->flags & SLAB_POISON) { |
3079 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 | 3080 | if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
1da177e4 | 3081 | store_stackinfo(cachep, objp, (unsigned long)caller); |
b28a02de | 3082 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 3083 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
3084 | } else { |
3085 | poison_obj(cachep, objp, POISON_FREE); | |
3086 | } | |
3087 | #else | |
3088 | poison_obj(cachep, objp, POISON_FREE); | |
3089 | #endif | |
3090 | } | |
3091 | return objp; | |
3092 | } | |
3093 | ||
343e0d7a | 3094 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 LT |
3095 | { |
3096 | kmem_bufctl_t i; | |
3097 | int entries = 0; | |
b28a02de | 3098 | |
1da177e4 LT |
3099 | /* Check slab's freelist to see if this obj is there. */ |
3100 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
3101 | entries++; | |
3102 | if (entries > cachep->num || i >= cachep->num) | |
3103 | goto bad; | |
3104 | } | |
3105 | if (entries != cachep->num - slabp->inuse) { | |
a737b3e2 AM |
3106 | bad: |
3107 | printk(KERN_ERR "slab: Internal list corruption detected in " | |
face37f5 DJ |
3108 | "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n", |
3109 | cachep->name, cachep->num, slabp, slabp->inuse, | |
3110 | print_tainted()); | |
fdde6abb SAS |
3111 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, |
3112 | sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), | |
3113 | 1); | |
1da177e4 LT |
3114 | BUG(); |
3115 | } | |
3116 | } | |
3117 | #else | |
3118 | #define kfree_debugcheck(x) do { } while(0) | |
3119 | #define cache_free_debugcheck(x,objp,z) (objp) | |
3120 | #define check_slabp(x,y) do { } while(0) | |
3121 | #endif | |
3122 | ||
343e0d7a | 3123 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
3124 | { |
3125 | int batchcount; | |
3126 | struct kmem_list3 *l3; | |
3127 | struct array_cache *ac; | |
1ca4cb24 PE |
3128 | int node; |
3129 | ||
6d2144d3 | 3130 | retry: |
1da177e4 | 3131 | check_irq_off(); |
7d6e6d09 | 3132 | node = numa_mem_id(); |
9a2dba4b | 3133 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3134 | batchcount = ac->batchcount; |
3135 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
3136 | /* |
3137 | * If there was little recent activity on this cache, then | |
3138 | * perform only a partial refill. Otherwise we could generate | |
3139 | * refill bouncing. | |
1da177e4 LT |
3140 | */ |
3141 | batchcount = BATCHREFILL_LIMIT; | |
3142 | } | |
1ca4cb24 | 3143 | l3 = cachep->nodelists[node]; |
e498be7d CL |
3144 | |
3145 | BUG_ON(ac->avail > 0 || !l3); | |
3146 | spin_lock(&l3->list_lock); | |
1da177e4 | 3147 | |
3ded175a | 3148 | /* See if we can refill from the shared array */ |
44b57f1c NP |
3149 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { |
3150 | l3->shared->touched = 1; | |
3ded175a | 3151 | goto alloc_done; |
44b57f1c | 3152 | } |
3ded175a | 3153 | |
1da177e4 LT |
3154 | while (batchcount > 0) { |
3155 | struct list_head *entry; | |
3156 | struct slab *slabp; | |
3157 | /* Get slab alloc is to come from. */ | |
3158 | entry = l3->slabs_partial.next; | |
3159 | if (entry == &l3->slabs_partial) { | |
3160 | l3->free_touched = 1; | |
3161 | entry = l3->slabs_free.next; | |
3162 | if (entry == &l3->slabs_free) | |
3163 | goto must_grow; | |
3164 | } | |
3165 | ||
3166 | slabp = list_entry(entry, struct slab, list); | |
3167 | check_slabp(cachep, slabp); | |
3168 | check_spinlock_acquired(cachep); | |
714b8171 PE |
3169 | |
3170 | /* | |
3171 | * The slab was either on partial or free list so | |
3172 | * there must be at least one object available for | |
3173 | * allocation. | |
3174 | */ | |
249b9f33 | 3175 | BUG_ON(slabp->inuse >= cachep->num); |
714b8171 | 3176 | |
1da177e4 | 3177 | while (slabp->inuse < cachep->num && batchcount--) { |
1da177e4 LT |
3178 | STATS_INC_ALLOCED(cachep); |
3179 | STATS_INC_ACTIVE(cachep); | |
3180 | STATS_SET_HIGH(cachep); | |
3181 | ||
78d382d7 | 3182 | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, |
1ca4cb24 | 3183 | node); |
1da177e4 LT |
3184 | } |
3185 | check_slabp(cachep, slabp); | |
3186 | ||
3187 | /* move slabp to correct slabp list: */ | |
3188 | list_del(&slabp->list); | |
3189 | if (slabp->free == BUFCTL_END) | |
3190 | list_add(&slabp->list, &l3->slabs_full); | |
3191 | else | |
3192 | list_add(&slabp->list, &l3->slabs_partial); | |
3193 | } | |
3194 | ||
a737b3e2 | 3195 | must_grow: |
1da177e4 | 3196 | l3->free_objects -= ac->avail; |
a737b3e2 | 3197 | alloc_done: |
e498be7d | 3198 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
3199 | |
3200 | if (unlikely(!ac->avail)) { | |
3201 | int x; | |
3c517a61 | 3202 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 3203 | |
a737b3e2 | 3204 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 3205 | ac = cpu_cache_get(cachep); |
a737b3e2 | 3206 | if (!x && ac->avail == 0) /* no objects in sight? abort */ |
1da177e4 LT |
3207 | return NULL; |
3208 | ||
a737b3e2 | 3209 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
3210 | goto retry; |
3211 | } | |
3212 | ac->touched = 1; | |
e498be7d | 3213 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3214 | } |
3215 | ||
a737b3e2 AM |
3216 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3217 | gfp_t flags) | |
1da177e4 LT |
3218 | { |
3219 | might_sleep_if(flags & __GFP_WAIT); | |
3220 | #if DEBUG | |
3221 | kmem_flagcheck(cachep, flags); | |
3222 | #endif | |
3223 | } | |
3224 | ||
3225 | #if DEBUG | |
a737b3e2 AM |
3226 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
3227 | gfp_t flags, void *objp, void *caller) | |
1da177e4 | 3228 | { |
b28a02de | 3229 | if (!objp) |
1da177e4 | 3230 | return objp; |
b28a02de | 3231 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3232 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3dafccf2 | 3233 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 3234 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 3235 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
3236 | else |
3237 | check_poison_obj(cachep, objp); | |
3238 | #else | |
3239 | check_poison_obj(cachep, objp); | |
3240 | #endif | |
3241 | poison_obj(cachep, objp, POISON_INUSE); | |
3242 | } | |
3243 | if (cachep->flags & SLAB_STORE_USER) | |
3244 | *dbg_userword(cachep, objp) = caller; | |
3245 | ||
3246 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3247 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3248 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
3249 | slab_error(cachep, "double free, or memory outside" | |
3250 | " object was overwritten"); | |
b28a02de | 3251 | printk(KERN_ERR |
b46b8f19 | 3252 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
3253 | objp, *dbg_redzone1(cachep, objp), |
3254 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3255 | } |
3256 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3257 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3258 | } | |
871751e2 AV |
3259 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3260 | { | |
3261 | struct slab *slabp; | |
3262 | unsigned objnr; | |
3263 | ||
b49af68f | 3264 | slabp = page_get_slab(virt_to_head_page(objp)); |
871751e2 AV |
3265 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; |
3266 | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; | |
3267 | } | |
3268 | #endif | |
3dafccf2 | 3269 | objp += obj_offset(cachep); |
4f104934 | 3270 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3271 | cachep->ctor(objp); |
7ea466f2 TH |
3272 | if (ARCH_SLAB_MINALIGN && |
