]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/slab.c
Linux 4.16-rc7
[mirror_ubuntu-eoan-kernel.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 443 slab_flags_t flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
49dfc304 683 spin_lock_init(&alc->lock);
c8522a3a
JK
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 688{
c8522a3a 689 struct alien_cache **alc_ptr;
5e804789 690 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
691 int i;
692
693 if (limit > 1)
694 limit = 12;
c8522a3a
JK
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
e498be7d
CL
708 }
709 }
c8522a3a 710 return alc_ptr;
e498be7d
CL
711}
712
c8522a3a 713static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
714{
715 int i;
716
c8522a3a 717 if (!alc_ptr)
e498be7d 718 return;
e498be7d 719 for_each_node(i)
c8522a3a
JK
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
e498be7d
CL
722}
723
343e0d7a 724static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
725 struct array_cache *ac, int node,
726 struct list_head *list)
e498be7d 727{
18bf8541 728 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
729
730 if (ac->avail) {
ce8eb6c4 731 spin_lock(&n->list_lock);
e00946fe
CL
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
ce8eb6c4
CL
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
e00946fe 739
833b706c 740 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 741 ac->avail = 0;
ce8eb6c4 742 spin_unlock(&n->list_lock);
e498be7d
CL
743 }
744}
745
8fce4d8e
CL
746/*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
ce8eb6c4 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 750{
909ea964 751 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 752
ce8eb6c4 753 if (n->alien) {
c8522a3a
JK
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
49dfc304 759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 763 spin_unlock_irq(&alc->lock);
833b706c 764 slabs_destroy(cachep, &list);
c8522a3a 765 }
8fce4d8e
CL
766 }
767 }
768}
769
a737b3e2 770static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 771 struct alien_cache **alien)
e498be7d 772{
b28a02de 773 int i = 0;
c8522a3a 774 struct alien_cache *alc;
e498be7d
CL
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
c8522a3a
JK
779 alc = alien[i];
780 if (alc) {
833b706c
JK
781 LIST_HEAD(list);
782
c8522a3a 783 ac = &alc->ac;
49dfc304 784 spin_lock_irqsave(&alc->lock, flags);
833b706c 785 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 786 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 787 slabs_destroy(cachep, &list);
e498be7d
CL
788 }
789 }
790}
729bd0b7 791
25c4f304
JK
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
729bd0b7 794{
ce8eb6c4 795 struct kmem_cache_node *n;
c8522a3a
JK
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
97654dfa 798 LIST_HEAD(list);
1ca4cb24 799
18bf8541 800 n = get_node(cachep, node);
729bd0b7 801 STATS_INC_NODEFREES(cachep);
25c4f304
JK
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
c8522a3a 804 ac = &alien->ac;
49dfc304 805 spin_lock(&alien->lock);
c8522a3a 806 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 807 STATS_INC_ACOVERFLOW(cachep);
25c4f304 808 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 809 }
f68f8ddd 810 ac->entry[ac->avail++] = objp;
49dfc304 811 spin_unlock(&alien->lock);
833b706c 812 slabs_destroy(cachep, &list);
729bd0b7 813 } else {
25c4f304 814 n = get_node(cachep, page_node);
18bf8541 815 spin_lock(&n->list_lock);
25c4f304 816 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 817 spin_unlock(&n->list_lock);
97654dfa 818 slabs_destroy(cachep, &list);
729bd0b7
PE
819 }
820 return 1;
821}
25c4f304
JK
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
4167e9b2
DR
836
837/*
444eb2a4
MG
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
4167e9b2
DR
840 */
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
444eb2a4 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 844}
e498be7d
CL
845#endif
846
ded0ecf6
JK
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885}
886
6731d4f1 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 888/*
6a67368c 889 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 891 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 892 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
893 * already in use.
894 *
18004c5d 895 * Must hold slab_mutex.
8f9f8d9e 896 */
6a67368c 897static int init_cache_node_node(int node)
8f9f8d9e 898{
ded0ecf6 899 int ret;
8f9f8d9e 900 struct kmem_cache *cachep;
8f9f8d9e 901
18004c5d 902 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
8f9f8d9e 906 }
ded0ecf6 907
8f9f8d9e
DR
908 return 0;
909}
6731d4f1 910#endif
8f9f8d9e 911
c3d332b6
JK
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
801faf0d
JK
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
86d9f485 967 if (old_shared && force_change)
801faf0d
JK
968 synchronize_sched();
969
c3d332b6
JK
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
6731d4f1
SAS
978#ifdef CONFIG_SMP
979
0db0628d 980static void cpuup_canceled(long cpu)
fbf1e473
AM
981{
982 struct kmem_cache *cachep;
ce8eb6c4 983 struct kmem_cache_node *n = NULL;
7d6e6d09 984 int node = cpu_to_mem(cpu);
a70f7302 985 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 986
18004c5d 987 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
988 struct array_cache *nc;
989 struct array_cache *shared;
c8522a3a 990 struct alien_cache **alien;
97654dfa 991 LIST_HEAD(list);
fbf1e473 992
18bf8541 993 n = get_node(cachep, node);
ce8eb6c4 994 if (!n)
bf0dea23 995 continue;
fbf1e473 996
ce8eb6c4 997 spin_lock_irq(&n->list_lock);
fbf1e473 998
ce8eb6c4
CL
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
97654dfa 1005 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1006 nc->avail = 0;
1007 }
fbf1e473 1008
58463c1f 1009 if (!cpumask_empty(mask)) {
ce8eb6c4 1010 spin_unlock_irq(&n->list_lock);
bf0dea23 1011 goto free_slab;
fbf1e473
AM
1012 }
1013
ce8eb6c4 1014 shared = n->shared;
fbf1e473
AM
1015 if (shared) {
1016 free_block(cachep, shared->entry,
97654dfa 1017 shared->avail, node, &list);
ce8eb6c4 1018 n->shared = NULL;
fbf1e473
AM
1019 }
1020
ce8eb6c4
CL
1021 alien = n->alien;
1022 n->alien = NULL;
fbf1e473 1023
ce8eb6c4 1024 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
bf0dea23
JK
1031
1032free_slab:
97654dfa 1033 slabs_destroy(cachep, &list);
fbf1e473
AM
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
18004c5d 1040 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1041 n = get_node(cachep, node);
ce8eb6c4 1042 if (!n)
fbf1e473 1043 continue;
a5aa63a5 1044 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1045 }
1046}
1047
0db0628d 1048static int cpuup_prepare(long cpu)
1da177e4 1049{
343e0d7a 1050 struct kmem_cache *cachep;
7d6e6d09 1051 int node = cpu_to_mem(cpu);
8f9f8d9e 1052 int err;
1da177e4 1053
fbf1e473
AM
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1058 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1059 */
6a67368c 1060 err = init_cache_node_node(node);
8f9f8d9e
DR
1061 if (err < 0)
1062 goto bad;
fbf1e473
AM
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
fbf1e473 1072 }
ce79ddc8 1073
fbf1e473
AM
1074 return 0;
1075bad:
12d00f6a 1076 cpuup_canceled(cpu);
fbf1e473
AM
1077 return -ENOMEM;
1078}
1079
6731d4f1 1080int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1081{
6731d4f1 1082 int err;
fbf1e473 1083
6731d4f1
SAS
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
8f5be20b 1107#endif
6731d4f1
SAS
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1da177e4
LT
1113}
1114
6731d4f1
SAS
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1da177e4 1128
8f9f8d9e
DR
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
18004c5d 1135 * Must hold slab_mutex.
8f9f8d9e 1136 */
6a67368c 1137static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
18004c5d 1142 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1143 struct kmem_cache_node *n;
8f9f8d9e 1144
18bf8541 1145 n = get_node(cachep, node);
ce8eb6c4 1146 if (!n)
8f9f8d9e
DR
1147 continue;
1148
a5aa63a5 1149 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1150
ce8eb6c4
CL
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
18004c5d 1173 mutex_lock(&slab_mutex);
6a67368c 1174 ret = init_cache_node_node(nid);
18004c5d 1175 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1176 break;
1177 case MEM_GOING_OFFLINE:
18004c5d 1178 mutex_lock(&slab_mutex);
6a67368c 1179 ret = drain_cache_node_node(nid);
18004c5d 1180 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
5fda1bd5 1189 return notifier_from_errno(ret);
8f9f8d9e
DR
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
e498be7d 1193/*
ce8eb6c4 1194 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1195 */
6744f087 1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1197 int nodeid)
e498be7d 1198{
6744f087 1199 struct kmem_cache_node *ptr;
e498be7d 1200
6744f087 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1202 BUG_ON(!ptr);
1203
6744f087 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
e498be7d 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1211 cachep->node[nodeid] = ptr;
e498be7d
CL
1212}
1213
556a169d 1214/*
ce8eb6c4
CL
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
556a169d 1217 */
ce8eb6c4 1218static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
ce8eb6c4 1223 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1224 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1227 }
1228}
1229
a737b3e2
AM
1230/*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1da177e4
LT
1233 */
1234void __init kmem_cache_init(void)
1235{
e498be7d
CL
1236 int i;
1237
68126702
JK
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
9b030cb8
CL
1240 kmem_cache = &kmem_cache_boot;
1241
8888177e 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1243 use_alien_caches = 0;
1244
3c583465 1245 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1247
1da177e4
LT
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1da177e4 1252 */
3df1cccd 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1254 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1255
1da177e4
LT
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
9b030cb8
CL
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
e498be7d 1261 * Initially an __init data area is used for the head array and the
ce8eb6c4 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1263 * array at the end of the bootstrap.
1da177e4 1264 * 2) Create the first kmalloc cache.
343e0d7a 1265 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
9b030cb8 1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1270 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1274 */
1275
9b030cb8 1276 /* 1) create the kmem_cache */
1da177e4 1277
8da3430d 1278 /*
b56efcf0 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1280 */
2f9baa9f 1281 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1282 offsetof(struct kmem_cache, node) +
6744f087 1283 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1284 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1285 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1286 slab_state = PARTIAL;
1da177e4 1287
a737b3e2 1288 /*
bf0dea23
JK
1289 * Initialize the caches that provide memory for the kmem_cache_node
1290 * structures first. Without this, further allocations will bug.
e498be7d 1291 */
af3b5f87
VB
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1295 0, kmalloc_size(INDEX_NODE));
bf0dea23 1296 slab_state = PARTIAL_NODE;
34cc6990 1297 setup_kmalloc_cache_index_table();
e498be7d 1298
e0a42726
IM
1299 slab_early_init = 0;
1300
ce8eb6c4 1301 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1302 {
1ca4cb24
PE
1303 int nid;
1304
9c09a95c 1305 for_each_online_node(nid) {
ce8eb6c4 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1307
bf0dea23 1308 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1310 }
1311 }
1da177e4 1312
f97d5f63 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1314}
1315
1316void __init kmem_cache_init_late(void)
1317{
1318 struct kmem_cache *cachep;
1319
8429db5c 1320 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1321 mutex_lock(&slab_mutex);
1322 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1323 if (enable_cpucache(cachep, GFP_NOWAIT))
1324 BUG();
18004c5d 1325 mutex_unlock(&slab_mutex);
056c6241 1326
97d06609
CL
1327 /* Done! */
1328 slab_state = FULL;
1329
8f9f8d9e
DR
1330#ifdef CONFIG_NUMA
1331 /*
1332 * Register a memory hotplug callback that initializes and frees
6a67368c 1333 * node.
8f9f8d9e
DR
1334 */
1335 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1336#endif
1337
a737b3e2
AM
1338 /*
1339 * The reap timers are started later, with a module init call: That part
1340 * of the kernel is not yet operational.
1da177e4
LT
1341 */
1342}
1343
1344static int __init cpucache_init(void)
1345{
6731d4f1 1346 int ret;
1da177e4 1347
a737b3e2
AM
1348 /*
1349 * Register the timers that return unneeded pages to the page allocator
1da177e4 1350 */
6731d4f1
SAS
1351 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1352 slab_online_cpu, slab_offline_cpu);
1353 WARN_ON(ret < 0);
a164f896 1354
1da177e4
LT
1355 return 0;
1356}
1da177e4
LT
1357__initcall(cpucache_init);
1358
8bdec192
RA
1359static noinline void
1360slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1361{
9a02d699 1362#if DEBUG
ce8eb6c4 1363 struct kmem_cache_node *n;
8bdec192
RA
1364 unsigned long flags;
1365 int node;
9a02d699
DR
1366 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1367 DEFAULT_RATELIMIT_BURST);
1368
1369 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1370 return;
8bdec192 1371
5b3810e5
VB
1372 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1373 nodeid, gfpflags, &gfpflags);
1374 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1375 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1376
18bf8541 1377 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1378 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1379
ce8eb6c4 1380 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1381 total_slabs = n->total_slabs;
1382 free_slabs = n->free_slabs;
1383 free_objs = n->free_objects;
ce8eb6c4 1384 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1385
bf00bd34
DR
1386 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1387 node, total_slabs - free_slabs, total_slabs,
1388 (total_slabs * cachep->num) - free_objs,
1389 total_slabs * cachep->num);
8bdec192 1390 }
9a02d699 1391#endif
8bdec192
RA
1392}
1393
1da177e4 1394/*
8a7d9b43
WSH
1395 * Interface to system's page allocator. No need to hold the
1396 * kmem_cache_node ->list_lock.
1da177e4
LT
1397 *
1398 * If we requested dmaable memory, we will get it. Even if we
1399 * did not request dmaable memory, we might get it, but that
1400 * would be relatively rare and ignorable.
1401 */
0c3aa83e
JK
1402static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1403 int nodeid)
1da177e4
LT
1404{
1405 struct page *page;
e1b6aa6f 1406 int nr_pages;
765c4507 1407
a618e89f 1408 flags |= cachep->allocflags;
e1b6aa6f 1409
75f296d9 1410 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1411 if (!page) {
9a02d699 1412 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1413 return NULL;
8bdec192 1414 }
1da177e4 1415
f3ccb2c4
VD
1416 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1417 __free_pages(page, cachep->gfporder);
1418 return NULL;
1419 }
1420
e1b6aa6f 1421 nr_pages = (1 << cachep->gfporder);
1da177e4 1422 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1423 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1424 else
7779f212 1425 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1426
a57a4988 1427 __SetPageSlab(page);
f68f8ddd
JK
1428 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1429 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1430 SetPageSlabPfmemalloc(page);
072bb0aa 1431
0c3aa83e 1432 return page;
1da177e4
LT
1433}
1434
1435/*
1436 * Interface to system's page release.
