]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
rcu: delete __cpuinit usage from all rcu files
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
e498be7d
CL
288/*
289 * Need this for bootstrapping a per node allocator.
290 */
556a169d 291#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 292static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 293#define CACHE_CACHE 0
556a169d 294#define SIZE_AC MAX_NUMNODES
ce8eb6c4 295#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 296
ed11d9eb 297static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 298 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
299static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300 int node);
83b519e8 301static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 302static void cache_reap(struct work_struct *unused);
ed11d9eb 303
e0a42726
IM
304static int slab_early_init = 1;
305
e3366016 306#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 307#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 308
ce8eb6c4 309static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
310{
311 INIT_LIST_HEAD(&parent->slabs_full);
312 INIT_LIST_HEAD(&parent->slabs_partial);
313 INIT_LIST_HEAD(&parent->slabs_free);
314 parent->shared = NULL;
315 parent->alien = NULL;
2e1217cf 316 parent->colour_next = 0;
e498be7d
CL
317 spin_lock_init(&parent->list_lock);
318 parent->free_objects = 0;
319 parent->free_touched = 0;
320}
321
a737b3e2
AM
322#define MAKE_LIST(cachep, listp, slab, nodeid) \
323 do { \
324 INIT_LIST_HEAD(listp); \
6a67368c 325 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
326 } while (0)
327
a737b3e2
AM
328#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
329 do { \
e498be7d
CL
330 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
331 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
333 } while (0)
1da177e4 334
1da177e4
LT
335#define CFLGS_OFF_SLAB (0x80000000UL)
336#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
337
338#define BATCHREFILL_LIMIT 16
a737b3e2
AM
339/*
340 * Optimization question: fewer reaps means less probability for unnessary
341 * cpucache drain/refill cycles.
1da177e4 342 *
dc6f3f27 343 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
344 * which could lock up otherwise freeable slabs.
345 */
346#define REAPTIMEOUT_CPUC (2*HZ)
347#define REAPTIMEOUT_LIST3 (4*HZ)
348
349#if STATS
350#define STATS_INC_ACTIVE(x) ((x)->num_active++)
351#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
352#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
353#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 354#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
355#define STATS_SET_HIGH(x) \
356 do { \
357 if ((x)->num_active > (x)->high_mark) \
358 (x)->high_mark = (x)->num_active; \
359 } while (0)
1da177e4
LT
360#define STATS_INC_ERR(x) ((x)->errors++)
361#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 362#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 363#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
364#define STATS_SET_FREEABLE(x, i) \
365 do { \
366 if ((x)->max_freeable < i) \
367 (x)->max_freeable = i; \
368 } while (0)
1da177e4
LT
369#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
370#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
371#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
372#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
373#else
374#define STATS_INC_ACTIVE(x) do { } while (0)
375#define STATS_DEC_ACTIVE(x) do { } while (0)
376#define STATS_INC_ALLOCED(x) do { } while (0)
377#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 378#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
379#define STATS_SET_HIGH(x) do { } while (0)
380#define STATS_INC_ERR(x) do { } while (0)
381#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 382#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 383#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 384#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
385#define STATS_INC_ALLOCHIT(x) do { } while (0)
386#define STATS_INC_ALLOCMISS(x) do { } while (0)
387#define STATS_INC_FREEHIT(x) do { } while (0)
388#define STATS_INC_FREEMISS(x) do { } while (0)
389#endif
390
391#if DEBUG
1da177e4 392
a737b3e2
AM
393/*
394 * memory layout of objects:
1da177e4 395 * 0 : objp
3dafccf2 396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
397 * the end of an object is aligned with the end of the real
398 * allocation. Catches writes behind the end of the allocation.
3dafccf2 399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 400 * redzone word.
3dafccf2 401 * cachep->obj_offset: The real object.
3b0efdfa
CL
402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 404 * [BYTES_PER_WORD long]
1da177e4 405 */
343e0d7a 406static int obj_offset(struct kmem_cache *cachep)
1da177e4 407{
3dafccf2 408 return cachep->obj_offset;
1da177e4
LT
409}
410
b46b8f19 411static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
412{
413 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
414 return (unsigned long long*) (objp + obj_offset(cachep) -
415 sizeof(unsigned long long));
1da177e4
LT
416}
417
b46b8f19 418static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
419{
420 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 422 return (unsigned long long *)(objp + cachep->size -
b46b8f19 423 sizeof(unsigned long long) -
87a927c7 424 REDZONE_ALIGN);
3b0efdfa 425 return (unsigned long long *) (objp + cachep->size -
b46b8f19 426 sizeof(unsigned long long));
1da177e4
LT
427}
428
343e0d7a 429static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
430{
431 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 432 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
433}
434
435#else
436
3dafccf2 437#define obj_offset(x) 0
b46b8f19
DW
438#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
439#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
440#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
441
442#endif
443
1da177e4 444/*
3df1cccd
DR
445 * Do not go above this order unless 0 objects fit into the slab or
446 * overridden on the command line.
1da177e4 447 */
543585cc
DR
448#define SLAB_MAX_ORDER_HI 1
449#define SLAB_MAX_ORDER_LO 0
450static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 451static bool slab_max_order_set __initdata;
1da177e4 452
6ed5eb22
PE
453static inline struct kmem_cache *virt_to_cache(const void *obj)
454{
b49af68f 455 struct page *page = virt_to_head_page(obj);
35026088 456 return page->slab_cache;
6ed5eb22
PE
457}
458
459static inline struct slab *virt_to_slab(const void *obj)
460{
b49af68f 461 struct page *page = virt_to_head_page(obj);
35026088
CL
462
463 VM_BUG_ON(!PageSlab(page));
464 return page->slab_page;
6ed5eb22
PE
465}
466
8fea4e96
PE
467static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468 unsigned int idx)
469{
3b0efdfa 470 return slab->s_mem + cache->size * idx;
8fea4e96
PE
471}
472
6a2d7a95 473/*
3b0efdfa
CL
474 * We want to avoid an expensive divide : (offset / cache->size)
475 * Using the fact that size is a constant for a particular cache,
476 * we can replace (offset / cache->size) by
6a2d7a95
ED
477 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
478 */
479static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480 const struct slab *slab, void *obj)
8fea4e96 481{
6a2d7a95
ED
482 u32 offset = (obj - slab->s_mem);
483 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
484}
485
1da177e4 486static struct arraycache_init initarray_generic =
b28a02de 487 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
488
489/* internal cache of cache description objs */
9b030cb8 490static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
491 .batchcount = 1,
492 .limit = BOOT_CPUCACHE_ENTRIES,
493 .shared = 1,
3b0efdfa 494 .size = sizeof(struct kmem_cache),
b28a02de 495 .name = "kmem_cache",
1da177e4
LT
496};
497
056c6241
RT
498#define BAD_ALIEN_MAGIC 0x01020304ul
499
f1aaee53
AV
500#ifdef CONFIG_LOCKDEP
501
502/*
503 * Slab sometimes uses the kmalloc slabs to store the slab headers
504 * for other slabs "off slab".
505 * The locking for this is tricky in that it nests within the locks
506 * of all other slabs in a few places; to deal with this special
507 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
508 *
509 * We set lock class for alien array caches which are up during init.
510 * The lock annotation will be lost if all cpus of a node goes down and
511 * then comes back up during hotplug
f1aaee53 512 */
056c6241
RT
513static struct lock_class_key on_slab_l3_key;
514static struct lock_class_key on_slab_alc_key;
515
83835b3d
PZ
516static struct lock_class_key debugobj_l3_key;
517static struct lock_class_key debugobj_alc_key;
518
519static void slab_set_lock_classes(struct kmem_cache *cachep,
520 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521 int q)
522{
523 struct array_cache **alc;
ce8eb6c4 524 struct kmem_cache_node *n;
83835b3d
PZ
525 int r;
526
ce8eb6c4
CL
527 n = cachep->node[q];
528 if (!n)
83835b3d
PZ
529 return;
530
ce8eb6c4
CL
531 lockdep_set_class(&n->list_lock, l3_key);
532 alc = n->alien;
83835b3d
PZ
533 /*
534 * FIXME: This check for BAD_ALIEN_MAGIC
535 * should go away when common slab code is taught to
536 * work even without alien caches.