3273 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
a44b56d3 | 3274 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3275 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3276 | } |
1da177e4 LT |
3277 | return objp; |
3278 | } | |
3279 | #else | |
3280 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3281 | #endif | |
3282 | ||
773ff60e | 3283 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 AM |
3284 | { |
3285 | if (cachep == &cache_cache) | |
773ff60e | 3286 | return false; |
8a8b6502 | 3287 | |
4c13dd3b | 3288 | return should_failslab(obj_size(cachep), flags, cachep->flags); |
8a8b6502 AM |
3289 | } |
3290 | ||
343e0d7a | 3291 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3292 | { |
b28a02de | 3293 | void *objp; |
1da177e4 LT |
3294 | struct array_cache *ac; |
3295 | ||
5c382300 | 3296 | check_irq_off(); |
8a8b6502 | 3297 | |
9a2dba4b | 3298 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3299 | if (likely(ac->avail)) { |
3300 | STATS_INC_ALLOCHIT(cachep); | |
3301 | ac->touched = 1; | |
e498be7d | 3302 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
3303 | } else { |
3304 | STATS_INC_ALLOCMISS(cachep); | |
3305 | objp = cache_alloc_refill(cachep, flags); | |
ddbf2e83 O |
3306 | /* |
3307 | * the 'ac' may be updated by cache_alloc_refill(), | |
3308 | * and kmemleak_erase() requires its correct value. | |
3309 | */ | |
3310 | ac = cpu_cache_get(cachep); | |
1da177e4 | 3311 | } |
d5cff635 CM |
3312 | /* |
3313 | * To avoid a false negative, if an object that is in one of the | |
3314 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3315 | * treat the array pointers as a reference to the object. | |
3316 | */ | |
f3d8b53a O |
3317 | if (objp) |
3318 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3319 | return objp; |
3320 | } | |
3321 | ||
e498be7d | 3322 | #ifdef CONFIG_NUMA |
c61afb18 | 3323 | /* |
b2455396 | 3324 | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. |
c61afb18 PJ |
3325 | * |
3326 | * If we are in_interrupt, then process context, including cpusets and | |
3327 | * mempolicy, may not apply and should not be used for allocation policy. | |
3328 | */ | |
3329 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3330 | { | |
3331 | int nid_alloc, nid_here; | |
3332 | ||
765c4507 | 3333 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3334 | return NULL; |
7d6e6d09 | 3335 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3336 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3337 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 PJ |
3338 | else if (current->mempolicy) |
3339 | nid_alloc = slab_node(current->mempolicy); | |
3340 | if (nid_alloc != nid_here) | |
8b98c169 | 3341 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3342 | return NULL; |
3343 | } | |
3344 | ||
765c4507 CL |
3345 | /* |
3346 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 CL |
3347 | * certain node and fall back is permitted. First we scan all the |
3348 | * available nodelists for available objects. If that fails then we | |
3349 | * perform an allocation without specifying a node. This allows the page | |
3350 | * allocator to do its reclaim / fallback magic. We then insert the | |
3351 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3352 | */ |
8c8cc2c1 | 3353 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3354 | { |
8c8cc2c1 PE |
3355 | struct zonelist *zonelist; |
3356 | gfp_t local_flags; | |
dd1a239f | 3357 | struct zoneref *z; |
54a6eb5c MG |
3358 | struct zone *zone; |
3359 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3360 | void *obj = NULL; |
3c517a61 | 3361 | int nid; |
cc9a6c87 | 3362 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3363 | |
3364 | if (flags & __GFP_THISNODE) | |
3365 | return NULL; | |
3366 | ||
6cb06229 | 3367 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3368 | |
cc9a6c87 MG |
3369 | retry_cpuset: |
3370 | cpuset_mems_cookie = get_mems_allowed(); | |
3371 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); | |
3372 | ||
3c517a61 CL |
3373 | retry: |
3374 | /* | |
3375 | * Look through allowed nodes for objects available | |
3376 | * from existing per node queues. | |
3377 | */ | |
54a6eb5c MG |
3378 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3379 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3380 | |
54a6eb5c | 3381 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3c517a61 | 3382 | cache->nodelists[nid] && |
481c5346 | 3383 | cache->nodelists[nid]->free_objects) { |
3c517a61 CL |
3384 | obj = ____cache_alloc_node(cache, |
3385 | flags | GFP_THISNODE, nid); | |
481c5346 CL |
3386 | if (obj) |
3387 | break; | |
3388 | } | |
3c517a61 CL |
3389 | } |
3390 | ||
cfce6604 | 3391 | if (!obj) { |
3c517a61 CL |
3392 | /* |
3393 | * This allocation will be performed within the constraints | |
3394 | * of the current cpuset / memory policy requirements. | |
3395 | * We may trigger various forms of reclaim on the allowed | |
3396 | * set and go into memory reserves if necessary. | |
3397 | */ | |
dd47ea75 CL |
3398 | if (local_flags & __GFP_WAIT) |
3399 | local_irq_enable(); | |
3400 | kmem_flagcheck(cache, flags); | |
7d6e6d09 | 3401 | obj = kmem_getpages(cache, local_flags, numa_mem_id()); |
dd47ea75 CL |
3402 | if (local_flags & __GFP_WAIT) |
3403 | local_irq_disable(); | |
3c517a61 CL |
3404 | if (obj) { |
3405 | /* | |
3406 | * Insert into the appropriate per node queues | |
3407 | */ | |
3408 | nid = page_to_nid(virt_to_page(obj)); | |
3409 | if (cache_grow(cache, flags, nid, obj)) { | |
3410 | obj = ____cache_alloc_node(cache, | |
3411 | flags | GFP_THISNODE, nid); | |
3412 | if (!obj) | |
3413 | /* | |
3414 | * Another processor may allocate the | |
3415 | * objects in the slab since we are | |
3416 | * not holding any locks. | |
3417 | */ | |
3418 | goto retry; | |
3419 | } else { | |
b6a60451 | 3420 | /* cache_grow already freed obj */ |
3c517a61 CL |
3421 | obj = NULL; |
3422 | } | |
3423 | } | |
aedb0eb1 | 3424 | } |
cc9a6c87 MG |
3425 | |
3426 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) | |
3427 | goto retry_cpuset; | |
765c4507 CL |
3428 | return obj; |
3429 | } | |
3430 | ||
e498be7d CL |
3431 | /* |
3432 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3433 | */ |
8b98c169 | 3434 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3435 | int nodeid) |
e498be7d CL |
3436 | { |
3437 | struct list_head *entry; | |
b28a02de PE |
3438 | struct slab *slabp; |
3439 | struct kmem_list3 *l3; | |
3440 | void *obj; | |
b28a02de PE |
3441 | int x; |
3442 | ||
3443 | l3 = cachep->nodelists[nodeid]; | |
3444 | BUG_ON(!l3); | |
3445 | ||
a737b3e2 | 3446 | retry: |
ca3b9b91 | 3447 | check_irq_off(); |
b28a02de PE |
3448 | spin_lock(&l3->list_lock); |
3449 | entry = l3->slabs_partial.next; | |
3450 | if (entry == &l3->slabs_partial) { | |
3451 | l3->free_touched = 1; | |
3452 | entry = l3->slabs_free.next; | |
3453 | if (entry == &l3->slabs_free) | |
3454 | goto must_grow; | |
3455 | } | |
3456 | ||
3457 | slabp = list_entry(entry, struct slab, list); | |
3458 | check_spinlock_acquired_node(cachep, nodeid); | |
3459 | check_slabp(cachep, slabp); | |
3460 | ||
3461 | STATS_INC_NODEALLOCS(cachep); | |
3462 | STATS_INC_ACTIVE(cachep); | |
3463 | STATS_SET_HIGH(cachep); | |
3464 | ||
3465 | BUG_ON(slabp->inuse == cachep->num); | |
3466 | ||
78d382d7 | 3467 | obj = slab_get_obj(cachep, slabp, nodeid); |
b28a02de PE |
3468 | check_slabp(cachep, slabp); |
3469 | l3->free_objects--; | |
3470 | /* move slabp to correct slabp list: */ | |