1437 */
0c3aa83e 1438static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1439{
27ee57c9
VD
1440 int order = cachep->gfporder;
1441 unsigned long nr_freed = (1 << order);
1da177e4 1442
972d1a7b 1443 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1444 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1445 else
7779f212 1446 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1447
a57a4988 1448 BUG_ON(!PageSlab(page));
73293c2f 1449 __ClearPageSlabPfmemalloc(page);
a57a4988 1450 __ClearPageSlab(page);
8456a648
JK
1451 page_mapcount_reset(page);
1452 page->mapping = NULL;
1f458cbf 1453
1da177e4
LT
1454 if (current->reclaim_state)
1455 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1456 memcg_uncharge_slab(page, order, cachep);
1457 __free_pages(page, order);
1da177e4
LT
1458}
1459
1460static void kmem_rcu_free(struct rcu_head *head)
1461{
68126702
JK
1462 struct kmem_cache *cachep;
1463 struct page *page;
1da177e4 1464
68126702
JK
1465 page = container_of(head, struct page, rcu_head);
1466 cachep = page->slab_cache;
1467
1468 kmem_freepages(cachep, page);
1da177e4
LT
1469}
1470
1471#if DEBUG
40b44137
JK
1472static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1473{
1474 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1475 (cachep->size % PAGE_SIZE) == 0)
1476 return true;
1477
1478 return false;
1479}
1da177e4
LT
1480
1481#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1482static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1483 unsigned long caller)
1da177e4 1484{
8c138bc0 1485 int size = cachep->object_size;
1da177e4 1486
3dafccf2 1487 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1488
b28a02de 1489 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1490 return;
1491
b28a02de
PE
1492 *addr++ = 0x12345678;
1493 *addr++ = caller;
1494 *addr++ = smp_processor_id();
1495 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1496 {
1497 unsigned long *sptr = &caller;
1498 unsigned long svalue;
1499
1500 while (!kstack_end(sptr)) {
1501 svalue = *sptr++;
1502 if (kernel_text_address(svalue)) {
b28a02de 1503 *addr++ = svalue;
1da177e4
LT
1504 size -= sizeof(unsigned long);
1505 if (size <= sizeof(unsigned long))
1506 break;
1507 }
1508 }
1509
1510 }
b28a02de 1511 *addr++ = 0x87654321;
1da177e4 1512}
40b44137
JK
1513
1514static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1515 int map, unsigned long caller)
1516{
1517 if (!is_debug_pagealloc_cache(cachep))
1518 return;
1519
1520 if (caller)
1521 store_stackinfo(cachep, objp, caller);
1522
1523 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1524}
1525
1526#else
1527static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1528 int map, unsigned long caller) {}
1529
1da177e4
LT
1530#endif
1531
343e0d7a 1532static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1533{
8c138bc0 1534 int size = cachep->object_size;
3dafccf2 1535 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1536
1537 memset(addr, val, size);
b28a02de 1538 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1539}
1540
1541static void dump_line(char *data, int offset, int limit)
1542{
1543 int i;
aa83aa40
DJ
1544 unsigned char error = 0;
1545 int bad_count = 0;
1546
1170532b 1547 pr_err("%03x: ", offset);
aa83aa40
DJ
1548 for (i = 0; i < limit; i++) {
1549 if (data[offset + i] != POISON_FREE) {
1550 error = data[offset + i];
1551 bad_count++;
1552 }
aa83aa40 1553 }
fdde6abb
SAS
1554 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1555 &data[offset], limit, 1);
aa83aa40
DJ
1556
1557 if (bad_count == 1) {
1558 error ^= POISON_FREE;
1559 if (!(error & (error - 1))) {
1170532b 1560 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1561#ifdef CONFIG_X86
1170532b 1562 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1563#else
1170532b 1564 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1565#endif
1566 }
1567 }
1da177e4
LT
1568}
1569#endif
1570
1571#if DEBUG
1572
343e0d7a 1573static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1574{
1575 int i, size;
1576 char *realobj;
1577
1578 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1579 pr_err("Redzone: 0x%llx/0x%llx\n",
1580 *dbg_redzone1(cachep, objp),
1581 *dbg_redzone2(cachep, objp));
1da177e4
LT
1582 }
1583
85c3e4a5
GU
1584 if (cachep->flags & SLAB_STORE_USER)
1585 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1586 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1587 size = cachep->object_size;
b28a02de 1588 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1589 int limit;
1590 limit = 16;
b28a02de
PE
1591 if (i + limit > size)
1592 limit = size - i;
1da177e4
LT
1593 dump_line(realobj, i, limit);
1594 }
1595}
1596
343e0d7a 1597static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1598{
1599 char *realobj;
1600 int size, i;
1601 int lines = 0;
1602
40b44137
JK
1603 if (is_debug_pagealloc_cache(cachep))
1604 return;
1605
3dafccf2 1606 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1607 size = cachep->object_size;
1da177e4 1608
b28a02de 1609 for (i = 0; i < size; i++) {
1da177e4 1610 char exp = POISON_FREE;
b28a02de 1611 if (i == size - 1)
1da177e4
LT
1612 exp = POISON_END;
1613 if (realobj[i] != exp) {
1614 int limit;
1615 /* Mismatch ! */
1616 /* Print header */
1617 if (lines == 0) {
85c3e4a5 1618 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1619 print_tainted(), cachep->name,
1620 realobj, size);
1da177e4
LT
1621 print_objinfo(cachep, objp, 0);
1622 }
1623 /* Hexdump the affected line */
b28a02de 1624 i = (i / 16) * 16;
1da177e4 1625 limit = 16;
b28a02de
PE
1626 if (i + limit > size)
1627 limit = size - i;
1da177e4
LT
1628 dump_line(realobj, i, limit);
1629 i += 16;
1630 lines++;
1631 /* Limit to 5 lines */
1632 if (lines > 5)
1633 break;
1634 }
1635 }
1636 if (lines != 0) {
1637 /* Print some data about the neighboring objects, if they
1638 * exist:
1639 */
8456a648 1640 struct page *page = virt_to_head_page(objp);
8fea4e96 1641 unsigned int objnr;
1da177e4 1642
8456a648 1643 objnr = obj_to_index(cachep, page, objp);
1da177e4 1644 if (objnr) {
8456a648 1645 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1646 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1647 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1648 print_objinfo(cachep, objp, 2);
1649 }
b28a02de 1650 if (objnr + 1 < cachep->num) {
8456a648 1651 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1652 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1653 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1654 print_objinfo(cachep, objp, 2);
1655 }
1656 }
1657}
1658#endif
1659
12dd36fa 1660#if DEBUG
8456a648
JK
1661static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1662 struct page *page)
1da177e4 1663{
1da177e4 1664 int i;
b03a017b
JK
1665
1666 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1667 poison_obj(cachep, page->freelist - obj_offset(cachep),
1668 POISON_FREE);
1669 }
1670
1da177e4 1671 for (i = 0; i < cachep->num; i++) {
8456a648 1672 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1673
1674 if (cachep->flags & SLAB_POISON) {
1da177e4 1675 check_poison_obj(cachep, objp);
40b44137 1676 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1677 }
1678 if (cachep->flags & SLAB_RED_ZONE) {
1679 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1680 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1681 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1682 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1683 }
1da177e4 1684 }
12dd36fa 1685}
1da177e4 1686#else
8456a648
JK
1687static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1688 struct page *page)
12dd36fa 1689{
12dd36fa 1690}
1da177e4
LT
1691#endif
1692
911851e6
RD
1693/**
1694 * slab_destroy - destroy and release all objects in a slab
1695 * @cachep: cache pointer being destroyed
cb8ee1a3 1696 * @page: page pointer being destroyed
911851e6 1697 *
8a7d9b43
WSH
1698 * Destroy all the objs in a slab page, and release the mem back to the system.
1699 * Before calling the slab page must have been unlinked from the cache. The
1700 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1701 */
8456a648 1702static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1703{
7e007355 1704 void *freelist;
12dd36fa 1705
8456a648
JK
1706 freelist = page->freelist;
1707 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1708 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1709 call_rcu(&page->rcu_head, kmem_rcu_free);
1710 else
0c3aa83e 1711 kmem_freepages(cachep, page);
68126702
JK
1712
1713 /*
8456a648 1714 * From now on, we don't use freelist
68126702
JK
1715 * although actual page can be freed in rcu context
1716 */
1717 if (OFF_SLAB(cachep))
8456a648 1718 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1719}
1720
97654dfa
JK
1721static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1722{
1723 struct page *page, *n;
1724
1725 list_for_each_entry_safe(page, n, list, lru) {
1726 list_del(&page->lru);
1727 slab_destroy(cachep, page);
1728 }
1729}
1730
4d268eba 1731/**
a70773dd
RD
1732 * calculate_slab_order - calculate size (page order) of slabs
1733 * @cachep: pointer to the cache that is being created
1734 * @size: size of objects to be created in this cache.
a70773dd
RD
1735 * @flags: slab allocation flags
1736 *
1737 * Also calculates the number of objects per slab.
4d268eba
PE
1738 *
1739 * This could be made much more intelligent. For now, try to avoid using
1740 * high order pages for slabs. When the gfp() functions are more friendly
1741 * towards high-order requests, this should be changed.
1742 */
a737b3e2 1743static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1744 size_t size, slab_flags_t flags)
4d268eba
PE
1745{
1746 size_t left_over = 0;
9888e6fa 1747 int gfporder;
4d268eba 1748
0aa817f0 1749 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1750 unsigned int num;
1751 size_t remainder;
1752
70f75067 1753 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1754 if (!num)
1755 continue;
9888e6fa 1756
f315e3fa
JK
1757 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1758 if (num > SLAB_OBJ_MAX_NUM)
1759 break;
1760
b1ab41c4 1761 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1762 struct kmem_cache *freelist_cache;
1763 size_t freelist_size;
1764
1765 freelist_size = num * sizeof(freelist_idx_t);
1766 freelist_cache = kmalloc_slab(freelist_size, 0u);
1767 if (!freelist_cache)
1768 continue;
1769
b1ab41c4 1770 /*
3217fd9b 1771 * Needed to avoid possible looping condition
76b342bd 1772 * in cache_grow_begin()
b1ab41c4 1773 */
3217fd9b
JK
1774 if (OFF_SLAB(freelist_cache))
1775 continue;
b1ab41c4 1776
3217fd9b
JK
1777 /* check if off slab has enough benefit */
1778 if (freelist_cache->size > cachep->size / 2)
1779 continue;
b1ab41c4 1780 }
4d268eba 1781
9888e6fa 1782 /* Found something acceptable - save it away */
4d268eba 1783 cachep->num = num;
9888e6fa 1784 cachep->gfporder = gfporder;
4d268eba
PE
1785 left_over = remainder;
1786
f78bb8ad
LT
1787 /*
1788 * A VFS-reclaimable slab tends to have most allocations
1789 * as GFP_NOFS and we really don't want to have to be allocating
1790 * higher-order pages when we are unable to shrink dcache.
1791 */
1792 if (flags & SLAB_RECLAIM_ACCOUNT)
1793 break;
1794
4d268eba
PE
1795 /*
1796 * Large number of objects is good, but very large slabs are
1797 * currently bad for the gfp()s.
1798 */
543585cc 1799 if (gfporder >= slab_max_order)
4d268eba
PE
1800 break;
1801
9888e6fa
LT
1802 /*
1803 * Acceptable internal fragmentation?
1804 */
a737b3e2 1805 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1806 break;
1807 }
1808 return left_over;
1809}
1810
bf0dea23
JK
1811static struct array_cache __percpu *alloc_kmem_cache_cpus(
1812 struct kmem_cache *cachep, int entries, int batchcount)
1813{
1814 int cpu;
1815 size_t size;
1816 struct array_cache __percpu *cpu_cache;
1817
1818 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1819 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1820
1821 if (!cpu_cache)
1822 return NULL;
1823
1824 for_each_possible_cpu(cpu) {
1825 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1826 entries, batchcount);
1827 }
1828
1829 return cpu_cache;
1830}
1831
bd721ea7 1832static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1833{
97d06609 1834 if (slab_state >= FULL)
83b519e8 1835 return enable_cpucache(cachep, gfp);
2ed3a4ef 1836
bf0dea23
JK
1837 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1838 if (!cachep->cpu_cache)
1839 return 1;
1840
97d06609 1841 if (slab_state == DOWN) {
bf0dea23
JK
1842 /* Creation of first cache (kmem_cache). */
1843 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1844 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1845 /* For kmem_cache_node */
1846 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1847 } else {
bf0dea23 1848 int node;
f30cf7d1 1849
bf0dea23
JK
1850 for_each_online_node(node) {
1851 cachep->node[node] = kmalloc_node(
1852 sizeof(struct kmem_cache_node), gfp, node);
1853 BUG_ON(!cachep->node[node]);
1854 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1855 }
1856 }
bf0dea23 1857
6a67368c 1858 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1859 jiffies + REAPTIMEOUT_NODE +
1860 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1861
1862 cpu_cache_get(cachep)->avail = 0;
1863 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1864 cpu_cache_get(cachep)->batchcount = 1;
1865 cpu_cache_get(cachep)->touched = 0;
1866 cachep->batchcount = 1;
1867 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1868 return 0;
f30cf7d1
PE
1869}
1870
d50112ed
AD
1871slab_flags_t kmem_cache_flags(unsigned long object_size,
1872 slab_flags_t flags, const char *name,
12220dea
JK
1873 void (*ctor)(void *))
1874{
1875 return flags;
1876}
1877
1878struct kmem_cache *
1879__kmem_cache_alias(const char *name, size_t size, size_t align,
d50112ed 1880 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1881{
1882 struct kmem_cache *cachep;
1883
1884 cachep = find_mergeable(size, align, flags, name, ctor);
1885 if (cachep) {
1886 cachep->refcount++;
1887
1888 /*
1889 * Adjust the object sizes so that we clear
1890 * the complete object on kzalloc.
