]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab.c
mm/slab: racy access/modify the slab color
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
e0a42726
IM
216static int slab_early_init = 1;
217
ce8eb6c4 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 219
ce8eb6c4 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
221{
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
2e1217cf 227 parent->colour_next = 0;
e498be7d
CL
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231}
232
a737b3e2
AM
233#define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
18bf8541 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
237 } while (0)
238
a737b3e2
AM
239#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
e498be7d
CL
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
1da177e4 245
b03a017b 246#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 247#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 248#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
249#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251#define BATCHREFILL_LIMIT 16
a737b3e2
AM
252/*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
1da177e4 255 *
dc6f3f27 256 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
257 * which could lock up otherwise freeable slabs.
258 */
5f0985bb
JZ
259#define REAPTIMEOUT_AC (2*HZ)
260#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
261
262#if STATS
263#define STATS_INC_ACTIVE(x) ((x)->num_active++)
264#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 267#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
268#define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
1da177e4
LT
273#define STATS_INC_ERR(x) ((x)->errors++)
274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 275#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 276#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
277#define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286#else
287#define STATS_INC_ACTIVE(x) do { } while (0)
288#define STATS_DEC_ACTIVE(x) do { } while (0)
289#define STATS_INC_ALLOCED(x) do { } while (0)
290#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 291#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
292#define STATS_SET_HIGH(x) do { } while (0)
293#define STATS_INC_ERR(x) do { } while (0)
294#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 295#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 296#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
298#define STATS_INC_ALLOCHIT(x) do { } while (0)
299#define STATS_INC_ALLOCMISS(x) do { } while (0)
300#define STATS_INC_FREEHIT(x) do { } while (0)
301#define STATS_INC_FREEMISS(x) do { } while (0)
302#endif
303
304#if DEBUG
1da177e4 305
a737b3e2
AM
306/*
307 * memory layout of objects:
1da177e4 308 * 0 : objp
3dafccf2 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
3dafccf2 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 313 * redzone word.
3dafccf2 314 * cachep->obj_offset: The real object.
3b0efdfa
CL
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 317 * [BYTES_PER_WORD long]
1da177e4 318 */
343e0d7a 319static int obj_offset(struct kmem_cache *cachep)
1da177e4 320{
3dafccf2 321 return cachep->obj_offset;
1da177e4
LT
322}
323
b46b8f19 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
325{
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 335 return (unsigned long long *)(objp + cachep->size -
b46b8f19 336 sizeof(unsigned long long) -
87a927c7 337 REDZONE_ALIGN);
3b0efdfa 338 return (unsigned long long *) (objp + cachep->size -
b46b8f19 339 sizeof(unsigned long long));
1da177e4
LT
340}
341
343e0d7a 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
343{
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
346}
347
348#else
349
3dafccf2 350#define obj_offset(x) 0
b46b8f19
DW
351#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
353#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355#endif
356
03787301
JK
357#ifdef CONFIG_DEBUG_SLAB_LEAK
358
d31676df 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 360{
d31676df
JK
361 return atomic_read(&cachep->store_user_clean) == 1;
362}
03787301 363
d31676df
JK
364static inline void set_store_user_clean(struct kmem_cache *cachep)
365{
366 atomic_set(&cachep->store_user_clean, 1);
367}
03787301 368
d31676df
JK
369static inline void set_store_user_dirty(struct kmem_cache *cachep)
370{
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
373}
374
375#else
d31676df 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
377
378#endif
379
1da177e4 380/*
3df1cccd
DR
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
1da177e4 383 */
543585cc
DR
384#define SLAB_MAX_ORDER_HI 1
385#define SLAB_MAX_ORDER_LO 0
386static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 387static bool slab_max_order_set __initdata;
1da177e4 388
6ed5eb22
PE
389static inline struct kmem_cache *virt_to_cache(const void *obj)
390{
b49af68f 391 struct page *page = virt_to_head_page(obj);
35026088 392 return page->slab_cache;
6ed5eb22
PE
393}
394
8456a648 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
396 unsigned int idx)
397{
8456a648 398 return page->s_mem + cache->size * idx;
8fea4e96
PE
399}
400
6a2d7a95 401/*
3b0efdfa
CL
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
6a2d7a95
ED
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 408 const struct page *page, void *obj)
8fea4e96 409{
8456a648 410 u32 offset = (obj - page->s_mem);
6a2d7a95 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
412}
413
6fb92430 414#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
1871e52c 424static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 425
343e0d7a 426static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 427{
bf0dea23 428 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
429}
430
a737b3e2
AM
431/*
432 * Calculate the number of objects and left-over bytes for a given buffer size.
433 */
70f75067
JK
434static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
435 unsigned long flags, size_t *left_over)
fbaccacf 436{
70f75067 437 unsigned int num;
fbaccacf 438 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 439
fbaccacf
SR
440 /*
441 * The slab management structure can be either off the slab or
442 * on it. For the latter case, the memory allocated for a
443 * slab is used for:
444 *
fbaccacf 445 * - @buffer_size bytes for each object
2e6b3602
JK
446 * - One freelist_idx_t for each object
447 *
448 * We don't need to consider alignment of freelist because
449 * freelist will be at the end of slab page. The objects will be
450 * at the correct alignment.
fbaccacf
SR
451 *
452 * If the slab management structure is off the slab, then the
453 * alignment will already be calculated into the size. Because
454 * the slabs are all pages aligned, the objects will be at the
455 * correct alignment when allocated.
456 */
b03a017b 457 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 458 num = slab_size / buffer_size;
2e6b3602 459 *left_over = slab_size % buffer_size;
fbaccacf 460 } else {
70f75067 461 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
462 *left_over = slab_size %
463 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 464 }
70f75067
JK
465
466 return num;
1da177e4
LT
467}
468
f28510d3 469#if DEBUG
d40cee24 470#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 471
a737b3e2
AM
472static void __slab_error(const char *function, struct kmem_cache *cachep,
473 char *msg)
1da177e4 474{
1170532b 475 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 476 function, cachep->name, msg);
1da177e4 477 dump_stack();
373d4d09 478 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 479}
f28510d3 480#endif
1da177e4 481
3395ee05
PM
482/*
483 * By default on NUMA we use alien caches to stage the freeing of
484 * objects allocated from other nodes. This causes massive memory
485 * inefficiencies when using fake NUMA setup to split memory into a
486 * large number of small nodes, so it can be disabled on the command
487 * line
488 */
489
490static int use_alien_caches __read_mostly = 1;
491static int __init noaliencache_setup(char *s)
492{
493 use_alien_caches = 0;
494 return 1;
495}
496__setup("noaliencache", noaliencache_setup);
497
3df1cccd
DR
498static int __init slab_max_order_setup(char *str)
499{
500 get_option(&str, &slab_max_order);
501 slab_max_order = slab_max_order < 0 ? 0 :
502 min(slab_max_order, MAX_ORDER - 1);
503 slab_max_order_set = true;
504
505 return 1;
506}
507__setup("slab_max_order=", slab_max_order_setup);
508
8fce4d8e
CL
509#ifdef CONFIG_NUMA
510/*
511 * Special reaping functions for NUMA systems called from cache_reap().
512 * These take care of doing round robin flushing of alien caches (containing
513 * objects freed on different nodes from which they were allocated) and the
514 * flushing of remote pcps by calling drain_node_pages.
515 */
1871e52c 516static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
517
518static void init_reap_node(int cpu)
519{
520 int node;
521
7d6e6d09 522 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 523 if (node == MAX_NUMNODES)
442295c9 524 node = first_node(node_online_map);
8fce4d8e 525
1871e52c 526 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
527}
528
529static void next_reap_node(void)
530{
909ea964 531 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 532
8fce4d8e
CL
533 node = next_node(node, node_online_map);
534 if (unlikely(node >= MAX_NUMNODES))
535 node = first_node(node_online_map);
909ea964 536 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
537}
538
539#else
540#define init_reap_node(cpu) do { } while (0)
541#define next_reap_node(void) do { } while (0)
542#endif
543
1da177e4
LT
544/*
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
549 * lock.
550 */
0db0628d 551static void start_cpu_timer(int cpu)
1da177e4 552{
1871e52c 553 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
554
555 /*
556 * When this gets called from do_initcalls via cpucache_init(),
557 * init_workqueues() has already run, so keventd will be setup
558 * at that time.
559 */
52bad64d 560 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 561 init_reap_node(cpu);
203b42f7 562 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
563 schedule_delayed_work_on(cpu, reap_work,
564 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
565 }
566}
567
1fe00d50 568static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 569{
d5cff635
CM
570 /*
571 * The array_cache structures contain pointers to free object.
25985edc 572 * However, when such objects are allocated or transferred to another
d5cff635
CM
573 * cache the pointers are not cleared and they could be counted as
574 * valid references during a kmemleak scan. Therefore, kmemleak must
575 * not scan such objects.
576 */
1fe00d50
JK
577 kmemleak_no_scan(ac);
578 if (ac) {
579 ac->avail = 0;
580 ac->limit = limit;
581 ac->batchcount = batch;
582 ac->touched = 0;
1da177e4 583 }
1fe00d50
JK
584}
585
586static struct array_cache *alloc_arraycache(int node, int entries,
587 int batchcount, gfp_t gfp)
588{
5e804789 589 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
590 struct array_cache *ac = NULL;
591
592 ac = kmalloc_node(memsize, gfp, node);
593 init_arraycache(ac, entries, batchcount);
594 return ac;
1da177e4
LT
595}
596
f68f8ddd
JK
597static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
598 struct page *page, void *objp)
072bb0aa 599{
f68f8ddd
JK
600 struct kmem_cache_node *n;
601 int page_node;
602 LIST_HEAD(list);
072bb0aa 603
f68f8ddd
JK
604 page_node = page_to_nid(page);
605 n = get_node(cachep, page_node);
381760ea 606
f68f8ddd
JK
607 spin_lock(&n->list_lock);
608 free_block(cachep, &objp, 1, page_node, &list);
609 spin_unlock(&n->list_lock);
381760ea 610
f68f8ddd 611 slabs_destroy(cachep, &list);
072bb0aa
MG
612}
613
3ded175a
CL
614/*
615 * Transfer objects in one arraycache to another.
616 * Locking must be handled by the caller.
617 *
618 * Return the number of entries transferred.
619 */
620static int transfer_objects(struct array_cache *to,
621 struct array_cache *from, unsigned int max)
622{
623 /* Figure out how many entries to transfer */
732eacc0 624 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
625
626 if (!nr)
627 return 0;
628
629 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
630 sizeof(void *) *nr);
631
632 from->avail -= nr;
633 to->avail += nr;
3ded175a
CL
634 return nr;
635}
636
765c4507
CL
637#ifndef CONFIG_NUMA
638
639#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 640#define reap_alien(cachep, n) do { } while (0)
765c4507 641
c8522a3a
JK
642static inline struct alien_cache **alloc_alien_cache(int node,
643 int limit, gfp_t gfp)
765c4507 644{
8888177e 645 return NULL;
765c4507
CL
646}
647
c8522a3a 648static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
649{
650}
651
652static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653{
654 return 0;
655}
656
657static inline void *alternate_node_alloc(struct kmem_cache *cachep,
658 gfp_t flags)
659{
660 return NULL;
661}
662
8b98c169 663static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
664 gfp_t flags, int nodeid)
665{
666 return NULL;
667}
668
4167e9b2
DR
669static inline gfp_t gfp_exact_node(gfp_t flags)
670{
444eb2a4 671 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
672}
673
765c4507
CL
674#else /* CONFIG_NUMA */
675
8b98c169 676static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 677static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 678
c8522a3a
JK
679static struct alien_cache *__alloc_alien_cache(int node, int entries,
680 int batch, gfp_t gfp)
681{
5e804789 682 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
683 struct alien_cache *alc = NULL;
684
685 alc = kmalloc_node(memsize, gfp, node);
686 init_arraycache(&alc->ac, entries, batch);
49dfc304 687 spin_lock_init(&alc->lock);
c8522a3a
JK
688 return alc;
689}
690
691static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 692{
c8522a3a 693 struct alien_cache **alc_ptr;
5e804789 694 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
695 int i;
696
697 if (limit > 1)
698 limit = 12;
c8522a3a
JK
699 alc_ptr = kzalloc_node(memsize, gfp, node);
700 if (!alc_ptr)
701 return NULL;
702
703 for_each_node(i) {
704 if (i == node || !node_online(i))
705 continue;
706 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
707 if (!alc_ptr[i]) {
708 for (i--; i >= 0; i--)
709 kfree(alc_ptr[i]);
710 kfree(alc_ptr);
711 return NULL;
e498be7d
CL
712 }
713 }
c8522a3a 714 return alc_ptr;
e498be7d
CL
715}
716
c8522a3a 717static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
718{
719 int i;
720
c8522a3a 721 if (!alc_ptr)
e498be7d 722 return;
e498be7d 723 for_each_node(i)
c8522a3a
JK
724 kfree(alc_ptr[i]);
725 kfree(alc_ptr);
e498be7d
CL
726}
727
343e0d7a 728static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
729 struct array_cache *ac, int node,
730 struct list_head *list)
e498be7d 731{
18bf8541 732 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
733
734 if (ac->avail) {
ce8eb6c4 735 spin_lock(&n->list_lock);
e00946fe
CL
736 /*
737 * Stuff objects into the remote nodes shared array first.
738 * That way we could avoid the overhead of putting the objects
739 * into the free lists and getting them back later.
740 */
ce8eb6c4
CL
741 if (n->shared)
742 transfer_objects(n->shared, ac, ac->limit);
e00946fe 743
833b706c 744 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 745 ac->avail = 0;
ce8eb6c4 746 spin_unlock(&n->list_lock);
e498be7d
CL
747 }
748}
749
8fce4d8e
CL
750/*
751 * Called from cache_reap() to regularly drain alien caches round robin.
752 */
ce8eb6c4 753static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 754{
909ea964 755 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 756
ce8eb6c4 757 if (n->alien) {
c8522a3a
JK
758 struct alien_cache *alc = n->alien[node];
759 struct array_cache *ac;
760
761 if (alc) {
762 ac = &alc->ac;
49dfc304 763 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
764 LIST_HEAD(list);
765
766 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 767 spin_unlock_irq(&alc->lock);
833b706c 768 slabs_destroy(cachep, &list);
c8522a3a 769 }
8fce4d8e
CL
770 }
771 }
772}
773
a737b3e2 774static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 775 struct alien_cache **alien)
e498be7d 776{
b28a02de 777 int i = 0;
c8522a3a 778 struct alien_cache *alc;
e498be7d
CL
779 struct array_cache *ac;
780 unsigned long flags;
781
782 for_each_online_node(i) {
c8522a3a
JK
783 alc = alien[i];
784 if (alc) {
833b706c
JK
785 LIST_HEAD(list);
786
c8522a3a 787 ac = &alc->ac;
49dfc304 788 spin_lock_irqsave(&alc->lock, flags);
833b706c 789 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 790 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 791 slabs_destroy(cachep, &list);
e498be7d
CL
792 }
793 }
794}
729bd0b7 795
25c4f304
JK
796static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
797 int node, int page_node)
729bd0b7 798{
ce8eb6c4 799 struct kmem_cache_node *n;
c8522a3a
JK
800 struct alien_cache *alien = NULL;
801 struct array_cache *ac;
97654dfa 802 LIST_HEAD(list);
1ca4cb24 803
18bf8541 804 n = get_node(cachep, node);
729bd0b7 805 STATS_INC_NODEFREES(cachep);
25c4f304
JK
806 if (n->alien && n->alien[page_node]) {
807 alien = n->alien[page_node];
c8522a3a 808 ac = &alien->ac;
49dfc304 809 spin_lock(&alien->lock);
c8522a3a 810 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 811 STATS_INC_ACOVERFLOW(cachep);
25c4f304 812 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 813 }
f68f8ddd 814 ac->entry[ac->avail++] = objp;
49dfc304 815 spin_unlock(&alien->lock);
833b706c 816 slabs_destroy(cachep, &list);
729bd0b7 817 } else {
25c4f304 818 n = get_node(cachep, page_node);
18bf8541 819 spin_lock(&n->list_lock);
25c4f304 820 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 821 spin_unlock(&n->list_lock);
97654dfa 822 slabs_destroy(cachep, &list);
729bd0b7
PE
823 }
824 return 1;
825}
25c4f304
JK
826
827static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
828{
829 int page_node = page_to_nid(virt_to_page(objp));
830 int node = numa_mem_id();
831 /*
832 * Make sure we are not freeing a object from another node to the array
833 * cache on this cpu.
