]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab.c
mm/slab: clean up cache type determination
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
bda5b655 194 void *entry[]; /*
a737b3e2
AM
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
072bb0aa
MG
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 202 */
1da177e4
LT
203};
204
c8522a3a
JK
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
072bb0aa
MG
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
e498be7d
CL
227/*
228 * Need this for bootstrapping a per node allocator.
229 */
bf0dea23 230#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 231static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 232#define CACHE_CACHE 0
bf0dea23 233#define SIZE_NODE (MAX_NUMNODES)
e498be7d 234
ed11d9eb 235static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 236 struct kmem_cache_node *n, int tofree);
ed11d9eb 237static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
238 int node, struct list_head *list);
239static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 240static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 241static void cache_reap(struct work_struct *unused);
ed11d9eb 242
e0a42726
IM
243static int slab_early_init = 1;
244
ce8eb6c4 245#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 246
ce8eb6c4 247static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
248{
249 INIT_LIST_HEAD(&parent->slabs_full);
250 INIT_LIST_HEAD(&parent->slabs_partial);
251 INIT_LIST_HEAD(&parent->slabs_free);
252 parent->shared = NULL;
253 parent->alien = NULL;
2e1217cf 254 parent->colour_next = 0;
e498be7d
CL
255 spin_lock_init(&parent->list_lock);
256 parent->free_objects = 0;
257 parent->free_touched = 0;
258}
259
a737b3e2
AM
260#define MAKE_LIST(cachep, listp, slab, nodeid) \
261 do { \
262 INIT_LIST_HEAD(listp); \
18bf8541 263 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
264 } while (0)
265
a737b3e2
AM
266#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
267 do { \
e498be7d
CL
268 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
269 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
270 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
271 } while (0)
1da177e4 272
1da177e4
LT
273#define CFLGS_OFF_SLAB (0x80000000UL)
274#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
d4322d88 275#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
1da177e4
LT
276
277#define BATCHREFILL_LIMIT 16
a737b3e2
AM
278/*
279 * Optimization question: fewer reaps means less probability for unnessary
280 * cpucache drain/refill cycles.
1da177e4 281 *
dc6f3f27 282 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
283 * which could lock up otherwise freeable slabs.
284 */
5f0985bb
JZ
285#define REAPTIMEOUT_AC (2*HZ)
286#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
287
288#if STATS
289#define STATS_INC_ACTIVE(x) ((x)->num_active++)
290#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
291#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
292#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 293#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
294#define STATS_SET_HIGH(x) \
295 do { \
296 if ((x)->num_active > (x)->high_mark) \
297 (x)->high_mark = (x)->num_active; \
298 } while (0)
1da177e4
LT
299#define STATS_INC_ERR(x) ((x)->errors++)
300#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 301#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 302#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
303#define STATS_SET_FREEABLE(x, i) \
304 do { \
305 if ((x)->max_freeable < i) \
306 (x)->max_freeable = i; \
307 } while (0)
1da177e4
LT
308#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
309#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
310#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
311#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
312#else
313#define STATS_INC_ACTIVE(x) do { } while (0)
314#define STATS_DEC_ACTIVE(x) do { } while (0)
315#define STATS_INC_ALLOCED(x) do { } while (0)
316#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 317#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
318#define STATS_SET_HIGH(x) do { } while (0)
319#define STATS_INC_ERR(x) do { } while (0)
320#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 321#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 322#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 323#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
324#define STATS_INC_ALLOCHIT(x) do { } while (0)
325#define STATS_INC_ALLOCMISS(x) do { } while (0)
326#define STATS_INC_FREEHIT(x) do { } while (0)
327#define STATS_INC_FREEMISS(x) do { } while (0)
328#endif
329
330#if DEBUG
1da177e4 331
a737b3e2
AM
332/*
333 * memory layout of objects:
1da177e4 334 * 0 : objp
3dafccf2 335 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
336 * the end of an object is aligned with the end of the real
337 * allocation. Catches writes behind the end of the allocation.
3dafccf2 338 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 339 * redzone word.
3dafccf2 340 * cachep->obj_offset: The real object.
3b0efdfa
CL
341 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
342 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 343 * [BYTES_PER_WORD long]
1da177e4 344 */
343e0d7a 345static int obj_offset(struct kmem_cache *cachep)
1da177e4 346{
3dafccf2 347 return cachep->obj_offset;
1da177e4
LT
348}
349
b46b8f19 350static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
353 return (unsigned long long*) (objp + obj_offset(cachep) -
354 sizeof(unsigned long long));
1da177e4
LT
355}
356
b46b8f19 357static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
358{
359 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
360 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 361 return (unsigned long long *)(objp + cachep->size -
b46b8f19 362 sizeof(unsigned long long) -
87a927c7 363 REDZONE_ALIGN);
3b0efdfa 364 return (unsigned long long *) (objp + cachep->size -
b46b8f19 365 sizeof(unsigned long long));
1da177e4
LT
366}
367
343e0d7a 368static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
369{
370 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 371 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
372}
373
374#else
375
3dafccf2 376#define obj_offset(x) 0
b46b8f19
DW
377#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
378#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
379#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
380
381#endif
382
03787301
JK
383#ifdef CONFIG_DEBUG_SLAB_LEAK
384
d31676df 385static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 386{
d31676df
JK
387 return atomic_read(&cachep->store_user_clean) == 1;
388}
03787301 389
d31676df
JK
390static inline void set_store_user_clean(struct kmem_cache *cachep)
391{
392 atomic_set(&cachep->store_user_clean, 1);
393}
03787301 394
d31676df
JK
395static inline void set_store_user_dirty(struct kmem_cache *cachep)
396{
397 if (is_store_user_clean(cachep))
398 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
399}
400
401#else
d31676df 402static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
403
404#endif
405
1da177e4 406/*
3df1cccd
DR
407 * Do not go above this order unless 0 objects fit into the slab or
408 * overridden on the command line.
1da177e4 409 */
543585cc
DR
410#define SLAB_MAX_ORDER_HI 1
411#define SLAB_MAX_ORDER_LO 0
412static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 413static bool slab_max_order_set __initdata;
1da177e4 414
6ed5eb22
PE
415static inline struct kmem_cache *virt_to_cache(const void *obj)
416{
b49af68f 417 struct page *page = virt_to_head_page(obj);
35026088 418 return page->slab_cache;
6ed5eb22
PE
419}
420
8456a648 421static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
422 unsigned int idx)
423{
8456a648 424 return page->s_mem + cache->size * idx;
8fea4e96
PE
425}
426
6a2d7a95 427/*
3b0efdfa
CL
428 * We want to avoid an expensive divide : (offset / cache->size)
429 * Using the fact that size is a constant for a particular cache,
430 * we can replace (offset / cache->size) by
6a2d7a95
ED
431 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
432 */
433static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 434 const struct page *page, void *obj)
8fea4e96 435{
8456a648 436 u32 offset = (obj - page->s_mem);
6a2d7a95 437 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
438}
439
6fb92430 440#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 441/* internal cache of cache description objs */
9b030cb8 442static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
443 .batchcount = 1,
444 .limit = BOOT_CPUCACHE_ENTRIES,
445 .shared = 1,
3b0efdfa 446 .size = sizeof(struct kmem_cache),
b28a02de 447 .name = "kmem_cache",
1da177e4
LT
448};
449
edcad250
JK
450#define BAD_ALIEN_MAGIC 0x01020304ul
451
1871e52c 452static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 453
343e0d7a 454static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 455{
bf0dea23 456 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
457}
458
a737b3e2
AM
459/*
460 * Calculate the number of objects and left-over bytes for a given buffer size.
461 */
fbaccacf 462static void cache_estimate(unsigned long gfporder, size_t buffer_size,
2e6b3602 463 unsigned long flags, size_t *left_over, unsigned int *num)
fbaccacf 464{
fbaccacf 465 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 466
fbaccacf
SR
467 /*
468 * The slab management structure can be either off the slab or
469 * on it. For the latter case, the memory allocated for a
470 * slab is used for:
471 *
fbaccacf 472 * - @buffer_size bytes for each object
2e6b3602
JK
473 * - One freelist_idx_t for each object
474 *
475 * We don't need to consider alignment of freelist because
476 * freelist will be at the end of slab page. The objects will be
477 * at the correct alignment.
fbaccacf
SR
478 *
479 * If the slab management structure is off the slab, then the
480 * alignment will already be calculated into the size. Because
481 * the slabs are all pages aligned, the objects will be at the
482 * correct alignment when allocated.
483 */
484 if (flags & CFLGS_OFF_SLAB) {
2e6b3602
JK
485 *num = slab_size / buffer_size;
486 *left_over = slab_size % buffer_size;
fbaccacf 487 } else {
2e6b3602
JK
488 *num = slab_size / (buffer_size + sizeof(freelist_idx_t));
489 *left_over = slab_size %
490 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 491 }
1da177e4
LT
492}
493
f28510d3 494#if DEBUG
d40cee24 495#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 496
a737b3e2
AM
497static void __slab_error(const char *function, struct kmem_cache *cachep,
498 char *msg)
1da177e4
LT
499{
500 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 501 function, cachep->name, msg);
1da177e4 502 dump_stack();
373d4d09 503 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 504}
f28510d3 505#endif
1da177e4 506
3395ee05
PM
507/*
508 * By default on NUMA we use alien caches to stage the freeing of
509 * objects allocated from other nodes. This causes massive memory
510 * inefficiencies when using fake NUMA setup to split memory into a
511 * large number of small nodes, so it can be disabled on the command
512 * line
513 */
514
515static int use_alien_caches __read_mostly = 1;
516static int __init noaliencache_setup(char *s)
517{
518 use_alien_caches = 0;
519 return 1;
520}
521__setup("noaliencache", noaliencache_setup);
522
3df1cccd
DR
523static int __init slab_max_order_setup(char *str)
524{
525 get_option(&str, &slab_max_order);
526 slab_max_order = slab_max_order < 0 ? 0 :
527 min(slab_max_order, MAX_ORDER - 1);
528 slab_max_order_set = true;
529
530 return 1;
531}
532__setup("slab_max_order=", slab_max_order_setup);
533
8fce4d8e
CL
534#ifdef CONFIG_NUMA
535/*
536 * Special reaping functions for NUMA systems called from cache_reap().
537 * These take care of doing round robin flushing of alien caches (containing
538 * objects freed on different nodes from which they were allocated) and the
539 * flushing of remote pcps by calling drain_node_pages.
540 */
1871e52c 541static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
542
543static void init_reap_node(int cpu)
544{
545 int node;
546
7d6e6d09 547 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 548 if (node == MAX_NUMNODES)
442295c9 549 node = first_node(node_online_map);
8fce4d8e 550
1871e52c 551 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
552}
553
554static void next_reap_node(void)
555{
909ea964 556 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 557
8fce4d8e
CL
558 node = next_node(node, node_online_map);
559 if (unlikely(node >= MAX_NUMNODES))
560 node = first_node(node_online_map);
909ea964 561 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
562}
563
564#else
565#define init_reap_node(cpu) do { } while (0)
566#define next_reap_node(void) do { } while (0)
567#endif
568
1da177e4
LT
569/*
570 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
571 * via the workqueue/eventd.
572 * Add the CPU number into the expiration time to minimize the possibility of
573 * the CPUs getting into lockstep and contending for the global cache chain
574 * lock.
575 */
0db0628d 576static void start_cpu_timer(int cpu)
1da177e4 577{
1871e52c 578 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
579
580 /*
581 * When this gets called from do_initcalls via cpucache_init(),
582 * init_workqueues() has already run, so keventd will be setup
583 * at that time.
584 */
52bad64d 585 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 586 init_reap_node(cpu);
203b42f7 587 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
588 schedule_delayed_work_on(cpu, reap_work,
589 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
590 }
591}
592
1fe00d50 593static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 594{
d5cff635
CM
595 /*
596 * The array_cache structures contain pointers to free object.
25985edc 597 * However, when such objects are allocated or transferred to another
d5cff635
CM
598 * cache the pointers are not cleared and they could be counted as
599 * valid references during a kmemleak scan. Therefore, kmemleak must
600 * not scan such objects.
601 */
1fe00d50
JK
602 kmemleak_no_scan(ac);
603 if (ac) {
604 ac->avail = 0;
605 ac->limit = limit;
606 ac->batchcount = batch;
607 ac->touched = 0;
1da177e4 608 }
1fe00d50
JK
609}
610
611static struct array_cache *alloc_arraycache(int node, int entries,
612 int batchcount, gfp_t gfp)
613{
5e804789 614 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
615 struct array_cache *ac = NULL;
616
617 ac = kmalloc_node(memsize, gfp, node);
618 init_arraycache(ac, entries, batchcount);
619 return ac;
1da177e4
LT
620}
621
8456a648 622static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 623{
072bb0aa
MG
624 return PageSlabPfmemalloc(page);
625}
626
627/* Clears pfmemalloc_active if no slabs have pfmalloc set */
628static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
629 struct array_cache *ac)
630{
18bf8541 631 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
8456a648 632 struct page *page;
072bb0aa
MG
633 unsigned long flags;
634
635 if (!pfmemalloc_active)
636 return;
637
ce8eb6c4 638 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
639 list_for_each_entry(page, &n->slabs_full, lru)
640 if (is_slab_pfmemalloc(page))
072bb0aa
MG
641 goto out;
642
8456a648
JK
643 list_for_each_entry(page, &n->slabs_partial, lru)
644 if (is_slab_pfmemalloc(page))
072bb0aa
MG
645 goto out;
646
8456a648
JK
647 list_for_each_entry(page, &n->slabs_free, lru)
648 if (is_slab_pfmemalloc(page))
072bb0aa
MG
649 goto out;
650
651 pfmemalloc_active = false;
652out:
ce8eb6c4 653 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
654}
655
381760ea 656static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
657 gfp_t flags, bool force_refill)
658{
659 int i;
660 void *objp = ac->entry[--ac->avail];
661
662 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
663 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 664 struct kmem_cache_node *n;
072bb0aa
MG
665
666 if (gfp_pfmemalloc_allowed(flags)) {
667 clear_obj_pfmemalloc(&objp);
668 return objp;
669 }
670
671 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 672 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
673 /* If a !PFMEMALLOC object is found, swap them */
674 if (!is_obj_pfmemalloc(ac->entry[i])) {
675 objp = ac->entry[i];
676 ac->entry[i] = ac->entry[ac->avail];
677 ac->entry[ac->avail] = objp;
678 return objp;
679 }
680 }
681
682 /*
683 * If there are empty slabs on the slabs_free list and we are
684 * being forced to refill the cache, mark this one !pfmemalloc.
685 */
18bf8541 686 n = get_node(cachep, numa_mem_id());
ce8eb6c4 687 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 688 struct page *page = virt_to_head_page(objp);
7ecccf9d 689 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
690 clear_obj_pfmemalloc(&objp);
691 recheck_pfmemalloc_active(cachep, ac);
692 return objp;
693 }
694
695 /* No !PFMEMALLOC objects available */
696 ac->avail++;
697 objp = NULL;
698 }
699
700 return objp;
701}
702
381760ea
MG
703static inline void *ac_get_obj(struct kmem_cache *cachep,
704 struct array_cache *ac, gfp_t flags, bool force_refill)
705{
706 void *objp;
707
708 if (unlikely(sk_memalloc_socks()))
709 objp = __ac_get_obj(cachep, ac, flags, force_refill);
710 else
711 objp = ac->entry[--ac->avail];
712
713 return objp;
714}
715
d3aec344
JK
716static noinline void *__ac_put_obj(struct kmem_cache *cachep,
717 struct array_cache *ac, void *objp)
072bb0aa
MG
718{
719 if (unlikely(pfmemalloc_active)) {
720 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 721 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
722 if (PageSlabPfmemalloc(page))
723 set_obj_pfmemalloc(&objp);
724 }
725
381760ea
MG
726 return objp;
727}
728
729static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
730 void *objp)
731{
732 if (unlikely(sk_memalloc_socks()))
733 objp = __ac_put_obj(cachep, ac, objp);
734
072bb0aa
MG
735 ac->entry[ac->avail++] = objp;
736}
737
3ded175a
CL
738/*
739 * Transfer objects in one arraycache to another.
740 * Locking must be handled by the caller.
741 *
742 * Return the number of entries transferred.