3471 | list_del(&slabp->list); | |
3472 | ||
a737b3e2 | 3473 | if (slabp->free == BUFCTL_END) |
b28a02de | 3474 | list_add(&slabp->list, &l3->slabs_full); |
a737b3e2 | 3475 | else |
b28a02de | 3476 | list_add(&slabp->list, &l3->slabs_partial); |
e498be7d | 3477 | |
b28a02de PE |
3478 | spin_unlock(&l3->list_lock); |
3479 | goto done; | |
e498be7d | 3480 | |
a737b3e2 | 3481 | must_grow: |
b28a02de | 3482 | spin_unlock(&l3->list_lock); |
3c517a61 | 3483 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3484 | if (x) |
3485 | goto retry; | |
1da177e4 | 3486 | |
8c8cc2c1 | 3487 | return fallback_alloc(cachep, flags); |
e498be7d | 3488 | |
a737b3e2 | 3489 | done: |
b28a02de | 3490 | return obj; |
e498be7d | 3491 | } |
8c8cc2c1 PE |
3492 | |
3493 | /** | |
3494 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3495 | * @cachep: The cache to allocate from. | |
3496 | * @flags: See kmalloc(). | |
3497 | * @nodeid: node number of the target node. | |
3498 | * @caller: return address of caller, used for debug information | |
3499 | * | |
3500 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3501 | * node, which can improve the performance for cpu bound structures. | |
3502 | * | |
3503 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3504 | */ | |
3505 | static __always_inline void * | |
3506 | __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |
3507 | void *caller) | |
3508 | { | |
3509 | unsigned long save_flags; | |
3510 | void *ptr; | |
7d6e6d09 | 3511 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3512 | |
dcce284a | 3513 | flags &= gfp_allowed_mask; |
7e85ee0c | 3514 | |
cf40bd16 NP |
3515 | lockdep_trace_alloc(flags); |
3516 | ||
773ff60e | 3517 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3518 | return NULL; |
3519 | ||
8c8cc2c1 PE |
3520 | cache_alloc_debugcheck_before(cachep, flags); |
3521 | local_irq_save(save_flags); | |
3522 | ||
eacbbae3 | 3523 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3524 | nodeid = slab_node; |
8c8cc2c1 PE |
3525 | |
3526 | if (unlikely(!cachep->nodelists[nodeid])) { | |
3527 | /* Node not bootstrapped yet */ | |
3528 | ptr = fallback_alloc(cachep, flags); | |
3529 | goto out; | |
3530 | } | |
3531 | ||
7d6e6d09 | 3532 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3533 | /* |
3534 | * Use the locally cached objects if possible. | |
3535 | * However ____cache_alloc does not allow fallback | |
3536 | * to other nodes. It may fail while we still have | |
3537 | * objects on other nodes available. | |
3538 | */ | |
3539 | ptr = ____cache_alloc(cachep, flags); | |
3540 | if (ptr) | |
3541 | goto out; | |
3542 | } | |
3543 | /* ___cache_alloc_node can fall back to other nodes */ | |
3544 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3545 | out: | |
3546 | local_irq_restore(save_flags); | |
3547 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
d5cff635 CM |
3548 | kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, |
3549 | flags); | |
8c8cc2c1 | 3550 | |
c175eea4 PE |
3551 | if (likely(ptr)) |
3552 | kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); | |
3553 | ||
d07dbea4 CL |
3554 | if (unlikely((flags & __GFP_ZERO) && ptr)) |
3555 | memset(ptr, 0, obj_size(cachep)); | |
3556 | ||
8c8cc2c1 PE |
3557 | return ptr; |
3558 | } | |
3559 | ||
3560 | static __always_inline void * | |
3561 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3562 | { | |
3563 | void *objp; | |
3564 | ||
3565 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | |
3566 | objp = alternate_node_alloc(cache, flags); | |
3567 | if (objp) | |
3568 | goto out; | |
3569 | } | |
3570 | objp = ____cache_alloc(cache, flags); | |
3571 | ||
3572 | /* | |
3573 | * We may just have run out of memory on the local node. | |
3574 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3575 | */ | |
7d6e6d09 LS |
3576 | if (!objp) |
3577 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3578 | |
3579 | out: | |
3580 | return objp; | |
3581 | } | |
3582 | #else | |
3583 | ||
3584 | static __always_inline void * | |
3585 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3586 | { | |
3587 | return ____cache_alloc(cachep, flags); | |
3588 | } | |
3589 | ||
3590 | #endif /* CONFIG_NUMA */ | |
3591 | ||
3592 | static __always_inline void * | |
3593 | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | |
3594 | { | |
3595 | unsigned long save_flags; | |
3596 | void *objp; | |
3597 | ||
dcce284a | 3598 | flags &= gfp_allowed_mask; |
7e85ee0c | 3599 | |
cf40bd16 NP |
3600 | lockdep_trace_alloc(flags); |
3601 | ||
773ff60e | 3602 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3603 | return NULL; |
3604 | ||
8c8cc2c1 PE |
3605 | cache_alloc_debugcheck_before(cachep, flags); |
3606 | local_irq_save(save_flags); | |
3607 | objp = __do_cache_alloc(cachep, flags); | |
3608 | local_irq_restore(save_flags); | |
3609 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
d5cff635 CM |
3610 | kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, |
3611 | flags); | |
8c8cc2c1 PE |
3612 | prefetchw(objp); |
3613 | ||
c175eea4 PE |
3614 | if (likely(objp)) |
3615 | kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); | |
3616 | ||
d07dbea4 CL |
3617 | if (unlikely((flags & __GFP_ZERO) && objp)) |
3618 | memset(objp, 0, obj_size(cachep)); | |
3619 | ||
8c8cc2c1 PE |
3620 | return objp; |
3621 | } | |
e498be7d CL |
3622 | |
3623 | /* | |
3624 | * Caller needs to acquire correct kmem_list's list_lock | |
3625 | */ | |
343e0d7a | 3626 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3627 | int node) |
1da177e4 LT |
3628 | { |
3629 | int i; | |
e498be7d | 3630 | struct kmem_list3 *l3; |
1da177e4 LT |
3631 | |
3632 | for (i = 0; i < nr_objects; i++) { | |
3633 | void *objp = objpp[i]; | |
3634 | struct slab *slabp; | |
1da177e4 | 3635 | |
6ed5eb22 | 3636 | slabp = virt_to_slab(objp); |
ff69416e | 3637 | l3 = cachep->nodelists[node]; |
1da177e4 | 3638 | list_del(&slabp->list); |
ff69416e | 3639 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 3640 | check_slabp(cachep, slabp); |
78d382d7 | 3641 | slab_put_obj(cachep, slabp, objp, node); |
1da177e4 | 3642 | STATS_DEC_ACTIVE(cachep); |
e498be7d | 3643 | l3->free_objects++; |
1da177e4 LT |
3644 | check_slabp(cachep, slabp); |
3645 | ||
3646 | /* fixup slab chains */ | |
3647 | if (slabp->inuse == 0) { | |
e498be7d CL |
3648 | if (l3->free_objects > l3->free_limit) { |
3649 | l3->free_objects -= cachep->num; | |
e5ac9c5a RT |
3650 | /* No need to drop any previously held |
3651 | * lock here, even if we have a off-slab slab | |
3652 | * descriptor it is guaranteed to come from | |
3653 | * a different cache, refer to comments before | |
3654 | * alloc_slabmgmt. | |
3655 | */ | |
1da177e4 LT |
3656 | slab_destroy(cachep, slabp); |
3657 | } else { | |
e498be7d | 3658 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
3659 | } |
3660 | } else { | |
3661 | /* Unconditionally move a slab to the end of the | |
3662 | * partial list on free - maximum time for the | |
3663 | * other objects to be freed, too. | |
3664 | */ | |
e498be7d | 3665 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
3666 | } |
3667 | } | |
3668 | } | |
3669 | ||
343e0d7a | 3670 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3671 | { |
3672 | int batchcount; | |
e498be7d | 3673 | struct kmem_list3 *l3; |
7d6e6d09 | 3674 | int node = numa_mem_id(); |
1da177e4 LT |
3675 | |
3676 | batchcount = ac->batchcount; | |
3677 | #if DEBUG | |
3678 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3679 | #endif | |