537 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538 * for alloc_alien_cache,
539 */
540 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541 return;
542 for_each_node(r) {
543 if (alc[r])
544 lockdep_set_class(&alc[r]->lock, alc_key);
545 }
546}
547
548static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
551}
552
553static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
554{
555 int node;
556
557 for_each_online_node(node)
558 slab_set_debugobj_lock_classes_node(cachep, node);
559}
560
ce79ddc8 561static void init_node_lock_keys(int q)
f1aaee53 562{
e3366016 563 int i;
056c6241 564
97d06609 565 if (slab_state < UP)
ce79ddc8
PE
566 return;
567
0f8f8094 568 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 569 struct kmem_cache_node *n;
e3366016
CL
570 struct kmem_cache *cache = kmalloc_caches[i];
571
572 if (!cache)
573 continue;
ce79ddc8 574
ce8eb6c4
CL
575 n = cache->node[q];
576 if (!n || OFF_SLAB(cache))
00afa758 577 continue;
83835b3d 578
e3366016 579 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 580 &on_slab_alc_key, q);
f1aaee53
AV
581 }
582}
ce79ddc8 583
6ccfb5bc
GC
584static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
585{
6a67368c 586 if (!cachep->node[q])
6ccfb5bc
GC
587 return;
588
589 slab_set_lock_classes(cachep, &on_slab_l3_key,
590 &on_slab_alc_key, q);
591}
592
593static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594{
595 int node;
596
597 VM_BUG_ON(OFF_SLAB(cachep));
598 for_each_node(node)
599 on_slab_lock_classes_node(cachep, node);
600}
601
ce79ddc8
PE
602static inline void init_lock_keys(void)
603{
604 int node;
605
606 for_each_node(node)
607 init_node_lock_keys(node);
608}
f1aaee53 609#else
ce79ddc8
PE
610static void init_node_lock_keys(int q)
611{
612}
613
056c6241 614static inline void init_lock_keys(void)
f1aaee53
AV
615{
616}
83835b3d 617
6ccfb5bc
GC
618static inline void on_slab_lock_classes(struct kmem_cache *cachep)
619{
620}
621
622static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
623{
624}
625
83835b3d
PZ
626static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
627{
628}
629
630static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
631{
632}
f1aaee53
AV
633#endif
634
1871e52c 635static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 636
343e0d7a 637static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
638{
639 return cachep->array[smp_processor_id()];
640}
641
fbaccacf 642static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 643{
fbaccacf
SR
644 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
645}
1da177e4 646
a737b3e2
AM
647/*
648 * Calculate the number of objects and left-over bytes for a given buffer size.
649 */
fbaccacf
SR
650static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651 size_t align, int flags, size_t *left_over,
652 unsigned int *num)
653{
654 int nr_objs;
655 size_t mgmt_size;
656 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 657
fbaccacf
SR
658 /*
659 * The slab management structure can be either off the slab or
660 * on it. For the latter case, the memory allocated for a
661 * slab is used for:
662 *
663 * - The struct slab
664 * - One kmem_bufctl_t for each object
665 * - Padding to respect alignment of @align
666 * - @buffer_size bytes for each object
667 *
668 * If the slab management structure is off the slab, then the
669 * alignment will already be calculated into the size. Because
670 * the slabs are all pages aligned, the objects will be at the
671 * correct alignment when allocated.
672 */
673 if (flags & CFLGS_OFF_SLAB) {
674 mgmt_size = 0;
675 nr_objs = slab_size / buffer_size;
676
677 if (nr_objs > SLAB_LIMIT)
678 nr_objs = SLAB_LIMIT;
679 } else {
680 /*
681 * Ignore padding for the initial guess. The padding
682 * is at most @align-1 bytes, and @buffer_size is at
683 * least @align. In the worst case, this result will
684 * be one greater than the number of objects that fit
685 * into the memory allocation when taking the padding
686 * into account.
687 */
688 nr_objs = (slab_size - sizeof(struct slab)) /
689 (buffer_size + sizeof(kmem_bufctl_t));
690
691 /*
692 * This calculated number will be either the right
693 * amount, or one greater than what we want.
694 */
695 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696 > slab_size)
697 nr_objs--;
698
699 if (nr_objs > SLAB_LIMIT)
700 nr_objs = SLAB_LIMIT;
701
702 mgmt_size = slab_mgmt_size(nr_objs, align);
703 }
704 *num = nr_objs;
705 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
706}
707
f28510d3 708#if DEBUG
d40cee24 709#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 710
a737b3e2
AM
711static void __slab_error(const char *function, struct kmem_cache *cachep,
712 char *msg)
1da177e4
LT
713{
714 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 715 function, cachep->name, msg);
1da177e4 716 dump_stack();
373d4d09 717 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 718}
f28510d3 719#endif
1da177e4 720
3395ee05
PM
721/*
722 * By default on NUMA we use alien caches to stage the freeing of
723 * objects allocated from other nodes. This causes massive memory
724 * inefficiencies when using fake NUMA setup to split memory into a
725 * large number of small nodes, so it can be disabled on the command
726 * line
727 */
728
729static int use_alien_caches __read_mostly = 1;
730static int __init noaliencache_setup(char *s)
731{
732 use_alien_caches = 0;
733 return 1;
734}
735__setup("noaliencache", noaliencache_setup);
736
3df1cccd
DR
737static int __init slab_max_order_setup(char *str)
738{
739 get_option(&str, &slab_max_order);
740 slab_max_order = slab_max_order < 0 ? 0 :
741 min(slab_max_order, MAX_ORDER - 1);
742 slab_max_order_set = true;
743
744 return 1;
745}
746__setup("slab_max_order=", slab_max_order_setup);
747
8fce4d8e
CL
748#ifdef CONFIG_NUMA
749/*
750 * Special reaping functions for NUMA systems called from cache_reap().
751 * These take care of doing round robin flushing of alien caches (containing
752 * objects freed on different nodes from which they were allocated) and the
753 * flushing of remote pcps by calling drain_node_pages.
754 */
1871e52c 755static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
756
757static void init_reap_node(int cpu)
758{
759 int node;
760
7d6e6d09 761 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 762 if (node == MAX_NUMNODES)
442295c9 763 node = first_node(node_online_map);
8fce4d8e 764
1871e52c 765 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
766}
767
768static void next_reap_node(void)
769{
909ea964 770 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 771
8fce4d8e
CL
772 node = next_node(node, node_online_map);
773 if (unlikely(node >= MAX_NUMNODES))
774 node = first_node(node_online_map);
909ea964 775 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
776}
777
778#else
779#define init_reap_node(cpu) do { } while (0)
780#define next_reap_node(void) do { } while (0)
781#endif
782
1da177e4
LT
783/*
784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
785 * via the workqueue/eventd.
786 * Add the CPU number into the expiration time to minimize the possibility of
787 * the CPUs getting into lockstep and contending for the global cache chain
788 * lock.
789 */
897e679b 790static void __cpuinit start_cpu_timer(int cpu)
1da177e4 791{
1871e52c 792 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
793
794 /*
795 * When this gets called from do_initcalls via cpucache_init(),
796 * init_workqueues() has already run, so keventd will be setup
797 * at that time.
798 */
52bad64d 799 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 800 init_reap_node(cpu);
203b42f7 801 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
802 schedule_delayed_work_on(cpu, reap_work,
803 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
804 }
805}
806
e498be7d 807static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 808 int batchcount, gfp_t gfp)
1da177e4 809{
b28a02de 810 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
811 struct array_cache *nc = NULL;
812
83b519e8 813 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
814 /*
815 * The array_cache structures contain pointers to free object.
25985edc 816 * However, when such objects are allocated or transferred to another
d5cff635
CM
817 * cache the pointers are not cleared and they could be counted as
818 * valid references during a kmemleak scan. Therefore, kmemleak must
819 * not scan such objects.