1891 */
1892 cachep->object_size = max_t(int, cachep->object_size, size);
1893 }
1894 return cachep;
1895}
1896
b03a017b 1897static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1898 size_t size, slab_flags_t flags)
b03a017b
JK
1899{
1900 size_t left;
1901
1902 cachep->num = 0;
1903
5f0d5a3a 1904 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1905 return false;
1906
1907 left = calculate_slab_order(cachep, size,
1908 flags | CFLGS_OBJFREELIST_SLAB);
1909 if (!cachep->num)
1910 return false;
1911
1912 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1913 return false;
1914
1915 cachep->colour = left / cachep->colour_off;
1916
1917 return true;
1918}
1919
158e319b 1920static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1921 size_t size, slab_flags_t flags)
158e319b
JK
1922{
1923 size_t left;
1924
1925 cachep->num = 0;
1926
1927 /*
3217fd9b
JK
1928 * Always use on-slab management when SLAB_NOLEAKTRACE
1929 * to avoid recursive calls into kmemleak.
158e319b 1930 */
158e319b
JK
1931 if (flags & SLAB_NOLEAKTRACE)
1932 return false;
1933
1934 /*
1935 * Size is large, assume best to place the slab management obj
1936 * off-slab (should allow better packing of objs).
1937 */
1938 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1939 if (!cachep->num)
1940 return false;
1941
1942 /*
1943 * If the slab has been placed off-slab, and we have enough space then
1944 * move it on-slab. This is at the expense of any extra colouring.
1945 */
1946 if (left >= cachep->num * sizeof(freelist_idx_t))
1947 return false;
1948
1949 cachep->colour = left / cachep->colour_off;
1950
1951 return true;
1952}
1953
1954static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1955 size_t size, slab_flags_t flags)
158e319b
JK
1956{
1957 size_t left;
1958
1959 cachep->num = 0;
1960
1961 left = calculate_slab_order(cachep, size, flags);
1962 if (!cachep->num)
1963 return false;
1964
1965 cachep->colour = left / cachep->colour_off;
1966
1967 return true;
1968}
1969
1da177e4 1970/**
039363f3 1971 * __kmem_cache_create - Create a cache.
a755b76a 1972 * @cachep: cache management descriptor
1da177e4 1973 * @flags: SLAB flags
1da177e4
LT
1974 *
1975 * Returns a ptr to the cache on success, NULL on failure.
1976 * Cannot be called within a int, but can be interrupted.
20c2df83 1977 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1978 *
1da177e4
LT
1979 * The flags are
1980 *
1981 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1982 * to catch references to uninitialised memory.
1983 *
1984 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1985 * for buffer overruns.
1986 *
1da177e4
LT
1987 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1988 * cacheline. This can be beneficial if you're counting cycles as closely
1989 * as davem.
1990 */
d50112ed 1991int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1992{
d4a5fca5 1993 size_t ralign = BYTES_PER_WORD;
83b519e8 1994 gfp_t gfp;
278b1bb1 1995 int err;
8a13a4cc 1996 size_t size = cachep->size;
1da177e4 1997
1da177e4 1998#if DEBUG
1da177e4
LT
1999#if FORCED_DEBUG
2000 /*
2001 * Enable redzoning and last user accounting, except for caches with
2002 * large objects, if the increased size would increase the object size
2003 * above the next power of two: caches with object sizes just above a
2004 * power of two have a significant amount of internal fragmentation.
2005 */
87a927c7
DW
2006 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2007 2 * sizeof(unsigned long long)))
b28a02de 2008 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2009 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2010 flags |= SLAB_POISON;
2011#endif
1da177e4 2012#endif
1da177e4 2013
a737b3e2
AM
2014 /*
2015 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2016 * unaligned accesses for some archs when redzoning is used, and makes
2017 * sure any on-slab bufctl's are also correctly aligned.
2018 */
e0771950 2019 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2020
87a927c7
DW
2021 if (flags & SLAB_RED_ZONE) {
2022 ralign = REDZONE_ALIGN;
2023 /* If redzoning, ensure that the second redzone is suitably
2024 * aligned, by adjusting the object size accordingly. */
e0771950 2025 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2026 }
ca5f9703 2027
a44b56d3 2028 /* 3) caller mandated alignment */
8a13a4cc
CL
2029 if (ralign < cachep->align) {
2030 ralign = cachep->align;
1da177e4 2031 }
3ff84a7f
PE
2032 /* disable debug if necessary */
2033 if (ralign > __alignof__(unsigned long long))
a44b56d3 2034 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2035 /*
ca5f9703 2036 * 4) Store it.
1da177e4 2037 */
8a13a4cc 2038 cachep->align = ralign;
158e319b
JK
2039 cachep->colour_off = cache_line_size();
2040 /* Offset must be a multiple of the alignment. */
2041 if (cachep->colour_off < cachep->align)
2042 cachep->colour_off = cachep->align;
1da177e4 2043
83b519e8
PE
2044 if (slab_is_available())
2045 gfp = GFP_KERNEL;
2046 else
2047 gfp = GFP_NOWAIT;
2048
1da177e4 2049#if DEBUG
1da177e4 2050
ca5f9703
PE
2051 /*
2052 * Both debugging options require word-alignment which is calculated
2053 * into align above.
2054 */
1da177e4 2055 if (flags & SLAB_RED_ZONE) {
1da177e4 2056 /* add space for red zone words */
3ff84a7f
PE
2057 cachep->obj_offset += sizeof(unsigned long long);
2058 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2059 }
2060 if (flags & SLAB_STORE_USER) {
ca5f9703 2061 /* user store requires one word storage behind the end of
87a927c7
DW
2062 * the real object. But if the second red zone needs to be
2063 * aligned to 64 bits, we must allow that much space.
1da177e4 2064 */
87a927c7
DW
2065 if (flags & SLAB_RED_ZONE)
2066 size += REDZONE_ALIGN;
2067 else
2068 size += BYTES_PER_WORD;
1da177e4 2069 }
832a15d2
JK
2070#endif
2071
7ed2f9e6
AP
2072 kasan_cache_create(cachep, &size, &flags);
2073
832a15d2
JK
2074 size = ALIGN(size, cachep->align);
2075 /*
2076 * We should restrict the number of objects in a slab to implement
2077 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2078 */
2079 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2080 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2081
2082#if DEBUG
03a2d2a3
JK
2083 /*
2084 * To activate debug pagealloc, off-slab management is necessary
2085 * requirement. In early phase of initialization, small sized slab
2086 * doesn't get initialized so it would not be possible. So, we need
2087 * to check size >= 256. It guarantees that all necessary small
2088 * sized slab is initialized in current slab initialization sequence.
2089 */
40323278 2090 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2091 size >= 256 && cachep->object_size > cache_line_size()) {
2092 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2093 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2094
2095 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2096 flags |= CFLGS_OFF_SLAB;
2097 cachep->obj_offset += tmp_size - size;
2098 size = tmp_size;
2099 goto done;
2100 }
2101 }
1da177e4 2102 }
1da177e4
LT
2103#endif
2104
b03a017b
JK
2105 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2106 flags |= CFLGS_OBJFREELIST_SLAB;
2107 goto done;
2108 }
2109
158e319b 2110 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2111 flags |= CFLGS_OFF_SLAB;
158e319b 2112 goto done;
832a15d2 2113 }
1da177e4 2114
158e319b
JK
2115 if (set_on_slab_cache(cachep, size, flags))
2116 goto done;
1da177e4 2117
158e319b 2118 return -E2BIG;
1da177e4 2119
158e319b
JK
2120done:
2121 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2122 cachep->flags = flags;
a57a4988 2123 cachep->allocflags = __GFP_COMP;
a3187e43 2124 if (flags & SLAB_CACHE_DMA)
a618e89f 2125 cachep->allocflags |= GFP_DMA;
a3ba0744
DR
2126 if (flags & SLAB_RECLAIM_ACCOUNT)
2127 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2128 cachep->size = size;
6a2d7a95 2129 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2130
40b44137
JK
2131#if DEBUG
2132 /*
2133 * If we're going to use the generic kernel_map_pages()
2134 * poisoning, then it's going to smash the contents of
2135 * the redzone and userword anyhow, so switch them off.
2136 */
2137 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2138 (cachep->flags & SLAB_POISON) &&
2139 is_debug_pagealloc_cache(cachep))
2140 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2141#endif
2142
2143 if (OFF_SLAB(cachep)) {
158e319b
JK
2144 cachep->freelist_cache =
2145 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2146 }
1da177e4 2147
278b1bb1
CL
2148 err = setup_cpu_cache(cachep, gfp);
2149 if (err) {
52b4b950 2150 __kmem_cache_release(cachep);
278b1bb1 2151 return err;
2ed3a4ef 2152 }
1da177e4 2153
278b1bb1 2154 return 0;
1da177e4 2155}
1da177e4
LT
2156
2157#if DEBUG
2158static void check_irq_off(void)
2159{
2160 BUG_ON(!irqs_disabled());
2161}
2162
2163static void check_irq_on(void)
2164{
2165 BUG_ON(irqs_disabled());
2166}
2167
18726ca8
JK
2168static void check_mutex_acquired(void)
2169{
2170 BUG_ON(!mutex_is_locked(&slab_mutex));
2171}
2172
343e0d7a 2173static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2174{
2175#ifdef CONFIG_SMP
2176 check_irq_off();
18bf8541 2177 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2178#endif
2179}
e498be7d 2180
343e0d7a 2181static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2182{
2183#ifdef CONFIG_SMP
2184 check_irq_off();
18bf8541 2185 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2186#endif
2187}
2188
1da177e4
LT
2189#else
2190#define check_irq_off() do { } while(0)
2191#define check_irq_on() do { } while(0)
18726ca8 2192#define check_mutex_acquired() do { } while(0)
1da177e4 2193#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2194#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2195#endif
2196
18726ca8
JK
2197static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2198 int node, bool free_all, struct list_head *list)
2199{
2200 int tofree;
2201
2202 if (!ac || !ac->avail)
2203 return;
2204
2205 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2206 if (tofree > ac->avail)
2207 tofree = (ac->avail + 1) / 2;
2208
2209 free_block(cachep, ac->entry, tofree, node, list);
2210 ac->avail -= tofree;
2211 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2212}
aab2207c 2213
1da177e4
LT
2214static void do_drain(void *arg)
2215{
a737b3e2 2216 struct kmem_cache *cachep = arg;
1da177e4 2217 struct array_cache *ac;
7d6e6d09 2218 int node = numa_mem_id();
18bf8541 2219 struct kmem_cache_node *n;
97654dfa 2220 LIST_HEAD(list);
1da177e4
LT
2221
2222 check_irq_off();
9a2dba4b 2223 ac = cpu_cache_get(cachep);
18bf8541
CL
2224 n = get_node(cachep, node);
2225 spin_lock(&n->list_lock);
97654dfa 2226 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2227 spin_unlock(&n->list_lock);
97654dfa 2228 slabs_destroy(cachep, &list);
1da177e4
LT
2229 ac->avail = 0;
2230}
2231
343e0d7a 2232static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2233{
ce8eb6c4 2234 struct kmem_cache_node *n;
e498be7d 2235 int node;
18726ca8 2236 LIST_HEAD(list);
e498be7d 2237
15c8b6c1 2238 on_each_cpu(do_drain, cachep, 1);
1da177e4 2239 check_irq_on();
18bf8541
CL
2240 for_each_kmem_cache_node(cachep, node, n)
2241 if (n->alien)
ce8eb6c4 2242 drain_alien_cache(cachep, n->alien);
a4523a8b 2243
18726ca8
JK
2244 for_each_kmem_cache_node(cachep, node, n) {
2245 spin_lock_irq(&n->list_lock);
2246 drain_array_locked(cachep, n->shared, node, true, &list);
2247 spin_unlock_irq(&n->list_lock);
2248
2249 slabs_destroy(cachep, &list);
2250 }
1da177e4
LT
2251}
2252
ed11d9eb
CL
2253/*
2254 * Remove slabs from the list of free slabs.
2255 * Specify the number of slabs to drain in tofree.
2256 *
2257 * Returns the actual number of slabs released.
2258 */
2259static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2260 struct kmem_cache_node *n, int tofree)
1da177e4 2261{
ed11d9eb
CL
2262 struct list_head *p;
2263 int nr_freed;
8456a648 2264 struct page *page;
1da177e4 2265
ed11d9eb 2266 nr_freed = 0;
ce8eb6c4 2267 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2268
ce8eb6c4
CL
2269 spin_lock_irq(&n->list_lock);
2270 p = n->slabs_free.prev;
2271 if (p == &n->slabs_free) {
2272 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2273 goto out;
2274 }
1da177e4 2275
8456a648 2276 page = list_entry(p, struct page, lru);
8456a648 2277 list_del(&page->lru);
f728b0a5 2278 n->free_slabs--;
bf00bd34 2279 n->total_slabs--;
ed11d9eb
CL
2280 /*
2281 * Safe to drop the lock. The slab is no longer linked
2282 * to the cache.