834 */
835 if (likely(node == page_node))
836 return 0;
837
838 return __cache_free_alien(cachep, objp, node, page_node);
839}
4167e9b2
DR
840
841/*
444eb2a4
MG
842 * Construct gfp mask to allocate from a specific node but do not reclaim or
843 * warn about failures.
4167e9b2
DR
844 */
845static inline gfp_t gfp_exact_node(gfp_t flags)
846{
444eb2a4 847 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 848}
e498be7d
CL
849#endif
850
ded0ecf6
JK
851static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
852{
853 struct kmem_cache_node *n;
854
855 /*
856 * Set up the kmem_cache_node for cpu before we can
857 * begin anything. Make sure some other cpu on this
858 * node has not already allocated this
859 */
860 n = get_node(cachep, node);
861 if (n) {
862 spin_lock_irq(&n->list_lock);
863 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
864 cachep->num;
865 spin_unlock_irq(&n->list_lock);
866
867 return 0;
868 }
869
870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
871 if (!n)
872 return -ENOMEM;
873
874 kmem_cache_node_init(n);
875 n->next_reap = jiffies + REAPTIMEOUT_NODE +
876 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
877
878 n->free_limit =
879 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
880
881 /*
882 * The kmem_cache_nodes don't come and go as CPUs
883 * come and go. slab_mutex is sufficient
884 * protection here.
885 */
886 cachep->node[node] = n;
887
888 return 0;
889}
890
8f9f8d9e 891/*
6a67368c 892 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 894 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 895 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
896 * already in use.
897 *
18004c5d 898 * Must hold slab_mutex.
8f9f8d9e 899 */
6a67368c 900static int init_cache_node_node(int node)
8f9f8d9e 901{
ded0ecf6 902 int ret;
8f9f8d9e 903 struct kmem_cache *cachep;
8f9f8d9e 904
18004c5d 905 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
8f9f8d9e 909 }
ded0ecf6 910
8f9f8d9e
DR
911 return 0;
912}
913
c3d332b6
JK
914static int setup_kmem_cache_node(struct kmem_cache *cachep,
915 int node, gfp_t gfp, bool force_change)
916{
917 int ret = -ENOMEM;
918 struct kmem_cache_node *n;
919 struct array_cache *old_shared = NULL;
920 struct array_cache *new_shared = NULL;
921 struct alien_cache **new_alien = NULL;
922 LIST_HEAD(list);
923
924 if (use_alien_caches) {
925 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
926 if (!new_alien)
927 goto fail;
928 }
929
930 if (cachep->shared) {
931 new_shared = alloc_arraycache(node,
932 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
933 if (!new_shared)
934 goto fail;
935 }
936
937 ret = init_cache_node(cachep, node, gfp);
938 if (ret)
939 goto fail;
940
941 n = get_node(cachep, node);
942 spin_lock_irq(&n->list_lock);
943 if (n->shared && force_change) {
944 free_block(cachep, n->shared->entry,
945 n->shared->avail, node, &list);
946 n->shared->avail = 0;
947 }
948
949 if (!n->shared || force_change) {
950 old_shared = n->shared;
951 n->shared = new_shared;
952 new_shared = NULL;
953 }
954
955 if (!n->alien) {
956 n->alien = new_alien;
957 new_alien = NULL;
958 }
959
960 spin_unlock_irq(&n->list_lock);
961 slabs_destroy(cachep, &list);
962
963fail:
964 kfree(old_shared);
965 kfree(new_shared);
966 free_alien_cache(new_alien);
967
968 return ret;
969}
970
0db0628d 971static void cpuup_canceled(long cpu)
fbf1e473
AM
972{
973 struct kmem_cache *cachep;
ce8eb6c4 974 struct kmem_cache_node *n = NULL;
7d6e6d09 975 int node = cpu_to_mem(cpu);
a70f7302 976 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 977
18004c5d 978 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
979 struct array_cache *nc;
980 struct array_cache *shared;
c8522a3a 981 struct alien_cache **alien;
97654dfa 982 LIST_HEAD(list);
fbf1e473 983
18bf8541 984 n = get_node(cachep, node);
ce8eb6c4 985 if (!n)
bf0dea23 986 continue;
fbf1e473 987
ce8eb6c4 988 spin_lock_irq(&n->list_lock);
fbf1e473 989
ce8eb6c4
CL
990 /* Free limit for this kmem_cache_node */
991 n->free_limit -= cachep->batchcount;
bf0dea23
JK
992
993 /* cpu is dead; no one can alloc from it. */
994 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
995 if (nc) {
97654dfa 996 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
997 nc->avail = 0;
998 }
fbf1e473 999
58463c1f 1000 if (!cpumask_empty(mask)) {
ce8eb6c4 1001 spin_unlock_irq(&n->list_lock);
bf0dea23 1002 goto free_slab;
fbf1e473
AM
1003 }
1004
ce8eb6c4 1005 shared = n->shared;
fbf1e473
AM
1006 if (shared) {
1007 free_block(cachep, shared->entry,
97654dfa 1008 shared->avail, node, &list);
ce8eb6c4 1009 n->shared = NULL;
fbf1e473
AM
1010 }
1011
ce8eb6c4
CL
1012 alien = n->alien;
1013 n->alien = NULL;
fbf1e473 1014
ce8eb6c4 1015 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1016
1017 kfree(shared);
1018 if (alien) {
1019 drain_alien_cache(cachep, alien);
1020 free_alien_cache(alien);
1021 }
bf0dea23
JK
1022
1023free_slab:
97654dfa 1024 slabs_destroy(cachep, &list);
fbf1e473
AM
1025 }
1026 /*
1027 * In the previous loop, all the objects were freed to
1028 * the respective cache's slabs, now we can go ahead and
1029 * shrink each nodelist to its limit.
1030 */
18004c5d 1031 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1032 n = get_node(cachep, node);
ce8eb6c4 1033 if (!n)
fbf1e473 1034 continue;
a5aa63a5 1035 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1036 }
1037}
1038
0db0628d 1039static int cpuup_prepare(long cpu)
1da177e4 1040{
343e0d7a 1041 struct kmem_cache *cachep;
7d6e6d09 1042 int node = cpu_to_mem(cpu);
8f9f8d9e 1043 int err;
1da177e4 1044
fbf1e473
AM
1045 /*
1046 * We need to do this right in the beginning since
1047 * alloc_arraycache's are going to use this list.
1048 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1049 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1050 */
6a67368c 1051 err = init_cache_node_node(node);
8f9f8d9e
DR
1052 if (err < 0)
1053 goto bad;
fbf1e473
AM
1054
1055 /*
1056 * Now we can go ahead with allocating the shared arrays and
1057 * array caches
1058 */
18004c5d 1059 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1060 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1061 if (err)
1062 goto bad;
fbf1e473 1063 }
ce79ddc8 1064
fbf1e473
AM
1065 return 0;
1066bad:
12d00f6a 1067 cpuup_canceled(cpu);
fbf1e473
AM
1068 return -ENOMEM;
1069}
1070
0db0628d 1071static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1072 unsigned long action, void *hcpu)
1073{
1074 long cpu = (long)hcpu;
1075 int err = 0;
1076
1077 switch (action) {
fbf1e473
AM
1078 case CPU_UP_PREPARE:
1079 case CPU_UP_PREPARE_FROZEN:
18004c5d 1080 mutex_lock(&slab_mutex);
fbf1e473 1081 err = cpuup_prepare(cpu);
18004c5d 1082 mutex_unlock(&slab_mutex);
1da177e4
LT
1083 break;
1084 case CPU_ONLINE:
8bb78442 1085 case CPU_ONLINE_FROZEN:
1da177e4
LT
1086 start_cpu_timer(cpu);
1087 break;
1088#ifdef CONFIG_HOTPLUG_CPU
5830c590 1089 case CPU_DOWN_PREPARE:
8bb78442 1090 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1091 /*
18004c5d 1092 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1093 * held so that if cache_reap() is invoked it cannot do
1094 * anything expensive but will only modify reap_work
1095 * and reschedule the timer.
1096 */
afe2c511 1097 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1098 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1099 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1100 break;
1101 case CPU_DOWN_FAILED:
8bb78442 1102 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1103 start_cpu_timer(cpu);
1104 break;
1da177e4 1105 case CPU_DEAD:
8bb78442 1106 case CPU_DEAD_FROZEN:
4484ebf1
RT
1107 /*
1108 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1109 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1110 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1111 * memory from the node of the cpu going down. The node
4484ebf1
RT
1112 * structure is usually allocated from kmem_cache_create() and
1113 * gets destroyed at kmem_cache_destroy().
1114 */
183ff22b 1115 /* fall through */
8f5be20b 1116#endif
1da177e4 1117 case CPU_UP_CANCELED:
8bb78442 1118 case CPU_UP_CANCELED_FROZEN:
18004c5d 1119 mutex_lock(&slab_mutex);
fbf1e473 1120 cpuup_canceled(cpu);
18004c5d 1121 mutex_unlock(&slab_mutex);
1da177e4 1122 break;
1da177e4 1123 }
eac40680 1124 return notifier_from_errno(err);
1da177e4
LT
1125}
1126
0db0628d 1127static struct notifier_block cpucache_notifier = {
74b85f37
CS
1128 &cpuup_callback, NULL, 0
1129};
1da177e4 1130
8f9f8d9e
DR
1131#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132/*
1133 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1134 * Returns -EBUSY if all objects cannot be drained so that the node is not
1135 * removed.
1136 *
18004c5d 1137 * Must hold slab_mutex.
8f9f8d9e 1138 */
6a67368c 1139static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1140{
1141 struct kmem_cache *cachep;
1142 int ret = 0;
1143
18004c5d 1144 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1145 struct kmem_cache_node *n;
8f9f8d9e 1146
18bf8541 1147 n = get_node(cachep, node);
ce8eb6c4 1148 if (!n)
8f9f8d9e
DR
1149 continue;
1150
a5aa63a5 1151 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1152
ce8eb6c4
CL
1153 if (!list_empty(&n->slabs_full) ||
1154 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1155 ret = -EBUSY;
1156 break;
1157 }
1158 }
1159 return ret;
1160}
1161
1162static int __meminit slab_memory_callback(struct notifier_block *self,
1163 unsigned long action, void *arg)
1164{
1165 struct memory_notify *mnb = arg;
1166 int ret = 0;
1167 int nid;
1168
1169 nid = mnb->status_change_nid;
1170 if (nid < 0)
1171 goto out;
1172
1173 switch (action) {
1174 case MEM_GOING_ONLINE:
18004c5d 1175 mutex_lock(&slab_mutex);
6a67368c 1176 ret = init_cache_node_node(nid);
18004c5d 1177 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1178 break;
1179 case MEM_GOING_OFFLINE:
18004c5d 1180 mutex_lock(&slab_mutex);
6a67368c 1181 ret = drain_cache_node_node(nid);
18004c5d 1182 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1183 break;
1184 case MEM_ONLINE:
1185 case MEM_OFFLINE:
1186 case MEM_CANCEL_ONLINE:
1187 case MEM_CANCEL_OFFLINE:
1188 break;
1189 }
1190out:
5fda1bd5 1191 return notifier_from_errno(ret);
8f9f8d9e
DR
1192}
1193#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1194
e498be7d 1195/*
ce8eb6c4 1196 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1197 */
6744f087 1198static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1199 int nodeid)
e498be7d 1200{
6744f087 1201 struct kmem_cache_node *ptr;
e498be7d 1202
6744f087 1203 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1204 BUG_ON(!ptr);
1205
6744f087 1206 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1207 /*
1208 * Do not assume that spinlocks can be initialized via memcpy:
1209 */
1210 spin_lock_init(&ptr->list_lock);
1211
e498be7d 1212 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1213 cachep->node[nodeid] = ptr;
e498be7d
CL
1214}
1215
556a169d 1216/*
ce8eb6c4
CL
1217 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1218 * size of kmem_cache_node.
556a169d 1219 */
ce8eb6c4 1220static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1221{
1222 int node;
1223
1224 for_each_online_node(node) {
ce8eb6c4 1225 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1226 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1227 REAPTIMEOUT_NODE +
1228 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1229 }
1230}
1231
a737b3e2
AM
1232/*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
1da177e4
LT
1235 */
1236void __init kmem_cache_init(void)
1237{
e498be7d
CL
1238 int i;
1239
68126702
JK
1240 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1241 sizeof(struct rcu_head));
9b030cb8
CL
1242 kmem_cache = &kmem_cache_boot;
1243
8888177e 1244 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1245 use_alien_caches = 0;
1246
3c583465 1247 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1248 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1249
1da177e4
LT
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1252 * page orders on machines with more than 32MB of memory if
1253 * not overridden on the command line.
1da177e4 1254 */
3df1cccd 1255 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1256 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1257
1da177e4
LT
1258 /* Bootstrap is tricky, because several objects are allocated
1259 * from caches that do not exist yet:
9b030cb8
CL
1260 * 1) initialize the kmem_cache cache: it contains the struct
1261 * kmem_cache structures of all caches, except kmem_cache itself:
1262 * kmem_cache is statically allocated.
e498be7d 1263 * Initially an __init data area is used for the head array and the
ce8eb6c4 1264 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1265 * array at the end of the bootstrap.
1da177e4 1266 * 2) Create the first kmalloc cache.
343e0d7a 1267 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1268 * An __init data area is used for the head array.
1269 * 3) Create the remaining kmalloc caches, with minimally sized
1270 * head arrays.
9b030cb8 1271 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1272 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1273 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1274 * the other cache's with kmalloc allocated memory.
1275 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1276 */
1277
9b030cb8 1278 /* 1) create the kmem_cache */
1da177e4 1279
8da3430d 1280 /*
b56efcf0 1281 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1282 */
2f9baa9f 1283 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1284 offsetof(struct kmem_cache, node) +
6744f087 1285 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1286 SLAB_HWCACHE_ALIGN);
1287 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1288 slab_state = PARTIAL;
1da177e4 1289
a737b3e2 1290 /*
bf0dea23
JK
1291 * Initialize the caches that provide memory for the kmem_cache_node
1292 * structures first. Without this, further allocations will bug.
e498be7d 1293 */
bf0dea23 1294 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1296 slab_state = PARTIAL_NODE;
34cc6990 1297 setup_kmalloc_cache_index_table();
e498be7d 1298
e0a42726
IM
1299 slab_early_init = 0;
1300
ce8eb6c4 1301 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1302 {
1ca4cb24
PE
1303 int nid;
1304
9c09a95c 1305 for_each_online_node(nid) {
ce8eb6c4 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1307
bf0dea23 1308 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1310 }
1311 }
1da177e4 1312
f97d5f63 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1314}
1315
1316void __init kmem_cache_init_late(void)
1317{
1318 struct kmem_cache *cachep;
1319
97d06609 1320 slab_state = UP;
52cef189 1321
8429db5c 1322 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
18004c5d 1327 mutex_unlock(&slab_mutex);
056c6241 1328
97d06609
CL
1329 /* Done! */
1330 slab_state = FULL;
1331
a737b3e2
AM
1332 /*
1333 * Register a cpu startup notifier callback that initializes
1334 * cpu_cache_get for all new cpus
1da177e4
LT
1335 */
1336 register_cpu_notifier(&cpucache_notifier);
1da177e4 1337
8f9f8d9e
DR
1338#ifdef CONFIG_NUMA
1339 /*
1340 * Register a memory hotplug callback that initializes and frees
6a67368c 1341 * node.
8f9f8d9e
DR
1342 */
1343 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1344#endif
1345
a737b3e2
AM
1346 /*
1347 * The reap timers are started later, with a module init call: That part
1348 * of the kernel is not yet operational.