820 */
821 kmemleak_no_scan(nc);
1da177e4
LT
822 if (nc) {
823 nc->avail = 0;
824 nc->limit = entries;
825 nc->batchcount = batchcount;
826 nc->touched = 0;
e498be7d 827 spin_lock_init(&nc->lock);
1da177e4
LT
828 }
829 return nc;
830}
831
072bb0aa
MG
832static inline bool is_slab_pfmemalloc(struct slab *slabp)
833{
834 struct page *page = virt_to_page(slabp->s_mem);
835
836 return PageSlabPfmemalloc(page);
837}
838
839/* Clears pfmemalloc_active if no slabs have pfmalloc set */
840static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841 struct array_cache *ac)
842{
ce8eb6c4 843 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
072bb0aa
MG
844 struct slab *slabp;
845 unsigned long flags;
846
847 if (!pfmemalloc_active)
848 return;
849
ce8eb6c4
CL
850 spin_lock_irqsave(&n->list_lock, flags);
851 list_for_each_entry(slabp, &n->slabs_full, list)
072bb0aa
MG
852 if (is_slab_pfmemalloc(slabp))
853 goto out;
854
ce8eb6c4 855 list_for_each_entry(slabp, &n->slabs_partial, list)
072bb0aa
MG
856 if (is_slab_pfmemalloc(slabp))
857 goto out;
858
ce8eb6c4 859 list_for_each_entry(slabp, &n->slabs_free, list)
072bb0aa
MG
860 if (is_slab_pfmemalloc(slabp))
861 goto out;
862
863 pfmemalloc_active = false;
864out:
ce8eb6c4 865 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
866}
867
381760ea 868static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
869 gfp_t flags, bool force_refill)
870{
871 int i;
872 void *objp = ac->entry[--ac->avail];
873
874 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 876 struct kmem_cache_node *n;
072bb0aa
MG
877
878 if (gfp_pfmemalloc_allowed(flags)) {
879 clear_obj_pfmemalloc(&objp);
880 return objp;
881 }
882
883 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 884 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
885 /* If a !PFMEMALLOC object is found, swap them */
886 if (!is_obj_pfmemalloc(ac->entry[i])) {
887 objp = ac->entry[i];
888 ac->entry[i] = ac->entry[ac->avail];
889 ac->entry[ac->avail] = objp;
890 return objp;
891 }
892 }
893
894 /*
895 * If there are empty slabs on the slabs_free list and we are
896 * being forced to refill the cache, mark this one !pfmemalloc.
897 */
ce8eb6c4
CL
898 n = cachep->node[numa_mem_id()];
899 if (!list_empty(&n->slabs_free) && force_refill) {
072bb0aa 900 struct slab *slabp = virt_to_slab(objp);
30c29bea 901 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
902 clear_obj_pfmemalloc(&objp);
903 recheck_pfmemalloc_active(cachep, ac);
904 return objp;
905 }
906
907 /* No !PFMEMALLOC objects available */
908 ac->avail++;
909 objp = NULL;
910 }
911
912 return objp;
913}
914
381760ea
MG
915static inline void *ac_get_obj(struct kmem_cache *cachep,
916 struct array_cache *ac, gfp_t flags, bool force_refill)
917{
918 void *objp;
919
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_get_obj(cachep, ac, flags, force_refill);
922 else
923 objp = ac->entry[--ac->avail];
924
925 return objp;
926}
927
928static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
929 void *objp)
930{
931 if (unlikely(pfmemalloc_active)) {
932 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 933 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
934 if (PageSlabPfmemalloc(page))
935 set_obj_pfmemalloc(&objp);
936 }
937
381760ea
MG
938 return objp;
939}
940
941static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 void *objp)
943{
944 if (unlikely(sk_memalloc_socks()))
945 objp = __ac_put_obj(cachep, ac, objp);
946
072bb0aa
MG
947 ac->entry[ac->avail++] = objp;
948}
949
3ded175a
CL
950/*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958{
959 /* Figure out how many entries to transfer */
732eacc0 960 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
3ded175a
CL
970 return nr;
971}
972
765c4507
CL
973#ifndef CONFIG_NUMA
974
975#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 976#define reap_alien(cachep, n) do { } while (0)
765c4507 977
83b519e8 978static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
979{
980 return (struct array_cache **)BAD_ALIEN_MAGIC;
981}
982
983static inline void free_alien_cache(struct array_cache **ac_ptr)
984{
985}
986
987static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988{
989 return 0;
990}
991
992static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993 gfp_t flags)
994{
995 return NULL;
996}
997
8b98c169 998static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
999 gfp_t flags, int nodeid)
1000{
1001 return NULL;
1002}
1003
1004#else /* CONFIG_NUMA */
1005
8b98c169 1006static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1007static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1008
83b519e8 1009static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1010{
1011 struct array_cache **ac_ptr;
8ef82866 1012 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1013 int i;
1014
1015 if (limit > 1)
1016 limit = 12;
f3186a9c 1017 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1018 if (ac_ptr) {
1019 for_each_node(i) {
f3186a9c 1020 if (i == node || !node_online(i))
e498be7d 1021 continue;
83b519e8 1022 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1023 if (!ac_ptr[i]) {
cc550def 1024 for (i--; i >= 0; i--)
e498be7d
CL
1025 kfree(ac_ptr[i]);
1026 kfree(ac_ptr);
1027 return NULL;
1028 }
1029 }
1030 }
1031 return ac_ptr;
1032}
1033
5295a74c 1034static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1035{
1036 int i;
1037
1038 if (!ac_ptr)
1039 return;
e498be7d 1040 for_each_node(i)
b28a02de 1041 kfree(ac_ptr[i]);
e498be7d
CL
1042 kfree(ac_ptr);
1043}
1044
343e0d7a 1045static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1046 struct array_cache *ac, int node)
e498be7d 1047{
ce8eb6c4 1048 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
1049
1050 if (ac->avail) {
ce8eb6c4 1051 spin_lock(&n->list_lock);
e00946fe
CL
1052 /*
1053 * Stuff objects into the remote nodes shared array first.
1054 * That way we could avoid the overhead of putting the objects
1055 * into the free lists and getting them back later.
1056 */
ce8eb6c4
CL
1057 if (n->shared)
1058 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1059
ff69416e 1060 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1061 ac->avail = 0;
ce8eb6c4 1062 spin_unlock(&n->list_lock);
e498be7d
CL
1063 }
1064}
1065
8fce4d8e
CL
1066/*
1067 * Called from cache_reap() to regularly drain alien caches round robin.
1068 */
ce8eb6c4 1069static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1070{
909ea964 1071 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1072
ce8eb6c4
CL
1073 if (n->alien) {
1074 struct array_cache *ac = n->alien[node];
e00946fe
CL
1075
1076 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1077 __drain_alien_cache(cachep, ac, node);
1078 spin_unlock_irq(&ac->lock);
1079 }
1080 }
1081}
1082
a737b3e2
AM
1083static void drain_alien_cache(struct kmem_cache *cachep,
1084 struct array_cache **alien)
e498be7d 1085{
b28a02de 1086 int i = 0;
e498be7d
CL
1087 struct array_cache *ac;
1088 unsigned long flags;
1089
1090 for_each_online_node(i) {
4484ebf1 1091 ac = alien[i];
e498be7d
CL
1092 if (ac) {
1093 spin_lock_irqsave(&ac->lock, flags);
1094 __drain_alien_cache(cachep, ac, i);
1095 spin_unlock_irqrestore(&ac->lock, flags);
1096 }
1097 }
1098}
729bd0b7 1099
873623df 1100static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1101{
1102 struct slab *slabp = virt_to_slab(objp);
1103 int nodeid = slabp->nodeid;
ce8eb6c4 1104 struct kmem_cache_node *n;
729bd0b7 1105 struct array_cache *alien = NULL;
1ca4cb24
PE
1106 int node;
1107
7d6e6d09 1108 node = numa_mem_id();
729bd0b7
PE
1109
1110 /*
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1113 */
62918a03 1114 if (likely(slabp->nodeid == node))
729bd0b7
PE
1115 return 0;
1116
ce8eb6c4 1117 n = cachep->node[node];
729bd0b7 1118 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1119 if (n->alien && n->alien[nodeid]) {
1120 alien = n->alien[nodeid];
873623df 1121 spin_lock(&alien->lock);
729bd0b7
PE
1122 if (unlikely(alien->avail == alien->limit)) {
1123 STATS_INC_ACOVERFLOW(cachep);
1124 __drain_alien_cache(cachep, alien, nodeid);
1125 }
072bb0aa 1126 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1127 spin_unlock(&alien->lock);
1128 } else {
6a67368c 1129 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1130 free_block(cachep, &objp, 1, nodeid);
6a67368c 1131 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1132 }
1133 return 1;
1134}
e498be7d
CL
1135#endif
1136
8f9f8d9e 1137/*
6a67368c 1138 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1140 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1141 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1142 * already in use.
1143 *
18004c5d 1144 * Must hold slab_mutex.
8f9f8d9e 1145 */
6a67368c 1146static int init_cache_node_node(int node)
8f9f8d9e
DR
1147{
1148 struct kmem_cache *cachep;
ce8eb6c4 1149 struct kmem_cache_node *n;
6744f087 1150 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1151
18004c5d 1152 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1153 /*
1154 * Set up the size64 kmemlist for cpu before we can
1155 * begin anything. Make sure some other cpu on this
1156 * node has not already allocated this
1157 */
6a67368c 1158 if (!cachep->node[node]) {
ce8eb6c4
CL
1159 n = kmalloc_node(memsize, GFP_KERNEL, node);
1160 if (!n)
8f9f8d9e 1161 return -ENOMEM;
ce8eb6c4
CL
1162 kmem_cache_node_init(n);
1163 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1164 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1165
1166 /*
1167 * The l3s don't come and go as CPUs come and
18004c5d 1168 * go. slab_mutex is sufficient
8f9f8d9e
DR
1169 * protection here.