2283 */
ce8eb6c4
CL
2284 n->free_objects -= cache->num;
2285 spin_unlock_irq(&n->list_lock);
8456a648 2286 slab_destroy(cache, page);
ed11d9eb 2287 nr_freed++;
1da177e4 2288 }
ed11d9eb
CL
2289out:
2290 return nr_freed;
1da177e4
LT
2291}
2292
c9fc5864 2293int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2294{
18bf8541
CL
2295 int ret = 0;
2296 int node;
ce8eb6c4 2297 struct kmem_cache_node *n;
e498be7d
CL
2298
2299 drain_cpu_caches(cachep);
2300
2301 check_irq_on();
18bf8541 2302 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2303 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2304
ce8eb6c4
CL
2305 ret += !list_empty(&n->slabs_full) ||
2306 !list_empty(&n->slabs_partial);
e498be7d
CL
2307 }
2308 return (ret ? 1 : 0);
2309}
2310
c9fc5864
TH
2311#ifdef CONFIG_MEMCG
2312void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2313{
2314 __kmem_cache_shrink(cachep);
2315}
2316#endif
2317
945cf2b6 2318int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2319{
c9fc5864 2320 return __kmem_cache_shrink(cachep);
52b4b950
DS
2321}
2322
2323void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2324{
12c3667f 2325 int i;
ce8eb6c4 2326 struct kmem_cache_node *n;
1da177e4 2327
c7ce4f60
TG
2328 cache_random_seq_destroy(cachep);
2329
bf0dea23 2330 free_percpu(cachep->cpu_cache);
1da177e4 2331
ce8eb6c4 2332 /* NUMA: free the node structures */
18bf8541
CL
2333 for_each_kmem_cache_node(cachep, i, n) {
2334 kfree(n->shared);
2335 free_alien_cache(n->alien);
2336 kfree(n);
2337 cachep->node[i] = NULL;
12c3667f 2338 }
1da177e4 2339}
1da177e4 2340
e5ac9c5a
RT
2341/*
2342 * Get the memory for a slab management obj.
5f0985bb
JZ
2343 *
2344 * For a slab cache when the slab descriptor is off-slab, the
2345 * slab descriptor can't come from the same cache which is being created,
2346 * Because if it is the case, that means we defer the creation of
2347 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2348 * And we eventually call down to __kmem_cache_create(), which
2349 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2350 * This is a "chicken-and-egg" problem.
2351 *
2352 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2353 * which are all initialized during kmem_cache_init().
e5ac9c5a 2354 */
7e007355 2355static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2356 struct page *page, int colour_off,
2357 gfp_t local_flags, int nodeid)
1da177e4 2358{
7e007355 2359 void *freelist;
0c3aa83e 2360 void *addr = page_address(page);
b28a02de 2361
2e6b3602
JK
2362 page->s_mem = addr + colour_off;
2363 page->active = 0;
2364
b03a017b
JK
2365 if (OBJFREELIST_SLAB(cachep))
2366 freelist = NULL;
2367 else if (OFF_SLAB(cachep)) {
1da177e4 2368 /* Slab management obj is off-slab. */
8456a648 2369 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2370 local_flags, nodeid);
8456a648 2371 if (!freelist)
1da177e4
LT
2372 return NULL;
2373 } else {
2e6b3602
JK
2374 /* We will use last bytes at the slab for freelist */
2375 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2376 cachep->freelist_size;
1da177e4 2377 }
2e6b3602 2378
8456a648 2379 return freelist;
1da177e4
LT
2380}
2381
7cc68973 2382static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2383{
a41adfaa 2384 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2385}
2386
2387static inline void set_free_obj(struct page *page,
7cc68973 2388 unsigned int idx, freelist_idx_t val)
e5c58dfd 2389{
a41adfaa 2390 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2391}
2392
10b2e9e8 2393static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2394{
10b2e9e8 2395#if DEBUG
1da177e4
LT
2396 int i;
2397
2398 for (i = 0; i < cachep->num; i++) {
8456a648 2399 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2400
1da177e4
LT
2401 if (cachep->flags & SLAB_STORE_USER)
2402 *dbg_userword(cachep, objp) = NULL;
2403
2404 if (cachep->flags & SLAB_RED_ZONE) {
2405 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2406 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2407 }
2408 /*
a737b3e2
AM
2409 * Constructors are not allowed to allocate memory from the same
2410 * cache which they are a constructor for. Otherwise, deadlock.
2411 * They must also be threaded.
1da177e4 2412 */
7ed2f9e6
AP
2413 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2414 kasan_unpoison_object_data(cachep,
2415 objp + obj_offset(cachep));
51cc5068 2416 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2417 kasan_poison_object_data(
2418 cachep, objp + obj_offset(cachep));
2419 }
1da177e4
LT
2420
2421 if (cachep->flags & SLAB_RED_ZONE) {
2422 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2423 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2424 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2425 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2426 }
40b44137
JK
2427 /* need to poison the objs? */
2428 if (cachep->flags & SLAB_POISON) {
2429 poison_obj(cachep, objp, POISON_FREE);
2430 slab_kernel_map(cachep, objp, 0, 0);
2431 }
10b2e9e8 2432 }
1da177e4 2433#endif
10b2e9e8
JK
2434}
2435
c7ce4f60
TG
2436#ifdef CONFIG_SLAB_FREELIST_RANDOM
2437/* Hold information during a freelist initialization */
2438union freelist_init_state {
2439 struct {
2440 unsigned int pos;
7c00fce9 2441 unsigned int *list;
c7ce4f60 2442 unsigned int count;
c7ce4f60
TG
2443 };
2444 struct rnd_state rnd_state;
2445};
2446
2447/*
2448 * Initialize the state based on the randomization methode available.
2449 * return true if the pre-computed list is available, false otherwize.
2450 */
2451static bool freelist_state_initialize(union freelist_init_state *state,
2452 struct kmem_cache *cachep,
2453 unsigned int count)
2454{
2455 bool ret;
2456 unsigned int rand;
2457
2458 /* Use best entropy available to define a random shift */
7c00fce9 2459 rand = get_random_int();
c7ce4f60
TG
2460
2461 /* Use a random state if the pre-computed list is not available */
2462 if (!cachep->random_seq) {
2463 prandom_seed_state(&state->rnd_state, rand);
2464 ret = false;
2465 } else {
2466 state->list = cachep->random_seq;
2467 state->count = count;
c4e490cf 2468 state->pos = rand % count;
c7ce4f60
TG
2469 ret = true;
2470 }
2471 return ret;
2472}
2473
2474/* Get the next entry on the list and randomize it using a random shift */
2475static freelist_idx_t next_random_slot(union freelist_init_state *state)
2476{
c4e490cf
JS
2477 if (state->pos >= state->count)
2478 state->pos = 0;
2479 return state->list[state->pos++];
c7ce4f60
TG
2480}
2481
7c00fce9
TG
2482/* Swap two freelist entries */
2483static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2484{
2485 swap(((freelist_idx_t *)page->freelist)[a],
2486 ((freelist_idx_t *)page->freelist)[b]);
2487}
2488
c7ce4f60
TG
2489/*
2490 * Shuffle the freelist initialization state based on pre-computed lists.
2491 * return true if the list was successfully shuffled, false otherwise.
2492 */
2493static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2494{
7c00fce9 2495 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2496 union freelist_init_state state;
2497 bool precomputed;
2498
2499 if (count < 2)
2500 return false;
2501
2502 precomputed = freelist_state_initialize(&state, cachep, count);
2503
2504 /* Take a random entry as the objfreelist */
2505 if (OBJFREELIST_SLAB(cachep)) {
2506 if (!precomputed)
2507 objfreelist = count - 1;
2508 else
2509 objfreelist = next_random_slot(&state);
2510 page->freelist = index_to_obj(cachep, page, objfreelist) +
2511 obj_offset(cachep);
2512 count--;
2513 }
2514
2515 /*
2516 * On early boot, generate the list dynamically.
2517 * Later use a pre-computed list for speed.
2518 */
2519 if (!precomputed) {
7c00fce9
TG
2520 for (i = 0; i < count; i++)
2521 set_free_obj(page, i, i);
2522
2523 /* Fisher-Yates shuffle */
2524 for (i = count - 1; i > 0; i--) {
2525 rand = prandom_u32_state(&state.rnd_state);
2526 rand %= (i + 1);
2527 swap_free_obj(page, i, rand);
2528 }
c7ce4f60
TG
2529 } else {
2530 for (i = 0; i < count; i++)
2531 set_free_obj(page, i, next_random_slot(&state));
2532 }
2533
2534 if (OBJFREELIST_SLAB(cachep))
2535 set_free_obj(page, cachep->num - 1, objfreelist);
2536
2537 return true;
2538}
2539#else
2540static inline bool shuffle_freelist(struct kmem_cache *cachep,
2541 struct page *page)
2542{
2543 return false;
2544}
2545#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2546
10b2e9e8
JK
2547static void cache_init_objs(struct kmem_cache *cachep,
2548 struct page *page)
2549{
2550 int i;
7ed2f9e6 2551 void *objp;
c7ce4f60 2552 bool shuffled;
10b2e9e8
JK
2553
2554 cache_init_objs_debug(cachep, page);
2555
c7ce4f60
TG
2556 /* Try to randomize the freelist if enabled */
2557 shuffled = shuffle_freelist(cachep, page);
2558
2559 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2560 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2561 obj_offset(cachep);
2562 }
2563
10b2e9e8 2564 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2565 objp = index_to_obj(cachep, page, i);
2566 kasan_init_slab_obj(cachep, objp);
2567
10b2e9e8 2568 /* constructor could break poison info */
7ed2f9e6 2569 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2570 kasan_unpoison_object_data(cachep, objp);
2571 cachep->ctor(objp);
2572 kasan_poison_object_data(cachep, objp);
2573 }
10b2e9e8 2574
c7ce4f60
TG
2575 if (!shuffled)
2576 set_free_obj(page, i, i);
1da177e4 2577 }
1da177e4
LT
2578}
2579
260b61dd 2580static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2581{
b1cb0982 2582 void *objp;
78d382d7 2583
e5c58dfd 2584 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2585 page->active++;
78d382d7 2586
d31676df
JK
2587#if DEBUG
2588 if (cachep->flags & SLAB_STORE_USER)
2589 set_store_user_dirty(cachep);
2590#endif
2591
78d382d7
MD
2592 return objp;
2593}
2594
260b61dd
JK
2595static void slab_put_obj(struct kmem_cache *cachep,
2596 struct page *page, void *objp)
78d382d7 2597{
8456a648 2598 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2599#if DEBUG
16025177 2600 unsigned int i;
b1cb0982 2601
b1cb0982 2602 /* Verify double free bug */
8456a648 2603 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2604 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2605 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2606 cachep->name, objp);
b1cb0982
JK
2607 BUG();
2608 }
78d382d7
MD
2609 }
2610#endif
8456a648 2611 page->active--;
b03a017b
JK
2612 if (!page->freelist)
2613 page->freelist = objp + obj_offset(cachep);
2614
e5c58dfd 2615 set_free_obj(page, page->active, objnr);
78d382d7
MD
2616}
2617
4776874f
PE
2618/*
2619 * Map pages beginning at addr to the given cache and slab. This is required
2620 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2621 * virtual address for kfree, ksize, and slab debugging.
4776874f 2622 */
8456a648 2623static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2624 void *freelist)
1da177e4 2625{
a57a4988 2626 page->slab_cache = cache;
8456a648 2627 page->freelist = freelist;
1da177e4
LT
2628}
2629
2630/*
2631 * Grow (by 1) the number of slabs within a cache. This is called by
2632 * kmem_cache_alloc() when there are no active objs left in a cache.
2633 */
76b342bd
JK
2634static struct page *cache_grow_begin(struct kmem_cache *cachep,
2635 gfp_t flags, int nodeid)
1da177e4 2636{
7e007355 2637 void *freelist;
b28a02de
PE
2638 size_t offset;
2639 gfp_t local_flags;
511e3a05 2640 int page_node;
ce8eb6c4 2641 struct kmem_cache_node *n;
511e3a05 2642 struct page *page;
1da177e4 2643
a737b3e2
AM
2644 /*
2645 * Be lazy and only check for valid flags here, keeping it out of the
2646 * critical path in kmem_cache_alloc().
1da177e4 2647 */
c871ac4e 2648 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2649 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2650 flags &= ~GFP_SLAB_BUG_MASK;
2651 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2652 invalid_mask, &invalid_mask, flags, &flags);
2653 dump_stack();
c871ac4e 2654 }
6cb06229 2655 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2656
1da177e4 2657 check_irq_off();
d0164adc 2658 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2659 local_irq_enable();
2660
a737b3e2
AM
2661 /*
2662 * Get mem for the objs. Attempt to allocate a physical page from
2663 * 'nodeid'.
e498be7d 2664 */
511e3a05 2665 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2666 if (!page)
1da177e4
LT
2667 goto failed;
2668
511e3a05
JK
2669 page_node = page_to_nid(page);
2670 n = get_node(cachep, page_node);
03d1d43a
JK
2671
2672 /* Get colour for the slab, and cal the next value. */
2673 n->colour_next++;
2674 if (n->colour_next >= cachep->colour)
2675 n->colour_next = 0;
2676
2677 offset = n->colour_next;
2678 if (offset >= cachep->colour)
2679 offset = 0;
2680
2681 offset *= cachep->colour_off;
2682
1da177e4 2683 /* Get slab management. */
8456a648 2684 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2685 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2686 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2687 goto opps1;
2688
8456a648 2689 slab_map_pages(cachep, page, freelist);
1da177e4 2690
7ed2f9e6 2691 kasan_poison_slab(page);
8456a648 2692 cache_init_objs(cachep, page);
1da177e4 2693
d0164adc 2694 if (gfpflags_allow_blocking(local_flags))
1da177e4 2695 local_irq_disable();
1da177e4 2696
76b342bd
JK
2697 return page;
2698
a737b3e2 2699opps1:
0c3aa83e 2700 kmem_freepages(cachep, page);
a737b3e2 2701failed:
d0164adc 2702 if (gfpflags_allow_blocking(local_flags))
1da177e4 2703 local_irq_disable();
76b342bd
JK
2704 return NULL;
2705}
2706
2707static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2708{
2709 struct kmem_cache_node *n;
2710 void *list = NULL;
2711
2712 check_irq_off();
2713
2714 if (!page)
2715 return;
2716
2717 INIT_LIST_HEAD(&page->lru);
2718 n = get_node(cachep, page_to_nid(page));
2719
2720 spin_lock(&n->list_lock);
bf00bd34 2721 n->total_slabs++;
f728b0a5 2722 if (!page->active) {
76b342bd 2723 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2724 n->free_slabs++;
bf00bd34 2725 } else
76b342bd 2726 fixup_slab_list(cachep, n, page, &list);
07a63c41 2727
76b342bd
JK
2728 STATS_INC_GROWN(cachep);
2729 n->free_objects += cachep->num - page->active;
2730 spin_unlock(&n->list_lock);
2731
2732 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2733}
2734
2735#if DEBUG
2736
2737/*
2738 * Perform extra freeing checks:
2739 * - detect bad pointers.