1da177e4
LT
1349 */
1350}
1351
1352static int __init cpucache_init(void)
1353{
1354 int cpu;
1355
a737b3e2
AM
1356 /*
1357 * Register the timers that return unneeded pages to the page allocator
1da177e4 1358 */
e498be7d 1359 for_each_online_cpu(cpu)
a737b3e2 1360 start_cpu_timer(cpu);
a164f896
GC
1361
1362 /* Done! */
97d06609 1363 slab_state = FULL;
1da177e4
LT
1364 return 0;
1365}
1da177e4
LT
1366__initcall(cpucache_init);
1367
8bdec192
RA
1368static noinline void
1369slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1370{
9a02d699 1371#if DEBUG
ce8eb6c4 1372 struct kmem_cache_node *n;
8456a648 1373 struct page *page;
8bdec192
RA
1374 unsigned long flags;
1375 int node;
9a02d699
DR
1376 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1377 DEFAULT_RATELIMIT_BURST);
1378
1379 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1380 return;
8bdec192 1381
5b3810e5
VB
1382 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1383 nodeid, gfpflags, &gfpflags);
1384 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1385 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1386
18bf8541 1387 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1388 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1389 unsigned long active_slabs = 0, num_slabs = 0;
1390
ce8eb6c4 1391 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1392 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1393 active_objs += cachep->num;
1394 active_slabs++;
1395 }
8456a648
JK
1396 list_for_each_entry(page, &n->slabs_partial, lru) {
1397 active_objs += page->active;
8bdec192
RA
1398 active_slabs++;
1399 }
8456a648 1400 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1401 num_slabs++;
1402
ce8eb6c4
CL
1403 free_objects += n->free_objects;
1404 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1405
1406 num_slabs += active_slabs;
1407 num_objs = num_slabs * cachep->num;
5b3810e5 1408 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1409 node, active_slabs, num_slabs, active_objs, num_objs,
1410 free_objects);
1411 }
9a02d699 1412#endif
8bdec192
RA
1413}
1414
1da177e4 1415/*
8a7d9b43
WSH
1416 * Interface to system's page allocator. No need to hold the
1417 * kmem_cache_node ->list_lock.
1da177e4
LT
1418 *
1419 * If we requested dmaable memory, we will get it. Even if we
1420 * did not request dmaable memory, we might get it, but that
1421 * would be relatively rare and ignorable.
1422 */
0c3aa83e
JK
1423static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1424 int nodeid)
1da177e4
LT
1425{
1426 struct page *page;
e1b6aa6f 1427 int nr_pages;
765c4507 1428
a618e89f 1429 flags |= cachep->allocflags;
e12ba74d
MG
1430 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1431 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1432
96db800f 1433 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1434 if (!page) {
9a02d699 1435 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1436 return NULL;
8bdec192 1437 }
1da177e4 1438
f3ccb2c4
VD
1439 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1440 __free_pages(page, cachep->gfporder);
1441 return NULL;
1442 }
1443
e1b6aa6f 1444 nr_pages = (1 << cachep->gfporder);
1da177e4 1445 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1446 add_zone_page_state(page_zone(page),
1447 NR_SLAB_RECLAIMABLE, nr_pages);
1448 else
1449 add_zone_page_state(page_zone(page),
1450 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1451
a57a4988 1452 __SetPageSlab(page);
f68f8ddd
JK
1453 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1454 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1455 SetPageSlabPfmemalloc(page);
072bb0aa 1456
b1eeab67
VN
1457 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1458 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1459
1460 if (cachep->ctor)
1461 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1462 else
1463 kmemcheck_mark_unallocated_pages(page, nr_pages);
1464 }
c175eea4 1465
0c3aa83e 1466 return page;
1da177e4
LT
1467}
1468
1469/*
1470 * Interface to system's page release.
1471 */
0c3aa83e 1472static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1473{
27ee57c9
VD
1474 int order = cachep->gfporder;
1475 unsigned long nr_freed = (1 << order);
1da177e4 1476
27ee57c9 1477 kmemcheck_free_shadow(page, order);
c175eea4 1478
972d1a7b
CL
1479 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1480 sub_zone_page_state(page_zone(page),
1481 NR_SLAB_RECLAIMABLE, nr_freed);
1482 else
1483 sub_zone_page_state(page_zone(page),
1484 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1485
a57a4988 1486 BUG_ON(!PageSlab(page));
73293c2f 1487 __ClearPageSlabPfmemalloc(page);
a57a4988 1488 __ClearPageSlab(page);
8456a648
JK
1489 page_mapcount_reset(page);
1490 page->mapping = NULL;
1f458cbf 1491
1da177e4
LT
1492 if (current->reclaim_state)
1493 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1494 memcg_uncharge_slab(page, order, cachep);
1495 __free_pages(page, order);
1da177e4
LT
1496}
1497
1498static void kmem_rcu_free(struct rcu_head *head)
1499{
68126702
JK
1500 struct kmem_cache *cachep;
1501 struct page *page;
1da177e4 1502
68126702
JK
1503 page = container_of(head, struct page, rcu_head);
1504 cachep = page->slab_cache;
1505
1506 kmem_freepages(cachep, page);
1da177e4
LT
1507}
1508
1509#if DEBUG
40b44137
JK
1510static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1511{
1512 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1513 (cachep->size % PAGE_SIZE) == 0)
1514 return true;
1515
1516 return false;
1517}
1da177e4
LT
1518
1519#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1520static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1521 unsigned long caller)
1da177e4 1522{
8c138bc0 1523 int size = cachep->object_size;
1da177e4 1524
3dafccf2 1525 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1526
b28a02de 1527 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1528 return;
1529
b28a02de
PE
1530 *addr++ = 0x12345678;
1531 *addr++ = caller;
1532 *addr++ = smp_processor_id();
1533 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1534 {
1535 unsigned long *sptr = &caller;
1536 unsigned long svalue;
1537
1538 while (!kstack_end(sptr)) {
1539 svalue = *sptr++;
1540 if (kernel_text_address(svalue)) {
b28a02de 1541 *addr++ = svalue;
1da177e4
LT
1542 size -= sizeof(unsigned long);
1543 if (size <= sizeof(unsigned long))
1544 break;
1545 }
1546 }
1547
1548 }
b28a02de 1549 *addr++ = 0x87654321;
1da177e4 1550}
40b44137
JK
1551
1552static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1553 int map, unsigned long caller)
1554{
1555 if (!is_debug_pagealloc_cache(cachep))
1556 return;
1557
1558 if (caller)
1559 store_stackinfo(cachep, objp, caller);
1560
1561 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1562}
1563
1564#else
1565static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1566 int map, unsigned long caller) {}
1567
1da177e4
LT
1568#endif
1569
343e0d7a 1570static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1571{
8c138bc0 1572 int size = cachep->object_size;
3dafccf2 1573 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1574
1575 memset(addr, val, size);
b28a02de 1576 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1577}
1578
1579static void dump_line(char *data, int offset, int limit)
1580{
1581 int i;
aa83aa40
DJ
1582 unsigned char error = 0;
1583 int bad_count = 0;
1584
1170532b 1585 pr_err("%03x: ", offset);
aa83aa40
DJ
1586 for (i = 0; i < limit; i++) {
1587 if (data[offset + i] != POISON_FREE) {
1588 error = data[offset + i];
1589 bad_count++;
1590 }
aa83aa40 1591 }
fdde6abb
SAS
1592 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1593 &data[offset], limit, 1);
aa83aa40
DJ
1594
1595 if (bad_count == 1) {
1596 error ^= POISON_FREE;
1597 if (!(error & (error - 1))) {
1170532b 1598 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1599#ifdef CONFIG_X86
1170532b 1600 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1601#else
1170532b 1602 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1603#endif
1604 }
1605 }
1da177e4
LT
1606}
1607#endif
1608
1609#if DEBUG
1610
343e0d7a 1611static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1612{
1613 int i, size;
1614 char *realobj;
1615
1616 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1617 pr_err("Redzone: 0x%llx/0x%llx\n",
1618 *dbg_redzone1(cachep, objp),
1619 *dbg_redzone2(cachep, objp));
1da177e4
LT
1620 }
1621
1622 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1623 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1624 *dbg_userword(cachep, objp),
1625 *dbg_userword(cachep, objp));
1da177e4 1626 }
3dafccf2 1627 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1628 size = cachep->object_size;
b28a02de 1629 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1630 int limit;
1631 limit = 16;
b28a02de
PE
1632 if (i + limit > size)
1633 limit = size - i;
1da177e4
LT
1634 dump_line(realobj, i, limit);
1635 }
1636}
1637
343e0d7a 1638static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1639{
1640 char *realobj;
1641 int size, i;
1642 int lines = 0;
1643
40b44137
JK
1644 if (is_debug_pagealloc_cache(cachep))
1645 return;
1646
3dafccf2 1647 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1648 size = cachep->object_size;
1da177e4 1649
b28a02de 1650 for (i = 0; i < size; i++) {
1da177e4 1651 char exp = POISON_FREE;
b28a02de 1652 if (i == size - 1)
1da177e4
LT
1653 exp = POISON_END;
1654 if (realobj[i] != exp) {
1655 int limit;
1656 /* Mismatch ! */
1657 /* Print header */
1658 if (lines == 0) {
1170532b
JP
1659 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1660 print_tainted(), cachep->name,
1661 realobj, size);
1da177e4
LT
1662 print_objinfo(cachep, objp, 0);
1663 }
1664 /* Hexdump the affected line */
b28a02de 1665 i = (i / 16) * 16;
1da177e4 1666 limit = 16;
b28a02de
PE
1667 if (i + limit > size)
1668 limit = size - i;
1da177e4
LT
1669 dump_line(realobj, i, limit);
1670 i += 16;
1671 lines++;
1672 /* Limit to 5 lines */
1673 if (lines > 5)
1674 break;
1675 }
1676 }
1677 if (lines != 0) {
1678 /* Print some data about the neighboring objects, if they
1679 * exist:
1680 */
8456a648 1681 struct page *page = virt_to_head_page(objp);
8fea4e96 1682 unsigned int objnr;
1da177e4 1683
8456a648 1684 objnr = obj_to_index(cachep, page, objp);
1da177e4 1685 if (objnr) {
8456a648 1686 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1687 realobj = (char *)objp + obj_offset(cachep);
1170532b 1688 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1689 print_objinfo(cachep, objp, 2);
1690 }
b28a02de 1691 if (objnr + 1 < cachep->num) {
8456a648 1692 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1693 realobj = (char *)objp + obj_offset(cachep);
1170532b 1694 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1695 print_objinfo(cachep, objp, 2);
1696 }
1697 }
1698}
1699#endif
1700
12dd36fa 1701#if DEBUG
8456a648
JK
1702static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1703 struct page *page)
1da177e4 1704{
1da177e4 1705 int i;
b03a017b
JK
1706
1707 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1708 poison_obj(cachep, page->freelist - obj_offset(cachep),
1709 POISON_FREE);
1710 }
1711
1da177e4 1712 for (i = 0; i < cachep->num; i++) {
8456a648 1713 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1714
1715 if (cachep->flags & SLAB_POISON) {
1da177e4 1716 check_poison_obj(cachep, objp);
40b44137 1717 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1718 }
1719 if (cachep->flags & SLAB_RED_ZONE) {
1720 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1721 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1722 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1723 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1724 }
1da177e4 1725 }
12dd36fa 1726}
1da177e4 1727#else
8456a648
JK
1728static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1729 struct page *page)
12dd36fa 1730{
12dd36fa 1731}
1da177e4
LT
1732#endif
1733
911851e6
RD
1734/**
1735 * slab_destroy - destroy and release all objects in a slab
1736 * @cachep: cache pointer being destroyed
cb8ee1a3 1737 * @page: page pointer being destroyed
911851e6 1738 *
8a7d9b43
WSH
1739 * Destroy all the objs in a slab page, and release the mem back to the system.
1740 * Before calling the slab page must have been unlinked from the cache. The
1741 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1742 */
8456a648 1743static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1744{
7e007355 1745 void *freelist;
12dd36fa 1746
8456a648
JK
1747 freelist = page->freelist;
1748 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1749 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1750 call_rcu(&page->rcu_head, kmem_rcu_free);
1751 else
0c3aa83e 1752 kmem_freepages(cachep, page);
68126702
JK
1753
1754 /*
8456a648 1755 * From now on, we don't use freelist
68126702
JK
1756 * although actual page can be freed in rcu context
1757 */
1758 if (OFF_SLAB(cachep))
8456a648 1759 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1760}
1761
97654dfa
JK
1762static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1763{
1764 struct page *page, *n;
1765
1766 list_for_each_entry_safe(page, n, list, lru) {
1767 list_del(&page->lru);
1768 slab_destroy(cachep, page);
1769 }
1770}
1771
4d268eba 1772/**
a70773dd
RD
1773 * calculate_slab_order - calculate size (page order) of slabs
1774 * @cachep: pointer to the cache that is being created
1775 * @size: size of objects to be created in this cache.
a70773dd
RD
1776 * @flags: slab allocation flags
1777 *
1778 * Also calculates the number of objects per slab.
4d268eba
PE
1779 *
1780 * This could be made much more intelligent. For now, try to avoid using
1781 * high order pages for slabs. When the gfp() functions are more friendly
1782 * towards high-order requests, this should be changed.
1783 */
a737b3e2 1784static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1785 size_t size, unsigned long flags)
4d268eba
PE
1786{
1787 size_t left_over = 0;
9888e6fa 1788 int gfporder;
4d268eba 1789
0aa817f0 1790 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1791 unsigned int num;
1792 size_t remainder;
1793
70f75067 1794 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1795 if (!num)
1796 continue;
9888e6fa 1797
f315e3fa
JK
1798 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1799 if (num > SLAB_OBJ_MAX_NUM)
1800 break;
1801
b1ab41c4 1802 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1803 struct kmem_cache *freelist_cache;
1804 size_t freelist_size;
1805
1806 freelist_size = num * sizeof(freelist_idx_t);
1807 freelist_cache = kmalloc_slab(freelist_size, 0u);
1808 if (!freelist_cache)
1809 continue;
1810
b1ab41c4 1811 /*
3217fd9b
JK
1812 * Needed to avoid possible looping condition
1813 * in cache_grow()
b1ab41c4 1814 */
3217fd9b
JK
1815 if (OFF_SLAB(freelist_cache))
1816 continue;
b1ab41c4 1817
3217fd9b
JK
1818 /* check if off slab has enough benefit */
1819 if (freelist_cache->size > cachep->size / 2)
1820 continue;
b1ab41c4 1821 }
4d268eba 1822
9888e6fa 1823 /* Found something acceptable - save it away */
4d268eba 1824 cachep->num = num;
9888e6fa 1825 cachep->gfporder = gfporder;
4d268eba
PE
1826 left_over = remainder;
1827
f78bb8ad
LT
1828 /*
1829 * A VFS-reclaimable slab tends to have most allocations
1830 * as GFP_NOFS and we really don't want to have to be allocating
1831 * higher-order pages when we are unable to shrink dcache.
1832 */
1833 if (flags & SLAB_RECLAIM_ACCOUNT)
1834 break;
1835
4d268eba
PE
1836 /*
1837 * Large number of objects is good, but very large slabs are
1838 * currently bad for the gfp()s.
1839 */
543585cc 1840 if (gfporder >= slab_max_order)
4d268eba
PE
1841 break;
1842
9888e6fa
LT
1843 /*
1844 * Acceptable internal fragmentation?