1170 */
ce8eb6c4 1171 cachep->node[node] = n;
8f9f8d9e
DR
1172 }
1173
6a67368c
CL
1174 spin_lock_irq(&cachep->node[node]->list_lock);
1175 cachep->node[node]->free_limit =
8f9f8d9e
DR
1176 (1 + nr_cpus_node(node)) *
1177 cachep->batchcount + cachep->num;
6a67368c 1178 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1179 }
1180 return 0;
1181}
1182
0fa8103b
WL
1183static inline int slabs_tofree(struct kmem_cache *cachep,
1184 struct kmem_cache_node *n)
1185{
1186 return (n->free_objects + cachep->num - 1) / cachep->num;
1187}
1188
fbf1e473
AM
1189static void __cpuinit cpuup_canceled(long cpu)
1190{
1191 struct kmem_cache *cachep;
ce8eb6c4 1192 struct kmem_cache_node *n = NULL;
7d6e6d09 1193 int node = cpu_to_mem(cpu);
a70f7302 1194 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1195
18004c5d 1196 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1197 struct array_cache *nc;
1198 struct array_cache *shared;
1199 struct array_cache **alien;
fbf1e473 1200
fbf1e473
AM
1201 /* cpu is dead; no one can alloc from it. */
1202 nc = cachep->array[cpu];
1203 cachep->array[cpu] = NULL;
ce8eb6c4 1204 n = cachep->node[node];
fbf1e473 1205
ce8eb6c4 1206 if (!n)
fbf1e473
AM
1207 goto free_array_cache;
1208
ce8eb6c4 1209 spin_lock_irq(&n->list_lock);
fbf1e473 1210
ce8eb6c4
CL
1211 /* Free limit for this kmem_cache_node */
1212 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1213 if (nc)
1214 free_block(cachep, nc->entry, nc->avail, node);
1215
58463c1f 1216 if (!cpumask_empty(mask)) {
ce8eb6c4 1217 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1218 goto free_array_cache;
1219 }
1220
ce8eb6c4 1221 shared = n->shared;
fbf1e473
AM
1222 if (shared) {
1223 free_block(cachep, shared->entry,
1224 shared->avail, node);
ce8eb6c4 1225 n->shared = NULL;
fbf1e473
AM
1226 }
1227
ce8eb6c4
CL
1228 alien = n->alien;
1229 n->alien = NULL;
fbf1e473 1230
ce8eb6c4 1231 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1232
1233 kfree(shared);
1234 if (alien) {
1235 drain_alien_cache(cachep, alien);
1236 free_alien_cache(alien);
1237 }
1238free_array_cache:
1239 kfree(nc);
1240 }
1241 /*
1242 * In the previous loop, all the objects were freed to
1243 * the respective cache's slabs, now we can go ahead and
1244 * shrink each nodelist to its limit.
1245 */
18004c5d 1246 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1247 n = cachep->node[node];
1248 if (!n)
fbf1e473 1249 continue;
0fa8103b 1250 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1251 }
1252}
1253
1254static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1255{
343e0d7a 1256 struct kmem_cache *cachep;
ce8eb6c4 1257 struct kmem_cache_node *n = NULL;
7d6e6d09 1258 int node = cpu_to_mem(cpu);
8f9f8d9e 1259 int err;
1da177e4 1260
fbf1e473
AM
1261 /*
1262 * We need to do this right in the beginning since
1263 * alloc_arraycache's are going to use this list.
1264 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1265 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1266 */
6a67368c 1267 err = init_cache_node_node(node);
8f9f8d9e
DR
1268 if (err < 0)
1269 goto bad;
fbf1e473
AM
1270
1271 /*
1272 * Now we can go ahead with allocating the shared arrays and
1273 * array caches
1274 */
18004c5d 1275 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1276 struct array_cache *nc;
1277 struct array_cache *shared = NULL;
1278 struct array_cache **alien = NULL;
1279
1280 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1281 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1282 if (!nc)
1283 goto bad;
1284 if (cachep->shared) {
1285 shared = alloc_arraycache(node,
1286 cachep->shared * cachep->batchcount,
83b519e8 1287 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1288 if (!shared) {
1289 kfree(nc);
1da177e4 1290 goto bad;
12d00f6a 1291 }
fbf1e473
AM
1292 }
1293 if (use_alien_caches) {
83b519e8 1294 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1295 if (!alien) {
1296 kfree(shared);
1297 kfree(nc);
fbf1e473 1298 goto bad;
12d00f6a 1299 }
fbf1e473
AM
1300 }
1301 cachep->array[cpu] = nc;
ce8eb6c4
CL
1302 n = cachep->node[node];
1303 BUG_ON(!n);
fbf1e473 1304
ce8eb6c4
CL
1305 spin_lock_irq(&n->list_lock);
1306 if (!n->shared) {
fbf1e473
AM
1307 /*
1308 * We are serialised from CPU_DEAD or
1309 * CPU_UP_CANCELLED by the cpucontrol lock
1310 */
ce8eb6c4 1311 n->shared = shared;
fbf1e473
AM
1312 shared = NULL;
1313 }
4484ebf1 1314#ifdef CONFIG_NUMA
ce8eb6c4
CL
1315 if (!n->alien) {
1316 n->alien = alien;
fbf1e473 1317 alien = NULL;
1da177e4 1318 }
fbf1e473 1319#endif
ce8eb6c4 1320 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1321 kfree(shared);
1322 free_alien_cache(alien);
83835b3d
PZ
1323 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1324 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1325 else if (!OFF_SLAB(cachep) &&
1326 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1327 on_slab_lock_classes_node(cachep, node);
fbf1e473 1328 }
ce79ddc8
PE
1329 init_node_lock_keys(node);
1330
fbf1e473
AM
1331 return 0;
1332bad:
12d00f6a 1333 cpuup_canceled(cpu);
fbf1e473
AM
1334 return -ENOMEM;
1335}
1336
1337static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1338 unsigned long action, void *hcpu)
1339{
1340 long cpu = (long)hcpu;
1341 int err = 0;
1342
1343 switch (action) {
fbf1e473
AM
1344 case CPU_UP_PREPARE:
1345 case CPU_UP_PREPARE_FROZEN:
18004c5d 1346 mutex_lock(&slab_mutex);
fbf1e473 1347 err = cpuup_prepare(cpu);
18004c5d 1348 mutex_unlock(&slab_mutex);
1da177e4
LT
1349 break;
1350 case CPU_ONLINE:
8bb78442 1351 case CPU_ONLINE_FROZEN:
1da177e4
LT
1352 start_cpu_timer(cpu);
1353 break;
1354#ifdef CONFIG_HOTPLUG_CPU
5830c590 1355 case CPU_DOWN_PREPARE:
8bb78442 1356 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1357 /*
18004c5d 1358 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1359 * held so that if cache_reap() is invoked it cannot do
1360 * anything expensive but will only modify reap_work
1361 * and reschedule the timer.
1362 */
afe2c511 1363 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1364 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1365 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1366 break;
1367 case CPU_DOWN_FAILED:
8bb78442 1368 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1369 start_cpu_timer(cpu);
1370 break;
1da177e4 1371 case CPU_DEAD:
8bb78442 1372 case CPU_DEAD_FROZEN:
4484ebf1
RT
1373 /*
1374 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1375 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1376 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1377 * memory from the node of the cpu going down. The node
4484ebf1
RT
1378 * structure is usually allocated from kmem_cache_create() and
1379 * gets destroyed at kmem_cache_destroy().
1380 */
183ff22b 1381 /* fall through */
8f5be20b 1382#endif
1da177e4 1383 case CPU_UP_CANCELED:
8bb78442 1384 case CPU_UP_CANCELED_FROZEN:
18004c5d 1385 mutex_lock(&slab_mutex);
fbf1e473 1386 cpuup_canceled(cpu);
18004c5d 1387 mutex_unlock(&slab_mutex);
1da177e4 1388 break;
1da177e4 1389 }
eac40680 1390 return notifier_from_errno(err);
1da177e4
LT
1391}
1392
74b85f37
CS
1393static struct notifier_block __cpuinitdata cpucache_notifier = {
1394 &cpuup_callback, NULL, 0
1395};
1da177e4 1396
8f9f8d9e
DR
1397#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1398/*
1399 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1400 * Returns -EBUSY if all objects cannot be drained so that the node is not
1401 * removed.