3680 | check_irq_off(); | |
ff69416e | 3681 | l3 = cachep->nodelists[node]; |
873623df | 3682 | spin_lock(&l3->list_lock); |
e498be7d CL |
3683 | if (l3->shared) { |
3684 | struct array_cache *shared_array = l3->shared; | |
b28a02de | 3685 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3686 | if (max) { |
3687 | if (batchcount > max) | |
3688 | batchcount = max; | |
e498be7d | 3689 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3690 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3691 | shared_array->avail += batchcount; |
3692 | goto free_done; | |
3693 | } | |
3694 | } | |
3695 | ||
ff69416e | 3696 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3697 | free_done: |
1da177e4 LT |
3698 | #if STATS |
3699 | { | |
3700 | int i = 0; | |
3701 | struct list_head *p; | |
3702 | ||
e498be7d CL |
3703 | p = l3->slabs_free.next; |
3704 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
3705 | struct slab *slabp; |
3706 | ||
3707 | slabp = list_entry(p, struct slab, list); | |
3708 | BUG_ON(slabp->inuse); | |
3709 | ||
3710 | i++; | |
3711 | p = p->next; | |
3712 | } | |
3713 | STATS_SET_FREEABLE(cachep, i); | |
3714 | } | |
3715 | #endif | |
e498be7d | 3716 | spin_unlock(&l3->list_lock); |
1da177e4 | 3717 | ac->avail -= batchcount; |
a737b3e2 | 3718 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3719 | } |
3720 | ||
3721 | /* | |
a737b3e2 AM |
3722 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3723 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3724 | */ |
a947eb95 SS |
3725 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
3726 | void *caller) | |
1da177e4 | 3727 | { |
9a2dba4b | 3728 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3729 | |
3730 | check_irq_off(); | |
d5cff635 | 3731 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3732 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3733 | |
c175eea4 PE |
3734 | kmemcheck_slab_free(cachep, objp, obj_size(cachep)); |
3735 | ||
1807a1aa SS |
3736 | /* |
3737 | * Skip calling cache_free_alien() when the platform is not numa. | |
3738 | * This will avoid cache misses that happen while accessing slabp (which | |
3739 | * is per page memory reference) to get nodeid. Instead use a global | |
3740 | * variable to skip the call, which is mostly likely to be present in | |
3741 | * the cache. | |
3742 | */ | |
b6e68bc1 | 3743 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3744 | return; |
3745 | ||
1da177e4 LT |
3746 | if (likely(ac->avail < ac->limit)) { |
3747 | STATS_INC_FREEHIT(cachep); | |
1da177e4 LT |
3748 | } else { |
3749 | STATS_INC_FREEMISS(cachep); | |
3750 | cache_flusharray(cachep, ac); | |
1da177e4 | 3751 | } |
42c8c99c ZJ |
3752 | |
3753 | ac->entry[ac->avail++] = objp; | |
1da177e4 LT |
3754 | } |
3755 | ||
3756 | /** | |
3757 | * kmem_cache_alloc - Allocate an object | |
3758 | * @cachep: The cache to allocate from. | |
3759 | * @flags: See kmalloc(). | |
3760 | * | |
3761 | * Allocate an object from this cache. The flags are only relevant | |
3762 | * if the cache has no available objects. | |
3763 | */ | |
343e0d7a | 3764 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3765 | { |
36555751 EGM |
3766 | void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); |
3767 | ||
ca2b84cb EGM |
3768 | trace_kmem_cache_alloc(_RET_IP_, ret, |
3769 | obj_size(cachep), cachep->buffer_size, flags); | |
36555751 EGM |
3770 | |
3771 | return ret; | |
1da177e4 LT |
3772 | } |
3773 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3774 | ||
0f24f128 | 3775 | #ifdef CONFIG_TRACING |
85beb586 SR |
3776 | void * |
3777 | kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags) | |
36555751 | 3778 | { |
85beb586 SR |
3779 | void *ret; |
3780 | ||
3781 | ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); | |
3782 | ||
3783 | trace_kmalloc(_RET_IP_, ret, | |
3784 | size, slab_buffer_size(cachep), flags); | |
3785 | return ret; | |
36555751 | 3786 | } |
85beb586 | 3787 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3788 | #endif |
3789 | ||
1da177e4 | 3790 | #ifdef CONFIG_NUMA |
8b98c169 CH |
3791 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3792 | { | |
36555751 EGM |
3793 | void *ret = __cache_alloc_node(cachep, flags, nodeid, |
3794 | __builtin_return_address(0)); | |
3795 | ||
ca2b84cb EGM |
3796 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3797 | obj_size(cachep), cachep->buffer_size, | |
3798 | flags, nodeid); | |
36555751 EGM |
3799 | |
3800 | return ret; | |
8b98c169 | 3801 | } |
1da177e4 LT |
3802 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3803 | ||
0f24f128 | 3804 | #ifdef CONFIG_TRACING |
85beb586 SR |
3805 | void *kmem_cache_alloc_node_trace(size_t size, |
3806 | struct kmem_cache *cachep, | |
3807 | gfp_t flags, | |
3808 | int nodeid) | |
36555751 | 3809 | { |
85beb586 SR |
3810 | void *ret; |
3811 | ||
3812 | ret = __cache_alloc_node(cachep, flags, nodeid, | |
36555751 | 3813 | __builtin_return_address(0)); |
85beb586 SR |
3814 | trace_kmalloc_node(_RET_IP_, ret, |
3815 | size, slab_buffer_size(cachep), | |
3816 | flags, nodeid); | |
3817 | return ret; | |
36555751 | 3818 | } |
85beb586 | 3819 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3820 | #endif |
3821 | ||
8b98c169 CH |
3822 | static __always_inline void * |
3823 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | |
97e2bde4 | 3824 | { |
343e0d7a | 3825 | struct kmem_cache *cachep; |
97e2bde4 MS |
3826 | |
3827 | cachep = kmem_find_general_cachep(size, flags); | |
6cb8f913 CL |
3828 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3829 | return cachep; | |
85beb586 | 3830 | return kmem_cache_alloc_node_trace(size, cachep, flags, node); |
97e2bde4 | 3831 | } |
8b98c169 | 3832 | |
0bb38a5c | 3833 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
8b98c169 CH |
3834 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3835 | { | |
3836 | return __do_kmalloc_node(size, flags, node, | |
3837 | __builtin_return_address(0)); | |
3838 | } | |
dbe5e69d | 3839 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3840 | |
3841 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3842 | int node, unsigned long caller) |
8b98c169 | 3843 | { |
ce71e27c | 3844 | return __do_kmalloc_node(size, flags, node, (void *)caller); |
8b98c169 CH |
3845 | } |
3846 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3847 | #else | |
3848 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3849 | { | |
3850 | return __do_kmalloc_node(size, flags, node, NULL); | |
3851 | } | |
3852 | EXPORT_SYMBOL(__kmalloc_node); | |
0bb38a5c | 3853 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ |
8b98c169 | 3854 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3855 | |
3856 | /** | |
800590f5 | 3857 | * __do_kmalloc - allocate memory |
1da177e4 | 3858 | * @size: how many bytes of memory are required. |
800590f5 | 3859 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3860 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3861 | */ |
7fd6b141 PE |
3862 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
3863 | void *caller) | |
1da177e4 | 3864 | { |
343e0d7a | 3865 | struct kmem_cache *cachep; |
36555751 | 3866 | void *ret; |
1da177e4 | 3867 | |
97e2bde4 MS |
3868 | /* If you want to save a few bytes .text space: replace |
3869 | * __ with kmem_. | |
3870 | * Then kmalloc uses the uninlined functions instead of the inline | |
3871 | * functions. | |
3872 | */ | |
3873 | cachep = __find_general_cachep(size, flags); | |
a5c96d8a LT |
3874 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3875 | return cachep; | |
