]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab.c
mm: add support for kmem caches in DMA32 zone
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 443 slab_flags_t flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
a527aabb
CL
682 if (alc) {
683 init_arraycache(&alc->ac, entries, batch);
684 spin_lock_init(&alc->lock);
685 }
c8522a3a
JK
686 return alc;
687}
688
689static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 690{
c8522a3a 691 struct alien_cache **alc_ptr;
5e804789 692 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
693 int i;
694
695 if (limit > 1)
696 limit = 12;
c8522a3a
JK
697 alc_ptr = kzalloc_node(memsize, gfp, node);
698 if (!alc_ptr)
699 return NULL;
700
701 for_each_node(i) {
702 if (i == node || !node_online(i))
703 continue;
704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 if (!alc_ptr[i]) {
706 for (i--; i >= 0; i--)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 return NULL;
e498be7d
CL
710 }
711 }
c8522a3a 712 return alc_ptr;
e498be7d
CL
713}
714
c8522a3a 715static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
716{
717 int i;
718
c8522a3a 719 if (!alc_ptr)
e498be7d 720 return;
e498be7d 721 for_each_node(i)
c8522a3a
JK
722 kfree(alc_ptr[i]);
723 kfree(alc_ptr);
e498be7d
CL
724}
725
343e0d7a 726static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
727 struct array_cache *ac, int node,
728 struct list_head *list)
e498be7d 729{
18bf8541 730 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
731
732 if (ac->avail) {
ce8eb6c4 733 spin_lock(&n->list_lock);
e00946fe
CL
734 /*
735 * Stuff objects into the remote nodes shared array first.
736 * That way we could avoid the overhead of putting the objects
737 * into the free lists and getting them back later.
738 */
ce8eb6c4
CL
739 if (n->shared)
740 transfer_objects(n->shared, ac, ac->limit);
e00946fe 741
833b706c 742 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 743 ac->avail = 0;
ce8eb6c4 744 spin_unlock(&n->list_lock);
e498be7d
CL
745 }
746}
747
8fce4d8e
CL
748/*
749 * Called from cache_reap() to regularly drain alien caches round robin.
750 */
ce8eb6c4 751static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 752{
909ea964 753 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 754
ce8eb6c4 755 if (n->alien) {
c8522a3a
JK
756 struct alien_cache *alc = n->alien[node];
757 struct array_cache *ac;
758
759 if (alc) {
760 ac = &alc->ac;
49dfc304 761 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
762 LIST_HEAD(list);
763
764 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 765 spin_unlock_irq(&alc->lock);
833b706c 766 slabs_destroy(cachep, &list);
c8522a3a 767 }
8fce4d8e
CL
768 }
769 }
770}
771
a737b3e2 772static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 773 struct alien_cache **alien)
e498be7d 774{
b28a02de 775 int i = 0;
c8522a3a 776 struct alien_cache *alc;
e498be7d
CL
777 struct array_cache *ac;
778 unsigned long flags;
779
780 for_each_online_node(i) {
c8522a3a
JK
781 alc = alien[i];
782 if (alc) {
833b706c
JK
783 LIST_HEAD(list);
784
c8522a3a 785 ac = &alc->ac;
49dfc304 786 spin_lock_irqsave(&alc->lock, flags);
833b706c 787 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 788 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 789 slabs_destroy(cachep, &list);
e498be7d
CL
790 }
791 }
792}
729bd0b7 793
25c4f304
JK
794static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 int node, int page_node)
729bd0b7 796{
ce8eb6c4 797 struct kmem_cache_node *n;
c8522a3a
JK
798 struct alien_cache *alien = NULL;
799 struct array_cache *ac;
97654dfa 800 LIST_HEAD(list);
1ca4cb24 801
18bf8541 802 n = get_node(cachep, node);
729bd0b7 803 STATS_INC_NODEFREES(cachep);
25c4f304
JK
804 if (n->alien && n->alien[page_node]) {
805 alien = n->alien[page_node];
c8522a3a 806 ac = &alien->ac;
49dfc304 807 spin_lock(&alien->lock);
c8522a3a 808 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 809 STATS_INC_ACOVERFLOW(cachep);
25c4f304 810 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 811 }
f68f8ddd 812 ac->entry[ac->avail++] = objp;
49dfc304 813 spin_unlock(&alien->lock);
833b706c 814 slabs_destroy(cachep, &list);
729bd0b7 815 } else {
25c4f304 816 n = get_node(cachep, page_node);
18bf8541 817 spin_lock(&n->list_lock);
25c4f304 818 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 819 spin_unlock(&n->list_lock);
97654dfa 820 slabs_destroy(cachep, &list);
729bd0b7
PE
821 }
822 return 1;
823}
25c4f304
JK
824
825static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826{
827 int page_node = page_to_nid(virt_to_page(objp));
828 int node = numa_mem_id();
829 /*
830 * Make sure we are not freeing a object from another node to the array
831 * cache on this cpu.
832 */
833 if (likely(node == page_node))
834 return 0;
835
836 return __cache_free_alien(cachep, objp, node, page_node);
837}
4167e9b2
DR
838
839/*
444eb2a4
MG
840 * Construct gfp mask to allocate from a specific node but do not reclaim or
841 * warn about failures.
4167e9b2
DR
842 */
843static inline gfp_t gfp_exact_node(gfp_t flags)
844{
444eb2a4 845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 846}
e498be7d
CL
847#endif
848
ded0ecf6
JK
849static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850{
851 struct kmem_cache_node *n;
852
853 /*
854 * Set up the kmem_cache_node for cpu before we can
855 * begin anything. Make sure some other cpu on this
856 * node has not already allocated this
857 */
858 n = get_node(cachep, node);
859 if (n) {
860 spin_lock_irq(&n->list_lock);
861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 cachep->num;
863 spin_unlock_irq(&n->list_lock);
864
865 return 0;
866 }
867
868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 if (!n)
870 return -ENOMEM;
871
872 kmem_cache_node_init(n);
873 n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875
876 n->free_limit =
877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878
879 /*
880 * The kmem_cache_nodes don't come and go as CPUs
881 * come and go. slab_mutex is sufficient
882 * protection here.
883 */
884 cachep->node[node] = n;
885
886 return 0;
887}
888
6731d4f1 889#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 890/*
6a67368c 891 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 892 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 893 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 894 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
895 * already in use.
896 *
18004c5d 897 * Must hold slab_mutex.
8f9f8d9e 898 */
6a67368c 899static int init_cache_node_node(int node)
8f9f8d9e 900{
ded0ecf6 901 int ret;
8f9f8d9e 902 struct kmem_cache *cachep;
8f9f8d9e 903
18004c5d 904 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
905 ret = init_cache_node(cachep, node, GFP_KERNEL);
906 if (ret)
907 return ret;
8f9f8d9e 908 }
ded0ecf6 909
8f9f8d9e
DR
910 return 0;
911}
6731d4f1 912#endif
8f9f8d9e 913
c3d332b6
JK
914static int setup_kmem_cache_node(struct kmem_cache *cachep,
915 int node, gfp_t gfp, bool force_change)
916{
917 int ret = -ENOMEM;
918 struct kmem_cache_node *n;
919 struct array_cache *old_shared = NULL;
920 struct array_cache *new_shared = NULL;
921 struct alien_cache **new_alien = NULL;
922 LIST_HEAD(list);
923
924 if (use_alien_caches) {
925 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
926 if (!new_alien)
927 goto fail;
928 }
929
930 if (cachep->shared) {
931 new_shared = alloc_arraycache(node,
932 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
933 if (!new_shared)
934 goto fail;
935 }
936
937 ret = init_cache_node(cachep, node, gfp);
938 if (ret)
939 goto fail;
940
941 n = get_node(cachep, node);
942 spin_lock_irq(&n->list_lock);
943 if (n->shared && force_change) {
944 free_block(cachep, n->shared->entry,
945 n->shared->avail, node, &list);
946 n->shared->avail = 0;
947 }
948
949 if (!n->shared || force_change) {
950 old_shared = n->shared;
951 n->shared = new_shared;
952 new_shared = NULL;
953 }
954
955 if (!n->alien) {
956 n->alien = new_alien;
957 new_alien = NULL;
958 }
959
960 spin_unlock_irq(&n->list_lock);
961 slabs_destroy(cachep, &list);
962
801faf0d
JK
963 /*
964 * To protect lockless access to n->shared during irq disabled context.
965 * If n->shared isn't NULL in irq disabled context, accessing to it is
966 * guaranteed to be valid until irq is re-enabled, because it will be
967 * freed after synchronize_sched().
968 */
86d9f485 969 if (old_shared && force_change)
801faf0d
JK
970 synchronize_sched();
971
c3d332b6
JK
972fail:
973 kfree(old_shared);
974 kfree(new_shared);
975 free_alien_cache(new_alien);
976
977 return ret;
978}
979
6731d4f1
SAS
980#ifdef CONFIG_SMP
981
0db0628d 982static void cpuup_canceled(long cpu)
fbf1e473
AM
983{
984 struct kmem_cache *cachep;
ce8eb6c4 985 struct kmem_cache_node *n = NULL;
7d6e6d09 986 int node = cpu_to_mem(cpu);
a70f7302 987 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 988
18004c5d 989 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
990 struct array_cache *nc;
991 struct array_cache *shared;
c8522a3a 992 struct alien_cache **alien;
97654dfa 993 LIST_HEAD(list);
fbf1e473 994
18bf8541 995 n = get_node(cachep, node);
ce8eb6c4 996 if (!n)
bf0dea23 997 continue;
fbf1e473 998
ce8eb6c4 999 spin_lock_irq(&n->list_lock);
fbf1e473 1000
ce8eb6c4
CL
1001 /* Free limit for this kmem_cache_node */
1002 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1003
1004 /* cpu is dead; no one can alloc from it. */
1005 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1006 if (nc) {
97654dfa 1007 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1008 nc->avail = 0;
1009 }
fbf1e473 1010
58463c1f 1011 if (!cpumask_empty(mask)) {
ce8eb6c4 1012 spin_unlock_irq(&n->list_lock);
bf0dea23 1013 goto free_slab;
fbf1e473
AM
1014 }
1015
ce8eb6c4 1016 shared = n->shared;
fbf1e473
AM
1017 if (shared) {
1018 free_block(cachep, shared->entry,
97654dfa 1019 shared->avail, node, &list);
ce8eb6c4 1020 n->shared = NULL;
fbf1e473
AM
1021 }
1022
ce8eb6c4
CL
1023 alien = n->alien;
1024 n->alien = NULL;
fbf1e473 1025
ce8eb6c4 1026 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1027
1028 kfree(shared);
1029 if (alien) {
1030 drain_alien_cache(cachep, alien);
1031 free_alien_cache(alien);
1032 }
bf0dea23
JK
1033
1034free_slab:
97654dfa 1035 slabs_destroy(cachep, &list);
fbf1e473
AM
1036 }
1037 /*
1038 * In the previous loop, all the objects were freed to
1039 * the respective cache's slabs, now we can go ahead and
1040 * shrink each nodelist to its limit.
1041 */
18004c5d 1042 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1043 n = get_node(cachep, node);
ce8eb6c4 1044 if (!n)
fbf1e473 1045 continue;
a5aa63a5 1046 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1047 }
1048}
1049
0db0628d 1050static int cpuup_prepare(long cpu)
1da177e4 1051{
343e0d7a 1052 struct kmem_cache *cachep;
7d6e6d09 1053 int node = cpu_to_mem(cpu);
8f9f8d9e 1054 int err;
1da177e4 1055
fbf1e473
AM
1056 /*
1057 * We need to do this right in the beginning since
1058 * alloc_arraycache's are going to use this list.
1059 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1060 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1061 */
6a67368c 1062 err = init_cache_node_node(node);
8f9f8d9e
DR
1063 if (err < 0)
1064 goto bad;
fbf1e473
AM
1065
1066 /*
1067 * Now we can go ahead with allocating the shared arrays and
1068 * array caches
1069 */
18004c5d 1070 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1071 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1072 if (err)
1073 goto bad;
fbf1e473 1074 }
ce79ddc8 1075
fbf1e473
AM
1076 return 0;
1077bad:
12d00f6a 1078 cpuup_canceled(cpu);
fbf1e473
AM
1079 return -ENOMEM;
1080}
1081
6731d4f1 1082int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1083{
6731d4f1 1084 int err;
fbf1e473 1085
6731d4f1
SAS
1086 mutex_lock(&slab_mutex);
1087 err = cpuup_prepare(cpu);
1088 mutex_unlock(&slab_mutex);
1089 return err;
1090}
1091
1092/*
1093 * This is called for a failed online attempt and for a successful
1094 * offline.
1095 *
1096 * Even if all the cpus of a node are down, we don't free the
1097 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1098 * a kmalloc allocation from another cpu for memory from the node of
1099 * the cpu going down. The list3 structure is usually allocated from
1100 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1101 */
1102int slab_dead_cpu(unsigned int cpu)
1103{
1104 mutex_lock(&slab_mutex);
1105 cpuup_canceled(cpu);
1106 mutex_unlock(&slab_mutex);
1107 return 0;
1108}
8f5be20b 1109#endif
6731d4f1
SAS
1110
1111static int slab_online_cpu(unsigned int cpu)
1112{
1113 start_cpu_timer(cpu);
1114 return 0;
1da177e4
LT
1115}
1116
6731d4f1
SAS
1117static int slab_offline_cpu(unsigned int cpu)
1118{
1119 /*
1120 * Shutdown cache reaper. Note that the slab_mutex is held so
1121 * that if cache_reap() is invoked it cannot do anything
1122 * expensive but will only modify reap_work and reschedule the
1123 * timer.
1124 */
1125 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1126 /* Now the cache_reaper is guaranteed to be not running. */
1127 per_cpu(slab_reap_work, cpu).work.func = NULL;
1128 return 0;
1129}
1da177e4 1130
8f9f8d9e
DR
1131#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132/*
1133 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1134 * Returns -EBUSY if all objects cannot be drained so that the node is not
1135 * removed.
1136 *
18004c5d 1137 * Must hold slab_mutex.