2740 * - POISON/RED_ZONE checking
1da177e4
LT
2741 */
2742static void kfree_debugcheck(const void *objp)
2743{
1da177e4 2744 if (!virt_addr_valid(objp)) {
1170532b 2745 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2746 (unsigned long)objp);
2747 BUG();
1da177e4 2748 }
1da177e4
LT
2749}
2750
58ce1fd5
PE
2751static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2752{
b46b8f19 2753 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2754
2755 redzone1 = *dbg_redzone1(cache, obj);
2756 redzone2 = *dbg_redzone2(cache, obj);
2757
2758 /*
2759 * Redzone is ok.
2760 */
2761 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2762 return;
2763
2764 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2765 slab_error(cache, "double free detected");
2766 else
2767 slab_error(cache, "memory outside object was overwritten");
2768
85c3e4a5 2769 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2770 obj, redzone1, redzone2);
58ce1fd5
PE
2771}
2772
343e0d7a 2773static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2774 unsigned long caller)
1da177e4 2775{
1da177e4 2776 unsigned int objnr;
8456a648 2777 struct page *page;
1da177e4 2778
80cbd911
MW
2779 BUG_ON(virt_to_cache(objp) != cachep);
2780
3dafccf2 2781 objp -= obj_offset(cachep);
1da177e4 2782 kfree_debugcheck(objp);
b49af68f 2783 page = virt_to_head_page(objp);
1da177e4 2784
1da177e4 2785 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2786 verify_redzone_free(cachep, objp);
1da177e4
LT
2787 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2788 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2789 }
d31676df
JK
2790 if (cachep->flags & SLAB_STORE_USER) {
2791 set_store_user_dirty(cachep);
7c0cb9c6 2792 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2793 }
1da177e4 2794
8456a648 2795 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2796
2797 BUG_ON(objnr >= cachep->num);
8456a648 2798 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2799
1da177e4 2800 if (cachep->flags & SLAB_POISON) {
1da177e4 2801 poison_obj(cachep, objp, POISON_FREE);
40b44137 2802 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2803 }
2804 return objp;
2805}
2806
1da177e4
LT
2807#else
2808#define kfree_debugcheck(x) do { } while(0)
2809#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2810#endif
2811
b03a017b
JK
2812static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2813 void **list)
2814{
2815#if DEBUG
2816 void *next = *list;
2817 void *objp;
2818
2819 while (next) {
2820 objp = next - obj_offset(cachep);
2821 next = *(void **)next;
2822 poison_obj(cachep, objp, POISON_FREE);
2823 }
2824#endif
2825}
2826
d8410234 2827static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2828 struct kmem_cache_node *n, struct page *page,
2829 void **list)
d8410234
JK
2830{
2831 /* move slabp to correct slabp list: */
2832 list_del(&page->lru);
b03a017b 2833 if (page->active == cachep->num) {
d8410234 2834 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2835 if (OBJFREELIST_SLAB(cachep)) {
2836#if DEBUG
2837 /* Poisoning will be done without holding the lock */
2838 if (cachep->flags & SLAB_POISON) {
2839 void **objp = page->freelist;
2840
2841 *objp = *list;
2842 *list = objp;
2843 }
2844#endif
2845 page->freelist = NULL;
2846 }
2847 } else
d8410234
JK
2848 list_add(&page->lru, &n->slabs_partial);
2849}
2850
f68f8ddd
JK
2851/* Try to find non-pfmemalloc slab if needed */
2852static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2853 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2854{
2855 if (!page)
2856 return NULL;
2857
2858 if (pfmemalloc)
2859 return page;
2860
2861 if (!PageSlabPfmemalloc(page))
2862 return page;
2863
2864 /* No need to keep pfmemalloc slab if we have enough free objects */
2865 if (n->free_objects > n->free_limit) {
2866 ClearPageSlabPfmemalloc(page);
2867 return page;
2868 }
2869
2870 /* Move pfmemalloc slab to the end of list to speed up next search */
2871 list_del(&page->lru);
bf00bd34 2872 if (!page->active) {
f68f8ddd 2873 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2874 n->free_slabs++;
f728b0a5 2875 } else
f68f8ddd
JK
2876 list_add_tail(&page->lru, &n->slabs_partial);
2877
2878 list_for_each_entry(page, &n->slabs_partial, lru) {
2879 if (!PageSlabPfmemalloc(page))
2880 return page;
2881 }
2882
f728b0a5 2883 n->free_touched = 1;
f68f8ddd 2884 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2885 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2886 n->free_slabs--;
f68f8ddd 2887 return page;
f728b0a5 2888 }
f68f8ddd
JK
2889 }
2890
2891 return NULL;
2892}
2893
2894static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2895{
2896 struct page *page;
2897
f728b0a5 2898 assert_spin_locked(&n->list_lock);
bf00bd34 2899 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2900 if (!page) {
2901 n->free_touched = 1;
bf00bd34
DR
2902 page = list_first_entry_or_null(&n->slabs_free, struct page,
2903 lru);
f728b0a5 2904 if (page)
bf00bd34 2905 n->free_slabs--;
7aa0d227
GT
2906 }
2907
f68f8ddd 2908 if (sk_memalloc_socks())
bf00bd34 2909 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2910
7aa0d227
GT
2911 return page;
2912}
2913
f68f8ddd
JK
2914static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2915 struct kmem_cache_node *n, gfp_t flags)
2916{
2917 struct page *page;
2918 void *obj;
2919 void *list = NULL;
2920
2921 if (!gfp_pfmemalloc_allowed(flags))
2922 return NULL;
2923
2924 spin_lock(&n->list_lock);
2925 page = get_first_slab(n, true);
2926 if (!page) {
2927 spin_unlock(&n->list_lock);
2928 return NULL;
2929 }
2930
2931 obj = slab_get_obj(cachep, page);
2932 n->free_objects--;
2933
2934 fixup_slab_list(cachep, n, page, &list);
2935
2936 spin_unlock(&n->list_lock);
2937 fixup_objfreelist_debug(cachep, &list);
2938
2939 return obj;
2940}
2941
213b4695
JK
2942/*
2943 * Slab list should be fixed up by fixup_slab_list() for existing slab
2944 * or cache_grow_end() for new slab
2945 */
2946static __always_inline int alloc_block(struct kmem_cache *cachep,
2947 struct array_cache *ac, struct page *page, int batchcount)
2948{
2949 /*
2950 * There must be at least one object available for
2951 * allocation.
2952 */
2953 BUG_ON(page->active >= cachep->num);
2954
2955 while (page->active < cachep->num && batchcount--) {
2956 STATS_INC_ALLOCED(cachep);
2957 STATS_INC_ACTIVE(cachep);
2958 STATS_SET_HIGH(cachep);
2959
2960 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2961 }
2962
2963 return batchcount;
2964}
2965
f68f8ddd 2966static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2967{
2968 int batchcount;
ce8eb6c4 2969 struct kmem_cache_node *n;
801faf0d 2970 struct array_cache *ac, *shared;
1ca4cb24 2971 int node;
b03a017b 2972 void *list = NULL;
76b342bd 2973 struct page *page;
1ca4cb24 2974
1da177e4 2975 check_irq_off();
7d6e6d09 2976 node = numa_mem_id();
f68f8ddd 2977
9a2dba4b 2978 ac = cpu_cache_get(cachep);
1da177e4
LT
2979 batchcount = ac->batchcount;
2980 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2981 /*
2982 * If there was little recent activity on this cache, then
2983 * perform only a partial refill. Otherwise we could generate
2984 * refill bouncing.
1da177e4
LT
2985 */
2986 batchcount = BATCHREFILL_LIMIT;
2987 }
18bf8541 2988 n = get_node(cachep, node);
e498be7d 2989
ce8eb6c4 2990 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2991 shared = READ_ONCE(n->shared);
2992 if (!n->free_objects && (!shared || !shared->avail))
2993 goto direct_grow;
2994
ce8eb6c4 2995 spin_lock(&n->list_lock);
801faf0d 2996 shared = READ_ONCE(n->shared);
1da177e4 2997
3ded175a 2998 /* See if we can refill from the shared array */
801faf0d
JK
2999 if (shared && transfer_objects(ac, shared, batchcount)) {
3000 shared->touched = 1;
3ded175a 3001 goto alloc_done;
44b57f1c 3002 }
3ded175a 3003
1da177e4 3004 while (batchcount > 0) {
1da177e4 3005 /* Get slab alloc is to come from. */
f68f8ddd 3006 page = get_first_slab(n, false);
7aa0d227
GT
3007 if (!page)
3008 goto must_grow;
1da177e4 3009
1da177e4 3010 check_spinlock_acquired(cachep);
714b8171 3011
213b4695 3012 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3013 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3014 }
3015
a737b3e2 3016must_grow:
ce8eb6c4 3017 n->free_objects -= ac->avail;
a737b3e2 3018alloc_done:
ce8eb6c4 3019 spin_unlock(&n->list_lock);
b03a017b 3020 fixup_objfreelist_debug(cachep, &list);
1da177e4 3021
801faf0d 3022direct_grow:
1da177e4 3023 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3024 /* Check if we can use obj in pfmemalloc slab */
3025 if (sk_memalloc_socks()) {
3026 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3027
3028 if (obj)
3029 return obj;
3030 }
3031
76b342bd 3032 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3033
76b342bd
JK
3034 /*
3035 * cache_grow_begin() can reenable interrupts,
3036 * then ac could change.
3037 */
9a2dba4b 3038 ac = cpu_cache_get(cachep);
213b4695
JK
3039 if (!ac->avail && page)
3040 alloc_block(cachep, ac, page, batchcount);
3041 cache_grow_end(cachep, page);
072bb0aa 3042
213b4695 3043 if (!ac->avail)
1da177e4 3044 return NULL;
1da177e4
LT
3045 }
3046 ac->touched = 1;
072bb0aa 3047
f68f8ddd 3048 return ac->entry[--ac->avail];
1da177e4
LT
3049}
3050
a737b3e2
AM
3051static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3052 gfp_t flags)
1da177e4 3053{
d0164adc 3054 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3055}
3056
3057#if DEBUG
a737b3e2 3058static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3059 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3060{
b28a02de 3061 if (!objp)
1da177e4 3062 return objp;
b28a02de 3063 if (cachep->flags & SLAB_POISON) {
1da177e4 3064 check_poison_obj(cachep, objp);
40b44137 3065 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3066 poison_obj(cachep, objp, POISON_INUSE);
3067 }
3068 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3069 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3070
3071 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3074 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3075 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3076 objp, *dbg_redzone1(cachep, objp),
3077 *dbg_redzone2(cachep, objp));
1da177e4
LT
3078 }
3079 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3080 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3081 }
03787301 3082
3dafccf2 3083 objp += obj_offset(cachep);
4f104934 3084 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3085 cachep->ctor(objp);
7ea466f2
TH
3086 if (ARCH_SLAB_MINALIGN &&
3087 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3088 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3089 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3090 }
1da177e4
LT
3091 return objp;
3092}
3093#else
3094#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3095#endif
3096
343e0d7a 3097static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3098{
b28a02de 3099 void *objp;
1da177e4
LT
3100 struct array_cache *ac;
3101
5c382300 3102 check_irq_off();
8a8b6502 3103
9a2dba4b 3104 ac = cpu_cache_get(cachep);
1da177e4 3105 if (likely(ac->avail)) {
1da177e4 3106 ac->touched = 1;
f68f8ddd 3107 objp = ac->entry[--ac->avail];
072bb0aa 3108
f68f8ddd
JK
3109 STATS_INC_ALLOCHIT(cachep);
3110 goto out;
1da177e4 3111 }
072bb0aa
MG
3112
3113 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3114 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3115 /*
3116 * the 'ac' may be updated by cache_alloc_refill(),
3117 * and kmemleak_erase() requires its correct value.
3118 */
3119 ac = cpu_cache_get(cachep);
3120
3121out:
d5cff635
CM
3122 /*
3123 * To avoid a false negative, if an object that is in one of the
3124 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3125 * treat the array pointers as a reference to the object.
3126 */
f3d8b53a
O
3127 if (objp)
3128 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3129 return objp;
3130}
3131
e498be7d 3132#ifdef CONFIG_NUMA
c61afb18 3133/*
2ad654bc 3134 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3135 *
3136 * If we are in_interrupt, then process context, including cpusets and
3137 * mempolicy, may not apply and should not be used for allocation policy.
3138 */
3139static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3140{
3141 int nid_alloc, nid_here;
3142
765c4507 3143 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3144 return NULL;
7d6e6d09 3145 nid_alloc = nid_here = numa_mem_id();
c61afb18 3146 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3147 nid_alloc = cpuset_slab_spread_node();
c61afb18 3148 else if (current->mempolicy)
2a389610 3149 nid_alloc = mempolicy_slab_node();
c61afb18 3150 if (nid_alloc != nid_here)
8b98c169 3151 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3152 return NULL;
3153}
3154
765c4507
CL
3155/*
3156 * Fallback function if there was no memory available and no objects on a
3c517a61 3157 * certain node and fall back is permitted. First we scan all the
6a67368c 3158 * available node for available objects. If that fails then we
3c517a61
CL
3159 * perform an allocation without specifying a node. This allows the page
3160 * allocator to do its reclaim / fallback magic. We then insert the
3161 * slab into the proper nodelist and then allocate from it.
765c4507 3162 */
8c8cc2c1 3163static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3164{
8c8cc2c1 3165 struct zonelist *zonelist;
dd1a239f 3166 struct zoneref *z;
54a6eb5c
MG
3167 struct zone *zone;
3168 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3169 void *obj = NULL;
76b342bd 3170 struct page *page;
3c517a61 3171 int nid;
cc9a6c87 3172 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3173
3174 if (flags & __GFP_THISNODE)
3175 return NULL;
3176
cc9a6c87 3177retry_cpuset:
d26914d1 3178 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3179 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3180
3c517a61
CL
3181retry:
3182 /*
3183 * Look through allowed nodes for objects available
3184 * from existing per node queues.