743 */
744static int transfer_objects(struct array_cache *to,
745 struct array_cache *from, unsigned int max)
746{
747 /* Figure out how many entries to transfer */
732eacc0 748 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
749
750 if (!nr)
751 return 0;
752
753 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
754 sizeof(void *) *nr);
755
756 from->avail -= nr;
757 to->avail += nr;
3ded175a
CL
758 return nr;
759}
760
765c4507
CL
761#ifndef CONFIG_NUMA
762
763#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 764#define reap_alien(cachep, n) do { } while (0)
765c4507 765
c8522a3a
JK
766static inline struct alien_cache **alloc_alien_cache(int node,
767 int limit, gfp_t gfp)
765c4507 768{
edcad250 769 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
770}
771
c8522a3a 772static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
773{
774}
775
776static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
777{
778 return 0;
779}
780
781static inline void *alternate_node_alloc(struct kmem_cache *cachep,
782 gfp_t flags)
783{
784 return NULL;
785}
786
8b98c169 787static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
788 gfp_t flags, int nodeid)
789{
790 return NULL;
791}
792
4167e9b2
DR
793static inline gfp_t gfp_exact_node(gfp_t flags)
794{
795 return flags;
796}
797
765c4507
CL
798#else /* CONFIG_NUMA */
799
8b98c169 800static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 801static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 802
c8522a3a
JK
803static struct alien_cache *__alloc_alien_cache(int node, int entries,
804 int batch, gfp_t gfp)
805{
5e804789 806 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
807 struct alien_cache *alc = NULL;
808
809 alc = kmalloc_node(memsize, gfp, node);
810 init_arraycache(&alc->ac, entries, batch);
49dfc304 811 spin_lock_init(&alc->lock);
c8522a3a
JK
812 return alc;
813}
814
815static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 816{
c8522a3a 817 struct alien_cache **alc_ptr;
5e804789 818 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
819 int i;
820
821 if (limit > 1)
822 limit = 12;
c8522a3a
JK
823 alc_ptr = kzalloc_node(memsize, gfp, node);
824 if (!alc_ptr)
825 return NULL;
826
827 for_each_node(i) {
828 if (i == node || !node_online(i))
829 continue;
830 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
831 if (!alc_ptr[i]) {
832 for (i--; i >= 0; i--)
833 kfree(alc_ptr[i]);
834 kfree(alc_ptr);
835 return NULL;
e498be7d
CL
836 }
837 }
c8522a3a 838 return alc_ptr;
e498be7d
CL
839}
840
c8522a3a 841static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
842{
843 int i;
844
c8522a3a 845 if (!alc_ptr)
e498be7d 846 return;
e498be7d 847 for_each_node(i)
c8522a3a
JK
848 kfree(alc_ptr[i]);
849 kfree(alc_ptr);
e498be7d
CL
850}
851
343e0d7a 852static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
853 struct array_cache *ac, int node,
854 struct list_head *list)
e498be7d 855{
18bf8541 856 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
857
858 if (ac->avail) {
ce8eb6c4 859 spin_lock(&n->list_lock);
e00946fe
CL
860 /*
861 * Stuff objects into the remote nodes shared array first.
862 * That way we could avoid the overhead of putting the objects
863 * into the free lists and getting them back later.
864 */
ce8eb6c4
CL
865 if (n->shared)
866 transfer_objects(n->shared, ac, ac->limit);
e00946fe 867
833b706c 868 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 869 ac->avail = 0;
ce8eb6c4 870 spin_unlock(&n->list_lock);
e498be7d
CL
871 }
872}
873
8fce4d8e
CL
874/*
875 * Called from cache_reap() to regularly drain alien caches round robin.
876 */
ce8eb6c4 877static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 878{
909ea964 879 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 880
ce8eb6c4 881 if (n->alien) {
c8522a3a
JK
882 struct alien_cache *alc = n->alien[node];
883 struct array_cache *ac;
884
885 if (alc) {
886 ac = &alc->ac;
49dfc304 887 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
888 LIST_HEAD(list);
889
890 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 891 spin_unlock_irq(&alc->lock);
833b706c 892 slabs_destroy(cachep, &list);
c8522a3a 893 }
8fce4d8e
CL
894 }
895 }
896}
897
a737b3e2 898static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 899 struct alien_cache **alien)
e498be7d 900{
b28a02de 901 int i = 0;
c8522a3a 902 struct alien_cache *alc;
e498be7d
CL
903 struct array_cache *ac;
904 unsigned long flags;
905
906 for_each_online_node(i) {
c8522a3a
JK
907 alc = alien[i];
908 if (alc) {
833b706c
JK
909 LIST_HEAD(list);
910
c8522a3a 911 ac = &alc->ac;
49dfc304 912 spin_lock_irqsave(&alc->lock, flags);
833b706c 913 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 914 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 915 slabs_destroy(cachep, &list);
e498be7d
CL
916 }
917 }
918}
729bd0b7 919
25c4f304
JK
920static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
921 int node, int page_node)
729bd0b7 922{
ce8eb6c4 923 struct kmem_cache_node *n;
c8522a3a
JK
924 struct alien_cache *alien = NULL;
925 struct array_cache *ac;
97654dfa 926 LIST_HEAD(list);
1ca4cb24 927
18bf8541 928 n = get_node(cachep, node);
729bd0b7 929 STATS_INC_NODEFREES(cachep);
25c4f304
JK
930 if (n->alien && n->alien[page_node]) {
931 alien = n->alien[page_node];
c8522a3a 932 ac = &alien->ac;
49dfc304 933 spin_lock(&alien->lock);
c8522a3a 934 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 935 STATS_INC_ACOVERFLOW(cachep);
25c4f304 936 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 937 }
c8522a3a 938 ac_put_obj(cachep, ac, objp);
49dfc304 939 spin_unlock(&alien->lock);
833b706c 940 slabs_destroy(cachep, &list);
729bd0b7 941 } else {
25c4f304 942 n = get_node(cachep, page_node);
18bf8541 943 spin_lock(&n->list_lock);
25c4f304 944 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 945 spin_unlock(&n->list_lock);
97654dfa 946 slabs_destroy(cachep, &list);
729bd0b7
PE
947 }
948 return 1;
949}
25c4f304
JK
950
951static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
952{
953 int page_node = page_to_nid(virt_to_page(objp));
954 int node = numa_mem_id();
955 /*
956 * Make sure we are not freeing a object from another node to the array
957 * cache on this cpu.
958 */
959 if (likely(node == page_node))
960 return 0;
961
962 return __cache_free_alien(cachep, objp, node, page_node);
963}
4167e9b2
DR
964
965/*
d0164adc
MG
966 * Construct gfp mask to allocate from a specific node but do not direct reclaim
967 * or warn about failures. kswapd may still wake to reclaim in the background.
4167e9b2
DR
968 */
969static inline gfp_t gfp_exact_node(gfp_t flags)
970{
d0164adc 971 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
4167e9b2 972}
e498be7d
CL
973#endif
974
8f9f8d9e 975/*
6a67368c 976 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 977 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 978 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 979 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
980 * already in use.
981 *
18004c5d 982 * Must hold slab_mutex.
8f9f8d9e 983 */
6a67368c 984static int init_cache_node_node(int node)
8f9f8d9e
DR
985{
986 struct kmem_cache *cachep;
ce8eb6c4 987 struct kmem_cache_node *n;
5e804789 988 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 989
18004c5d 990 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 991 /*
5f0985bb 992 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
993 * begin anything. Make sure some other cpu on this
994 * node has not already allocated this
995 */
18bf8541
CL
996 n = get_node(cachep, node);
997 if (!n) {
ce8eb6c4
CL
998 n = kmalloc_node(memsize, GFP_KERNEL, node);
999 if (!n)
8f9f8d9e 1000 return -ENOMEM;
ce8eb6c4 1001 kmem_cache_node_init(n);
5f0985bb
JZ
1002 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1003 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1004
1005 /*
5f0985bb
JZ
1006 * The kmem_cache_nodes don't come and go as CPUs
1007 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1008 * protection here.
1009 */
ce8eb6c4 1010 cachep->node[node] = n;
8f9f8d9e
DR
1011 }
1012
18bf8541
CL
1013 spin_lock_irq(&n->list_lock);
1014 n->free_limit =
8f9f8d9e
DR
1015 (1 + nr_cpus_node(node)) *
1016 cachep->batchcount + cachep->num;
18bf8541 1017 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
1018 }
1019 return 0;
1020}
1021
0fa8103b
WL
1022static inline int slabs_tofree(struct kmem_cache *cachep,
1023 struct kmem_cache_node *n)
1024{
1025 return (n->free_objects + cachep->num - 1) / cachep->num;
1026}
1027
0db0628d 1028static void cpuup_canceled(long cpu)
fbf1e473
AM
1029{
1030 struct kmem_cache *cachep;
ce8eb6c4 1031 struct kmem_cache_node *n = NULL;
7d6e6d09 1032 int node = cpu_to_mem(cpu);
a70f7302 1033 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1034
18004c5d 1035 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1036 struct array_cache *nc;
1037 struct array_cache *shared;
c8522a3a 1038 struct alien_cache **alien;
97654dfa 1039 LIST_HEAD(list);
fbf1e473 1040
18bf8541 1041 n = get_node(cachep, node);
ce8eb6c4 1042 if (!n)
bf0dea23 1043 continue;
fbf1e473 1044
ce8eb6c4 1045 spin_lock_irq(&n->list_lock);
fbf1e473 1046
ce8eb6c4
CL
1047 /* Free limit for this kmem_cache_node */
1048 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1049
1050 /* cpu is dead; no one can alloc from it. */
1051 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1052 if (nc) {
97654dfa 1053 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1054 nc->avail = 0;
1055 }
fbf1e473 1056
58463c1f 1057 if (!cpumask_empty(mask)) {
ce8eb6c4 1058 spin_unlock_irq(&n->list_lock);
bf0dea23 1059 goto free_slab;
fbf1e473
AM
1060 }
1061
ce8eb6c4 1062 shared = n->shared;
fbf1e473
AM
1063 if (shared) {
1064 free_block(cachep, shared->entry,
97654dfa 1065 shared->avail, node, &list);
ce8eb6c4 1066 n->shared = NULL;
fbf1e473
AM
1067 }
1068
ce8eb6c4
CL
1069 alien = n->alien;
1070 n->alien = NULL;
fbf1e473 1071
ce8eb6c4 1072 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1073
1074 kfree(shared);
1075 if (alien) {
1076 drain_alien_cache(cachep, alien);
1077 free_alien_cache(alien);
1078 }
bf0dea23
JK
1079
1080free_slab:
97654dfa 1081 slabs_destroy(cachep, &list);
fbf1e473
AM
1082 }
1083 /*
1084 * In the previous loop, all the objects were freed to
1085 * the respective cache's slabs, now we can go ahead and
1086 * shrink each nodelist to its limit.
1087 */
18004c5d 1088 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1089 n = get_node(cachep, node);
ce8eb6c4 1090 if (!n)
fbf1e473 1091 continue;
0fa8103b 1092 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1093 }
1094}
1095
0db0628d 1096static int cpuup_prepare(long cpu)
1da177e4 1097{
343e0d7a 1098 struct kmem_cache *cachep;
ce8eb6c4 1099 struct kmem_cache_node *n = NULL;
7d6e6d09 1100 int node = cpu_to_mem(cpu);
8f9f8d9e 1101 int err;
1da177e4 1102
fbf1e473
AM
1103 /*
1104 * We need to do this right in the beginning since
1105 * alloc_arraycache's are going to use this list.
1106 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1107 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1108 */
6a67368c 1109 err = init_cache_node_node(node);
8f9f8d9e
DR
1110 if (err < 0)
1111 goto bad;
fbf1e473
AM
1112
1113 /*
1114 * Now we can go ahead with allocating the shared arrays and
1115 * array caches
1116 */
18004c5d 1117 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 1118 struct array_cache *shared = NULL;
c8522a3a 1119 struct alien_cache **alien = NULL;
fbf1e473 1120
fbf1e473
AM
1121 if (cachep->shared) {
1122 shared = alloc_arraycache(node,
1123 cachep->shared * cachep->batchcount,
83b519e8 1124 0xbaadf00d, GFP_KERNEL);
bf0dea23 1125 if (!shared)
1da177e4 1126 goto bad;
fbf1e473
AM
1127 }
1128 if (use_alien_caches) {
83b519e8 1129 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1130 if (!alien) {
1131 kfree(shared);
fbf1e473 1132 goto bad;
12d00f6a 1133 }
fbf1e473 1134 }
18bf8541 1135 n = get_node(cachep, node);
ce8eb6c4 1136 BUG_ON(!n);
fbf1e473 1137
ce8eb6c4
CL
1138 spin_lock_irq(&n->list_lock);
1139 if (!n->shared) {
fbf1e473
AM
1140 /*
1141 * We are serialised from CPU_DEAD or
1142 * CPU_UP_CANCELLED by the cpucontrol lock
1143 */
ce8eb6c4 1144 n->shared = shared;
fbf1e473
AM
1145 shared = NULL;
1146 }
4484ebf1 1147#ifdef CONFIG_NUMA
ce8eb6c4
CL
1148 if (!n->alien) {
1149 n->alien = alien;
fbf1e473 1150 alien = NULL;
1da177e4 1151 }
fbf1e473 1152#endif
ce8eb6c4 1153 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1154 kfree(shared);
1155 free_alien_cache(alien);
1156 }
ce79ddc8 1157
fbf1e473
AM
1158 return 0;
1159bad:
12d00f6a 1160 cpuup_canceled(cpu);
fbf1e473
AM
1161 return -ENOMEM;
1162}
1163
0db0628d 1164static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1165 unsigned long action, void *hcpu)
1166{
1167 long cpu = (long)hcpu;
1168 int err = 0;
1169
1170 switch (action) {
fbf1e473
AM
1171 case CPU_UP_PREPARE:
1172 case CPU_UP_PREPARE_FROZEN:
18004c5d 1173 mutex_lock(&slab_mutex);
fbf1e473 1174 err = cpuup_prepare(cpu);
18004c5d 1175 mutex_unlock(&slab_mutex);
1da177e4
LT
1176 break;
1177 case CPU_ONLINE:
8bb78442 1178 case CPU_ONLINE_FROZEN:
1da177e4
LT
1179 start_cpu_timer(cpu);
1180 break;
1181#ifdef CONFIG_HOTPLUG_CPU
5830c590 1182 case CPU_DOWN_PREPARE:
8bb78442 1183 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1184 /*
18004c5d 1185 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1186 * held so that if cache_reap() is invoked it cannot do
1187 * anything expensive but will only modify reap_work
1188 * and reschedule the timer.
1189 */
afe2c511 1190 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1191 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1192 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1193 break;
1194 case CPU_DOWN_FAILED:
8bb78442 1195 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1196 start_cpu_timer(cpu);
1197 break;
1da177e4 1198 case CPU_DEAD:
8bb78442 1199 case CPU_DEAD_FROZEN:
4484ebf1
RT
1200 /*
1201 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1202 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1203 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1204 * memory from the node of the cpu going down. The node
4484ebf1
RT
1205 * structure is usually allocated from kmem_cache_create() and
1206 * gets destroyed at kmem_cache_destroy().
1207 */
183ff22b 1208 /* fall through */
8f5be20b 1209#endif
1da177e4 1210 case CPU_UP_CANCELED:
8bb78442 1211 case CPU_UP_CANCELED_FROZEN:
18004c5d 1212 mutex_lock(&slab_mutex);
fbf1e473 1213 cpuup_canceled(cpu);
18004c5d 1214 mutex_unlock(&slab_mutex);
1da177e4 1215 break;
1da177e4 1216 }
eac40680 1217 return notifier_from_errno(err);
1da177e4
LT
1218}
1219
0db0628d 1220static struct notifier_block cpucache_notifier = {
74b85f37
CS
1221 &cpuup_callback, NULL, 0
1222};
1da177e4 1223
8f9f8d9e
DR
1224#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1225/*
1226 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1227 * Returns -EBUSY if all objects cannot be drained so that the node is not
1228 * removed.
1229 *
18004c5d 1230 * Must hold slab_mutex.
