]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/slab.c
mm/slab: fix the theoretical race by holding proper lock
[mirror_ubuntu-hirsute-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
e0a42726
IM
216static int slab_early_init = 1;
217
ce8eb6c4 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 219
ce8eb6c4 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
221{
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
2e1217cf 227 parent->colour_next = 0;
e498be7d
CL
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231}
232
a737b3e2
AM
233#define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
18bf8541 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
237 } while (0)
238
a737b3e2
AM
239#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
e498be7d
CL
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
1da177e4 245
b03a017b 246#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 247#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 248#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
249#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251#define BATCHREFILL_LIMIT 16
a737b3e2
AM
252/*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
1da177e4 255 *
dc6f3f27 256 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
257 * which could lock up otherwise freeable slabs.
258 */
5f0985bb
JZ
259#define REAPTIMEOUT_AC (2*HZ)
260#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
261
262#if STATS
263#define STATS_INC_ACTIVE(x) ((x)->num_active++)
264#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 267#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
268#define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
1da177e4
LT
273#define STATS_INC_ERR(x) ((x)->errors++)
274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 275#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 276#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
277#define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286#else
287#define STATS_INC_ACTIVE(x) do { } while (0)
288#define STATS_DEC_ACTIVE(x) do { } while (0)
289#define STATS_INC_ALLOCED(x) do { } while (0)
290#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 291#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
292#define STATS_SET_HIGH(x) do { } while (0)
293#define STATS_INC_ERR(x) do { } while (0)
294#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 295#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 296#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
298#define STATS_INC_ALLOCHIT(x) do { } while (0)
299#define STATS_INC_ALLOCMISS(x) do { } while (0)
300#define STATS_INC_FREEHIT(x) do { } while (0)
301#define STATS_INC_FREEMISS(x) do { } while (0)
302#endif
303
304#if DEBUG
1da177e4 305
a737b3e2
AM
306/*
307 * memory layout of objects:
1da177e4 308 * 0 : objp
3dafccf2 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
3dafccf2 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 313 * redzone word.
3dafccf2 314 * cachep->obj_offset: The real object.
3b0efdfa
CL
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 317 * [BYTES_PER_WORD long]
1da177e4 318 */
343e0d7a 319static int obj_offset(struct kmem_cache *cachep)
1da177e4 320{
3dafccf2 321 return cachep->obj_offset;
1da177e4
LT
322}
323
b46b8f19 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
325{
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 335 return (unsigned long long *)(objp + cachep->size -
b46b8f19 336 sizeof(unsigned long long) -
87a927c7 337 REDZONE_ALIGN);
3b0efdfa 338 return (unsigned long long *) (objp + cachep->size -
b46b8f19 339 sizeof(unsigned long long));
1da177e4
LT
340}
341
343e0d7a 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
343{
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
346}
347
348#else
349
3dafccf2 350#define obj_offset(x) 0
b46b8f19
DW
351#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
353#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355#endif
356
03787301
JK
357#ifdef CONFIG_DEBUG_SLAB_LEAK
358
d31676df 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 360{
d31676df
JK
361 return atomic_read(&cachep->store_user_clean) == 1;
362}
03787301 363
d31676df
JK
364static inline void set_store_user_clean(struct kmem_cache *cachep)
365{
366 atomic_set(&cachep->store_user_clean, 1);
367}
03787301 368
d31676df
JK
369static inline void set_store_user_dirty(struct kmem_cache *cachep)
370{
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
373}
374
375#else
d31676df 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
377
378#endif
379
1da177e4 380/*
3df1cccd
DR
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
1da177e4 383 */
543585cc
DR
384#define SLAB_MAX_ORDER_HI 1
385#define SLAB_MAX_ORDER_LO 0
386static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 387static bool slab_max_order_set __initdata;
1da177e4 388
6ed5eb22
PE
389static inline struct kmem_cache *virt_to_cache(const void *obj)
390{
b49af68f 391 struct page *page = virt_to_head_page(obj);
35026088 392 return page->slab_cache;
6ed5eb22
PE
393}
394
8456a648 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
396 unsigned int idx)
397{
8456a648 398 return page->s_mem + cache->size * idx;
8fea4e96
PE
399}
400
6a2d7a95 401/*
3b0efdfa
CL
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
6a2d7a95
ED
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 408 const struct page *page, void *obj)
8fea4e96 409{
8456a648 410 u32 offset = (obj - page->s_mem);
6a2d7a95 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
412}
413
6fb92430 414#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
edcad250
JK
424#define BAD_ALIEN_MAGIC 0x01020304ul
425
1871e52c 426static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 427
343e0d7a 428static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 429{
bf0dea23 430 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
431}
432
a737b3e2
AM
433/*
434 * Calculate the number of objects and left-over bytes for a given buffer size.
435 */
70f75067
JK
436static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over)
fbaccacf 438{
70f75067 439 unsigned int num;
fbaccacf 440 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 441
fbaccacf
SR
442 /*
443 * The slab management structure can be either off the slab or
444 * on it. For the latter case, the memory allocated for a
445 * slab is used for:
446 *
fbaccacf 447 * - @buffer_size bytes for each object
2e6b3602
JK
448 * - One freelist_idx_t for each object
449 *
450 * We don't need to consider alignment of freelist because
451 * freelist will be at the end of slab page. The objects will be
452 * at the correct alignment.
fbaccacf
SR
453 *
454 * If the slab management structure is off the slab, then the
455 * alignment will already be calculated into the size. Because
456 * the slabs are all pages aligned, the objects will be at the
457 * correct alignment when allocated.
458 */
b03a017b 459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 460 num = slab_size / buffer_size;
2e6b3602 461 *left_over = slab_size % buffer_size;
fbaccacf 462 } else {
70f75067 463 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
464 *left_over = slab_size %
465 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 466 }
70f75067
JK
467
468 return num;
1da177e4
LT
469}
470
f28510d3 471#if DEBUG
d40cee24 472#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 473
a737b3e2
AM
474static void __slab_error(const char *function, struct kmem_cache *cachep,
475 char *msg)
1da177e4 476{
1170532b 477 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 478 function, cachep->name, msg);
1da177e4 479 dump_stack();
373d4d09 480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 481}
f28510d3 482#endif
1da177e4 483
3395ee05
PM
484/*
485 * By default on NUMA we use alien caches to stage the freeing of
486 * objects allocated from other nodes. This causes massive memory
487 * inefficiencies when using fake NUMA setup to split memory into a
488 * large number of small nodes, so it can be disabled on the command
489 * line
490 */
491
492static int use_alien_caches __read_mostly = 1;
493static int __init noaliencache_setup(char *s)
494{
495 use_alien_caches = 0;
496 return 1;
497}
498__setup("noaliencache", noaliencache_setup);
499
3df1cccd
DR
500static int __init slab_max_order_setup(char *str)
501{
502 get_option(&str, &slab_max_order);
503 slab_max_order = slab_max_order < 0 ? 0 :
504 min(slab_max_order, MAX_ORDER - 1);
505 slab_max_order_set = true;
506
507 return 1;
508}
509__setup("slab_max_order=", slab_max_order_setup);
510
8fce4d8e
CL
511#ifdef CONFIG_NUMA
512/*
513 * Special reaping functions for NUMA systems called from cache_reap().
514 * These take care of doing round robin flushing of alien caches (containing
515 * objects freed on different nodes from which they were allocated) and the
516 * flushing of remote pcps by calling drain_node_pages.
517 */
1871e52c 518static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
519
520static void init_reap_node(int cpu)
521{
522 int node;
523
7d6e6d09 524 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 525 if (node == MAX_NUMNODES)
442295c9 526 node = first_node(node_online_map);
8fce4d8e 527
1871e52c 528 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
529}
530
531static void next_reap_node(void)
532{
909ea964 533 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 534
8fce4d8e
CL
535 node = next_node(node, node_online_map);
536 if (unlikely(node >= MAX_NUMNODES))
537 node = first_node(node_online_map);
909ea964 538 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
539}
540
541#else
542#define init_reap_node(cpu) do { } while (0)
543#define next_reap_node(void) do { } while (0)
544#endif
545
1da177e4
LT
546/*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
0db0628d 553static void start_cpu_timer(int cpu)
1da177e4 554{
1871e52c 555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
556
557 /*
558 * When this gets called from do_initcalls via cpucache_init(),
559 * init_workqueues() has already run, so keventd will be setup
560 * at that time.
561 */
52bad64d 562 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 563 init_reap_node(cpu);
203b42f7 564 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
565 schedule_delayed_work_on(cpu, reap_work,
566 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
567 }
568}
569
1fe00d50 570static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 571{
d5cff635
CM
572 /*
573 * The array_cache structures contain pointers to free object.
25985edc 574 * However, when such objects are allocated or transferred to another
d5cff635
CM
575 * cache the pointers are not cleared and they could be counted as
576 * valid references during a kmemleak scan. Therefore, kmemleak must
577 * not scan such objects.
578 */
1fe00d50
JK
579 kmemleak_no_scan(ac);
580 if (ac) {
581 ac->avail = 0;
582 ac->limit = limit;
583 ac->batchcount = batch;
584 ac->touched = 0;
1da177e4 585 }
1fe00d50
JK
586}
587
588static struct array_cache *alloc_arraycache(int node, int entries,
589 int batchcount, gfp_t gfp)
590{
5e804789 591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
592 struct array_cache *ac = NULL;
593
594 ac = kmalloc_node(memsize, gfp, node);
595 init_arraycache(ac, entries, batchcount);
596 return ac;
1da177e4
LT
597}
598
f68f8ddd
JK
599static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 struct page *page, void *objp)
072bb0aa 601{
f68f8ddd
JK
602 struct kmem_cache_node *n;
603 int page_node;
604 LIST_HEAD(list);
072bb0aa 605
f68f8ddd
JK
606 page_node = page_to_nid(page);
607 n = get_node(cachep, page_node);
381760ea 608
f68f8ddd
JK
609 spin_lock(&n->list_lock);
610 free_block(cachep, &objp, 1, page_node, &list);
611 spin_unlock(&n->list_lock);
381760ea 612
f68f8ddd 613 slabs_destroy(cachep, &list);
072bb0aa
MG
614}
615
3ded175a
CL
616/*
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
619 *
620 * Return the number of entries transferred.
621 */
622static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
624{
625 /* Figure out how many entries to transfer */
732eacc0 626 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
627
628 if (!nr)
629 return 0;
630
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 sizeof(void *) *nr);
633
634 from->avail -= nr;
635 to->avail += nr;
3ded175a
CL
636 return nr;
637}
638
765c4507
CL
639#ifndef CONFIG_NUMA
640
641#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 642#define reap_alien(cachep, n) do { } while (0)
765c4507 643
c8522a3a
JK
644static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
765c4507 646{
edcad250 647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
648}
649
c8522a3a 650static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
651{
652}
653
654static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655{
656 return 0;
657}
658
659static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 gfp_t flags)
661{
662 return NULL;
663}
664
8b98c169 665static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
666 gfp_t flags, int nodeid)
667{
668 return NULL;
669}
670
4167e9b2
DR
671static inline gfp_t gfp_exact_node(gfp_t flags)
672{
444eb2a4 673 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
674}
675
765c4507
CL
676#else /* CONFIG_NUMA */
677
8b98c169 678static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 679static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 680
c8522a3a
JK
681static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
683{
5e804789 684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
685 struct alien_cache *alc = NULL;
686
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
49dfc304 689 spin_lock_init(&alc->lock);
c8522a3a
JK
690 return alc;
691}
692
693static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 694{
c8522a3a 695 struct alien_cache **alc_ptr;
5e804789 696 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
697 int i;
698
699 if (limit > 1)
700 limit = 12;
c8522a3a
JK
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
704
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
e498be7d
CL
714 }
715 }
c8522a3a 716 return alc_ptr;
e498be7d
CL
717}
718
c8522a3a 719static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
720{
721 int i;
722
c8522a3a 723 if (!alc_ptr)
e498be7d 724 return;
e498be7d 725 for_each_node(i)
c8522a3a
JK
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
e498be7d
CL
728}
729
343e0d7a 730static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
731 struct array_cache *ac, int node,
732 struct list_head *list)
e498be7d 733{
18bf8541 734 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
735
736 if (ac->avail) {
ce8eb6c4 737 spin_lock(&n->list_lock);
e00946fe
CL
738 /*
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
742 */
ce8eb6c4
CL
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
e00946fe 745
833b706c 746 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 747 ac->avail = 0;
ce8eb6c4 748 spin_unlock(&n->list_lock);
e498be7d
CL
749 }
750}
751
8fce4d8e
CL
752/*
753 * Called from cache_reap() to regularly drain alien caches round robin.
754 */
ce8eb6c4 755static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 756{
909ea964 757 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 758
ce8eb6c4 759 if (n->alien) {
c8522a3a
JK
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
762
763 if (alc) {
764 ac = &alc->ac;
49dfc304 765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
766 LIST_HEAD(list);
767
768 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 769 spin_unlock_irq(&alc->lock);
833b706c 770 slabs_destroy(cachep, &list);
c8522a3a 771 }
8fce4d8e
CL
772 }
773 }
774}
775
a737b3e2 776static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 777 struct alien_cache **alien)
e498be7d 778{
b28a02de 779 int i = 0;
c8522a3a 780 struct alien_cache *alc;
e498be7d
CL
781 struct array_cache *ac;
782 unsigned long flags;
783
784 for_each_online_node(i) {
c8522a3a
JK
785 alc = alien[i];
786 if (alc) {
833b706c
JK
787 LIST_HEAD(list);
788
c8522a3a 789 ac = &alc->ac;
49dfc304 790 spin_lock_irqsave(&alc->lock, flags);
833b706c 791 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 792 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 793 slabs_destroy(cachep, &list);
e498be7d
CL
794 }
795 }
796}
729bd0b7 797
25c4f304
JK
798static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
729bd0b7 800{
ce8eb6c4 801 struct kmem_cache_node *n;
c8522a3a
JK
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
97654dfa 804 LIST_HEAD(list);
1ca4cb24 805
18bf8541 806 n = get_node(cachep, node);
729bd0b7 807 STATS_INC_NODEFREES(cachep);
25c4f304
JK
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
c8522a3a 810 ac = &alien->ac;
49dfc304 811 spin_lock(&alien->lock);
c8522a3a 812 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 813 STATS_INC_ACOVERFLOW(cachep);
25c4f304 814 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 815 }
f68f8ddd 816 ac->entry[ac->avail++] = objp;
49dfc304 817 spin_unlock(&alien->lock);
833b706c 818 slabs_destroy(cachep, &list);
729bd0b7 819 } else {
25c4f304 820 n = get_node(cachep, page_node);
18bf8541 821 spin_lock(&n->list_lock);
25c4f304 822 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 823 spin_unlock(&n->list_lock);
97654dfa 824 slabs_destroy(cachep, &list);
729bd0b7
PE
825 }
826 return 1;
827}
25c4f304
JK
828
829static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830{
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
833 /*
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
836 */
837 if (likely(node == page_node))
838 return 0;
839
840 return __cache_free_alien(cachep, objp, node, page_node);
841}
4167e9b2
DR
842
843/*
444eb2a4
MG
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
4167e9b2
DR
846 */
847static inline gfp_t gfp_exact_node(gfp_t flags)
848{
444eb2a4 849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 850}
e498be7d
CL
851#endif
852
8f9f8d9e 853/*
6a67368c 854 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 856 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 857 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
858 * already in use.
859 *
18004c5d 860 * Must hold slab_mutex.