36555751 EGM |
3876 | ret = __cache_alloc(cachep, flags, caller); |
3877 | ||
ca2b84cb EGM |
3878 | trace_kmalloc((unsigned long) caller, ret, |
3879 | size, cachep->buffer_size, flags); | |
36555751 EGM |
3880 | |
3881 | return ret; | |
7fd6b141 PE |
3882 | } |
3883 | ||
7fd6b141 | 3884 | |
0bb38a5c | 3885 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
7fd6b141 PE |
3886 | void *__kmalloc(size_t size, gfp_t flags) |
3887 | { | |
871751e2 | 3888 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
1da177e4 LT |
3889 | } |
3890 | EXPORT_SYMBOL(__kmalloc); | |
3891 | ||
ce71e27c | 3892 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3893 | { |
ce71e27c | 3894 | return __do_kmalloc(size, flags, (void *)caller); |
7fd6b141 PE |
3895 | } |
3896 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3897 | |
3898 | #else | |
3899 | void *__kmalloc(size_t size, gfp_t flags) | |
3900 | { | |
3901 | return __do_kmalloc(size, flags, NULL); | |
3902 | } | |
3903 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3904 | #endif |
3905 | ||
1da177e4 LT |
3906 | /** |
3907 | * kmem_cache_free - Deallocate an object | |
3908 | * @cachep: The cache the allocation was from. | |
3909 | * @objp: The previously allocated object. | |
3910 | * | |
3911 | * Free an object which was previously allocated from this | |
3912 | * cache. | |
3913 | */ | |
343e0d7a | 3914 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3915 | { |
3916 | unsigned long flags; | |
3917 | ||
3918 | local_irq_save(flags); | |
898552c9 | 3919 | debug_check_no_locks_freed(objp, obj_size(cachep)); |
3ac7fe5a TG |
3920 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
3921 | debug_check_no_obj_freed(objp, obj_size(cachep)); | |
a947eb95 | 3922 | __cache_free(cachep, objp, __builtin_return_address(0)); |
1da177e4 | 3923 | local_irq_restore(flags); |
36555751 | 3924 | |
ca2b84cb | 3925 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3926 | } |
3927 | EXPORT_SYMBOL(kmem_cache_free); | |
3928 | ||
1da177e4 LT |
3929 | /** |
3930 | * kfree - free previously allocated memory | |
3931 | * @objp: pointer returned by kmalloc. | |
3932 | * | |
80e93eff PE |
3933 | * If @objp is NULL, no operation is performed. |
3934 | * | |
1da177e4 LT |
3935 | * Don't free memory not originally allocated by kmalloc() |
3936 | * or you will run into trouble. | |
3937 | */ | |
3938 | void kfree(const void *objp) | |
3939 | { | |
343e0d7a | 3940 | struct kmem_cache *c; |
1da177e4 LT |
3941 | unsigned long flags; |
3942 | ||
2121db74 PE |
3943 | trace_kfree(_RET_IP_, objp); |
3944 | ||
6cb8f913 | 3945 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3946 | return; |
3947 | local_irq_save(flags); | |
3948 | kfree_debugcheck(objp); | |
6ed5eb22 | 3949 | c = virt_to_cache(objp); |
f9b8404c | 3950 | debug_check_no_locks_freed(objp, obj_size(c)); |
3ac7fe5a | 3951 | debug_check_no_obj_freed(objp, obj_size(c)); |
a947eb95 | 3952 | __cache_free(c, (void *)objp, __builtin_return_address(0)); |
1da177e4 LT |
3953 | local_irq_restore(flags); |
3954 | } | |
3955 | EXPORT_SYMBOL(kfree); | |
3956 | ||
343e0d7a | 3957 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
1da177e4 | 3958 | { |
3dafccf2 | 3959 | return obj_size(cachep); |
1da177e4 LT |
3960 | } |
3961 | EXPORT_SYMBOL(kmem_cache_size); | |
3962 | ||
e498be7d | 3963 | /* |
183ff22b | 3964 | * This initializes kmem_list3 or resizes various caches for all nodes. |
e498be7d | 3965 | */ |
83b519e8 | 3966 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3967 | { |
3968 | int node; | |
3969 | struct kmem_list3 *l3; | |
cafeb02e | 3970 | struct array_cache *new_shared; |
3395ee05 | 3971 | struct array_cache **new_alien = NULL; |
e498be7d | 3972 | |
9c09a95c | 3973 | for_each_online_node(node) { |
cafeb02e | 3974 | |
3395ee05 | 3975 | if (use_alien_caches) { |
83b519e8 | 3976 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
3395ee05 PM |
3977 | if (!new_alien) |
3978 | goto fail; | |
3979 | } | |
cafeb02e | 3980 | |
63109846 ED |
3981 | new_shared = NULL; |
3982 | if (cachep->shared) { | |
3983 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3984 | cachep->shared*cachep->batchcount, |
83b519e8 | 3985 | 0xbaadf00d, gfp); |
63109846 ED |
3986 | if (!new_shared) { |
3987 | free_alien_cache(new_alien); | |
3988 | goto fail; | |
3989 | } | |
0718dc2a | 3990 | } |
cafeb02e | 3991 | |
a737b3e2 AM |
3992 | l3 = cachep->nodelists[node]; |
3993 | if (l3) { | |
cafeb02e CL |
3994 | struct array_cache *shared = l3->shared; |
3995 | ||
e498be7d CL |
3996 | spin_lock_irq(&l3->list_lock); |
3997 | ||
cafeb02e | 3998 | if (shared) |
0718dc2a CL |
3999 | free_block(cachep, shared->entry, |
4000 | shared->avail, node); | |
e498be7d | 4001 | |
cafeb02e CL |
4002 | l3->shared = new_shared; |
4003 | if (!l3->alien) { | |
e498be7d CL |
4004 | l3->alien = new_alien; |
4005 | new_alien = NULL; | |
4006 | } | |
b28a02de | 4007 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 4008 | cachep->batchcount + cachep->num; |
e498be7d | 4009 | spin_unlock_irq(&l3->list_lock); |
cafeb02e | 4010 | kfree(shared); |
e498be7d CL |
4011 | free_alien_cache(new_alien); |
4012 | continue; | |
4013 | } | |
83b519e8 | 4014 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); |
0718dc2a CL |
4015 | if (!l3) { |
4016 | free_alien_cache(new_alien); | |
4017 | kfree(new_shared); | |
e498be7d | 4018 | goto fail; |
0718dc2a | 4019 | } |
e498be7d CL |
4020 | |
4021 | kmem_list3_init(l3); | |
4022 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
a737b3e2 | 4023 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
cafeb02e | 4024 | l3->shared = new_shared; |
e498be7d | 4025 | l3->alien = new_alien; |
b28a02de | 4026 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 4027 | cachep->batchcount + cachep->num; |
e498be7d CL |
4028 | cachep->nodelists[node] = l3; |
4029 | } | |
cafeb02e | 4030 | return 0; |
0718dc2a | 4031 | |
a737b3e2 | 4032 | fail: |
0718dc2a CL |
4033 | if (!cachep->next.next) { |
4034 | /* Cache is not active yet. Roll back what we did */ | |
4035 | node--; | |
4036 | while (node >= 0) { | |
4037 | if (cachep->nodelists[node]) { | |
4038 | l3 = cachep->nodelists[node]; | |
4039 | ||
4040 | kfree(l3->shared); | |
4041 | free_alien_cache(l3->alien); | |
4042 | kfree(l3); | |
4043 | cachep->nodelists[node] = NULL; | |
4044 | } | |
4045 | node--; | |
4046 | } | |
4047 | } | |
cafeb02e | 4048 | return -ENOMEM; |
e498be7d CL |
4049 | } |
4050 | ||
1da177e4 | 4051 | struct ccupdate_struct { |
343e0d7a | 4052 | struct kmem_cache *cachep; |
acfe7d74 | 4053 | struct array_cache *new[0]; |
1da177e4 LT |
4054 | }; |
4055 | ||
4056 | static void do_ccupdate_local(void *info) | |
4057 | { | |
a737b3e2 | 4058 | struct ccupdate_struct *new = info; |
1da177e4 LT |
4059 | struct array_cache *old; |
4060 | ||
4061 | check_irq_off(); | |
9a2dba4b | 4062 | old = cpu_cache_get(new->cachep); |
e498be7d | 4063 | |
1da177e4 LT |
4064 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
4065 | new->new[smp_processor_id()] = old; | |
4066 | } | |
4067 | ||
b5d8ca7c | 4068 | /* Always called with the cache_chain_mutex held */ |
a737b3e2 | 4069 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 4070 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 4071 | { |
d2e7b7d0 | 4072 | struct ccupdate_struct *new; |
2ed3a4ef | 4073 | int i; |
1da177e4 | 4074 | |
acfe7d74 ED |
4075 | new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), |
4076 | gfp); | |
d2e7b7d0 SS |
4077 | if (!new) |