8f9f8d9e 1231 */
6a67368c 1232static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1233{
1234 struct kmem_cache *cachep;
1235 int ret = 0;
1236
18004c5d 1237 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1238 struct kmem_cache_node *n;
8f9f8d9e 1239
18bf8541 1240 n = get_node(cachep, node);
ce8eb6c4 1241 if (!n)
8f9f8d9e
DR
1242 continue;
1243
0fa8103b 1244 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1245
ce8eb6c4
CL
1246 if (!list_empty(&n->slabs_full) ||
1247 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1248 ret = -EBUSY;
1249 break;
1250 }
1251 }
1252 return ret;
1253}
1254
1255static int __meminit slab_memory_callback(struct notifier_block *self,
1256 unsigned long action, void *arg)
1257{
1258 struct memory_notify *mnb = arg;
1259 int ret = 0;
1260 int nid;
1261
1262 nid = mnb->status_change_nid;
1263 if (nid < 0)
1264 goto out;
1265
1266 switch (action) {
1267 case MEM_GOING_ONLINE:
18004c5d 1268 mutex_lock(&slab_mutex);
6a67368c 1269 ret = init_cache_node_node(nid);
18004c5d 1270 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1271 break;
1272 case MEM_GOING_OFFLINE:
18004c5d 1273 mutex_lock(&slab_mutex);
6a67368c 1274 ret = drain_cache_node_node(nid);
18004c5d 1275 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1276 break;
1277 case MEM_ONLINE:
1278 case MEM_OFFLINE:
1279 case MEM_CANCEL_ONLINE:
1280 case MEM_CANCEL_OFFLINE:
1281 break;
1282 }
1283out:
5fda1bd5 1284 return notifier_from_errno(ret);
8f9f8d9e
DR
1285}
1286#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1287
e498be7d 1288/*
ce8eb6c4 1289 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1290 */
6744f087 1291static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1292 int nodeid)
e498be7d 1293{
6744f087 1294 struct kmem_cache_node *ptr;
e498be7d 1295
6744f087 1296 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1297 BUG_ON(!ptr);
1298
6744f087 1299 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1300 /*
1301 * Do not assume that spinlocks can be initialized via memcpy:
1302 */
1303 spin_lock_init(&ptr->list_lock);
1304
e498be7d 1305 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1306 cachep->node[nodeid] = ptr;
e498be7d
CL
1307}
1308
556a169d 1309/*
ce8eb6c4
CL
1310 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1311 * size of kmem_cache_node.
556a169d 1312 */
ce8eb6c4 1313static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1314{
1315 int node;
1316
1317 for_each_online_node(node) {
ce8eb6c4 1318 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1319 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1320 REAPTIMEOUT_NODE +
1321 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1322 }
1323}
1324
a737b3e2
AM
1325/*
1326 * Initialisation. Called after the page allocator have been initialised and
1327 * before smp_init().
1da177e4
LT
1328 */
1329void __init kmem_cache_init(void)
1330{
e498be7d
CL
1331 int i;
1332
68126702
JK
1333 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1334 sizeof(struct rcu_head));
9b030cb8
CL
1335 kmem_cache = &kmem_cache_boot;
1336
b6e68bc1 1337 if (num_possible_nodes() == 1)
62918a03
SS
1338 use_alien_caches = 0;
1339
3c583465 1340 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1341 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1342
1da177e4
LT
1343 /*
1344 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1345 * page orders on machines with more than 32MB of memory if
1346 * not overridden on the command line.
1da177e4 1347 */
3df1cccd 1348 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1349 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1350
1da177e4
LT
1351 /* Bootstrap is tricky, because several objects are allocated
1352 * from caches that do not exist yet:
9b030cb8
CL
1353 * 1) initialize the kmem_cache cache: it contains the struct
1354 * kmem_cache structures of all caches, except kmem_cache itself:
1355 * kmem_cache is statically allocated.
e498be7d 1356 * Initially an __init data area is used for the head array and the
ce8eb6c4 1357 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1358 * array at the end of the bootstrap.
1da177e4 1359 * 2) Create the first kmalloc cache.
343e0d7a 1360 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1361 * An __init data area is used for the head array.
1362 * 3) Create the remaining kmalloc caches, with minimally sized
1363 * head arrays.
9b030cb8 1364 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1365 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1366 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1367 * the other cache's with kmalloc allocated memory.
1368 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1369 */
1370
9b030cb8 1371 /* 1) create the kmem_cache */
1da177e4 1372
8da3430d 1373 /*
b56efcf0 1374 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1375 */
2f9baa9f 1376 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1377 offsetof(struct kmem_cache, node) +
6744f087 1378 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1379 SLAB_HWCACHE_ALIGN);
1380 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1381 slab_state = PARTIAL;
1da177e4 1382
a737b3e2 1383 /*
bf0dea23
JK
1384 * Initialize the caches that provide memory for the kmem_cache_node
1385 * structures first. Without this, further allocations will bug.
e498be7d 1386 */
bf0dea23 1387 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1388 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1389 slab_state = PARTIAL_NODE;
34cc6990 1390 setup_kmalloc_cache_index_table();
e498be7d 1391
e0a42726
IM
1392 slab_early_init = 0;
1393
ce8eb6c4 1394 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1395 {
1ca4cb24
PE
1396 int nid;
1397
9c09a95c 1398 for_each_online_node(nid) {
ce8eb6c4 1399 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1400
bf0dea23 1401 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1402 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1403 }
1404 }
1da177e4 1405
f97d5f63 1406 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1407}
1408
1409void __init kmem_cache_init_late(void)
1410{
1411 struct kmem_cache *cachep;
1412
97d06609 1413 slab_state = UP;
52cef189 1414
8429db5c 1415 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1416 mutex_lock(&slab_mutex);
1417 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1418 if (enable_cpucache(cachep, GFP_NOWAIT))
1419 BUG();
18004c5d 1420 mutex_unlock(&slab_mutex);
056c6241 1421
97d06609
CL
1422 /* Done! */
1423 slab_state = FULL;
1424
a737b3e2
AM
1425 /*
1426 * Register a cpu startup notifier callback that initializes
1427 * cpu_cache_get for all new cpus
1da177e4
LT
1428 */
1429 register_cpu_notifier(&cpucache_notifier);
1da177e4 1430
8f9f8d9e
DR
1431#ifdef CONFIG_NUMA
1432 /*
1433 * Register a memory hotplug callback that initializes and frees
6a67368c 1434 * node.
8f9f8d9e
DR
1435 */
1436 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1437#endif
1438
a737b3e2
AM
1439 /*
1440 * The reap timers are started later, with a module init call: That part
1441 * of the kernel is not yet operational.
1da177e4
LT
1442 */
1443}
1444
1445static int __init cpucache_init(void)
1446{
1447 int cpu;
1448
a737b3e2
AM
1449 /*
1450 * Register the timers that return unneeded pages to the page allocator
1da177e4 1451 */
e498be7d 1452 for_each_online_cpu(cpu)
a737b3e2 1453 start_cpu_timer(cpu);
a164f896
GC
1454
1455 /* Done! */
97d06609 1456 slab_state = FULL;
1da177e4
LT
1457 return 0;
1458}
1da177e4
LT
1459__initcall(cpucache_init);
1460
8bdec192
RA
1461static noinline void
1462slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1463{
9a02d699 1464#if DEBUG
ce8eb6c4 1465 struct kmem_cache_node *n;
8456a648 1466 struct page *page;
8bdec192
RA
1467 unsigned long flags;
1468 int node;
9a02d699
DR
1469 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1470 DEFAULT_RATELIMIT_BURST);
1471
1472 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1473 return;
8bdec192
RA
1474
1475 printk(KERN_WARNING
1476 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1477 nodeid, gfpflags);
1478 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1479 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1480
18bf8541 1481 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1482 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1483 unsigned long active_slabs = 0, num_slabs = 0;
1484
ce8eb6c4 1485 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1486 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1487 active_objs += cachep->num;
1488 active_slabs++;
1489 }
8456a648
JK
1490 list_for_each_entry(page, &n->slabs_partial, lru) {
1491 active_objs += page->active;
8bdec192
RA
1492 active_slabs++;
1493 }
8456a648 1494 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1495 num_slabs++;
1496
ce8eb6c4
CL
1497 free_objects += n->free_objects;
1498 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1499
1500 num_slabs += active_slabs;
1501 num_objs = num_slabs * cachep->num;
1502 printk(KERN_WARNING
1503 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1504 node, active_slabs, num_slabs, active_objs, num_objs,
1505 free_objects);
1506 }
9a02d699 1507#endif
8bdec192
RA
1508}
1509
1da177e4 1510/*
8a7d9b43
WSH
1511 * Interface to system's page allocator. No need to hold the
1512 * kmem_cache_node ->list_lock.
1da177e4
LT
1513 *
1514 * If we requested dmaable memory, we will get it. Even if we
1515 * did not request dmaable memory, we might get it, but that
1516 * would be relatively rare and ignorable.
1517 */
0c3aa83e
JK
1518static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1519 int nodeid)
1da177e4
LT
1520{
1521 struct page *page;
e1b6aa6f 1522 int nr_pages;
765c4507 1523
a618e89f 1524 flags |= cachep->allocflags;
e12ba74d
MG
1525 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1526 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1527
96db800f 1528 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1529 if (!page) {
9a02d699 1530 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1531 return NULL;
8bdec192 1532 }
1da177e4 1533
f3ccb2c4
VD
1534 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1535 __free_pages(page, cachep->gfporder);
1536 return NULL;
1537 }
1538
b37f1dd0 1539 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
2f064f34 1540 if (page_is_pfmemalloc(page))
072bb0aa
MG
1541 pfmemalloc_active = true;
1542
e1b6aa6f 1543 nr_pages = (1 << cachep->gfporder);
1da177e4 1544 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1545 add_zone_page_state(page_zone(page),
1546 NR_SLAB_RECLAIMABLE, nr_pages);
1547 else
1548 add_zone_page_state(page_zone(page),
1549 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988 1550 __SetPageSlab(page);
2f064f34 1551 if (page_is_pfmemalloc(page))
a57a4988 1552 SetPageSlabPfmemalloc(page);
072bb0aa 1553
b1eeab67
VN
1554 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1555 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1556
1557 if (cachep->ctor)
1558 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1559 else
1560 kmemcheck_mark_unallocated_pages(page, nr_pages);
1561 }
c175eea4 1562
0c3aa83e 1563 return page;
1da177e4
LT
1564}
1565
1566/*
1567 * Interface to system's page release.
1568 */
0c3aa83e 1569static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1570{
a57a4988 1571 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1572
b1eeab67 1573 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1574
972d1a7b
CL
1575 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1576 sub_zone_page_state(page_zone(page),
1577 NR_SLAB_RECLAIMABLE, nr_freed);
1578 else
1579 sub_zone_page_state(page_zone(page),
1580 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1581
a57a4988 1582 BUG_ON(!PageSlab(page));
73293c2f 1583 __ClearPageSlabPfmemalloc(page);
a57a4988 1584 __ClearPageSlab(page);
8456a648
JK
1585 page_mapcount_reset(page);
1586 page->mapping = NULL;
1f458cbf 1587
1da177e4
LT
1588 if (current->reclaim_state)
1589 current->reclaim_state->reclaimed_slab += nr_freed;
f3ccb2c4 1590 __free_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1591}
1592
1593static void kmem_rcu_free(struct rcu_head *head)
1594{
68126702
JK
1595 struct kmem_cache *cachep;
1596 struct page *page;
1da177e4 1597
68126702
JK
1598 page = container_of(head, struct page, rcu_head);
1599 cachep = page->slab_cache;
1600
1601 kmem_freepages(cachep, page);
1da177e4
LT
1602}
1603
1604#if DEBUG
40b44137
JK
1605static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1606{
1607 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1608 (cachep->size % PAGE_SIZE) == 0)
1609 return true;
1610
1611 return false;
1612}
1da177e4
LT
1613
1614#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1615static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1616 unsigned long caller)
1da177e4 1617{
8c138bc0 1618 int size = cachep->object_size;
1da177e4 1619
3dafccf2 1620 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1621
b28a02de 1622 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1623 return;
1624
b28a02de
PE
1625 *addr++ = 0x12345678;
1626 *addr++ = caller;
1627 *addr++ = smp_processor_id();
1628 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1629 {
1630 unsigned long *sptr = &caller;
1631 unsigned long svalue;
1632
1633 while (!kstack_end(sptr)) {
1634 svalue = *sptr++;
1635 if (kernel_text_address(svalue)) {
b28a02de 1636 *addr++ = svalue;
1da177e4
LT
1637 size -= sizeof(unsigned long);
1638 if (size <= sizeof(unsigned long))
1639 break;
1640 }
1641 }
1642
1643 }
b28a02de 1644 *addr++ = 0x87654321;
1da177e4 1645}
40b44137
JK
1646
1647static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1648 int map, unsigned long caller)
1649{
1650 if (!is_debug_pagealloc_cache(cachep))
1651 return;
1652
1653 if (caller)
1654 store_stackinfo(cachep, objp, caller);
1655
1656 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1657}
1658
1659#else
1660static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1661 int map, unsigned long caller) {}
1662
1da177e4
LT
1663#endif
1664
343e0d7a 1665static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1666{
8c138bc0 1667 int size = cachep->object_size;
3dafccf2 1668 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1669
1670 memset(addr, val, size);
b28a02de 1671 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1672}
1673
1674static void dump_line(char *data, int offset, int limit)
1675{
1676 int i;
aa83aa40
DJ
1677 unsigned char error = 0;
1678 int bad_count = 0;
1679
fdde6abb 1680 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1681 for (i = 0; i < limit; i++) {
1682 if (data[offset + i] != POISON_FREE) {
1683 error = data[offset + i];
1684 bad_count++;
1685 }
aa83aa40 1686 }
fdde6abb
SAS
1687 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1688 &data[offset], limit, 1);
aa83aa40
DJ
1689
1690 if (bad_count == 1) {
1691 error ^= POISON_FREE;
1692 if (!(error & (error - 1))) {
1693 printk(KERN_ERR "Single bit error detected. Probably "
1694 "bad RAM.\n");
1695#ifdef CONFIG_X86
1696 printk(KERN_ERR "Run memtest86+ or a similar memory "
1697 "test tool.\n");
1698#else
1699 printk(KERN_ERR "Run a memory test tool.\n");
1700#endif
1701 }
1702 }
1da177e4
LT
1703}
1704#endif
1705
1706#if DEBUG
1707
343e0d7a 1708static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1709{
1710 int i, size;
1711 char *realobj;
1712
1713 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1714 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1715 *dbg_redzone1(cachep, objp),
1716 *dbg_redzone2(cachep, objp));
1da177e4
LT
1717 }
1718
1719 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1720 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1721 *dbg_userword(cachep, objp),
1722 *dbg_userword(cachep, objp));
1da177e4 1723 }
3dafccf2 1724 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1725 size = cachep->object_size;
b28a02de 1726 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1727 int limit;
1728 limit = 16;
b28a02de
PE
1729 if (i + limit > size)
1730 limit = size - i;
1da177e4
LT
1731 dump_line(realobj, i, limit);
1732 }
1733}
1734
343e0d7a 1735static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1736{
1737 char *realobj;
1738 int size, i;
1739 int lines = 0;
1740
40b44137
JK
1741 if (is_debug_pagealloc_cache(cachep))
1742 return;
1743
3dafccf2 1744 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1745 size = cachep->object_size;
1da177e4 1746
b28a02de 1747 for (i = 0; i < size; i++) {
1da177e4 1748 char exp = POISON_FREE;
b28a02de 1749 if (i == size - 1)
1da177e4
LT
1750 exp = POISON_END;
1751 if (realobj[i] != exp) {
1752 int limit;
1753 /* Mismatch ! */
1754 /* Print header */
1755 if (lines == 0) {
b28a02de 1756 printk(KERN_ERR
face37f5
DJ
1757 "Slab corruption (%s): %s start=%p, len=%d\n",
1758 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1759 print_objinfo(cachep, objp, 0);
1760 }
1761 /* Hexdump the affected line */
b28a02de 1762 i = (i / 16) * 16;
1da177e4 1763 limit = 16;
b28a02de
PE
1764 if (i + limit > size)
1765 limit = size - i;
1da177e4
LT
1766 dump_line(realobj, i, limit);
1767 i += 16;
1768 lines++;
1769 /* Limit to 5 lines */
1770 if (lines > 5)
1771 break;
1772 }
1773 }
1774 if (lines != 0) {
1775 /* Print some data about the neighboring objects, if they
1776 * exist:
1777 */
8456a648 1778 struct page *page = virt_to_head_page(objp);
8fea4e96 1779 unsigned int objnr;
1da177e4 1780
8456a648 1781 objnr = obj_to_index(cachep, page, objp);
1da177e4 1782 if (objnr) {
8456a648 1783 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1784 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1785 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1786 realobj, size);
1da177e4
LT
1787 print_objinfo(cachep, objp, 2);
1788 }
b28a02de 1789 if (objnr + 1 < cachep->num) {
8456a648 1790 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1791 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1792 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1793 realobj, size);
1da177e4
LT
1794 print_objinfo(cachep, objp, 2);
1795 }
1796 }
1797}
1798#endif
1799
12dd36fa 1800#if DEBUG
8456a648
JK
1801static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1802 struct page *page)
1da177e4 1803{
1da177e4
LT
1804 int i;
1805 for (i = 0; i < cachep->num; i++) {
8456a648 1806 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1807
1808 if (cachep->flags & SLAB_POISON) {
1da177e4 1809 check_poison_obj(cachep, objp);
40b44137 1810 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1811 }
1812 if (cachep->flags & SLAB_RED_ZONE) {
1813 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1814 slab_error(cachep, "start of a freed object "
b28a02de 1815 "was overwritten");
1da177e4
LT
1816 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1817 slab_error(cachep, "end of a freed object "
b28a02de 1818 "was overwritten");
1da177e4 1819 }
1da177e4 1820 }
12dd36fa 1821}
1da177e4 1822#else
8456a648
JK
1823static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1824 struct page *page)
12dd36fa 1825{
12dd36fa 1826}
1da177e4
LT
1827#endif
1828
911851e6
RD
1829/**
1830 * slab_destroy - destroy and release all objects in a slab
1831 * @cachep: cache pointer being destroyed
cb8ee1a3 1832 * @page: page pointer being destroyed
911851e6 1833 *
8a7d9b43
WSH
1834 * Destroy all the objs in a slab page, and release the mem back to the system.