3185 */
54a6eb5c
MG
3186 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3187 nid = zone_to_nid(zone);
aedb0eb1 3188
061d7074 3189 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3190 get_node(cache, nid) &&
3191 get_node(cache, nid)->free_objects) {
3c517a61 3192 obj = ____cache_alloc_node(cache,
4167e9b2 3193 gfp_exact_node(flags), nid);
481c5346
CL
3194 if (obj)
3195 break;
3196 }
3c517a61
CL
3197 }
3198
cfce6604 3199 if (!obj) {
3c517a61
CL
3200 /*
3201 * This allocation will be performed within the constraints
3202 * of the current cpuset / memory policy requirements.
3203 * We may trigger various forms of reclaim on the allowed
3204 * set and go into memory reserves if necessary.
3205 */
76b342bd
JK
3206 page = cache_grow_begin(cache, flags, numa_mem_id());
3207 cache_grow_end(cache, page);
3208 if (page) {
3209 nid = page_to_nid(page);
511e3a05
JK
3210 obj = ____cache_alloc_node(cache,
3211 gfp_exact_node(flags), nid);
0c3aa83e 3212
3c517a61 3213 /*
511e3a05
JK
3214 * Another processor may allocate the objects in
3215 * the slab since we are not holding any locks.
3c517a61 3216 */
511e3a05
JK
3217 if (!obj)
3218 goto retry;
3c517a61 3219 }
aedb0eb1 3220 }
cc9a6c87 3221
d26914d1 3222 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3223 goto retry_cpuset;
765c4507
CL
3224 return obj;
3225}
3226
e498be7d
CL
3227/*
3228 * A interface to enable slab creation on nodeid
1da177e4 3229 */
8b98c169 3230static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3231 int nodeid)
e498be7d 3232{
8456a648 3233 struct page *page;
ce8eb6c4 3234 struct kmem_cache_node *n;
213b4695 3235 void *obj = NULL;
b03a017b 3236 void *list = NULL;
b28a02de 3237
7c3fbbdd 3238 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3239 n = get_node(cachep, nodeid);
ce8eb6c4 3240 BUG_ON(!n);
b28a02de 3241
ca3b9b91 3242 check_irq_off();
ce8eb6c4 3243 spin_lock(&n->list_lock);
f68f8ddd 3244 page = get_first_slab(n, false);
7aa0d227
GT
3245 if (!page)
3246 goto must_grow;
b28a02de 3247
b28a02de 3248 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3249
3250 STATS_INC_NODEALLOCS(cachep);
3251 STATS_INC_ACTIVE(cachep);
3252 STATS_SET_HIGH(cachep);
3253
8456a648 3254 BUG_ON(page->active == cachep->num);
b28a02de 3255
260b61dd 3256 obj = slab_get_obj(cachep, page);
ce8eb6c4 3257 n->free_objects--;
b28a02de 3258
b03a017b 3259 fixup_slab_list(cachep, n, page, &list);
e498be7d 3260
ce8eb6c4 3261 spin_unlock(&n->list_lock);
b03a017b 3262 fixup_objfreelist_debug(cachep, &list);
213b4695 3263 return obj;
e498be7d 3264
a737b3e2 3265must_grow:
ce8eb6c4 3266 spin_unlock(&n->list_lock);
76b342bd 3267 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3268 if (page) {
3269 /* This slab isn't counted yet so don't update free_objects */
3270 obj = slab_get_obj(cachep, page);
3271 }
76b342bd 3272 cache_grow_end(cachep, page);
1da177e4 3273
213b4695 3274 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3275}
8c8cc2c1 3276
8c8cc2c1 3277static __always_inline void *
48356303 3278slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3279 unsigned long caller)
8c8cc2c1
PE
3280{
3281 unsigned long save_flags;
3282 void *ptr;
7d6e6d09 3283 int slab_node = numa_mem_id();
8c8cc2c1 3284
dcce284a 3285 flags &= gfp_allowed_mask;
011eceaf
JDB
3286 cachep = slab_pre_alloc_hook(cachep, flags);
3287 if (unlikely(!cachep))
824ebef1
AM
3288 return NULL;
3289
8c8cc2c1
PE
3290 cache_alloc_debugcheck_before(cachep, flags);
3291 local_irq_save(save_flags);
3292
eacbbae3 3293 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3294 nodeid = slab_node;
8c8cc2c1 3295
18bf8541 3296 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3297 /* Node not bootstrapped yet */
3298 ptr = fallback_alloc(cachep, flags);
3299 goto out;
3300 }
3301
7d6e6d09 3302 if (nodeid == slab_node) {
8c8cc2c1
PE
3303 /*
3304 * Use the locally cached objects if possible.
3305 * However ____cache_alloc does not allow fallback
3306 * to other nodes. It may fail while we still have
3307 * objects on other nodes available.
3308 */
3309 ptr = ____cache_alloc(cachep, flags);
3310 if (ptr)
3311 goto out;
3312 }
3313 /* ___cache_alloc_node can fall back to other nodes */
3314 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3315 out:
3316 local_irq_restore(save_flags);
3317 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3318
d5e3ed66
JDB
3319 if (unlikely(flags & __GFP_ZERO) && ptr)
3320 memset(ptr, 0, cachep->object_size);
d07dbea4 3321
d5e3ed66 3322 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3323 return ptr;
3324}
3325
3326static __always_inline void *
3327__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3328{
3329 void *objp;
3330
2ad654bc 3331 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3332 objp = alternate_node_alloc(cache, flags);
3333 if (objp)
3334 goto out;
3335 }
3336 objp = ____cache_alloc(cache, flags);
3337
3338 /*
3339 * We may just have run out of memory on the local node.
3340 * ____cache_alloc_node() knows how to locate memory on other nodes
3341 */
7d6e6d09
LS
3342 if (!objp)
3343 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3344
3345 out:
3346 return objp;
3347}
3348#else
3349
3350static __always_inline void *
3351__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3352{
3353 return ____cache_alloc(cachep, flags);
3354}
3355
3356#endif /* CONFIG_NUMA */
3357
3358static __always_inline void *
48356303 3359slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3360{
3361 unsigned long save_flags;
3362 void *objp;
3363
dcce284a 3364 flags &= gfp_allowed_mask;
011eceaf
JDB
3365 cachep = slab_pre_alloc_hook(cachep, flags);
3366 if (unlikely(!cachep))
824ebef1
AM
3367 return NULL;
3368
8c8cc2c1
PE
3369 cache_alloc_debugcheck_before(cachep, flags);
3370 local_irq_save(save_flags);
3371 objp = __do_cache_alloc(cachep, flags);
3372 local_irq_restore(save_flags);
3373 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3374 prefetchw(objp);
3375
d5e3ed66
JDB
3376 if (unlikely(flags & __GFP_ZERO) && objp)
3377 memset(objp, 0, cachep->object_size);
d07dbea4 3378
d5e3ed66 3379 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3380 return objp;
3381}
e498be7d
CL
3382
3383/*
5f0985bb 3384 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3385 * @list: List of detached free slabs should be freed by caller
e498be7d 3386 */
97654dfa
JK
3387static void free_block(struct kmem_cache *cachep, void **objpp,
3388 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3389{
3390 int i;
25c063fb 3391 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3392 struct page *page;
3393
3394 n->free_objects += nr_objects;
1da177e4
LT
3395
3396 for (i = 0; i < nr_objects; i++) {
072bb0aa 3397 void *objp;
8456a648 3398 struct page *page;
1da177e4 3399
072bb0aa
MG
3400 objp = objpp[i];
3401
8456a648 3402 page = virt_to_head_page(objp);
8456a648 3403 list_del(&page->lru);
ff69416e 3404 check_spinlock_acquired_node(cachep, node);
260b61dd 3405 slab_put_obj(cachep, page, objp);
1da177e4 3406 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3407
3408 /* fixup slab chains */
f728b0a5 3409 if (page->active == 0) {
6052b788 3410 list_add(&page->lru, &n->slabs_free);
f728b0a5 3411 n->free_slabs++;
f728b0a5 3412 } else {
1da177e4
LT
3413 /* Unconditionally move a slab to the end of the
3414 * partial list on free - maximum time for the
3415 * other objects to be freed, too.
3416 */
8456a648 3417 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3418 }
3419 }
6052b788
JK
3420
3421 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3422 n->free_objects -= cachep->num;
3423
3424 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3425 list_move(&page->lru, list);
f728b0a5 3426 n->free_slabs--;
bf00bd34 3427 n->total_slabs--;
6052b788 3428 }
1da177e4
LT
3429}
3430
343e0d7a 3431static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3432{
3433 int batchcount;
ce8eb6c4 3434 struct kmem_cache_node *n;
7d6e6d09 3435 int node = numa_mem_id();
97654dfa 3436 LIST_HEAD(list);
1da177e4
LT
3437
3438 batchcount = ac->batchcount;
260b61dd 3439
1da177e4 3440 check_irq_off();
18bf8541 3441 n = get_node(cachep, node);
ce8eb6c4
CL
3442 spin_lock(&n->list_lock);
3443 if (n->shared) {
3444 struct array_cache *shared_array = n->shared;
b28a02de 3445 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3446 if (max) {
3447 if (batchcount > max)
3448 batchcount = max;
e498be7d 3449 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3450 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3451 shared_array->avail += batchcount;
3452 goto free_done;
3453 }
3454 }
3455
97654dfa 3456 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3457free_done:
1da177e4
LT
3458#if STATS
3459 {
3460 int i = 0;
73c0219d 3461 struct page *page;
1da177e4 3462
73c0219d 3463 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3464 BUG_ON(page->active);
1da177e4
LT
3465
3466 i++;
1da177e4
LT
3467 }
3468 STATS_SET_FREEABLE(cachep, i);
3469 }
3470#endif
ce8eb6c4 3471 spin_unlock(&n->list_lock);
97654dfa 3472 slabs_destroy(cachep, &list);
1da177e4 3473 ac->avail -= batchcount;
a737b3e2 3474 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3475}
3476
3477/*
a737b3e2
AM
3478 * Release an obj back to its cache. If the obj has a constructed state, it must
3479 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3480 */
ee3ce779
DV
3481static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3482 unsigned long caller)
1da177e4 3483{
55834c59 3484 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3485 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3486 return;
3487
3488 ___cache_free(cachep, objp, caller);
3489}
1da177e4 3490
55834c59
AP
3491void ___cache_free(struct kmem_cache *cachep, void *objp,
3492 unsigned long caller)
3493{
3494 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3495
1da177e4 3496 check_irq_off();
d5cff635 3497 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3498 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3499
1807a1aa
SS
3500 /*
3501 * Skip calling cache_free_alien() when the platform is not numa.
3502 * This will avoid cache misses that happen while accessing slabp (which
3503 * is per page memory reference) to get nodeid. Instead use a global
3504 * variable to skip the call, which is mostly likely to be present in
3505 * the cache.
3506 */
b6e68bc1 3507 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3508 return;
3509
3d880194 3510 if (ac->avail < ac->limit) {
1da177e4 3511 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3512 } else {
3513 STATS_INC_FREEMISS(cachep);
3514 cache_flusharray(cachep, ac);
1da177e4 3515 }
42c8c99c 3516
f68f8ddd
JK
3517 if (sk_memalloc_socks()) {
3518 struct page *page = virt_to_head_page(objp);
3519
3520 if (unlikely(PageSlabPfmemalloc(page))) {
3521 cache_free_pfmemalloc(cachep, page, objp);
3522 return;
3523 }
3524 }
3525
3526 ac->entry[ac->avail++] = objp;
1da177e4
LT
3527}
3528
3529/**
3530 * kmem_cache_alloc - Allocate an object
3531 * @cachep: The cache to allocate from.
3532 * @flags: See kmalloc().
3533 *
3534 * Allocate an object from this cache. The flags are only relevant
3535 * if the cache has no available objects.
3536 */
343e0d7a 3537void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3538{
48356303 3539 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3540
505f5dcb 3541 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3542 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3543 cachep->object_size, cachep->size, flags);
36555751
EGM
3544
3545 return ret;
1da177e4
LT
3546}
3547EXPORT_SYMBOL(kmem_cache_alloc);
3548
7b0501dd
JDB
3549static __always_inline void
3550cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3551 size_t size, void **p, unsigned long caller)
3552{
3553 size_t i;
3554
3555 for (i = 0; i < size; i++)
3556 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3557}
3558
865762a8 3559int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3560 void **p)
484748f0 3561{
2a777eac
JDB
3562 size_t i;
3563
3564 s = slab_pre_alloc_hook(s, flags);
3565 if (!s)
3566 return 0;
3567
3568 cache_alloc_debugcheck_before(s, flags);
3569
3570 local_irq_disable();
3571 for (i = 0; i < size; i++) {
3572 void *objp = __do_cache_alloc(s, flags);
3573
2a777eac
JDB
3574 if (unlikely(!objp))
3575 goto error;
3576 p[i] = objp;
3577 }
3578 local_irq_enable();
3579
7b0501dd
JDB
3580 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3581
2a777eac
JDB
3582 /* Clear memory outside IRQ disabled section */
3583 if (unlikely(flags & __GFP_ZERO))
3584 for (i = 0; i < size; i++)
3585 memset(p[i], 0, s->object_size);
3586
3587 slab_post_alloc_hook(s, flags, size, p);
3588 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3589 return size;
3590error:
3591 local_irq_enable();
7b0501dd 3592 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3593 slab_post_alloc_hook(s, flags, i, p);
3594 __kmem_cache_free_bulk(s, i, p);
3595 return 0;
484748f0
CL
3596}
3597EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3598
0f24f128 3599#ifdef CONFIG_TRACING
85beb586 3600void *
4052147c 3601kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3602{
85beb586
SR
3603 void *ret;
3604
48356303 3605 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3606
505f5dcb 3607 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3608 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3609 size, cachep->size, flags);
85beb586 3610 return ret;
36555751 3611}
85beb586 3612EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3613#endif
3614
1da177e4 3615#ifdef CONFIG_NUMA
d0d04b78
ZL
3616/**
3617 * kmem_cache_alloc_node - Allocate an object on the specified node
3618 * @cachep: The cache to allocate from.