8f9f8d9e 1138 */
6a67368c 1139static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1140{
1141 struct kmem_cache *cachep;
1142 int ret = 0;
1143
18004c5d 1144 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1145 struct kmem_cache_node *n;
8f9f8d9e 1146
18bf8541 1147 n = get_node(cachep, node);
ce8eb6c4 1148 if (!n)
8f9f8d9e
DR
1149 continue;
1150
a5aa63a5 1151 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1152
ce8eb6c4
CL
1153 if (!list_empty(&n->slabs_full) ||
1154 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1155 ret = -EBUSY;
1156 break;
1157 }
1158 }
1159 return ret;
1160}
1161
1162static int __meminit slab_memory_callback(struct notifier_block *self,
1163 unsigned long action, void *arg)
1164{
1165 struct memory_notify *mnb = arg;
1166 int ret = 0;
1167 int nid;
1168
1169 nid = mnb->status_change_nid;
1170 if (nid < 0)
1171 goto out;
1172
1173 switch (action) {
1174 case MEM_GOING_ONLINE:
18004c5d 1175 mutex_lock(&slab_mutex);
6a67368c 1176 ret = init_cache_node_node(nid);
18004c5d 1177 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1178 break;
1179 case MEM_GOING_OFFLINE:
18004c5d 1180 mutex_lock(&slab_mutex);
6a67368c 1181 ret = drain_cache_node_node(nid);
18004c5d 1182 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1183 break;
1184 case MEM_ONLINE:
1185 case MEM_OFFLINE:
1186 case MEM_CANCEL_ONLINE:
1187 case MEM_CANCEL_OFFLINE:
1188 break;
1189 }
1190out:
5fda1bd5 1191 return notifier_from_errno(ret);
8f9f8d9e
DR
1192}
1193#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1194
e498be7d 1195/*
ce8eb6c4 1196 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1197 */
6744f087 1198static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1199 int nodeid)
e498be7d 1200{
6744f087 1201 struct kmem_cache_node *ptr;
e498be7d 1202
6744f087 1203 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1204 BUG_ON(!ptr);
1205
6744f087 1206 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1207 /*
1208 * Do not assume that spinlocks can be initialized via memcpy:
1209 */
1210 spin_lock_init(&ptr->list_lock);
1211
e498be7d 1212 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1213 cachep->node[nodeid] = ptr;
e498be7d
CL
1214}
1215
556a169d 1216/*
ce8eb6c4
CL
1217 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1218 * size of kmem_cache_node.
556a169d 1219 */
ce8eb6c4 1220static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1221{
1222 int node;
1223
1224 for_each_online_node(node) {
ce8eb6c4 1225 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1226 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1227 REAPTIMEOUT_NODE +
1228 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1229 }
1230}
1231
a737b3e2
AM
1232/*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
1da177e4
LT
1235 */
1236void __init kmem_cache_init(void)
1237{
e498be7d
CL
1238 int i;
1239
68126702
JK
1240 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1241 sizeof(struct rcu_head));
9b030cb8
CL
1242 kmem_cache = &kmem_cache_boot;
1243
8888177e 1244 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1245 use_alien_caches = 0;
1246
3c583465 1247 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1248 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1249
1da177e4
LT
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1252 * page orders on machines with more than 32MB of memory if
1253 * not overridden on the command line.
1da177e4 1254 */
3df1cccd 1255 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1256 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1257
1da177e4
LT
1258 /* Bootstrap is tricky, because several objects are allocated
1259 * from caches that do not exist yet:
9b030cb8
CL
1260 * 1) initialize the kmem_cache cache: it contains the struct
1261 * kmem_cache structures of all caches, except kmem_cache itself:
1262 * kmem_cache is statically allocated.
e498be7d 1263 * Initially an __init data area is used for the head array and the
ce8eb6c4 1264 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1265 * array at the end of the bootstrap.
1da177e4 1266 * 2) Create the first kmalloc cache.
343e0d7a 1267 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1268 * An __init data area is used for the head array.
1269 * 3) Create the remaining kmalloc caches, with minimally sized
1270 * head arrays.
9b030cb8 1271 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1272 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1273 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1274 * the other cache's with kmalloc allocated memory.
1275 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1276 */
1277
9b030cb8 1278 /* 1) create the kmem_cache */
1da177e4 1279
8da3430d 1280 /*
b56efcf0 1281 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1282 */
2f9baa9f 1283 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1284 offsetof(struct kmem_cache, node) +
6744f087 1285 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1286 SLAB_HWCACHE_ALIGN);
1287 list_add(&kmem_cache->list, &slab_caches);
eb220838 1288 memcg_link_cache(kmem_cache);
bf0dea23 1289 slab_state = PARTIAL;
1da177e4 1290
a737b3e2 1291 /*
bf0dea23
JK
1292 * Initialize the caches that provide memory for the kmem_cache_node
1293 * structures first. Without this, further allocations will bug.
e498be7d 1294 */
af3b5f87
VB
1295 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1296 kmalloc_info[INDEX_NODE].name,
ce8eb6c4 1297 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1298 slab_state = PARTIAL_NODE;
34cc6990 1299 setup_kmalloc_cache_index_table();
e498be7d 1300
e0a42726
IM
1301 slab_early_init = 0;
1302
ce8eb6c4 1303 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1304 {
1ca4cb24
PE
1305 int nid;
1306
9c09a95c 1307 for_each_online_node(nid) {
ce8eb6c4 1308 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1309
bf0dea23 1310 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1311 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1312 }
1313 }
1da177e4 1314
f97d5f63 1315 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1316}
1317
1318void __init kmem_cache_init_late(void)
1319{
1320 struct kmem_cache *cachep;
1321
97d06609 1322 slab_state = UP;
52cef189 1323
8429db5c 1324 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1325 mutex_lock(&slab_mutex);
1326 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1327 if (enable_cpucache(cachep, GFP_NOWAIT))
1328 BUG();
18004c5d 1329 mutex_unlock(&slab_mutex);
056c6241 1330
97d06609
CL
1331 /* Done! */
1332 slab_state = FULL;
1333
8f9f8d9e
DR
1334#ifdef CONFIG_NUMA
1335 /*
1336 * Register a memory hotplug callback that initializes and frees
6a67368c 1337 * node.
8f9f8d9e
DR
1338 */
1339 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1340#endif
1341
a737b3e2
AM
1342 /*
1343 * The reap timers are started later, with a module init call: That part
1344 * of the kernel is not yet operational.
1da177e4
LT
1345 */
1346}
1347
1348static int __init cpucache_init(void)
1349{
6731d4f1 1350 int ret;
1da177e4 1351
a737b3e2
AM
1352 /*
1353 * Register the timers that return unneeded pages to the page allocator
1da177e4 1354 */
6731d4f1
SAS
1355 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1356 slab_online_cpu, slab_offline_cpu);
1357 WARN_ON(ret < 0);
a164f896
GC
1358
1359 /* Done! */
97d06609 1360 slab_state = FULL;
1da177e4
LT
1361 return 0;
1362}
1da177e4
LT
1363__initcall(cpucache_init);
1364
8bdec192
RA
1365static noinline void
1366slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1367{
9a02d699 1368#if DEBUG
ce8eb6c4 1369 struct kmem_cache_node *n;
8bdec192
RA
1370 unsigned long flags;
1371 int node;
9a02d699
DR
1372 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1373 DEFAULT_RATELIMIT_BURST);
1374
1375 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1376 return;
8bdec192 1377
5b3810e5
VB
1378 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1379 nodeid, gfpflags, &gfpflags);
1380 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1381 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1382
18bf8541 1383 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1384 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1385
ce8eb6c4 1386 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1387 total_slabs = n->total_slabs;
1388 free_slabs = n->free_slabs;
1389 free_objs = n->free_objects;
ce8eb6c4 1390 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1391
bf00bd34
DR
1392 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1393 node, total_slabs - free_slabs, total_slabs,
1394 (total_slabs * cachep->num) - free_objs,
1395 total_slabs * cachep->num);
8bdec192 1396 }
9a02d699 1397#endif
8bdec192
RA
1398}
1399
1da177e4 1400/*
8a7d9b43
WSH
1401 * Interface to system's page allocator. No need to hold the
1402 * kmem_cache_node ->list_lock.
1da177e4
LT
1403 *
1404 * If we requested dmaable memory, we will get it. Even if we
1405 * did not request dmaable memory, we might get it, but that
1406 * would be relatively rare and ignorable.
1407 */
0c3aa83e
JK
1408static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1409 int nodeid)
1da177e4
LT
1410{
1411 struct page *page;
e1b6aa6f 1412 int nr_pages;
765c4507 1413
a618e89f 1414 flags |= cachep->allocflags;
e1b6aa6f 1415
75f296d9 1416 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1417 if (!page) {
9a02d699 1418 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1419 return NULL;
8bdec192 1420 }
1da177e4 1421
f3ccb2c4
VD
1422 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1423 __free_pages(page, cachep->gfporder);
1424 return NULL;
1425 }
1426
e1b6aa6f 1427 nr_pages = (1 << cachep->gfporder);
1da177e4 1428 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1429 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1430 else
7779f212 1431 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1432
a57a4988 1433 __SetPageSlab(page);
f68f8ddd
JK
1434 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1436 SetPageSlabPfmemalloc(page);
072bb0aa 1437
0c3aa83e 1438 return page;
1da177e4
LT
1439}
1440
1441/*
1442 * Interface to system's page release.
1443 */
0c3aa83e 1444static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1445{
27ee57c9
VD
1446 int order = cachep->gfporder;
1447 unsigned long nr_freed = (1 << order);
1da177e4 1448
972d1a7b 1449 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1450 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1451 else
7779f212 1452 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1453
a57a4988 1454 BUG_ON(!PageSlab(page));
73293c2f 1455 __ClearPageSlabPfmemalloc(page);
a57a4988 1456 __ClearPageSlab(page);
8456a648
JK
1457 page_mapcount_reset(page);
1458 page->mapping = NULL;
1f458cbf 1459
1da177e4
LT
1460 if (current->reclaim_state)
1461 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1462 memcg_uncharge_slab(page, order, cachep);
1463 __free_pages(page, order);
1da177e4
LT
1464}
1465
1466static void kmem_rcu_free(struct rcu_head *head)
1467{
68126702
JK
1468 struct kmem_cache *cachep;
1469 struct page *page;
1da177e4 1470
68126702
JK
1471 page = container_of(head, struct page, rcu_head);
1472 cachep = page->slab_cache;
1473
1474 kmem_freepages(cachep, page);
1da177e4
LT
1475}
1476
1477#if DEBUG
40b44137
JK
1478static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1479{
1480 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1481 (cachep->size % PAGE_SIZE) == 0)
1482 return true;
1483
1484 return false;
1485}
1da177e4
LT
1486
1487#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1488static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1489 unsigned long caller)
1da177e4 1490{
8c138bc0 1491 int size = cachep->object_size;
1da177e4 1492
3dafccf2 1493 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1494
b28a02de 1495 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1496 return;
1497
b28a02de
PE
1498 *addr++ = 0x12345678;
1499 *addr++ = caller;
1500 *addr++ = smp_processor_id();
1501 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1502 {
1503 unsigned long *sptr = &caller;
1504 unsigned long svalue;
1505
1506 while (!kstack_end(sptr)) {
1507 svalue = *sptr++;
1508 if (kernel_text_address(svalue)) {
b28a02de 1509 *addr++ = svalue;
1da177e4
LT
1510 size -= sizeof(unsigned long);
1511 if (size <= sizeof(unsigned long))
1512 break;
1513 }
1514 }
1515
1516 }
b28a02de 1517 *addr++ = 0x87654321;
1da177e4 1518}
40b44137
JK
1519
1520static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1521 int map, unsigned long caller)
1522{
1523 if (!is_debug_pagealloc_cache(cachep))
1524 return;
1525
1526 if (caller)
1527 store_stackinfo(cachep, objp, caller);
1528
1529 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1530}
1531
1532#else
1533static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1534 int map, unsigned long caller) {}
1535
1da177e4
LT
1536#endif
1537
343e0d7a 1538static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1539{
8c138bc0 1540 int size = cachep->object_size;
3dafccf2 1541 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1542
1543 memset(addr, val, size);
b28a02de 1544 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1545}
1546
1547static void dump_line(char *data, int offset, int limit)
1548{
1549 int i;
aa83aa40
DJ
1550 unsigned char error = 0;
1551 int bad_count = 0;
1552
1170532b 1553 pr_err("%03x: ", offset);
aa83aa40
DJ
1554 for (i = 0; i < limit; i++) {
1555 if (data[offset + i] != POISON_FREE) {
1556 error = data[offset + i];
1557 bad_count++;
1558 }
aa83aa40 1559 }
fdde6abb
SAS
1560 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1561 &data[offset], limit, 1);
aa83aa40
DJ
1562
1563 if (bad_count == 1) {
1564 error ^= POISON_FREE;
1565 if (!(error & (error - 1))) {
1170532b 1566 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1567#ifdef CONFIG_X86
1170532b 1568 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1569#else
1170532b 1570 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1571#endif
1572 }
1573 }
1da177e4
LT
1574}
1575#endif
1576
1577#if DEBUG
1578
343e0d7a 1579static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1580{
1581 int i, size;
1582 char *realobj;
1583
1584 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1585 pr_err("Redzone: 0x%llx/0x%llx\n",
1586 *dbg_redzone1(cachep, objp),
1587 *dbg_redzone2(cachep, objp));
1da177e4
LT
1588 }
1589
85c3e4a5
GU
1590 if (cachep->flags & SLAB_STORE_USER)
1591 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1592 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1593 size = cachep->object_size;
b28a02de 1594 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1595 int limit;
1596 limit = 16;
b28a02de
PE
1597 if (i + limit > size)
1598 limit = size - i;
1da177e4
LT
1599 dump_line(realobj, i, limit);
1600 }
1601}
1602
343e0d7a 1603static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1604{
1605 char *realobj;
1606 int size, i;
1607 int lines = 0;
1608
40b44137
JK
1609 if (is_debug_pagealloc_cache(cachep))
1610 return;
1611
3dafccf2 1612 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1613 size = cachep->object_size;
1da177e4 1614
b28a02de 1615 for (i = 0; i < size; i++) {
1da177e4 1616 char exp = POISON_FREE;
b28a02de 1617 if (i == size - 1)
1da177e4
LT
1618 exp = POISON_END;
1619 if (realobj[i] != exp) {
1620 int limit;
1621 /* Mismatch ! */
1622 /* Print header */
1623 if (lines == 0) {
85c3e4a5 1624 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1625 print_tainted(), cachep->name,
1626 realobj, size);
1da177e4
LT
1627 print_objinfo(cachep, objp, 0);
1628 }
1629 /* Hexdump the affected line */
b28a02de 1630 i = (i / 16) * 16;
1da177e4 1631 limit = 16;
b28a02de
PE
1632 if (i + limit > size)
1633 limit = size - i;
1da177e4
LT
1634 dump_line(realobj, i, limit);
1635 i += 16;
1636 lines++;
1637 /* Limit to 5 lines */
1638 if (lines > 5)
1639 break;
1640 }
1641 }
1642 if (lines != 0) {
1643 /* Print some data about the neighboring objects, if they
1644 * exist:
1645 */
8456a648 1646 struct page *page = virt_to_head_page(objp);
8fea4e96 1647 unsigned int objnr;
1da177e4 1648
8456a648 1649 objnr = obj_to_index(cachep, page, objp);
1da177e4 1650 if (objnr) {
8456a648 1651 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1652 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1653 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1654 print_objinfo(cachep, objp, 2);
1655 }
b28a02de 1656 if (objnr + 1 < cachep->num) {
8456a648 1657 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1658 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1659 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1660 print_objinfo(cachep, objp, 2);
1661 }
1662 }
1663}
1664#endif
1665
12dd36fa 1666#if DEBUG
8456a648
JK
1667static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1668 struct page *page)
1da177e4 1669{
1da177e4 1670 int i;
b03a017b
JK
1671
1672 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1673 poison_obj(cachep, page->freelist - obj_offset(cachep),
1674 POISON_FREE);
1675 }
1676
1da177e4 1677 for (i = 0; i < cachep->num; i++) {
8456a648 1678 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1679
1680 if (cachep->flags & SLAB_POISON) {
1da177e4 1681 check_poison_obj(cachep, objp);
40b44137 1682 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1683 }
1684 if (cachep->flags & SLAB_RED_ZONE) {
1685 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1686 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1687 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1688 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1689 }
1da177e4 1690 }
12dd36fa 1691}
1da177e4 1692#else
8456a648
JK
1693static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1694 struct page *page)
12dd36fa 1695{
12dd36fa 1696}
1da177e4
LT
1697#endif
1698
911851e6
RD
1699/**
1700 * slab_destroy - destroy and release all objects in a slab
1701 * @cachep: cache pointer being destroyed
cb8ee1a3 1702 * @page: page pointer being destroyed
911851e6 1703 *
8a7d9b43
WSH
1704 * Destroy all the objs in a slab page, and release the mem back to the system.