4078 | return -ENOMEM; | |
4079 | ||
e498be7d | 4080 | for_each_online_cpu(i) { |
7d6e6d09 | 4081 | new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, |
83b519e8 | 4082 | batchcount, gfp); |
d2e7b7d0 | 4083 | if (!new->new[i]) { |
b28a02de | 4084 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
4085 | kfree(new->new[i]); |
4086 | kfree(new); | |
e498be7d | 4087 | return -ENOMEM; |
1da177e4 LT |
4088 | } |
4089 | } | |
d2e7b7d0 | 4090 | new->cachep = cachep; |
1da177e4 | 4091 | |
15c8b6c1 | 4092 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
e498be7d | 4093 | |
1da177e4 | 4094 | check_irq_on(); |
1da177e4 LT |
4095 | cachep->batchcount = batchcount; |
4096 | cachep->limit = limit; | |
e498be7d | 4097 | cachep->shared = shared; |
1da177e4 | 4098 | |
e498be7d | 4099 | for_each_online_cpu(i) { |
d2e7b7d0 | 4100 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
4101 | if (!ccold) |
4102 | continue; | |
7d6e6d09 LS |
4103 | spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); |
4104 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | |
4105 | spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | |
1da177e4 LT |
4106 | kfree(ccold); |
4107 | } | |
d2e7b7d0 | 4108 | kfree(new); |
83b519e8 | 4109 | return alloc_kmemlist(cachep, gfp); |
1da177e4 LT |
4110 | } |
4111 | ||
b5d8ca7c | 4112 | /* Called with cache_chain_mutex held always */ |
83b519e8 | 4113 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
4114 | { |
4115 | int err; | |
4116 | int limit, shared; | |
4117 | ||
a737b3e2 AM |
4118 | /* |
4119 | * The head array serves three purposes: | |
1da177e4 LT |
4120 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
4121 | * - reduce the number of spinlock operations. | |
a737b3e2 | 4122 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
4123 | * bufctl chains: array operations are cheaper. |
4124 | * The numbers are guessed, we should auto-tune as described by | |
4125 | * Bonwick. | |
4126 | */ | |
3dafccf2 | 4127 | if (cachep->buffer_size > 131072) |
1da177e4 | 4128 | limit = 1; |
3dafccf2 | 4129 | else if (cachep->buffer_size > PAGE_SIZE) |
1da177e4 | 4130 | limit = 8; |
3dafccf2 | 4131 | else if (cachep->buffer_size > 1024) |
1da177e4 | 4132 | limit = 24; |
3dafccf2 | 4133 | else if (cachep->buffer_size > 256) |
1da177e4 LT |
4134 | limit = 54; |
4135 | else | |
4136 | limit = 120; | |
4137 | ||
a737b3e2 AM |
4138 | /* |
4139 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
4140 | * allocation behaviour: Most allocs on one cpu, most free operations |
4141 | * on another cpu. For these cases, an efficient object passing between | |
4142 | * cpus is necessary. This is provided by a shared array. The array | |
4143 | * replaces Bonwick's magazine layer. | |
4144 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
4145 | * to a larger limit. Thus disabled by default. | |
4146 | */ | |
4147 | shared = 0; | |
364fbb29 | 4148 | if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 4149 | shared = 8; |
1da177e4 LT |
4150 | |
4151 | #if DEBUG | |
a737b3e2 AM |
4152 | /* |
4153 | * With debugging enabled, large batchcount lead to excessively long | |
4154 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
4155 | */ |
4156 | if (limit > 32) | |
4157 | limit = 32; | |
4158 | #endif | |
83b519e8 | 4159 | err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); |
1da177e4 LT |
4160 | if (err) |
4161 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 4162 | cachep->name, -err); |
2ed3a4ef | 4163 | return err; |
1da177e4 LT |
4164 | } |
4165 | ||
1b55253a CL |
4166 | /* |
4167 | * Drain an array if it contains any elements taking the l3 lock only if | |
b18e7e65 CL |
4168 | * necessary. Note that the l3 listlock also protects the array_cache |
4169 | * if drain_array() is used on the shared array. | |
1b55253a | 4170 | */ |
68a1b195 | 4171 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
1b55253a | 4172 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
4173 | { |
4174 | int tofree; | |
4175 | ||
1b55253a CL |
4176 | if (!ac || !ac->avail) |
4177 | return; | |
1da177e4 LT |
4178 | if (ac->touched && !force) { |
4179 | ac->touched = 0; | |
b18e7e65 | 4180 | } else { |
1b55253a | 4181 | spin_lock_irq(&l3->list_lock); |
b18e7e65 CL |
4182 | if (ac->avail) { |
4183 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
4184 | if (tofree > ac->avail) | |
4185 | tofree = (ac->avail + 1) / 2; | |
4186 | free_block(cachep, ac->entry, tofree, node); | |
4187 | ac->avail -= tofree; | |
4188 | memmove(ac->entry, &(ac->entry[tofree]), | |
4189 | sizeof(void *) * ac->avail); | |
4190 | } | |
1b55253a | 4191 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
4192 | } |
4193 | } | |
4194 | ||
4195 | /** | |
4196 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4197 | * @w: work descriptor |
1da177e4 LT |
4198 | * |
4199 | * Called from workqueue/eventd every few seconds. | |
4200 | * Purpose: | |
4201 | * - clear the per-cpu caches for this CPU. | |
4202 | * - return freeable pages to the main free memory pool. | |
4203 | * | |
a737b3e2 AM |
4204 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4205 | * again on the next iteration. | |
1da177e4 | 4206 | */ |
7c5cae36 | 4207 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4208 | { |
7a7c381d | 4209 | struct kmem_cache *searchp; |
e498be7d | 4210 | struct kmem_list3 *l3; |
7d6e6d09 | 4211 | int node = numa_mem_id(); |
bf6aede7 | 4212 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4213 | |
7c5cae36 | 4214 | if (!mutex_trylock(&cache_chain_mutex)) |
1da177e4 | 4215 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4216 | goto out; |
1da177e4 | 4217 | |
7a7c381d | 4218 | list_for_each_entry(searchp, &cache_chain, next) { |
1da177e4 LT |
4219 | check_irq_on(); |
4220 | ||
35386e3b CL |
4221 | /* |
4222 | * We only take the l3 lock if absolutely necessary and we | |
4223 | * have established with reasonable certainty that | |
4224 | * we can do some work if the lock was obtained. | |
4225 | */ | |
aab2207c | 4226 | l3 = searchp->nodelists[node]; |
35386e3b | 4227 | |
8fce4d8e | 4228 | reap_alien(searchp, l3); |
1da177e4 | 4229 | |
aab2207c | 4230 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4231 | |
35386e3b CL |
4232 | /* |
4233 | * These are racy checks but it does not matter | |
4234 | * if we skip one check or scan twice. | |
4235 | */ | |
e498be7d | 4236 | if (time_after(l3->next_reap, jiffies)) |
35386e3b | 4237 | goto next; |
1da177e4 | 4238 | |
e498be7d | 4239 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 4240 | |
aab2207c | 4241 | drain_array(searchp, l3, l3->shared, 0, node); |
1da177e4 | 4242 | |
ed11d9eb | 4243 | if (l3->free_touched) |
e498be7d | 4244 | l3->free_touched = 0; |
ed11d9eb CL |
4245 | else { |
4246 | int freed; | |
1da177e4 | 4247 | |
ed11d9eb CL |
4248 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
4249 | 5 * searchp->num - 1) / (5 * searchp->num)); | |
4250 | STATS_ADD_REAPED(searchp, freed); | |
4251 | } | |
35386e3b | 4252 | next: |
1da177e4 LT |
4253 | cond_resched(); |
4254 | } | |
4255 | check_irq_on(); | |
fc0abb14 | 4256 | mutex_unlock(&cache_chain_mutex); |
8fce4d8e | 4257 | next_reap_node(); |
7c5cae36 | 4258 | out: |
a737b3e2 | 4259 | /* Set up the next iteration */ |
7c5cae36 | 4260 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); |
1da177e4 LT |
4261 | } |
4262 | ||
158a9624 | 4263 | #ifdef CONFIG_SLABINFO |
1da177e4 | 4264 | |
85289f98 | 4265 | static void print_slabinfo_header(struct seq_file *m) |
1da177e4 | 4266 | { |