3619 * @flags: See kmalloc().
3620 * @nodeid: node number of the target node.
3621 *
3622 * Identical to kmem_cache_alloc but it will allocate memory on the given
3623 * node, which can improve the performance for cpu bound structures.
3624 *
3625 * Fallback to other node is possible if __GFP_THISNODE is not set.
3626 */
8b98c169
CH
3627void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3628{
48356303 3629 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3630
505f5dcb 3631 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3632 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3633 cachep->object_size, cachep->size,
ca2b84cb 3634 flags, nodeid);
36555751
EGM
3635
3636 return ret;
8b98c169 3637}
1da177e4
LT
3638EXPORT_SYMBOL(kmem_cache_alloc_node);
3639
0f24f128 3640#ifdef CONFIG_TRACING
4052147c 3641void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3642 gfp_t flags,
4052147c
EG
3643 int nodeid,
3644 size_t size)
36555751 3645{
85beb586
SR
3646 void *ret;
3647
592f4145 3648 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3649
3650 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3651 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3652 size, cachep->size,
85beb586
SR
3653 flags, nodeid);
3654 return ret;
36555751 3655}
85beb586 3656EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3657#endif
3658
8b98c169 3659static __always_inline void *
7c0cb9c6 3660__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3661{
343e0d7a 3662 struct kmem_cache *cachep;
7ed2f9e6 3663 void *ret;
97e2bde4 3664
2c59dd65 3665 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3666 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3667 return cachep;
7ed2f9e6 3668 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3669 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3670
3671 return ret;
97e2bde4 3672}
8b98c169 3673
8b98c169
CH
3674void *__kmalloc_node(size_t size, gfp_t flags, int node)
3675{
7c0cb9c6 3676 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3677}
dbe5e69d 3678EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3679
3680void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3681 int node, unsigned long caller)
8b98c169 3682{
7c0cb9c6 3683 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3684}
3685EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3686#endif /* CONFIG_NUMA */
1da177e4
LT
3687
3688/**
800590f5 3689 * __do_kmalloc - allocate memory
1da177e4 3690 * @size: how many bytes of memory are required.
800590f5 3691 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3692 * @caller: function caller for debug tracking of the caller
1da177e4 3693 */
7fd6b141 3694static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3695 unsigned long caller)
1da177e4 3696{
343e0d7a 3697 struct kmem_cache *cachep;
36555751 3698 void *ret;
1da177e4 3699
2c59dd65 3700 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3701 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3702 return cachep;
48356303 3703 ret = slab_alloc(cachep, flags, caller);
36555751 3704
505f5dcb 3705 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3706 trace_kmalloc(caller, ret,
3b0efdfa 3707 size, cachep->size, flags);
36555751
EGM
3708
3709 return ret;
7fd6b141
PE
3710}
3711
7fd6b141
PE
3712void *__kmalloc(size_t size, gfp_t flags)
3713{
7c0cb9c6 3714 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3715}
3716EXPORT_SYMBOL(__kmalloc);
3717
ce71e27c 3718void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3719{
7c0cb9c6 3720 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3721}
3722EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3723
1da177e4
LT
3724/**
3725 * kmem_cache_free - Deallocate an object
3726 * @cachep: The cache the allocation was from.
3727 * @objp: The previously allocated object.
3728 *
3729 * Free an object which was previously allocated from this
3730 * cache.
3731 */
343e0d7a 3732void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3733{
3734 unsigned long flags;
b9ce5ef4
GC
3735 cachep = cache_from_obj(cachep, objp);
3736 if (!cachep)
3737 return;
1da177e4
LT
3738
3739 local_irq_save(flags);
d97d476b 3740 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3741 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3742 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3743 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3744 local_irq_restore(flags);
36555751 3745
ca2b84cb 3746 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3747}
3748EXPORT_SYMBOL(kmem_cache_free);
3749
e6cdb58d
JDB
3750void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3751{
3752 struct kmem_cache *s;
3753 size_t i;
3754
3755 local_irq_disable();
3756 for (i = 0; i < size; i++) {
3757 void *objp = p[i];
3758
ca257195
JDB
3759 if (!orig_s) /* called via kfree_bulk */
3760 s = virt_to_cache(objp);
3761 else
3762 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3763
3764 debug_check_no_locks_freed(objp, s->object_size);
3765 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3766 debug_check_no_obj_freed(objp, s->object_size);
3767
3768 __cache_free(s, objp, _RET_IP_);
3769 }
3770 local_irq_enable();
3771
3772 /* FIXME: add tracing */
3773}
3774EXPORT_SYMBOL(kmem_cache_free_bulk);
3775
1da177e4
LT
3776/**
3777 * kfree - free previously allocated memory
3778 * @objp: pointer returned by kmalloc.
3779 *
80e93eff
PE
3780 * If @objp is NULL, no operation is performed.
3781 *
1da177e4
LT
3782 * Don't free memory not originally allocated by kmalloc()
3783 * or you will run into trouble.
3784 */
3785void kfree(const void *objp)
3786{
343e0d7a 3787 struct kmem_cache *c;
1da177e4
LT
3788 unsigned long flags;
3789
2121db74
PE
3790 trace_kfree(_RET_IP_, objp);
3791
6cb8f913 3792 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3793 return;
3794 local_irq_save(flags);
3795 kfree_debugcheck(objp);
6ed5eb22 3796 c = virt_to_cache(objp);
8c138bc0
CL
3797 debug_check_no_locks_freed(objp, c->object_size);
3798
3799 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3800 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3801 local_irq_restore(flags);
3802}
3803EXPORT_SYMBOL(kfree);
3804
e498be7d 3805/*
ce8eb6c4 3806 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3807 */
c3d332b6 3808static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3809{
c3d332b6 3810 int ret;
e498be7d 3811 int node;
ce8eb6c4 3812 struct kmem_cache_node *n;
e498be7d 3813
9c09a95c 3814 for_each_online_node(node) {
c3d332b6
JK
3815 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3816 if (ret)
e498be7d
CL
3817 goto fail;
3818
e498be7d 3819 }
c3d332b6 3820
cafeb02e 3821 return 0;
0718dc2a 3822
a737b3e2 3823fail:
3b0efdfa 3824 if (!cachep->list.next) {
0718dc2a
CL
3825 /* Cache is not active yet. Roll back what we did */
3826 node--;
3827 while (node >= 0) {
18bf8541
CL
3828 n = get_node(cachep, node);
3829 if (n) {
ce8eb6c4
CL
3830 kfree(n->shared);
3831 free_alien_cache(n->alien);
3832 kfree(n);
6a67368c 3833 cachep->node[node] = NULL;
0718dc2a
CL
3834 }
3835 node--;
3836 }
3837 }
cafeb02e 3838 return -ENOMEM;
e498be7d
CL
3839}
3840
18004c5d 3841/* Always called with the slab_mutex held */
943a451a 3842static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3843 int batchcount, int shared, gfp_t gfp)
1da177e4 3844{
bf0dea23
JK
3845 struct array_cache __percpu *cpu_cache, *prev;
3846 int cpu;
1da177e4 3847
bf0dea23
JK
3848 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3849 if (!cpu_cache)
d2e7b7d0
SS
3850 return -ENOMEM;
3851
bf0dea23
JK
3852 prev = cachep->cpu_cache;
3853 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3854 /*
3855 * Without a previous cpu_cache there's no need to synchronize remote
3856 * cpus, so skip the IPIs.
3857 */
3858 if (prev)
3859 kick_all_cpus_sync();
e498be7d 3860
1da177e4 3861 check_irq_on();
1da177e4
LT
3862 cachep->batchcount = batchcount;
3863 cachep->limit = limit;
e498be7d 3864 cachep->shared = shared;
1da177e4 3865
bf0dea23 3866 if (!prev)
c3d332b6 3867 goto setup_node;
bf0dea23
JK
3868
3869 for_each_online_cpu(cpu) {
97654dfa 3870 LIST_HEAD(list);
18bf8541
CL
3871 int node;
3872 struct kmem_cache_node *n;
bf0dea23 3873 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3874
bf0dea23 3875 node = cpu_to_mem(cpu);
18bf8541
CL
3876 n = get_node(cachep, node);
3877 spin_lock_irq(&n->list_lock);
bf0dea23 3878 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3879 spin_unlock_irq(&n->list_lock);
97654dfa 3880 slabs_destroy(cachep, &list);
1da177e4 3881 }
bf0dea23
JK
3882 free_percpu(prev);
3883
c3d332b6
JK
3884setup_node:
3885 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3886}
3887
943a451a
GC
3888static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3889 int batchcount, int shared, gfp_t gfp)
3890{
3891 int ret;
426589f5 3892 struct kmem_cache *c;
943a451a
GC
3893
3894 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3895
3896 if (slab_state < FULL)
3897 return ret;
3898
3899 if ((ret < 0) || !is_root_cache(cachep))
3900 return ret;
3901
426589f5
VD
3902 lockdep_assert_held(&slab_mutex);
3903 for_each_memcg_cache(c, cachep) {
3904 /* return value determined by the root cache only */
3905 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3906 }
3907
3908 return ret;
3909}
3910
18004c5d 3911/* Called with slab_mutex held always */
83b519e8 3912static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3913{
3914 int err;
943a451a
GC
3915 int limit = 0;
3916 int shared = 0;
3917 int batchcount = 0;
3918
7c00fce9 3919 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3920 if (err)
3921 goto end;
3922
943a451a
GC
3923 if (!is_root_cache(cachep)) {
3924 struct kmem_cache *root = memcg_root_cache(cachep);
3925 limit = root->limit;
3926 shared = root->shared;
3927 batchcount = root->batchcount;
3928 }
1da177e4 3929
943a451a
GC
3930 if (limit && shared && batchcount)
3931 goto skip_setup;
a737b3e2
AM
3932 /*
3933 * The head array serves three purposes:
1da177e4
LT
3934 * - create a LIFO ordering, i.e. return objects that are cache-warm
3935 * - reduce the number of spinlock operations.
a737b3e2 3936 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3937 * bufctl chains: array operations are cheaper.
3938 * The numbers are guessed, we should auto-tune as described by
3939 * Bonwick.
3940 */
3b0efdfa 3941 if (cachep->size > 131072)
1da177e4 3942 limit = 1;
3b0efdfa 3943 else if (cachep->size > PAGE_SIZE)
1da177e4 3944 limit = 8;
3b0efdfa 3945 else if (cachep->size > 1024)
1da177e4 3946 limit = 24;
3b0efdfa 3947 else if (cachep->size > 256)
1da177e4
LT
3948 limit = 54;
3949 else
3950 limit = 120;
3951
a737b3e2
AM
3952 /*
3953 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3954 * allocation behaviour: Most allocs on one cpu, most free operations
3955 * on another cpu. For these cases, an efficient object passing between
3956 * cpus is necessary. This is provided by a shared array. The array
3957 * replaces Bonwick's magazine layer.
3958 * On uniprocessor, it's functionally equivalent (but less efficient)
3959 * to a larger limit. Thus disabled by default.
3960 */
3961 shared = 0;
3b0efdfa 3962 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3963 shared = 8;
1da177e4
LT
3964
3965#if DEBUG
a737b3e2
AM
3966 /*
3967 * With debugging enabled, large batchcount lead to excessively long
3968 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3969 */
3970 if (limit > 32)
3971 limit = 32;
3972#endif
943a451a
GC
3973 batchcount = (limit + 1) / 2;
3974skip_setup:
3975 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3976end:
1da177e4 3977 if (err)
1170532b 3978 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3979 cachep->name, -err);
2ed3a4ef 3980 return err;
1da177e4
LT
3981}
3982
1b55253a 3983/*
ce8eb6c4
CL
3984 * Drain an array if it contains any elements taking the node lock only if
3985 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3986 * if drain_array() is used on the shared array.
1b55253a 3987 */
ce8eb6c4 3988static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3989 struct array_cache *ac, int node)
1da177e4 3990{
97654dfa 3991 LIST_HEAD(list);
18726ca8
JK
3992
3993 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3994 check_mutex_acquired();
1da177e4 3995
1b55253a
CL
3996 if (!ac || !ac->avail)
3997 return;
18726ca8
JK
3998
3999 if (ac->touched) {
1da177e4 4000 ac->touched = 0;
18726ca8 4001 return;
1da177e4 4002 }
18726ca8
JK
4003
4004 spin_lock_irq(&n->list_lock);
4005 drain_array_locked(cachep, ac, node, false, &list);
4006 spin_unlock_irq(&n->list_lock);
4007
4008 slabs_destroy(cachep, &list);
1da177e4
LT
4009}
4010
4011/**
4012 * cache_reap - Reclaim memory from caches.
05fb6bf0 4013 * @w: work descriptor
1da177e4
LT
4014 *
4015 * Called from workqueue/eventd every few seconds.
4016 * Purpose:
4017 * - clear the per-cpu caches for this CPU.
4018 * - return freeable pages to the main free memory pool.
4019 *
a737b3e2
AM
4020 * If we cannot acquire the cache chain mutex then just give up - we'll try
4021 * again on the next iteration.
1da177e4 4022 */
7c5cae36 4023static void cache_reap(struct work_struct *w)
1da177e4 4024{
7a7c381d 4025 struct kmem_cache *searchp;
ce8eb6c4 4026 struct kmem_cache_node *n;
7d6e6d09 4027 int node = numa_mem_id();
bf6aede7 4028 struct delayed_work *work = to_delayed_work(w);
1da177e4 4029
18004c5d 4030 if (!mutex_trylock(&slab_mutex))
1da177e4 4031 /* Give up. Setup the next iteration. */
7c5cae36 4032 goto out;
1da177e4 4033
18004c5d 4034 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4035 check_irq_on();
4036
35386e3b 4037 /*
ce8eb6c4 4038 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4039 * have established with reasonable certainty that
4040 * we can do some work if the lock was obtained.