1705 * Before calling the slab page must have been unlinked from the cache. The
1706 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1707 */
8456a648 1708static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1709{
7e007355 1710 void *freelist;
12dd36fa 1711
8456a648
JK
1712 freelist = page->freelist;
1713 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1714 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1715 call_rcu(&page->rcu_head, kmem_rcu_free);
1716 else
0c3aa83e 1717 kmem_freepages(cachep, page);
68126702
JK
1718
1719 /*
8456a648 1720 * From now on, we don't use freelist
68126702
JK
1721 * although actual page can be freed in rcu context
1722 */
1723 if (OFF_SLAB(cachep))
8456a648 1724 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1725}
1726
97654dfa
JK
1727static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1728{
1729 struct page *page, *n;
1730
1731 list_for_each_entry_safe(page, n, list, lru) {
1732 list_del(&page->lru);
1733 slab_destroy(cachep, page);
1734 }
1735}
1736
4d268eba 1737/**
a70773dd
RD
1738 * calculate_slab_order - calculate size (page order) of slabs
1739 * @cachep: pointer to the cache that is being created
1740 * @size: size of objects to be created in this cache.
a70773dd
RD
1741 * @flags: slab allocation flags
1742 *
1743 * Also calculates the number of objects per slab.
4d268eba
PE
1744 *
1745 * This could be made much more intelligent. For now, try to avoid using
1746 * high order pages for slabs. When the gfp() functions are more friendly
1747 * towards high-order requests, this should be changed.
1748 */
a737b3e2 1749static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1750 size_t size, slab_flags_t flags)
4d268eba
PE
1751{
1752 size_t left_over = 0;
9888e6fa 1753 int gfporder;
4d268eba 1754
0aa817f0 1755 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1756 unsigned int num;
1757 size_t remainder;
1758
70f75067 1759 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1760 if (!num)
1761 continue;
9888e6fa 1762
f315e3fa
JK
1763 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1764 if (num > SLAB_OBJ_MAX_NUM)
1765 break;
1766
b1ab41c4 1767 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1768 struct kmem_cache *freelist_cache;
1769 size_t freelist_size;
1770
1771 freelist_size = num * sizeof(freelist_idx_t);
1772 freelist_cache = kmalloc_slab(freelist_size, 0u);
1773 if (!freelist_cache)
1774 continue;
1775
b1ab41c4 1776 /*
3217fd9b 1777 * Needed to avoid possible looping condition
76b342bd 1778 * in cache_grow_begin()
b1ab41c4 1779 */
3217fd9b
JK
1780 if (OFF_SLAB(freelist_cache))
1781 continue;
b1ab41c4 1782
3217fd9b
JK
1783 /* check if off slab has enough benefit */
1784 if (freelist_cache->size > cachep->size / 2)
1785 continue;
b1ab41c4 1786 }
4d268eba 1787
9888e6fa 1788 /* Found something acceptable - save it away */
4d268eba 1789 cachep->num = num;
9888e6fa 1790 cachep->gfporder = gfporder;
4d268eba
PE
1791 left_over = remainder;
1792
f78bb8ad
LT
1793 /*
1794 * A VFS-reclaimable slab tends to have most allocations
1795 * as GFP_NOFS and we really don't want to have to be allocating
1796 * higher-order pages when we are unable to shrink dcache.
1797 */
1798 if (flags & SLAB_RECLAIM_ACCOUNT)
1799 break;
1800
4d268eba
PE
1801 /*
1802 * Large number of objects is good, but very large slabs are
1803 * currently bad for the gfp()s.
1804 */
543585cc 1805 if (gfporder >= slab_max_order)
4d268eba
PE
1806 break;
1807
9888e6fa
LT
1808 /*
1809 * Acceptable internal fragmentation?
1810 */
a737b3e2 1811 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1812 break;
1813 }
1814 return left_over;
1815}
1816
bf0dea23
JK
1817static struct array_cache __percpu *alloc_kmem_cache_cpus(
1818 struct kmem_cache *cachep, int entries, int batchcount)
1819{
1820 int cpu;
1821 size_t size;
1822 struct array_cache __percpu *cpu_cache;
1823
1824 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1825 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1826
1827 if (!cpu_cache)
1828 return NULL;
1829
1830 for_each_possible_cpu(cpu) {
1831 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1832 entries, batchcount);
1833 }
1834
1835 return cpu_cache;
1836}
1837
bd721ea7 1838static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1839{
97d06609 1840 if (slab_state >= FULL)
83b519e8 1841 return enable_cpucache(cachep, gfp);
2ed3a4ef 1842
bf0dea23
JK
1843 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1844 if (!cachep->cpu_cache)
1845 return 1;
1846
97d06609 1847 if (slab_state == DOWN) {
bf0dea23
JK
1848 /* Creation of first cache (kmem_cache). */
1849 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1850 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1851 /* For kmem_cache_node */
1852 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1853 } else {
bf0dea23 1854 int node;
f30cf7d1 1855
bf0dea23
JK
1856 for_each_online_node(node) {
1857 cachep->node[node] = kmalloc_node(
1858 sizeof(struct kmem_cache_node), gfp, node);
1859 BUG_ON(!cachep->node[node]);
1860 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1861 }
1862 }
bf0dea23 1863
6a67368c 1864 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1865 jiffies + REAPTIMEOUT_NODE +
1866 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1867
1868 cpu_cache_get(cachep)->avail = 0;
1869 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1870 cpu_cache_get(cachep)->batchcount = 1;
1871 cpu_cache_get(cachep)->touched = 0;
1872 cachep->batchcount = 1;
1873 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1874 return 0;
f30cf7d1
PE
1875}
1876
d50112ed
AD
1877slab_flags_t kmem_cache_flags(unsigned long object_size,
1878 slab_flags_t flags, const char *name,
12220dea
JK
1879 void (*ctor)(void *))
1880{
1881 return flags;
1882}
1883
1884struct kmem_cache *
1885__kmem_cache_alias(const char *name, size_t size, size_t align,
d50112ed 1886 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1887{
1888 struct kmem_cache *cachep;
1889
1890 cachep = find_mergeable(size, align, flags, name, ctor);
1891 if (cachep) {
1892 cachep->refcount++;
1893
1894 /*
1895 * Adjust the object sizes so that we clear
1896 * the complete object on kzalloc.
1897 */
1898 cachep->object_size = max_t(int, cachep->object_size, size);
1899 }
1900 return cachep;
1901}
1902
b03a017b 1903static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1904 size_t size, slab_flags_t flags)
b03a017b
JK
1905{
1906 size_t left;
1907
1908 cachep->num = 0;
1909
5f0d5a3a 1910 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1911 return false;
1912
1913 left = calculate_slab_order(cachep, size,
1914 flags | CFLGS_OBJFREELIST_SLAB);
1915 if (!cachep->num)
1916 return false;
1917
1918 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1919 return false;
1920
1921 cachep->colour = left / cachep->colour_off;
1922
1923 return true;
1924}
1925
158e319b 1926static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1927 size_t size, slab_flags_t flags)
158e319b
JK
1928{
1929 size_t left;
1930
1931 cachep->num = 0;
1932
1933 /*
3217fd9b
JK
1934 * Always use on-slab management when SLAB_NOLEAKTRACE
1935 * to avoid recursive calls into kmemleak.
158e319b 1936 */
158e319b
JK
1937 if (flags & SLAB_NOLEAKTRACE)
1938 return false;
1939
1940 /*
1941 * Size is large, assume best to place the slab management obj
1942 * off-slab (should allow better packing of objs).
1943 */
1944 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1945 if (!cachep->num)
1946 return false;
1947
1948 /*
1949 * If the slab has been placed off-slab, and we have enough space then
1950 * move it on-slab. This is at the expense of any extra colouring.
1951 */
1952 if (left >= cachep->num * sizeof(freelist_idx_t))
1953 return false;
1954
1955 cachep->colour = left / cachep->colour_off;
1956
1957 return true;
1958}
1959
1960static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1961 size_t size, slab_flags_t flags)
158e319b
JK
1962{
1963 size_t left;
1964
1965 cachep->num = 0;
1966
1967 left = calculate_slab_order(cachep, size, flags);
1968 if (!cachep->num)
1969 return false;
1970
1971 cachep->colour = left / cachep->colour_off;
1972
1973 return true;
1974}
1975
1da177e4 1976/**
039363f3 1977 * __kmem_cache_create - Create a cache.
a755b76a 1978 * @cachep: cache management descriptor
1da177e4 1979 * @flags: SLAB flags
1da177e4
LT
1980 *
1981 * Returns a ptr to the cache on success, NULL on failure.
1982 * Cannot be called within a int, but can be interrupted.
20c2df83 1983 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1984 *
1da177e4
LT
1985 * The flags are
1986 *
1987 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1988 * to catch references to uninitialised memory.
1989 *
1990 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1991 * for buffer overruns.
1992 *
1da177e4
LT
1993 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1994 * cacheline. This can be beneficial if you're counting cycles as closely
1995 * as davem.
1996 */
d50112ed 1997int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1998{
d4a5fca5 1999 size_t ralign = BYTES_PER_WORD;
83b519e8 2000 gfp_t gfp;
278b1bb1 2001 int err;
8a13a4cc 2002 size_t size = cachep->size;
1da177e4 2003
1da177e4 2004#if DEBUG
1da177e4
LT
2005#if FORCED_DEBUG
2006 /*
2007 * Enable redzoning and last user accounting, except for caches with
2008 * large objects, if the increased size would increase the object size
2009 * above the next power of two: caches with object sizes just above a
2010 * power of two have a significant amount of internal fragmentation.
2011 */
87a927c7
DW
2012 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2013 2 * sizeof(unsigned long long)))
b28a02de 2014 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2015 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2016 flags |= SLAB_POISON;
2017#endif
1da177e4 2018#endif
1da177e4 2019
a737b3e2
AM
2020 /*
2021 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2022 * unaligned accesses for some archs when redzoning is used, and makes
2023 * sure any on-slab bufctl's are also correctly aligned.
2024 */
e0771950 2025 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2026
87a927c7
DW
2027 if (flags & SLAB_RED_ZONE) {
2028 ralign = REDZONE_ALIGN;
2029 /* If redzoning, ensure that the second redzone is suitably
2030 * aligned, by adjusting the object size accordingly. */
e0771950 2031 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2032 }
ca5f9703 2033
a44b56d3 2034 /* 3) caller mandated alignment */
8a13a4cc
CL
2035 if (ralign < cachep->align) {
2036 ralign = cachep->align;
1da177e4 2037 }
3ff84a7f
PE
2038 /* disable debug if necessary */
2039 if (ralign > __alignof__(unsigned long long))
a44b56d3 2040 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2041 /*
ca5f9703 2042 * 4) Store it.
1da177e4 2043 */
8a13a4cc 2044 cachep->align = ralign;
158e319b
JK
2045 cachep->colour_off = cache_line_size();
2046 /* Offset must be a multiple of the alignment. */
2047 if (cachep->colour_off < cachep->align)
2048 cachep->colour_off = cachep->align;
1da177e4 2049
83b519e8
PE
2050 if (slab_is_available())
2051 gfp = GFP_KERNEL;
2052 else
2053 gfp = GFP_NOWAIT;
2054
1da177e4 2055#if DEBUG
1da177e4 2056
ca5f9703
PE
2057 /*
2058 * Both debugging options require word-alignment which is calculated
2059 * into align above.
2060 */
1da177e4 2061 if (flags & SLAB_RED_ZONE) {
1da177e4 2062 /* add space for red zone words */
3ff84a7f
PE
2063 cachep->obj_offset += sizeof(unsigned long long);
2064 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2065 }
2066 if (flags & SLAB_STORE_USER) {
ca5f9703 2067 /* user store requires one word storage behind the end of
87a927c7
DW
2068 * the real object. But if the second red zone needs to be
2069 * aligned to 64 bits, we must allow that much space.
1da177e4 2070 */
87a927c7
DW
2071 if (flags & SLAB_RED_ZONE)
2072 size += REDZONE_ALIGN;
2073 else
2074 size += BYTES_PER_WORD;
1da177e4 2075 }
832a15d2
JK
2076#endif
2077
7ed2f9e6
AP
2078 kasan_cache_create(cachep, &size, &flags);
2079
832a15d2
JK
2080 size = ALIGN(size, cachep->align);
2081 /*
2082 * We should restrict the number of objects in a slab to implement
2083 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2084 */
2085 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2086 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2087
2088#if DEBUG
03a2d2a3
JK
2089 /*
2090 * To activate debug pagealloc, off-slab management is necessary
2091 * requirement. In early phase of initialization, small sized slab
2092 * doesn't get initialized so it would not be possible. So, we need
2093 * to check size >= 256. It guarantees that all necessary small
2094 * sized slab is initialized in current slab initialization sequence.
2095 */
40323278 2096 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2097 size >= 256 && cachep->object_size > cache_line_size()) {
2098 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2099 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2100
2101 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2102 flags |= CFLGS_OFF_SLAB;
2103 cachep->obj_offset += tmp_size - size;
2104 size = tmp_size;
2105 goto done;
2106 }
2107 }
1da177e4 2108 }
1da177e4
LT
2109#endif
2110
b03a017b
JK
2111 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2112 flags |= CFLGS_OBJFREELIST_SLAB;
2113 goto done;
2114 }
2115
158e319b 2116 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2117 flags |= CFLGS_OFF_SLAB;
158e319b 2118 goto done;
832a15d2 2119 }
1da177e4 2120
158e319b
JK
2121 if (set_on_slab_cache(cachep, size, flags))
2122 goto done;
1da177e4 2123
158e319b 2124 return -E2BIG;
1da177e4 2125
158e319b
JK
2126done:
2127 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2128 cachep->flags = flags;
a57a4988 2129 cachep->allocflags = __GFP_COMP;
a3187e43 2130 if (flags & SLAB_CACHE_DMA)
a618e89f 2131 cachep->allocflags |= GFP_DMA;
26f42db9
NB
2132 if (flags & SLAB_CACHE_DMA32)
2133 cachep->allocflags |= GFP_DMA32;
a3ba0744
DR
2134 if (flags & SLAB_RECLAIM_ACCOUNT)
2135 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2136 cachep->size = size;
6a2d7a95 2137 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2138
40b44137
JK
2139#if DEBUG
2140 /*
2141 * If we're going to use the generic kernel_map_pages()
2142 * poisoning, then it's going to smash the contents of
2143 * the redzone and userword anyhow, so switch them off.