85289f98 PE |
4267 | /* |
4268 | * Output format version, so at least we can change it | |
4269 | * without _too_ many complaints. | |
4270 | */ | |
1da177e4 | 4271 | #if STATS |
85289f98 | 4272 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
1da177e4 | 4273 | #else |
85289f98 | 4274 | seq_puts(m, "slabinfo - version: 2.1\n"); |
1da177e4 | 4275 | #endif |
85289f98 PE |
4276 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
4277 | "<objperslab> <pagesperslab>"); | |
4278 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4279 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1da177e4 | 4280 | #if STATS |
85289f98 | 4281 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " |
fb7faf33 | 4282 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
85289f98 | 4283 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1da177e4 | 4284 | #endif |
85289f98 PE |
4285 | seq_putc(m, '\n'); |
4286 | } | |
4287 | ||
4288 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4289 | { | |
4290 | loff_t n = *pos; | |
85289f98 | 4291 | |
fc0abb14 | 4292 | mutex_lock(&cache_chain_mutex); |
85289f98 PE |
4293 | if (!n) |
4294 | print_slabinfo_header(m); | |
b92151ba PE |
4295 | |
4296 | return seq_list_start(&cache_chain, *pos); | |
1da177e4 LT |
4297 | } |
4298 | ||
4299 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4300 | { | |
b92151ba | 4301 | return seq_list_next(p, &cache_chain, pos); |
1da177e4 LT |
4302 | } |
4303 | ||
4304 | static void s_stop(struct seq_file *m, void *p) | |
4305 | { | |
fc0abb14 | 4306 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4307 | } |
4308 | ||
4309 | static int s_show(struct seq_file *m, void *p) | |
4310 | { | |
b92151ba | 4311 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); |
b28a02de PE |
4312 | struct slab *slabp; |
4313 | unsigned long active_objs; | |
4314 | unsigned long num_objs; | |
4315 | unsigned long active_slabs = 0; | |
4316 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4317 | const char *name; |
1da177e4 | 4318 | char *error = NULL; |
e498be7d CL |
4319 | int node; |
4320 | struct kmem_list3 *l3; | |
1da177e4 | 4321 | |
1da177e4 LT |
4322 | active_objs = 0; |
4323 | num_slabs = 0; | |
e498be7d CL |
4324 | for_each_online_node(node) { |
4325 | l3 = cachep->nodelists[node]; | |
4326 | if (!l3) | |
4327 | continue; | |
4328 | ||
ca3b9b91 RT |
4329 | check_irq_on(); |
4330 | spin_lock_irq(&l3->list_lock); | |
e498be7d | 4331 | |
7a7c381d | 4332 | list_for_each_entry(slabp, &l3->slabs_full, list) { |
e498be7d CL |
4333 | if (slabp->inuse != cachep->num && !error) |
4334 | error = "slabs_full accounting error"; | |
4335 | active_objs += cachep->num; | |
4336 | active_slabs++; | |
4337 | } | |
7a7c381d | 4338 | list_for_each_entry(slabp, &l3->slabs_partial, list) { |
e498be7d CL |
4339 | if (slabp->inuse == cachep->num && !error) |
4340 | error = "slabs_partial inuse accounting error"; | |
4341 | if (!slabp->inuse && !error) | |
4342 | error = "slabs_partial/inuse accounting error"; | |
4343 | active_objs += slabp->inuse; | |
4344 | active_slabs++; | |
4345 | } | |
7a7c381d | 4346 | list_for_each_entry(slabp, &l3->slabs_free, list) { |
e498be7d CL |
4347 | if (slabp->inuse && !error) |
4348 | error = "slabs_free/inuse accounting error"; | |
4349 | num_slabs++; | |
4350 | } | |
4351 | free_objects += l3->free_objects; | |
4484ebf1 RT |
4352 | if (l3->shared) |
4353 | shared_avail += l3->shared->avail; | |
e498be7d | 4354 | |
ca3b9b91 | 4355 | spin_unlock_irq(&l3->list_lock); |
1da177e4 | 4356 | } |
b28a02de PE |
4357 | num_slabs += active_slabs; |
4358 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4359 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4360 | error = "free_objects accounting error"; |
4361 | ||
b28a02de | 4362 | name = cachep->name; |
1da177e4 LT |
4363 | if (error) |
4364 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4365 | ||
4366 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3dafccf2 | 4367 | name, active_objs, num_objs, cachep->buffer_size, |
b28a02de | 4368 | cachep->num, (1 << cachep->gfporder)); |
1da177e4 | 4369 | seq_printf(m, " : tunables %4u %4u %4u", |
b28a02de | 4370 | cachep->limit, cachep->batchcount, cachep->shared); |
e498be7d | 4371 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
b28a02de | 4372 | active_slabs, num_slabs, shared_avail); |
1da177e4 | 4373 | #if STATS |
b28a02de | 4374 | { /* list3 stats */ |
1da177e4 LT |
4375 | unsigned long high = cachep->high_mark; |
4376 | unsigned long allocs = cachep->num_allocations; | |
4377 | unsigned long grown = cachep->grown; | |
4378 | unsigned long reaped = cachep->reaped; | |
4379 | unsigned long errors = cachep->errors; | |
4380 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4381 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4382 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4383 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4384 | |
e92dd4fd JP |
4385 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
4386 | "%4lu %4lu %4lu %4lu %4lu", | |
4387 | allocs, high, grown, | |
4388 | reaped, errors, max_freeable, node_allocs, | |
4389 | node_frees, overflows); | |
1da177e4 LT |
4390 | } |
4391 | /* cpu stats */ | |
4392 | { | |
4393 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4394 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4395 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4396 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4397 | ||
4398 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4399 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4400 | } |
4401 | #endif | |
4402 | seq_putc(m, '\n'); | |
1da177e4 LT |
4403 | return 0; |
4404 | } | |
4405 | ||
4406 | /* | |
4407 | * slabinfo_op - iterator that generates /proc/slabinfo | |
4408 | * | |
4409 | * Output layout: | |
4410 | * cache-name | |
4411 | * num-active-objs | |
4412 | * total-objs | |
4413 | * object size | |
4414 | * num-active-slabs | |
4415 | * total-slabs | |
4416 | * num-pages-per-slab | |
4417 | * + further values on SMP and with statistics enabled | |
4418 | */ | |
4419 | ||
7b3c3a50 | 4420 | static const struct seq_operations slabinfo_op = { |
b28a02de PE |
4421 | .start = s_start, |
4422 | .next = s_next, | |
4423 | .stop = s_stop, | |
4424 | .show = s_show, | |
1da177e4 LT |
4425 | }; |
4426 | ||
4427 | #define MAX_SLABINFO_WRITE 128 | |
4428 | /** | |
4429 | * slabinfo_write - Tuning for the slab allocator | |
4430 | * @file: unused | |
4431 | * @buffer: user buffer | |
4432 | * @count: data length | |
4433 | * @ppos: unused | |
4434 | */ | |
68a1b195 | 4435 | static ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4436 | size_t count, loff_t *ppos) |
1da177e4 | 4437 | { |
b28a02de | 4438 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4439 | int limit, batchcount, shared, res; |
7a7c381d | 4440 | struct kmem_cache *cachep; |
b28a02de | 4441 | |
1da177e4 LT |
4442 | if (count > MAX_SLABINFO_WRITE) |
4443 | return -EINVAL; | |
4444 | if (copy_from_user(&kbuf, buffer, count)) | |
4445 | return -EFAULT; | |
b28a02de | 4446 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4447 | |
4448 | tmp = strchr(kbuf, ' '); | |
4449 | if (!tmp) | |
4450 | return -EINVAL; | |
4451 | *tmp = '\0'; | |
4452 | tmp++; | |
4453 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4454 | return -EINVAL; | |
4455 | ||
4456 | /* Find the cache in the chain of caches. */ | |
fc0abb14 | 4457 | mutex_lock(&cache_chain_mutex); |
1da177e4 | 4458 | res = -EINVAL; |