1402 *
18004c5d 1403 * Must hold slab_mutex.
8f9f8d9e 1404 */
6a67368c 1405static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1406{
1407 struct kmem_cache *cachep;
1408 int ret = 0;
1409
18004c5d 1410 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1411 struct kmem_cache_node *n;
8f9f8d9e 1412
ce8eb6c4
CL
1413 n = cachep->node[node];
1414 if (!n)
8f9f8d9e
DR
1415 continue;
1416
0fa8103b 1417 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1418
ce8eb6c4
CL
1419 if (!list_empty(&n->slabs_full) ||
1420 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1421 ret = -EBUSY;
1422 break;
1423 }
1424 }
1425 return ret;
1426}
1427
1428static int __meminit slab_memory_callback(struct notifier_block *self,
1429 unsigned long action, void *arg)
1430{
1431 struct memory_notify *mnb = arg;
1432 int ret = 0;
1433 int nid;
1434
1435 nid = mnb->status_change_nid;
1436 if (nid < 0)
1437 goto out;
1438
1439 switch (action) {
1440 case MEM_GOING_ONLINE:
18004c5d 1441 mutex_lock(&slab_mutex);
6a67368c 1442 ret = init_cache_node_node(nid);
18004c5d 1443 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1444 break;
1445 case MEM_GOING_OFFLINE:
18004c5d 1446 mutex_lock(&slab_mutex);
6a67368c 1447 ret = drain_cache_node_node(nid);
18004c5d 1448 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1449 break;
1450 case MEM_ONLINE:
1451 case MEM_OFFLINE:
1452 case MEM_CANCEL_ONLINE:
1453 case MEM_CANCEL_OFFLINE:
1454 break;
1455 }
1456out:
5fda1bd5 1457 return notifier_from_errno(ret);
8f9f8d9e
DR
1458}
1459#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1460
e498be7d 1461/*
ce8eb6c4 1462 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1463 */
6744f087 1464static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1465 int nodeid)
e498be7d 1466{
6744f087 1467 struct kmem_cache_node *ptr;
e498be7d 1468
6744f087 1469 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1470 BUG_ON(!ptr);
1471
6744f087 1472 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1473 /*
1474 * Do not assume that spinlocks can be initialized via memcpy:
1475 */
1476 spin_lock_init(&ptr->list_lock);
1477
e498be7d 1478 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1479 cachep->node[nodeid] = ptr;
e498be7d
CL
1480}
1481
556a169d 1482/*
ce8eb6c4
CL
1483 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1484 * size of kmem_cache_node.
556a169d 1485 */
ce8eb6c4 1486static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1487{
1488 int node;
1489
1490 for_each_online_node(node) {
ce8eb6c4 1491 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1492 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1493 REAPTIMEOUT_LIST3 +
1494 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1495 }
1496}
1497
3c583465
CL
1498/*
1499 * The memory after the last cpu cache pointer is used for the
6a67368c 1500 * the node pointer.
3c583465 1501 */
6a67368c 1502static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1503{
6a67368c 1504 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1505}
1506
a737b3e2
AM
1507/*
1508 * Initialisation. Called after the page allocator have been initialised and
1509 * before smp_init().
1da177e4
LT
1510 */
1511void __init kmem_cache_init(void)
1512{
e498be7d
CL
1513 int i;
1514
9b030cb8 1515 kmem_cache = &kmem_cache_boot;
6a67368c 1516 setup_node_pointer(kmem_cache);
9b030cb8 1517
b6e68bc1 1518 if (num_possible_nodes() == 1)
62918a03
SS
1519 use_alien_caches = 0;
1520
3c583465 1521 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1522 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1523
ce8eb6c4 1524 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1525
1526 /*
1527 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1528 * page orders on machines with more than 32MB of memory if
1529 * not overridden on the command line.
1da177e4 1530 */
3df1cccd 1531 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1532 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1533
1da177e4
LT
1534 /* Bootstrap is tricky, because several objects are allocated
1535 * from caches that do not exist yet:
9b030cb8
CL
1536 * 1) initialize the kmem_cache cache: it contains the struct
1537 * kmem_cache structures of all caches, except kmem_cache itself:
1538 * kmem_cache is statically allocated.
e498be7d 1539 * Initially an __init data area is used for the head array and the
ce8eb6c4 1540 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1541 * array at the end of the bootstrap.
1da177e4 1542 * 2) Create the first kmalloc cache.
343e0d7a 1543 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1544 * An __init data area is used for the head array.
1545 * 3) Create the remaining kmalloc caches, with minimally sized
1546 * head arrays.
9b030cb8 1547 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1548 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1549 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1550 * the other cache's with kmalloc allocated memory.
1551 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1552 */
1553
9b030cb8 1554 /* 1) create the kmem_cache */
1da177e4 1555
8da3430d 1556 /*
b56efcf0 1557 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1558 */
2f9baa9f
CL
1559 create_boot_cache(kmem_cache, "kmem_cache",
1560 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1561 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1562 SLAB_HWCACHE_ALIGN);
1563 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1564
1565 /* 2+3) create the kmalloc caches */
1da177e4 1566
a737b3e2
AM
1567 /*
1568 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1569 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1570 * bug.
e498be7d
CL
1571 */
1572
e3366016
CL
1573 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1574 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1575
ce8eb6c4
CL
1576 if (INDEX_AC != INDEX_NODE)
1577 kmalloc_caches[INDEX_NODE] =
1578 create_kmalloc_cache("kmalloc-node",
1579 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1580
e0a42726
IM
1581 slab_early_init = 0;
1582
1da177e4
LT
1583 /* 4) Replace the bootstrap head arrays */
1584 {
2b2d5493 1585 struct array_cache *ptr;
e498be7d 1586
83b519e8 1587 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1588
9b030cb8 1589 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1590 sizeof(struct arraycache_init));
2b2d5493
IM
1591 /*
1592 * Do not assume that spinlocks can be initialized via memcpy:
1593 */
1594 spin_lock_init(&ptr->lock);
1595
9b030cb8 1596 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1597
83b519e8 1598 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1599
e3366016 1600 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1601 != &initarray_generic.cache);
e3366016 1602 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1603 sizeof(struct arraycache_init));
2b2d5493
IM
1604 /*
1605 * Do not assume that spinlocks can be initialized via memcpy:
1606 */
1607 spin_lock_init(&ptr->lock);
1608
e3366016 1609 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1610 }
ce8eb6c4 1611 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1612 {
1ca4cb24
PE
1613 int nid;
1614
9c09a95c 1615 for_each_online_node(nid) {
ce8eb6c4 1616 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1617
e3366016 1618 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1619 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1620
ce8eb6c4
CL
1621 if (INDEX_AC != INDEX_NODE) {
1622 init_list(kmalloc_caches[INDEX_NODE],
1623 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1624 }
1625 }
1626 }
1da177e4 1627
f97d5f63 1628 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1629}
1630
1631void __init kmem_cache_init_late(void)
1632{
1633 struct kmem_cache *cachep;
1634
97d06609 1635 slab_state = UP;
52cef189 1636
8429db5c 1637 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1638 mutex_lock(&slab_mutex);
1639 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1640 if (enable_cpucache(cachep, GFP_NOWAIT))
1641 BUG();
18004c5d 1642 mutex_unlock(&slab_mutex);
056c6241 1643
947ca185
MW
1644 /* Annotate slab for lockdep -- annotate the malloc caches */
1645 init_lock_keys();
1646
97d06609
CL
1647 /* Done! */
1648 slab_state = FULL;
1649
a737b3e2
AM
1650 /*
1651 * Register a cpu startup notifier callback that initializes
1652 * cpu_cache_get for all new cpus
1da177e4
LT
1653 */
1654 register_cpu_notifier(&cpucache_notifier);
1da177e4 1655
8f9f8d9e
DR
1656#ifdef CONFIG_NUMA
1657 /*
1658 * Register a memory hotplug callback that initializes and frees
6a67368c 1659 * node.
8f9f8d9e
DR
1660 */
1661 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1662#endif
1663
a737b3e2
AM
1664 /*
1665 * The reap timers are started later, with a module init call: That part
1666 * of the kernel is not yet operational.