1835 * Before calling the slab page must have been unlinked from the cache. The
1836 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1837 */
8456a648 1838static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1839{
7e007355 1840 void *freelist;
12dd36fa 1841
8456a648
JK
1842 freelist = page->freelist;
1843 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1844 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1845 call_rcu(&page->rcu_head, kmem_rcu_free);
1846 else
0c3aa83e 1847 kmem_freepages(cachep, page);
68126702
JK
1848
1849 /*
8456a648 1850 * From now on, we don't use freelist
68126702
JK
1851 * although actual page can be freed in rcu context
1852 */
1853 if (OFF_SLAB(cachep))
8456a648 1854 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1855}
1856
97654dfa
JK
1857static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1858{
1859 struct page *page, *n;
1860
1861 list_for_each_entry_safe(page, n, list, lru) {
1862 list_del(&page->lru);
1863 slab_destroy(cachep, page);
1864 }
1865}
1866
4d268eba 1867/**
a70773dd
RD
1868 * calculate_slab_order - calculate size (page order) of slabs
1869 * @cachep: pointer to the cache that is being created
1870 * @size: size of objects to be created in this cache.
a70773dd
RD
1871 * @flags: slab allocation flags
1872 *
1873 * Also calculates the number of objects per slab.
4d268eba
PE
1874 *
1875 * This could be made much more intelligent. For now, try to avoid using
1876 * high order pages for slabs. When the gfp() functions are more friendly
1877 * towards high-order requests, this should be changed.
1878 */
a737b3e2 1879static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1880 size_t size, unsigned long flags)
4d268eba 1881{
b1ab41c4 1882 unsigned long offslab_limit;
4d268eba 1883 size_t left_over = 0;
9888e6fa 1884 int gfporder;
4d268eba 1885
0aa817f0 1886 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1887 unsigned int num;
1888 size_t remainder;
1889
2e6b3602 1890 cache_estimate(gfporder, size, flags, &remainder, &num);
4d268eba
PE
1891 if (!num)
1892 continue;
9888e6fa 1893
f315e3fa
JK
1894 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1895 if (num > SLAB_OBJ_MAX_NUM)
1896 break;
1897
b1ab41c4
IM
1898 if (flags & CFLGS_OFF_SLAB) {
1899 /*
1900 * Max number of objs-per-slab for caches which
1901 * use off-slab slabs. Needed to avoid a possible
1902 * looping condition in cache_grow().
1903 */
8456a648 1904 offslab_limit = size;
249247b6 1905 offslab_limit /= sizeof(freelist_idx_t);
b1ab41c4
IM
1906
1907 if (num > offslab_limit)
1908 break;
1909 }
4d268eba 1910
9888e6fa 1911 /* Found something acceptable - save it away */
4d268eba 1912 cachep->num = num;
9888e6fa 1913 cachep->gfporder = gfporder;
4d268eba
PE
1914 left_over = remainder;
1915
f78bb8ad
LT
1916 /*
1917 * A VFS-reclaimable slab tends to have most allocations
1918 * as GFP_NOFS and we really don't want to have to be allocating
1919 * higher-order pages when we are unable to shrink dcache.
1920 */
1921 if (flags & SLAB_RECLAIM_ACCOUNT)
1922 break;
1923
4d268eba
PE
1924 /*
1925 * Large number of objects is good, but very large slabs are
1926 * currently bad for the gfp()s.
1927 */
543585cc 1928 if (gfporder >= slab_max_order)
4d268eba
PE
1929 break;
1930
9888e6fa
LT
1931 /*
1932 * Acceptable internal fragmentation?
1933 */
a737b3e2 1934 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1935 break;
1936 }
1937 return left_over;
1938}
1939
bf0dea23
JK
1940static struct array_cache __percpu *alloc_kmem_cache_cpus(
1941 struct kmem_cache *cachep, int entries, int batchcount)
1942{
1943 int cpu;
1944 size_t size;
1945 struct array_cache __percpu *cpu_cache;
1946
1947 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1948 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1949
1950 if (!cpu_cache)
1951 return NULL;
1952
1953 for_each_possible_cpu(cpu) {
1954 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1955 entries, batchcount);
1956 }
1957
1958 return cpu_cache;
1959}
1960
83b519e8 1961static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1962{
97d06609 1963 if (slab_state >= FULL)
83b519e8 1964 return enable_cpucache(cachep, gfp);
2ed3a4ef 1965
bf0dea23
JK
1966 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1967 if (!cachep->cpu_cache)
1968 return 1;
1969
97d06609 1970 if (slab_state == DOWN) {
bf0dea23
JK
1971 /* Creation of first cache (kmem_cache). */
1972 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1973 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1974 /* For kmem_cache_node */
1975 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1976 } else {
bf0dea23 1977 int node;
f30cf7d1 1978
bf0dea23
JK
1979 for_each_online_node(node) {
1980 cachep->node[node] = kmalloc_node(
1981 sizeof(struct kmem_cache_node), gfp, node);
1982 BUG_ON(!cachep->node[node]);
1983 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1984 }
1985 }
bf0dea23 1986
6a67368c 1987 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1988 jiffies + REAPTIMEOUT_NODE +
1989 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1990
1991 cpu_cache_get(cachep)->avail = 0;
1992 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1993 cpu_cache_get(cachep)->batchcount = 1;
1994 cpu_cache_get(cachep)->touched = 0;
1995 cachep->batchcount = 1;
1996 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1997 return 0;
f30cf7d1
PE
1998}
1999
12220dea
JK
2000unsigned long kmem_cache_flags(unsigned long object_size,
2001 unsigned long flags, const char *name,
2002 void (*ctor)(void *))
2003{
2004 return flags;
2005}
2006
2007struct kmem_cache *
2008__kmem_cache_alias(const char *name, size_t size, size_t align,
2009 unsigned long flags, void (*ctor)(void *))
2010{
2011 struct kmem_cache *cachep;
2012
2013 cachep = find_mergeable(size, align, flags, name, ctor);
2014 if (cachep) {
2015 cachep->refcount++;
2016
2017 /*
2018 * Adjust the object sizes so that we clear
2019 * the complete object on kzalloc.
2020 */
2021 cachep->object_size = max_t(int, cachep->object_size, size);
2022 }
2023 return cachep;
2024}
2025
158e319b
JK
2026static bool set_off_slab_cache(struct kmem_cache *cachep,
2027 size_t size, unsigned long flags)
2028{
2029 size_t left;
2030
2031 cachep->num = 0;
2032
2033 /*
2034 * Determine if the slab management is 'on' or 'off' slab.
2035 * (bootstrapping cannot cope with offslab caches so don't do
2036 * it too early on. Always use on-slab management when
2037 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2038 */
2039 if (size < OFF_SLAB_MIN_SIZE)
2040 return false;
2041
2042 if (slab_early_init)
2043 return false;
2044
2045 if (flags & SLAB_NOLEAKTRACE)
2046 return false;
2047
2048 /*
2049 * Size is large, assume best to place the slab management obj
2050 * off-slab (should allow better packing of objs).
2051 */
2052 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
2053 if (!cachep->num)
2054 return false;
2055
2056 /*
2057 * If the slab has been placed off-slab, and we have enough space then
2058 * move it on-slab. This is at the expense of any extra colouring.
2059 */
2060 if (left >= cachep->num * sizeof(freelist_idx_t))
2061 return false;
2062
2063 cachep->colour = left / cachep->colour_off;
2064
2065 return true;
2066}
2067
2068static bool set_on_slab_cache(struct kmem_cache *cachep,
2069 size_t size, unsigned long flags)
2070{
2071 size_t left;
2072
2073 cachep->num = 0;
2074
2075 left = calculate_slab_order(cachep, size, flags);
2076 if (!cachep->num)
2077 return false;
2078
2079 cachep->colour = left / cachep->colour_off;
2080
2081 return true;
2082}
2083
1da177e4 2084/**
039363f3 2085 * __kmem_cache_create - Create a cache.
a755b76a 2086 * @cachep: cache management descriptor
1da177e4 2087 * @flags: SLAB flags
1da177e4
LT
2088 *
2089 * Returns a ptr to the cache on success, NULL on failure.
2090 * Cannot be called within a int, but can be interrupted.
20c2df83 2091 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2092 *
1da177e4
LT
2093 * The flags are
2094 *
2095 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2096 * to catch references to uninitialised memory.
2097 *
2098 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2099 * for buffer overruns.
2100 *
1da177e4
LT
2101 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2102 * cacheline. This can be beneficial if you're counting cycles as closely
2103 * as davem.
2104 */
278b1bb1 2105int
8a13a4cc 2106__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2107{
d4a5fca5 2108 size_t ralign = BYTES_PER_WORD;
83b519e8 2109 gfp_t gfp;
278b1bb1 2110 int err;
8a13a4cc 2111 size_t size = cachep->size;
1da177e4 2112
1da177e4 2113#if DEBUG
1da177e4
LT
2114#if FORCED_DEBUG
2115 /*
2116 * Enable redzoning and last user accounting, except for caches with
2117 * large objects, if the increased size would increase the object size
2118 * above the next power of two: caches with object sizes just above a
2119 * power of two have a significant amount of internal fragmentation.
2120 */
87a927c7
DW
2121 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2122 2 * sizeof(unsigned long long)))
b28a02de 2123 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2124 if (!(flags & SLAB_DESTROY_BY_RCU))
2125 flags |= SLAB_POISON;
2126#endif
1da177e4 2127#endif
1da177e4 2128
a737b3e2
AM
2129 /*
2130 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2131 * unaligned accesses for some archs when redzoning is used, and makes
2132 * sure any on-slab bufctl's are also correctly aligned.
2133 */
b28a02de
PE
2134 if (size & (BYTES_PER_WORD - 1)) {
2135 size += (BYTES_PER_WORD - 1);
2136 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2137 }
2138
87a927c7
DW
2139 if (flags & SLAB_RED_ZONE) {
2140 ralign = REDZONE_ALIGN;
2141 /* If redzoning, ensure that the second redzone is suitably
2142 * aligned, by adjusting the object size accordingly. */
2143 size += REDZONE_ALIGN - 1;
2144 size &= ~(REDZONE_ALIGN - 1);
2145 }
ca5f9703 2146
a44b56d3 2147 /* 3) caller mandated alignment */
8a13a4cc
CL
2148 if (ralign < cachep->align) {
2149 ralign = cachep->align;
1da177e4 2150 }
3ff84a7f
PE
2151 /* disable debug if necessary */
2152 if (ralign > __alignof__(unsigned long long))
a44b56d3 2153 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2154 /*
ca5f9703 2155 * 4) Store it.
1da177e4 2156 */
8a13a4cc 2157 cachep->align = ralign;
158e319b
JK
2158 cachep->colour_off = cache_line_size();
2159 /* Offset must be a multiple of the alignment. */
2160 if (cachep->colour_off < cachep->align)
2161 cachep->colour_off = cachep->align;
1da177e4 2162
83b519e8
PE
2163 if (slab_is_available())
2164 gfp = GFP_KERNEL;
2165 else
2166 gfp = GFP_NOWAIT;
2167
1da177e4 2168#if DEBUG
1da177e4 2169
ca5f9703
PE
2170 /*
2171 * Both debugging options require word-alignment which is calculated
2172 * into align above.
2173 */
1da177e4 2174 if (flags & SLAB_RED_ZONE) {
1da177e4 2175 /* add space for red zone words */
3ff84a7f
PE
2176 cachep->obj_offset += sizeof(unsigned long long);
2177 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2178 }
2179 if (flags & SLAB_STORE_USER) {
ca5f9703 2180 /* user store requires one word storage behind the end of
87a927c7
DW
2181 * the real object. But if the second red zone needs to be
2182 * aligned to 64 bits, we must allow that much space.
1da177e4 2183 */
87a927c7
DW
2184 if (flags & SLAB_RED_ZONE)
2185 size += REDZONE_ALIGN;
2186 else
2187 size += BYTES_PER_WORD;
1da177e4 2188 }
832a15d2
JK
2189#endif
2190
2191 size = ALIGN(size, cachep->align);
2192 /*
2193 * We should restrict the number of objects in a slab to implement
2194 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2195 */
2196 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2197 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2198
2199#if DEBUG
03a2d2a3
JK
2200 /*
2201 * To activate debug pagealloc, off-slab management is necessary
2202 * requirement. In early phase of initialization, small sized slab
2203 * doesn't get initialized so it would not be possible. So, we need
2204 * to check size >= 256. It guarantees that all necessary small
2205 * sized slab is initialized in current slab initialization sequence.
2206 */
40323278 2207 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
a307ebd4 2208 !slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
03a2d2a3 2209 size >= 256 && cachep->object_size > cache_line_size() &&
832a15d2
JK
2210 size < PAGE_SIZE) {
2211 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2212 size = PAGE_SIZE;
2213 }
1da177e4
LT
2214#endif
2215
158e319b 2216 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2217 flags |= CFLGS_OFF_SLAB;
158e319b 2218 goto done;
832a15d2 2219 }
1da177e4 2220
158e319b
JK
2221 if (set_on_slab_cache(cachep, size, flags))
2222 goto done;
1da177e4 2223
158e319b 2224 return -E2BIG;
1da177e4 2225
158e319b
JK
2226done:
2227 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2228 cachep->flags = flags;
a57a4988 2229 cachep->allocflags = __GFP_COMP;
4b51d669 2230 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2231 cachep->allocflags |= GFP_DMA;
3b0efdfa 2232 cachep->size = size;
6a2d7a95 2233 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2234
40b44137
JK
2235#if DEBUG
2236 /*
2237 * If we're going to use the generic kernel_map_pages()
2238 * poisoning, then it's going to smash the contents of
2239 * the redzone and userword anyhow, so switch them off.
2240 */
2241 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2242 (cachep->flags & SLAB_POISON) &&
2243 is_debug_pagealloc_cache(cachep))
2244 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2245#endif
2246
2247 if (OFF_SLAB(cachep)) {
158e319b
JK
2248 cachep->freelist_cache =
2249 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2250 /*
5f0985bb 2251 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2252 * But since we go off slab only for object size greater than
d4322d88 2253 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
5f0985bb 2254 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2255 * But leave a BUG_ON for some lucky dude.