4041 */
18bf8541 4042 n = get_node(searchp, node);
35386e3b 4043
ce8eb6c4 4044 reap_alien(searchp, n);
1da177e4 4045
18726ca8 4046 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4047
35386e3b
CL
4048 /*
4049 * These are racy checks but it does not matter
4050 * if we skip one check or scan twice.
4051 */
ce8eb6c4 4052 if (time_after(n->next_reap, jiffies))
35386e3b 4053 goto next;
1da177e4 4054
5f0985bb 4055 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4056
18726ca8 4057 drain_array(searchp, n, n->shared, node);
1da177e4 4058
ce8eb6c4
CL
4059 if (n->free_touched)
4060 n->free_touched = 0;
ed11d9eb
CL
4061 else {
4062 int freed;
1da177e4 4063
ce8eb6c4 4064 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4065 5 * searchp->num - 1) / (5 * searchp->num));
4066 STATS_ADD_REAPED(searchp, freed);
4067 }
35386e3b 4068next:
1da177e4
LT
4069 cond_resched();
4070 }
4071 check_irq_on();
18004c5d 4072 mutex_unlock(&slab_mutex);
8fce4d8e 4073 next_reap_node();
7c5cae36 4074out:
a737b3e2 4075 /* Set up the next iteration */
5f0985bb 4076 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4077}
4078
0d7561c6 4079void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4080{
f728b0a5 4081 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4082 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4083 unsigned long free_slabs = 0;
e498be7d 4084 int node;
ce8eb6c4 4085 struct kmem_cache_node *n;
1da177e4 4086
18bf8541 4087 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4088 check_irq_on();
ce8eb6c4 4089 spin_lock_irq(&n->list_lock);
e498be7d 4090
bf00bd34
DR
4091 total_slabs += n->total_slabs;
4092 free_slabs += n->free_slabs;
f728b0a5 4093 free_objs += n->free_objects;
07a63c41 4094
ce8eb6c4
CL
4095 if (n->shared)
4096 shared_avail += n->shared->avail;
e498be7d 4097
ce8eb6c4 4098 spin_unlock_irq(&n->list_lock);
1da177e4 4099 }
bf00bd34
DR
4100 num_objs = total_slabs * cachep->num;
4101 active_slabs = total_slabs - free_slabs;
f728b0a5 4102 active_objs = num_objs - free_objs;
1da177e4 4103
0d7561c6
GC
4104 sinfo->active_objs = active_objs;
4105 sinfo->num_objs = num_objs;
4106 sinfo->active_slabs = active_slabs;
bf00bd34 4107 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4108 sinfo->shared_avail = shared_avail;
4109 sinfo->limit = cachep->limit;
4110 sinfo->batchcount = cachep->batchcount;
4111 sinfo->shared = cachep->shared;
4112 sinfo->objects_per_slab = cachep->num;
4113 sinfo->cache_order = cachep->gfporder;
4114}
4115
4116void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4117{
1da177e4 4118#if STATS
ce8eb6c4 4119 { /* node stats */
1da177e4
LT
4120 unsigned long high = cachep->high_mark;
4121 unsigned long allocs = cachep->num_allocations;
4122 unsigned long grown = cachep->grown;
4123 unsigned long reaped = cachep->reaped;
4124 unsigned long errors = cachep->errors;
4125 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4126 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4127 unsigned long node_frees = cachep->node_frees;
fb7faf33 4128 unsigned long overflows = cachep->node_overflow;
1da177e4 4129
756a025f 4130 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4131 allocs, high, grown,
4132 reaped, errors, max_freeable, node_allocs,
4133 node_frees, overflows);
1da177e4
LT
4134 }
4135 /* cpu stats */
4136 {
4137 unsigned long allochit = atomic_read(&cachep->allochit);
4138 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4139 unsigned long freehit = atomic_read(&cachep->freehit);
4140 unsigned long freemiss = atomic_read(&cachep->freemiss);
4141
4142 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4143 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4144 }
4145#endif
1da177e4
LT
4146}
4147
1da177e4
LT
4148#define MAX_SLABINFO_WRITE 128
4149/**
4150 * slabinfo_write - Tuning for the slab allocator
4151 * @file: unused
4152 * @buffer: user buffer
4153 * @count: data length
4154 * @ppos: unused
4155 */
b7454ad3 4156ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4157 size_t count, loff_t *ppos)
1da177e4 4158{
b28a02de 4159 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4160 int limit, batchcount, shared, res;
7a7c381d 4161 struct kmem_cache *cachep;
b28a02de 4162
1da177e4
LT
4163 if (count > MAX_SLABINFO_WRITE)
4164 return -EINVAL;
4165 if (copy_from_user(&kbuf, buffer, count))
4166 return -EFAULT;
b28a02de 4167 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4168
4169 tmp = strchr(kbuf, ' ');
4170 if (!tmp)
4171 return -EINVAL;
4172 *tmp = '\0';
4173 tmp++;
4174 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4175 return -EINVAL;
4176
4177 /* Find the cache in the chain of caches. */
18004c5d 4178 mutex_lock(&slab_mutex);
1da177e4 4179 res = -EINVAL;
18004c5d 4180 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4181 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4182 if (limit < 1 || batchcount < 1 ||
4183 batchcount > limit || shared < 0) {
e498be7d 4184 res = 0;
1da177e4 4185 } else {
e498be7d 4186 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4187 batchcount, shared,
4188 GFP_KERNEL);
1da177e4
LT
4189 }
4190 break;
4191 }
4192 }
18004c5d 4193 mutex_unlock(&slab_mutex);
1da177e4
LT
4194 if (res >= 0)
4195 res = count;
4196 return res;
4197}
871751e2
AV
4198
4199#ifdef CONFIG_DEBUG_SLAB_LEAK
4200
871751e2
AV
4201static inline int add_caller(unsigned long *n, unsigned long v)
4202{
4203 unsigned long *p;
4204 int l;
4205 if (!v)
4206 return 1;
4207 l = n[1];
4208 p = n + 2;
4209 while (l) {
4210 int i = l/2;
4211 unsigned long *q = p + 2 * i;
4212 if (*q == v) {
4213 q[1]++;
4214 return 1;
4215 }
4216 if (*q > v) {
4217 l = i;
4218 } else {
4219 p = q + 2;
4220 l -= i + 1;
4221 }
4222 }
4223 if (++n[1] == n[0])
4224 return 0;
4225 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4226 p[0] = v;
4227 p[1] = 1;
4228 return 1;
4229}
4230
8456a648
JK
4231static void handle_slab(unsigned long *n, struct kmem_cache *c,
4232 struct page *page)
871751e2
AV
4233{
4234 void *p;
d31676df
JK
4235 int i, j;
4236 unsigned long v;
b1cb0982 4237
871751e2
AV
4238 if (n[0] == n[1])
4239 return;
8456a648 4240 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4241 bool active = true;
4242
4243 for (j = page->active; j < c->num; j++) {
4244 if (get_free_obj(page, j) == i) {
4245 active = false;
4246 break;
4247 }
4248 }
4249
4250 if (!active)
871751e2 4251 continue;
b1cb0982 4252
d31676df
JK
4253 /*
4254 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4255 * mapping is established when actual object allocation and
4256 * we could mistakenly access the unmapped object in the cpu
4257 * cache.
4258 */
4259 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4260 continue;
4261
4262 if (!add_caller(n, v))
871751e2
AV
4263 return;
4264 }
4265}
4266
4267static void show_symbol(struct seq_file *m, unsigned long address)
4268{
4269#ifdef CONFIG_KALLSYMS
871751e2 4270 unsigned long offset, size;
9281acea 4271 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4272
a5c43dae 4273 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4274 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4275 if (modname[0])
871751e2
AV
4276 seq_printf(m, " [%s]", modname);
4277 return;
4278 }
4279#endif
85c3e4a5 4280 seq_printf(m, "%px", (void *)address);
871751e2
AV
4281}
4282
4283static int leaks_show(struct seq_file *m, void *p)
4284{
0672aa7c 4285 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4286 struct page *page;
ce8eb6c4 4287 struct kmem_cache_node *n;
871751e2 4288 const char *name;
db845067 4289 unsigned long *x = m->private;
871751e2
AV
4290 int node;
4291 int i;
4292
4293 if (!(cachep->flags & SLAB_STORE_USER))
4294 return 0;
4295 if (!(cachep->flags & SLAB_RED_ZONE))
4296 return 0;
4297
d31676df
JK
4298 /*
4299 * Set store_user_clean and start to grab stored user information
4300 * for all objects on this cache. If some alloc/free requests comes
4301 * during the processing, information would be wrong so restart
4302 * whole processing.
4303 */
4304 do {
4305 set_store_user_clean(cachep);
4306 drain_cpu_caches(cachep);
4307
4308 x[1] = 0;
871751e2 4309
d31676df 4310 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4311
d31676df
JK
4312 check_irq_on();
4313 spin_lock_irq(&n->list_lock);
871751e2 4314
d31676df
JK
4315 list_for_each_entry(page, &n->slabs_full, lru)
4316 handle_slab(x, cachep, page);
4317 list_for_each_entry(page, &n->slabs_partial, lru)
4318 handle_slab(x, cachep, page);
4319 spin_unlock_irq(&n->list_lock);
4320 }
4321 } while (!is_store_user_clean(cachep));
871751e2 4322
871751e2 4323 name = cachep->name;
db845067 4324 if (x[0] == x[1]) {
871751e2 4325 /* Increase the buffer size */
18004c5d 4326 mutex_unlock(&slab_mutex);
db845067 4327 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4328 if (!m->private) {
4329 /* Too bad, we are really out */
db845067 4330 m->private = x;
18004c5d 4331 mutex_lock(&slab_mutex);
871751e2
AV
4332 return -ENOMEM;
4333 }
db845067
CL
4334 *(unsigned long *)m->private = x[0] * 2;
4335 kfree(x);
18004c5d 4336 mutex_lock(&slab_mutex);
871751e2
AV
4337 /* Now make sure this entry will be retried */
4338 m->count = m->size;
4339 return 0;
4340 }
db845067
CL
4341 for (i = 0; i < x[1]; i++) {
4342 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4343 show_symbol(m, x[2*i+2]);
871751e2
AV
4344 seq_putc(m, '\n');
4345 }
d2e7b7d0 4346
871751e2
AV
4347 return 0;
4348}
4349
a0ec95a8 4350static const struct seq_operations slabstats_op = {
1df3b26f 4351 .start = slab_start,
276a2439
WL
4352 .next = slab_next,
4353 .stop = slab_stop,
871751e2
AV
4354 .show = leaks_show,
4355};
a0ec95a8
AD
4356
4357static int slabstats_open(struct inode *inode, struct file *file)
4358{
b208ce32
RJ
4359 unsigned long *n;
4360
4361 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4362 if (!n)
4363 return -ENOMEM;
4364
4365 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4366
4367 return 0;
a0ec95a8
AD
4368}
4369
4370static const struct file_operations proc_slabstats_operations = {
4371 .open = slabstats_open,
4372 .read = seq_read,
4373 .llseek = seq_lseek,
4374 .release = seq_release_private,
4375};
4376#endif
4377
4378static int __init slab_proc_init(void)
4379{
4380#ifdef CONFIG_DEBUG_SLAB_LEAK
4381 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4382#endif
a0ec95a8
AD
4383 return 0;
4384}
4385module_init(slab_proc_init);
1da177e4 4386
04385fc5
KC
4387#ifdef CONFIG_HARDENED_USERCOPY
4388/*
afcc90f8
KC
4389 * Rejects incorrectly sized objects and objects that are to be copied
4390 * to/from userspace but do not fall entirely within the containing slab
4391 * cache's usercopy region.
04385fc5
KC
4392 *
4393 * Returns NULL if check passes, otherwise const char * to name of cache
4394 * to indicate an error.
4395 */
f4e6e289
KC
4396void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4397 bool to_user)
04385fc5
KC
4398{
4399 struct kmem_cache *cachep;
4400 unsigned int objnr;
4401 unsigned long offset;
4402
4403 /* Find and validate object. */
4404 cachep = page->slab_cache;
4405 objnr = obj_to_index(cachep, page, (void *)ptr);
4406 BUG_ON(objnr >= cachep->num);
4407
4408 /* Find offset within object. */
4409 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4410
afcc90f8
KC
4411 /* Allow address range falling entirely within usercopy region. */
4412 if (offset >= cachep->useroffset &&
4413 offset - cachep->useroffset <= cachep->usersize &&
4414 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4415 return;
04385fc5 4416
afcc90f8
KC
4417 /*
4418 * If the copy is still within the allocated object, produce
4419 * a warning instead of rejecting the copy. This is intended
4420 * to be a temporary method to find any missing usercopy
4421 * whitelists.
4422 */
2d891fbc
KC
4423 if (usercopy_fallback &&
4424 offset <= cachep->object_size &&
afcc90f8
KC
4425 n <= cachep->object_size - offset) {
4426 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4427 return;
4428 }
04385fc5 4429
f4e6e289 4430 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4431}
4432#endif /* CONFIG_HARDENED_USERCOPY */
4433
00e145b6
MS
4434/**
4435 * ksize - get the actual amount of memory allocated for a given object
4436 * @objp: Pointer to the object
4437 *
4438 * kmalloc may internally round up allocations and return more memory
4439 * than requested. ksize() can be used to determine the actual amount of
4440 * memory allocated. The caller may use this additional memory, even though
4441 * a smaller amount of memory was initially specified with the kmalloc call.
4442 * The caller must guarantee that objp points to a valid object previously
4443 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4444 * must not be freed during the duration of the call.
4445 */
fd76bab2 4446size_t ksize(const void *objp)
1da177e4 4447{
7ed2f9e6
AP
4448 size_t size;
4449
ef8b4520
CL
4450 BUG_ON(!objp);
4451 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4452 return 0;
1da177e4 4453
7ed2f9e6
AP
4454 size = virt_to_cache(objp)->object_size;
4455 /* We assume that ksize callers could use the whole allocated area,
4456 * so we need to unpoison this area.
4457 */
4ebb31a4 4458 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4459
4460 return size;
1da177e4 4461}
b1aabecd 4462EXPORT_SYMBOL(ksize);