2144 */
2145 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2146 (cachep->flags & SLAB_POISON) &&
2147 is_debug_pagealloc_cache(cachep))
2148 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2149#endif
2150
2151 if (OFF_SLAB(cachep)) {
158e319b
JK
2152 cachep->freelist_cache =
2153 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2154 }
1da177e4 2155
278b1bb1
CL
2156 err = setup_cpu_cache(cachep, gfp);
2157 if (err) {
52b4b950 2158 __kmem_cache_release(cachep);
278b1bb1 2159 return err;
2ed3a4ef 2160 }
1da177e4 2161
278b1bb1 2162 return 0;
1da177e4 2163}
1da177e4
LT
2164
2165#if DEBUG
2166static void check_irq_off(void)
2167{
2168 BUG_ON(!irqs_disabled());
2169}
2170
2171static void check_irq_on(void)
2172{
2173 BUG_ON(irqs_disabled());
2174}
2175
18726ca8
JK
2176static void check_mutex_acquired(void)
2177{
2178 BUG_ON(!mutex_is_locked(&slab_mutex));
2179}
2180
343e0d7a 2181static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2182{
2183#ifdef CONFIG_SMP
2184 check_irq_off();
18bf8541 2185 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2186#endif
2187}
e498be7d 2188
343e0d7a 2189static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2190{
2191#ifdef CONFIG_SMP
2192 check_irq_off();
18bf8541 2193 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2194#endif
2195}
2196
1da177e4
LT
2197#else
2198#define check_irq_off() do { } while(0)
2199#define check_irq_on() do { } while(0)
18726ca8 2200#define check_mutex_acquired() do { } while(0)
1da177e4 2201#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2202#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2203#endif
2204
18726ca8
JK
2205static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2206 int node, bool free_all, struct list_head *list)
2207{
2208 int tofree;
2209
2210 if (!ac || !ac->avail)
2211 return;
2212
2213 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2214 if (tofree > ac->avail)
2215 tofree = (ac->avail + 1) / 2;
2216
2217 free_block(cachep, ac->entry, tofree, node, list);
2218 ac->avail -= tofree;
2219 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2220}
aab2207c 2221
1da177e4
LT
2222static void do_drain(void *arg)
2223{
a737b3e2 2224 struct kmem_cache *cachep = arg;
1da177e4 2225 struct array_cache *ac;
7d6e6d09 2226 int node = numa_mem_id();
18bf8541 2227 struct kmem_cache_node *n;
97654dfa 2228 LIST_HEAD(list);
1da177e4
LT
2229
2230 check_irq_off();
9a2dba4b 2231 ac = cpu_cache_get(cachep);
18bf8541
CL
2232 n = get_node(cachep, node);
2233 spin_lock(&n->list_lock);
97654dfa 2234 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2235 spin_unlock(&n->list_lock);
97654dfa 2236 slabs_destroy(cachep, &list);
1da177e4
LT
2237 ac->avail = 0;
2238}
2239
343e0d7a 2240static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2241{
ce8eb6c4 2242 struct kmem_cache_node *n;
e498be7d 2243 int node;
18726ca8 2244 LIST_HEAD(list);
e498be7d 2245
15c8b6c1 2246 on_each_cpu(do_drain, cachep, 1);
1da177e4 2247 check_irq_on();
18bf8541
CL
2248 for_each_kmem_cache_node(cachep, node, n)
2249 if (n->alien)
ce8eb6c4 2250 drain_alien_cache(cachep, n->alien);
a4523a8b 2251
18726ca8
JK
2252 for_each_kmem_cache_node(cachep, node, n) {
2253 spin_lock_irq(&n->list_lock);
2254 drain_array_locked(cachep, n->shared, node, true, &list);
2255 spin_unlock_irq(&n->list_lock);
2256
2257 slabs_destroy(cachep, &list);
2258 }
1da177e4
LT
2259}
2260
ed11d9eb
CL
2261/*
2262 * Remove slabs from the list of free slabs.
2263 * Specify the number of slabs to drain in tofree.
2264 *
2265 * Returns the actual number of slabs released.
2266 */
2267static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2268 struct kmem_cache_node *n, int tofree)
1da177e4 2269{
ed11d9eb
CL
2270 struct list_head *p;
2271 int nr_freed;
8456a648 2272 struct page *page;
1da177e4 2273
ed11d9eb 2274 nr_freed = 0;
ce8eb6c4 2275 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2276
ce8eb6c4
CL
2277 spin_lock_irq(&n->list_lock);
2278 p = n->slabs_free.prev;
2279 if (p == &n->slabs_free) {
2280 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2281 goto out;
2282 }
1da177e4 2283
8456a648 2284 page = list_entry(p, struct page, lru);
8456a648 2285 list_del(&page->lru);
f728b0a5 2286 n->free_slabs--;
bf00bd34 2287 n->total_slabs--;
ed11d9eb
CL
2288 /*
2289 * Safe to drop the lock. The slab is no longer linked
2290 * to the cache.
2291 */
ce8eb6c4
CL
2292 n->free_objects -= cache->num;
2293 spin_unlock_irq(&n->list_lock);
8456a648 2294 slab_destroy(cache, page);
ed11d9eb 2295 nr_freed++;
1da177e4 2296 }
ed11d9eb
CL
2297out:
2298 return nr_freed;
1da177e4
LT
2299}
2300
c9fc5864 2301int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2302{
18bf8541
CL
2303 int ret = 0;
2304 int node;
ce8eb6c4 2305 struct kmem_cache_node *n;
e498be7d
CL
2306
2307 drain_cpu_caches(cachep);
2308
2309 check_irq_on();
18bf8541 2310 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2311 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2312
ce8eb6c4
CL
2313 ret += !list_empty(&n->slabs_full) ||
2314 !list_empty(&n->slabs_partial);
e498be7d
CL
2315 }
2316 return (ret ? 1 : 0);
2317}
2318
c9fc5864
TH
2319#ifdef CONFIG_MEMCG
2320void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2321{
2322 __kmem_cache_shrink(cachep);
2323}
2324#endif
2325
945cf2b6 2326int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2327{
c9fc5864 2328 return __kmem_cache_shrink(cachep);
52b4b950
DS
2329}
2330
2331void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2332{
12c3667f 2333 int i;
ce8eb6c4 2334 struct kmem_cache_node *n;
1da177e4 2335
c7ce4f60
TG
2336 cache_random_seq_destroy(cachep);
2337
bf0dea23 2338 free_percpu(cachep->cpu_cache);
1da177e4 2339
ce8eb6c4 2340 /* NUMA: free the node structures */
18bf8541
CL
2341 for_each_kmem_cache_node(cachep, i, n) {
2342 kfree(n->shared);
2343 free_alien_cache(n->alien);
2344 kfree(n);
2345 cachep->node[i] = NULL;
12c3667f 2346 }
1da177e4 2347}
1da177e4 2348
e5ac9c5a
RT
2349/*
2350 * Get the memory for a slab management obj.
5f0985bb
JZ
2351 *
2352 * For a slab cache when the slab descriptor is off-slab, the
2353 * slab descriptor can't come from the same cache which is being created,
2354 * Because if it is the case, that means we defer the creation of
2355 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2356 * And we eventually call down to __kmem_cache_create(), which
2357 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2358 * This is a "chicken-and-egg" problem.
2359 *
2360 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2361 * which are all initialized during kmem_cache_init().
e5ac9c5a 2362 */
7e007355 2363static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2364 struct page *page, int colour_off,
2365 gfp_t local_flags, int nodeid)
1da177e4 2366{
7e007355 2367 void *freelist;
0c3aa83e 2368 void *addr = page_address(page);
b28a02de 2369
2e6b3602
JK
2370 page->s_mem = addr + colour_off;
2371 page->active = 0;
2372
b03a017b
JK
2373 if (OBJFREELIST_SLAB(cachep))
2374 freelist = NULL;
2375 else if (OFF_SLAB(cachep)) {
1da177e4 2376 /* Slab management obj is off-slab. */
8456a648 2377 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2378 local_flags, nodeid);
8456a648 2379 if (!freelist)
1da177e4
LT
2380 return NULL;
2381 } else {
2e6b3602
JK
2382 /* We will use last bytes at the slab for freelist */
2383 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2384 cachep->freelist_size;
1da177e4 2385 }
2e6b3602 2386
8456a648 2387 return freelist;
1da177e4
LT
2388}
2389
7cc68973 2390static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2391{
a41adfaa 2392 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2393}
2394
2395static inline void set_free_obj(struct page *page,
7cc68973 2396 unsigned int idx, freelist_idx_t val)
e5c58dfd 2397{
a41adfaa 2398 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2399}
2400
10b2e9e8 2401static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2402{
10b2e9e8 2403#if DEBUG
1da177e4
LT
2404 int i;
2405
2406 for (i = 0; i < cachep->num; i++) {
8456a648 2407 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2408
1da177e4
LT
2409 if (cachep->flags & SLAB_STORE_USER)
2410 *dbg_userword(cachep, objp) = NULL;
2411
2412 if (cachep->flags & SLAB_RED_ZONE) {
2413 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2414 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2415 }
2416 /*
a737b3e2
AM
2417 * Constructors are not allowed to allocate memory from the same
2418 * cache which they are a constructor for. Otherwise, deadlock.
2419 * They must also be threaded.
1da177e4 2420 */
7ed2f9e6
AP
2421 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2422 kasan_unpoison_object_data(cachep,
2423 objp + obj_offset(cachep));
51cc5068 2424 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2425 kasan_poison_object_data(
2426 cachep, objp + obj_offset(cachep));
2427 }
1da177e4
LT
2428
2429 if (cachep->flags & SLAB_RED_ZONE) {
2430 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2431 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2432 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2433 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2434 }
40b44137
JK
2435 /* need to poison the objs? */
2436 if (cachep->flags & SLAB_POISON) {
2437 poison_obj(cachep, objp, POISON_FREE);
2438 slab_kernel_map(cachep, objp, 0, 0);
2439 }
10b2e9e8 2440 }
1da177e4 2441#endif
10b2e9e8
JK
2442}
2443
c7ce4f60
TG
2444#ifdef CONFIG_SLAB_FREELIST_RANDOM
2445/* Hold information during a freelist initialization */
2446union freelist_init_state {
2447 struct {
2448 unsigned int pos;
7c00fce9 2449 unsigned int *list;
c7ce4f60 2450 unsigned int count;
c7ce4f60
TG
2451 };
2452 struct rnd_state rnd_state;
2453};
2454
2455/*
2456 * Initialize the state based on the randomization methode available.
2457 * return true if the pre-computed list is available, false otherwize.
2458 */
2459static bool freelist_state_initialize(union freelist_init_state *state,
2460 struct kmem_cache *cachep,
2461 unsigned int count)
2462{
2463 bool ret;
2464 unsigned int rand;
2465
2466 /* Use best entropy available to define a random shift */
7c00fce9 2467 rand = get_random_int();
c7ce4f60
TG
2468
2469 /* Use a random state if the pre-computed list is not available */
2470 if (!cachep->random_seq) {
2471 prandom_seed_state(&state->rnd_state, rand);
2472 ret = false;
2473 } else {
2474 state->list = cachep->random_seq;
2475 state->count = count;
c4e490cf 2476 state->pos = rand % count;
c7ce4f60
TG
2477 ret = true;
2478 }
2479 return ret;
2480}
2481
2482/* Get the next entry on the list and randomize it using a random shift */
2483static freelist_idx_t next_random_slot(union freelist_init_state *state)
2484{
c4e490cf
JS
2485 if (state->pos >= state->count)
2486 state->pos = 0;
2487 return state->list[state->pos++];
c7ce4f60
TG
2488}
2489
7c00fce9
TG
2490/* Swap two freelist entries */
2491static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2492{
2493 swap(((freelist_idx_t *)page->freelist)[a],
2494 ((freelist_idx_t *)page->freelist)[b]);
2495}
2496
c7ce4f60
TG
2497/*
2498 * Shuffle the freelist initialization state based on pre-computed lists.
2499 * return true if the list was successfully shuffled, false otherwise.
2500 */
2501static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2502{
7c00fce9 2503 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2504 union freelist_init_state state;
2505 bool precomputed;
2506
2507 if (count < 2)
2508 return false;
2509
2510 precomputed = freelist_state_initialize(&state, cachep, count);
2511
2512 /* Take a random entry as the objfreelist */
2513 if (OBJFREELIST_SLAB(cachep)) {
2514 if (!precomputed)
2515 objfreelist = count - 1;
2516 else
2517 objfreelist = next_random_slot(&state);
2518 page->freelist = index_to_obj(cachep, page, objfreelist) +
2519 obj_offset(cachep);
2520 count--;
2521 }
2522
2523 /*
2524 * On early boot, generate the list dynamically.
2525 * Later use a pre-computed list for speed.
2526 */
2527 if (!precomputed) {
7c00fce9
TG
2528 for (i = 0; i < count; i++)
2529 set_free_obj(page, i, i);
2530
2531 /* Fisher-Yates shuffle */
2532 for (i = count - 1; i > 0; i--) {
2533 rand = prandom_u32_state(&state.rnd_state);
2534 rand %= (i + 1);
2535 swap_free_obj(page, i, rand);
2536 }
c7ce4f60
TG
2537 } else {
2538 for (i = 0; i < count; i++)
2539 set_free_obj(page, i, next_random_slot(&state));
2540 }
2541
2542 if (OBJFREELIST_SLAB(cachep))
2543 set_free_obj(page, cachep->num - 1, objfreelist);
2544
2545 return true;
2546}
2547#else
2548static inline bool shuffle_freelist(struct kmem_cache *cachep,
2549 struct page *page)
2550{
2551 return false;
2552}
2553#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2554
10b2e9e8
JK
2555static void cache_init_objs(struct kmem_cache *cachep,
2556 struct page *page)
2557{
2558 int i;
7ed2f9e6 2559 void *objp;
c7ce4f60 2560 bool shuffled;
10b2e9e8
JK
2561
2562 cache_init_objs_debug(cachep, page);
2563
c7ce4f60
TG
2564 /* Try to randomize the freelist if enabled */
2565 shuffled = shuffle_freelist(cachep, page);
2566
2567 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2568 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2569 obj_offset(cachep);
2570 }
2571
10b2e9e8 2572 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2573 objp = index_to_obj(cachep, page, i);
2574 kasan_init_slab_obj(cachep, objp);
2575
10b2e9e8 2576 /* constructor could break poison info */
7ed2f9e6 2577 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2578 kasan_unpoison_object_data(cachep, objp);
2579 cachep->ctor(objp);
2580 kasan_poison_object_data(cachep, objp);
2581 }
10b2e9e8 2582
c7ce4f60
TG
2583 if (!shuffled)
2584 set_free_obj(page, i, i);
1da177e4 2585 }
1da177e4
LT
2586}
2587
260b61dd 2588static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2589{
b1cb0982 2590 void *objp;
78d382d7 2591
e5c58dfd 2592 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2593 page->active++;
78d382d7 2594
d31676df
JK
2595#if DEBUG
2596 if (cachep->flags & SLAB_STORE_USER)
2597 set_store_user_dirty(cachep);
2598#endif
2599
78d382d7
MD
2600 return objp;
2601}
2602
260b61dd
JK
2603static void slab_put_obj(struct kmem_cache *cachep,
2604 struct page *page, void *objp)
78d382d7 2605{
8456a648 2606 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2607#if DEBUG
16025177 2608 unsigned int i;
b1cb0982 2609
b1cb0982 2610 /* Verify double free bug */
8456a648 2611 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2612 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2613 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2614 cachep->name, objp);
b1cb0982
JK
2615 BUG();
2616 }
78d382d7
MD
2617 }
2618#endif
8456a648 2619 page->active--;
b03a017b
JK
2620 if (!page->freelist)
2621 page->freelist = objp + obj_offset(cachep);
2622
e5c58dfd 2623 set_free_obj(page, page->active, objnr);
78d382d7
MD
2624}
2625
4776874f
PE
2626/*
2627 * Map pages beginning at addr to the given cache and slab. This is required
2628 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2629 * virtual address for kfree, ksize, and slab debugging.