2256 */
8456a648 2257 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2258 }
1da177e4 2259
278b1bb1
CL
2260 err = setup_cpu_cache(cachep, gfp);
2261 if (err) {
52b4b950 2262 __kmem_cache_release(cachep);
278b1bb1 2263 return err;
2ed3a4ef 2264 }
1da177e4 2265
278b1bb1 2266 return 0;
1da177e4 2267}
1da177e4
LT
2268
2269#if DEBUG
2270static void check_irq_off(void)
2271{
2272 BUG_ON(!irqs_disabled());
2273}
2274
2275static void check_irq_on(void)
2276{
2277 BUG_ON(irqs_disabled());
2278}
2279
343e0d7a 2280static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2281{
2282#ifdef CONFIG_SMP
2283 check_irq_off();
18bf8541 2284 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2285#endif
2286}
e498be7d 2287
343e0d7a 2288static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2289{
2290#ifdef CONFIG_SMP
2291 check_irq_off();
18bf8541 2292 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2293#endif
2294}
2295
1da177e4
LT
2296#else
2297#define check_irq_off() do { } while(0)
2298#define check_irq_on() do { } while(0)
2299#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2300#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2301#endif
2302
ce8eb6c4 2303static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2304 struct array_cache *ac,
2305 int force, int node);
2306
1da177e4
LT
2307static void do_drain(void *arg)
2308{
a737b3e2 2309 struct kmem_cache *cachep = arg;
1da177e4 2310 struct array_cache *ac;
7d6e6d09 2311 int node = numa_mem_id();
18bf8541 2312 struct kmem_cache_node *n;
97654dfa 2313 LIST_HEAD(list);
1da177e4
LT
2314
2315 check_irq_off();
9a2dba4b 2316 ac = cpu_cache_get(cachep);
18bf8541
CL
2317 n = get_node(cachep, node);
2318 spin_lock(&n->list_lock);
97654dfa 2319 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2320 spin_unlock(&n->list_lock);
97654dfa 2321 slabs_destroy(cachep, &list);
1da177e4
LT
2322 ac->avail = 0;
2323}
2324
343e0d7a 2325static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2326{
ce8eb6c4 2327 struct kmem_cache_node *n;
e498be7d
CL
2328 int node;
2329
15c8b6c1 2330 on_each_cpu(do_drain, cachep, 1);
1da177e4 2331 check_irq_on();
18bf8541
CL
2332 for_each_kmem_cache_node(cachep, node, n)
2333 if (n->alien)
ce8eb6c4 2334 drain_alien_cache(cachep, n->alien);
a4523a8b 2335
18bf8541
CL
2336 for_each_kmem_cache_node(cachep, node, n)
2337 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2338}
2339
ed11d9eb
CL
2340/*
2341 * Remove slabs from the list of free slabs.
2342 * Specify the number of slabs to drain in tofree.
2343 *
2344 * Returns the actual number of slabs released.
2345 */
2346static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2347 struct kmem_cache_node *n, int tofree)
1da177e4 2348{
ed11d9eb
CL
2349 struct list_head *p;
2350 int nr_freed;
8456a648 2351 struct page *page;
1da177e4 2352
ed11d9eb 2353 nr_freed = 0;
ce8eb6c4 2354 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2355
ce8eb6c4
CL
2356 spin_lock_irq(&n->list_lock);
2357 p = n->slabs_free.prev;
2358 if (p == &n->slabs_free) {
2359 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2360 goto out;
2361 }
1da177e4 2362
8456a648 2363 page = list_entry(p, struct page, lru);
8456a648 2364 list_del(&page->lru);
ed11d9eb
CL
2365 /*
2366 * Safe to drop the lock. The slab is no longer linked
2367 * to the cache.
2368 */
ce8eb6c4
CL
2369 n->free_objects -= cache->num;
2370 spin_unlock_irq(&n->list_lock);
8456a648 2371 slab_destroy(cache, page);
ed11d9eb 2372 nr_freed++;
1da177e4 2373 }
ed11d9eb
CL
2374out:
2375 return nr_freed;
1da177e4
LT
2376}
2377
d6e0b7fa 2378int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2379{
18bf8541
CL
2380 int ret = 0;
2381 int node;
ce8eb6c4 2382 struct kmem_cache_node *n;
e498be7d
CL
2383
2384 drain_cpu_caches(cachep);
2385
2386 check_irq_on();
18bf8541 2387 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2388 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2389
ce8eb6c4
CL
2390 ret += !list_empty(&n->slabs_full) ||
2391 !list_empty(&n->slabs_partial);
e498be7d
CL
2392 }
2393 return (ret ? 1 : 0);
2394}
2395
945cf2b6 2396int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2397{
2398 return __kmem_cache_shrink(cachep, false);
2399}
2400
2401void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2402{
12c3667f 2403 int i;
ce8eb6c4 2404 struct kmem_cache_node *n;
1da177e4 2405
bf0dea23 2406 free_percpu(cachep->cpu_cache);
1da177e4 2407
ce8eb6c4 2408 /* NUMA: free the node structures */
18bf8541
CL
2409 for_each_kmem_cache_node(cachep, i, n) {
2410 kfree(n->shared);
2411 free_alien_cache(n->alien);
2412 kfree(n);
2413 cachep->node[i] = NULL;
12c3667f 2414 }
1da177e4 2415}
1da177e4 2416
e5ac9c5a
RT
2417/*
2418 * Get the memory for a slab management obj.
5f0985bb
JZ
2419 *
2420 * For a slab cache when the slab descriptor is off-slab, the
2421 * slab descriptor can't come from the same cache which is being created,
2422 * Because if it is the case, that means we defer the creation of
2423 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2424 * And we eventually call down to __kmem_cache_create(), which
2425 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2426 * This is a "chicken-and-egg" problem.
2427 *
2428 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2429 * which are all initialized during kmem_cache_init().
e5ac9c5a 2430 */
7e007355 2431static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2432 struct page *page, int colour_off,
2433 gfp_t local_flags, int nodeid)
1da177e4 2434{
7e007355 2435 void *freelist;
0c3aa83e 2436 void *addr = page_address(page);
b28a02de 2437
2e6b3602
JK
2438 page->s_mem = addr + colour_off;
2439 page->active = 0;
2440
1da177e4
LT
2441 if (OFF_SLAB(cachep)) {
2442 /* Slab management obj is off-slab. */
8456a648 2443 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2444 local_flags, nodeid);
8456a648 2445 if (!freelist)
1da177e4
LT
2446 return NULL;
2447 } else {
2e6b3602
JK
2448 /* We will use last bytes at the slab for freelist */
2449 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2450 cachep->freelist_size;
1da177e4 2451 }
2e6b3602 2452
8456a648 2453 return freelist;
1da177e4
LT
2454}
2455
7cc68973 2456static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2457{
a41adfaa 2458 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2459}
2460
2461static inline void set_free_obj(struct page *page,
7cc68973 2462 unsigned int idx, freelist_idx_t val)
e5c58dfd 2463{
a41adfaa 2464 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2465}
2466
343e0d7a 2467static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2468 struct page *page)
1da177e4
LT
2469{
2470 int i;
2471
2472 for (i = 0; i < cachep->num; i++) {
8456a648 2473 void *objp = index_to_obj(cachep, page, i);
1da177e4 2474#if DEBUG
1da177e4
LT
2475 if (cachep->flags & SLAB_STORE_USER)
2476 *dbg_userword(cachep, objp) = NULL;
2477
2478 if (cachep->flags & SLAB_RED_ZONE) {
2479 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2480 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2481 }
2482 /*
a737b3e2
AM
2483 * Constructors are not allowed to allocate memory from the same
2484 * cache which they are a constructor for. Otherwise, deadlock.
2485 * They must also be threaded.
1da177e4
LT
2486 */
2487 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2488 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2489
2490 if (cachep->flags & SLAB_RED_ZONE) {
2491 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2492 slab_error(cachep, "constructor overwrote the"
b28a02de 2493 " end of an object");
1da177e4
LT
2494 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2495 slab_error(cachep, "constructor overwrote the"
b28a02de 2496 " start of an object");
1da177e4 2497 }
40b44137
JK
2498 /* need to poison the objs? */
2499 if (cachep->flags & SLAB_POISON) {
2500 poison_obj(cachep, objp, POISON_FREE);
2501 slab_kernel_map(cachep, objp, 0, 0);
2502 }
1da177e4
LT
2503#else
2504 if (cachep->ctor)
51cc5068 2505 cachep->ctor(objp);
1da177e4 2506#endif
e5c58dfd 2507 set_free_obj(page, i, i);
1da177e4 2508 }
1da177e4
LT
2509}
2510
343e0d7a 2511static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2512{
4b51d669
CL
2513 if (CONFIG_ZONE_DMA_FLAG) {
2514 if (flags & GFP_DMA)
a618e89f 2515 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2516 else
a618e89f 2517 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2518 }
1da177e4
LT
2519}
2520
260b61dd 2521static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2522{
b1cb0982 2523 void *objp;
78d382d7 2524
e5c58dfd 2525 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2526 page->active++;
78d382d7 2527
d31676df
JK
2528#if DEBUG
2529 if (cachep->flags & SLAB_STORE_USER)
2530 set_store_user_dirty(cachep);
2531#endif
2532
78d382d7
MD
2533 return objp;
2534}
2535
260b61dd
JK
2536static void slab_put_obj(struct kmem_cache *cachep,
2537 struct page *page, void *objp)
78d382d7 2538{
8456a648 2539 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2540#if DEBUG
16025177 2541 unsigned int i;
b1cb0982 2542
b1cb0982 2543 /* Verify double free bug */
8456a648 2544 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2545 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2546 printk(KERN_ERR "slab: double free detected in cache "
2547 "'%s', objp %p\n", cachep->name, objp);
2548 BUG();
2549 }
78d382d7
MD
2550 }
2551#endif
8456a648 2552 page->active--;
e5c58dfd 2553 set_free_obj(page, page->active, objnr);
78d382d7
MD
2554}
2555
4776874f
PE
2556/*
2557 * Map pages beginning at addr to the given cache and slab. This is required
2558 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2559 * virtual address for kfree, ksize, and slab debugging.
4776874f 2560 */
8456a648 2561static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2562 void *freelist)
1da177e4 2563{
a57a4988 2564 page->slab_cache = cache;
8456a648 2565 page->freelist = freelist;
1da177e4
LT
2566}
2567
2568/*
2569 * Grow (by 1) the number of slabs within a cache. This is called by
2570 * kmem_cache_alloc() when there are no active objs left in a cache.
2571 */
3c517a61 2572static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2573 gfp_t flags, int nodeid, struct page *page)
1da177e4 2574{
7e007355 2575 void *freelist;
b28a02de
PE
2576 size_t offset;
2577 gfp_t local_flags;
ce8eb6c4 2578 struct kmem_cache_node *n;
1da177e4 2579
a737b3e2
AM
2580 /*
2581 * Be lazy and only check for valid flags here, keeping it out of the
2582 * critical path in kmem_cache_alloc().
1da177e4 2583 */
c871ac4e
AM
2584 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2585 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2586 BUG();
2587 }
6cb06229 2588 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2589
ce8eb6c4 2590 /* Take the node list lock to change the colour_next on this node */
1da177e4 2591 check_irq_off();
18bf8541 2592 n = get_node(cachep, nodeid);
ce8eb6c4 2593 spin_lock(&n->list_lock);
1da177e4
LT
2594
2595 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2596 offset = n->colour_next;
2597 n->colour_next++;
2598 if (n->colour_next >= cachep->colour)
2599 n->colour_next = 0;
2600 spin_unlock(&n->list_lock);
1da177e4 2601
2e1217cf 2602 offset *= cachep->colour_off;
1da177e4 2603
d0164adc 2604 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2605 local_irq_enable();
2606
2607 /*
2608 * The test for missing atomic flag is performed here, rather than
2609 * the more obvious place, simply to reduce the critical path length
2610 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2611 * will eventually be caught here (where it matters).
2612 */
2613 kmem_flagcheck(cachep, flags);
2614
a737b3e2
AM
2615 /*
2616 * Get mem for the objs. Attempt to allocate a physical page from
2617 * 'nodeid'.
e498be7d 2618 */
0c3aa83e
JK
2619 if (!page)
2620 page = kmem_getpages(cachep, local_flags, nodeid);
2621 if (!page)
1da177e4
LT
2622 goto failed;
2623
2624 /* Get slab management. */
8456a648 2625 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2626 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2627 if (!freelist)
1da177e4
LT
2628 goto opps1;
2629
8456a648 2630 slab_map_pages(cachep, page, freelist);
1da177e4 2631
8456a648 2632 cache_init_objs(cachep, page);
1da177e4 2633
d0164adc 2634 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2635 local_irq_disable();
2636 check_irq_off();
ce8eb6c4 2637 spin_lock(&n->list_lock);
1da177e4
LT
2638
2639 /* Make slab active. */
8456a648 2640 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2641 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2642 n->free_objects += cachep->num;
2643 spin_unlock(&n->list_lock);
1da177e4 2644 return 1;
a737b3e2 2645opps1:
0c3aa83e 2646 kmem_freepages(cachep, page);
a737b3e2 2647failed:
d0164adc 2648 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2649 local_irq_disable();
2650 return 0;
2651}
2652
2653#if DEBUG
2654
2655/*
2656 * Perform extra freeing checks:
2657 * - detect bad pointers.
2658 * - POISON/RED_ZONE checking
1da177e4
LT
2659 */
2660static void kfree_debugcheck(const void *objp)
2661{
1da177e4
LT
2662 if (!virt_addr_valid(objp)) {
2663 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2664 (unsigned long)objp);
2665 BUG();
1da177e4 2666 }
1da177e4
LT
2667}
2668
58ce1fd5
PE
2669static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2670{
b46b8f19 2671 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2672
2673 redzone1 = *dbg_redzone1(cache, obj);
2674 redzone2 = *dbg_redzone2(cache, obj);
2675
2676 /*
2677 * Redzone is ok.
2678 */
2679 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2680 return;
2681
2682 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2683 slab_error(cache, "double free detected");
2684 else
2685 slab_error(cache, "memory outside object was overwritten");
2686
b46b8f19 2687 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2688 obj, redzone1, redzone2);
2689}
2690
343e0d7a 2691static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2692 unsigned long caller)
1da177e4 2693{
1da177e4 2694 unsigned int objnr;
8456a648 2695 struct page *page;
1da177e4 2696
80cbd911
MW
2697 BUG_ON(virt_to_cache(objp) != cachep);
2698
3dafccf2 2699 objp -= obj_offset(cachep);
1da177e4 2700 kfree_debugcheck(objp);
b49af68f 2701 page = virt_to_head_page(objp);
1da177e4 2702
1da177e4 2703 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2704 verify_redzone_free(cachep, objp);
1da177e4
LT
2705 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2706 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2707 }
d31676df
JK
2708 if (cachep->flags & SLAB_STORE_USER) {
2709 set_store_user_dirty(cachep);
7c0cb9c6 2710 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2711 }
1da177e4 2712
8456a648 2713 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2714
2715 BUG_ON(objnr >= cachep->num);
8456a648 2716 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2717
1da177e4 2718 if (cachep->flags & SLAB_POISON) {
1da177e4 2719 poison_obj(cachep, objp, POISON_FREE);
40b44137 2720 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2721 }
2722 return objp;
2723}
2724
1da177e4
LT
2725#else
2726#define kfree_debugcheck(x) do { } while(0)
2727#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2728#endif
2729
7aa0d227
GT
2730static struct page *get_first_slab(struct kmem_cache_node *n)
2731{
2732 struct page *page;
2733
2734 page = list_first_entry_or_null(&n->slabs_partial,
2735 struct page, lru);
2736 if (!page) {
2737 n->free_touched = 1;
2738 page = list_first_entry_or_null(&n->slabs_free,
2739 struct page, lru);
2740 }
2741
2742 return page;
2743}
2744
072bb0aa
MG
2745static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2746 bool force_refill)
1da177e4
LT
2747{
2748 int batchcount;
ce8eb6c4 2749 struct kmem_cache_node *n;
1da177e4 2750 struct array_cache *ac;
1ca4cb24
PE
2751 int node;
2752
1da177e4 2753 check_irq_off();
7d6e6d09 2754 node = numa_mem_id();
072bb0aa
MG
2755 if (unlikely(force_refill))
2756 goto force_grow;
2757retry:
9a2dba4b 2758 ac = cpu_cache_get(cachep);
1da177e4
LT
2759 batchcount = ac->batchcount;
2760 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2761 /*
2762 * If there was little recent activity on this cache, then
2763 * perform only a partial refill. Otherwise we could generate
2764 * refill bouncing.
1da177e4
LT
2765 */
2766 batchcount = BATCHREFILL_LIMIT;
2767 }
18bf8541 2768 n = get_node(cachep, node);
e498be7d 2769
ce8eb6c4
CL
2770 BUG_ON(ac->avail > 0 || !n);
2771 spin_lock(&n->list_lock);
1da177e4 2772
3ded175a 2773 /* See if we can refill from the shared array */
ce8eb6c4
CL
2774 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2775 n->shared->touched = 1;
3ded175a 2776 goto alloc_done;
44b57f1c 2777 }
3ded175a 2778
1da177e4 2779 while (batchcount > 0) {
8456a648 2780 struct page *page;
1da177e4 2781 /* Get slab alloc is to come from. */
7aa0d227
GT
2782 page = get_first_slab(n);
2783 if (!page)
2784 goto must_grow;
1da177e4 2785
1da177e4 2786 check_spinlock_acquired(cachep);
714b8171
PE
2787
2788 /*
2789 * The slab was either on partial or free list so
2790 * there must be at least one object available for
2791 * allocation.