8f9f8d9e 861 */
6a67368c 862static int init_cache_node_node(int node)
8f9f8d9e
DR
863{
864 struct kmem_cache *cachep;
ce8eb6c4 865 struct kmem_cache_node *n;
5e804789 866 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 867
18004c5d 868 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 869 /*
5f0985bb 870 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
873 */
18bf8541
CL
874 n = get_node(cachep, node);
875 if (!n) {
ce8eb6c4
CL
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
877 if (!n)
8f9f8d9e 878 return -ENOMEM;
ce8eb6c4 879 kmem_cache_node_init(n);
5f0985bb
JZ
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
882
883 /*
5f0985bb
JZ
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
886 * protection here.
887 */
ce8eb6c4 888 cachep->node[node] = n;
8f9f8d9e
DR
889 }
890
18bf8541
CL
891 spin_lock_irq(&n->list_lock);
892 n->free_limit =
8f9f8d9e
DR
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
18bf8541 895 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
896 }
897 return 0;
898}
899
0fa8103b
WL
900static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
902{
903 return (n->free_objects + cachep->num - 1) / cachep->num;
904}
905
0db0628d 906static void cpuup_canceled(long cpu)
fbf1e473
AM
907{
908 struct kmem_cache *cachep;
ce8eb6c4 909 struct kmem_cache_node *n = NULL;
7d6e6d09 910 int node = cpu_to_mem(cpu);
a70f7302 911 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 912
18004c5d 913 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
914 struct array_cache *nc;
915 struct array_cache *shared;
c8522a3a 916 struct alien_cache **alien;
97654dfa 917 LIST_HEAD(list);
fbf1e473 918
18bf8541 919 n = get_node(cachep, node);
ce8eb6c4 920 if (!n)
bf0dea23 921 continue;
fbf1e473 922
ce8eb6c4 923 spin_lock_irq(&n->list_lock);
fbf1e473 924
ce8eb6c4
CL
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
bf0dea23
JK
927
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 if (nc) {
97654dfa 931 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
932 nc->avail = 0;
933 }
fbf1e473 934
58463c1f 935 if (!cpumask_empty(mask)) {
ce8eb6c4 936 spin_unlock_irq(&n->list_lock);
bf0dea23 937 goto free_slab;
fbf1e473
AM
938 }
939
ce8eb6c4 940 shared = n->shared;
fbf1e473
AM
941 if (shared) {
942 free_block(cachep, shared->entry,
97654dfa 943 shared->avail, node, &list);
ce8eb6c4 944 n->shared = NULL;
fbf1e473
AM
945 }
946
ce8eb6c4
CL
947 alien = n->alien;
948 n->alien = NULL;
fbf1e473 949
ce8eb6c4 950 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
951
952 kfree(shared);
953 if (alien) {
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
956 }
bf0dea23
JK
957
958free_slab:
97654dfa 959 slabs_destroy(cachep, &list);
fbf1e473
AM
960 }
961 /*
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
965 */
18004c5d 966 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 967 n = get_node(cachep, node);
ce8eb6c4 968 if (!n)
fbf1e473 969 continue;
0fa8103b 970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
971 }
972}
973
0db0628d 974static int cpuup_prepare(long cpu)
1da177e4 975{
343e0d7a 976 struct kmem_cache *cachep;
ce8eb6c4 977 struct kmem_cache_node *n = NULL;
7d6e6d09 978 int node = cpu_to_mem(cpu);
8f9f8d9e 979 int err;
1da177e4 980
fbf1e473
AM
981 /*
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 985 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 986 */
6a67368c 987 err = init_cache_node_node(node);
8f9f8d9e
DR
988 if (err < 0)
989 goto bad;
fbf1e473
AM
990
991 /*
992 * Now we can go ahead with allocating the shared arrays and
993 * array caches
994 */
18004c5d 995 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 996 struct array_cache *shared = NULL;
c8522a3a 997 struct alien_cache **alien = NULL;
fbf1e473 998
fbf1e473
AM
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
83b519e8 1002 0xbaadf00d, GFP_KERNEL);
bf0dea23 1003 if (!shared)
1da177e4 1004 goto bad;
fbf1e473
AM
1005 }
1006 if (use_alien_caches) {
83b519e8 1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1008 if (!alien) {
1009 kfree(shared);
fbf1e473 1010 goto bad;
12d00f6a 1011 }
fbf1e473 1012 }
18bf8541 1013 n = get_node(cachep, node);
ce8eb6c4 1014 BUG_ON(!n);
fbf1e473 1015
ce8eb6c4
CL
1016 spin_lock_irq(&n->list_lock);
1017 if (!n->shared) {
fbf1e473
AM
1018 /*
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1021 */
ce8eb6c4 1022 n->shared = shared;
fbf1e473
AM
1023 shared = NULL;
1024 }
4484ebf1 1025#ifdef CONFIG_NUMA
ce8eb6c4
CL
1026 if (!n->alien) {
1027 n->alien = alien;
fbf1e473 1028 alien = NULL;
1da177e4 1029 }
fbf1e473 1030#endif
ce8eb6c4 1031 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1032 kfree(shared);
1033 free_alien_cache(alien);
1034 }
ce79ddc8 1035
fbf1e473
AM
1036 return 0;
1037bad:
12d00f6a 1038 cpuup_canceled(cpu);
fbf1e473
AM
1039 return -ENOMEM;
1040}
1041
0db0628d 1042static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1043 unsigned long action, void *hcpu)
1044{
1045 long cpu = (long)hcpu;
1046 int err = 0;
1047
1048 switch (action) {
fbf1e473
AM
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
18004c5d 1051 mutex_lock(&slab_mutex);
fbf1e473 1052 err = cpuup_prepare(cpu);
18004c5d 1053 mutex_unlock(&slab_mutex);
1da177e4
LT
1054 break;
1055 case CPU_ONLINE:
8bb78442 1056 case CPU_ONLINE_FROZEN:
1da177e4
LT
1057 start_cpu_timer(cpu);
1058 break;
1059#ifdef CONFIG_HOTPLUG_CPU
5830c590 1060 case CPU_DOWN_PREPARE:
8bb78442 1061 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1062 /*
18004c5d 1063 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1067 */
afe2c511 1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1069 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1071 break;
1072 case CPU_DOWN_FAILED:
8bb78442 1073 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1074 start_cpu_timer(cpu);
1075 break;
1da177e4 1076 case CPU_DEAD:
8bb78442 1077 case CPU_DEAD_FROZEN:
4484ebf1
RT
1078 /*
1079 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1080 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1081 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1082 * memory from the node of the cpu going down. The node
4484ebf1
RT
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1085 */
183ff22b 1086 /* fall through */
8f5be20b 1087#endif
1da177e4 1088 case CPU_UP_CANCELED:
8bb78442 1089 case CPU_UP_CANCELED_FROZEN:
18004c5d 1090 mutex_lock(&slab_mutex);
fbf1e473 1091 cpuup_canceled(cpu);
18004c5d 1092 mutex_unlock(&slab_mutex);
1da177e4 1093 break;
1da177e4 1094 }
eac40680 1095 return notifier_from_errno(err);
1da177e4
LT
1096}
1097
0db0628d 1098static struct notifier_block cpucache_notifier = {
74b85f37
CS
1099 &cpuup_callback, NULL, 0
1100};
1da177e4 1101
8f9f8d9e
DR
1102#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103/*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
18004c5d 1108 * Must hold slab_mutex.
8f9f8d9e 1109 */
6a67368c 1110static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1111{
1112 struct kmem_cache *cachep;
1113 int ret = 0;
1114
18004c5d 1115 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1116 struct kmem_cache_node *n;
8f9f8d9e 1117
18bf8541 1118 n = get_node(cachep, node);
ce8eb6c4 1119 if (!n)
8f9f8d9e
DR
1120 continue;
1121
0fa8103b 1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1123
ce8eb6c4
CL
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1126 ret = -EBUSY;
1127 break;
1128 }
1129 }
1130 return ret;
1131}
1132
1133static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1135{
1136 struct memory_notify *mnb = arg;
1137 int ret = 0;
1138 int nid;
1139
1140 nid = mnb->status_change_nid;
1141 if (nid < 0)
1142 goto out;
1143
1144 switch (action) {
1145 case MEM_GOING_ONLINE:
18004c5d 1146 mutex_lock(&slab_mutex);
6a67368c 1147 ret = init_cache_node_node(nid);
18004c5d 1148 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1149 break;
1150 case MEM_GOING_OFFLINE:
18004c5d 1151 mutex_lock(&slab_mutex);
6a67368c 1152 ret = drain_cache_node_node(nid);
18004c5d 1153 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1154 break;
1155 case MEM_ONLINE:
1156 case MEM_OFFLINE:
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1159 break;
1160 }
1161out:
5fda1bd5 1162 return notifier_from_errno(ret);
8f9f8d9e
DR
1163}
1164#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
e498be7d 1166/*
ce8eb6c4 1167 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1168 */
6744f087 1169static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1170 int nodeid)
e498be7d 1171{
6744f087 1172 struct kmem_cache_node *ptr;
e498be7d 1173
6744f087 1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1175 BUG_ON(!ptr);
1176
6744f087 1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1178 /*
1179 * Do not assume that spinlocks can be initialized via memcpy:
1180 */
1181 spin_lock_init(&ptr->list_lock);
1182
e498be7d 1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1184 cachep->node[nodeid] = ptr;
e498be7d
CL
1185}
1186
556a169d 1187/*
ce8eb6c4
CL
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
556a169d 1190 */
ce8eb6c4 1191static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1192{
1193 int node;
1194
1195 for_each_online_node(node) {
ce8eb6c4 1196 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1197 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1198 REAPTIMEOUT_NODE +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1200 }
1201}
1202
a737b3e2
AM
1203/*
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1da177e4
LT
1206 */
1207void __init kmem_cache_init(void)
1208{
e498be7d
CL
1209 int i;
1210
68126702
JK
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
9b030cb8
CL
1213 kmem_cache = &kmem_cache_boot;
1214
b6e68bc1 1215 if (num_possible_nodes() == 1)
62918a03
SS
1216 use_alien_caches = 0;
1217
3c583465 1218 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1220
1da177e4
LT
1221 /*
1222 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1da177e4 1225 */
3df1cccd 1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1227 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1228
1da177e4
LT
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
9b030cb8
CL
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
e498be7d 1234 * Initially an __init data area is used for the head array and the
ce8eb6c4 1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1236 * array at the end of the bootstrap.
1da177e4 1237 * 2) Create the first kmalloc cache.
343e0d7a 1238 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1241 * head arrays.
9b030cb8 1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1243 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1247 */
1248
9b030cb8 1249 /* 1) create the kmem_cache */
1da177e4 1250
8da3430d 1251 /*
b56efcf0 1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1253 */
2f9baa9f 1254 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1255 offsetof(struct kmem_cache, node) +
6744f087 1256 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1259 slab_state = PARTIAL;
1da177e4 1260
a737b3e2 1261 /*
bf0dea23
JK
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
e498be7d 1264 */
bf0dea23 1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1267 slab_state = PARTIAL_NODE;
34cc6990 1268 setup_kmalloc_cache_index_table();
e498be7d 1269
e0a42726
IM
1270 slab_early_init = 0;
1271
ce8eb6c4 1272 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1273 {
1ca4cb24
PE
1274 int nid;
1275
9c09a95c 1276 for_each_online_node(nid) {
ce8eb6c4 1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1278
bf0dea23 1279 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1281 }
1282 }
1da177e4 1283
f97d5f63 1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1285}
1286
1287void __init kmem_cache_init_late(void)
1288{
1289 struct kmem_cache *cachep;
1290
97d06609 1291 slab_state = UP;
52cef189 1292
8429db5c 1293 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1297 BUG();
18004c5d 1298 mutex_unlock(&slab_mutex);
056c6241 1299
97d06609
CL
1300 /* Done! */
1301 slab_state = FULL;
1302
a737b3e2
AM
1303 /*
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1da177e4
LT
1306 */
1307 register_cpu_notifier(&cpucache_notifier);
1da177e4 1308
8f9f8d9e
DR
1309#ifdef CONFIG_NUMA
1310 /*
1311 * Register a memory hotplug callback that initializes and frees
6a67368c 1312 * node.
8f9f8d9e
DR
1313 */
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315#endif
1316
a737b3e2
AM
1317 /*
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1da177e4
LT
1320 */
1321}
1322
1323static int __init cpucache_init(void)
1324{
1325 int cpu;
1326
a737b3e2
AM
1327 /*
1328 * Register the timers that return unneeded pages to the page allocator
1da177e4 1329 */
e498be7d 1330 for_each_online_cpu(cpu)
a737b3e2 1331 start_cpu_timer(cpu);
a164f896
GC
1332
1333 /* Done! */
97d06609 1334 slab_state = FULL;
1da177e4
LT
1335 return 0;
1336}
1da177e4
LT
1337__initcall(cpucache_init);
1338
8bdec192
RA
1339static noinline void
1340slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341{
9a02d699 1342#if DEBUG
ce8eb6c4 1343 struct kmem_cache_node *n;
8456a648 1344 struct page *page;
8bdec192
RA
1345 unsigned long flags;
1346 int node;
9a02d699
DR
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1349
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 return;
8bdec192 1352
5b3810e5
VB
1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 nodeid, gfpflags, &gfpflags);
1355 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1356 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1357
18bf8541 1358 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 unsigned long active_slabs = 0, num_slabs = 0;
1361
ce8eb6c4 1362 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1363 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1364 active_objs += cachep->num;
1365 active_slabs++;
1366 }
8456a648
JK
1367 list_for_each_entry(page, &n->slabs_partial, lru) {
1368 active_objs += page->active;
8bdec192
RA
1369 active_slabs++;
1370 }
8456a648 1371 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1372 num_slabs++;
1373
ce8eb6c4
CL
1374 free_objects += n->free_objects;
1375 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1376
1377 num_slabs += active_slabs;
1378 num_objs = num_slabs * cachep->num;
5b3810e5 1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1380 node, active_slabs, num_slabs, active_objs, num_objs,
1381 free_objects);
1382 }
9a02d699 1383#endif
8bdec192
RA
1384}
1385
1da177e4 1386/*
8a7d9b43
WSH
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1da177e4
LT
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
0c3aa83e
JK
1394static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 int nodeid)
1da177e4
LT
1396{
1397 struct page *page;
e1b6aa6f 1398 int nr_pages;
765c4507 1399
a618e89f 1400 flags |= cachep->allocflags;
e12ba74d
MG
1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1403
96db800f 1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1405 if (!page) {
9a02d699 1406 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1407 return NULL;
8bdec192 1408 }
1da177e4 1409
f3ccb2c4
VD
1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 __free_pages(page, cachep->gfporder);
1412 return NULL;
1413 }
1414
e1b6aa6f 1415 nr_pages = (1 << cachep->gfporder);
1da177e4 1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1417 add_zone_page_state(page_zone(page),
1418 NR_SLAB_RECLAIMABLE, nr_pages);
1419 else
1420 add_zone_page_state(page_zone(page),
1421 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1422
a57a4988 1423 __SetPageSlab(page);
f68f8ddd
JK
1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1426 SetPageSlabPfmemalloc(page);
072bb0aa 1427
b1eeab67
VN
1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431 if (cachep->ctor)
1432 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 else
1434 kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 }
c175eea4 1436
0c3aa83e 1437 return page;
1da177e4
LT
1438}
1439
1440/*
1441 * Interface to system's page release.