1845 */
a737b3e2 1846 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1847 break;
1848 }
1849 return left_over;
1850}
1851
bf0dea23
JK
1852static struct array_cache __percpu *alloc_kmem_cache_cpus(
1853 struct kmem_cache *cachep, int entries, int batchcount)
1854{
1855 int cpu;
1856 size_t size;
1857 struct array_cache __percpu *cpu_cache;
1858
1859 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1860 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1861
1862 if (!cpu_cache)
1863 return NULL;
1864
1865 for_each_possible_cpu(cpu) {
1866 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1867 entries, batchcount);
1868 }
1869
1870 return cpu_cache;
1871}
1872
83b519e8 1873static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1874{
97d06609 1875 if (slab_state >= FULL)
83b519e8 1876 return enable_cpucache(cachep, gfp);
2ed3a4ef 1877
bf0dea23
JK
1878 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1879 if (!cachep->cpu_cache)
1880 return 1;
1881
97d06609 1882 if (slab_state == DOWN) {
bf0dea23
JK
1883 /* Creation of first cache (kmem_cache). */
1884 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1885 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1886 /* For kmem_cache_node */
1887 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1888 } else {
bf0dea23 1889 int node;
f30cf7d1 1890
bf0dea23
JK
1891 for_each_online_node(node) {
1892 cachep->node[node] = kmalloc_node(
1893 sizeof(struct kmem_cache_node), gfp, node);
1894 BUG_ON(!cachep->node[node]);
1895 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1896 }
1897 }
bf0dea23 1898
6a67368c 1899 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1900 jiffies + REAPTIMEOUT_NODE +
1901 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1902
1903 cpu_cache_get(cachep)->avail = 0;
1904 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1905 cpu_cache_get(cachep)->batchcount = 1;
1906 cpu_cache_get(cachep)->touched = 0;
1907 cachep->batchcount = 1;
1908 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1909 return 0;
f30cf7d1
PE
1910}
1911
12220dea
JK
1912unsigned long kmem_cache_flags(unsigned long object_size,
1913 unsigned long flags, const char *name,
1914 void (*ctor)(void *))
1915{
1916 return flags;
1917}
1918
1919struct kmem_cache *
1920__kmem_cache_alias(const char *name, size_t size, size_t align,
1921 unsigned long flags, void (*ctor)(void *))
1922{
1923 struct kmem_cache *cachep;
1924
1925 cachep = find_mergeable(size, align, flags, name, ctor);
1926 if (cachep) {
1927 cachep->refcount++;
1928
1929 /*
1930 * Adjust the object sizes so that we clear
1931 * the complete object on kzalloc.
1932 */
1933 cachep->object_size = max_t(int, cachep->object_size, size);
1934 }
1935 return cachep;
1936}
1937
b03a017b
JK
1938static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1939 size_t size, unsigned long flags)
1940{
1941 size_t left;
1942
1943 cachep->num = 0;
1944
1945 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1946 return false;
1947
1948 left = calculate_slab_order(cachep, size,
1949 flags | CFLGS_OBJFREELIST_SLAB);
1950 if (!cachep->num)
1951 return false;
1952
1953 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1954 return false;
1955
1956 cachep->colour = left / cachep->colour_off;
1957
1958 return true;
1959}
1960
158e319b
JK
1961static bool set_off_slab_cache(struct kmem_cache *cachep,
1962 size_t size, unsigned long flags)
1963{
1964 size_t left;
1965
1966 cachep->num = 0;
1967
1968 /*
3217fd9b
JK
1969 * Always use on-slab management when SLAB_NOLEAKTRACE
1970 * to avoid recursive calls into kmemleak.
158e319b 1971 */
158e319b
JK
1972 if (flags & SLAB_NOLEAKTRACE)
1973 return false;
1974
1975 /*
1976 * Size is large, assume best to place the slab management obj
1977 * off-slab (should allow better packing of objs).
1978 */
1979 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1980 if (!cachep->num)
1981 return false;
1982
1983 /*
1984 * If the slab has been placed off-slab, and we have enough space then
1985 * move it on-slab. This is at the expense of any extra colouring.
1986 */
1987 if (left >= cachep->num * sizeof(freelist_idx_t))
1988 return false;
1989
1990 cachep->colour = left / cachep->colour_off;
1991
1992 return true;
1993}
1994
1995static bool set_on_slab_cache(struct kmem_cache *cachep,
1996 size_t size, unsigned long flags)
1997{
1998 size_t left;
1999
2000 cachep->num = 0;
2001
2002 left = calculate_slab_order(cachep, size, flags);
2003 if (!cachep->num)
2004 return false;
2005
2006 cachep->colour = left / cachep->colour_off;
2007
2008 return true;
2009}
2010
1da177e4 2011/**
039363f3 2012 * __kmem_cache_create - Create a cache.
a755b76a 2013 * @cachep: cache management descriptor
1da177e4 2014 * @flags: SLAB flags
1da177e4
LT
2015 *
2016 * Returns a ptr to the cache on success, NULL on failure.
2017 * Cannot be called within a int, but can be interrupted.
20c2df83 2018 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2019 *
1da177e4
LT
2020 * The flags are
2021 *
2022 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2023 * to catch references to uninitialised memory.
2024 *
2025 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2026 * for buffer overruns.
2027 *
1da177e4
LT
2028 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2029 * cacheline. This can be beneficial if you're counting cycles as closely
2030 * as davem.
2031 */
278b1bb1 2032int
8a13a4cc 2033__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2034{
d4a5fca5 2035 size_t ralign = BYTES_PER_WORD;
83b519e8 2036 gfp_t gfp;
278b1bb1 2037 int err;
8a13a4cc 2038 size_t size = cachep->size;
1da177e4 2039
1da177e4 2040#if DEBUG
1da177e4
LT
2041#if FORCED_DEBUG
2042 /*
2043 * Enable redzoning and last user accounting, except for caches with
2044 * large objects, if the increased size would increase the object size
2045 * above the next power of two: caches with object sizes just above a
2046 * power of two have a significant amount of internal fragmentation.
2047 */
87a927c7
DW
2048 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2049 2 * sizeof(unsigned long long)))
b28a02de 2050 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2051 if (!(flags & SLAB_DESTROY_BY_RCU))
2052 flags |= SLAB_POISON;
2053#endif
1da177e4 2054#endif
1da177e4 2055
a737b3e2
AM
2056 /*
2057 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2058 * unaligned accesses for some archs when redzoning is used, and makes
2059 * sure any on-slab bufctl's are also correctly aligned.
2060 */
b28a02de
PE
2061 if (size & (BYTES_PER_WORD - 1)) {
2062 size += (BYTES_PER_WORD - 1);
2063 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2064 }
2065
87a927c7
DW
2066 if (flags & SLAB_RED_ZONE) {
2067 ralign = REDZONE_ALIGN;
2068 /* If redzoning, ensure that the second redzone is suitably
2069 * aligned, by adjusting the object size accordingly. */
2070 size += REDZONE_ALIGN - 1;
2071 size &= ~(REDZONE_ALIGN - 1);
2072 }
ca5f9703 2073
a44b56d3 2074 /* 3) caller mandated alignment */
8a13a4cc
CL
2075 if (ralign < cachep->align) {
2076 ralign = cachep->align;
1da177e4 2077 }
3ff84a7f
PE
2078 /* disable debug if necessary */
2079 if (ralign > __alignof__(unsigned long long))
a44b56d3 2080 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2081 /*
ca5f9703 2082 * 4) Store it.
1da177e4 2083 */
8a13a4cc 2084 cachep->align = ralign;
158e319b
JK
2085 cachep->colour_off = cache_line_size();
2086 /* Offset must be a multiple of the alignment. */
2087 if (cachep->colour_off < cachep->align)
2088 cachep->colour_off = cachep->align;
1da177e4 2089
83b519e8
PE
2090 if (slab_is_available())
2091 gfp = GFP_KERNEL;
2092 else
2093 gfp = GFP_NOWAIT;
2094
1da177e4 2095#if DEBUG
1da177e4 2096
ca5f9703
PE
2097 /*
2098 * Both debugging options require word-alignment which is calculated
2099 * into align above.
2100 */
1da177e4 2101 if (flags & SLAB_RED_ZONE) {
1da177e4 2102 /* add space for red zone words */
3ff84a7f
PE
2103 cachep->obj_offset += sizeof(unsigned long long);
2104 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2105 }
2106 if (flags & SLAB_STORE_USER) {
ca5f9703 2107 /* user store requires one word storage behind the end of
87a927c7
DW
2108 * the real object. But if the second red zone needs to be
2109 * aligned to 64 bits, we must allow that much space.
1da177e4 2110 */
87a927c7
DW
2111 if (flags & SLAB_RED_ZONE)
2112 size += REDZONE_ALIGN;
2113 else
2114 size += BYTES_PER_WORD;
1da177e4 2115 }
832a15d2
JK
2116#endif
2117
7ed2f9e6
AP
2118 kasan_cache_create(cachep, &size, &flags);
2119
832a15d2
JK
2120 size = ALIGN(size, cachep->align);
2121 /*
2122 * We should restrict the number of objects in a slab to implement
2123 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2124 */
2125 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2126 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2127
2128#if DEBUG
03a2d2a3
JK
2129 /*
2130 * To activate debug pagealloc, off-slab management is necessary
2131 * requirement. In early phase of initialization, small sized slab
2132 * doesn't get initialized so it would not be possible. So, we need
2133 * to check size >= 256. It guarantees that all necessary small
2134 * sized slab is initialized in current slab initialization sequence.
2135 */
40323278 2136 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2137 size >= 256 && cachep->object_size > cache_line_size()) {
2138 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2139 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2140
2141 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2142 flags |= CFLGS_OFF_SLAB;
2143 cachep->obj_offset += tmp_size - size;
2144 size = tmp_size;
2145 goto done;
2146 }
2147 }
1da177e4 2148 }
1da177e4
LT
2149#endif
2150
b03a017b
JK
2151 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2152 flags |= CFLGS_OBJFREELIST_SLAB;
2153 goto done;
2154 }
2155
158e319b 2156 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2157 flags |= CFLGS_OFF_SLAB;
158e319b 2158 goto done;
832a15d2 2159 }
1da177e4 2160
158e319b
JK
2161 if (set_on_slab_cache(cachep, size, flags))
2162 goto done;
1da177e4 2163
158e319b 2164 return -E2BIG;
1da177e4 2165
158e319b
JK
2166done:
2167 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2168 cachep->flags = flags;
a57a4988 2169 cachep->allocflags = __GFP_COMP;
4b51d669 2170 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2171 cachep->allocflags |= GFP_DMA;
3b0efdfa 2172 cachep->size = size;
6a2d7a95 2173 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2174
40b44137
JK
2175#if DEBUG
2176 /*
2177 * If we're going to use the generic kernel_map_pages()
2178 * poisoning, then it's going to smash the contents of
2179 * the redzone and userword anyhow, so switch them off.
2180 */
2181 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2182 (cachep->flags & SLAB_POISON) &&
2183 is_debug_pagealloc_cache(cachep))
2184 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2185#endif
2186
2187 if (OFF_SLAB(cachep)) {
158e319b
JK
2188 cachep->freelist_cache =
2189 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2190 }
1da177e4 2191
278b1bb1
CL
2192 err = setup_cpu_cache(cachep, gfp);
2193 if (err) {
52b4b950 2194 __kmem_cache_release(cachep);
278b1bb1 2195 return err;
2ed3a4ef 2196 }
1da177e4 2197
278b1bb1 2198 return 0;
1da177e4 2199}
1da177e4
LT
2200
2201#if DEBUG
2202static void check_irq_off(void)
2203{
2204 BUG_ON(!irqs_disabled());
2205}
2206
2207static void check_irq_on(void)
2208{
2209 BUG_ON(irqs_disabled());
2210}
2211
18726ca8
JK
2212static void check_mutex_acquired(void)
2213{
2214 BUG_ON(!mutex_is_locked(&slab_mutex));
2215}
2216
343e0d7a 2217static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2218{
2219#ifdef CONFIG_SMP
2220 check_irq_off();
18bf8541 2221 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2222#endif
2223}
e498be7d 2224
343e0d7a 2225static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2226{
2227#ifdef CONFIG_SMP
2228 check_irq_off();
18bf8541 2229 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2230#endif
2231}
2232
1da177e4
LT
2233#else
2234#define check_irq_off() do { } while(0)
2235#define check_irq_on() do { } while(0)
18726ca8 2236#define check_mutex_acquired() do { } while(0)
1da177e4 2237#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2238#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2239#endif
2240
18726ca8
JK
2241static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2242 int node, bool free_all, struct list_head *list)
2243{
2244 int tofree;
2245
2246 if (!ac || !ac->avail)
2247 return;
2248
2249 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2250 if (tofree > ac->avail)
2251 tofree = (ac->avail + 1) / 2;
2252
2253 free_block(cachep, ac->entry, tofree, node, list);
2254 ac->avail -= tofree;
2255 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2256}
aab2207c 2257
1da177e4
LT
2258static void do_drain(void *arg)
2259{
a737b3e2 2260 struct kmem_cache *cachep = arg;
1da177e4 2261 struct array_cache *ac;
7d6e6d09 2262 int node = numa_mem_id();
18bf8541 2263 struct kmem_cache_node *n;
97654dfa 2264 LIST_HEAD(list);
1da177e4
LT
2265
2266 check_irq_off();
9a2dba4b 2267 ac = cpu_cache_get(cachep);
18bf8541
CL
2268 n = get_node(cachep, node);
2269 spin_lock(&n->list_lock);
97654dfa 2270 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2271 spin_unlock(&n->list_lock);
97654dfa 2272 slabs_destroy(cachep, &list);
1da177e4
LT
2273 ac->avail = 0;
2274}
2275
343e0d7a 2276static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2277{
ce8eb6c4 2278 struct kmem_cache_node *n;
e498be7d 2279 int node;
18726ca8 2280 LIST_HEAD(list);
e498be7d 2281
15c8b6c1 2282 on_each_cpu(do_drain, cachep, 1);
1da177e4 2283 check_irq_on();
18bf8541
CL
2284 for_each_kmem_cache_node(cachep, node, n)
2285 if (n->alien)
ce8eb6c4 2286 drain_alien_cache(cachep, n->alien);
a4523a8b 2287
18726ca8
JK
2288 for_each_kmem_cache_node(cachep, node, n) {
2289 spin_lock_irq(&n->list_lock);
2290 drain_array_locked(cachep, n->shared, node, true, &list);
2291 spin_unlock_irq(&n->list_lock);
2292
2293 slabs_destroy(cachep, &list);
2294 }
1da177e4
LT
2295}
2296
ed11d9eb
CL
2297/*
2298 * Remove slabs from the list of free slabs.
2299 * Specify the number of slabs to drain in tofree.
2300 *
2301 * Returns the actual number of slabs released.
2302 */
2303static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2304 struct kmem_cache_node *n, int tofree)
1da177e4 2305{
ed11d9eb
CL
2306 struct list_head *p;
2307 int nr_freed;
8456a648 2308 struct page *page;
1da177e4 2309
ed11d9eb 2310 nr_freed = 0;
ce8eb6c4 2311 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2312
ce8eb6c4
CL
2313 spin_lock_irq(&n->list_lock);
2314 p = n->slabs_free.prev;
2315 if (p == &n->slabs_free) {
2316 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2317 goto out;
2318 }
1da177e4 2319
8456a648 2320 page = list_entry(p, struct page, lru);
8456a648 2321 list_del(&page->lru);
ed11d9eb
CL
2322 /*
2323 * Safe to drop the lock. The slab is no longer linked
2324 * to the cache.
2325 */
ce8eb6c4
CL
2326 n->free_objects -= cache->num;
2327 spin_unlock_irq(&n->list_lock);
8456a648 2328 slab_destroy(cache, page);
ed11d9eb 2329 nr_freed++;
1da177e4 2330 }
ed11d9eb
CL
2331out:
2332 return nr_freed;
1da177e4
LT
2333}
2334
d6e0b7fa 2335int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2336{
18bf8541
CL
2337 int ret = 0;
2338 int node;
ce8eb6c4 2339 struct kmem_cache_node *n;
e498be7d
CL
2340
2341 drain_cpu_caches(cachep);
2342
2343 check_irq_on();
18bf8541 2344 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2345 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2346
ce8eb6c4
CL
2347 ret += !list_empty(&n->slabs_full) ||
2348 !list_empty(&n->slabs_partial);
e498be7d
CL
2349 }
2350 return (ret ? 1 : 0);
2351}
2352
945cf2b6 2353int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2354{
2355 return __kmem_cache_shrink(cachep, false);
2356}
2357
2358void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2359{
12c3667f 2360 int i;
ce8eb6c4 2361 struct kmem_cache_node *n;
1da177e4 2362
bf0dea23 2363 free_percpu(cachep->cpu_cache);
1da177e4 2364
ce8eb6c4 2365 /* NUMA: free the node structures */
18bf8541
CL
2366 for_each_kmem_cache_node(cachep, i, n) {
2367 kfree(n->shared);
2368 free_alien_cache(n->alien);
2369 kfree(n);
2370 cachep->node[i] = NULL;
12c3667f 2371 }
1da177e4 2372}
1da177e4 2373
e5ac9c5a
RT
2374/*
2375 * Get the memory for a slab management obj.