2792 */
8456a648 2793 BUG_ON(page->active >= cachep->num);
714b8171 2794
8456a648 2795 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2796 STATS_INC_ALLOCED(cachep);
2797 STATS_INC_ACTIVE(cachep);
2798 STATS_SET_HIGH(cachep);
2799
260b61dd 2800 ac_put_obj(cachep, ac, slab_get_obj(cachep, page));
1da177e4 2801 }
1da177e4
LT
2802
2803 /* move slabp to correct slabp list: */
8456a648
JK
2804 list_del(&page->lru);
2805 if (page->active == cachep->num)
34bf6ef9 2806 list_add(&page->lru, &n->slabs_full);
1da177e4 2807 else
34bf6ef9 2808 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2809 }
2810
a737b3e2 2811must_grow:
ce8eb6c4 2812 n->free_objects -= ac->avail;
a737b3e2 2813alloc_done:
ce8eb6c4 2814 spin_unlock(&n->list_lock);
1da177e4
LT
2815
2816 if (unlikely(!ac->avail)) {
2817 int x;
072bb0aa 2818force_grow:
4167e9b2 2819 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2820
a737b3e2 2821 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2822 ac = cpu_cache_get(cachep);
51cd8e6f 2823 node = numa_mem_id();
072bb0aa
MG
2824
2825 /* no objects in sight? abort */
2826 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2827 return NULL;
2828
a737b3e2 2829 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2830 goto retry;
2831 }
2832 ac->touched = 1;
072bb0aa
MG
2833
2834 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2835}
2836
a737b3e2
AM
2837static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2838 gfp_t flags)
1da177e4 2839{
d0164adc 2840 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2841#if DEBUG
2842 kmem_flagcheck(cachep, flags);
2843#endif
2844}
2845
2846#if DEBUG
a737b3e2 2847static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2848 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2849{
b28a02de 2850 if (!objp)
1da177e4 2851 return objp;
b28a02de 2852 if (cachep->flags & SLAB_POISON) {
1da177e4 2853 check_poison_obj(cachep, objp);
40b44137 2854 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2855 poison_obj(cachep, objp, POISON_INUSE);
2856 }
2857 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2858 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2859
2860 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2861 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2862 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2863 slab_error(cachep, "double free, or memory outside"
2864 " object was overwritten");
b28a02de 2865 printk(KERN_ERR
b46b8f19 2866 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2867 objp, *dbg_redzone1(cachep, objp),
2868 *dbg_redzone2(cachep, objp));
1da177e4
LT
2869 }
2870 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2872 }
03787301 2873
3dafccf2 2874 objp += obj_offset(cachep);
4f104934 2875 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2876 cachep->ctor(objp);
7ea466f2
TH
2877 if (ARCH_SLAB_MINALIGN &&
2878 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2879 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2880 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2881 }
1da177e4
LT
2882 return objp;
2883}
2884#else
2885#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2886#endif
2887
343e0d7a 2888static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2889{
b28a02de 2890 void *objp;
1da177e4 2891 struct array_cache *ac;
072bb0aa 2892 bool force_refill = false;
1da177e4 2893
5c382300 2894 check_irq_off();
8a8b6502 2895
9a2dba4b 2896 ac = cpu_cache_get(cachep);
1da177e4 2897 if (likely(ac->avail)) {
1da177e4 2898 ac->touched = 1;
072bb0aa
MG
2899 objp = ac_get_obj(cachep, ac, flags, false);
2900
ddbf2e83 2901 /*
072bb0aa
MG
2902 * Allow for the possibility all avail objects are not allowed
2903 * by the current flags
ddbf2e83 2904 */
072bb0aa
MG
2905 if (objp) {
2906 STATS_INC_ALLOCHIT(cachep);
2907 goto out;
2908 }
2909 force_refill = true;
1da177e4 2910 }
072bb0aa
MG
2911
2912 STATS_INC_ALLOCMISS(cachep);
2913 objp = cache_alloc_refill(cachep, flags, force_refill);
2914 /*
2915 * the 'ac' may be updated by cache_alloc_refill(),
2916 * and kmemleak_erase() requires its correct value.
2917 */
2918 ac = cpu_cache_get(cachep);
2919
2920out:
d5cff635
CM
2921 /*
2922 * To avoid a false negative, if an object that is in one of the
2923 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2924 * treat the array pointers as a reference to the object.
2925 */
f3d8b53a
O
2926 if (objp)
2927 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2928 return objp;
2929}
2930
e498be7d 2931#ifdef CONFIG_NUMA
c61afb18 2932/*
2ad654bc 2933 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2934 *
2935 * If we are in_interrupt, then process context, including cpusets and
2936 * mempolicy, may not apply and should not be used for allocation policy.
2937 */
2938static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2939{
2940 int nid_alloc, nid_here;
2941
765c4507 2942 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2943 return NULL;
7d6e6d09 2944 nid_alloc = nid_here = numa_mem_id();
c61afb18 2945 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2946 nid_alloc = cpuset_slab_spread_node();
c61afb18 2947 else if (current->mempolicy)
2a389610 2948 nid_alloc = mempolicy_slab_node();
c61afb18 2949 if (nid_alloc != nid_here)
8b98c169 2950 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
2951 return NULL;
2952}
2953
765c4507
CL
2954/*
2955 * Fallback function if there was no memory available and no objects on a
3c517a61 2956 * certain node and fall back is permitted. First we scan all the
6a67368c 2957 * available node for available objects. If that fails then we
3c517a61
CL
2958 * perform an allocation without specifying a node. This allows the page
2959 * allocator to do its reclaim / fallback magic. We then insert the
2960 * slab into the proper nodelist and then allocate from it.
765c4507 2961 */
8c8cc2c1 2962static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 2963{
8c8cc2c1
PE
2964 struct zonelist *zonelist;
2965 gfp_t local_flags;
dd1a239f 2966 struct zoneref *z;
54a6eb5c
MG
2967 struct zone *zone;
2968 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 2969 void *obj = NULL;
3c517a61 2970 int nid;
cc9a6c87 2971 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
2972
2973 if (flags & __GFP_THISNODE)
2974 return NULL;
2975
6cb06229 2976 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 2977
cc9a6c87 2978retry_cpuset:
d26914d1 2979 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2980 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 2981
3c517a61
CL
2982retry:
2983 /*
2984 * Look through allowed nodes for objects available
2985 * from existing per node queues.
2986 */
54a6eb5c
MG
2987 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2988 nid = zone_to_nid(zone);
aedb0eb1 2989
061d7074 2990 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
2991 get_node(cache, nid) &&
2992 get_node(cache, nid)->free_objects) {
3c517a61 2993 obj = ____cache_alloc_node(cache,
4167e9b2 2994 gfp_exact_node(flags), nid);
481c5346
CL
2995 if (obj)
2996 break;
2997 }
3c517a61
CL
2998 }
2999
cfce6604 3000 if (!obj) {
3c517a61
CL
3001 /*
3002 * This allocation will be performed within the constraints
3003 * of the current cpuset / memory policy requirements.
3004 * We may trigger various forms of reclaim on the allowed
3005 * set and go into memory reserves if necessary.
3006 */
0c3aa83e
JK
3007 struct page *page;
3008
d0164adc 3009 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3010 local_irq_enable();
3011 kmem_flagcheck(cache, flags);
0c3aa83e 3012 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3013 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3014 local_irq_disable();
0c3aa83e 3015 if (page) {
3c517a61
CL
3016 /*
3017 * Insert into the appropriate per node queues
3018 */
0c3aa83e
JK
3019 nid = page_to_nid(page);
3020 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3021 obj = ____cache_alloc_node(cache,
4167e9b2 3022 gfp_exact_node(flags), nid);
3c517a61
CL
3023 if (!obj)
3024 /*
3025 * Another processor may allocate the
3026 * objects in the slab since we are
3027 * not holding any locks.
3028 */
3029 goto retry;
3030 } else {
b6a60451 3031 /* cache_grow already freed obj */
3c517a61
CL
3032 obj = NULL;
3033 }
3034 }
aedb0eb1 3035 }
cc9a6c87 3036
d26914d1 3037 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3038 goto retry_cpuset;
765c4507
CL
3039 return obj;
3040}
3041
e498be7d
CL
3042/*
3043 * A interface to enable slab creation on nodeid
1da177e4 3044 */
8b98c169 3045static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3046 int nodeid)
e498be7d 3047{
8456a648 3048 struct page *page;
ce8eb6c4 3049 struct kmem_cache_node *n;
b28a02de 3050 void *obj;
b28a02de
PE
3051 int x;
3052
7c3fbbdd 3053 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3054 n = get_node(cachep, nodeid);
ce8eb6c4 3055 BUG_ON(!n);
b28a02de 3056
a737b3e2 3057retry:
ca3b9b91 3058 check_irq_off();
ce8eb6c4 3059 spin_lock(&n->list_lock);
7aa0d227
GT
3060 page = get_first_slab(n);
3061 if (!page)
3062 goto must_grow;
b28a02de 3063
b28a02de 3064 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3065
3066 STATS_INC_NODEALLOCS(cachep);
3067 STATS_INC_ACTIVE(cachep);
3068 STATS_SET_HIGH(cachep);
3069
8456a648 3070 BUG_ON(page->active == cachep->num);
b28a02de 3071
260b61dd 3072 obj = slab_get_obj(cachep, page);
ce8eb6c4 3073 n->free_objects--;
b28a02de 3074 /* move slabp to correct slabp list: */
8456a648 3075 list_del(&page->lru);
b28a02de 3076
8456a648
JK
3077 if (page->active == cachep->num)
3078 list_add(&page->lru, &n->slabs_full);
a737b3e2 3079 else
8456a648 3080 list_add(&page->lru, &n->slabs_partial);
e498be7d 3081
ce8eb6c4 3082 spin_unlock(&n->list_lock);
b28a02de 3083 goto done;
e498be7d 3084
a737b3e2 3085must_grow:
ce8eb6c4 3086 spin_unlock(&n->list_lock);
4167e9b2 3087 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3088 if (x)
3089 goto retry;
1da177e4 3090
8c8cc2c1 3091 return fallback_alloc(cachep, flags);
e498be7d 3092
a737b3e2 3093done:
b28a02de 3094 return obj;
e498be7d 3095}
8c8cc2c1 3096
8c8cc2c1 3097static __always_inline void *
48356303 3098slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3099 unsigned long caller)
8c8cc2c1
PE
3100{
3101 unsigned long save_flags;
3102 void *ptr;
7d6e6d09 3103 int slab_node = numa_mem_id();
8c8cc2c1 3104
dcce284a 3105 flags &= gfp_allowed_mask;
011eceaf
JDB
3106 cachep = slab_pre_alloc_hook(cachep, flags);
3107 if (unlikely(!cachep))
824ebef1
AM
3108 return NULL;
3109
8c8cc2c1
PE
3110 cache_alloc_debugcheck_before(cachep, flags);
3111 local_irq_save(save_flags);
3112
eacbbae3 3113 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3114 nodeid = slab_node;
8c8cc2c1 3115
18bf8541 3116 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3117 /* Node not bootstrapped yet */
3118 ptr = fallback_alloc(cachep, flags);
3119 goto out;
3120 }
3121
7d6e6d09 3122 if (nodeid == slab_node) {
8c8cc2c1
PE
3123 /*
3124 * Use the locally cached objects if possible.
3125 * However ____cache_alloc does not allow fallback
3126 * to other nodes. It may fail while we still have
3127 * objects on other nodes available.
3128 */
3129 ptr = ____cache_alloc(cachep, flags);
3130 if (ptr)
3131 goto out;
3132 }
3133 /* ___cache_alloc_node can fall back to other nodes */
3134 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3135 out:
3136 local_irq_restore(save_flags);
3137 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3138
d5e3ed66
JDB
3139 if (unlikely(flags & __GFP_ZERO) && ptr)
3140 memset(ptr, 0, cachep->object_size);
d07dbea4 3141
d5e3ed66 3142 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3143 return ptr;
3144}
3145
3146static __always_inline void *
3147__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3148{
3149 void *objp;
3150
2ad654bc 3151 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3152 objp = alternate_node_alloc(cache, flags);
3153 if (objp)
3154 goto out;
3155 }
3156 objp = ____cache_alloc(cache, flags);
3157
3158 /*
3159 * We may just have run out of memory on the local node.
3160 * ____cache_alloc_node() knows how to locate memory on other nodes
3161 */
7d6e6d09
LS
3162 if (!objp)
3163 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3164
3165 out:
3166 return objp;
3167}
3168#else
3169
3170static __always_inline void *
3171__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3172{
3173 return ____cache_alloc(cachep, flags);
3174}
3175
3176#endif /* CONFIG_NUMA */
3177
3178static __always_inline void *
48356303 3179slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3180{
3181 unsigned long save_flags;
3182 void *objp;
3183
dcce284a 3184 flags &= gfp_allowed_mask;
011eceaf
JDB
3185 cachep = slab_pre_alloc_hook(cachep, flags);
3186 if (unlikely(!cachep))
824ebef1
AM
3187 return NULL;
3188
8c8cc2c1
PE
3189 cache_alloc_debugcheck_before(cachep, flags);
3190 local_irq_save(save_flags);
3191 objp = __do_cache_alloc(cachep, flags);
3192 local_irq_restore(save_flags);
3193 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3194 prefetchw(objp);
3195
d5e3ed66
JDB
3196 if (unlikely(flags & __GFP_ZERO) && objp)
3197 memset(objp, 0, cachep->object_size);
d07dbea4 3198
d5e3ed66 3199 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3200 return objp;
3201}
e498be7d
CL
3202
3203/*
5f0985bb 3204 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3205 * @list: List of detached free slabs should be freed by caller
e498be7d 3206 */
97654dfa
JK
3207static void free_block(struct kmem_cache *cachep, void **objpp,
3208 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3209{
3210 int i;
25c063fb 3211 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3212
3213 for (i = 0; i < nr_objects; i++) {
072bb0aa 3214 void *objp;
8456a648 3215 struct page *page;
1da177e4 3216
072bb0aa
MG
3217 clear_obj_pfmemalloc(&objpp[i]);
3218 objp = objpp[i];
3219
8456a648 3220 page = virt_to_head_page(objp);
8456a648 3221 list_del(&page->lru);
ff69416e 3222 check_spinlock_acquired_node(cachep, node);
260b61dd 3223 slab_put_obj(cachep, page, objp);
1da177e4 3224 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3225 n->free_objects++;
1da177e4
LT
3226
3227 /* fixup slab chains */
8456a648 3228 if (page->active == 0) {
ce8eb6c4
CL
3229 if (n->free_objects > n->free_limit) {
3230 n->free_objects -= cachep->num;
97654dfa 3231 list_add_tail(&page->lru, list);
1da177e4 3232 } else {
8456a648 3233 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3234 }
3235 } else {
3236 /* Unconditionally move a slab to the end of the
3237 * partial list on free - maximum time for the
3238 * other objects to be freed, too.
3239 */
8456a648 3240 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3241 }
3242 }
3243}
3244
343e0d7a 3245static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3246{
3247 int batchcount;
ce8eb6c4 3248 struct kmem_cache_node *n;
7d6e6d09 3249 int node = numa_mem_id();
97654dfa 3250 LIST_HEAD(list);
1da177e4
LT
3251
3252 batchcount = ac->batchcount;
260b61dd 3253
1da177e4 3254 check_irq_off();
18bf8541 3255 n = get_node(cachep, node);
ce8eb6c4
CL
3256 spin_lock(&n->list_lock);
3257 if (n->shared) {
3258 struct array_cache *shared_array = n->shared;
b28a02de 3259 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3260 if (max) {
3261 if (batchcount > max)
3262 batchcount = max;
e498be7d 3263 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3264 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3265 shared_array->avail += batchcount;
3266 goto free_done;
3267 }
3268 }
3269
97654dfa 3270 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3271free_done:
1da177e4
LT
3272#if STATS
3273 {
3274 int i = 0;
73c0219d 3275 struct page *page;
1da177e4 3276
73c0219d 3277 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3278 BUG_ON(page->active);
1da177e4
LT
3279
3280 i++;
1da177e4
LT
3281 }
3282 STATS_SET_FREEABLE(cachep, i);
3283 }
3284#endif
ce8eb6c4 3285 spin_unlock(&n->list_lock);
97654dfa 3286 slabs_destroy(cachep, &list);
1da177e4 3287 ac->avail -= batchcount;
a737b3e2 3288 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3289}
3290
3291/*
a737b3e2
AM
3292 * Release an obj back to its cache. If the obj has a constructed state, it must
3293 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3294 */
a947eb95 3295static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3296 unsigned long caller)
1da177e4 3297{
9a2dba4b 3298 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3299
3300 check_irq_off();
d5cff635 3301 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3302 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3303
8c138bc0 3304 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3305
1807a1aa
SS
3306 /*
3307 * Skip calling cache_free_alien() when the platform is not numa.