1442 */
0c3aa83e 1443static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1444{
27ee57c9
VD
1445 int order = cachep->gfporder;
1446 unsigned long nr_freed = (1 << order);
1da177e4 1447
27ee57c9 1448 kmemcheck_free_shadow(page, order);
c175eea4 1449
972d1a7b
CL
1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 sub_zone_page_state(page_zone(page),
1452 NR_SLAB_RECLAIMABLE, nr_freed);
1453 else
1454 sub_zone_page_state(page_zone(page),
1455 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1456
a57a4988 1457 BUG_ON(!PageSlab(page));
73293c2f 1458 __ClearPageSlabPfmemalloc(page);
a57a4988 1459 __ClearPageSlab(page);
8456a648
JK
1460 page_mapcount_reset(page);
1461 page->mapping = NULL;
1f458cbf 1462
1da177e4
LT
1463 if (current->reclaim_state)
1464 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1465 memcg_uncharge_slab(page, order, cachep);
1466 __free_pages(page, order);
1da177e4
LT
1467}
1468
1469static void kmem_rcu_free(struct rcu_head *head)
1470{
68126702
JK
1471 struct kmem_cache *cachep;
1472 struct page *page;
1da177e4 1473
68126702
JK
1474 page = container_of(head, struct page, rcu_head);
1475 cachep = page->slab_cache;
1476
1477 kmem_freepages(cachep, page);
1da177e4
LT
1478}
1479
1480#if DEBUG
40b44137
JK
1481static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482{
1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 (cachep->size % PAGE_SIZE) == 0)
1485 return true;
1486
1487 return false;
1488}
1da177e4
LT
1489
1490#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1491static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1492 unsigned long caller)
1da177e4 1493{
8c138bc0 1494 int size = cachep->object_size;
1da177e4 1495
3dafccf2 1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1497
b28a02de 1498 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1499 return;
1500
b28a02de
PE
1501 *addr++ = 0x12345678;
1502 *addr++ = caller;
1503 *addr++ = smp_processor_id();
1504 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1505 {
1506 unsigned long *sptr = &caller;
1507 unsigned long svalue;
1508
1509 while (!kstack_end(sptr)) {
1510 svalue = *sptr++;
1511 if (kernel_text_address(svalue)) {
b28a02de 1512 *addr++ = svalue;
1da177e4
LT
1513 size -= sizeof(unsigned long);
1514 if (size <= sizeof(unsigned long))
1515 break;
1516 }
1517 }
1518
1519 }
b28a02de 1520 *addr++ = 0x87654321;
1da177e4 1521}
40b44137
JK
1522
1523static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 int map, unsigned long caller)
1525{
1526 if (!is_debug_pagealloc_cache(cachep))
1527 return;
1528
1529 if (caller)
1530 store_stackinfo(cachep, objp, caller);
1531
1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533}
1534
1535#else
1536static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 int map, unsigned long caller) {}
1538
1da177e4
LT
1539#endif
1540
343e0d7a 1541static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1542{
8c138bc0 1543 int size = cachep->object_size;
3dafccf2 1544 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1545
1546 memset(addr, val, size);
b28a02de 1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1548}
1549
1550static void dump_line(char *data, int offset, int limit)
1551{
1552 int i;
aa83aa40
DJ
1553 unsigned char error = 0;
1554 int bad_count = 0;
1555
1170532b 1556 pr_err("%03x: ", offset);
aa83aa40
DJ
1557 for (i = 0; i < limit; i++) {
1558 if (data[offset + i] != POISON_FREE) {
1559 error = data[offset + i];
1560 bad_count++;
1561 }
aa83aa40 1562 }
fdde6abb
SAS
1563 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 &data[offset], limit, 1);
aa83aa40
DJ
1565
1566 if (bad_count == 1) {
1567 error ^= POISON_FREE;
1568 if (!(error & (error - 1))) {
1170532b 1569 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1570#ifdef CONFIG_X86
1170532b 1571 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1572#else
1170532b 1573 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1574#endif
1575 }
1576 }
1da177e4
LT
1577}
1578#endif
1579
1580#if DEBUG
1581
343e0d7a 1582static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1583{
1584 int i, size;
1585 char *realobj;
1586
1587 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1588 pr_err("Redzone: 0x%llx/0x%llx\n",
1589 *dbg_redzone1(cachep, objp),
1590 *dbg_redzone2(cachep, objp));
1da177e4
LT
1591 }
1592
1593 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1594 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1595 *dbg_userword(cachep, objp),
1596 *dbg_userword(cachep, objp));
1da177e4 1597 }
3dafccf2 1598 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1599 size = cachep->object_size;
b28a02de 1600 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1601 int limit;
1602 limit = 16;
b28a02de
PE
1603 if (i + limit > size)
1604 limit = size - i;
1da177e4
LT
1605 dump_line(realobj, i, limit);
1606 }
1607}
1608
343e0d7a 1609static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1610{
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
40b44137
JK
1615 if (is_debug_pagealloc_cache(cachep))
1616 return;
1617
3dafccf2 1618 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1619 size = cachep->object_size;
1da177e4 1620
b28a02de 1621 for (i = 0; i < size; i++) {
1da177e4 1622 char exp = POISON_FREE;
b28a02de 1623 if (i == size - 1)
1da177e4
LT
1624 exp = POISON_END;
1625 if (realobj[i] != exp) {
1626 int limit;
1627 /* Mismatch ! */
1628 /* Print header */
1629 if (lines == 0) {
1170532b
JP
1630 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631 print_tainted(), cachep->name,
1632 realobj, size);
1da177e4
LT
1633 print_objinfo(cachep, objp, 0);
1634 }
1635 /* Hexdump the affected line */
b28a02de 1636 i = (i / 16) * 16;
1da177e4 1637 limit = 16;
b28a02de
PE
1638 if (i + limit > size)
1639 limit = size - i;
1da177e4
LT
1640 dump_line(realobj, i, limit);
1641 i += 16;
1642 lines++;
1643 /* Limit to 5 lines */
1644 if (lines > 5)
1645 break;
1646 }
1647 }
1648 if (lines != 0) {
1649 /* Print some data about the neighboring objects, if they
1650 * exist:
1651 */
8456a648 1652 struct page *page = virt_to_head_page(objp);
8fea4e96 1653 unsigned int objnr;
1da177e4 1654
8456a648 1655 objnr = obj_to_index(cachep, page, objp);
1da177e4 1656 if (objnr) {
8456a648 1657 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1658 realobj = (char *)objp + obj_offset(cachep);
1170532b 1659 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1660 print_objinfo(cachep, objp, 2);
1661 }
b28a02de 1662 if (objnr + 1 < cachep->num) {
8456a648 1663 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1664 realobj = (char *)objp + obj_offset(cachep);
1170532b 1665 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1666 print_objinfo(cachep, objp, 2);
1667 }
1668 }
1669}
1670#endif
1671
12dd36fa 1672#if DEBUG
8456a648
JK
1673static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674 struct page *page)
1da177e4 1675{
1da177e4 1676 int i;
b03a017b
JK
1677
1678 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679 poison_obj(cachep, page->freelist - obj_offset(cachep),
1680 POISON_FREE);
1681 }
1682
1da177e4 1683 for (i = 0; i < cachep->num; i++) {
8456a648 1684 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1685
1686 if (cachep->flags & SLAB_POISON) {
1da177e4 1687 check_poison_obj(cachep, objp);
40b44137 1688 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1689 }
1690 if (cachep->flags & SLAB_RED_ZONE) {
1691 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1692 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1693 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1694 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1695 }
1da177e4 1696 }
12dd36fa 1697}
1da177e4 1698#else
8456a648
JK
1699static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700 struct page *page)
12dd36fa 1701{
12dd36fa 1702}
1da177e4
LT
1703#endif
1704
911851e6
RD
1705/**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
cb8ee1a3 1708 * @page: page pointer being destroyed
911851e6 1709 *
8a7d9b43
WSH
1710 * Destroy all the objs in a slab page, and release the mem back to the system.
1711 * Before calling the slab page must have been unlinked from the cache. The
1712 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1713 */
8456a648 1714static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1715{
7e007355 1716 void *freelist;
12dd36fa 1717
8456a648
JK
1718 freelist = page->freelist;
1719 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1720 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1721 call_rcu(&page->rcu_head, kmem_rcu_free);
1722 else
0c3aa83e 1723 kmem_freepages(cachep, page);
68126702
JK
1724
1725 /*
8456a648 1726 * From now on, we don't use freelist
68126702
JK
1727 * although actual page can be freed in rcu context
1728 */
1729 if (OFF_SLAB(cachep))
8456a648 1730 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1731}
1732
97654dfa
JK
1733static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734{
1735 struct page *page, *n;
1736
1737 list_for_each_entry_safe(page, n, list, lru) {
1738 list_del(&page->lru);
1739 slab_destroy(cachep, page);
1740 }
1741}
1742
4d268eba 1743/**
a70773dd
RD
1744 * calculate_slab_order - calculate size (page order) of slabs
1745 * @cachep: pointer to the cache that is being created
1746 * @size: size of objects to be created in this cache.
a70773dd
RD
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
4d268eba
PE
1750 *
1751 * This could be made much more intelligent. For now, try to avoid using
1752 * high order pages for slabs. When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
a737b3e2 1755static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1756 size_t size, unsigned long flags)
4d268eba
PE
1757{
1758 size_t left_over = 0;
9888e6fa 1759 int gfporder;
4d268eba 1760
0aa817f0 1761 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1762 unsigned int num;
1763 size_t remainder;
1764
70f75067 1765 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1766 if (!num)
1767 continue;
9888e6fa 1768
f315e3fa
JK
1769 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770 if (num > SLAB_OBJ_MAX_NUM)
1771 break;
1772
b1ab41c4 1773 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1774 struct kmem_cache *freelist_cache;
1775 size_t freelist_size;
1776
1777 freelist_size = num * sizeof(freelist_idx_t);
1778 freelist_cache = kmalloc_slab(freelist_size, 0u);
1779 if (!freelist_cache)
1780 continue;
1781
b1ab41c4 1782 /*
3217fd9b
JK
1783 * Needed to avoid possible looping condition
1784 * in cache_grow()
b1ab41c4 1785 */
3217fd9b
JK
1786 if (OFF_SLAB(freelist_cache))
1787 continue;
b1ab41c4 1788
3217fd9b
JK
1789 /* check if off slab has enough benefit */
1790 if (freelist_cache->size > cachep->size / 2)
1791 continue;
b1ab41c4 1792 }
4d268eba 1793
9888e6fa 1794 /* Found something acceptable - save it away */
4d268eba 1795 cachep->num = num;
9888e6fa 1796 cachep->gfporder = gfporder;
4d268eba
PE
1797 left_over = remainder;
1798
f78bb8ad
LT
1799 /*
1800 * A VFS-reclaimable slab tends to have most allocations
1801 * as GFP_NOFS and we really don't want to have to be allocating
1802 * higher-order pages when we are unable to shrink dcache.
1803 */
1804 if (flags & SLAB_RECLAIM_ACCOUNT)
1805 break;
1806
4d268eba
PE
1807 /*
1808 * Large number of objects is good, but very large slabs are
1809 * currently bad for the gfp()s.
1810 */
543585cc 1811 if (gfporder >= slab_max_order)
4d268eba
PE
1812 break;
1813
9888e6fa
LT
1814 /*
1815 * Acceptable internal fragmentation?
1816 */
a737b3e2 1817 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1818 break;
1819 }
1820 return left_over;
1821}
1822
bf0dea23
JK
1823static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824 struct kmem_cache *cachep, int entries, int batchcount)
1825{
1826 int cpu;
1827 size_t size;
1828 struct array_cache __percpu *cpu_cache;
1829
1830 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1831 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1832
1833 if (!cpu_cache)
1834 return NULL;
1835
1836 for_each_possible_cpu(cpu) {
1837 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838 entries, batchcount);
1839 }
1840
1841 return cpu_cache;
1842}
1843
83b519e8 1844static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1845{
97d06609 1846 if (slab_state >= FULL)
83b519e8 1847 return enable_cpucache(cachep, gfp);
2ed3a4ef 1848
bf0dea23
JK
1849 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850 if (!cachep->cpu_cache)
1851 return 1;
1852
97d06609 1853 if (slab_state == DOWN) {
bf0dea23
JK
1854 /* Creation of first cache (kmem_cache). */
1855 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1856 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1857 /* For kmem_cache_node */
1858 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1859 } else {
bf0dea23 1860 int node;
f30cf7d1 1861
bf0dea23
JK
1862 for_each_online_node(node) {
1863 cachep->node[node] = kmalloc_node(
1864 sizeof(struct kmem_cache_node), gfp, node);
1865 BUG_ON(!cachep->node[node]);
1866 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1867 }
1868 }
bf0dea23 1869
6a67368c 1870 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1871 jiffies + REAPTIMEOUT_NODE +
1872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1873
1874 cpu_cache_get(cachep)->avail = 0;
1875 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876 cpu_cache_get(cachep)->batchcount = 1;
1877 cpu_cache_get(cachep)->touched = 0;
1878 cachep->batchcount = 1;
1879 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1880 return 0;
f30cf7d1
PE
1881}
1882
12220dea
JK
1883unsigned long kmem_cache_flags(unsigned long object_size,
1884 unsigned long flags, const char *name,
1885 void (*ctor)(void *))
1886{
1887 return flags;
1888}
1889
1890struct kmem_cache *
1891__kmem_cache_alias(const char *name, size_t size, size_t align,
1892 unsigned long flags, void (*ctor)(void *))
1893{
1894 struct kmem_cache *cachep;
1895
1896 cachep = find_mergeable(size, align, flags, name, ctor);
1897 if (cachep) {
1898 cachep->refcount++;
1899
1900 /*
1901 * Adjust the object sizes so that we clear
1902 * the complete object on kzalloc.
1903 */
1904 cachep->object_size = max_t(int, cachep->object_size, size);
1905 }
1906 return cachep;
1907}
1908
b03a017b
JK
1909static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910 size_t size, unsigned long flags)
1911{
1912 size_t left;
1913
1914 cachep->num = 0;
1915
1916 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1917 return false;
1918
1919 left = calculate_slab_order(cachep, size,
1920 flags | CFLGS_OBJFREELIST_SLAB);
1921 if (!cachep->num)
1922 return false;
1923
1924 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925 return false;
1926
1927 cachep->colour = left / cachep->colour_off;
1928
1929 return true;
1930}
1931
158e319b
JK
1932static bool set_off_slab_cache(struct kmem_cache *cachep,
1933 size_t size, unsigned long flags)
1934{
1935 size_t left;
1936
1937 cachep->num = 0;
1938
1939 /*
3217fd9b
JK
1940 * Always use on-slab management when SLAB_NOLEAKTRACE
1941 * to avoid recursive calls into kmemleak.
158e319b 1942 */
158e319b
JK
1943 if (flags & SLAB_NOLEAKTRACE)
1944 return false;
1945
1946 /*
1947 * Size is large, assume best to place the slab management obj
1948 * off-slab (should allow better packing of objs).
1949 */
1950 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951 if (!cachep->num)
1952 return false;
1953
1954 /*
1955 * If the slab has been placed off-slab, and we have enough space then
1956 * move it on-slab. This is at the expense of any extra colouring.
1957 */
1958 if (left >= cachep->num * sizeof(freelist_idx_t))
1959 return false;
1960
1961 cachep->colour = left / cachep->colour_off;
1962
1963 return true;
1964}
1965
1966static bool set_on_slab_cache(struct kmem_cache *cachep,
1967 size_t size, unsigned long flags)
1968{
1969 size_t left;
1970
1971 cachep->num = 0;
1972
1973 left = calculate_slab_order(cachep, size, flags);
1974 if (!cachep->num)
1975 return false;
1976
1977 cachep->colour = left / cachep->colour_off;
1978
1979 return true;
1980}
1981
1da177e4 1982/**
039363f3 1983 * __kmem_cache_create - Create a cache.
a755b76a 1984 * @cachep: cache management descriptor
1da177e4 1985 * @flags: SLAB flags
1da177e4
LT
1986 *
1987 * Returns a ptr to the cache on success, NULL on failure.