1da177e4
LT
1667 */
1668}
1669
1670static int __init cpucache_init(void)
1671{
1672 int cpu;
1673
a737b3e2
AM
1674 /*
1675 * Register the timers that return unneeded pages to the page allocator
1da177e4 1676 */
e498be7d 1677 for_each_online_cpu(cpu)
a737b3e2 1678 start_cpu_timer(cpu);
a164f896
GC
1679
1680 /* Done! */
97d06609 1681 slab_state = FULL;
1da177e4
LT
1682 return 0;
1683}
1da177e4
LT
1684__initcall(cpucache_init);
1685
8bdec192
RA
1686static noinline void
1687slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1688{
ce8eb6c4 1689 struct kmem_cache_node *n;
8bdec192
RA
1690 struct slab *slabp;
1691 unsigned long flags;
1692 int node;
1693
1694 printk(KERN_WARNING
1695 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1696 nodeid, gfpflags);
1697 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1698 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1699
1700 for_each_online_node(node) {
1701 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1702 unsigned long active_slabs = 0, num_slabs = 0;
1703
ce8eb6c4
CL
1704 n = cachep->node[node];
1705 if (!n)
8bdec192
RA
1706 continue;
1707
ce8eb6c4
CL
1708 spin_lock_irqsave(&n->list_lock, flags);
1709 list_for_each_entry(slabp, &n->slabs_full, list) {
8bdec192
RA
1710 active_objs += cachep->num;
1711 active_slabs++;
1712 }
ce8eb6c4 1713 list_for_each_entry(slabp, &n->slabs_partial, list) {
8bdec192
RA
1714 active_objs += slabp->inuse;
1715 active_slabs++;
1716 }
ce8eb6c4 1717 list_for_each_entry(slabp, &n->slabs_free, list)
8bdec192
RA
1718 num_slabs++;
1719
ce8eb6c4
CL
1720 free_objects += n->free_objects;
1721 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1722
1723 num_slabs += active_slabs;
1724 num_objs = num_slabs * cachep->num;
1725 printk(KERN_WARNING
1726 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1727 node, active_slabs, num_slabs, active_objs, num_objs,
1728 free_objects);
1729 }
1730}
1731
1da177e4
LT
1732/*
1733 * Interface to system's page allocator. No need to hold the cache-lock.
1734 *
1735 * If we requested dmaable memory, we will get it. Even if we
1736 * did not request dmaable memory, we might get it, but that
1737 * would be relatively rare and ignorable.
1738 */
343e0d7a 1739static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1740{
1741 struct page *page;
e1b6aa6f 1742 int nr_pages;
1da177e4
LT
1743 int i;
1744
d6fef9da 1745#ifndef CONFIG_MMU
e1b6aa6f
CH
1746 /*
1747 * Nommu uses slab's for process anonymous memory allocations, and thus
1748 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1749 */
e1b6aa6f 1750 flags |= __GFP_COMP;
d6fef9da 1751#endif
765c4507 1752
a618e89f 1753 flags |= cachep->allocflags;
e12ba74d
MG
1754 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1755 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1756
517d0869 1757 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1758 if (!page) {
1759 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1760 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1761 return NULL;
8bdec192 1762 }
1da177e4 1763
b37f1dd0 1764 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1765 if (unlikely(page->pfmemalloc))
1766 pfmemalloc_active = true;
1767
e1b6aa6f 1768 nr_pages = (1 << cachep->gfporder);
1da177e4 1769 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1770 add_zone_page_state(page_zone(page),
1771 NR_SLAB_RECLAIMABLE, nr_pages);
1772 else
1773 add_zone_page_state(page_zone(page),
1774 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1775 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1776 __SetPageSlab(page + i);
c175eea4 1777
072bb0aa
MG
1778 if (page->pfmemalloc)
1779 SetPageSlabPfmemalloc(page + i);
1780 }
1f458cbf 1781 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1782
b1eeab67
VN
1783 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1784 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1785
1786 if (cachep->ctor)
1787 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1788 else
1789 kmemcheck_mark_unallocated_pages(page, nr_pages);
1790 }
c175eea4 1791
e1b6aa6f 1792 return page_address(page);
1da177e4
LT
1793}
1794
1795/*
1796 * Interface to system's page release.
1797 */
343e0d7a 1798static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1799{
b28a02de 1800 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1801 struct page *page = virt_to_page(addr);
1802 const unsigned long nr_freed = i;
1803
b1eeab67 1804 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1805
972d1a7b
CL
1806 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1807 sub_zone_page_state(page_zone(page),
1808 NR_SLAB_RECLAIMABLE, nr_freed);
1809 else
1810 sub_zone_page_state(page_zone(page),
1811 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1812 while (i--) {
f205b2fe 1813 BUG_ON(!PageSlab(page));
072bb0aa 1814 __ClearPageSlabPfmemalloc(page);
f205b2fe 1815 __ClearPageSlab(page);
1da177e4
LT
1816 page++;
1817 }
1f458cbf
GC
1818
1819 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1820 if (current->reclaim_state)
1821 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1822 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1823}
1824
1825static void kmem_rcu_free(struct rcu_head *head)
1826{
b28a02de 1827 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1828 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1829
1830 kmem_freepages(cachep, slab_rcu->addr);
1831 if (OFF_SLAB(cachep))
1832 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1833}
1834
1835#if DEBUG
1836
1837#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1838static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1839 unsigned long caller)
1da177e4 1840{
8c138bc0 1841 int size = cachep->object_size;
1da177e4 1842
3dafccf2 1843 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1844
b28a02de 1845 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1846 return;
1847
b28a02de
PE
1848 *addr++ = 0x12345678;
1849 *addr++ = caller;
1850 *addr++ = smp_processor_id();
1851 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1852 {
1853 unsigned long *sptr = &caller;
1854 unsigned long svalue;
1855
1856 while (!kstack_end(sptr)) {
1857 svalue = *sptr++;
1858 if (kernel_text_address(svalue)) {
b28a02de 1859 *addr++ = svalue;
1da177e4
LT
1860 size -= sizeof(unsigned long);
1861 if (size <= sizeof(unsigned long))
1862 break;
1863 }
1864 }
1865
1866 }
b28a02de 1867 *addr++ = 0x87654321;
1da177e4
LT
1868}
1869#endif
1870
343e0d7a 1871static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1872{
8c138bc0 1873 int size = cachep->object_size;
3dafccf2 1874 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1875
1876 memset(addr, val, size);
b28a02de 1877 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1878}
1879
1880static void dump_line(char *data, int offset, int limit)
1881{
1882 int i;
aa83aa40
DJ
1883 unsigned char error = 0;
1884 int bad_count = 0;
1885
fdde6abb 1886 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1887 for (i = 0; i < limit; i++) {
1888 if (data[offset + i] != POISON_FREE) {
1889 error = data[offset + i];
1890 bad_count++;
1891 }
aa83aa40 1892 }
fdde6abb
SAS
1893 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1894 &data[offset], limit, 1);
aa83aa40
DJ
1895
1896 if (bad_count == 1) {
1897 error ^= POISON_FREE;
1898 if (!(error & (error - 1))) {
1899 printk(KERN_ERR "Single bit error detected. Probably "
1900 "bad RAM.\n");
1901#ifdef CONFIG_X86
1902 printk(KERN_ERR "Run memtest86+ or a similar memory "
1903 "test tool.\n");
1904#else
1905 printk(KERN_ERR "Run a memory test tool.\n");
1906#endif
1907 }
1908 }
1da177e4
LT
1909}
1910#endif
1911
1912#if DEBUG
1913
343e0d7a 1914static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1915{
1916 int i, size;
1917 char *realobj;
1918
1919 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1920 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1921 *dbg_redzone1(cachep, objp),
1922 *dbg_redzone2(cachep, objp));
1da177e4
LT
1923 }
1924
1925 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1926 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1927 *dbg_userword(cachep, objp),
1928 *dbg_userword(cachep, objp));
1da177e4 1929 }
3dafccf2 1930 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1931 size = cachep->object_size;
b28a02de 1932 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1933 int limit;
1934 limit = 16;
b28a02de
PE
1935 if (i + limit > size)
1936 limit = size - i;
1da177e4
LT
1937 dump_line(realobj, i, limit);
1938 }
1939}
1940
343e0d7a 1941static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1942{
1943 char *realobj;
1944 int size, i;
1945 int lines = 0;
1946
3dafccf2 1947 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1948 size = cachep->object_size;
1da177e4 1949
b28a02de 1950 for (i = 0; i < size; i++) {
1da177e4 1951 char exp = POISON_FREE;
b28a02de 1952 if (i == size - 1)
1da177e4
LT
1953 exp = POISON_END;
1954 if (realobj[i] != exp) {
1955 int limit;
1956 /* Mismatch ! */
1957 /* Print header */
1958 if (lines == 0) {