3308 * This will avoid cache misses that happen while accessing slabp (which
3309 * is per page memory reference) to get nodeid. Instead use a global
3310 * variable to skip the call, which is mostly likely to be present in
3311 * the cache.
3312 */
b6e68bc1 3313 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3314 return;
3315
3d880194 3316 if (ac->avail < ac->limit) {
1da177e4 3317 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3318 } else {
3319 STATS_INC_FREEMISS(cachep);
3320 cache_flusharray(cachep, ac);
1da177e4 3321 }
42c8c99c 3322
072bb0aa 3323 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3324}
3325
3326/**
3327 * kmem_cache_alloc - Allocate an object
3328 * @cachep: The cache to allocate from.
3329 * @flags: See kmalloc().
3330 *
3331 * Allocate an object from this cache. The flags are only relevant
3332 * if the cache has no available objects.
3333 */
343e0d7a 3334void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3335{
48356303 3336 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3337
ca2b84cb 3338 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3339 cachep->object_size, cachep->size, flags);
36555751
EGM
3340
3341 return ret;
1da177e4
LT
3342}
3343EXPORT_SYMBOL(kmem_cache_alloc);
3344
7b0501dd
JDB
3345static __always_inline void
3346cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3347 size_t size, void **p, unsigned long caller)
3348{
3349 size_t i;
3350
3351 for (i = 0; i < size; i++)
3352 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3353}
3354
865762a8 3355int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3356 void **p)
484748f0 3357{
2a777eac
JDB
3358 size_t i;
3359
3360 s = slab_pre_alloc_hook(s, flags);
3361 if (!s)
3362 return 0;
3363
3364 cache_alloc_debugcheck_before(s, flags);
3365
3366 local_irq_disable();
3367 for (i = 0; i < size; i++) {
3368 void *objp = __do_cache_alloc(s, flags);
3369
2a777eac
JDB
3370 if (unlikely(!objp))
3371 goto error;
3372 p[i] = objp;
3373 }
3374 local_irq_enable();
3375
7b0501dd
JDB
3376 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3377
2a777eac
JDB
3378 /* Clear memory outside IRQ disabled section */
3379 if (unlikely(flags & __GFP_ZERO))
3380 for (i = 0; i < size; i++)
3381 memset(p[i], 0, s->object_size);
3382
3383 slab_post_alloc_hook(s, flags, size, p);
3384 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3385 return size;
3386error:
3387 local_irq_enable();
7b0501dd 3388 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3389 slab_post_alloc_hook(s, flags, i, p);
3390 __kmem_cache_free_bulk(s, i, p);
3391 return 0;
484748f0
CL
3392}
3393EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3394
0f24f128 3395#ifdef CONFIG_TRACING
85beb586 3396void *
4052147c 3397kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3398{
85beb586
SR
3399 void *ret;
3400
48356303 3401 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3402
3403 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3404 size, cachep->size, flags);
85beb586 3405 return ret;
36555751 3406}
85beb586 3407EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3408#endif
3409
1da177e4 3410#ifdef CONFIG_NUMA
d0d04b78
ZL
3411/**
3412 * kmem_cache_alloc_node - Allocate an object on the specified node
3413 * @cachep: The cache to allocate from.
3414 * @flags: See kmalloc().
3415 * @nodeid: node number of the target node.
3416 *
3417 * Identical to kmem_cache_alloc but it will allocate memory on the given
3418 * node, which can improve the performance for cpu bound structures.
3419 *
3420 * Fallback to other node is possible if __GFP_THISNODE is not set.
3421 */
8b98c169
CH
3422void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3423{
48356303 3424 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3425
ca2b84cb 3426 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3427 cachep->object_size, cachep->size,
ca2b84cb 3428 flags, nodeid);
36555751
EGM
3429
3430 return ret;
8b98c169 3431}
1da177e4
LT
3432EXPORT_SYMBOL(kmem_cache_alloc_node);
3433
0f24f128 3434#ifdef CONFIG_TRACING
4052147c 3435void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3436 gfp_t flags,
4052147c
EG
3437 int nodeid,
3438 size_t size)
36555751 3439{
85beb586
SR
3440 void *ret;
3441
592f4145 3442 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3443
85beb586 3444 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3445 size, cachep->size,
85beb586
SR
3446 flags, nodeid);
3447 return ret;
36555751 3448}
85beb586 3449EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3450#endif
3451
8b98c169 3452static __always_inline void *
7c0cb9c6 3453__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3454{
343e0d7a 3455 struct kmem_cache *cachep;
97e2bde4 3456
2c59dd65 3457 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3458 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3459 return cachep;
4052147c 3460 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3461}
8b98c169 3462
8b98c169
CH
3463void *__kmalloc_node(size_t size, gfp_t flags, int node)
3464{
7c0cb9c6 3465 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3466}
dbe5e69d 3467EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3468
3469void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3470 int node, unsigned long caller)
8b98c169 3471{
7c0cb9c6 3472 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3473}
3474EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3475#endif /* CONFIG_NUMA */
1da177e4
LT
3476
3477/**
800590f5 3478 * __do_kmalloc - allocate memory
1da177e4 3479 * @size: how many bytes of memory are required.
800590f5 3480 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3481 * @caller: function caller for debug tracking of the caller
1da177e4 3482 */
7fd6b141 3483static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3484 unsigned long caller)
1da177e4 3485{
343e0d7a 3486 struct kmem_cache *cachep;
36555751 3487 void *ret;
1da177e4 3488
2c59dd65 3489 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3490 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3491 return cachep;
48356303 3492 ret = slab_alloc(cachep, flags, caller);
36555751 3493
7c0cb9c6 3494 trace_kmalloc(caller, ret,
3b0efdfa 3495 size, cachep->size, flags);
36555751
EGM
3496
3497 return ret;
7fd6b141
PE
3498}
3499
7fd6b141
PE
3500void *__kmalloc(size_t size, gfp_t flags)
3501{
7c0cb9c6 3502 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3503}
3504EXPORT_SYMBOL(__kmalloc);
3505
ce71e27c 3506void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3507{
7c0cb9c6 3508 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3509}
3510EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3511
1da177e4
LT
3512/**
3513 * kmem_cache_free - Deallocate an object
3514 * @cachep: The cache the allocation was from.
3515 * @objp: The previously allocated object.
3516 *
3517 * Free an object which was previously allocated from this
3518 * cache.
3519 */
343e0d7a 3520void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3521{
3522 unsigned long flags;
b9ce5ef4
GC
3523 cachep = cache_from_obj(cachep, objp);
3524 if (!cachep)
3525 return;
1da177e4
LT
3526
3527 local_irq_save(flags);
d97d476b 3528 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3529 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3530 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3531 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3532 local_irq_restore(flags);
36555751 3533
ca2b84cb 3534 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3535}
3536EXPORT_SYMBOL(kmem_cache_free);
3537
e6cdb58d
JDB
3538void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3539{
3540 struct kmem_cache *s;
3541 size_t i;
3542
3543 local_irq_disable();
3544 for (i = 0; i < size; i++) {
3545 void *objp = p[i];
3546
ca257195
JDB
3547 if (!orig_s) /* called via kfree_bulk */
3548 s = virt_to_cache(objp);
3549 else
3550 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3551
3552 debug_check_no_locks_freed(objp, s->object_size);
3553 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3554 debug_check_no_obj_freed(objp, s->object_size);
3555
3556 __cache_free(s, objp, _RET_IP_);
3557 }
3558 local_irq_enable();
3559
3560 /* FIXME: add tracing */
3561}
3562EXPORT_SYMBOL(kmem_cache_free_bulk);
3563
1da177e4
LT
3564/**
3565 * kfree - free previously allocated memory
3566 * @objp: pointer returned by kmalloc.
3567 *
80e93eff
PE
3568 * If @objp is NULL, no operation is performed.
3569 *
1da177e4
LT
3570 * Don't free memory not originally allocated by kmalloc()
3571 * or you will run into trouble.
3572 */
3573void kfree(const void *objp)
3574{
343e0d7a 3575 struct kmem_cache *c;
1da177e4
LT
3576 unsigned long flags;
3577
2121db74
PE
3578 trace_kfree(_RET_IP_, objp);
3579
6cb8f913 3580 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3581 return;
3582 local_irq_save(flags);
3583 kfree_debugcheck(objp);
6ed5eb22 3584 c = virt_to_cache(objp);
8c138bc0
CL
3585 debug_check_no_locks_freed(objp, c->object_size);
3586
3587 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3588 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3589 local_irq_restore(flags);
3590}
3591EXPORT_SYMBOL(kfree);
3592
e498be7d 3593/*
ce8eb6c4 3594 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3595 */
5f0985bb 3596static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3597{
3598 int node;
ce8eb6c4 3599 struct kmem_cache_node *n;
cafeb02e 3600 struct array_cache *new_shared;
c8522a3a 3601 struct alien_cache **new_alien = NULL;
e498be7d 3602
9c09a95c 3603 for_each_online_node(node) {
cafeb02e 3604
b455def2
L
3605 if (use_alien_caches) {
3606 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3607 if (!new_alien)
3608 goto fail;
3609 }
cafeb02e 3610
63109846
ED
3611 new_shared = NULL;
3612 if (cachep->shared) {
3613 new_shared = alloc_arraycache(node,
0718dc2a 3614 cachep->shared*cachep->batchcount,
83b519e8 3615 0xbaadf00d, gfp);
63109846
ED
3616 if (!new_shared) {
3617 free_alien_cache(new_alien);
3618 goto fail;
3619 }
0718dc2a 3620 }
cafeb02e 3621
18bf8541 3622 n = get_node(cachep, node);
ce8eb6c4
CL
3623 if (n) {
3624 struct array_cache *shared = n->shared;
97654dfa 3625 LIST_HEAD(list);
cafeb02e 3626
ce8eb6c4 3627 spin_lock_irq(&n->list_lock);
e498be7d 3628
cafeb02e 3629 if (shared)
0718dc2a 3630 free_block(cachep, shared->entry,
97654dfa 3631 shared->avail, node, &list);
e498be7d 3632
ce8eb6c4
CL
3633 n->shared = new_shared;
3634 if (!n->alien) {
3635 n->alien = new_alien;
e498be7d
CL
3636 new_alien = NULL;
3637 }
ce8eb6c4 3638 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3639 cachep->batchcount + cachep->num;
ce8eb6c4 3640 spin_unlock_irq(&n->list_lock);
97654dfa 3641 slabs_destroy(cachep, &list);
cafeb02e 3642 kfree(shared);
e498be7d
CL
3643 free_alien_cache(new_alien);
3644 continue;
3645 }
ce8eb6c4
CL
3646 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3647 if (!n) {
0718dc2a
CL
3648 free_alien_cache(new_alien);
3649 kfree(new_shared);
e498be7d 3650 goto fail;
0718dc2a 3651 }
e498be7d 3652
ce8eb6c4 3653 kmem_cache_node_init(n);
5f0985bb
JZ
3654 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3655 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3656 n->shared = new_shared;
3657 n->alien = new_alien;
3658 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3659 cachep->batchcount + cachep->num;
ce8eb6c4 3660 cachep->node[node] = n;
e498be7d 3661 }
cafeb02e 3662 return 0;
0718dc2a 3663
a737b3e2 3664fail:
3b0efdfa 3665 if (!cachep->list.next) {
0718dc2a
CL
3666 /* Cache is not active yet. Roll back what we did */
3667 node--;
3668 while (node >= 0) {
18bf8541
CL
3669 n = get_node(cachep, node);
3670 if (n) {
ce8eb6c4
CL
3671 kfree(n->shared);
3672 free_alien_cache(n->alien);
3673 kfree(n);
6a67368c 3674 cachep->node[node] = NULL;
0718dc2a
CL
3675 }
3676 node--;
3677 }
3678 }
cafeb02e 3679 return -ENOMEM;
e498be7d
CL
3680}
3681
18004c5d 3682/* Always called with the slab_mutex held */
943a451a 3683static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3684 int batchcount, int shared, gfp_t gfp)
1da177e4 3685{
bf0dea23
JK
3686 struct array_cache __percpu *cpu_cache, *prev;
3687 int cpu;
1da177e4 3688
bf0dea23
JK
3689 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3690 if (!cpu_cache)
d2e7b7d0
SS
3691 return -ENOMEM;
3692
bf0dea23
JK
3693 prev = cachep->cpu_cache;
3694 cachep->cpu_cache = cpu_cache;
3695 kick_all_cpus_sync();
e498be7d 3696
1da177e4 3697 check_irq_on();
1da177e4
LT
3698 cachep->batchcount = batchcount;
3699 cachep->limit = limit;
e498be7d 3700 cachep->shared = shared;
1da177e4 3701
bf0dea23
JK
3702 if (!prev)
3703 goto alloc_node;
3704
3705 for_each_online_cpu(cpu) {
97654dfa 3706 LIST_HEAD(list);
18bf8541
CL
3707 int node;
3708 struct kmem_cache_node *n;
bf0dea23 3709 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3710
bf0dea23 3711 node = cpu_to_mem(cpu);
18bf8541
CL
3712 n = get_node(cachep, node);
3713 spin_lock_irq(&n->list_lock);
bf0dea23 3714 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3715 spin_unlock_irq(&n->list_lock);
97654dfa 3716 slabs_destroy(cachep, &list);
1da177e4 3717 }
bf0dea23
JK
3718 free_percpu(prev);
3719
3720alloc_node:
5f0985bb 3721 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3722}
3723
943a451a
GC
3724static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3725 int batchcount, int shared, gfp_t gfp)
3726{
3727 int ret;
426589f5 3728 struct kmem_cache *c;
943a451a
GC
3729
3730 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3731
3732 if (slab_state < FULL)
3733 return ret;
3734
3735 if ((ret < 0) || !is_root_cache(cachep))
3736 return ret;
3737
426589f5
VD
3738 lockdep_assert_held(&slab_mutex);
3739 for_each_memcg_cache(c, cachep) {
3740 /* return value determined by the root cache only */
3741 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3742 }
3743
3744 return ret;
3745}
3746
18004c5d 3747/* Called with slab_mutex held always */
83b519e8 3748static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3749{
3750 int err;
943a451a
GC
3751 int limit = 0;
3752 int shared = 0;
3753 int batchcount = 0;
3754
3755 if (!is_root_cache(cachep)) {
3756 struct kmem_cache *root = memcg_root_cache(cachep);
3757 limit = root->limit;
3758 shared = root->shared;
3759 batchcount = root->batchcount;
3760 }
1da177e4 3761
943a451a
GC
3762 if (limit && shared && batchcount)
3763 goto skip_setup;
a737b3e2
AM
3764 /*
3765 * The head array serves three purposes:
1da177e4
LT
3766 * - create a LIFO ordering, i.e. return objects that are cache-warm
3767 * - reduce the number of spinlock operations.
a737b3e2 3768 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3769 * bufctl chains: array operations are cheaper.
3770 * The numbers are guessed, we should auto-tune as described by
3771 * Bonwick.
3772 */
3b0efdfa 3773 if (cachep->size > 131072)
1da177e4 3774 limit = 1;
3b0efdfa 3775 else if (cachep->size > PAGE_SIZE)
1da177e4 3776 limit = 8;
3b0efdfa 3777 else if (cachep->size > 1024)
1da177e4 3778 limit = 24;
3b0efdfa 3779 else if (cachep->size > 256)
1da177e4
LT
3780 limit = 54;
3781 else
3782 limit = 120;
3783
a737b3e2
AM
3784 /*
3785 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3786 * allocation behaviour: Most allocs on one cpu, most free operations
3787 * on another cpu. For these cases, an efficient object passing between
3788 * cpus is necessary. This is provided by a shared array. The array
3789 * replaces Bonwick's magazine layer.