1988 * Cannot be called within a int, but can be interrupted.
20c2df83 1989 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1990 *
1da177e4
LT
1991 * The flags are
1992 *
1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994 * to catch references to uninitialised memory.
1995 *
1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997 * for buffer overruns.
1998 *
1da177e4
LT
1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000 * cacheline. This can be beneficial if you're counting cycles as closely
2001 * as davem.
2002 */
278b1bb1 2003int
8a13a4cc 2004__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2005{
d4a5fca5 2006 size_t ralign = BYTES_PER_WORD;
83b519e8 2007 gfp_t gfp;
278b1bb1 2008 int err;
8a13a4cc 2009 size_t size = cachep->size;
1da177e4 2010
1da177e4 2011#if DEBUG
1da177e4
LT
2012#if FORCED_DEBUG
2013 /*
2014 * Enable redzoning and last user accounting, except for caches with
2015 * large objects, if the increased size would increase the object size
2016 * above the next power of two: caches with object sizes just above a
2017 * power of two have a significant amount of internal fragmentation.
2018 */
87a927c7
DW
2019 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020 2 * sizeof(unsigned long long)))
b28a02de 2021 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2022 if (!(flags & SLAB_DESTROY_BY_RCU))
2023 flags |= SLAB_POISON;
2024#endif
1da177e4 2025#endif
1da177e4 2026
a737b3e2
AM
2027 /*
2028 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2029 * unaligned accesses for some archs when redzoning is used, and makes
2030 * sure any on-slab bufctl's are also correctly aligned.
2031 */
b28a02de
PE
2032 if (size & (BYTES_PER_WORD - 1)) {
2033 size += (BYTES_PER_WORD - 1);
2034 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2035 }
2036
87a927c7
DW
2037 if (flags & SLAB_RED_ZONE) {
2038 ralign = REDZONE_ALIGN;
2039 /* If redzoning, ensure that the second redzone is suitably
2040 * aligned, by adjusting the object size accordingly. */
2041 size += REDZONE_ALIGN - 1;
2042 size &= ~(REDZONE_ALIGN - 1);
2043 }
ca5f9703 2044
a44b56d3 2045 /* 3) caller mandated alignment */
8a13a4cc
CL
2046 if (ralign < cachep->align) {
2047 ralign = cachep->align;
1da177e4 2048 }
3ff84a7f
PE
2049 /* disable debug if necessary */
2050 if (ralign > __alignof__(unsigned long long))
a44b56d3 2051 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2052 /*
ca5f9703 2053 * 4) Store it.
1da177e4 2054 */
8a13a4cc 2055 cachep->align = ralign;
158e319b
JK
2056 cachep->colour_off = cache_line_size();
2057 /* Offset must be a multiple of the alignment. */
2058 if (cachep->colour_off < cachep->align)
2059 cachep->colour_off = cachep->align;
1da177e4 2060
83b519e8
PE
2061 if (slab_is_available())
2062 gfp = GFP_KERNEL;
2063 else
2064 gfp = GFP_NOWAIT;
2065
1da177e4 2066#if DEBUG
1da177e4 2067
ca5f9703
PE
2068 /*
2069 * Both debugging options require word-alignment which is calculated
2070 * into align above.
2071 */
1da177e4 2072 if (flags & SLAB_RED_ZONE) {
1da177e4 2073 /* add space for red zone words */
3ff84a7f
PE
2074 cachep->obj_offset += sizeof(unsigned long long);
2075 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2076 }
2077 if (flags & SLAB_STORE_USER) {
ca5f9703 2078 /* user store requires one word storage behind the end of
87a927c7
DW
2079 * the real object. But if the second red zone needs to be
2080 * aligned to 64 bits, we must allow that much space.
1da177e4 2081 */
87a927c7
DW
2082 if (flags & SLAB_RED_ZONE)
2083 size += REDZONE_ALIGN;
2084 else
2085 size += BYTES_PER_WORD;
1da177e4 2086 }
832a15d2
JK
2087#endif
2088
7ed2f9e6
AP
2089 kasan_cache_create(cachep, &size, &flags);
2090
832a15d2
JK
2091 size = ALIGN(size, cachep->align);
2092 /*
2093 * We should restrict the number of objects in a slab to implement
2094 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095 */
2096 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098
2099#if DEBUG
03a2d2a3
JK
2100 /*
2101 * To activate debug pagealloc, off-slab management is necessary
2102 * requirement. In early phase of initialization, small sized slab
2103 * doesn't get initialized so it would not be possible. So, we need
2104 * to check size >= 256. It guarantees that all necessary small
2105 * sized slab is initialized in current slab initialization sequence.
2106 */
40323278 2107 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2108 size >= 256 && cachep->object_size > cache_line_size()) {
2109 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111
2112 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113 flags |= CFLGS_OFF_SLAB;
2114 cachep->obj_offset += tmp_size - size;
2115 size = tmp_size;
2116 goto done;
2117 }
2118 }
1da177e4 2119 }
1da177e4
LT
2120#endif
2121
b03a017b
JK
2122 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123 flags |= CFLGS_OBJFREELIST_SLAB;
2124 goto done;
2125 }
2126
158e319b 2127 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2128 flags |= CFLGS_OFF_SLAB;
158e319b 2129 goto done;
832a15d2 2130 }
1da177e4 2131
158e319b
JK
2132 if (set_on_slab_cache(cachep, size, flags))
2133 goto done;
1da177e4 2134
158e319b 2135 return -E2BIG;
1da177e4 2136
158e319b
JK
2137done:
2138 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2139 cachep->flags = flags;
a57a4988 2140 cachep->allocflags = __GFP_COMP;
4b51d669 2141 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2142 cachep->allocflags |= GFP_DMA;
3b0efdfa 2143 cachep->size = size;
6a2d7a95 2144 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2145
40b44137
JK
2146#if DEBUG
2147 /*
2148 * If we're going to use the generic kernel_map_pages()
2149 * poisoning, then it's going to smash the contents of
2150 * the redzone and userword anyhow, so switch them off.
2151 */
2152 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153 (cachep->flags & SLAB_POISON) &&
2154 is_debug_pagealloc_cache(cachep))
2155 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156#endif
2157
2158 if (OFF_SLAB(cachep)) {
158e319b
JK
2159 cachep->freelist_cache =
2160 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2161 }
1da177e4 2162
278b1bb1
CL
2163 err = setup_cpu_cache(cachep, gfp);
2164 if (err) {
52b4b950 2165 __kmem_cache_release(cachep);
278b1bb1 2166 return err;
2ed3a4ef 2167 }
1da177e4 2168
278b1bb1 2169 return 0;
1da177e4 2170}
1da177e4
LT
2171
2172#if DEBUG
2173static void check_irq_off(void)
2174{
2175 BUG_ON(!irqs_disabled());
2176}
2177
2178static void check_irq_on(void)
2179{
2180 BUG_ON(irqs_disabled());
2181}
2182
18726ca8
JK
2183static void check_mutex_acquired(void)
2184{
2185 BUG_ON(!mutex_is_locked(&slab_mutex));
2186}
2187
343e0d7a 2188static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2189{
2190#ifdef CONFIG_SMP
2191 check_irq_off();
18bf8541 2192 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2193#endif
2194}
e498be7d 2195
343e0d7a 2196static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2197{
2198#ifdef CONFIG_SMP
2199 check_irq_off();
18bf8541 2200 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2201#endif
2202}
2203
1da177e4
LT
2204#else
2205#define check_irq_off() do { } while(0)
2206#define check_irq_on() do { } while(0)
18726ca8 2207#define check_mutex_acquired() do { } while(0)
1da177e4 2208#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2209#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2210#endif
2211
18726ca8
JK
2212static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2213 int node, bool free_all, struct list_head *list)
2214{
2215 int tofree;
2216
2217 if (!ac || !ac->avail)
2218 return;
2219
2220 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2221 if (tofree > ac->avail)
2222 tofree = (ac->avail + 1) / 2;
2223
2224 free_block(cachep, ac->entry, tofree, node, list);
2225 ac->avail -= tofree;
2226 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2227}
aab2207c 2228
1da177e4
LT
2229static void do_drain(void *arg)
2230{
a737b3e2 2231 struct kmem_cache *cachep = arg;
1da177e4 2232 struct array_cache *ac;
7d6e6d09 2233 int node = numa_mem_id();
18bf8541 2234 struct kmem_cache_node *n;
97654dfa 2235 LIST_HEAD(list);
1da177e4
LT
2236
2237 check_irq_off();
9a2dba4b 2238 ac = cpu_cache_get(cachep);
18bf8541
CL
2239 n = get_node(cachep, node);
2240 spin_lock(&n->list_lock);
97654dfa 2241 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2242 spin_unlock(&n->list_lock);
97654dfa 2243 slabs_destroy(cachep, &list);
1da177e4
LT
2244 ac->avail = 0;
2245}
2246
343e0d7a 2247static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2248{
ce8eb6c4 2249 struct kmem_cache_node *n;
e498be7d 2250 int node;
18726ca8 2251 LIST_HEAD(list);
e498be7d 2252
15c8b6c1 2253 on_each_cpu(do_drain, cachep, 1);
1da177e4 2254 check_irq_on();
18bf8541
CL
2255 for_each_kmem_cache_node(cachep, node, n)
2256 if (n->alien)
ce8eb6c4 2257 drain_alien_cache(cachep, n->alien);
a4523a8b 2258
18726ca8
JK
2259 for_each_kmem_cache_node(cachep, node, n) {
2260 spin_lock_irq(&n->list_lock);
2261 drain_array_locked(cachep, n->shared, node, true, &list);
2262 spin_unlock_irq(&n->list_lock);
2263
2264 slabs_destroy(cachep, &list);
2265 }
1da177e4
LT
2266}
2267
ed11d9eb
CL
2268/*
2269 * Remove slabs from the list of free slabs.
2270 * Specify the number of slabs to drain in tofree.
2271 *
2272 * Returns the actual number of slabs released.
2273 */
2274static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2275 struct kmem_cache_node *n, int tofree)
1da177e4 2276{
ed11d9eb
CL
2277 struct list_head *p;
2278 int nr_freed;
8456a648 2279 struct page *page;
1da177e4 2280
ed11d9eb 2281 nr_freed = 0;
ce8eb6c4 2282 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2283
ce8eb6c4
CL
2284 spin_lock_irq(&n->list_lock);
2285 p = n->slabs_free.prev;
2286 if (p == &n->slabs_free) {
2287 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2288 goto out;
2289 }
1da177e4 2290
8456a648 2291 page = list_entry(p, struct page, lru);
8456a648 2292 list_del(&page->lru);
ed11d9eb
CL
2293 /*
2294 * Safe to drop the lock. The slab is no longer linked
2295 * to the cache.
2296 */
ce8eb6c4
CL
2297 n->free_objects -= cache->num;
2298 spin_unlock_irq(&n->list_lock);
8456a648 2299 slab_destroy(cache, page);
ed11d9eb 2300 nr_freed++;
1da177e4 2301 }
ed11d9eb
CL
2302out:
2303 return nr_freed;
1da177e4
LT
2304}
2305
d6e0b7fa 2306int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2307{
18bf8541
CL
2308 int ret = 0;
2309 int node;
ce8eb6c4 2310 struct kmem_cache_node *n;
e498be7d
CL
2311
2312 drain_cpu_caches(cachep);
2313
2314 check_irq_on();
18bf8541 2315 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2316 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2317
ce8eb6c4
CL
2318 ret += !list_empty(&n->slabs_full) ||
2319 !list_empty(&n->slabs_partial);
e498be7d
CL
2320 }
2321 return (ret ? 1 : 0);
2322}
2323
945cf2b6 2324int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2325{
2326 return __kmem_cache_shrink(cachep, false);
2327}
2328
2329void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2330{
12c3667f 2331 int i;
ce8eb6c4 2332 struct kmem_cache_node *n;
1da177e4 2333
bf0dea23 2334 free_percpu(cachep->cpu_cache);
1da177e4 2335
ce8eb6c4 2336 /* NUMA: free the node structures */
18bf8541
CL
2337 for_each_kmem_cache_node(cachep, i, n) {
2338 kfree(n->shared);
2339 free_alien_cache(n->alien);
2340 kfree(n);
2341 cachep->node[i] = NULL;
12c3667f 2342 }
1da177e4 2343}
1da177e4 2344
e5ac9c5a
RT
2345/*
2346 * Get the memory for a slab management obj.
5f0985bb
JZ
2347 *
2348 * For a slab cache when the slab descriptor is off-slab, the
2349 * slab descriptor can't come from the same cache which is being created,
2350 * Because if it is the case, that means we defer the creation of
2351 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2352 * And we eventually call down to __kmem_cache_create(), which
2353 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2354 * This is a "chicken-and-egg" problem.
2355 *
2356 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2357 * which are all initialized during kmem_cache_init().
e5ac9c5a 2358 */
7e007355 2359static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2360 struct page *page, int colour_off,
2361 gfp_t local_flags, int nodeid)
1da177e4 2362{
7e007355 2363 void *freelist;
0c3aa83e 2364 void *addr = page_address(page);
b28a02de 2365
2e6b3602
JK
2366 page->s_mem = addr + colour_off;
2367 page->active = 0;
2368
b03a017b
JK
2369 if (OBJFREELIST_SLAB(cachep))
2370 freelist = NULL;
2371 else if (OFF_SLAB(cachep)) {
1da177e4 2372 /* Slab management obj is off-slab. */
8456a648 2373 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2374 local_flags, nodeid);
8456a648 2375 if (!freelist)
1da177e4
LT
2376 return NULL;
2377 } else {
2e6b3602
JK
2378 /* We will use last bytes at the slab for freelist */
2379 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2380 cachep->freelist_size;
1da177e4 2381 }
2e6b3602 2382
8456a648 2383 return freelist;
1da177e4
LT
2384}
2385
7cc68973 2386static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2387{
a41adfaa 2388 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2389}
2390
2391static inline void set_free_obj(struct page *page,
7cc68973 2392 unsigned int idx, freelist_idx_t val)
e5c58dfd 2393{
a41adfaa 2394 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2395}
2396
10b2e9e8 2397static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2398{
10b2e9e8 2399#if DEBUG
1da177e4
LT
2400 int i;
2401
2402 for (i = 0; i < cachep->num; i++) {
8456a648 2403 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2404
1da177e4
LT
2405 if (cachep->flags & SLAB_STORE_USER)
2406 *dbg_userword(cachep, objp) = NULL;
2407
2408 if (cachep->flags & SLAB_RED_ZONE) {
2409 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2410 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2411 }
2412 /*
a737b3e2
AM
2413 * Constructors are not allowed to allocate memory from the same
2414 * cache which they are a constructor for. Otherwise, deadlock.
2415 * They must also be threaded.