5f0985bb
JZ
2376 *
2377 * For a slab cache when the slab descriptor is off-slab, the
2378 * slab descriptor can't come from the same cache which is being created,
2379 * Because if it is the case, that means we defer the creation of
2380 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2381 * And we eventually call down to __kmem_cache_create(), which
2382 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2383 * This is a "chicken-and-egg" problem.
2384 *
2385 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2386 * which are all initialized during kmem_cache_init().
e5ac9c5a 2387 */
7e007355 2388static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2389 struct page *page, int colour_off,
2390 gfp_t local_flags, int nodeid)
1da177e4 2391{
7e007355 2392 void *freelist;
0c3aa83e 2393 void *addr = page_address(page);
b28a02de 2394
2e6b3602
JK
2395 page->s_mem = addr + colour_off;
2396 page->active = 0;
2397
b03a017b
JK
2398 if (OBJFREELIST_SLAB(cachep))
2399 freelist = NULL;
2400 else if (OFF_SLAB(cachep)) {
1da177e4 2401 /* Slab management obj is off-slab. */
8456a648 2402 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2403 local_flags, nodeid);
8456a648 2404 if (!freelist)
1da177e4
LT
2405 return NULL;
2406 } else {
2e6b3602
JK
2407 /* We will use last bytes at the slab for freelist */
2408 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2409 cachep->freelist_size;
1da177e4 2410 }
2e6b3602 2411
8456a648 2412 return freelist;
1da177e4
LT
2413}
2414
7cc68973 2415static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2416{
a41adfaa 2417 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2418}
2419
2420static inline void set_free_obj(struct page *page,
7cc68973 2421 unsigned int idx, freelist_idx_t val)
e5c58dfd 2422{
a41adfaa 2423 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2424}
2425
10b2e9e8 2426static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2427{
10b2e9e8 2428#if DEBUG
1da177e4
LT
2429 int i;
2430
2431 for (i = 0; i < cachep->num; i++) {
8456a648 2432 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2433
1da177e4
LT
2434 if (cachep->flags & SLAB_STORE_USER)
2435 *dbg_userword(cachep, objp) = NULL;
2436
2437 if (cachep->flags & SLAB_RED_ZONE) {
2438 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2439 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2440 }
2441 /*
a737b3e2
AM
2442 * Constructors are not allowed to allocate memory from the same
2443 * cache which they are a constructor for. Otherwise, deadlock.
2444 * They must also be threaded.
1da177e4 2445 */
7ed2f9e6
AP
2446 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2447 kasan_unpoison_object_data(cachep,
2448 objp + obj_offset(cachep));
51cc5068 2449 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2450 kasan_poison_object_data(
2451 cachep, objp + obj_offset(cachep));
2452 }
1da177e4
LT
2453
2454 if (cachep->flags & SLAB_RED_ZONE) {
2455 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2456 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2457 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2458 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2459 }
40b44137
JK
2460 /* need to poison the objs? */
2461 if (cachep->flags & SLAB_POISON) {
2462 poison_obj(cachep, objp, POISON_FREE);
2463 slab_kernel_map(cachep, objp, 0, 0);
2464 }
10b2e9e8 2465 }
1da177e4 2466#endif
10b2e9e8
JK
2467}
2468
2469static void cache_init_objs(struct kmem_cache *cachep,
2470 struct page *page)
2471{
2472 int i;
7ed2f9e6 2473 void *objp;
10b2e9e8
JK
2474
2475 cache_init_objs_debug(cachep, page);
2476
b03a017b
JK
2477 if (OBJFREELIST_SLAB(cachep)) {
2478 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2479 obj_offset(cachep);
2480 }
2481
10b2e9e8
JK
2482 for (i = 0; i < cachep->num; i++) {
2483 /* constructor could break poison info */
7ed2f9e6
AP
2484 if (DEBUG == 0 && cachep->ctor) {
2485 objp = index_to_obj(cachep, page, i);
2486 kasan_unpoison_object_data(cachep, objp);
2487 cachep->ctor(objp);
2488 kasan_poison_object_data(cachep, objp);
2489 }
10b2e9e8 2490
e5c58dfd 2491 set_free_obj(page, i, i);
1da177e4 2492 }
1da177e4
LT
2493}
2494
343e0d7a 2495static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2496{
4b51d669
CL
2497 if (CONFIG_ZONE_DMA_FLAG) {
2498 if (flags & GFP_DMA)
a618e89f 2499 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2500 else
a618e89f 2501 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2502 }
1da177e4
LT
2503}
2504
260b61dd 2505static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2506{
b1cb0982 2507 void *objp;
78d382d7 2508
e5c58dfd 2509 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2510 page->active++;
78d382d7 2511
d31676df
JK
2512#if DEBUG
2513 if (cachep->flags & SLAB_STORE_USER)
2514 set_store_user_dirty(cachep);
2515#endif
2516
78d382d7
MD
2517 return objp;
2518}
2519
260b61dd
JK
2520static void slab_put_obj(struct kmem_cache *cachep,
2521 struct page *page, void *objp)
78d382d7 2522{
8456a648 2523 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2524#if DEBUG
16025177 2525 unsigned int i;
b1cb0982 2526
b1cb0982 2527 /* Verify double free bug */
8456a648 2528 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2529 if (get_free_obj(page, i) == objnr) {
1170532b 2530 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2531 cachep->name, objp);
b1cb0982
JK
2532 BUG();
2533 }
78d382d7
MD
2534 }
2535#endif
8456a648 2536 page->active--;
b03a017b
JK
2537 if (!page->freelist)
2538 page->freelist = objp + obj_offset(cachep);
2539
e5c58dfd 2540 set_free_obj(page, page->active, objnr);
78d382d7
MD
2541}
2542
4776874f
PE
2543/*
2544 * Map pages beginning at addr to the given cache and slab. This is required
2545 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2546 * virtual address for kfree, ksize, and slab debugging.
4776874f 2547 */
8456a648 2548static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2549 void *freelist)
1da177e4 2550{
a57a4988 2551 page->slab_cache = cache;
8456a648 2552 page->freelist = freelist;
1da177e4
LT
2553}
2554
2555/*
2556 * Grow (by 1) the number of slabs within a cache. This is called by
2557 * kmem_cache_alloc() when there are no active objs left in a cache.
2558 */
3c517a61 2559static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2560 gfp_t flags, int nodeid, struct page *page)
1da177e4 2561{
7e007355 2562 void *freelist;
b28a02de
PE
2563 size_t offset;
2564 gfp_t local_flags;
ce8eb6c4 2565 struct kmem_cache_node *n;
1da177e4 2566
a737b3e2
AM
2567 /*
2568 * Be lazy and only check for valid flags here, keeping it out of the
2569 * critical path in kmem_cache_alloc().
1da177e4 2570 */
c871ac4e
AM
2571 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2572 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2573 BUG();
2574 }
6cb06229 2575 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2576
1da177e4 2577 check_irq_off();
d0164adc 2578 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2579 local_irq_enable();
2580
2581 /*
2582 * The test for missing atomic flag is performed here, rather than
2583 * the more obvious place, simply to reduce the critical path length
2584 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2585 * will eventually be caught here (where it matters).
2586 */
2587 kmem_flagcheck(cachep, flags);
2588
a737b3e2
AM
2589 /*
2590 * Get mem for the objs. Attempt to allocate a physical page from
2591 * 'nodeid'.
e498be7d 2592 */
0c3aa83e
JK
2593 if (!page)
2594 page = kmem_getpages(cachep, local_flags, nodeid);
2595 if (!page)
1da177e4
LT
2596 goto failed;
2597
03d1d43a
JK
2598 n = get_node(cachep, nodeid);
2599
2600 /* Get colour for the slab, and cal the next value. */
2601 n->colour_next++;
2602 if (n->colour_next >= cachep->colour)
2603 n->colour_next = 0;
2604
2605 offset = n->colour_next;
2606 if (offset >= cachep->colour)
2607 offset = 0;
2608
2609 offset *= cachep->colour_off;
2610
1da177e4 2611 /* Get slab management. */
8456a648 2612 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2613 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
b03a017b 2614 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2615 goto opps1;
2616
8456a648 2617 slab_map_pages(cachep, page, freelist);
1da177e4 2618
7ed2f9e6 2619 kasan_poison_slab(page);
8456a648 2620 cache_init_objs(cachep, page);
1da177e4 2621
d0164adc 2622 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2623 local_irq_disable();
2624 check_irq_off();
ce8eb6c4 2625 spin_lock(&n->list_lock);
1da177e4
LT
2626
2627 /* Make slab active. */
8456a648 2628 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2629 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2630 n->free_objects += cachep->num;
2631 spin_unlock(&n->list_lock);
1da177e4 2632 return 1;
a737b3e2 2633opps1:
0c3aa83e 2634 kmem_freepages(cachep, page);
a737b3e2 2635failed:
d0164adc 2636 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2637 local_irq_disable();
2638 return 0;
2639}
2640
2641#if DEBUG
2642
2643/*
2644 * Perform extra freeing checks:
2645 * - detect bad pointers.
2646 * - POISON/RED_ZONE checking
1da177e4
LT
2647 */
2648static void kfree_debugcheck(const void *objp)
2649{
1da177e4 2650 if (!virt_addr_valid(objp)) {
1170532b 2651 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2652 (unsigned long)objp);
2653 BUG();
1da177e4 2654 }
1da177e4
LT
2655}
2656
58ce1fd5
PE
2657static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2658{
b46b8f19 2659 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2660
2661 redzone1 = *dbg_redzone1(cache, obj);
2662 redzone2 = *dbg_redzone2(cache, obj);
2663
2664 /*
2665 * Redzone is ok.
2666 */
2667 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2668 return;
2669
2670 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2671 slab_error(cache, "double free detected");
2672 else
2673 slab_error(cache, "memory outside object was overwritten");
2674
1170532b
JP
2675 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2676 obj, redzone1, redzone2);
58ce1fd5
PE
2677}
2678
343e0d7a 2679static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2680 unsigned long caller)
1da177e4 2681{
1da177e4 2682 unsigned int objnr;
8456a648 2683 struct page *page;
1da177e4 2684
80cbd911
MW
2685 BUG_ON(virt_to_cache(objp) != cachep);
2686
3dafccf2 2687 objp -= obj_offset(cachep);
1da177e4 2688 kfree_debugcheck(objp);
b49af68f 2689 page = virt_to_head_page(objp);
1da177e4 2690
1da177e4 2691 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2692 verify_redzone_free(cachep, objp);
1da177e4
LT
2693 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2694 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2695 }
d31676df
JK
2696 if (cachep->flags & SLAB_STORE_USER) {
2697 set_store_user_dirty(cachep);
7c0cb9c6 2698 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2699 }
1da177e4 2700
8456a648 2701 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2702
2703 BUG_ON(objnr >= cachep->num);
8456a648 2704 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2705
1da177e4 2706 if (cachep->flags & SLAB_POISON) {
1da177e4 2707 poison_obj(cachep, objp, POISON_FREE);
40b44137 2708 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2709 }
2710 return objp;
2711}
2712
1da177e4
LT
2713#else
2714#define kfree_debugcheck(x) do { } while(0)
2715#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2716#endif
2717
b03a017b
JK
2718static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2719 void **list)
2720{
2721#if DEBUG
2722 void *next = *list;
2723 void *objp;
2724
2725 while (next) {
2726 objp = next - obj_offset(cachep);
2727 next = *(void **)next;
2728 poison_obj(cachep, objp, POISON_FREE);
2729 }
2730#endif
2731}
2732
d8410234 2733static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2734 struct kmem_cache_node *n, struct page *page,
2735 void **list)
d8410234
JK
2736{
2737 /* move slabp to correct slabp list: */
2738 list_del(&page->lru);
b03a017b 2739 if (page->active == cachep->num) {
d8410234 2740 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2741 if (OBJFREELIST_SLAB(cachep)) {
2742#if DEBUG
2743 /* Poisoning will be done without holding the lock */
2744 if (cachep->flags & SLAB_POISON) {
2745 void **objp = page->freelist;
2746
2747 *objp = *list;
2748 *list = objp;
2749 }
2750#endif
2751 page->freelist = NULL;
2752 }
2753 } else
d8410234
JK
2754 list_add(&page->lru, &n->slabs_partial);
2755}
2756
f68f8ddd
JK
2757/* Try to find non-pfmemalloc slab if needed */
2758static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2759 struct page *page, bool pfmemalloc)
2760{
2761 if (!page)
2762 return NULL;
2763
2764 if (pfmemalloc)
2765 return page;
2766
2767 if (!PageSlabPfmemalloc(page))
2768 return page;
2769
2770 /* No need to keep pfmemalloc slab if we have enough free objects */
2771 if (n->free_objects > n->free_limit) {
2772 ClearPageSlabPfmemalloc(page);
2773 return page;
2774 }
2775
2776 /* Move pfmemalloc slab to the end of list to speed up next search */
2777 list_del(&page->lru);
2778 if (!page->active)
2779 list_add_tail(&page->lru, &n->slabs_free);
2780 else
2781 list_add_tail(&page->lru, &n->slabs_partial);
2782
2783 list_for_each_entry(page, &n->slabs_partial, lru) {
2784 if (!PageSlabPfmemalloc(page))
2785 return page;
2786 }
2787
2788 list_for_each_entry(page, &n->slabs_free, lru) {
2789 if (!PageSlabPfmemalloc(page))
2790 return page;
2791 }
2792
2793 return NULL;
2794}
2795
2796static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2797{
2798 struct page *page;
2799
2800 page = list_first_entry_or_null(&n->slabs_partial,
2801 struct page, lru);
2802 if (!page) {
2803 n->free_touched = 1;
2804 page = list_first_entry_or_null(&n->slabs_free,
2805 struct page, lru);
2806 }
2807
f68f8ddd
JK
2808 if (sk_memalloc_socks())
2809 return get_valid_first_slab(n, page, pfmemalloc);
2810
7aa0d227
GT
2811 return page;
2812}
2813
f68f8ddd
JK
2814static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2815 struct kmem_cache_node *n, gfp_t flags)
2816{
2817 struct page *page;
2818 void *obj;
2819 void *list = NULL;
2820
2821 if (!gfp_pfmemalloc_allowed(flags))
2822 return NULL;
2823
2824 spin_lock(&n->list_lock);
2825 page = get_first_slab(n, true);
2826 if (!page) {
2827 spin_unlock(&n->list_lock);
2828 return NULL;
2829 }
2830
2831 obj = slab_get_obj(cachep, page);
2832 n->free_objects--;
2833
2834 fixup_slab_list(cachep, n, page, &list);
2835
2836 spin_unlock(&n->list_lock);
2837 fixup_objfreelist_debug(cachep, &list);
2838
2839 return obj;
2840}
2841
2842static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2843{
2844 int batchcount;
ce8eb6c4 2845 struct kmem_cache_node *n;
1da177e4 2846 struct array_cache *ac;
1ca4cb24 2847 int node;
b03a017b 2848 void *list = NULL;
1ca4cb24 2849
1da177e4 2850 check_irq_off();
7d6e6d09 2851 node = numa_mem_id();
f68f8ddd 2852
072bb0aa 2853retry:
9a2dba4b 2854 ac = cpu_cache_get(cachep);
1da177e4
LT
2855 batchcount = ac->batchcount;
2856 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2857 /*
2858 * If there was little recent activity on this cache, then
2859 * perform only a partial refill. Otherwise we could generate
2860 * refill bouncing.