b28a02de 1959 printk(KERN_ERR
face37f5
DJ
1960 "Slab corruption (%s): %s start=%p, len=%d\n",
1961 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1962 print_objinfo(cachep, objp, 0);
1963 }
1964 /* Hexdump the affected line */
b28a02de 1965 i = (i / 16) * 16;
1da177e4 1966 limit = 16;
b28a02de
PE
1967 if (i + limit > size)
1968 limit = size - i;
1da177e4
LT
1969 dump_line(realobj, i, limit);
1970 i += 16;
1971 lines++;
1972 /* Limit to 5 lines */
1973 if (lines > 5)
1974 break;
1975 }
1976 }
1977 if (lines != 0) {
1978 /* Print some data about the neighboring objects, if they
1979 * exist:
1980 */
6ed5eb22 1981 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1982 unsigned int objnr;
1da177e4 1983
8fea4e96 1984 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1985 if (objnr) {
8fea4e96 1986 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1987 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1988 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1989 realobj, size);
1da177e4
LT
1990 print_objinfo(cachep, objp, 2);
1991 }
b28a02de 1992 if (objnr + 1 < cachep->num) {
8fea4e96 1993 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1994 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1995 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1996 realobj, size);
1da177e4
LT
1997 print_objinfo(cachep, objp, 2);
1998 }
1999 }
2000}
2001#endif
2002
12dd36fa 2003#if DEBUG
e79aec29 2004static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2005{
1da177e4
LT
2006 int i;
2007 for (i = 0; i < cachep->num; i++) {
8fea4e96 2008 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2009
2010 if (cachep->flags & SLAB_POISON) {
2011#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2012 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2013 OFF_SLAB(cachep))
b28a02de 2014 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2015 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2016 else
2017 check_poison_obj(cachep, objp);
2018#else
2019 check_poison_obj(cachep, objp);
2020#endif
2021 }
2022 if (cachep->flags & SLAB_RED_ZONE) {
2023 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2024 slab_error(cachep, "start of a freed object "
b28a02de 2025 "was overwritten");
1da177e4
LT
2026 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2027 slab_error(cachep, "end of a freed object "
b28a02de 2028 "was overwritten");
1da177e4 2029 }
1da177e4 2030 }
12dd36fa 2031}
1da177e4 2032#else
e79aec29 2033static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2034{
12dd36fa 2035}
1da177e4
LT
2036#endif
2037
911851e6
RD
2038/**
2039 * slab_destroy - destroy and release all objects in a slab
2040 * @cachep: cache pointer being destroyed
2041 * @slabp: slab pointer being destroyed
2042 *
12dd36fa 2043 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2044 * Before calling the slab must have been unlinked from the cache. The
2045 * cache-lock is not held/needed.
12dd36fa 2046 */
343e0d7a 2047static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2048{
2049 void *addr = slabp->s_mem - slabp->colouroff;
2050
e79aec29 2051 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2052 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2053 struct slab_rcu *slab_rcu;
2054
b28a02de 2055 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2056 slab_rcu->cachep = cachep;
2057 slab_rcu->addr = addr;
2058 call_rcu(&slab_rcu->head, kmem_rcu_free);
2059 } else {
2060 kmem_freepages(cachep, addr);
873623df
IM
2061 if (OFF_SLAB(cachep))
2062 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2063 }
2064}
2065
4d268eba 2066/**
a70773dd
RD
2067 * calculate_slab_order - calculate size (page order) of slabs
2068 * @cachep: pointer to the cache that is being created
2069 * @size: size of objects to be created in this cache.
2070 * @align: required alignment for the objects.
2071 * @flags: slab allocation flags
2072 *
2073 * Also calculates the number of objects per slab.
4d268eba
PE
2074 *
2075 * This could be made much more intelligent. For now, try to avoid using
2076 * high order pages for slabs. When the gfp() functions are more friendly
2077 * towards high-order requests, this should be changed.
2078 */
a737b3e2 2079static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2080 size_t size, size_t align, unsigned long flags)
4d268eba 2081{
b1ab41c4 2082 unsigned long offslab_limit;
4d268eba 2083 size_t left_over = 0;
9888e6fa 2084 int gfporder;
4d268eba 2085
0aa817f0 2086 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2087 unsigned int num;
2088 size_t remainder;
2089
9888e6fa 2090 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2091 if (!num)
2092 continue;
9888e6fa 2093
b1ab41c4
IM
2094 if (flags & CFLGS_OFF_SLAB) {
2095 /*
2096 * Max number of objs-per-slab for caches which
2097 * use off-slab slabs. Needed to avoid a possible
2098 * looping condition in cache_grow().
2099 */
2100 offslab_limit = size - sizeof(struct slab);
2101 offslab_limit /= sizeof(kmem_bufctl_t);
2102
2103 if (num > offslab_limit)
2104 break;
2105 }
4d268eba 2106
9888e6fa 2107 /* Found something acceptable - save it away */
4d268eba 2108 cachep->num = num;
9888e6fa 2109 cachep->gfporder = gfporder;
4d268eba
PE
2110 left_over = remainder;
2111
f78bb8ad
LT
2112 /*
2113 * A VFS-reclaimable slab tends to have most allocations
2114 * as GFP_NOFS and we really don't want to have to be allocating
2115 * higher-order pages when we are unable to shrink dcache.
2116 */
2117 if (flags & SLAB_RECLAIM_ACCOUNT)
2118 break;
2119
4d268eba
PE
2120 /*
2121 * Large number of objects is good, but very large slabs are
2122 * currently bad for the gfp()s.
2123 */
543585cc 2124 if (gfporder >= slab_max_order)
4d268eba
PE
2125 break;
2126
9888e6fa
LT
2127 /*
2128 * Acceptable internal fragmentation?
2129 */
a737b3e2 2130 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2131 break;
2132 }
2133 return left_over;
2134}
2135
83b519e8 2136static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2137{
97d06609 2138 if (slab_state >= FULL)
83b519e8 2139 return enable_cpucache(cachep, gfp);
2ed3a4ef 2140
97d06609 2141 if (slab_state == DOWN) {
f30cf7d1 2142 /*
2f9baa9f 2143 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2144 * The setup_node is taken care
2f9baa9f
CL
2145 * of by the caller of __kmem_cache_create
2146 */
2147 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2148 slab_state = PARTIAL;
2149 } else if (slab_state == PARTIAL) {
2150 /*
2151 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2152 * that's used by kmalloc(24), otherwise the creation of
2153 * further caches will BUG().
2154 */
2155 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2156
2157 /*
ce8eb6c4
CL
2158 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2159 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2160 * otherwise the creation of further caches will BUG().
2161 */
ce8eb6c4
CL
2162 set_up_node(cachep, SIZE_AC);
2163 if (INDEX_AC == INDEX_NODE)
2164 slab_state = PARTIAL_NODE;
f30cf7d1 2165 else
97d06609 2166 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2167 } else {
2f9baa9f 2168 /* Remaining boot caches */
f30cf7d1 2169 cachep->array[smp_processor_id()] =
83b519e8 2170 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2171
97d06609 2172 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2173 set_up_node(cachep, SIZE_NODE);
2174 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2175 } else {
2176 int node;
556a169d 2177 for_each_online_node(node) {
6a67368c 2178 cachep->node[node] =
6744f087 2179 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2180 gfp, node);
6a67368c 2181 BUG_ON(!cachep->node[node]);
ce8eb6c4 2182 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2183 }
2184 }
2185 }
6a67368c 2186 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2187 jiffies + REAPTIMEOUT_LIST3 +
2188 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2189
2190 cpu_cache_get(cachep)->avail = 0;
2191 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2192 cpu_cache_get(cachep)->batchcount = 1;
2193 cpu_cache_get(cachep)->touched = 0;
2194 cachep->batchcount = 1;
2195 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2196 return 0;
f30cf7d1
PE
2197}
2198
1da177e4 2199/**
039363f3 2200 * __kmem_cache_create - Create a cache.
a755b76a 2201 * @cachep: cache management descriptor
1da177e4 2202 * @flags: SLAB flags
1da177e4
LT
2203 *
2204 * Returns a ptr to the cache on success, NULL on failure.
2205 * Cannot be called within a int, but can be interrupted.
20c2df83 2206 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2207 *
1da177e4
LT
2208 * The flags are
2209 *
2210 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2211 * to catch references to uninitialised memory.
2212 *
2213 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2214 * for buffer overruns.
2215 *
1da177e4
LT
2216 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2217 * cacheline. This can be beneficial if you're counting cycles as closely
2218 * as davem.