3790 * On uniprocessor, it's functionally equivalent (but less efficient)
3791 * to a larger limit. Thus disabled by default.
3792 */
3793 shared = 0;
3b0efdfa 3794 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3795 shared = 8;
1da177e4
LT
3796
3797#if DEBUG
a737b3e2
AM
3798 /*
3799 * With debugging enabled, large batchcount lead to excessively long
3800 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3801 */
3802 if (limit > 32)
3803 limit = 32;
3804#endif
943a451a
GC
3805 batchcount = (limit + 1) / 2;
3806skip_setup:
3807 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3808 if (err)
3809 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3810 cachep->name, -err);
2ed3a4ef 3811 return err;
1da177e4
LT
3812}
3813
1b55253a 3814/*
ce8eb6c4
CL
3815 * Drain an array if it contains any elements taking the node lock only if
3816 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3817 * if drain_array() is used on the shared array.
1b55253a 3818 */
ce8eb6c4 3819static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3820 struct array_cache *ac, int force, int node)
1da177e4 3821{
97654dfa 3822 LIST_HEAD(list);
1da177e4
LT
3823 int tofree;
3824
1b55253a
CL
3825 if (!ac || !ac->avail)
3826 return;
1da177e4
LT
3827 if (ac->touched && !force) {
3828 ac->touched = 0;
b18e7e65 3829 } else {
ce8eb6c4 3830 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3831 if (ac->avail) {
3832 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3833 if (tofree > ac->avail)
3834 tofree = (ac->avail + 1) / 2;
97654dfa 3835 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3836 ac->avail -= tofree;
3837 memmove(ac->entry, &(ac->entry[tofree]),
3838 sizeof(void *) * ac->avail);
3839 }
ce8eb6c4 3840 spin_unlock_irq(&n->list_lock);
97654dfa 3841 slabs_destroy(cachep, &list);
1da177e4
LT
3842 }
3843}
3844
3845/**
3846 * cache_reap - Reclaim memory from caches.
05fb6bf0 3847 * @w: work descriptor
1da177e4
LT
3848 *
3849 * Called from workqueue/eventd every few seconds.
3850 * Purpose:
3851 * - clear the per-cpu caches for this CPU.
3852 * - return freeable pages to the main free memory pool.
3853 *
a737b3e2
AM
3854 * If we cannot acquire the cache chain mutex then just give up - we'll try
3855 * again on the next iteration.
1da177e4 3856 */
7c5cae36 3857static void cache_reap(struct work_struct *w)
1da177e4 3858{
7a7c381d 3859 struct kmem_cache *searchp;
ce8eb6c4 3860 struct kmem_cache_node *n;
7d6e6d09 3861 int node = numa_mem_id();
bf6aede7 3862 struct delayed_work *work = to_delayed_work(w);
1da177e4 3863
18004c5d 3864 if (!mutex_trylock(&slab_mutex))
1da177e4 3865 /* Give up. Setup the next iteration. */
7c5cae36 3866 goto out;
1da177e4 3867
18004c5d 3868 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3869 check_irq_on();
3870
35386e3b 3871 /*
ce8eb6c4 3872 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3873 * have established with reasonable certainty that
3874 * we can do some work if the lock was obtained.
3875 */
18bf8541 3876 n = get_node(searchp, node);
35386e3b 3877
ce8eb6c4 3878 reap_alien(searchp, n);
1da177e4 3879
ce8eb6c4 3880 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3881
35386e3b
CL
3882 /*
3883 * These are racy checks but it does not matter
3884 * if we skip one check or scan twice.
3885 */
ce8eb6c4 3886 if (time_after(n->next_reap, jiffies))
35386e3b 3887 goto next;
1da177e4 3888
5f0985bb 3889 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3890
ce8eb6c4 3891 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3892
ce8eb6c4
CL
3893 if (n->free_touched)
3894 n->free_touched = 0;
ed11d9eb
CL
3895 else {
3896 int freed;
1da177e4 3897
ce8eb6c4 3898 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3899 5 * searchp->num - 1) / (5 * searchp->num));
3900 STATS_ADD_REAPED(searchp, freed);
3901 }
35386e3b 3902next:
1da177e4
LT
3903 cond_resched();
3904 }
3905 check_irq_on();
18004c5d 3906 mutex_unlock(&slab_mutex);
8fce4d8e 3907 next_reap_node();
7c5cae36 3908out:
a737b3e2 3909 /* Set up the next iteration */
5f0985bb 3910 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3911}
3912
158a9624 3913#ifdef CONFIG_SLABINFO
0d7561c6 3914void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3915{
8456a648 3916 struct page *page;
b28a02de
PE
3917 unsigned long active_objs;
3918 unsigned long num_objs;
3919 unsigned long active_slabs = 0;
3920 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3921 const char *name;
1da177e4 3922 char *error = NULL;
e498be7d 3923 int node;
ce8eb6c4 3924 struct kmem_cache_node *n;
1da177e4 3925
1da177e4
LT
3926 active_objs = 0;
3927 num_slabs = 0;
18bf8541 3928 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3929
ca3b9b91 3930 check_irq_on();
ce8eb6c4 3931 spin_lock_irq(&n->list_lock);
e498be7d 3932
8456a648
JK
3933 list_for_each_entry(page, &n->slabs_full, lru) {
3934 if (page->active != cachep->num && !error)
e498be7d
CL
3935 error = "slabs_full accounting error";
3936 active_objs += cachep->num;
3937 active_slabs++;
3938 }
8456a648
JK
3939 list_for_each_entry(page, &n->slabs_partial, lru) {
3940 if (page->active == cachep->num && !error)
106a74e1 3941 error = "slabs_partial accounting error";
8456a648 3942 if (!page->active && !error)
106a74e1 3943 error = "slabs_partial accounting error";
8456a648 3944 active_objs += page->active;
e498be7d
CL
3945 active_slabs++;
3946 }
8456a648
JK
3947 list_for_each_entry(page, &n->slabs_free, lru) {
3948 if (page->active && !error)
106a74e1 3949 error = "slabs_free accounting error";
e498be7d
CL
3950 num_slabs++;
3951 }
ce8eb6c4
CL
3952 free_objects += n->free_objects;
3953 if (n->shared)
3954 shared_avail += n->shared->avail;
e498be7d 3955
ce8eb6c4 3956 spin_unlock_irq(&n->list_lock);
1da177e4 3957 }
b28a02de
PE
3958 num_slabs += active_slabs;
3959 num_objs = num_slabs * cachep->num;
e498be7d 3960 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3961 error = "free_objects accounting error";
3962
b28a02de 3963 name = cachep->name;
1da177e4
LT
3964 if (error)
3965 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3966
0d7561c6
GC
3967 sinfo->active_objs = active_objs;
3968 sinfo->num_objs = num_objs;
3969 sinfo->active_slabs = active_slabs;
3970 sinfo->num_slabs = num_slabs;
3971 sinfo->shared_avail = shared_avail;
3972 sinfo->limit = cachep->limit;
3973 sinfo->batchcount = cachep->batchcount;
3974 sinfo->shared = cachep->shared;
3975 sinfo->objects_per_slab = cachep->num;
3976 sinfo->cache_order = cachep->gfporder;
3977}
3978
3979void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3980{
1da177e4 3981#if STATS
ce8eb6c4 3982 { /* node stats */
1da177e4
LT
3983 unsigned long high = cachep->high_mark;
3984 unsigned long allocs = cachep->num_allocations;
3985 unsigned long grown = cachep->grown;
3986 unsigned long reaped = cachep->reaped;
3987 unsigned long errors = cachep->errors;
3988 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3989 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3990 unsigned long node_frees = cachep->node_frees;
fb7faf33 3991 unsigned long overflows = cachep->node_overflow;
1da177e4 3992
e92dd4fd
JP
3993 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3994 "%4lu %4lu %4lu %4lu %4lu",
3995 allocs, high, grown,
3996 reaped, errors, max_freeable, node_allocs,
3997 node_frees, overflows);
1da177e4
LT
3998 }
3999 /* cpu stats */
4000 {
4001 unsigned long allochit = atomic_read(&cachep->allochit);
4002 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4003 unsigned long freehit = atomic_read(&cachep->freehit);
4004 unsigned long freemiss = atomic_read(&cachep->freemiss);
4005
4006 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4007 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4008 }
4009#endif
1da177e4
LT
4010}
4011
1da177e4
LT
4012#define MAX_SLABINFO_WRITE 128
4013/**
4014 * slabinfo_write - Tuning for the slab allocator
4015 * @file: unused
4016 * @buffer: user buffer
4017 * @count: data length
4018 * @ppos: unused
4019 */
b7454ad3 4020ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4021 size_t count, loff_t *ppos)
1da177e4 4022{
b28a02de 4023 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4024 int limit, batchcount, shared, res;
7a7c381d 4025 struct kmem_cache *cachep;
b28a02de 4026
1da177e4
LT
4027 if (count > MAX_SLABINFO_WRITE)
4028 return -EINVAL;
4029 if (copy_from_user(&kbuf, buffer, count))
4030 return -EFAULT;
b28a02de 4031 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4032
4033 tmp = strchr(kbuf, ' ');
4034 if (!tmp)
4035 return -EINVAL;
4036 *tmp = '\0';
4037 tmp++;
4038 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4039 return -EINVAL;
4040
4041 /* Find the cache in the chain of caches. */
18004c5d 4042 mutex_lock(&slab_mutex);
1da177e4 4043 res = -EINVAL;
18004c5d 4044 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4045 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4046 if (limit < 1 || batchcount < 1 ||
4047 batchcount > limit || shared < 0) {
e498be7d 4048 res = 0;
1da177e4 4049 } else {
e498be7d 4050 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4051 batchcount, shared,
4052 GFP_KERNEL);
1da177e4
LT
4053 }
4054 break;
4055 }
4056 }
18004c5d 4057 mutex_unlock(&slab_mutex);
1da177e4
LT
4058 if (res >= 0)
4059 res = count;
4060 return res;
4061}
871751e2
AV
4062
4063#ifdef CONFIG_DEBUG_SLAB_LEAK
4064
871751e2
AV
4065static inline int add_caller(unsigned long *n, unsigned long v)
4066{
4067 unsigned long *p;
4068 int l;
4069 if (!v)
4070 return 1;
4071 l = n[1];
4072 p = n + 2;
4073 while (l) {
4074 int i = l/2;
4075 unsigned long *q = p + 2 * i;
4076 if (*q == v) {
4077 q[1]++;
4078 return 1;
4079 }
4080 if (*q > v) {
4081 l = i;
4082 } else {
4083 p = q + 2;
4084 l -= i + 1;
4085 }
4086 }
4087 if (++n[1] == n[0])
4088 return 0;
4089 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4090 p[0] = v;
4091 p[1] = 1;
4092 return 1;
4093}
4094
8456a648
JK
4095static void handle_slab(unsigned long *n, struct kmem_cache *c,
4096 struct page *page)
871751e2
AV
4097{
4098 void *p;
d31676df
JK
4099 int i, j;
4100 unsigned long v;
b1cb0982 4101
871751e2
AV
4102 if (n[0] == n[1])
4103 return;
8456a648 4104 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4105 bool active = true;
4106
4107 for (j = page->active; j < c->num; j++) {
4108 if (get_free_obj(page, j) == i) {
4109 active = false;
4110 break;
4111 }
4112 }
4113
4114 if (!active)
871751e2 4115 continue;
b1cb0982 4116
d31676df
JK
4117 /*
4118 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4119 * mapping is established when actual object allocation and
4120 * we could mistakenly access the unmapped object in the cpu
4121 * cache.
4122 */
4123 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4124 continue;
4125
4126 if (!add_caller(n, v))
871751e2
AV
4127 return;
4128 }
4129}
4130
4131static void show_symbol(struct seq_file *m, unsigned long address)
4132{
4133#ifdef CONFIG_KALLSYMS
871751e2 4134 unsigned long offset, size;
9281acea 4135 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4136
a5c43dae 4137 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4138 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4139 if (modname[0])
871751e2
AV
4140 seq_printf(m, " [%s]", modname);
4141 return;
4142 }
4143#endif
4144 seq_printf(m, "%p", (void *)address);
4145}
4146
4147static int leaks_show(struct seq_file *m, void *p)
4148{
0672aa7c 4149 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4150 struct page *page;
ce8eb6c4 4151 struct kmem_cache_node *n;
871751e2 4152 const char *name;
db845067 4153 unsigned long *x = m->private;
871751e2
AV
4154 int node;
4155 int i;
4156
4157 if (!(cachep->flags & SLAB_STORE_USER))
4158 return 0;
4159 if (!(cachep->flags & SLAB_RED_ZONE))
4160 return 0;
4161
d31676df
JK
4162 /*
4163 * Set store_user_clean and start to grab stored user information
4164 * for all objects on this cache. If some alloc/free requests comes
4165 * during the processing, information would be wrong so restart
4166 * whole processing.
4167 */
4168 do {
4169 set_store_user_clean(cachep);
4170 drain_cpu_caches(cachep);
4171
4172 x[1] = 0;
871751e2 4173
d31676df 4174 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4175
d31676df
JK
4176 check_irq_on();
4177 spin_lock_irq(&n->list_lock);
871751e2 4178
d31676df
JK
4179 list_for_each_entry(page, &n->slabs_full, lru)
4180 handle_slab(x, cachep, page);
4181 list_for_each_entry(page, &n->slabs_partial, lru)
4182 handle_slab(x, cachep, page);
4183 spin_unlock_irq(&n->list_lock);
4184 }
4185 } while (!is_store_user_clean(cachep));
871751e2 4186
871751e2 4187 name = cachep->name;
db845067 4188 if (x[0] == x[1]) {
871751e2 4189 /* Increase the buffer size */
18004c5d 4190 mutex_unlock(&slab_mutex);
db845067 4191 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4192 if (!m->private) {
4193 /* Too bad, we are really out */
db845067 4194 m->private = x;
18004c5d 4195 mutex_lock(&slab_mutex);
871751e2
AV
4196 return -ENOMEM;
4197 }
db845067
CL
4198 *(unsigned long *)m->private = x[0] * 2;
4199 kfree(x);
18004c5d 4200 mutex_lock(&slab_mutex);
871751e2
AV
4201 /* Now make sure this entry will be retried */
4202 m->count = m->size;
4203 return 0;
4204 }
db845067
CL
4205 for (i = 0; i < x[1]; i++) {
4206 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4207 show_symbol(m, x[2*i+2]);
871751e2
AV
4208 seq_putc(m, '\n');
4209 }
d2e7b7d0 4210
871751e2
AV
4211 return 0;
4212}
4213
a0ec95a8 4214static const struct seq_operations slabstats_op = {
1df3b26f 4215 .start = slab_start,
276a2439
WL
4216 .next = slab_next,
4217 .stop = slab_stop,
871751e2
AV
4218 .show = leaks_show,
4219};
a0ec95a8
AD
4220
4221static int slabstats_open(struct inode *inode, struct file *file)
4222{
b208ce32
RJ
4223 unsigned long *n;
4224
4225 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4226 if (!n)
4227 return -ENOMEM;
4228
4229 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4230
4231 return 0;
a0ec95a8
AD
4232}
4233
4234static const struct file_operations proc_slabstats_operations = {
4235 .open = slabstats_open,
4236 .read = seq_read,
4237 .llseek = seq_lseek,
4238 .release = seq_release_private,
4239};
4240#endif
4241
4242static int __init slab_proc_init(void)
4243{
4244#ifdef CONFIG_DEBUG_SLAB_LEAK
4245 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4246#endif
a0ec95a8
AD
4247 return 0;
4248}
4249module_init(slab_proc_init);
1da177e4
LT
4250#endif
4251
00e145b6
MS
4252/**
4253 * ksize - get the actual amount of memory allocated for a given object
4254 * @objp: Pointer to the object
4255 *
4256 * kmalloc may internally round up allocations and return more memory
4257 * than requested. ksize() can be used to determine the actual amount of
4258 * memory allocated. The caller may use this additional memory, even though
4259 * a smaller amount of memory was initially specified with the kmalloc call.
4260 * The caller must guarantee that objp points to a valid object previously
4261 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4262 * must not be freed during the duration of the call.
4263 */
fd76bab2 4264size_t ksize(const void *objp)
1da177e4 4265{
ef8b4520
CL
4266 BUG_ON(!objp);
4267 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4268 return 0;
1da177e4 4269
8c138bc0 4270 return virt_to_cache(objp)->object_size;
1da177e4 4271}
b1aabecd 4272EXPORT_SYMBOL(ksize);