1da177e4
LT
2861 */
2862 batchcount = BATCHREFILL_LIMIT;
2863 }
18bf8541 2864 n = get_node(cachep, node);
e498be7d 2865
ce8eb6c4
CL
2866 BUG_ON(ac->avail > 0 || !n);
2867 spin_lock(&n->list_lock);
1da177e4 2868
3ded175a 2869 /* See if we can refill from the shared array */
ce8eb6c4
CL
2870 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2871 n->shared->touched = 1;
3ded175a 2872 goto alloc_done;
44b57f1c 2873 }
3ded175a 2874
1da177e4 2875 while (batchcount > 0) {
8456a648 2876 struct page *page;
1da177e4 2877 /* Get slab alloc is to come from. */
f68f8ddd 2878 page = get_first_slab(n, false);
7aa0d227
GT
2879 if (!page)
2880 goto must_grow;
1da177e4 2881
1da177e4 2882 check_spinlock_acquired(cachep);
714b8171
PE
2883
2884 /*
2885 * The slab was either on partial or free list so
2886 * there must be at least one object available for
2887 * allocation.
2888 */
8456a648 2889 BUG_ON(page->active >= cachep->num);
714b8171 2890
8456a648 2891 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2892 STATS_INC_ALLOCED(cachep);
2893 STATS_INC_ACTIVE(cachep);
2894 STATS_SET_HIGH(cachep);
2895
f68f8ddd 2896 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
1da177e4 2897 }
1da177e4 2898
b03a017b 2899 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2900 }
2901
a737b3e2 2902must_grow:
ce8eb6c4 2903 n->free_objects -= ac->avail;
a737b3e2 2904alloc_done:
ce8eb6c4 2905 spin_unlock(&n->list_lock);
b03a017b 2906 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2907
2908 if (unlikely(!ac->avail)) {
2909 int x;
f68f8ddd
JK
2910
2911 /* Check if we can use obj in pfmemalloc slab */
2912 if (sk_memalloc_socks()) {
2913 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2914
2915 if (obj)
2916 return obj;
2917 }
2918
4167e9b2 2919 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2920
a737b3e2 2921 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2922 ac = cpu_cache_get(cachep);
51cd8e6f 2923 node = numa_mem_id();
072bb0aa
MG
2924
2925 /* no objects in sight? abort */
f68f8ddd 2926 if (!x && ac->avail == 0)
1da177e4
LT
2927 return NULL;
2928
a737b3e2 2929 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2930 goto retry;
2931 }
2932 ac->touched = 1;
072bb0aa 2933
f68f8ddd 2934 return ac->entry[--ac->avail];
1da177e4
LT
2935}
2936
a737b3e2
AM
2937static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2938 gfp_t flags)
1da177e4 2939{
d0164adc 2940 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2941#if DEBUG
2942 kmem_flagcheck(cachep, flags);
2943#endif
2944}
2945
2946#if DEBUG
a737b3e2 2947static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2948 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2949{
b28a02de 2950 if (!objp)
1da177e4 2951 return objp;
b28a02de 2952 if (cachep->flags & SLAB_POISON) {
1da177e4 2953 check_poison_obj(cachep, objp);
40b44137 2954 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2955 poison_obj(cachep, objp, POISON_INUSE);
2956 }
2957 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2958 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2959
2960 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2961 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2962 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 2963 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
2964 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2965 objp, *dbg_redzone1(cachep, objp),
2966 *dbg_redzone2(cachep, objp));
1da177e4
LT
2967 }
2968 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2969 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2970 }
03787301 2971
3dafccf2 2972 objp += obj_offset(cachep);
4f104934 2973 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2974 cachep->ctor(objp);
7ea466f2
TH
2975 if (ARCH_SLAB_MINALIGN &&
2976 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 2977 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2978 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2979 }
1da177e4
LT
2980 return objp;
2981}
2982#else
2983#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2984#endif
2985
343e0d7a 2986static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2987{
b28a02de 2988 void *objp;
1da177e4
LT
2989 struct array_cache *ac;
2990
5c382300 2991 check_irq_off();
8a8b6502 2992
9a2dba4b 2993 ac = cpu_cache_get(cachep);
1da177e4 2994 if (likely(ac->avail)) {
1da177e4 2995 ac->touched = 1;
f68f8ddd 2996 objp = ac->entry[--ac->avail];
072bb0aa 2997
f68f8ddd
JK
2998 STATS_INC_ALLOCHIT(cachep);
2999 goto out;
1da177e4 3000 }
072bb0aa
MG
3001
3002 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3003 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3004 /*
3005 * the 'ac' may be updated by cache_alloc_refill(),
3006 * and kmemleak_erase() requires its correct value.
3007 */
3008 ac = cpu_cache_get(cachep);
3009
3010out:
d5cff635
CM
3011 /*
3012 * To avoid a false negative, if an object that is in one of the
3013 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3014 * treat the array pointers as a reference to the object.
3015 */
f3d8b53a
O
3016 if (objp)
3017 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3018 return objp;
3019}
3020
e498be7d 3021#ifdef CONFIG_NUMA
c61afb18 3022/*
2ad654bc 3023 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3024 *
3025 * If we are in_interrupt, then process context, including cpusets and
3026 * mempolicy, may not apply and should not be used for allocation policy.
3027 */
3028static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3029{
3030 int nid_alloc, nid_here;
3031
765c4507 3032 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3033 return NULL;
7d6e6d09 3034 nid_alloc = nid_here = numa_mem_id();
c61afb18 3035 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3036 nid_alloc = cpuset_slab_spread_node();
c61afb18 3037 else if (current->mempolicy)
2a389610 3038 nid_alloc = mempolicy_slab_node();
c61afb18 3039 if (nid_alloc != nid_here)
8b98c169 3040 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3041 return NULL;
3042}
3043
765c4507
CL
3044/*
3045 * Fallback function if there was no memory available and no objects on a
3c517a61 3046 * certain node and fall back is permitted. First we scan all the
6a67368c 3047 * available node for available objects. If that fails then we
3c517a61
CL
3048 * perform an allocation without specifying a node. This allows the page
3049 * allocator to do its reclaim / fallback magic. We then insert the
3050 * slab into the proper nodelist and then allocate from it.
765c4507 3051 */
8c8cc2c1 3052static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3053{
8c8cc2c1
PE
3054 struct zonelist *zonelist;
3055 gfp_t local_flags;
dd1a239f 3056 struct zoneref *z;
54a6eb5c
MG
3057 struct zone *zone;
3058 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3059 void *obj = NULL;
3c517a61 3060 int nid;
cc9a6c87 3061 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3062
3063 if (flags & __GFP_THISNODE)
3064 return NULL;
3065
6cb06229 3066 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3067
cc9a6c87 3068retry_cpuset:
d26914d1 3069 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3070 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3071
3c517a61
CL
3072retry:
3073 /*
3074 * Look through allowed nodes for objects available
3075 * from existing per node queues.
3076 */
54a6eb5c
MG
3077 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3078 nid = zone_to_nid(zone);
aedb0eb1 3079
061d7074 3080 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3081 get_node(cache, nid) &&
3082 get_node(cache, nid)->free_objects) {
3c517a61 3083 obj = ____cache_alloc_node(cache,
4167e9b2 3084 gfp_exact_node(flags), nid);
481c5346
CL
3085 if (obj)
3086 break;
3087 }
3c517a61
CL
3088 }
3089
cfce6604 3090 if (!obj) {
3c517a61
CL
3091 /*
3092 * This allocation will be performed within the constraints
3093 * of the current cpuset / memory policy requirements.
3094 * We may trigger various forms of reclaim on the allowed
3095 * set and go into memory reserves if necessary.
3096 */
0c3aa83e
JK
3097 struct page *page;
3098
d0164adc 3099 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3100 local_irq_enable();
3101 kmem_flagcheck(cache, flags);
0c3aa83e 3102 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3103 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3104 local_irq_disable();
0c3aa83e 3105 if (page) {
3c517a61
CL
3106 /*
3107 * Insert into the appropriate per node queues
3108 */
0c3aa83e
JK
3109 nid = page_to_nid(page);
3110 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3111 obj = ____cache_alloc_node(cache,
4167e9b2 3112 gfp_exact_node(flags), nid);
3c517a61
CL
3113 if (!obj)
3114 /*
3115 * Another processor may allocate the
3116 * objects in the slab since we are
3117 * not holding any locks.
3118 */
3119 goto retry;
3120 } else {
b6a60451 3121 /* cache_grow already freed obj */
3c517a61
CL
3122 obj = NULL;
3123 }
3124 }
aedb0eb1 3125 }
cc9a6c87 3126
d26914d1 3127 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3128 goto retry_cpuset;
765c4507
CL
3129 return obj;
3130}
3131
e498be7d
CL
3132/*
3133 * A interface to enable slab creation on nodeid
1da177e4 3134 */
8b98c169 3135static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3136 int nodeid)
e498be7d 3137{
8456a648 3138 struct page *page;
ce8eb6c4 3139 struct kmem_cache_node *n;
b28a02de 3140 void *obj;
b03a017b 3141 void *list = NULL;
b28a02de
PE
3142 int x;
3143
7c3fbbdd 3144 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3145 n = get_node(cachep, nodeid);
ce8eb6c4 3146 BUG_ON(!n);
b28a02de 3147
a737b3e2 3148retry:
ca3b9b91 3149 check_irq_off();
ce8eb6c4 3150 spin_lock(&n->list_lock);
f68f8ddd 3151 page = get_first_slab(n, false);
7aa0d227
GT
3152 if (!page)
3153 goto must_grow;
b28a02de 3154
b28a02de 3155 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3156
3157 STATS_INC_NODEALLOCS(cachep);
3158 STATS_INC_ACTIVE(cachep);
3159 STATS_SET_HIGH(cachep);
3160
8456a648 3161 BUG_ON(page->active == cachep->num);
b28a02de 3162
260b61dd 3163 obj = slab_get_obj(cachep, page);
ce8eb6c4 3164 n->free_objects--;
b28a02de 3165
b03a017b 3166 fixup_slab_list(cachep, n, page, &list);
e498be7d 3167
ce8eb6c4 3168 spin_unlock(&n->list_lock);
b03a017b 3169 fixup_objfreelist_debug(cachep, &list);
b28a02de 3170 goto done;
e498be7d 3171
a737b3e2 3172must_grow:
ce8eb6c4 3173 spin_unlock(&n->list_lock);
4167e9b2 3174 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3175 if (x)
3176 goto retry;
1da177e4 3177
8c8cc2c1 3178 return fallback_alloc(cachep, flags);
e498be7d 3179
a737b3e2 3180done:
b28a02de 3181 return obj;
e498be7d 3182}
8c8cc2c1 3183
8c8cc2c1 3184static __always_inline void *
48356303 3185slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3186 unsigned long caller)
8c8cc2c1
PE
3187{
3188 unsigned long save_flags;
3189 void *ptr;
7d6e6d09 3190 int slab_node = numa_mem_id();
8c8cc2c1 3191
dcce284a 3192 flags &= gfp_allowed_mask;
011eceaf
JDB
3193 cachep = slab_pre_alloc_hook(cachep, flags);
3194 if (unlikely(!cachep))
824ebef1
AM
3195 return NULL;
3196
8c8cc2c1
PE
3197 cache_alloc_debugcheck_before(cachep, flags);
3198 local_irq_save(save_flags);
3199
eacbbae3 3200 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3201 nodeid = slab_node;
8c8cc2c1 3202
18bf8541 3203 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3204 /* Node not bootstrapped yet */
3205 ptr = fallback_alloc(cachep, flags);
3206 goto out;
3207 }
3208
7d6e6d09 3209 if (nodeid == slab_node) {
8c8cc2c1
PE
3210 /*
3211 * Use the locally cached objects if possible.
3212 * However ____cache_alloc does not allow fallback
3213 * to other nodes. It may fail while we still have
3214 * objects on other nodes available.
3215 */
3216 ptr = ____cache_alloc(cachep, flags);
3217 if (ptr)
3218 goto out;
3219 }
3220 /* ___cache_alloc_node can fall back to other nodes */
3221 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3222 out:
3223 local_irq_restore(save_flags);
3224 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3225
d5e3ed66
JDB
3226 if (unlikely(flags & __GFP_ZERO) && ptr)
3227 memset(ptr, 0, cachep->object_size);
d07dbea4 3228
d5e3ed66 3229 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3230 return ptr;
3231}
3232
3233static __always_inline void *
3234__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3235{
3236 void *objp;
3237
2ad654bc 3238 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3239 objp = alternate_node_alloc(cache, flags);
3240 if (objp)
3241 goto out;
3242 }
3243 objp = ____cache_alloc(cache, flags);
3244
3245 /*
3246 * We may just have run out of memory on the local node.
3247 * ____cache_alloc_node() knows how to locate memory on other nodes
3248 */
7d6e6d09
LS
3249 if (!objp)
3250 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3251
3252 out:
3253 return objp;
3254}
3255#else
3256
3257static __always_inline void *
3258__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3259{
3260 return ____cache_alloc(cachep, flags);
3261}
3262
3263#endif /* CONFIG_NUMA */
3264
3265static __always_inline void *
48356303 3266slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3267{
3268 unsigned long save_flags;
3269 void *objp;
3270
dcce284a 3271 flags &= gfp_allowed_mask;
011eceaf
JDB
3272 cachep = slab_pre_alloc_hook(cachep, flags);
3273 if (unlikely(!cachep))
824ebef1
AM
3274 return NULL;
3275
8c8cc2c1
PE
3276 cache_alloc_debugcheck_before(cachep, flags);
3277 local_irq_save(save_flags);
3278 objp = __do_cache_alloc(cachep, flags);
3279 local_irq_restore(save_flags);
3280 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3281 prefetchw(objp);
3282
d5e3ed66
JDB
3283 if (unlikely(flags & __GFP_ZERO) && objp)
3284 memset(objp, 0, cachep->object_size);
d07dbea4 3285
d5e3ed66 3286 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3287 return objp;
3288}
e498be7d
CL
3289
3290/*
5f0985bb 3291 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3292 * @list: List of detached free slabs should be freed by caller
e498be7d 3293 */
97654dfa
JK
3294static void free_block(struct kmem_cache *cachep, void **objpp,
3295 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3296{
3297 int i;
25c063fb 3298 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3299 struct page *page;
3300
3301 n->free_objects += nr_objects;
1da177e4
LT
3302
3303 for (i = 0; i < nr_objects; i++) {
072bb0aa 3304 void *objp;
8456a648 3305 struct page *page;
1da177e4 3306
072bb0aa
MG
3307 objp = objpp[i];
3308
8456a648 3309 page = virt_to_head_page(objp);
8456a648 3310 list_del(&page->lru);
ff69416e 3311 check_spinlock_acquired_node(cachep, node);
260b61dd 3312 slab_put_obj(cachep, page, objp);
1da177e4 3313 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3314
3315 /* fixup slab chains */
6052b788
JK
3316 if (page->active == 0)
3317 list_add(&page->lru, &n->slabs_free);
3318 else {
1da177e4
LT
3319 /* Unconditionally move a slab to the end of the
3320 * partial list on free - maximum time for the
3321 * other objects to be freed, too.