1da177e4 2416 */
7ed2f9e6
AP
2417 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2418 kasan_unpoison_object_data(cachep,
2419 objp + obj_offset(cachep));
51cc5068 2420 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2421 kasan_poison_object_data(
2422 cachep, objp + obj_offset(cachep));
2423 }
1da177e4
LT
2424
2425 if (cachep->flags & SLAB_RED_ZONE) {
2426 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2427 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2428 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2429 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2430 }
40b44137
JK
2431 /* need to poison the objs? */
2432 if (cachep->flags & SLAB_POISON) {
2433 poison_obj(cachep, objp, POISON_FREE);
2434 slab_kernel_map(cachep, objp, 0, 0);
2435 }
10b2e9e8 2436 }
1da177e4 2437#endif
10b2e9e8
JK
2438}
2439
2440static void cache_init_objs(struct kmem_cache *cachep,
2441 struct page *page)
2442{
2443 int i;
7ed2f9e6 2444 void *objp;
10b2e9e8
JK
2445
2446 cache_init_objs_debug(cachep, page);
2447
b03a017b
JK
2448 if (OBJFREELIST_SLAB(cachep)) {
2449 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2450 obj_offset(cachep);
2451 }
2452
10b2e9e8
JK
2453 for (i = 0; i < cachep->num; i++) {
2454 /* constructor could break poison info */
7ed2f9e6
AP
2455 if (DEBUG == 0 && cachep->ctor) {
2456 objp = index_to_obj(cachep, page, i);
2457 kasan_unpoison_object_data(cachep, objp);
2458 cachep->ctor(objp);
2459 kasan_poison_object_data(cachep, objp);
2460 }
10b2e9e8 2461
e5c58dfd 2462 set_free_obj(page, i, i);
1da177e4 2463 }
1da177e4
LT
2464}
2465
343e0d7a 2466static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2467{
4b51d669
CL
2468 if (CONFIG_ZONE_DMA_FLAG) {
2469 if (flags & GFP_DMA)
a618e89f 2470 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2471 else
a618e89f 2472 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2473 }
1da177e4
LT
2474}
2475
260b61dd 2476static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2477{
b1cb0982 2478 void *objp;
78d382d7 2479
e5c58dfd 2480 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2481 page->active++;
78d382d7 2482
d31676df
JK
2483#if DEBUG
2484 if (cachep->flags & SLAB_STORE_USER)
2485 set_store_user_dirty(cachep);
2486#endif
2487
78d382d7
MD
2488 return objp;
2489}
2490
260b61dd
JK
2491static void slab_put_obj(struct kmem_cache *cachep,
2492 struct page *page, void *objp)
78d382d7 2493{
8456a648 2494 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2495#if DEBUG
16025177 2496 unsigned int i;
b1cb0982 2497
b1cb0982 2498 /* Verify double free bug */
8456a648 2499 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2500 if (get_free_obj(page, i) == objnr) {
1170532b 2501 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2502 cachep->name, objp);
b1cb0982
JK
2503 BUG();
2504 }
78d382d7
MD
2505 }
2506#endif
8456a648 2507 page->active--;
b03a017b
JK
2508 if (!page->freelist)
2509 page->freelist = objp + obj_offset(cachep);
2510
e5c58dfd 2511 set_free_obj(page, page->active, objnr);
78d382d7
MD
2512}
2513
4776874f
PE
2514/*
2515 * Map pages beginning at addr to the given cache and slab. This is required
2516 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2517 * virtual address for kfree, ksize, and slab debugging.
4776874f 2518 */
8456a648 2519static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2520 void *freelist)
1da177e4 2521{
a57a4988 2522 page->slab_cache = cache;
8456a648 2523 page->freelist = freelist;
1da177e4
LT
2524}
2525
2526/*
2527 * Grow (by 1) the number of slabs within a cache. This is called by
2528 * kmem_cache_alloc() when there are no active objs left in a cache.
2529 */
3c517a61 2530static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2531 gfp_t flags, int nodeid, struct page *page)
1da177e4 2532{
7e007355 2533 void *freelist;
b28a02de
PE
2534 size_t offset;
2535 gfp_t local_flags;
ce8eb6c4 2536 struct kmem_cache_node *n;
1da177e4 2537
a737b3e2
AM
2538 /*
2539 * Be lazy and only check for valid flags here, keeping it out of the
2540 * critical path in kmem_cache_alloc().
1da177e4 2541 */
c871ac4e
AM
2542 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2543 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2544 BUG();
2545 }
6cb06229 2546 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2547
ce8eb6c4 2548 /* Take the node list lock to change the colour_next on this node */
1da177e4 2549 check_irq_off();
18bf8541 2550 n = get_node(cachep, nodeid);
ce8eb6c4 2551 spin_lock(&n->list_lock);
1da177e4
LT
2552
2553 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2554 offset = n->colour_next;
2555 n->colour_next++;
2556 if (n->colour_next >= cachep->colour)
2557 n->colour_next = 0;
2558 spin_unlock(&n->list_lock);
1da177e4 2559
2e1217cf 2560 offset *= cachep->colour_off;
1da177e4 2561
d0164adc 2562 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2563 local_irq_enable();
2564
2565 /*
2566 * The test for missing atomic flag is performed here, rather than
2567 * the more obvious place, simply to reduce the critical path length
2568 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2569 * will eventually be caught here (where it matters).
2570 */
2571 kmem_flagcheck(cachep, flags);
2572
a737b3e2
AM
2573 /*
2574 * Get mem for the objs. Attempt to allocate a physical page from
2575 * 'nodeid'.
e498be7d 2576 */
0c3aa83e
JK
2577 if (!page)
2578 page = kmem_getpages(cachep, local_flags, nodeid);
2579 if (!page)
1da177e4
LT
2580 goto failed;
2581
2582 /* Get slab management. */
8456a648 2583 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2584 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
b03a017b 2585 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2586 goto opps1;
2587
8456a648 2588 slab_map_pages(cachep, page, freelist);
1da177e4 2589
7ed2f9e6 2590 kasan_poison_slab(page);
8456a648 2591 cache_init_objs(cachep, page);
1da177e4 2592
d0164adc 2593 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2594 local_irq_disable();
2595 check_irq_off();
ce8eb6c4 2596 spin_lock(&n->list_lock);
1da177e4
LT
2597
2598 /* Make slab active. */
8456a648 2599 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2600 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2601 n->free_objects += cachep->num;
2602 spin_unlock(&n->list_lock);
1da177e4 2603 return 1;
a737b3e2 2604opps1:
0c3aa83e 2605 kmem_freepages(cachep, page);
a737b3e2 2606failed:
d0164adc 2607 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2608 local_irq_disable();
2609 return 0;
2610}
2611
2612#if DEBUG
2613
2614/*
2615 * Perform extra freeing checks:
2616 * - detect bad pointers.
2617 * - POISON/RED_ZONE checking
1da177e4
LT
2618 */
2619static void kfree_debugcheck(const void *objp)
2620{
1da177e4 2621 if (!virt_addr_valid(objp)) {
1170532b 2622 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2623 (unsigned long)objp);
2624 BUG();
1da177e4 2625 }
1da177e4
LT
2626}
2627
58ce1fd5
PE
2628static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2629{
b46b8f19 2630 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2631
2632 redzone1 = *dbg_redzone1(cache, obj);
2633 redzone2 = *dbg_redzone2(cache, obj);
2634
2635 /*
2636 * Redzone is ok.
2637 */
2638 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2639 return;
2640
2641 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2642 slab_error(cache, "double free detected");
2643 else
2644 slab_error(cache, "memory outside object was overwritten");
2645
1170532b
JP
2646 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2647 obj, redzone1, redzone2);
58ce1fd5
PE
2648}
2649
343e0d7a 2650static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2651 unsigned long caller)
1da177e4 2652{
1da177e4 2653 unsigned int objnr;
8456a648 2654 struct page *page;
1da177e4 2655
80cbd911
MW
2656 BUG_ON(virt_to_cache(objp) != cachep);
2657
3dafccf2 2658 objp -= obj_offset(cachep);
1da177e4 2659 kfree_debugcheck(objp);
b49af68f 2660 page = virt_to_head_page(objp);
1da177e4 2661
1da177e4 2662 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2663 verify_redzone_free(cachep, objp);
1da177e4
LT
2664 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2665 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2666 }
d31676df
JK
2667 if (cachep->flags & SLAB_STORE_USER) {
2668 set_store_user_dirty(cachep);
7c0cb9c6 2669 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2670 }
1da177e4 2671
8456a648 2672 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2673
2674 BUG_ON(objnr >= cachep->num);
8456a648 2675 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2676
1da177e4 2677 if (cachep->flags & SLAB_POISON) {
1da177e4 2678 poison_obj(cachep, objp, POISON_FREE);
40b44137 2679 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2680 }
2681 return objp;
2682}
2683
1da177e4
LT
2684#else
2685#define kfree_debugcheck(x) do { } while(0)
2686#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2687#endif
2688
b03a017b
JK
2689static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2690 void **list)
2691{
2692#if DEBUG
2693 void *next = *list;
2694 void *objp;
2695
2696 while (next) {
2697 objp = next - obj_offset(cachep);
2698 next = *(void **)next;
2699 poison_obj(cachep, objp, POISON_FREE);
2700 }
2701#endif
2702}
2703
d8410234 2704static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2705 struct kmem_cache_node *n, struct page *page,
2706 void **list)
d8410234
JK
2707{
2708 /* move slabp to correct slabp list: */
2709 list_del(&page->lru);
b03a017b 2710 if (page->active == cachep->num) {
d8410234 2711 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2712 if (OBJFREELIST_SLAB(cachep)) {
2713#if DEBUG
2714 /* Poisoning will be done without holding the lock */
2715 if (cachep->flags & SLAB_POISON) {
2716 void **objp = page->freelist;
2717
2718 *objp = *list;
2719 *list = objp;
2720 }
2721#endif
2722 page->freelist = NULL;
2723 }
2724 } else
d8410234
JK
2725 list_add(&page->lru, &n->slabs_partial);
2726}
2727
f68f8ddd
JK
2728/* Try to find non-pfmemalloc slab if needed */
2729static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2730 struct page *page, bool pfmemalloc)
2731{
2732 if (!page)
2733 return NULL;
2734
2735 if (pfmemalloc)
2736 return page;
2737
2738 if (!PageSlabPfmemalloc(page))
2739 return page;
2740
2741 /* No need to keep pfmemalloc slab if we have enough free objects */
2742 if (n->free_objects > n->free_limit) {
2743 ClearPageSlabPfmemalloc(page);
2744 return page;
2745 }
2746
2747 /* Move pfmemalloc slab to the end of list to speed up next search */
2748 list_del(&page->lru);
2749 if (!page->active)
2750 list_add_tail(&page->lru, &n->slabs_free);
2751 else
2752 list_add_tail(&page->lru, &n->slabs_partial);
2753
2754 list_for_each_entry(page, &n->slabs_partial, lru) {
2755 if (!PageSlabPfmemalloc(page))
2756 return page;
2757 }
2758
2759 list_for_each_entry(page, &n->slabs_free, lru) {
2760 if (!PageSlabPfmemalloc(page))
2761 return page;
2762 }
2763
2764 return NULL;
2765}
2766
2767static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2768{
2769 struct page *page;
2770
2771 page = list_first_entry_or_null(&n->slabs_partial,
2772 struct page, lru);
2773 if (!page) {
2774 n->free_touched = 1;
2775 page = list_first_entry_or_null(&n->slabs_free,
2776 struct page, lru);
2777 }
2778
f68f8ddd
JK
2779 if (sk_memalloc_socks())
2780 return get_valid_first_slab(n, page, pfmemalloc);
2781
7aa0d227
GT
2782 return page;
2783}
2784
f68f8ddd
JK
2785static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2786 struct kmem_cache_node *n, gfp_t flags)
2787{
2788 struct page *page;
2789 void *obj;
2790 void *list = NULL;
2791
2792 if (!gfp_pfmemalloc_allowed(flags))
2793 return NULL;
2794
2795 spin_lock(&n->list_lock);
2796 page = get_first_slab(n, true);
2797 if (!page) {
2798 spin_unlock(&n->list_lock);
2799 return NULL;
2800 }
2801
2802 obj = slab_get_obj(cachep, page);
2803 n->free_objects--;
2804
2805 fixup_slab_list(cachep, n, page, &list);
2806
2807 spin_unlock(&n->list_lock);
2808 fixup_objfreelist_debug(cachep, &list);
2809
2810 return obj;
2811}
2812
2813static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2814{
2815 int batchcount;
ce8eb6c4 2816 struct kmem_cache_node *n;
1da177e4 2817 struct array_cache *ac;
1ca4cb24 2818 int node;
b03a017b 2819 void *list = NULL;
1ca4cb24 2820
1da177e4 2821 check_irq_off();
7d6e6d09 2822 node = numa_mem_id();
f68f8ddd 2823
072bb0aa 2824retry:
9a2dba4b 2825 ac = cpu_cache_get(cachep);
1da177e4
LT
2826 batchcount = ac->batchcount;
2827 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2828 /*
2829 * If there was little recent activity on this cache, then
2830 * perform only a partial refill. Otherwise we could generate
2831 * refill bouncing.
1da177e4
LT
2832 */
2833 batchcount = BATCHREFILL_LIMIT;
2834 }
18bf8541 2835 n = get_node(cachep, node);
e498be7d 2836
ce8eb6c4
CL
2837 BUG_ON(ac->avail > 0 || !n);
2838 spin_lock(&n->list_lock);
1da177e4 2839
3ded175a 2840 /* See if we can refill from the shared array */
ce8eb6c4
CL
2841 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2842 n->shared->touched = 1;
3ded175a 2843 goto alloc_done;
44b57f1c 2844 }
3ded175a 2845
1da177e4 2846 while (batchcount > 0) {
8456a648 2847 struct page *page;
1da177e4 2848 /* Get slab alloc is to come from. */
f68f8ddd 2849 page = get_first_slab(n, false);
7aa0d227
GT
2850 if (!page)
2851 goto must_grow;
1da177e4 2852
1da177e4 2853 check_spinlock_acquired(cachep);
714b8171
PE
2854
2855 /*
2856 * The slab was either on partial or free list so
2857 * there must be at least one object available for
2858 * allocation.
2859 */
8456a648 2860 BUG_ON(page->active >= cachep->num);
714b8171 2861
8456a648 2862 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2863 STATS_INC_ALLOCED(cachep);
2864 STATS_INC_ACTIVE(cachep);
2865 STATS_SET_HIGH(cachep);
2866
f68f8ddd 2867 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
1da177e4 2868 }
1da177e4 2869
b03a017b 2870 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2871 }
2872
a737b3e2 2873must_grow:
ce8eb6c4 2874 n->free_objects -= ac->avail;
a737b3e2 2875alloc_done:
ce8eb6c4 2876 spin_unlock(&n->list_lock);
b03a017b 2877 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2878
2879 if (unlikely(!ac->avail)) {
2880 int x;
f68f8ddd
JK
2881
2882 /* Check if we can use obj in pfmemalloc slab */
2883 if (sk_memalloc_socks()) {
2884 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2885
2886 if (obj)
2887 return obj;
2888 }
2889
4167e9b2 2890 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2891
a737b3e2 2892 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2893 ac = cpu_cache_get(cachep);
51cd8e6f 2894 node = numa_mem_id();
072bb0aa
MG
2895
2896 /* no objects in sight? abort */
f68f8ddd 2897 if (!x && ac->avail == 0)
1da177e4
LT
2898 return NULL;
2899
a737b3e2 2900 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2901 goto retry;
2902 }
2903 ac->touched = 1;
072bb0aa 2904
f68f8ddd 2905 return ac->entry[--ac->avail];
1da177e4
LT
2906}
2907
a737b3e2
AM
2908static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2909 gfp_t flags)
1da177e4 2910{
d0164adc 2911 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2912#if DEBUG
2913 kmem_flagcheck(cachep, flags);
2914#endif
2915}
2916
2917#if DEBUG
a737b3e2 2918static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2919 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2920{
b28a02de 2921 if (!objp)
1da177e4 2922 return objp;
b28a02de 2923 if (cachep->flags & SLAB_POISON) {
1da177e4 2924 check_poison_obj(cachep, objp);
40b44137 2925 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2926 poison_obj(cachep, objp, POISON_INUSE);
2927 }
2928 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2929 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2930
2931 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2932 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2933 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 2934 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
2935 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2936 objp, *dbg_redzone1(cachep, objp),
2937 *dbg_redzone2(cachep, objp));
1da177e4
LT
2938 }
2939 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2940 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2941 }
03787301 2942
3dafccf2 2943 objp += obj_offset(cachep);
4f104934 2944 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2945 cachep->ctor(objp);
7ea466f2
TH
2946 if (ARCH_SLAB_MINALIGN &&
2947 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 2948 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2949 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2950 }
1da177e4
LT
2951 return objp;
2952}
2953#else
2954#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2955#endif
2956
343e0d7a 2957static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2958{
b28a02de 2959 void *objp;
1da177e4
LT
2960 struct array_cache *ac;
2961
5c382300 2962 check_irq_off();
8a8b6502 2963
9a2dba4b 2964 ac = cpu_cache_get(cachep);
1da177e4 2965 if (likely(ac->avail)) {
1da177e4 2966 ac->touched = 1;
f68f8ddd 2967 objp = ac->entry[--ac->avail];
072bb0aa 2968
f68f8ddd
JK
2969 STATS_INC_ALLOCHIT(cachep);
2970 goto out;
1da177e4 2971 }
072bb0aa
MG
2972
2973 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 2974 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
2975 /*
2976 * the 'ac' may be updated by cache_alloc_refill(),
2977 * and kmemleak_erase() requires its correct value.