4776874f 2630 */
8456a648 2631static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2632 void *freelist)
1da177e4 2633{
a57a4988 2634 page->slab_cache = cache;
8456a648 2635 page->freelist = freelist;
1da177e4
LT
2636}
2637
2638/*
2639 * Grow (by 1) the number of slabs within a cache. This is called by
2640 * kmem_cache_alloc() when there are no active objs left in a cache.
2641 */
76b342bd
JK
2642static struct page *cache_grow_begin(struct kmem_cache *cachep,
2643 gfp_t flags, int nodeid)
1da177e4 2644{
7e007355 2645 void *freelist;
b28a02de
PE
2646 size_t offset;
2647 gfp_t local_flags;
511e3a05 2648 int page_node;
ce8eb6c4 2649 struct kmem_cache_node *n;
511e3a05 2650 struct page *page;
1da177e4 2651
a737b3e2
AM
2652 /*
2653 * Be lazy and only check for valid flags here, keeping it out of the
2654 * critical path in kmem_cache_alloc().
1da177e4 2655 */
c871ac4e 2656 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2657 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2658 flags &= ~GFP_SLAB_BUG_MASK;
2659 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2660 invalid_mask, &invalid_mask, flags, &flags);
2661 dump_stack();
c871ac4e 2662 }
6cb06229 2663 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2664
1da177e4 2665 check_irq_off();
d0164adc 2666 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2667 local_irq_enable();
2668
a737b3e2
AM
2669 /*
2670 * Get mem for the objs. Attempt to allocate a physical page from
2671 * 'nodeid'.
e498be7d 2672 */
511e3a05 2673 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2674 if (!page)
1da177e4
LT
2675 goto failed;
2676
511e3a05
JK
2677 page_node = page_to_nid(page);
2678 n = get_node(cachep, page_node);
03d1d43a
JK
2679
2680 /* Get colour for the slab, and cal the next value. */
2681 n->colour_next++;
2682 if (n->colour_next >= cachep->colour)
2683 n->colour_next = 0;
2684
2685 offset = n->colour_next;
2686 if (offset >= cachep->colour)
2687 offset = 0;
2688
2689 offset *= cachep->colour_off;
2690
1da177e4 2691 /* Get slab management. */
8456a648 2692 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2693 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2694 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2695 goto opps1;
2696
8456a648 2697 slab_map_pages(cachep, page, freelist);
1da177e4 2698
7ed2f9e6 2699 kasan_poison_slab(page);
8456a648 2700 cache_init_objs(cachep, page);
1da177e4 2701
d0164adc 2702 if (gfpflags_allow_blocking(local_flags))
1da177e4 2703 local_irq_disable();
1da177e4 2704
76b342bd
JK
2705 return page;
2706
a737b3e2 2707opps1:
0c3aa83e 2708 kmem_freepages(cachep, page);
a737b3e2 2709failed:
d0164adc 2710 if (gfpflags_allow_blocking(local_flags))
1da177e4 2711 local_irq_disable();
76b342bd
JK
2712 return NULL;
2713}
2714
2715static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2716{
2717 struct kmem_cache_node *n;
2718 void *list = NULL;
2719
2720 check_irq_off();
2721
2722 if (!page)
2723 return;
2724
2725 INIT_LIST_HEAD(&page->lru);
2726 n = get_node(cachep, page_to_nid(page));
2727
2728 spin_lock(&n->list_lock);
bf00bd34 2729 n->total_slabs++;
f728b0a5 2730 if (!page->active) {
76b342bd 2731 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2732 n->free_slabs++;
bf00bd34 2733 } else
76b342bd 2734 fixup_slab_list(cachep, n, page, &list);
07a63c41 2735
76b342bd
JK
2736 STATS_INC_GROWN(cachep);
2737 n->free_objects += cachep->num - page->active;
2738 spin_unlock(&n->list_lock);
2739
2740 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2741}
2742
2743#if DEBUG
2744
2745/*
2746 * Perform extra freeing checks:
2747 * - detect bad pointers.
2748 * - POISON/RED_ZONE checking
1da177e4
LT
2749 */
2750static void kfree_debugcheck(const void *objp)
2751{
1da177e4 2752 if (!virt_addr_valid(objp)) {
1170532b 2753 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2754 (unsigned long)objp);
2755 BUG();
1da177e4 2756 }
1da177e4
LT
2757}
2758
58ce1fd5
PE
2759static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2760{
b46b8f19 2761 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2762
2763 redzone1 = *dbg_redzone1(cache, obj);
2764 redzone2 = *dbg_redzone2(cache, obj);
2765
2766 /*
2767 * Redzone is ok.
2768 */
2769 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2770 return;
2771
2772 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2773 slab_error(cache, "double free detected");
2774 else
2775 slab_error(cache, "memory outside object was overwritten");
2776
85c3e4a5 2777 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2778 obj, redzone1, redzone2);
58ce1fd5
PE
2779}
2780
343e0d7a 2781static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2782 unsigned long caller)
1da177e4 2783{
1da177e4 2784 unsigned int objnr;
8456a648 2785 struct page *page;
1da177e4 2786
80cbd911
MW
2787 BUG_ON(virt_to_cache(objp) != cachep);
2788
3dafccf2 2789 objp -= obj_offset(cachep);
1da177e4 2790 kfree_debugcheck(objp);
b49af68f 2791 page = virt_to_head_page(objp);
1da177e4 2792
1da177e4 2793 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2794 verify_redzone_free(cachep, objp);
1da177e4
LT
2795 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2796 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2797 }
d31676df
JK
2798 if (cachep->flags & SLAB_STORE_USER) {
2799 set_store_user_dirty(cachep);
7c0cb9c6 2800 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2801 }
1da177e4 2802
8456a648 2803 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2804
2805 BUG_ON(objnr >= cachep->num);
8456a648 2806 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2807
1da177e4 2808 if (cachep->flags & SLAB_POISON) {
1da177e4 2809 poison_obj(cachep, objp, POISON_FREE);
40b44137 2810 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2811 }
2812 return objp;
2813}
2814
1da177e4
LT
2815#else
2816#define kfree_debugcheck(x) do { } while(0)
2817#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2818#endif
2819
b03a017b
JK
2820static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2821 void **list)
2822{
2823#if DEBUG
2824 void *next = *list;
2825 void *objp;
2826
2827 while (next) {
2828 objp = next - obj_offset(cachep);
2829 next = *(void **)next;
2830 poison_obj(cachep, objp, POISON_FREE);
2831 }
2832#endif
2833}
2834
d8410234 2835static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2836 struct kmem_cache_node *n, struct page *page,
2837 void **list)
d8410234
JK
2838{
2839 /* move slabp to correct slabp list: */
2840 list_del(&page->lru);
b03a017b 2841 if (page->active == cachep->num) {
d8410234 2842 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2843 if (OBJFREELIST_SLAB(cachep)) {
2844#if DEBUG
2845 /* Poisoning will be done without holding the lock */
2846 if (cachep->flags & SLAB_POISON) {
2847 void **objp = page->freelist;
2848
2849 *objp = *list;
2850 *list = objp;
2851 }
2852#endif
2853 page->freelist = NULL;
2854 }
2855 } else
d8410234
JK
2856 list_add(&page->lru, &n->slabs_partial);
2857}
2858
f68f8ddd
JK
2859/* Try to find non-pfmemalloc slab if needed */
2860static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2861 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2862{
2863 if (!page)
2864 return NULL;
2865
2866 if (pfmemalloc)
2867 return page;
2868
2869 if (!PageSlabPfmemalloc(page))
2870 return page;
2871
2872 /* No need to keep pfmemalloc slab if we have enough free objects */
2873 if (n->free_objects > n->free_limit) {
2874 ClearPageSlabPfmemalloc(page);
2875 return page;
2876 }
2877
2878 /* Move pfmemalloc slab to the end of list to speed up next search */
2879 list_del(&page->lru);
bf00bd34 2880 if (!page->active) {
f68f8ddd 2881 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2882 n->free_slabs++;
f728b0a5 2883 } else
f68f8ddd
JK
2884 list_add_tail(&page->lru, &n->slabs_partial);
2885
2886 list_for_each_entry(page, &n->slabs_partial, lru) {
2887 if (!PageSlabPfmemalloc(page))
2888 return page;
2889 }
2890
f728b0a5 2891 n->free_touched = 1;
f68f8ddd 2892 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2893 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2894 n->free_slabs--;
f68f8ddd 2895 return page;
f728b0a5 2896 }
f68f8ddd
JK
2897 }
2898
2899 return NULL;
2900}
2901
2902static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2903{
2904 struct page *page;
2905
f728b0a5 2906 assert_spin_locked(&n->list_lock);
bf00bd34 2907 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2908 if (!page) {
2909 n->free_touched = 1;
bf00bd34
DR
2910 page = list_first_entry_or_null(&n->slabs_free, struct page,
2911 lru);
f728b0a5 2912 if (page)
bf00bd34 2913 n->free_slabs--;
7aa0d227
GT
2914 }
2915
f68f8ddd 2916 if (sk_memalloc_socks())
bf00bd34 2917 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2918
7aa0d227
GT
2919 return page;
2920}
2921
f68f8ddd
JK
2922static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2923 struct kmem_cache_node *n, gfp_t flags)
2924{
2925 struct page *page;
2926 void *obj;
2927 void *list = NULL;
2928
2929 if (!gfp_pfmemalloc_allowed(flags))
2930 return NULL;
2931
2932 spin_lock(&n->list_lock);
2933 page = get_first_slab(n, true);
2934 if (!page) {
2935 spin_unlock(&n->list_lock);
2936 return NULL;
2937 }
2938
2939 obj = slab_get_obj(cachep, page);
2940 n->free_objects--;
2941
2942 fixup_slab_list(cachep, n, page, &list);
2943
2944 spin_unlock(&n->list_lock);
2945 fixup_objfreelist_debug(cachep, &list);
2946
2947 return obj;
2948}
2949
213b4695
JK
2950/*
2951 * Slab list should be fixed up by fixup_slab_list() for existing slab
2952 * or cache_grow_end() for new slab
2953 */
2954static __always_inline int alloc_block(struct kmem_cache *cachep,
2955 struct array_cache *ac, struct page *page, int batchcount)
2956{
2957 /*
2958 * There must be at least one object available for
2959 * allocation.
2960 */
2961 BUG_ON(page->active >= cachep->num);
2962
2963 while (page->active < cachep->num && batchcount--) {
2964 STATS_INC_ALLOCED(cachep);
2965 STATS_INC_ACTIVE(cachep);
2966 STATS_SET_HIGH(cachep);
2967
2968 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2969 }
2970
2971 return batchcount;
2972}
2973
f68f8ddd 2974static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2975{
2976 int batchcount;
ce8eb6c4 2977 struct kmem_cache_node *n;
801faf0d 2978 struct array_cache *ac, *shared;
1ca4cb24 2979 int node;
b03a017b 2980 void *list = NULL;
76b342bd 2981 struct page *page;
1ca4cb24 2982
1da177e4 2983 check_irq_off();
7d6e6d09 2984 node = numa_mem_id();
f68f8ddd 2985
9a2dba4b 2986 ac = cpu_cache_get(cachep);
1da177e4
LT
2987 batchcount = ac->batchcount;
2988 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2989 /*
2990 * If there was little recent activity on this cache, then
2991 * perform only a partial refill. Otherwise we could generate
2992 * refill bouncing.
1da177e4
LT
2993 */
2994 batchcount = BATCHREFILL_LIMIT;
2995 }
18bf8541 2996 n = get_node(cachep, node);
e498be7d 2997
ce8eb6c4 2998 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2999 shared = READ_ONCE(n->shared);
3000 if (!n->free_objects && (!shared || !shared->avail))
3001 goto direct_grow;
3002
ce8eb6c4 3003 spin_lock(&n->list_lock);
801faf0d 3004 shared = READ_ONCE(n->shared);
1da177e4 3005
3ded175a 3006 /* See if we can refill from the shared array */
801faf0d
JK
3007 if (shared && transfer_objects(ac, shared, batchcount)) {
3008 shared->touched = 1;
3ded175a 3009 goto alloc_done;
44b57f1c 3010 }
3ded175a 3011
1da177e4 3012 while (batchcount > 0) {
1da177e4 3013 /* Get slab alloc is to come from. */
f68f8ddd 3014 page = get_first_slab(n, false);
7aa0d227
GT
3015 if (!page)
3016 goto must_grow;
1da177e4 3017
1da177e4 3018 check_spinlock_acquired(cachep);
714b8171 3019
213b4695 3020 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3021 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3022 }
3023
a737b3e2 3024must_grow:
ce8eb6c4 3025 n->free_objects -= ac->avail;
a737b3e2 3026alloc_done:
ce8eb6c4 3027 spin_unlock(&n->list_lock);
b03a017b 3028 fixup_objfreelist_debug(cachep, &list);
1da177e4 3029
801faf0d 3030direct_grow:
1da177e4 3031 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3032 /* Check if we can use obj in pfmemalloc slab */
3033 if (sk_memalloc_socks()) {
3034 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3035
3036 if (obj)
3037 return obj;
3038 }
3039
76b342bd 3040 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3041
76b342bd
JK
3042 /*
3043 * cache_grow_begin() can reenable interrupts,
3044 * then ac could change.