7a7c381d | 4459 | list_for_each_entry(cachep, &cache_chain, next) { |
1da177e4 | 4460 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4461 | if (limit < 1 || batchcount < 1 || |
4462 | batchcount > limit || shared < 0) { | |
e498be7d | 4463 | res = 0; |
1da177e4 | 4464 | } else { |
e498be7d | 4465 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4466 | batchcount, shared, |
4467 | GFP_KERNEL); | |
1da177e4 LT |
4468 | } |
4469 | break; | |
4470 | } | |
4471 | } | |
fc0abb14 | 4472 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4473 | if (res >= 0) |
4474 | res = count; | |
4475 | return res; | |
4476 | } | |
871751e2 | 4477 | |
7b3c3a50 AD |
4478 | static int slabinfo_open(struct inode *inode, struct file *file) |
4479 | { | |
4480 | return seq_open(file, &slabinfo_op); | |
4481 | } | |
4482 | ||
4483 | static const struct file_operations proc_slabinfo_operations = { | |
4484 | .open = slabinfo_open, | |
4485 | .read = seq_read, | |
4486 | .write = slabinfo_write, | |
4487 | .llseek = seq_lseek, | |
4488 | .release = seq_release, | |
4489 | }; | |
4490 | ||
871751e2 AV |
4491 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4492 | ||
4493 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4494 | { | |
871751e2 | 4495 | mutex_lock(&cache_chain_mutex); |
b92151ba | 4496 | return seq_list_start(&cache_chain, *pos); |
871751e2 AV |
4497 | } |
4498 | ||
4499 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4500 | { | |
4501 | unsigned long *p; | |
4502 | int l; | |
4503 | if (!v) | |
4504 | return 1; | |
4505 | l = n[1]; | |
4506 | p = n + 2; | |
4507 | while (l) { | |
4508 | int i = l/2; | |
4509 | unsigned long *q = p + 2 * i; | |
4510 | if (*q == v) { | |
4511 | q[1]++; | |
4512 | return 1; | |
4513 | } | |
4514 | if (*q > v) { | |
4515 | l = i; | |
4516 | } else { | |
4517 | p = q + 2; | |
4518 | l -= i + 1; | |
4519 | } | |
4520 | } | |
4521 | if (++n[1] == n[0]) | |
4522 | return 0; | |
4523 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4524 | p[0] = v; | |
4525 | p[1] = 1; | |
4526 | return 1; | |
4527 | } | |
4528 | ||
4529 | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | |
4530 | { | |
4531 | void *p; | |
4532 | int i; | |
4533 | if (n[0] == n[1]) | |
4534 | return; | |
4535 | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { | |
4536 | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) | |
4537 | continue; | |
4538 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | |
4539 | return; | |
4540 | } | |
4541 | } | |
4542 | ||
4543 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4544 | { | |
4545 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4546 | unsigned long offset, size; |
9281acea | 4547 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4548 | |
a5c43dae | 4549 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4550 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4551 | if (modname[0]) |
871751e2 AV |
4552 | seq_printf(m, " [%s]", modname); |
4553 | return; | |
4554 | } | |
4555 | #endif | |
4556 | seq_printf(m, "%p", (void *)address); | |
4557 | } | |
4558 | ||
4559 | static int leaks_show(struct seq_file *m, void *p) | |
4560 | { | |
b92151ba | 4561 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); |
871751e2 AV |
4562 | struct slab *slabp; |
4563 | struct kmem_list3 *l3; | |
4564 | const char *name; | |
4565 | unsigned long *n = m->private; | |
4566 | int node; | |
4567 | int i; | |
4568 | ||
4569 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4570 | return 0; | |
4571 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4572 | return 0; | |
4573 | ||
4574 | /* OK, we can do it */ | |
4575 | ||
4576 | n[1] = 0; | |
4577 | ||
4578 | for_each_online_node(node) { | |
4579 | l3 = cachep->nodelists[node]; | |
4580 | if (!l3) | |
4581 | continue; | |
4582 | ||
4583 | check_irq_on(); | |
4584 | spin_lock_irq(&l3->list_lock); | |
4585 | ||
7a7c381d | 4586 | list_for_each_entry(slabp, &l3->slabs_full, list) |
871751e2 | 4587 | handle_slab(n, cachep, slabp); |
7a7c381d | 4588 | list_for_each_entry(slabp, &l3->slabs_partial, list) |
871751e2 | 4589 | handle_slab(n, cachep, slabp); |
871751e2 AV |
4590 | spin_unlock_irq(&l3->list_lock); |
4591 | } | |
4592 | name = cachep->name; | |
4593 | if (n[0] == n[1]) { | |
4594 | /* Increase the buffer size */ | |
4595 | mutex_unlock(&cache_chain_mutex); | |
4596 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | |
4597 | if (!m->private) { | |
4598 | /* Too bad, we are really out */ | |
4599 | m->private = n; | |
4600 | mutex_lock(&cache_chain_mutex); | |
4601 | return -ENOMEM; | |
4602 | } | |
4603 | *(unsigned long *)m->private = n[0] * 2; | |
4604 | kfree(n); | |
4605 | mutex_lock(&cache_chain_mutex); | |
4606 | /* Now make sure this entry will be retried */ | |
4607 | m->count = m->size; | |
4608 | return 0; | |
4609 | } | |
4610 | for (i = 0; i < n[1]; i++) { | |
4611 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | |
4612 | show_symbol(m, n[2*i+2]); | |
4613 | seq_putc(m, '\n'); | |
4614 | } | |
d2e7b7d0 | 4615 | |
871751e2 AV |
4616 | return 0; |
4617 | } | |
4618 | ||
a0ec95a8 | 4619 | static const struct seq_operations slabstats_op = { |
871751e2 AV |
4620 | .start = leaks_start, |
4621 | .next = s_next, | |
4622 | .stop = s_stop, | |
4623 | .show = leaks_show, | |
4624 | }; | |
a0ec95a8 AD |
4625 | |
4626 | static int slabstats_open(struct inode *inode, struct file *file) | |
4627 | { | |
4628 | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | |
4629 | int ret = -ENOMEM; | |
4630 | if (n) { | |
4631 | ret = seq_open(file, &slabstats_op); | |
4632 | if (!ret) { | |
4633 | struct seq_file *m = file->private_data; | |
4634 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4635 | m->private = n; | |
4636 | n = NULL; | |
4637 | } | |
4638 | kfree(n); | |
4639 | } | |
4640 | return ret; | |
4641 | } | |
4642 | ||
4643 | static const struct file_operations proc_slabstats_operations = { | |
4644 | .open = slabstats_open, | |
4645 | .read = seq_read, | |
4646 | .llseek = seq_lseek, | |
4647 | .release = seq_release_private, | |
4648 | }; | |
4649 | #endif | |
4650 | ||
4651 | static int __init slab_proc_init(void) | |
4652 | { | |
ab067e99 | 4653 | proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations); |
a0ec95a8 AD |
4654 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4655 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4656 | #endif |
a0ec95a8 AD |
4657 | return 0; |
4658 | } | |
4659 | module_init(slab_proc_init); | |
1da177e4 LT |
4660 | #endif |
4661 | ||
00e145b6 MS |
4662 | /** |
4663 | * ksize - get the actual amount of memory allocated for a given object | |
4664 | * @objp: Pointer to the object | |
4665 | * | |
4666 | * kmalloc may internally round up allocations and return more memory | |
4667 | * than requested. ksize() can be used to determine the actual amount of | |
4668 | * memory allocated. The caller may use this additional memory, even though | |
4669 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4670 | * The caller must guarantee that objp points to a valid object previously | |
4671 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4672 | * must not be freed during the duration of the call. | |
4673 | */ | |
fd76bab2 | 4674 | size_t ksize(const void *objp) |
1da177e4 | 4675 | { |
ef8b4520 CL |
4676 | BUG_ON(!objp); |
4677 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4678 | return 0; |
1da177e4 | 4679 | |
6ed5eb22 | 4680 | return obj_size(virt_to_cache(objp)); |
1da177e4 | 4681 | } |
b1aabecd | 4682 | EXPORT_SYMBOL(ksize); |