2978 */
2979 ac = cpu_cache_get(cachep);
2980
2981out:
d5cff635
CM
2982 /*
2983 * To avoid a false negative, if an object that is in one of the
2984 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2985 * treat the array pointers as a reference to the object.
2986 */
f3d8b53a
O
2987 if (objp)
2988 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2989 return objp;
2990}
2991
e498be7d 2992#ifdef CONFIG_NUMA
c61afb18 2993/*
2ad654bc 2994 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2995 *
2996 * If we are in_interrupt, then process context, including cpusets and
2997 * mempolicy, may not apply and should not be used for allocation policy.
2998 */
2999static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3000{
3001 int nid_alloc, nid_here;
3002
765c4507 3003 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3004 return NULL;
7d6e6d09 3005 nid_alloc = nid_here = numa_mem_id();
c61afb18 3006 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3007 nid_alloc = cpuset_slab_spread_node();
c61afb18 3008 else if (current->mempolicy)
2a389610 3009 nid_alloc = mempolicy_slab_node();
c61afb18 3010 if (nid_alloc != nid_here)
8b98c169 3011 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3012 return NULL;
3013}
3014
765c4507
CL
3015/*
3016 * Fallback function if there was no memory available and no objects on a
3c517a61 3017 * certain node and fall back is permitted. First we scan all the
6a67368c 3018 * available node for available objects. If that fails then we
3c517a61
CL
3019 * perform an allocation without specifying a node. This allows the page
3020 * allocator to do its reclaim / fallback magic. We then insert the
3021 * slab into the proper nodelist and then allocate from it.
765c4507 3022 */
8c8cc2c1 3023static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3024{
8c8cc2c1
PE
3025 struct zonelist *zonelist;
3026 gfp_t local_flags;
dd1a239f 3027 struct zoneref *z;
54a6eb5c
MG
3028 struct zone *zone;
3029 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3030 void *obj = NULL;
3c517a61 3031 int nid;
cc9a6c87 3032 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3033
3034 if (flags & __GFP_THISNODE)
3035 return NULL;
3036
6cb06229 3037 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3038
cc9a6c87 3039retry_cpuset:
d26914d1 3040 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3041 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3042
3c517a61
CL
3043retry:
3044 /*
3045 * Look through allowed nodes for objects available
3046 * from existing per node queues.
3047 */
54a6eb5c
MG
3048 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3049 nid = zone_to_nid(zone);
aedb0eb1 3050
061d7074 3051 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3052 get_node(cache, nid) &&
3053 get_node(cache, nid)->free_objects) {
3c517a61 3054 obj = ____cache_alloc_node(cache,
4167e9b2 3055 gfp_exact_node(flags), nid);
481c5346
CL
3056 if (obj)
3057 break;
3058 }
3c517a61
CL
3059 }
3060
cfce6604 3061 if (!obj) {
3c517a61
CL
3062 /*
3063 * This allocation will be performed within the constraints
3064 * of the current cpuset / memory policy requirements.
3065 * We may trigger various forms of reclaim on the allowed
3066 * set and go into memory reserves if necessary.
3067 */
0c3aa83e
JK
3068 struct page *page;
3069
d0164adc 3070 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3071 local_irq_enable();
3072 kmem_flagcheck(cache, flags);
0c3aa83e 3073 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3074 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3075 local_irq_disable();
0c3aa83e 3076 if (page) {
3c517a61
CL
3077 /*
3078 * Insert into the appropriate per node queues
3079 */
0c3aa83e
JK
3080 nid = page_to_nid(page);
3081 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3082 obj = ____cache_alloc_node(cache,
4167e9b2 3083 gfp_exact_node(flags), nid);
3c517a61
CL
3084 if (!obj)
3085 /*
3086 * Another processor may allocate the
3087 * objects in the slab since we are
3088 * not holding any locks.
3089 */
3090 goto retry;
3091 } else {
b6a60451 3092 /* cache_grow already freed obj */
3c517a61
CL
3093 obj = NULL;
3094 }
3095 }
aedb0eb1 3096 }
cc9a6c87 3097
d26914d1 3098 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3099 goto retry_cpuset;
765c4507
CL
3100 return obj;
3101}
3102
e498be7d
CL
3103/*
3104 * A interface to enable slab creation on nodeid
1da177e4 3105 */
8b98c169 3106static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3107 int nodeid)
e498be7d 3108{
8456a648 3109 struct page *page;
ce8eb6c4 3110 struct kmem_cache_node *n;
b28a02de 3111 void *obj;
b03a017b 3112 void *list = NULL;
b28a02de
PE
3113 int x;
3114
7c3fbbdd 3115 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3116 n = get_node(cachep, nodeid);
ce8eb6c4 3117 BUG_ON(!n);
b28a02de 3118
a737b3e2 3119retry:
ca3b9b91 3120 check_irq_off();
ce8eb6c4 3121 spin_lock(&n->list_lock);
f68f8ddd 3122 page = get_first_slab(n, false);
7aa0d227
GT
3123 if (!page)
3124 goto must_grow;
b28a02de 3125
b28a02de 3126 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3127
3128 STATS_INC_NODEALLOCS(cachep);
3129 STATS_INC_ACTIVE(cachep);
3130 STATS_SET_HIGH(cachep);
3131
8456a648 3132 BUG_ON(page->active == cachep->num);
b28a02de 3133
260b61dd 3134 obj = slab_get_obj(cachep, page);
ce8eb6c4 3135 n->free_objects--;
b28a02de 3136
b03a017b 3137 fixup_slab_list(cachep, n, page, &list);
e498be7d 3138
ce8eb6c4 3139 spin_unlock(&n->list_lock);
b03a017b 3140 fixup_objfreelist_debug(cachep, &list);
b28a02de 3141 goto done;
e498be7d 3142
a737b3e2 3143must_grow:
ce8eb6c4 3144 spin_unlock(&n->list_lock);
4167e9b2 3145 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3146 if (x)
3147 goto retry;
1da177e4 3148
8c8cc2c1 3149 return fallback_alloc(cachep, flags);
e498be7d 3150
a737b3e2 3151done:
b28a02de 3152 return obj;
e498be7d 3153}
8c8cc2c1 3154
8c8cc2c1 3155static __always_inline void *
48356303 3156slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3157 unsigned long caller)
8c8cc2c1
PE
3158{
3159 unsigned long save_flags;
3160 void *ptr;
7d6e6d09 3161 int slab_node = numa_mem_id();
8c8cc2c1 3162
dcce284a 3163 flags &= gfp_allowed_mask;
011eceaf
JDB
3164 cachep = slab_pre_alloc_hook(cachep, flags);
3165 if (unlikely(!cachep))
824ebef1
AM
3166 return NULL;
3167
8c8cc2c1
PE
3168 cache_alloc_debugcheck_before(cachep, flags);
3169 local_irq_save(save_flags);
3170
eacbbae3 3171 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3172 nodeid = slab_node;
8c8cc2c1 3173
18bf8541 3174 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3175 /* Node not bootstrapped yet */
3176 ptr = fallback_alloc(cachep, flags);
3177 goto out;
3178 }
3179
7d6e6d09 3180 if (nodeid == slab_node) {
8c8cc2c1
PE
3181 /*
3182 * Use the locally cached objects if possible.
3183 * However ____cache_alloc does not allow fallback
3184 * to other nodes. It may fail while we still have
3185 * objects on other nodes available.
3186 */
3187 ptr = ____cache_alloc(cachep, flags);
3188 if (ptr)
3189 goto out;
3190 }
3191 /* ___cache_alloc_node can fall back to other nodes */
3192 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3193 out:
3194 local_irq_restore(save_flags);
3195 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3196
d5e3ed66
JDB
3197 if (unlikely(flags & __GFP_ZERO) && ptr)
3198 memset(ptr, 0, cachep->object_size);
d07dbea4 3199
d5e3ed66 3200 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3201 return ptr;
3202}
3203
3204static __always_inline void *
3205__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206{
3207 void *objp;
3208
2ad654bc 3209 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3210 objp = alternate_node_alloc(cache, flags);
3211 if (objp)
3212 goto out;
3213 }
3214 objp = ____cache_alloc(cache, flags);
3215
3216 /*
3217 * We may just have run out of memory on the local node.
3218 * ____cache_alloc_node() knows how to locate memory on other nodes
3219 */
7d6e6d09
LS
3220 if (!objp)
3221 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3222
3223 out:
3224 return objp;
3225}
3226#else
3227
3228static __always_inline void *
3229__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230{
3231 return ____cache_alloc(cachep, flags);
3232}
3233
3234#endif /* CONFIG_NUMA */
3235
3236static __always_inline void *
48356303 3237slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3238{
3239 unsigned long save_flags;
3240 void *objp;
3241
dcce284a 3242 flags &= gfp_allowed_mask;
011eceaf
JDB
3243 cachep = slab_pre_alloc_hook(cachep, flags);
3244 if (unlikely(!cachep))
824ebef1
AM
3245 return NULL;
3246
8c8cc2c1
PE
3247 cache_alloc_debugcheck_before(cachep, flags);
3248 local_irq_save(save_flags);
3249 objp = __do_cache_alloc(cachep, flags);
3250 local_irq_restore(save_flags);
3251 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3252 prefetchw(objp);
3253
d5e3ed66
JDB
3254 if (unlikely(flags & __GFP_ZERO) && objp)
3255 memset(objp, 0, cachep->object_size);
d07dbea4 3256
d5e3ed66 3257 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3258 return objp;
3259}
e498be7d
CL
3260
3261/*
5f0985bb 3262 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3263 * @list: List of detached free slabs should be freed by caller
e498be7d 3264 */
97654dfa
JK
3265static void free_block(struct kmem_cache *cachep, void **objpp,
3266 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3267{
3268 int i;
25c063fb 3269 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3270
3271 for (i = 0; i < nr_objects; i++) {
072bb0aa 3272 void *objp;
8456a648 3273 struct page *page;
1da177e4 3274
072bb0aa
MG
3275 objp = objpp[i];
3276
8456a648 3277 page = virt_to_head_page(objp);
8456a648 3278 list_del(&page->lru);
ff69416e 3279 check_spinlock_acquired_node(cachep, node);
260b61dd 3280 slab_put_obj(cachep, page, objp);
1da177e4 3281 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3282 n->free_objects++;
1da177e4
LT
3283
3284 /* fixup slab chains */
8456a648 3285 if (page->active == 0) {
ce8eb6c4
CL
3286 if (n->free_objects > n->free_limit) {
3287 n->free_objects -= cachep->num;
97654dfa 3288 list_add_tail(&page->lru, list);
1da177e4 3289 } else {
8456a648 3290 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3291 }
3292 } else {
3293 /* Unconditionally move a slab to the end of the
3294 * partial list on free - maximum time for the
3295 * other objects to be freed, too.
3296 */
8456a648 3297 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3298 }
3299 }
3300}
3301
343e0d7a 3302static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3303{
3304 int batchcount;
ce8eb6c4 3305 struct kmem_cache_node *n;
7d6e6d09 3306 int node = numa_mem_id();
97654dfa 3307 LIST_HEAD(list);
1da177e4
LT
3308
3309 batchcount = ac->batchcount;
260b61dd 3310
1da177e4 3311 check_irq_off();
18bf8541 3312 n = get_node(cachep, node);
ce8eb6c4
CL
3313 spin_lock(&n->list_lock);
3314 if (n->shared) {
3315 struct array_cache *shared_array = n->shared;
b28a02de 3316 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3317 if (max) {
3318 if (batchcount > max)
3319 batchcount = max;
e498be7d 3320 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3321 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3322 shared_array->avail += batchcount;
3323 goto free_done;
3324 }
3325 }
3326
97654dfa 3327 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3328free_done:
1da177e4
LT
3329#if STATS
3330 {
3331 int i = 0;
73c0219d 3332 struct page *page;
1da177e4 3333
73c0219d 3334 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3335 BUG_ON(page->active);
1da177e4
LT
3336
3337 i++;
1da177e4
LT
3338 }
3339 STATS_SET_FREEABLE(cachep, i);
3340 }
3341#endif
ce8eb6c4 3342 spin_unlock(&n->list_lock);
97654dfa 3343 slabs_destroy(cachep, &list);
1da177e4 3344 ac->avail -= batchcount;
a737b3e2 3345 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3346}
3347
3348/*
a737b3e2
AM
3349 * Release an obj back to its cache. If the obj has a constructed state, it must
3350 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3351 */
a947eb95 3352static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3353 unsigned long caller)
1da177e4 3354{
9a2dba4b 3355 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4 3356
7ed2f9e6
AP
3357 kasan_slab_free(cachep, objp);
3358
1da177e4 3359 check_irq_off();
d5cff635 3360 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3361 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3362
8c138bc0 3363 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3364
1807a1aa
SS
3365 /*
3366 * Skip calling cache_free_alien() when the platform is not numa.
3367 * This will avoid cache misses that happen while accessing slabp (which
3368 * is per page memory reference) to get nodeid. Instead use a global
3369 * variable to skip the call, which is mostly likely to be present in
3370 * the cache.
3371 */
b6e68bc1 3372 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3373 return;
3374
3d880194 3375 if (ac->avail < ac->limit) {
1da177e4 3376 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3377 } else {
3378 STATS_INC_FREEMISS(cachep);
3379 cache_flusharray(cachep, ac);
1da177e4 3380 }
42c8c99c 3381
f68f8ddd
JK
3382 if (sk_memalloc_socks()) {
3383 struct page *page = virt_to_head_page(objp);
3384
3385 if (unlikely(PageSlabPfmemalloc(page))) {
3386 cache_free_pfmemalloc(cachep, page, objp);
3387 return;
3388 }
3389 }
3390
3391 ac->entry[ac->avail++] = objp;
1da177e4
LT
3392}
3393
3394/**
3395 * kmem_cache_alloc - Allocate an object
3396 * @cachep: The cache to allocate from.
3397 * @flags: See kmalloc().
3398 *
3399 * Allocate an object from this cache. The flags are only relevant
3400 * if the cache has no available objects.