3045 */
9a2dba4b 3046 ac = cpu_cache_get(cachep);
213b4695
JK
3047 if (!ac->avail && page)
3048 alloc_block(cachep, ac, page, batchcount);
3049 cache_grow_end(cachep, page);
072bb0aa 3050
213b4695 3051 if (!ac->avail)
1da177e4 3052 return NULL;
1da177e4
LT
3053 }
3054 ac->touched = 1;
072bb0aa 3055
f68f8ddd 3056 return ac->entry[--ac->avail];
1da177e4
LT
3057}
3058
a737b3e2
AM
3059static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3060 gfp_t flags)
1da177e4 3061{
d0164adc 3062 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3063}
3064
3065#if DEBUG
a737b3e2 3066static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3067 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3068{
b28a02de 3069 if (!objp)
1da177e4 3070 return objp;
b28a02de 3071 if (cachep->flags & SLAB_POISON) {
1da177e4 3072 check_poison_obj(cachep, objp);
40b44137 3073 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3074 poison_obj(cachep, objp, POISON_INUSE);
3075 }
3076 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3077 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3078
3079 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3080 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3081 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3082 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3083 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3084 objp, *dbg_redzone1(cachep, objp),
3085 *dbg_redzone2(cachep, objp));
1da177e4
LT
3086 }
3087 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3088 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3089 }
03787301 3090
3dafccf2 3091 objp += obj_offset(cachep);
4f104934 3092 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3093 cachep->ctor(objp);
7ea466f2
TH
3094 if (ARCH_SLAB_MINALIGN &&
3095 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3096 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3097 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3098 }
1da177e4
LT
3099 return objp;
3100}
3101#else
3102#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3103#endif
3104
343e0d7a 3105static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3106{
b28a02de 3107 void *objp;
1da177e4
LT
3108 struct array_cache *ac;
3109
5c382300 3110 check_irq_off();
8a8b6502 3111
9a2dba4b 3112 ac = cpu_cache_get(cachep);
1da177e4 3113 if (likely(ac->avail)) {
1da177e4 3114 ac->touched = 1;
f68f8ddd 3115 objp = ac->entry[--ac->avail];
072bb0aa 3116
f68f8ddd
JK
3117 STATS_INC_ALLOCHIT(cachep);
3118 goto out;
1da177e4 3119 }
072bb0aa
MG
3120
3121 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3122 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3123 /*
3124 * the 'ac' may be updated by cache_alloc_refill(),
3125 * and kmemleak_erase() requires its correct value.
3126 */
3127 ac = cpu_cache_get(cachep);
3128
3129out:
d5cff635
CM
3130 /*
3131 * To avoid a false negative, if an object that is in one of the
3132 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3133 * treat the array pointers as a reference to the object.
3134 */
f3d8b53a
O
3135 if (objp)
3136 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3137 return objp;
3138}
3139
e498be7d 3140#ifdef CONFIG_NUMA
c61afb18 3141/*
2ad654bc 3142 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3143 *
3144 * If we are in_interrupt, then process context, including cpusets and
3145 * mempolicy, may not apply and should not be used for allocation policy.
3146 */
3147static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3148{
3149 int nid_alloc, nid_here;
3150
765c4507 3151 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3152 return NULL;
7d6e6d09 3153 nid_alloc = nid_here = numa_mem_id();
c61afb18 3154 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3155 nid_alloc = cpuset_slab_spread_node();
c61afb18 3156 else if (current->mempolicy)
2a389610 3157 nid_alloc = mempolicy_slab_node();
c61afb18 3158 if (nid_alloc != nid_here)
8b98c169 3159 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3160 return NULL;
3161}
3162
765c4507
CL
3163/*
3164 * Fallback function if there was no memory available and no objects on a
3c517a61 3165 * certain node and fall back is permitted. First we scan all the
6a67368c 3166 * available node for available objects. If that fails then we
3c517a61
CL
3167 * perform an allocation without specifying a node. This allows the page
3168 * allocator to do its reclaim / fallback magic. We then insert the
3169 * slab into the proper nodelist and then allocate from it.
765c4507 3170 */
8c8cc2c1 3171static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3172{
8c8cc2c1 3173 struct zonelist *zonelist;
dd1a239f 3174 struct zoneref *z;
54a6eb5c
MG
3175 struct zone *zone;
3176 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3177 void *obj = NULL;
76b342bd 3178 struct page *page;
3c517a61 3179 int nid;
cc9a6c87 3180 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3181
3182 if (flags & __GFP_THISNODE)
3183 return NULL;
3184
cc9a6c87 3185retry_cpuset:
d26914d1 3186 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3187 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3188
3c517a61
CL
3189retry:
3190 /*
3191 * Look through allowed nodes for objects available
3192 * from existing per node queues.
3193 */
54a6eb5c
MG
3194 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3195 nid = zone_to_nid(zone);
aedb0eb1 3196
061d7074 3197 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3198 get_node(cache, nid) &&
3199 get_node(cache, nid)->free_objects) {
3c517a61 3200 obj = ____cache_alloc_node(cache,
4167e9b2 3201 gfp_exact_node(flags), nid);
481c5346
CL
3202 if (obj)
3203 break;
3204 }
3c517a61
CL
3205 }
3206
cfce6604 3207 if (!obj) {
3c517a61
CL
3208 /*
3209 * This allocation will be performed within the constraints
3210 * of the current cpuset / memory policy requirements.
3211 * We may trigger various forms of reclaim on the allowed
3212 * set and go into memory reserves if necessary.
3213 */
76b342bd
JK
3214 page = cache_grow_begin(cache, flags, numa_mem_id());
3215 cache_grow_end(cache, page);
3216 if (page) {
3217 nid = page_to_nid(page);
511e3a05
JK
3218 obj = ____cache_alloc_node(cache,
3219 gfp_exact_node(flags), nid);
0c3aa83e 3220
3c517a61 3221 /*
511e3a05
JK
3222 * Another processor may allocate the objects in
3223 * the slab since we are not holding any locks.
3c517a61 3224 */
511e3a05
JK
3225 if (!obj)
3226 goto retry;
3c517a61 3227 }
aedb0eb1 3228 }
cc9a6c87 3229
d26914d1 3230 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3231 goto retry_cpuset;
765c4507
CL
3232 return obj;
3233}
3234
e498be7d
CL
3235/*
3236 * A interface to enable slab creation on nodeid
1da177e4 3237 */
8b98c169 3238static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3239 int nodeid)
e498be7d 3240{
8456a648 3241 struct page *page;
ce8eb6c4 3242 struct kmem_cache_node *n;
213b4695 3243 void *obj = NULL;
b03a017b 3244 void *list = NULL;
b28a02de 3245
7c3fbbdd 3246 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3247 n = get_node(cachep, nodeid);
ce8eb6c4 3248 BUG_ON(!n);
b28a02de 3249
ca3b9b91 3250 check_irq_off();
ce8eb6c4 3251 spin_lock(&n->list_lock);
f68f8ddd 3252 page = get_first_slab(n, false);
7aa0d227
GT
3253 if (!page)
3254 goto must_grow;
b28a02de 3255
b28a02de 3256 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3257
3258 STATS_INC_NODEALLOCS(cachep);
3259 STATS_INC_ACTIVE(cachep);
3260 STATS_SET_HIGH(cachep);
3261
8456a648 3262 BUG_ON(page->active == cachep->num);
b28a02de 3263
260b61dd 3264 obj = slab_get_obj(cachep, page);
ce8eb6c4 3265 n->free_objects--;
b28a02de 3266
b03a017b 3267 fixup_slab_list(cachep, n, page, &list);
e498be7d 3268
ce8eb6c4 3269 spin_unlock(&n->list_lock);
b03a017b 3270 fixup_objfreelist_debug(cachep, &list);
213b4695 3271 return obj;
e498be7d 3272
a737b3e2 3273must_grow:
ce8eb6c4 3274 spin_unlock(&n->list_lock);
76b342bd 3275 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3276 if (page) {
3277 /* This slab isn't counted yet so don't update free_objects */
3278 obj = slab_get_obj(cachep, page);
3279 }
76b342bd 3280 cache_grow_end(cachep, page);
1da177e4 3281
213b4695 3282 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3283}
8c8cc2c1 3284
8c8cc2c1 3285static __always_inline void *
48356303 3286slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3287 unsigned long caller)
8c8cc2c1
PE
3288{
3289 unsigned long save_flags;
3290 void *ptr;
7d6e6d09 3291 int slab_node = numa_mem_id();
8c8cc2c1 3292
dcce284a 3293 flags &= gfp_allowed_mask;
011eceaf
JDB
3294 cachep = slab_pre_alloc_hook(cachep, flags);
3295 if (unlikely(!cachep))
824ebef1
AM
3296 return NULL;
3297
8c8cc2c1
PE
3298 cache_alloc_debugcheck_before(cachep, flags);
3299 local_irq_save(save_flags);
3300
eacbbae3 3301 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3302 nodeid = slab_node;
8c8cc2c1 3303
18bf8541 3304 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3305 /* Node not bootstrapped yet */
3306 ptr = fallback_alloc(cachep, flags);
3307 goto out;
3308 }
3309
7d6e6d09 3310 if (nodeid == slab_node) {
8c8cc2c1
PE
3311 /*
3312 * Use the locally cached objects if possible.
3313 * However ____cache_alloc does not allow fallback
3314 * to other nodes. It may fail while we still have
3315 * objects on other nodes available.
3316 */
3317 ptr = ____cache_alloc(cachep, flags);
3318 if (ptr)
3319 goto out;
3320 }
3321 /* ___cache_alloc_node can fall back to other nodes */
3322 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3323 out:
3324 local_irq_restore(save_flags);
3325 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3326
d5e3ed66
JDB
3327 if (unlikely(flags & __GFP_ZERO) && ptr)
3328 memset(ptr, 0, cachep->object_size);
d07dbea4 3329
d5e3ed66 3330 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3331 return ptr;
3332}
3333
3334static __always_inline void *
3335__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3336{
3337 void *objp;
3338
2ad654bc 3339 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3340 objp = alternate_node_alloc(cache, flags);
3341 if (objp)
3342 goto out;
3343 }
3344 objp = ____cache_alloc(cache, flags);
3345
3346 /*
3347 * We may just have run out of memory on the local node.
3348 * ____cache_alloc_node() knows how to locate memory on other nodes
3349 */
7d6e6d09
LS
3350 if (!objp)
3351 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3352
3353 out:
3354 return objp;
3355}
3356#else
3357
3358static __always_inline void *
3359__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3360{
3361 return ____cache_alloc(cachep, flags);
3362}
3363
3364#endif /* CONFIG_NUMA */
3365
3366static __always_inline void *
48356303 3367slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3368{
3369 unsigned long save_flags;
3370 void *objp;
3371
dcce284a 3372 flags &= gfp_allowed_mask;
011eceaf
JDB
3373 cachep = slab_pre_alloc_hook(cachep, flags);
3374 if (unlikely(!cachep))
824ebef1
AM
3375 return NULL;
3376
8c8cc2c1
PE
3377 cache_alloc_debugcheck_before(cachep, flags);
3378 local_irq_save(save_flags);
3379 objp = __do_cache_alloc(cachep, flags);
3380 local_irq_restore(save_flags);
3381 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3382 prefetchw(objp);
3383
d5e3ed66
JDB
3384 if (unlikely(flags & __GFP_ZERO) && objp)
3385 memset(objp, 0, cachep->object_size);
d07dbea4 3386
d5e3ed66 3387 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3388 return objp;
3389}
e498be7d
CL
3390
3391/*
5f0985bb 3392 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3393 * @list: List of detached free slabs should be freed by caller
e498be7d 3394 */
97654dfa
JK
3395static void free_block(struct kmem_cache *cachep, void **objpp,
3396 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3397{
3398 int i;
25c063fb 3399 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3400 struct page *page;
3401
3402 n->free_objects += nr_objects;
1da177e4
LT
3403
3404 for (i = 0; i < nr_objects; i++) {
072bb0aa 3405 void *objp;
8456a648 3406 struct page *page;
1da177e4 3407
072bb0aa
MG
3408 objp = objpp[i];
3409
8456a648 3410 page = virt_to_head_page(objp);
8456a648 3411 list_del(&page->lru);
ff69416e 3412 check_spinlock_acquired_node(cachep, node);
260b61dd 3413 slab_put_obj(cachep, page, objp);
1da177e4 3414 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3415
3416 /* fixup slab chains */
f728b0a5 3417 if (page->active == 0) {
6052b788 3418 list_add(&page->lru, &n->slabs_free);
f728b0a5 3419 n->free_slabs++;
f728b0a5 3420 } else {
1da177e4
LT
3421 /* Unconditionally move a slab to the end of the
3422 * partial list on free - maximum time for the
3423 * other objects to be freed, too.
3424 */
8456a648 3425 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3426 }
3427 }
6052b788
JK
3428
3429 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3430 n->free_objects -= cachep->num;
3431
3432 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3433 list_move(&page->lru, list);
f728b0a5 3434 n->free_slabs--;
bf00bd34 3435 n->total_slabs--;
6052b788 3436 }
1da177e4
LT
3437}
3438
343e0d7a 3439static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3440{
3441 int batchcount;
ce8eb6c4 3442 struct kmem_cache_node *n;
7d6e6d09 3443 int node = numa_mem_id();
97654dfa 3444 LIST_HEAD(list);
1da177e4
LT
3445
3446 batchcount = ac->batchcount;
260b61dd 3447
1da177e4 3448 check_irq_off();
18bf8541 3449 n = get_node(cachep, node);
ce8eb6c4
CL
3450 spin_lock(&n->list_lock);
3451 if (n->shared) {
3452 struct array_cache *shared_array = n->shared;
b28a02de 3453 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3454 if (max) {
3455 if (batchcount > max)
3456 batchcount = max;
e498be7d 3457 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3458 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3459 shared_array->avail += batchcount;
3460 goto free_done;
3461 }
3462 }
3463
97654dfa 3464 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3465free_done:
1da177e4
LT
3466#if STATS
3467 {
3468 int i = 0;
73c0219d 3469 struct page *page;
1da177e4 3470
73c0219d 3471 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3472 BUG_ON(page->active);
1da177e4
LT
3473
3474 i++;
1da177e4
LT
3475 }
3476 STATS_SET_FREEABLE(cachep, i);
3477 }
3478#endif
ce8eb6c4 3479 spin_unlock(&n->list_lock);
97654dfa 3480 slabs_destroy(cachep, &list);
1da177e4 3481 ac->avail -= batchcount;
a737b3e2 3482 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3483}
3484
3485/*
a737b3e2
AM
3486 * Release an obj back to its cache. If the obj has a constructed state, it must
3487 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3488 */
a947eb95 3489static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3490 unsigned long caller)
1da177e4 3491{
55834c59
AP
3492 /* Put the object into the quarantine, don't touch it for now. */
3493 if (kasan_slab_free(cachep, objp))
3494 return;
3495
3496 ___cache_free(cachep, objp, caller);
3497}
1da177e4 3498
55834c59
AP
3499void ___cache_free(struct kmem_cache *cachep, void *objp,
3500 unsigned long caller)
3501{
3502 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3503
1da177e4 3504 check_irq_off();
d5cff635 3505 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3506 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3507
1807a1aa
SS
3508 /*
3509 * Skip calling cache_free_alien() when the platform is not numa.
3510 * This will avoid cache misses that happen while accessing slabp (which
3511 * is per page memory reference) to get nodeid. Instead use a global
3512 * variable to skip the call, which is mostly likely to be present in
3513 * the cache.