3322 */
8456a648 3323 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3324 }
3325 }
6052b788
JK
3326
3327 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3328 n->free_objects -= cachep->num;
3329
3330 page = list_last_entry(&n->slabs_free, struct page, lru);
3331 list_del(&page->lru);
3332 list_add(&page->lru, list);
3333 }
1da177e4
LT
3334}
3335
343e0d7a 3336static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3337{
3338 int batchcount;
ce8eb6c4 3339 struct kmem_cache_node *n;
7d6e6d09 3340 int node = numa_mem_id();
97654dfa 3341 LIST_HEAD(list);
1da177e4
LT
3342
3343 batchcount = ac->batchcount;
260b61dd 3344
1da177e4 3345 check_irq_off();
18bf8541 3346 n = get_node(cachep, node);
ce8eb6c4
CL
3347 spin_lock(&n->list_lock);
3348 if (n->shared) {
3349 struct array_cache *shared_array = n->shared;
b28a02de 3350 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3351 if (max) {
3352 if (batchcount > max)
3353 batchcount = max;
e498be7d 3354 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3355 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3356 shared_array->avail += batchcount;
3357 goto free_done;
3358 }
3359 }
3360
97654dfa 3361 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3362free_done:
1da177e4
LT
3363#if STATS
3364 {
3365 int i = 0;
73c0219d 3366 struct page *page;
1da177e4 3367
73c0219d 3368 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3369 BUG_ON(page->active);
1da177e4
LT
3370
3371 i++;
1da177e4
LT
3372 }
3373 STATS_SET_FREEABLE(cachep, i);
3374 }
3375#endif
ce8eb6c4 3376 spin_unlock(&n->list_lock);
97654dfa 3377 slabs_destroy(cachep, &list);
1da177e4 3378 ac->avail -= batchcount;
a737b3e2 3379 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3380}
3381
3382/*
a737b3e2
AM
3383 * Release an obj back to its cache. If the obj has a constructed state, it must
3384 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3385 */
a947eb95 3386static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3387 unsigned long caller)
1da177e4 3388{
9a2dba4b 3389 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3390
7ed2f9e6
AP
3391 kasan_slab_free(cachep, objp);
3392
1da177e4 3393 check_irq_off();
d5cff635 3394 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3395 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3396
8c138bc0 3397 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3398
1807a1aa
SS
3399 /*
3400 * Skip calling cache_free_alien() when the platform is not numa.
3401 * This will avoid cache misses that happen while accessing slabp (which
3402 * is per page memory reference) to get nodeid. Instead use a global
3403 * variable to skip the call, which is mostly likely to be present in
3404 * the cache.
3405 */
b6e68bc1 3406 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3407 return;
3408
3d880194 3409 if (ac->avail < ac->limit) {
1da177e4 3410 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3411 } else {
3412 STATS_INC_FREEMISS(cachep);
3413 cache_flusharray(cachep, ac);
1da177e4 3414 }
42c8c99c 3415
f68f8ddd
JK
3416 if (sk_memalloc_socks()) {
3417 struct page *page = virt_to_head_page(objp);
3418
3419 if (unlikely(PageSlabPfmemalloc(page))) {
3420 cache_free_pfmemalloc(cachep, page, objp);
3421 return;
3422 }
3423 }
3424
3425 ac->entry[ac->avail++] = objp;
1da177e4
LT
3426}
3427
3428/**
3429 * kmem_cache_alloc - Allocate an object
3430 * @cachep: The cache to allocate from.
3431 * @flags: See kmalloc().
3432 *
3433 * Allocate an object from this cache. The flags are only relevant
3434 * if the cache has no available objects.
3435 */
343e0d7a 3436void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3437{
48356303 3438 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3439
505f5dcb 3440 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3441 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3442 cachep->object_size, cachep->size, flags);
36555751
EGM
3443
3444 return ret;
1da177e4
LT
3445}
3446EXPORT_SYMBOL(kmem_cache_alloc);
3447
7b0501dd
JDB
3448static __always_inline void
3449cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3450 size_t size, void **p, unsigned long caller)
3451{
3452 size_t i;
3453
3454 for (i = 0; i < size; i++)
3455 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3456}
3457
865762a8 3458int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3459 void **p)
484748f0 3460{
2a777eac
JDB
3461 size_t i;
3462
3463 s = slab_pre_alloc_hook(s, flags);
3464 if (!s)
3465 return 0;
3466
3467 cache_alloc_debugcheck_before(s, flags);
3468
3469 local_irq_disable();
3470 for (i = 0; i < size; i++) {
3471 void *objp = __do_cache_alloc(s, flags);
3472
2a777eac
JDB
3473 if (unlikely(!objp))
3474 goto error;
3475 p[i] = objp;
3476 }
3477 local_irq_enable();
3478
7b0501dd
JDB
3479 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3480
2a777eac
JDB
3481 /* Clear memory outside IRQ disabled section */
3482 if (unlikely(flags & __GFP_ZERO))
3483 for (i = 0; i < size; i++)
3484 memset(p[i], 0, s->object_size);
3485
3486 slab_post_alloc_hook(s, flags, size, p);
3487 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3488 return size;
3489error:
3490 local_irq_enable();
7b0501dd 3491 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3492 slab_post_alloc_hook(s, flags, i, p);
3493 __kmem_cache_free_bulk(s, i, p);
3494 return 0;
484748f0
CL
3495}
3496EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3497
0f24f128 3498#ifdef CONFIG_TRACING
85beb586 3499void *
4052147c 3500kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3501{
85beb586
SR
3502 void *ret;
3503
48356303 3504 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3505
505f5dcb 3506 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3507 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3508 size, cachep->size, flags);
85beb586 3509 return ret;
36555751 3510}
85beb586 3511EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3512#endif
3513
1da177e4 3514#ifdef CONFIG_NUMA
d0d04b78
ZL
3515/**
3516 * kmem_cache_alloc_node - Allocate an object on the specified node
3517 * @cachep: The cache to allocate from.
3518 * @flags: See kmalloc().
3519 * @nodeid: node number of the target node.
3520 *
3521 * Identical to kmem_cache_alloc but it will allocate memory on the given
3522 * node, which can improve the performance for cpu bound structures.
3523 *
3524 * Fallback to other node is possible if __GFP_THISNODE is not set.
3525 */
8b98c169
CH
3526void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3527{
48356303 3528 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3529
505f5dcb 3530 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3531 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3532 cachep->object_size, cachep->size,
ca2b84cb 3533 flags, nodeid);
36555751
EGM
3534
3535 return ret;
8b98c169 3536}
1da177e4
LT
3537EXPORT_SYMBOL(kmem_cache_alloc_node);
3538
0f24f128 3539#ifdef CONFIG_TRACING
4052147c 3540void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3541 gfp_t flags,
4052147c
EG
3542 int nodeid,
3543 size_t size)
36555751 3544{
85beb586
SR
3545 void *ret;
3546
592f4145 3547 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3548
3549 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3550 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3551 size, cachep->size,
85beb586
SR
3552 flags, nodeid);
3553 return ret;
36555751 3554}
85beb586 3555EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3556#endif
3557
8b98c169 3558static __always_inline void *
7c0cb9c6 3559__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3560{
343e0d7a 3561 struct kmem_cache *cachep;
7ed2f9e6 3562 void *ret;
97e2bde4 3563
2c59dd65 3564 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3565 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3566 return cachep;
7ed2f9e6 3567 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3568 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3569
3570 return ret;
97e2bde4 3571}
8b98c169 3572
8b98c169
CH
3573void *__kmalloc_node(size_t size, gfp_t flags, int node)
3574{
7c0cb9c6 3575 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3576}
dbe5e69d 3577EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3578
3579void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3580 int node, unsigned long caller)
8b98c169 3581{
7c0cb9c6 3582 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3583}
3584EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3585#endif /* CONFIG_NUMA */
1da177e4
LT
3586
3587/**
800590f5 3588 * __do_kmalloc - allocate memory
1da177e4 3589 * @size: how many bytes of memory are required.
800590f5 3590 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3591 * @caller: function caller for debug tracking of the caller
1da177e4 3592 */
7fd6b141 3593static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3594 unsigned long caller)
1da177e4 3595{
343e0d7a 3596 struct kmem_cache *cachep;
36555751 3597 void *ret;
1da177e4 3598
2c59dd65 3599 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3600 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3601 return cachep;
48356303 3602 ret = slab_alloc(cachep, flags, caller);
36555751 3603
505f5dcb 3604 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3605 trace_kmalloc(caller, ret,
3b0efdfa 3606 size, cachep->size, flags);
36555751
EGM
3607
3608 return ret;
7fd6b141
PE
3609}
3610
7fd6b141
PE
3611void *__kmalloc(size_t size, gfp_t flags)
3612{
7c0cb9c6 3613 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3614}
3615EXPORT_SYMBOL(__kmalloc);
3616
ce71e27c 3617void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3618{
7c0cb9c6 3619 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3620}
3621EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3622
1da177e4
LT
3623/**
3624 * kmem_cache_free - Deallocate an object
3625 * @cachep: The cache the allocation was from.
3626 * @objp: The previously allocated object.
3627 *
3628 * Free an object which was previously allocated from this
3629 * cache.
3630 */
343e0d7a 3631void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3632{
3633 unsigned long flags;
b9ce5ef4
GC
3634 cachep = cache_from_obj(cachep, objp);
3635 if (!cachep)
3636 return;
1da177e4
LT
3637
3638 local_irq_save(flags);
d97d476b 3639 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3640 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3641 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3642 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3643 local_irq_restore(flags);
36555751 3644
ca2b84cb 3645 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3646}
3647EXPORT_SYMBOL(kmem_cache_free);
3648
e6cdb58d
JDB
3649void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3650{
3651 struct kmem_cache *s;
3652 size_t i;
3653
3654 local_irq_disable();
3655 for (i = 0; i < size; i++) {
3656 void *objp = p[i];
3657
ca257195
JDB
3658 if (!orig_s) /* called via kfree_bulk */
3659 s = virt_to_cache(objp);
3660 else
3661 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3662
3663 debug_check_no_locks_freed(objp, s->object_size);
3664 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3665 debug_check_no_obj_freed(objp, s->object_size);
3666
3667 __cache_free(s, objp, _RET_IP_);
3668 }
3669 local_irq_enable();
3670
3671 /* FIXME: add tracing */
3672}
3673EXPORT_SYMBOL(kmem_cache_free_bulk);
3674
1da177e4
LT
3675/**
3676 * kfree - free previously allocated memory
3677 * @objp: pointer returned by kmalloc.
3678 *
80e93eff
PE
3679 * If @objp is NULL, no operation is performed.
3680 *
1da177e4
LT
3681 * Don't free memory not originally allocated by kmalloc()
3682 * or you will run into trouble.
3683 */
3684void kfree(const void *objp)
3685{
343e0d7a 3686 struct kmem_cache *c;
1da177e4
LT
3687 unsigned long flags;
3688
2121db74
PE
3689 trace_kfree(_RET_IP_, objp);
3690
6cb8f913 3691 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3692 return;
3693 local_irq_save(flags);
3694 kfree_debugcheck(objp);
6ed5eb22 3695 c = virt_to_cache(objp);
8c138bc0
CL
3696 debug_check_no_locks_freed(objp, c->object_size);
3697
3698 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3699 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3700 local_irq_restore(flags);
3701}
3702EXPORT_SYMBOL(kfree);
3703
e498be7d 3704/*
ce8eb6c4 3705 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3706 */
c3d332b6 3707static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3708{
c3d332b6 3709 int ret;
e498be7d 3710 int node;
ce8eb6c4 3711 struct kmem_cache_node *n;
e498be7d 3712
9c09a95c 3713 for_each_online_node(node) {
c3d332b6
JK
3714 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3715 if (ret)
e498be7d
CL
3716 goto fail;
3717
e498be7d 3718 }
c3d332b6 3719
cafeb02e 3720 return 0;
0718dc2a 3721
a737b3e2 3722fail:
3b0efdfa 3723 if (!cachep->list.next) {
0718dc2a
CL
3724 /* Cache is not active yet. Roll back what we did */
3725 node--;
3726 while (node >= 0) {
18bf8541
CL
3727 n = get_node(cachep, node);
3728 if (n) {
ce8eb6c4
CL
3729 kfree(n->shared);
3730 free_alien_cache(n->alien);
3731 kfree(n);
6a67368c 3732 cachep->node[node] = NULL;
0718dc2a
CL
3733 }
3734 node--;
3735 }
3736 }
cafeb02e 3737 return -ENOMEM;
e498be7d
CL
3738}
3739
18004c5d 3740/* Always called with the slab_mutex held */
943a451a 3741static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3742 int batchcount, int shared, gfp_t gfp)
1da177e4 3743{
bf0dea23
JK
3744 struct array_cache __percpu *cpu_cache, *prev;
3745 int cpu;
1da177e4 3746
bf0dea23
JK
3747 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3748 if (!cpu_cache)
d2e7b7d0
SS
3749 return -ENOMEM;
3750
bf0dea23
JK
3751 prev = cachep->cpu_cache;
3752 cachep->cpu_cache = cpu_cache;
3753 kick_all_cpus_sync();
e498be7d 3754
1da177e4 3755 check_irq_on();
1da177e4
LT
3756 cachep->batchcount = batchcount;
3757 cachep->limit = limit;
e498be7d 3758 cachep->shared = shared;
1da177e4 3759
bf0dea23 3760 if (!prev)
c3d332b6 3761 goto setup_node;
bf0dea23
JK
3762
3763 for_each_online_cpu(cpu) {
97654dfa 3764 LIST_HEAD(list);
18bf8541
CL
3765 int node;
3766 struct kmem_cache_node *n;
bf0dea23 3767 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3768
bf0dea23 3769 node = cpu_to_mem(cpu);
18bf8541
CL
3770 n = get_node(cachep, node);
3771 spin_lock_irq(&n->list_lock);
bf0dea23 3772 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3773 spin_unlock_irq(&n->list_lock);
97654dfa 3774 slabs_destroy(cachep, &list);
1da177e4 3775 }
bf0dea23
JK
3776 free_percpu(prev);
3777
c3d332b6
JK
3778setup_node:
3779 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3780}
3781
943a451a
GC
3782static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3783 int batchcount, int shared, gfp_t gfp)
3784{
3785 int ret;
426589f5 3786 struct kmem_cache *c;
943a451a
GC
3787
3788 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3789
3790 if (slab_state < FULL)
3791 return ret;
3792
3793 if ((ret < 0) || !is_root_cache(cachep))
3794 return ret;
3795
426589f5
VD
3796 lockdep_assert_held(&slab_mutex);
3797 for_each_memcg_cache(c, cachep) {
3798 /* return value determined by the root cache only */
3799 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3800 }
3801
3802 return ret;
3803}
3804
18004c5d 3805/* Called with slab_mutex held always */
83b519e8 3806static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3807{
3808 int err;
943a451a
GC
3809 int limit = 0;
3810 int shared = 0;
3811 int batchcount = 0;
3812
3813 if (!is_root_cache(cachep)) {
3814 struct kmem_cache *root = memcg_root_cache(cachep);
3815 limit = root->limit;
3816 shared = root->shared;
3817 batchcount = root->batchcount;
3818 }
1da177e4 3819
943a451a
GC
3820 if (limit && shared && batchcount)
3821 goto skip_setup;
a737b3e2
AM
3822 /*
3823 * The head array serves three purposes:
1da177e4
LT
3824 * - create a LIFO ordering, i.e. return objects that are cache-warm
3825 * - reduce the number of spinlock operations.
a737b3e2 3826 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3827 * bufctl chains: array operations are cheaper.
3828 * The numbers are guessed, we should auto-tune as described by
3829 * Bonwick.
3830 */
3b0efdfa 3831 if (cachep->size > 131072)
1da177e4 3832 limit = 1;
3b0efdfa 3833 else if (cachep->size > PAGE_SIZE)
1da177e4 3834 limit = 8;
3b0efdfa 3835 else if (cachep->size > 1024)
1da177e4 3836 limit = 24;
3b0efdfa 3837 else if (cachep->size > 256)
1da177e4
LT
3838 limit = 54;
3839 else
3840 limit = 120;
3841
a737b3e2
AM
3842 /*
3843 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3844 * allocation behaviour: Most allocs on one cpu, most free operations
3845 * on another cpu. For these cases, an efficient object passing between
3846 * cpus is necessary. This is provided by a shared array. The array
3847 * replaces Bonwick's magazine layer.
3848 * On uniprocessor, it's functionally equivalent (but less efficient)
3849 * to a larger limit. Thus disabled by default.
3850 */
3851 shared = 0;
3b0efdfa 3852 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3853 shared = 8;
1da177e4
LT
3854
3855#if DEBUG
a737b3e2
AM
3856 /*
3857 * With debugging enabled, large batchcount lead to excessively long
3858 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3859 */
3860 if (limit > 32)
3861 limit = 32;
3862#endif
943a451a
GC
3863 batchcount = (limit + 1) / 2;
3864skip_setup:
3865 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4 3866 if (err)
1170532b 3867 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3868 cachep->name, -err);
2ed3a4ef 3869 return err;
1da177e4
LT
3870}
3871
1b55253a 3872/*
ce8eb6c4
CL
3873 * Drain an array if it contains any elements taking the node lock only if
3874 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3875 * if drain_array() is used on the shared array.