3401 */
343e0d7a 3402void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3403{
48356303 3404 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3405
505f5dcb 3406 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3407 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3408 cachep->object_size, cachep->size, flags);
36555751
EGM
3409
3410 return ret;
1da177e4
LT
3411}
3412EXPORT_SYMBOL(kmem_cache_alloc);
3413
7b0501dd
JDB
3414static __always_inline void
3415cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3416 size_t size, void **p, unsigned long caller)
3417{
3418 size_t i;
3419
3420 for (i = 0; i < size; i++)
3421 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3422}
3423
865762a8 3424int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3425 void **p)
484748f0 3426{
2a777eac
JDB
3427 size_t i;
3428
3429 s = slab_pre_alloc_hook(s, flags);
3430 if (!s)
3431 return 0;
3432
3433 cache_alloc_debugcheck_before(s, flags);
3434
3435 local_irq_disable();
3436 for (i = 0; i < size; i++) {
3437 void *objp = __do_cache_alloc(s, flags);
3438
2a777eac
JDB
3439 if (unlikely(!objp))
3440 goto error;
3441 p[i] = objp;
3442 }
3443 local_irq_enable();
3444
7b0501dd
JDB
3445 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3446
2a777eac
JDB
3447 /* Clear memory outside IRQ disabled section */
3448 if (unlikely(flags & __GFP_ZERO))
3449 for (i = 0; i < size; i++)
3450 memset(p[i], 0, s->object_size);
3451
3452 slab_post_alloc_hook(s, flags, size, p);
3453 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3454 return size;
3455error:
3456 local_irq_enable();
7b0501dd 3457 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3458 slab_post_alloc_hook(s, flags, i, p);
3459 __kmem_cache_free_bulk(s, i, p);
3460 return 0;
484748f0
CL
3461}
3462EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3463
0f24f128 3464#ifdef CONFIG_TRACING
85beb586 3465void *
4052147c 3466kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3467{
85beb586
SR
3468 void *ret;
3469
48356303 3470 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3471
505f5dcb 3472 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3473 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3474 size, cachep->size, flags);
85beb586 3475 return ret;
36555751 3476}
85beb586 3477EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3478#endif
3479
1da177e4 3480#ifdef CONFIG_NUMA
d0d04b78
ZL
3481/**
3482 * kmem_cache_alloc_node - Allocate an object on the specified node
3483 * @cachep: The cache to allocate from.
3484 * @flags: See kmalloc().
3485 * @nodeid: node number of the target node.
3486 *
3487 * Identical to kmem_cache_alloc but it will allocate memory on the given
3488 * node, which can improve the performance for cpu bound structures.
3489 *
3490 * Fallback to other node is possible if __GFP_THISNODE is not set.
3491 */
8b98c169
CH
3492void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3493{
48356303 3494 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3495
505f5dcb 3496 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3497 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3498 cachep->object_size, cachep->size,
ca2b84cb 3499 flags, nodeid);
36555751
EGM
3500
3501 return ret;
8b98c169 3502}
1da177e4
LT
3503EXPORT_SYMBOL(kmem_cache_alloc_node);
3504
0f24f128 3505#ifdef CONFIG_TRACING
4052147c 3506void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3507 gfp_t flags,
4052147c
EG
3508 int nodeid,
3509 size_t size)
36555751 3510{
85beb586
SR
3511 void *ret;
3512
592f4145 3513 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3514
3515 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3516 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3517 size, cachep->size,
85beb586
SR
3518 flags, nodeid);
3519 return ret;
36555751 3520}
85beb586 3521EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3522#endif
3523
8b98c169 3524static __always_inline void *
7c0cb9c6 3525__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3526{
343e0d7a 3527 struct kmem_cache *cachep;
7ed2f9e6 3528 void *ret;
97e2bde4 3529
2c59dd65 3530 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3531 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3532 return cachep;
7ed2f9e6 3533 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3534 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3535
3536 return ret;
97e2bde4 3537}
8b98c169 3538
8b98c169
CH
3539void *__kmalloc_node(size_t size, gfp_t flags, int node)
3540{
7c0cb9c6 3541 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3542}
dbe5e69d 3543EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3544
3545void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3546 int node, unsigned long caller)
8b98c169 3547{
7c0cb9c6 3548 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3549}
3550EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3551#endif /* CONFIG_NUMA */
1da177e4
LT
3552
3553/**
800590f5 3554 * __do_kmalloc - allocate memory
1da177e4 3555 * @size: how many bytes of memory are required.
800590f5 3556 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3557 * @caller: function caller for debug tracking of the caller
1da177e4 3558 */
7fd6b141 3559static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3560 unsigned long caller)
1da177e4 3561{
343e0d7a 3562 struct kmem_cache *cachep;
36555751 3563 void *ret;
1da177e4 3564
2c59dd65 3565 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3566 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3567 return cachep;
48356303 3568 ret = slab_alloc(cachep, flags, caller);
36555751 3569
505f5dcb 3570 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3571 trace_kmalloc(caller, ret,
3b0efdfa 3572 size, cachep->size, flags);
36555751
EGM
3573
3574 return ret;
7fd6b141
PE
3575}
3576
7fd6b141
PE
3577void *__kmalloc(size_t size, gfp_t flags)
3578{
7c0cb9c6 3579 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3580}
3581EXPORT_SYMBOL(__kmalloc);
3582
ce71e27c 3583void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3584{
7c0cb9c6 3585 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3586}
3587EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3588
1da177e4
LT
3589/**
3590 * kmem_cache_free - Deallocate an object
3591 * @cachep: The cache the allocation was from.
3592 * @objp: The previously allocated object.
3593 *
3594 * Free an object which was previously allocated from this
3595 * cache.
3596 */
343e0d7a 3597void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3598{
3599 unsigned long flags;
b9ce5ef4
GC
3600 cachep = cache_from_obj(cachep, objp);
3601 if (!cachep)
3602 return;
1da177e4
LT
3603
3604 local_irq_save(flags);
d97d476b 3605 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3606 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3607 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3608 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3609 local_irq_restore(flags);
36555751 3610
ca2b84cb 3611 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3612}
3613EXPORT_SYMBOL(kmem_cache_free);
3614
e6cdb58d
JDB
3615void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3616{
3617 struct kmem_cache *s;
3618 size_t i;
3619
3620 local_irq_disable();
3621 for (i = 0; i < size; i++) {
3622 void *objp = p[i];
3623
ca257195
JDB
3624 if (!orig_s) /* called via kfree_bulk */
3625 s = virt_to_cache(objp);
3626 else
3627 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3628
3629 debug_check_no_locks_freed(objp, s->object_size);
3630 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3631 debug_check_no_obj_freed(objp, s->object_size);
3632
3633 __cache_free(s, objp, _RET_IP_);
3634 }
3635 local_irq_enable();
3636
3637 /* FIXME: add tracing */
3638}
3639EXPORT_SYMBOL(kmem_cache_free_bulk);
3640
1da177e4
LT
3641/**
3642 * kfree - free previously allocated memory
3643 * @objp: pointer returned by kmalloc.
3644 *
80e93eff
PE
3645 * If @objp is NULL, no operation is performed.
3646 *
1da177e4
LT
3647 * Don't free memory not originally allocated by kmalloc()
3648 * or you will run into trouble.
3649 */
3650void kfree(const void *objp)
3651{
343e0d7a 3652 struct kmem_cache *c;
1da177e4
LT
3653 unsigned long flags;
3654
2121db74
PE
3655 trace_kfree(_RET_IP_, objp);
3656
6cb8f913 3657 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3658 return;
3659 local_irq_save(flags);
3660 kfree_debugcheck(objp);
6ed5eb22 3661 c = virt_to_cache(objp);
8c138bc0
CL
3662 debug_check_no_locks_freed(objp, c->object_size);
3663
3664 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3665 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3666 local_irq_restore(flags);
3667}
3668EXPORT_SYMBOL(kfree);
3669
e498be7d 3670/*
ce8eb6c4 3671 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3672 */
5f0985bb 3673static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3674{
3675 int node;
ce8eb6c4 3676 struct kmem_cache_node *n;
cafeb02e 3677 struct array_cache *new_shared;
c8522a3a 3678 struct alien_cache **new_alien = NULL;
e498be7d 3679
9c09a95c 3680 for_each_online_node(node) {
cafeb02e 3681
b455def2
L
3682 if (use_alien_caches) {
3683 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3684 if (!new_alien)
3685 goto fail;
3686 }
cafeb02e 3687
63109846
ED
3688 new_shared = NULL;
3689 if (cachep->shared) {
3690 new_shared = alloc_arraycache(node,
0718dc2a 3691 cachep->shared*cachep->batchcount,
83b519e8 3692 0xbaadf00d, gfp);
63109846
ED
3693 if (!new_shared) {
3694 free_alien_cache(new_alien);
3695 goto fail;
3696 }
0718dc2a 3697 }
cafeb02e 3698
18bf8541 3699 n = get_node(cachep, node);
ce8eb6c4
CL
3700 if (n) {
3701 struct array_cache *shared = n->shared;
97654dfa 3702 LIST_HEAD(list);
cafeb02e 3703
ce8eb6c4 3704 spin_lock_irq(&n->list_lock);
e498be7d 3705
cafeb02e 3706 if (shared)
0718dc2a 3707 free_block(cachep, shared->entry,
97654dfa 3708 shared->avail, node, &list);
e498be7d 3709
ce8eb6c4
CL
3710 n->shared = new_shared;
3711 if (!n->alien) {
3712 n->alien = new_alien;
e498be7d
CL
3713 new_alien = NULL;
3714 }
ce8eb6c4 3715 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3716 cachep->batchcount + cachep->num;
ce8eb6c4 3717 spin_unlock_irq(&n->list_lock);
97654dfa 3718 slabs_destroy(cachep, &list);
cafeb02e 3719 kfree(shared);
e498be7d
CL
3720 free_alien_cache(new_alien);
3721 continue;
3722 }
ce8eb6c4
CL
3723 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3724 if (!n) {
0718dc2a
CL
3725 free_alien_cache(new_alien);
3726 kfree(new_shared);
e498be7d 3727 goto fail;
0718dc2a 3728 }
e498be7d 3729
ce8eb6c4 3730 kmem_cache_node_init(n);
5f0985bb
JZ
3731 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3732 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3733 n->shared = new_shared;
3734 n->alien = new_alien;
3735 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3736 cachep->batchcount + cachep->num;
ce8eb6c4 3737 cachep->node[node] = n;
e498be7d 3738 }
cafeb02e 3739 return 0;
0718dc2a 3740
a737b3e2 3741fail:
3b0efdfa 3742 if (!cachep->list.next) {
0718dc2a
CL
3743 /* Cache is not active yet. Roll back what we did */
3744 node--;
3745 while (node >= 0) {
18bf8541
CL
3746 n = get_node(cachep, node);
3747 if (n) {
ce8eb6c4
CL
3748 kfree(n->shared);
3749 free_alien_cache(n->alien);
3750 kfree(n);
6a67368c 3751 cachep->node[node] = NULL;
0718dc2a
CL
3752 }
3753 node--;
3754 }
3755 }
cafeb02e 3756 return -ENOMEM;
e498be7d
CL
3757}
3758
18004c5d 3759/* Always called with the slab_mutex held */
943a451a 3760static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3761 int batchcount, int shared, gfp_t gfp)
1da177e4 3762{
bf0dea23
JK
3763 struct array_cache __percpu *cpu_cache, *prev;
3764 int cpu;
1da177e4 3765
bf0dea23
JK
3766 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3767 if (!cpu_cache)
d2e7b7d0
SS
3768 return -ENOMEM;
3769
bf0dea23
JK
3770 prev = cachep->cpu_cache;
3771 cachep->cpu_cache = cpu_cache;
3772 kick_all_cpus_sync();
e498be7d 3773
1da177e4 3774 check_irq_on();
1da177e4
LT
3775 cachep->batchcount = batchcount;
3776 cachep->limit = limit;
e498be7d 3777 cachep->shared = shared;
1da177e4 3778
bf0dea23
JK
3779 if (!prev)
3780 goto alloc_node;
3781
3782 for_each_online_cpu(cpu) {
97654dfa 3783 LIST_HEAD(list);
18bf8541
CL
3784 int node;
3785 struct kmem_cache_node *n;
bf0dea23 3786 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3787
bf0dea23 3788 node = cpu_to_mem(cpu);
18bf8541
CL
3789 n = get_node(cachep, node);
3790 spin_lock_irq(&n->list_lock);
bf0dea23 3791 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3792 spin_unlock_irq(&n->list_lock);
97654dfa 3793 slabs_destroy(cachep, &list);
1da177e4 3794 }
bf0dea23
JK
3795 free_percpu(prev);
3796
3797alloc_node:
5f0985bb 3798 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3799}
3800
943a451a
GC
3801static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3802 int batchcount, int shared, gfp_t gfp)
3803{
3804 int ret;
426589f5 3805 struct kmem_cache *c;
943a451a
GC
3806
3807 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3808
3809 if (slab_state < FULL)
3810 return ret;
3811
3812 if ((ret < 0) || !is_root_cache(cachep))
3813 return ret;
3814
426589f5
VD
3815 lockdep_assert_held(&slab_mutex);
3816 for_each_memcg_cache(c, cachep) {
3817 /* return value determined by the root cache only */
3818 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3819 }
3820
3821 return ret;
3822}
3823
18004c5d 3824/* Called with slab_mutex held always */
83b519e8 3825static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3826{
3827 int err;
943a451a
GC
3828 int limit = 0;
3829 int shared = 0;
3830 int batchcount = 0;
3831
3832 if (!is_root_cache(cachep)) {
3833 struct kmem_cache *root = memcg_root_cache(cachep);
3834 limit = root->limit;
3835 shared = root->shared;
3836 batchcount = root->batchcount;
3837 }
1da177e4 3838
943a451a
GC
3839 if (limit && shared && batchcount)
3840 goto skip_setup;
a737b3e2
AM
3841 /*
3842 * The head array serves three purposes:
1da177e4
LT
3843 * - create a LIFO ordering, i.e. return objects that are cache-warm
3844 * - reduce the number of spinlock operations.
a737b3e2 3845 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3846 * bufctl chains: array operations are cheaper.
3847 * The numbers are guessed, we should auto-tune as described by
3848 * Bonwick.
3849 */
3b0efdfa 3850 if (cachep->size > 131072)
1da177e4 3851 limit = 1;
3b0efdfa 3852 else if (cachep->size > PAGE_SIZE)
1da177e4 3853 limit = 8;
3b0efdfa 3854 else if (cachep->size > 1024)
1da177e4 3855 limit = 24;
3b0efdfa 3856 else if (cachep->size > 256)
1da177e4
LT
3857 limit = 54;
3858 else
3859 limit = 120;
3860
a737b3e2
AM
3861 /*
3862 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3863 * allocation behaviour: Most allocs on one cpu, most free operations
3864 * on another cpu. For these cases, an efficient object passing between
3865 * cpus is necessary. This is provided by a shared array. The array
3866 * replaces Bonwick's magazine layer.
3867 * On uniprocessor, it's functionally equivalent (but less efficient)
3868 * to a larger limit. Thus disabled by default.
3869 */
3870 shared = 0;
3b0efdfa 3871 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3872 shared = 8;
1da177e4
LT
3873
3874#if DEBUG
a737b3e2
AM
3875 /*
3876 * With debugging enabled, large batchcount lead to excessively long
3877 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3878 */
3879 if (limit > 32)
3880 limit = 32;
3881#endif
943a451a
GC
3882 batchcount = (limit + 1) / 2;
3883skip_setup:
3884 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4 3885 if (err)
1170532b 3886 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3887 cachep->name, -err);
2ed3a4ef 3888 return err;
1da177e4
LT
3889}
3890
1b55253a 3891/*
ce8eb6c4
CL
3892 * Drain an array if it contains any elements taking the node lock only if
3893 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3894 * if drain_array() is used on the shared array.