3514 */
b6e68bc1 3515 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3516 return;
3517
3d880194 3518 if (ac->avail < ac->limit) {
1da177e4 3519 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3520 } else {
3521 STATS_INC_FREEMISS(cachep);
3522 cache_flusharray(cachep, ac);
1da177e4 3523 }
42c8c99c 3524
f68f8ddd
JK
3525 if (sk_memalloc_socks()) {
3526 struct page *page = virt_to_head_page(objp);
3527
3528 if (unlikely(PageSlabPfmemalloc(page))) {
3529 cache_free_pfmemalloc(cachep, page, objp);
3530 return;
3531 }
3532 }
3533
3534 ac->entry[ac->avail++] = objp;
1da177e4
LT
3535}
3536
3537/**
3538 * kmem_cache_alloc - Allocate an object
3539 * @cachep: The cache to allocate from.
3540 * @flags: See kmalloc().
3541 *
3542 * Allocate an object from this cache. The flags are only relevant
3543 * if the cache has no available objects.
3544 */
343e0d7a 3545void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3546{
48356303 3547 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3548
505f5dcb 3549 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3550 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3551 cachep->object_size, cachep->size, flags);
36555751
EGM
3552
3553 return ret;
1da177e4
LT
3554}
3555EXPORT_SYMBOL(kmem_cache_alloc);
3556
7b0501dd
JDB
3557static __always_inline void
3558cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3559 size_t size, void **p, unsigned long caller)
3560{
3561 size_t i;
3562
3563 for (i = 0; i < size; i++)
3564 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3565}
3566
865762a8 3567int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3568 void **p)
484748f0 3569{
2a777eac
JDB
3570 size_t i;
3571
3572 s = slab_pre_alloc_hook(s, flags);
3573 if (!s)
3574 return 0;
3575
3576 cache_alloc_debugcheck_before(s, flags);
3577
3578 local_irq_disable();
3579 for (i = 0; i < size; i++) {
3580 void *objp = __do_cache_alloc(s, flags);
3581
2a777eac
JDB
3582 if (unlikely(!objp))
3583 goto error;
3584 p[i] = objp;
3585 }
3586 local_irq_enable();
3587
7b0501dd
JDB
3588 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3589
2a777eac
JDB
3590 /* Clear memory outside IRQ disabled section */
3591 if (unlikely(flags & __GFP_ZERO))
3592 for (i = 0; i < size; i++)
3593 memset(p[i], 0, s->object_size);
3594
3595 slab_post_alloc_hook(s, flags, size, p);
3596 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3597 return size;
3598error:
3599 local_irq_enable();
7b0501dd 3600 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3601 slab_post_alloc_hook(s, flags, i, p);
3602 __kmem_cache_free_bulk(s, i, p);
3603 return 0;
484748f0
CL
3604}
3605EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3606
0f24f128 3607#ifdef CONFIG_TRACING
85beb586 3608void *
4052147c 3609kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3610{
85beb586
SR
3611 void *ret;
3612
48356303 3613 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3614
505f5dcb 3615 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3616 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3617 size, cachep->size, flags);
85beb586 3618 return ret;
36555751 3619}
85beb586 3620EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3621#endif
3622
1da177e4 3623#ifdef CONFIG_NUMA
d0d04b78
ZL
3624/**
3625 * kmem_cache_alloc_node - Allocate an object on the specified node
3626 * @cachep: The cache to allocate from.
3627 * @flags: See kmalloc().
3628 * @nodeid: node number of the target node.
3629 *
3630 * Identical to kmem_cache_alloc but it will allocate memory on the given
3631 * node, which can improve the performance for cpu bound structures.
3632 *
3633 * Fallback to other node is possible if __GFP_THISNODE is not set.
3634 */
8b98c169
CH
3635void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3636{
48356303 3637 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3638
505f5dcb 3639 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3640 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3641 cachep->object_size, cachep->size,
ca2b84cb 3642 flags, nodeid);
36555751
EGM
3643
3644 return ret;
8b98c169 3645}
1da177e4
LT
3646EXPORT_SYMBOL(kmem_cache_alloc_node);
3647
0f24f128 3648#ifdef CONFIG_TRACING
4052147c 3649void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3650 gfp_t flags,
4052147c
EG
3651 int nodeid,
3652 size_t size)
36555751 3653{
85beb586
SR
3654 void *ret;
3655
592f4145 3656 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3657
3658 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3659 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3660 size, cachep->size,
85beb586
SR
3661 flags, nodeid);
3662 return ret;
36555751 3663}
85beb586 3664EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3665#endif
3666
8b98c169 3667static __always_inline void *
7c0cb9c6 3668__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3669{
343e0d7a 3670 struct kmem_cache *cachep;
7ed2f9e6 3671 void *ret;
97e2bde4 3672
333cfbd3
DV
3673 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3674 return NULL;
2c59dd65 3675 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3676 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3677 return cachep;
7ed2f9e6 3678 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3679 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3680
3681 return ret;
97e2bde4 3682}
8b98c169 3683
8b98c169
CH
3684void *__kmalloc_node(size_t size, gfp_t flags, int node)
3685{
7c0cb9c6 3686 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3687}
dbe5e69d 3688EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3689
3690void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3691 int node, unsigned long caller)
8b98c169 3692{
7c0cb9c6 3693 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3694}
3695EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3696#endif /* CONFIG_NUMA */
1da177e4
LT
3697
3698/**
800590f5 3699 * __do_kmalloc - allocate memory
1da177e4 3700 * @size: how many bytes of memory are required.
800590f5 3701 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3702 * @caller: function caller for debug tracking of the caller
1da177e4 3703 */
7fd6b141 3704static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3705 unsigned long caller)
1da177e4 3706{
343e0d7a 3707 struct kmem_cache *cachep;
36555751 3708 void *ret;
1da177e4 3709
333cfbd3
DV
3710 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3711 return NULL;
2c59dd65 3712 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3713 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3714 return cachep;
48356303 3715 ret = slab_alloc(cachep, flags, caller);
36555751 3716
505f5dcb 3717 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3718 trace_kmalloc(caller, ret,
3b0efdfa 3719 size, cachep->size, flags);
36555751
EGM
3720
3721 return ret;
7fd6b141
PE
3722}
3723
7fd6b141
PE
3724void *__kmalloc(size_t size, gfp_t flags)
3725{
7c0cb9c6 3726 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3727}
3728EXPORT_SYMBOL(__kmalloc);
3729
ce71e27c 3730void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3731{
7c0cb9c6 3732 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3733}
3734EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3735
1da177e4
LT
3736/**
3737 * kmem_cache_free - Deallocate an object
3738 * @cachep: The cache the allocation was from.
3739 * @objp: The previously allocated object.
3740 *
3741 * Free an object which was previously allocated from this
3742 * cache.
3743 */
343e0d7a 3744void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3745{
3746 unsigned long flags;
b9ce5ef4
GC
3747 cachep = cache_from_obj(cachep, objp);
3748 if (!cachep)
3749 return;
1da177e4
LT
3750
3751 local_irq_save(flags);
d97d476b 3752 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3753 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3754 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3755 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3756 local_irq_restore(flags);
36555751 3757
ca2b84cb 3758 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3759}
3760EXPORT_SYMBOL(kmem_cache_free);
3761
e6cdb58d
JDB
3762void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3763{
3764 struct kmem_cache *s;
3765 size_t i;
3766
3767 local_irq_disable();
3768 for (i = 0; i < size; i++) {
3769 void *objp = p[i];
3770
ca257195
JDB
3771 if (!orig_s) /* called via kfree_bulk */
3772 s = virt_to_cache(objp);
3773 else
3774 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3775
3776 debug_check_no_locks_freed(objp, s->object_size);
3777 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3778 debug_check_no_obj_freed(objp, s->object_size);
3779
3780 __cache_free(s, objp, _RET_IP_);
3781 }
3782 local_irq_enable();
3783
3784 /* FIXME: add tracing */
3785}
3786EXPORT_SYMBOL(kmem_cache_free_bulk);
3787
1da177e4
LT
3788/**
3789 * kfree - free previously allocated memory
3790 * @objp: pointer returned by kmalloc.
3791 *
80e93eff
PE
3792 * If @objp is NULL, no operation is performed.
3793 *
1da177e4
LT
3794 * Don't free memory not originally allocated by kmalloc()
3795 * or you will run into trouble.
3796 */
3797void kfree(const void *objp)
3798{
343e0d7a 3799 struct kmem_cache *c;
1da177e4
LT
3800 unsigned long flags;
3801
2121db74
PE
3802 trace_kfree(_RET_IP_, objp);
3803
6cb8f913 3804 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3805 return;
3806 local_irq_save(flags);
3807 kfree_debugcheck(objp);
6ed5eb22 3808 c = virt_to_cache(objp);
8c138bc0
CL
3809 debug_check_no_locks_freed(objp, c->object_size);
3810
3811 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3812 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3813 local_irq_restore(flags);
3814}
3815EXPORT_SYMBOL(kfree);
3816
e498be7d 3817/*
ce8eb6c4 3818 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3819 */
c3d332b6 3820static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3821{
c3d332b6 3822 int ret;
e498be7d 3823 int node;
ce8eb6c4 3824 struct kmem_cache_node *n;
e498be7d 3825
9c09a95c 3826 for_each_online_node(node) {
c3d332b6
JK
3827 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3828 if (ret)
e498be7d
CL
3829 goto fail;
3830
e498be7d 3831 }
c3d332b6 3832
cafeb02e 3833 return 0;
0718dc2a 3834
a737b3e2 3835fail:
3b0efdfa 3836 if (!cachep->list.next) {
0718dc2a
CL
3837 /* Cache is not active yet. Roll back what we did */
3838 node--;
3839 while (node >= 0) {
18bf8541
CL
3840 n = get_node(cachep, node);
3841 if (n) {
ce8eb6c4
CL
3842 kfree(n->shared);
3843 free_alien_cache(n->alien);
3844 kfree(n);
6a67368c 3845 cachep->node[node] = NULL;
0718dc2a
CL
3846 }
3847 node--;
3848 }
3849 }
cafeb02e 3850 return -ENOMEM;
e498be7d
CL
3851}
3852
18004c5d 3853/* Always called with the slab_mutex held */
943a451a 3854static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3855 int batchcount, int shared, gfp_t gfp)
1da177e4 3856{
bf0dea23
JK
3857 struct array_cache __percpu *cpu_cache, *prev;
3858 int cpu;
1da177e4 3859
bf0dea23
JK
3860 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3861 if (!cpu_cache)
d2e7b7d0
SS
3862 return -ENOMEM;
3863
bf0dea23
JK
3864 prev = cachep->cpu_cache;
3865 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3866 /*
3867 * Without a previous cpu_cache there's no need to synchronize remote
3868 * cpus, so skip the IPIs.
3869 */
3870 if (prev)
3871 kick_all_cpus_sync();
e498be7d 3872
1da177e4 3873 check_irq_on();
1da177e4
LT
3874 cachep->batchcount = batchcount;
3875 cachep->limit = limit;
e498be7d 3876 cachep->shared = shared;
1da177e4 3877
bf0dea23 3878 if (!prev)
c3d332b6 3879 goto setup_node;
bf0dea23
JK
3880
3881 for_each_online_cpu(cpu) {
97654dfa 3882 LIST_HEAD(list);
18bf8541
CL
3883 int node;
3884 struct kmem_cache_node *n;
bf0dea23 3885 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3886
bf0dea23 3887 node = cpu_to_mem(cpu);
18bf8541
CL
3888 n = get_node(cachep, node);
3889 spin_lock_irq(&n->list_lock);
bf0dea23 3890 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3891 spin_unlock_irq(&n->list_lock);
97654dfa 3892 slabs_destroy(cachep, &list);
1da177e4 3893 }
bf0dea23
JK
3894 free_percpu(prev);
3895
c3d332b6
JK
3896setup_node:
3897 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3898}
3899
943a451a
GC
3900static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3901 int batchcount, int shared, gfp_t gfp)
3902{
3903 int ret;
426589f5 3904 struct kmem_cache *c;
943a451a
GC
3905
3906 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3907
3908 if (slab_state < FULL)
3909 return ret;
3910
3911 if ((ret < 0) || !is_root_cache(cachep))
3912 return ret;
3913
426589f5
VD
3914 lockdep_assert_held(&slab_mutex);
3915 for_each_memcg_cache(c, cachep) {
3916 /* return value determined by the root cache only */
3917 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3918 }
3919
3920 return ret;
3921}
3922
18004c5d 3923/* Called with slab_mutex held always */
83b519e8 3924static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3925{
3926 int err;
943a451a
GC
3927 int limit = 0;
3928 int shared = 0;
3929 int batchcount = 0;
3930
7c00fce9 3931 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3932 if (err)
3933 goto end;
3934
943a451a
GC
3935 if (!is_root_cache(cachep)) {
3936 struct kmem_cache *root = memcg_root_cache(cachep);
3937 limit = root->limit;
3938 shared = root->shared;
3939 batchcount = root->batchcount;
3940 }
1da177e4 3941
943a451a
GC
3942 if (limit && shared && batchcount)
3943 goto skip_setup;
a737b3e2
AM
3944 /*
3945 * The head array serves three purposes:
1da177e4
LT
3946 * - create a LIFO ordering, i.e. return objects that are cache-warm
3947 * - reduce the number of spinlock operations.
a737b3e2 3948 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3949 * bufctl chains: array operations are cheaper.
3950 * The numbers are guessed, we should auto-tune as described by
3951 * Bonwick.
3952 */
3b0efdfa 3953 if (cachep->size > 131072)
1da177e4 3954 limit = 1;
3b0efdfa 3955 else if (cachep->size > PAGE_SIZE)
1da177e4 3956 limit = 8;
3b0efdfa 3957 else if (cachep->size > 1024)
1da177e4 3958 limit = 24;
3b0efdfa 3959 else if (cachep->size > 256)
1da177e4
LT
3960 limit = 54;
3961 else
3962 limit = 120;
3963
a737b3e2
AM
3964 /*
3965 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3966 * allocation behaviour: Most allocs on one cpu, most free operations
3967 * on another cpu. For these cases, an efficient object passing between
3968 * cpus is necessary. This is provided by a shared array. The array
3969 * replaces Bonwick's magazine layer.
3970 * On uniprocessor, it's functionally equivalent (but less efficient)
3971 * to a larger limit. Thus disabled by default.
3972 */
3973 shared = 0;
3b0efdfa 3974 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3975 shared = 8;
1da177e4
LT
3976
3977#if DEBUG
a737b3e2
AM
3978 /*
3979 * With debugging enabled, large batchcount lead to excessively long
3980 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3981 */
3982 if (limit > 32)
3983 limit = 32;
3984#endif
943a451a
GC
3985 batchcount = (limit + 1) / 2;
3986skip_setup:
3987 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3988end:
1da177e4 3989 if (err)
1170532b 3990 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3991 cachep->name, -err);
2ed3a4ef 3992 return err;
1da177e4
LT
3993}
3994
1b55253a 3995/*
ce8eb6c4
CL
3996 * Drain an array if it contains any elements taking the node lock only if
3997 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3998 * if drain_array() is used on the shared array.