1b55253a 3876 */
ce8eb6c4 3877static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3878 struct array_cache *ac, int node)
1da177e4 3879{
97654dfa 3880 LIST_HEAD(list);
18726ca8
JK
3881
3882 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3883 check_mutex_acquired();
1da177e4 3884
1b55253a
CL
3885 if (!ac || !ac->avail)
3886 return;
18726ca8
JK
3887
3888 if (ac->touched) {
1da177e4 3889 ac->touched = 0;
18726ca8 3890 return;
1da177e4 3891 }
18726ca8
JK
3892
3893 spin_lock_irq(&n->list_lock);
3894 drain_array_locked(cachep, ac, node, false, &list);
3895 spin_unlock_irq(&n->list_lock);
3896
3897 slabs_destroy(cachep, &list);
1da177e4
LT
3898}
3899
3900/**
3901 * cache_reap - Reclaim memory from caches.
05fb6bf0 3902 * @w: work descriptor
1da177e4
LT
3903 *
3904 * Called from workqueue/eventd every few seconds.
3905 * Purpose:
3906 * - clear the per-cpu caches for this CPU.
3907 * - return freeable pages to the main free memory pool.
3908 *
a737b3e2
AM
3909 * If we cannot acquire the cache chain mutex then just give up - we'll try
3910 * again on the next iteration.
1da177e4 3911 */
7c5cae36 3912static void cache_reap(struct work_struct *w)
1da177e4 3913{
7a7c381d 3914 struct kmem_cache *searchp;
ce8eb6c4 3915 struct kmem_cache_node *n;
7d6e6d09 3916 int node = numa_mem_id();
bf6aede7 3917 struct delayed_work *work = to_delayed_work(w);
1da177e4 3918
18004c5d 3919 if (!mutex_trylock(&slab_mutex))
1da177e4 3920 /* Give up. Setup the next iteration. */
7c5cae36 3921 goto out;
1da177e4 3922
18004c5d 3923 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3924 check_irq_on();
3925
35386e3b 3926 /*
ce8eb6c4 3927 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3928 * have established with reasonable certainty that
3929 * we can do some work if the lock was obtained.
3930 */
18bf8541 3931 n = get_node(searchp, node);
35386e3b 3932
ce8eb6c4 3933 reap_alien(searchp, n);
1da177e4 3934
18726ca8 3935 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 3936
35386e3b
CL
3937 /*
3938 * These are racy checks but it does not matter
3939 * if we skip one check or scan twice.
3940 */
ce8eb6c4 3941 if (time_after(n->next_reap, jiffies))
35386e3b 3942 goto next;
1da177e4 3943
5f0985bb 3944 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3945
18726ca8 3946 drain_array(searchp, n, n->shared, node);
1da177e4 3947
ce8eb6c4
CL
3948 if (n->free_touched)
3949 n->free_touched = 0;
ed11d9eb
CL
3950 else {
3951 int freed;
1da177e4 3952
ce8eb6c4 3953 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3954 5 * searchp->num - 1) / (5 * searchp->num));
3955 STATS_ADD_REAPED(searchp, freed);
3956 }
35386e3b 3957next:
1da177e4
LT
3958 cond_resched();
3959 }
3960 check_irq_on();
18004c5d 3961 mutex_unlock(&slab_mutex);
8fce4d8e 3962 next_reap_node();
7c5cae36 3963out:
a737b3e2 3964 /* Set up the next iteration */
5f0985bb 3965 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3966}
3967
158a9624 3968#ifdef CONFIG_SLABINFO
0d7561c6 3969void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3970{
8456a648 3971 struct page *page;
b28a02de
PE
3972 unsigned long active_objs;
3973 unsigned long num_objs;
3974 unsigned long active_slabs = 0;
3975 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3976 const char *name;
1da177e4 3977 char *error = NULL;
e498be7d 3978 int node;
ce8eb6c4 3979 struct kmem_cache_node *n;
1da177e4 3980
1da177e4
LT
3981 active_objs = 0;
3982 num_slabs = 0;
18bf8541 3983 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3984
ca3b9b91 3985 check_irq_on();
ce8eb6c4 3986 spin_lock_irq(&n->list_lock);
e498be7d 3987
8456a648
JK
3988 list_for_each_entry(page, &n->slabs_full, lru) {
3989 if (page->active != cachep->num && !error)
e498be7d
CL
3990 error = "slabs_full accounting error";
3991 active_objs += cachep->num;
3992 active_slabs++;
3993 }
8456a648
JK
3994 list_for_each_entry(page, &n->slabs_partial, lru) {
3995 if (page->active == cachep->num && !error)
106a74e1 3996 error = "slabs_partial accounting error";
8456a648 3997 if (!page->active && !error)
106a74e1 3998 error = "slabs_partial accounting error";
8456a648 3999 active_objs += page->active;
e498be7d
CL
4000 active_slabs++;
4001 }
8456a648
JK
4002 list_for_each_entry(page, &n->slabs_free, lru) {
4003 if (page->active && !error)
106a74e1 4004 error = "slabs_free accounting error";
e498be7d
CL
4005 num_slabs++;
4006 }
ce8eb6c4
CL
4007 free_objects += n->free_objects;
4008 if (n->shared)
4009 shared_avail += n->shared->avail;
e498be7d 4010
ce8eb6c4 4011 spin_unlock_irq(&n->list_lock);
1da177e4 4012 }
b28a02de
PE
4013 num_slabs += active_slabs;
4014 num_objs = num_slabs * cachep->num;
e498be7d 4015 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4016 error = "free_objects accounting error";
4017
b28a02de 4018 name = cachep->name;
1da177e4 4019 if (error)
1170532b 4020 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4021
0d7561c6
GC
4022 sinfo->active_objs = active_objs;
4023 sinfo->num_objs = num_objs;
4024 sinfo->active_slabs = active_slabs;
4025 sinfo->num_slabs = num_slabs;
4026 sinfo->shared_avail = shared_avail;
4027 sinfo->limit = cachep->limit;
4028 sinfo->batchcount = cachep->batchcount;
4029 sinfo->shared = cachep->shared;
4030 sinfo->objects_per_slab = cachep->num;
4031 sinfo->cache_order = cachep->gfporder;
4032}
4033
4034void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4035{
1da177e4 4036#if STATS
ce8eb6c4 4037 { /* node stats */
1da177e4
LT
4038 unsigned long high = cachep->high_mark;
4039 unsigned long allocs = cachep->num_allocations;
4040 unsigned long grown = cachep->grown;
4041 unsigned long reaped = cachep->reaped;
4042 unsigned long errors = cachep->errors;
4043 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4044 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4045 unsigned long node_frees = cachep->node_frees;
fb7faf33 4046 unsigned long overflows = cachep->node_overflow;
1da177e4 4047
756a025f 4048 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4049 allocs, high, grown,
4050 reaped, errors, max_freeable, node_allocs,
4051 node_frees, overflows);
1da177e4
LT
4052 }
4053 /* cpu stats */
4054 {
4055 unsigned long allochit = atomic_read(&cachep->allochit);
4056 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4057 unsigned long freehit = atomic_read(&cachep->freehit);
4058 unsigned long freemiss = atomic_read(&cachep->freemiss);
4059
4060 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4061 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4062 }
4063#endif
1da177e4
LT
4064}
4065
1da177e4
LT
4066#define MAX_SLABINFO_WRITE 128
4067/**
4068 * slabinfo_write - Tuning for the slab allocator
4069 * @file: unused
4070 * @buffer: user buffer
4071 * @count: data length
4072 * @ppos: unused
4073 */
b7454ad3 4074ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4075 size_t count, loff_t *ppos)
1da177e4 4076{
b28a02de 4077 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4078 int limit, batchcount, shared, res;
7a7c381d 4079 struct kmem_cache *cachep;
b28a02de 4080
1da177e4
LT
4081 if (count > MAX_SLABINFO_WRITE)
4082 return -EINVAL;
4083 if (copy_from_user(&kbuf, buffer, count))
4084 return -EFAULT;
b28a02de 4085 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4086
4087 tmp = strchr(kbuf, ' ');
4088 if (!tmp)
4089 return -EINVAL;
4090 *tmp = '\0';
4091 tmp++;
4092 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4093 return -EINVAL;
4094
4095 /* Find the cache in the chain of caches. */
18004c5d 4096 mutex_lock(&slab_mutex);
1da177e4 4097 res = -EINVAL;
18004c5d 4098 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4099 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4100 if (limit < 1 || batchcount < 1 ||
4101 batchcount > limit || shared < 0) {
e498be7d 4102 res = 0;
1da177e4 4103 } else {
e498be7d 4104 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4105 batchcount, shared,
4106 GFP_KERNEL);
1da177e4
LT
4107 }
4108 break;
4109 }
4110 }
18004c5d 4111 mutex_unlock(&slab_mutex);
1da177e4
LT
4112 if (res >= 0)
4113 res = count;
4114 return res;
4115}
871751e2
AV
4116
4117#ifdef CONFIG_DEBUG_SLAB_LEAK
4118
871751e2
AV
4119static inline int add_caller(unsigned long *n, unsigned long v)
4120{
4121 unsigned long *p;
4122 int l;
4123 if (!v)
4124 return 1;
4125 l = n[1];
4126 p = n + 2;
4127 while (l) {
4128 int i = l/2;
4129 unsigned long *q = p + 2 * i;
4130 if (*q == v) {
4131 q[1]++;
4132 return 1;
4133 }
4134 if (*q > v) {
4135 l = i;
4136 } else {
4137 p = q + 2;
4138 l -= i + 1;
4139 }
4140 }
4141 if (++n[1] == n[0])
4142 return 0;
4143 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4144 p[0] = v;
4145 p[1] = 1;
4146 return 1;
4147}
4148
8456a648
JK
4149static void handle_slab(unsigned long *n, struct kmem_cache *c,
4150 struct page *page)
871751e2
AV
4151{
4152 void *p;
d31676df
JK
4153 int i, j;
4154 unsigned long v;
b1cb0982 4155
871751e2
AV
4156 if (n[0] == n[1])
4157 return;
8456a648 4158 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4159 bool active = true;
4160
4161 for (j = page->active; j < c->num; j++) {
4162 if (get_free_obj(page, j) == i) {
4163 active = false;
4164 break;
4165 }
4166 }
4167
4168 if (!active)
871751e2 4169 continue;
b1cb0982 4170
d31676df
JK
4171 /*
4172 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4173 * mapping is established when actual object allocation and
4174 * we could mistakenly access the unmapped object in the cpu
4175 * cache.
4176 */
4177 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4178 continue;
4179
4180 if (!add_caller(n, v))
871751e2
AV
4181 return;
4182 }
4183}
4184
4185static void show_symbol(struct seq_file *m, unsigned long address)
4186{
4187#ifdef CONFIG_KALLSYMS
871751e2 4188 unsigned long offset, size;
9281acea 4189 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4190
a5c43dae 4191 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4192 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4193 if (modname[0])
871751e2
AV
4194 seq_printf(m, " [%s]", modname);
4195 return;
4196 }
4197#endif
4198 seq_printf(m, "%p", (void *)address);
4199}
4200
4201static int leaks_show(struct seq_file *m, void *p)
4202{
0672aa7c 4203 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4204 struct page *page;
ce8eb6c4 4205 struct kmem_cache_node *n;
871751e2 4206 const char *name;
db845067 4207 unsigned long *x = m->private;
871751e2
AV
4208 int node;
4209 int i;
4210
4211 if (!(cachep->flags & SLAB_STORE_USER))
4212 return 0;
4213 if (!(cachep->flags & SLAB_RED_ZONE))
4214 return 0;
4215
d31676df
JK
4216 /*
4217 * Set store_user_clean and start to grab stored user information
4218 * for all objects on this cache. If some alloc/free requests comes
4219 * during the processing, information would be wrong so restart
4220 * whole processing.
4221 */
4222 do {
4223 set_store_user_clean(cachep);
4224 drain_cpu_caches(cachep);
4225
4226 x[1] = 0;
871751e2 4227
d31676df 4228 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4229
d31676df
JK
4230 check_irq_on();
4231 spin_lock_irq(&n->list_lock);
871751e2 4232
d31676df
JK
4233 list_for_each_entry(page, &n->slabs_full, lru)
4234 handle_slab(x, cachep, page);
4235 list_for_each_entry(page, &n->slabs_partial, lru)
4236 handle_slab(x, cachep, page);
4237 spin_unlock_irq(&n->list_lock);
4238 }
4239 } while (!is_store_user_clean(cachep));
871751e2 4240
871751e2 4241 name = cachep->name;
db845067 4242 if (x[0] == x[1]) {
871751e2 4243 /* Increase the buffer size */
18004c5d 4244 mutex_unlock(&slab_mutex);
db845067 4245 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4246 if (!m->private) {
4247 /* Too bad, we are really out */
db845067 4248 m->private = x;
18004c5d 4249 mutex_lock(&slab_mutex);
871751e2
AV
4250 return -ENOMEM;
4251 }
db845067
CL
4252 *(unsigned long *)m->private = x[0] * 2;
4253 kfree(x);
18004c5d 4254 mutex_lock(&slab_mutex);
871751e2
AV
4255 /* Now make sure this entry will be retried */
4256 m->count = m->size;
4257 return 0;
4258 }
db845067
CL
4259 for (i = 0; i < x[1]; i++) {
4260 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4261 show_symbol(m, x[2*i+2]);
871751e2
AV
4262 seq_putc(m, '\n');
4263 }
d2e7b7d0 4264
871751e2
AV
4265 return 0;
4266}
4267
a0ec95a8 4268static const struct seq_operations slabstats_op = {
1df3b26f 4269 .start = slab_start,
276a2439
WL
4270 .next = slab_next,
4271 .stop = slab_stop,
871751e2
AV
4272 .show = leaks_show,
4273};
a0ec95a8
AD
4274
4275static int slabstats_open(struct inode *inode, struct file *file)
4276{
b208ce32
RJ
4277 unsigned long *n;
4278
4279 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4280 if (!n)
4281 return -ENOMEM;
4282
4283 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4284
4285 return 0;
a0ec95a8
AD
4286}
4287
4288static const struct file_operations proc_slabstats_operations = {
4289 .open = slabstats_open,
4290 .read = seq_read,
4291 .llseek = seq_lseek,
4292 .release = seq_release_private,
4293};
4294#endif
4295
4296static int __init slab_proc_init(void)
4297{
4298#ifdef CONFIG_DEBUG_SLAB_LEAK
4299 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4300#endif
a0ec95a8
AD
4301 return 0;
4302}
4303module_init(slab_proc_init);
1da177e4
LT
4304#endif
4305
00e145b6
MS
4306/**
4307 * ksize - get the actual amount of memory allocated for a given object
4308 * @objp: Pointer to the object
4309 *
4310 * kmalloc may internally round up allocations and return more memory
4311 * than requested. ksize() can be used to determine the actual amount of
4312 * memory allocated. The caller may use this additional memory, even though
4313 * a smaller amount of memory was initially specified with the kmalloc call.
4314 * The caller must guarantee that objp points to a valid object previously
4315 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4316 * must not be freed during the duration of the call.
4317 */
fd76bab2 4318size_t ksize(const void *objp)
1da177e4 4319{
7ed2f9e6
AP
4320 size_t size;
4321
ef8b4520
CL
4322 BUG_ON(!objp);
4323 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4324 return 0;
1da177e4 4325
7ed2f9e6
AP
4326 size = virt_to_cache(objp)->object_size;
4327 /* We assume that ksize callers could use the whole allocated area,
4328 * so we need to unpoison this area.
4329 */
505f5dcb 4330 kasan_krealloc(objp, size, GFP_NOWAIT);
7ed2f9e6
AP
4331
4332 return size;
1da177e4 4333}
b1aabecd 4334EXPORT_SYMBOL(ksize);