1b55253a 3895 */
ce8eb6c4 3896static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3897 struct array_cache *ac, int node)
1da177e4 3898{
97654dfa 3899 LIST_HEAD(list);
18726ca8
JK
3900
3901 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3902 check_mutex_acquired();
1da177e4 3903
1b55253a
CL
3904 if (!ac || !ac->avail)
3905 return;
18726ca8
JK
3906
3907 if (ac->touched) {
1da177e4 3908 ac->touched = 0;
18726ca8 3909 return;
1da177e4 3910 }
18726ca8
JK
3911
3912 spin_lock_irq(&n->list_lock);
3913 drain_array_locked(cachep, ac, node, false, &list);
3914 spin_unlock_irq(&n->list_lock);
3915
3916 slabs_destroy(cachep, &list);
1da177e4
LT
3917}
3918
3919/**
3920 * cache_reap - Reclaim memory from caches.
05fb6bf0 3921 * @w: work descriptor
1da177e4
LT
3922 *
3923 * Called from workqueue/eventd every few seconds.
3924 * Purpose:
3925 * - clear the per-cpu caches for this CPU.
3926 * - return freeable pages to the main free memory pool.
3927 *
a737b3e2
AM
3928 * If we cannot acquire the cache chain mutex then just give up - we'll try
3929 * again on the next iteration.
1da177e4 3930 */
7c5cae36 3931static void cache_reap(struct work_struct *w)
1da177e4 3932{
7a7c381d 3933 struct kmem_cache *searchp;
ce8eb6c4 3934 struct kmem_cache_node *n;
7d6e6d09 3935 int node = numa_mem_id();
bf6aede7 3936 struct delayed_work *work = to_delayed_work(w);
1da177e4 3937
18004c5d 3938 if (!mutex_trylock(&slab_mutex))
1da177e4 3939 /* Give up. Setup the next iteration. */
7c5cae36 3940 goto out;
1da177e4 3941
18004c5d 3942 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3943 check_irq_on();
3944
35386e3b 3945 /*
ce8eb6c4 3946 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3947 * have established with reasonable certainty that
3948 * we can do some work if the lock was obtained.
3949 */
18bf8541 3950 n = get_node(searchp, node);
35386e3b 3951
ce8eb6c4 3952 reap_alien(searchp, n);
1da177e4 3953
18726ca8 3954 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 3955
35386e3b
CL
3956 /*
3957 * These are racy checks but it does not matter
3958 * if we skip one check or scan twice.
3959 */
ce8eb6c4 3960 if (time_after(n->next_reap, jiffies))
35386e3b 3961 goto next;
1da177e4 3962
5f0985bb 3963 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3964
18726ca8 3965 drain_array(searchp, n, n->shared, node);
1da177e4 3966
ce8eb6c4
CL
3967 if (n->free_touched)
3968 n->free_touched = 0;
ed11d9eb
CL
3969 else {
3970 int freed;
1da177e4 3971
ce8eb6c4 3972 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3973 5 * searchp->num - 1) / (5 * searchp->num));
3974 STATS_ADD_REAPED(searchp, freed);
3975 }
35386e3b 3976next:
1da177e4
LT
3977 cond_resched();
3978 }
3979 check_irq_on();
18004c5d 3980 mutex_unlock(&slab_mutex);
8fce4d8e 3981 next_reap_node();
7c5cae36 3982out:
a737b3e2 3983 /* Set up the next iteration */
5f0985bb 3984 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3985}
3986
158a9624 3987#ifdef CONFIG_SLABINFO
0d7561c6 3988void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3989{
8456a648 3990 struct page *page;
b28a02de
PE
3991 unsigned long active_objs;
3992 unsigned long num_objs;
3993 unsigned long active_slabs = 0;
3994 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3995 const char *name;
1da177e4 3996 char *error = NULL;
e498be7d 3997 int node;
ce8eb6c4 3998 struct kmem_cache_node *n;
1da177e4 3999
1da177e4
LT
4000 active_objs = 0;
4001 num_slabs = 0;
18bf8541 4002 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4003
ca3b9b91 4004 check_irq_on();
ce8eb6c4 4005 spin_lock_irq(&n->list_lock);
e498be7d 4006
8456a648
JK
4007 list_for_each_entry(page, &n->slabs_full, lru) {
4008 if (page->active != cachep->num && !error)
e498be7d
CL
4009 error = "slabs_full accounting error";
4010 active_objs += cachep->num;
4011 active_slabs++;
4012 }
8456a648
JK
4013 list_for_each_entry(page, &n->slabs_partial, lru) {
4014 if (page->active == cachep->num && !error)
106a74e1 4015 error = "slabs_partial accounting error";
8456a648 4016 if (!page->active && !error)
106a74e1 4017 error = "slabs_partial accounting error";
8456a648 4018 active_objs += page->active;
e498be7d
CL
4019 active_slabs++;
4020 }
8456a648
JK
4021 list_for_each_entry(page, &n->slabs_free, lru) {
4022 if (page->active && !error)
106a74e1 4023 error = "slabs_free accounting error";
e498be7d
CL
4024 num_slabs++;
4025 }
ce8eb6c4
CL
4026 free_objects += n->free_objects;
4027 if (n->shared)
4028 shared_avail += n->shared->avail;
e498be7d 4029
ce8eb6c4 4030 spin_unlock_irq(&n->list_lock);
1da177e4 4031 }
b28a02de
PE
4032 num_slabs += active_slabs;
4033 num_objs = num_slabs * cachep->num;
e498be7d 4034 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4035 error = "free_objects accounting error";
4036
b28a02de 4037 name = cachep->name;
1da177e4 4038 if (error)
1170532b 4039 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4040
0d7561c6
GC
4041 sinfo->active_objs = active_objs;
4042 sinfo->num_objs = num_objs;
4043 sinfo->active_slabs = active_slabs;
4044 sinfo->num_slabs = num_slabs;
4045 sinfo->shared_avail = shared_avail;
4046 sinfo->limit = cachep->limit;
4047 sinfo->batchcount = cachep->batchcount;
4048 sinfo->shared = cachep->shared;
4049 sinfo->objects_per_slab = cachep->num;
4050 sinfo->cache_order = cachep->gfporder;
4051}
4052
4053void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4054{
1da177e4 4055#if STATS
ce8eb6c4 4056 { /* node stats */
1da177e4
LT
4057 unsigned long high = cachep->high_mark;
4058 unsigned long allocs = cachep->num_allocations;
4059 unsigned long grown = cachep->grown;
4060 unsigned long reaped = cachep->reaped;
4061 unsigned long errors = cachep->errors;
4062 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4063 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4064 unsigned long node_frees = cachep->node_frees;
fb7faf33 4065 unsigned long overflows = cachep->node_overflow;
1da177e4 4066
756a025f 4067 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4068 allocs, high, grown,
4069 reaped, errors, max_freeable, node_allocs,
4070 node_frees, overflows);
1da177e4
LT
4071 }
4072 /* cpu stats */
4073 {
4074 unsigned long allochit = atomic_read(&cachep->allochit);
4075 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4076 unsigned long freehit = atomic_read(&cachep->freehit);
4077 unsigned long freemiss = atomic_read(&cachep->freemiss);
4078
4079 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4080 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4081 }
4082#endif
1da177e4
LT
4083}
4084
1da177e4
LT
4085#define MAX_SLABINFO_WRITE 128
4086/**
4087 * slabinfo_write - Tuning for the slab allocator
4088 * @file: unused
4089 * @buffer: user buffer
4090 * @count: data length
4091 * @ppos: unused
4092 */
b7454ad3 4093ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4094 size_t count, loff_t *ppos)
1da177e4 4095{
b28a02de 4096 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4097 int limit, batchcount, shared, res;
7a7c381d 4098 struct kmem_cache *cachep;
b28a02de 4099
1da177e4
LT
4100 if (count > MAX_SLABINFO_WRITE)
4101 return -EINVAL;
4102 if (copy_from_user(&kbuf, buffer, count))
4103 return -EFAULT;
b28a02de 4104 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4105
4106 tmp = strchr(kbuf, ' ');
4107 if (!tmp)
4108 return -EINVAL;
4109 *tmp = '\0';
4110 tmp++;
4111 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4112 return -EINVAL;
4113
4114 /* Find the cache in the chain of caches. */
18004c5d 4115 mutex_lock(&slab_mutex);
1da177e4 4116 res = -EINVAL;
18004c5d 4117 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4118 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4119 if (limit < 1 || batchcount < 1 ||
4120 batchcount > limit || shared < 0) {
e498be7d 4121 res = 0;
1da177e4 4122 } else {
e498be7d 4123 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4124 batchcount, shared,
4125 GFP_KERNEL);
1da177e4
LT
4126 }
4127 break;
4128 }
4129 }
18004c5d 4130 mutex_unlock(&slab_mutex);
1da177e4
LT
4131 if (res >= 0)
4132 res = count;
4133 return res;
4134}
871751e2
AV
4135
4136#ifdef CONFIG_DEBUG_SLAB_LEAK
4137
871751e2
AV
4138static inline int add_caller(unsigned long *n, unsigned long v)
4139{
4140 unsigned long *p;
4141 int l;
4142 if (!v)
4143 return 1;
4144 l = n[1];
4145 p = n + 2;
4146 while (l) {
4147 int i = l/2;
4148 unsigned long *q = p + 2 * i;
4149 if (*q == v) {
4150 q[1]++;
4151 return 1;
4152 }
4153 if (*q > v) {
4154 l = i;
4155 } else {
4156 p = q + 2;
4157 l -= i + 1;
4158 }
4159 }
4160 if (++n[1] == n[0])
4161 return 0;
4162 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4163 p[0] = v;
4164 p[1] = 1;
4165 return 1;
4166}
4167
8456a648
JK
4168static void handle_slab(unsigned long *n, struct kmem_cache *c,
4169 struct page *page)
871751e2
AV
4170{
4171 void *p;
d31676df
JK
4172 int i, j;
4173 unsigned long v;
b1cb0982 4174
871751e2
AV
4175 if (n[0] == n[1])
4176 return;
8456a648 4177 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4178 bool active = true;
4179
4180 for (j = page->active; j < c->num; j++) {
4181 if (get_free_obj(page, j) == i) {
4182 active = false;
4183 break;
4184 }
4185 }
4186
4187 if (!active)
871751e2 4188 continue;
b1cb0982 4189
d31676df
JK
4190 /*
4191 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4192 * mapping is established when actual object allocation and
4193 * we could mistakenly access the unmapped object in the cpu
4194 * cache.
4195 */
4196 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4197 continue;
4198
4199 if (!add_caller(n, v))
871751e2
AV
4200 return;
4201 }
4202}
4203
4204static void show_symbol(struct seq_file *m, unsigned long address)
4205{
4206#ifdef CONFIG_KALLSYMS
871751e2 4207 unsigned long offset, size;
9281acea 4208 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4209
a5c43dae 4210 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4211 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4212 if (modname[0])
871751e2
AV
4213 seq_printf(m, " [%s]", modname);
4214 return;
4215 }
4216#endif
4217 seq_printf(m, "%p", (void *)address);
4218}
4219
4220static int leaks_show(struct seq_file *m, void *p)
4221{
0672aa7c 4222 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4223 struct page *page;
ce8eb6c4 4224 struct kmem_cache_node *n;
871751e2 4225 const char *name;
db845067 4226 unsigned long *x = m->private;
871751e2
AV
4227 int node;
4228 int i;
4229
4230 if (!(cachep->flags & SLAB_STORE_USER))
4231 return 0;
4232 if (!(cachep->flags & SLAB_RED_ZONE))
4233 return 0;
4234
d31676df
JK
4235 /*
4236 * Set store_user_clean and start to grab stored user information
4237 * for all objects on this cache. If some alloc/free requests comes
4238 * during the processing, information would be wrong so restart
4239 * whole processing.
4240 */
4241 do {
4242 set_store_user_clean(cachep);
4243 drain_cpu_caches(cachep);
4244
4245 x[1] = 0;
871751e2 4246
d31676df 4247 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4248
d31676df
JK
4249 check_irq_on();
4250 spin_lock_irq(&n->list_lock);
871751e2 4251
d31676df
JK
4252 list_for_each_entry(page, &n->slabs_full, lru)
4253 handle_slab(x, cachep, page);
4254 list_for_each_entry(page, &n->slabs_partial, lru)
4255 handle_slab(x, cachep, page);
4256 spin_unlock_irq(&n->list_lock);
4257 }
4258 } while (!is_store_user_clean(cachep));
871751e2 4259
871751e2 4260 name = cachep->name;
db845067 4261 if (x[0] == x[1]) {
871751e2 4262 /* Increase the buffer size */
18004c5d 4263 mutex_unlock(&slab_mutex);
db845067 4264 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4265 if (!m->private) {
4266 /* Too bad, we are really out */
db845067 4267 m->private = x;
18004c5d 4268 mutex_lock(&slab_mutex);
871751e2
AV
4269 return -ENOMEM;
4270 }
db845067
CL
4271 *(unsigned long *)m->private = x[0] * 2;
4272 kfree(x);
18004c5d 4273 mutex_lock(&slab_mutex);
871751e2
AV
4274 /* Now make sure this entry will be retried */
4275 m->count = m->size;
4276 return 0;
4277 }
db845067
CL
4278 for (i = 0; i < x[1]; i++) {
4279 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4280 show_symbol(m, x[2*i+2]);
871751e2
AV
4281 seq_putc(m, '\n');
4282 }
d2e7b7d0 4283
871751e2
AV
4284 return 0;
4285}
4286
a0ec95a8 4287static const struct seq_operations slabstats_op = {
1df3b26f 4288 .start = slab_start,
276a2439
WL
4289 .next = slab_next,
4290 .stop = slab_stop,
871751e2
AV
4291 .show = leaks_show,
4292};
a0ec95a8
AD
4293
4294static int slabstats_open(struct inode *inode, struct file *file)
4295{
b208ce32
RJ
4296 unsigned long *n;
4297
4298 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4299 if (!n)
4300 return -ENOMEM;
4301
4302 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4303
4304 return 0;
a0ec95a8
AD
4305}
4306
4307static const struct file_operations proc_slabstats_operations = {
4308 .open = slabstats_open,
4309 .read = seq_read,
4310 .llseek = seq_lseek,
4311 .release = seq_release_private,
4312};
4313#endif
4314
4315static int __init slab_proc_init(void)
4316{
4317#ifdef CONFIG_DEBUG_SLAB_LEAK
4318 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4319#endif
a0ec95a8
AD
4320 return 0;
4321}
4322module_init(slab_proc_init);
1da177e4
LT
4323#endif
4324
00e145b6
MS
4325/**
4326 * ksize - get the actual amount of memory allocated for a given object
4327 * @objp: Pointer to the object
4328 *
4329 * kmalloc may internally round up allocations and return more memory
4330 * than requested. ksize() can be used to determine the actual amount of
4331 * memory allocated. The caller may use this additional memory, even though
4332 * a smaller amount of memory was initially specified with the kmalloc call.
4333 * The caller must guarantee that objp points to a valid object previously
4334 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4335 * must not be freed during the duration of the call.
4336 */
fd76bab2 4337size_t ksize(const void *objp)
1da177e4 4338{
7ed2f9e6
AP
4339 size_t size;
4340
ef8b4520
CL
4341 BUG_ON(!objp);
4342 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4343 return 0;
1da177e4 4344
7ed2f9e6
AP
4345 size = virt_to_cache(objp)->object_size;
4346 /* We assume that ksize callers could use the whole allocated area,
4347 * so we need to unpoison this area.
4348 */
505f5dcb 4349 kasan_krealloc(objp, size, GFP_NOWAIT);
7ed2f9e6
AP
4350
4351 return size;
1da177e4 4352}
b1aabecd 4353EXPORT_SYMBOL(ksize);