1b55253a 3999 */
ce8eb6c4 4000static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4001 struct array_cache *ac, int node)
1da177e4 4002{
97654dfa 4003 LIST_HEAD(list);
18726ca8
JK
4004
4005 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4006 check_mutex_acquired();
1da177e4 4007
1b55253a
CL
4008 if (!ac || !ac->avail)
4009 return;
18726ca8
JK
4010
4011 if (ac->touched) {
1da177e4 4012 ac->touched = 0;
18726ca8 4013 return;
1da177e4 4014 }
18726ca8
JK
4015
4016 spin_lock_irq(&n->list_lock);
4017 drain_array_locked(cachep, ac, node, false, &list);
4018 spin_unlock_irq(&n->list_lock);
4019
4020 slabs_destroy(cachep, &list);
1da177e4
LT
4021}
4022
4023/**
4024 * cache_reap - Reclaim memory from caches.
05fb6bf0 4025 * @w: work descriptor
1da177e4
LT
4026 *
4027 * Called from workqueue/eventd every few seconds.
4028 * Purpose:
4029 * - clear the per-cpu caches for this CPU.
4030 * - return freeable pages to the main free memory pool.
4031 *
a737b3e2
AM
4032 * If we cannot acquire the cache chain mutex then just give up - we'll try
4033 * again on the next iteration.
1da177e4 4034 */
7c5cae36 4035static void cache_reap(struct work_struct *w)
1da177e4 4036{
7a7c381d 4037 struct kmem_cache *searchp;
ce8eb6c4 4038 struct kmem_cache_node *n;
7d6e6d09 4039 int node = numa_mem_id();
bf6aede7 4040 struct delayed_work *work = to_delayed_work(w);
1da177e4 4041
18004c5d 4042 if (!mutex_trylock(&slab_mutex))
1da177e4 4043 /* Give up. Setup the next iteration. */
7c5cae36 4044 goto out;
1da177e4 4045
18004c5d 4046 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4047 check_irq_on();
4048
35386e3b 4049 /*
ce8eb6c4 4050 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4051 * have established with reasonable certainty that
4052 * we can do some work if the lock was obtained.
4053 */
18bf8541 4054 n = get_node(searchp, node);
35386e3b 4055
ce8eb6c4 4056 reap_alien(searchp, n);
1da177e4 4057
18726ca8 4058 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4059
35386e3b
CL
4060 /*
4061 * These are racy checks but it does not matter
4062 * if we skip one check or scan twice.
4063 */
ce8eb6c4 4064 if (time_after(n->next_reap, jiffies))
35386e3b 4065 goto next;
1da177e4 4066
5f0985bb 4067 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4068
18726ca8 4069 drain_array(searchp, n, n->shared, node);
1da177e4 4070
ce8eb6c4
CL
4071 if (n->free_touched)
4072 n->free_touched = 0;
ed11d9eb
CL
4073 else {
4074 int freed;
1da177e4 4075
ce8eb6c4 4076 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4077 5 * searchp->num - 1) / (5 * searchp->num));
4078 STATS_ADD_REAPED(searchp, freed);
4079 }
35386e3b 4080next:
1da177e4
LT
4081 cond_resched();
4082 }
4083 check_irq_on();
18004c5d 4084 mutex_unlock(&slab_mutex);
8fce4d8e 4085 next_reap_node();
7c5cae36 4086out:
a737b3e2 4087 /* Set up the next iteration */
7f251b20
VB
4088 schedule_delayed_work_on(smp_processor_id(), work,
4089 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4090}
4091
0d7561c6 4092void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4093{
f728b0a5 4094 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4095 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4096 unsigned long free_slabs = 0;
e498be7d 4097 int node;
ce8eb6c4 4098 struct kmem_cache_node *n;
1da177e4 4099
18bf8541 4100 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4101 check_irq_on();
ce8eb6c4 4102 spin_lock_irq(&n->list_lock);
e498be7d 4103
bf00bd34
DR
4104 total_slabs += n->total_slabs;
4105 free_slabs += n->free_slabs;
f728b0a5 4106 free_objs += n->free_objects;
07a63c41 4107
ce8eb6c4
CL
4108 if (n->shared)
4109 shared_avail += n->shared->avail;
e498be7d 4110
ce8eb6c4 4111 spin_unlock_irq(&n->list_lock);
1da177e4 4112 }
bf00bd34
DR
4113 num_objs = total_slabs * cachep->num;
4114 active_slabs = total_slabs - free_slabs;
f728b0a5 4115 active_objs = num_objs - free_objs;
1da177e4 4116
0d7561c6
GC
4117 sinfo->active_objs = active_objs;
4118 sinfo->num_objs = num_objs;
4119 sinfo->active_slabs = active_slabs;
bf00bd34 4120 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4121 sinfo->shared_avail = shared_avail;
4122 sinfo->limit = cachep->limit;
4123 sinfo->batchcount = cachep->batchcount;
4124 sinfo->shared = cachep->shared;
4125 sinfo->objects_per_slab = cachep->num;
4126 sinfo->cache_order = cachep->gfporder;
4127}
4128
4129void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4130{
1da177e4 4131#if STATS
ce8eb6c4 4132 { /* node stats */
1da177e4
LT
4133 unsigned long high = cachep->high_mark;
4134 unsigned long allocs = cachep->num_allocations;
4135 unsigned long grown = cachep->grown;
4136 unsigned long reaped = cachep->reaped;
4137 unsigned long errors = cachep->errors;
4138 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4139 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4140 unsigned long node_frees = cachep->node_frees;
fb7faf33 4141 unsigned long overflows = cachep->node_overflow;
1da177e4 4142
756a025f 4143 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4144 allocs, high, grown,
4145 reaped, errors, max_freeable, node_allocs,
4146 node_frees, overflows);
1da177e4
LT
4147 }
4148 /* cpu stats */
4149 {
4150 unsigned long allochit = atomic_read(&cachep->allochit);
4151 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4152 unsigned long freehit = atomic_read(&cachep->freehit);
4153 unsigned long freemiss = atomic_read(&cachep->freemiss);
4154
4155 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4156 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4157 }
4158#endif
1da177e4
LT
4159}
4160
1da177e4
LT
4161#define MAX_SLABINFO_WRITE 128
4162/**
4163 * slabinfo_write - Tuning for the slab allocator
4164 * @file: unused
4165 * @buffer: user buffer
4166 * @count: data length
4167 * @ppos: unused
4168 */
b7454ad3 4169ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4170 size_t count, loff_t *ppos)
1da177e4 4171{
b28a02de 4172 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4173 int limit, batchcount, shared, res;
7a7c381d 4174 struct kmem_cache *cachep;
b28a02de 4175
1da177e4
LT
4176 if (count > MAX_SLABINFO_WRITE)
4177 return -EINVAL;
4178 if (copy_from_user(&kbuf, buffer, count))
4179 return -EFAULT;
b28a02de 4180 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4181
4182 tmp = strchr(kbuf, ' ');
4183 if (!tmp)
4184 return -EINVAL;
4185 *tmp = '\0';
4186 tmp++;
4187 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4188 return -EINVAL;
4189
4190 /* Find the cache in the chain of caches. */
18004c5d 4191 mutex_lock(&slab_mutex);
1da177e4 4192 res = -EINVAL;
18004c5d 4193 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4194 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4195 if (limit < 1 || batchcount < 1 ||
4196 batchcount > limit || shared < 0) {
e498be7d 4197 res = 0;
1da177e4 4198 } else {
e498be7d 4199 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4200 batchcount, shared,
4201 GFP_KERNEL);
1da177e4
LT
4202 }
4203 break;
4204 }
4205 }
18004c5d 4206 mutex_unlock(&slab_mutex);
1da177e4
LT
4207 if (res >= 0)
4208 res = count;
4209 return res;
4210}
871751e2
AV
4211
4212#ifdef CONFIG_DEBUG_SLAB_LEAK
4213
871751e2
AV
4214static inline int add_caller(unsigned long *n, unsigned long v)
4215{
4216 unsigned long *p;
4217 int l;
4218 if (!v)
4219 return 1;
4220 l = n[1];
4221 p = n + 2;
4222 while (l) {
4223 int i = l/2;
4224 unsigned long *q = p + 2 * i;
4225 if (*q == v) {
4226 q[1]++;
4227 return 1;
4228 }
4229 if (*q > v) {
4230 l = i;
4231 } else {
4232 p = q + 2;
4233 l -= i + 1;
4234 }
4235 }
4236 if (++n[1] == n[0])
4237 return 0;
4238 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4239 p[0] = v;
4240 p[1] = 1;
4241 return 1;
4242}
4243
8456a648
JK
4244static void handle_slab(unsigned long *n, struct kmem_cache *c,
4245 struct page *page)
871751e2
AV
4246{
4247 void *p;
d31676df
JK
4248 int i, j;
4249 unsigned long v;
b1cb0982 4250
871751e2
AV
4251 if (n[0] == n[1])
4252 return;
8456a648 4253 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4254 bool active = true;
4255
4256 for (j = page->active; j < c->num; j++) {
4257 if (get_free_obj(page, j) == i) {
4258 active = false;
4259 break;
4260 }
4261 }
4262
4263 if (!active)
871751e2 4264 continue;
b1cb0982 4265
d31676df
JK
4266 /*
4267 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4268 * mapping is established when actual object allocation and
4269 * we could mistakenly access the unmapped object in the cpu
4270 * cache.
4271 */
4272 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4273 continue;
4274
4275 if (!add_caller(n, v))
871751e2
AV
4276 return;
4277 }
4278}
4279
4280static void show_symbol(struct seq_file *m, unsigned long address)
4281{
4282#ifdef CONFIG_KALLSYMS
871751e2 4283 unsigned long offset, size;
9281acea 4284 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4285
a5c43dae 4286 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4287 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4288 if (modname[0])
871751e2
AV
4289 seq_printf(m, " [%s]", modname);
4290 return;
4291 }
4292#endif
85c3e4a5 4293 seq_printf(m, "%px", (void *)address);
871751e2
AV
4294}
4295
4296static int leaks_show(struct seq_file *m, void *p)
4297{
0672aa7c 4298 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4299 struct page *page;
ce8eb6c4 4300 struct kmem_cache_node *n;
871751e2 4301 const char *name;
db845067 4302 unsigned long *x = m->private;
871751e2
AV
4303 int node;
4304 int i;
4305
4306 if (!(cachep->flags & SLAB_STORE_USER))
4307 return 0;
4308 if (!(cachep->flags & SLAB_RED_ZONE))
4309 return 0;
4310
d31676df
JK
4311 /*
4312 * Set store_user_clean and start to grab stored user information
4313 * for all objects on this cache. If some alloc/free requests comes
4314 * during the processing, information would be wrong so restart
4315 * whole processing.
4316 */
4317 do {
4318 set_store_user_clean(cachep);
4319 drain_cpu_caches(cachep);
4320
4321 x[1] = 0;
871751e2 4322
d31676df 4323 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4324
d31676df
JK
4325 check_irq_on();
4326 spin_lock_irq(&n->list_lock);
871751e2 4327
d31676df
JK
4328 list_for_each_entry(page, &n->slabs_full, lru)
4329 handle_slab(x, cachep, page);
4330 list_for_each_entry(page, &n->slabs_partial, lru)
4331 handle_slab(x, cachep, page);
4332 spin_unlock_irq(&n->list_lock);
4333 }
4334 } while (!is_store_user_clean(cachep));
871751e2 4335
871751e2 4336 name = cachep->name;
db845067 4337 if (x[0] == x[1]) {
871751e2 4338 /* Increase the buffer size */
18004c5d 4339 mutex_unlock(&slab_mutex);
db845067 4340 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4341 if (!m->private) {
4342 /* Too bad, we are really out */
db845067 4343 m->private = x;
18004c5d 4344 mutex_lock(&slab_mutex);
871751e2
AV
4345 return -ENOMEM;
4346 }
db845067
CL
4347 *(unsigned long *)m->private = x[0] * 2;
4348 kfree(x);
18004c5d 4349 mutex_lock(&slab_mutex);
871751e2
AV
4350 /* Now make sure this entry will be retried */
4351 m->count = m->size;
4352 return 0;
4353 }
db845067
CL
4354 for (i = 0; i < x[1]; i++) {
4355 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4356 show_symbol(m, x[2*i+2]);
871751e2
AV
4357 seq_putc(m, '\n');
4358 }
d2e7b7d0 4359
871751e2
AV
4360 return 0;
4361}
4362
a0ec95a8 4363static const struct seq_operations slabstats_op = {
1df3b26f 4364 .start = slab_start,
276a2439
WL
4365 .next = slab_next,
4366 .stop = slab_stop,
871751e2
AV
4367 .show = leaks_show,
4368};
a0ec95a8
AD
4369
4370static int slabstats_open(struct inode *inode, struct file *file)
4371{
b208ce32
RJ
4372 unsigned long *n;
4373
4374 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4375 if (!n)
4376 return -ENOMEM;
4377
4378 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4379
4380 return 0;
a0ec95a8
AD
4381}
4382
4383static const struct file_operations proc_slabstats_operations = {
4384 .open = slabstats_open,
4385 .read = seq_read,
4386 .llseek = seq_lseek,
4387 .release = seq_release_private,
4388};
4389#endif
4390
4391static int __init slab_proc_init(void)
4392{
4393#ifdef CONFIG_DEBUG_SLAB_LEAK
4394 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4395#endif
a0ec95a8
AD
4396 return 0;
4397}
4398module_init(slab_proc_init);
1da177e4 4399
04385fc5
KC
4400#ifdef CONFIG_HARDENED_USERCOPY
4401/*
4402 * Rejects objects that are incorrectly sized.
4403 *
4404 * Returns NULL if check passes, otherwise const char * to name of cache
4405 * to indicate an error.
4406 */
4407const char *__check_heap_object(const void *ptr, unsigned long n,
4408 struct page *page)
4409{
4410 struct kmem_cache *cachep;
4411 unsigned int objnr;
4412 unsigned long offset;
4413
4414 /* Find and validate object. */
4415 cachep = page->slab_cache;
4416 objnr = obj_to_index(cachep, page, (void *)ptr);
4417 BUG_ON(objnr >= cachep->num);
4418
4419 /* Find offset within object. */
4420 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4421
4422 /* Allow address range falling entirely within object size. */
4423 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4424 return NULL;
4425
4426 return cachep->name;
4427}
4428#endif /* CONFIG_HARDENED_USERCOPY */
4429
00e145b6
MS
4430/**
4431 * ksize - get the actual amount of memory allocated for a given object
4432 * @objp: Pointer to the object
4433 *
4434 * kmalloc may internally round up allocations and return more memory
4435 * than requested. ksize() can be used to determine the actual amount of
4436 * memory allocated. The caller may use this additional memory, even though
4437 * a smaller amount of memory was initially specified with the kmalloc call.
4438 * The caller must guarantee that objp points to a valid object previously
4439 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4440 * must not be freed during the duration of the call.
4441 */
fd76bab2 4442size_t ksize(const void *objp)
1da177e4 4443{
7ed2f9e6
AP
4444 size_t size;
4445
ef8b4520
CL
4446 BUG_ON(!objp);
4447 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4448 return 0;
1da177e4 4449
7ed2f9e6
AP
4450 size = virt_to_cache(objp)->object_size;
4451 /* We assume that ksize callers could use the whole allocated area,
4452 * so we need to unpoison this area.
4453 */
4ebb31a4 4454 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4455
4456 return size;
1da177e4 4457}
b1aabecd 4458EXPORT_SYMBOL(ksize);