2219 */
278b1bb1 2220int
8a13a4cc 2221__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2222{
2223 size_t left_over, slab_size, ralign;
83b519e8 2224 gfp_t gfp;
278b1bb1 2225 int err;
8a13a4cc 2226 size_t size = cachep->size;
1da177e4 2227
1da177e4 2228#if DEBUG
1da177e4
LT
2229#if FORCED_DEBUG
2230 /*
2231 * Enable redzoning and last user accounting, except for caches with
2232 * large objects, if the increased size would increase the object size
2233 * above the next power of two: caches with object sizes just above a
2234 * power of two have a significant amount of internal fragmentation.
2235 */
87a927c7
DW
2236 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2237 2 * sizeof(unsigned long long)))
b28a02de 2238 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2239 if (!(flags & SLAB_DESTROY_BY_RCU))
2240 flags |= SLAB_POISON;
2241#endif
2242 if (flags & SLAB_DESTROY_BY_RCU)
2243 BUG_ON(flags & SLAB_POISON);
2244#endif
1da177e4 2245
a737b3e2
AM
2246 /*
2247 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2248 * unaligned accesses for some archs when redzoning is used, and makes
2249 * sure any on-slab bufctl's are also correctly aligned.
2250 */
b28a02de
PE
2251 if (size & (BYTES_PER_WORD - 1)) {
2252 size += (BYTES_PER_WORD - 1);
2253 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2254 }
2255
ca5f9703 2256 /*
87a927c7
DW
2257 * Redzoning and user store require word alignment or possibly larger.
2258 * Note this will be overridden by architecture or caller mandated
2259 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2260 */
87a927c7
DW
2261 if (flags & SLAB_STORE_USER)
2262 ralign = BYTES_PER_WORD;
2263
2264 if (flags & SLAB_RED_ZONE) {
2265 ralign = REDZONE_ALIGN;
2266 /* If redzoning, ensure that the second redzone is suitably
2267 * aligned, by adjusting the object size accordingly. */
2268 size += REDZONE_ALIGN - 1;
2269 size &= ~(REDZONE_ALIGN - 1);
2270 }
ca5f9703 2271
a44b56d3 2272 /* 3) caller mandated alignment */
8a13a4cc
CL
2273 if (ralign < cachep->align) {
2274 ralign = cachep->align;
1da177e4 2275 }
3ff84a7f
PE
2276 /* disable debug if necessary */
2277 if (ralign > __alignof__(unsigned long long))
a44b56d3 2278 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2279 /*
ca5f9703 2280 * 4) Store it.
1da177e4 2281 */
8a13a4cc 2282 cachep->align = ralign;
1da177e4 2283
83b519e8
PE
2284 if (slab_is_available())
2285 gfp = GFP_KERNEL;
2286 else
2287 gfp = GFP_NOWAIT;
2288
6a67368c 2289 setup_node_pointer(cachep);
1da177e4 2290#if DEBUG
1da177e4 2291
ca5f9703
PE
2292 /*
2293 * Both debugging options require word-alignment which is calculated
2294 * into align above.
2295 */
1da177e4 2296 if (flags & SLAB_RED_ZONE) {
1da177e4 2297 /* add space for red zone words */
3ff84a7f
PE
2298 cachep->obj_offset += sizeof(unsigned long long);
2299 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2300 }
2301 if (flags & SLAB_STORE_USER) {
ca5f9703 2302 /* user store requires one word storage behind the end of
87a927c7
DW
2303 * the real object. But if the second red zone needs to be
2304 * aligned to 64 bits, we must allow that much space.
1da177e4 2305 */
87a927c7
DW
2306 if (flags & SLAB_RED_ZONE)
2307 size += REDZONE_ALIGN;
2308 else
2309 size += BYTES_PER_WORD;
1da177e4
LT
2310 }
2311#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2312 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2313 && cachep->object_size > cache_line_size()
2314 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2315 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2316 size = PAGE_SIZE;
2317 }
2318#endif
2319#endif
2320
e0a42726
IM
2321 /*
2322 * Determine if the slab management is 'on' or 'off' slab.
2323 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2324 * it too early on. Always use on-slab management when
2325 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2326 */
e7cb55b9
CM
2327 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2328 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2329 /*
2330 * Size is large, assume best to place the slab management obj
2331 * off-slab (should allow better packing of objs).
2332 */
2333 flags |= CFLGS_OFF_SLAB;
2334
8a13a4cc 2335 size = ALIGN(size, cachep->align);
1da177e4 2336
8a13a4cc 2337 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2338
8a13a4cc 2339 if (!cachep->num)
278b1bb1 2340 return -E2BIG;
1da177e4 2341
b28a02de 2342 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2343 + sizeof(struct slab), cachep->align);
1da177e4
LT
2344
2345 /*
2346 * If the slab has been placed off-slab, and we have enough space then
2347 * move it on-slab. This is at the expense of any extra colouring.
2348 */
2349 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2350 flags &= ~CFLGS_OFF_SLAB;
2351 left_over -= slab_size;
2352 }
2353
2354 if (flags & CFLGS_OFF_SLAB) {
2355 /* really off slab. No need for manual alignment */
b28a02de
PE
2356 slab_size =
2357 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2358
2359#ifdef CONFIG_PAGE_POISONING
2360 /* If we're going to use the generic kernel_map_pages()
2361 * poisoning, then it's going to smash the contents of
2362 * the redzone and userword anyhow, so switch them off.
2363 */
2364 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2365 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2366#endif
1da177e4
LT
2367 }
2368
2369 cachep->colour_off = cache_line_size();
2370 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2371 if (cachep->colour_off < cachep->align)
2372 cachep->colour_off = cachep->align;
b28a02de 2373 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2374 cachep->slab_size = slab_size;
2375 cachep->flags = flags;
a618e89f 2376 cachep->allocflags = 0;
4b51d669 2377 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2378 cachep->allocflags |= GFP_DMA;
3b0efdfa 2379 cachep->size = size;
6a2d7a95 2380 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2381
e5ac9c5a 2382 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2383 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2384 /*
2385 * This is a possibility for one of the malloc_sizes caches.
2386 * But since we go off slab only for object size greater than
2387 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2388 * this should not happen at all.
2389 * But leave a BUG_ON for some lucky dude.
2390 */
6cb8f913 2391 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2392 }
1da177e4 2393
278b1bb1
CL
2394 err = setup_cpu_cache(cachep, gfp);
2395 if (err) {
12c3667f 2396 __kmem_cache_shutdown(cachep);
278b1bb1 2397 return err;
2ed3a4ef 2398 }
1da177e4 2399
83835b3d
PZ
2400 if (flags & SLAB_DEBUG_OBJECTS) {
2401 /*
2402 * Would deadlock through slab_destroy()->call_rcu()->
2403 * debug_object_activate()->kmem_cache_alloc().
2404 */
2405 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2406
2407 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2408 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2409 on_slab_lock_classes(cachep);
83835b3d 2410
278b1bb1 2411 return 0;
1da177e4 2412}
1da177e4
LT
2413
2414#if DEBUG
2415static void check_irq_off(void)
2416{
2417 BUG_ON(!irqs_disabled());
2418}
2419
2420static void check_irq_on(void)
2421{
2422 BUG_ON(irqs_disabled());
2423}
2424
343e0d7a 2425static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2426{
2427#ifdef CONFIG_SMP
2428 check_irq_off();
6a67368c 2429 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2430#endif
2431}
e498be7d 2432
343e0d7a 2433static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2434{
2435#ifdef CONFIG_SMP
2436 check_irq_off();
6a67368c 2437 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2438#endif
2439}
2440
1da177e4
LT
2441#else
2442#define check_irq_off() do { } while(0)
2443#define check_irq_on() do { } while(0)
2444#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2445#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2446#endif
2447
ce8eb6c4 2448static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2449 struct array_cache *ac,
2450 int force, int node);
2451
1da177e4
LT
2452static void do_drain(void *arg)
2453{
a737b3e2 2454 struct kmem_cache *cachep = arg;
1da177e4 2455 struct array_cache *ac;
7d6e6d09 2456 int node = numa_mem_id();
1da177e4
LT
2457
2458 check_irq_off();
9a2dba4b 2459 ac = cpu_cache_get(cachep);
6a67368c 2460 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2461 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2462 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2463 ac->avail = 0;
2464}
2465
343e0d7a 2466static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2467{
ce8eb6c4 2468 struct kmem_cache_node *n;
e498be7d
CL
2469 int node;
2470
15c8b6c1 2471 on_each_cpu(do_drain, cachep, 1);
1da177e4 2472 check_irq_on();
b28a02de 2473 for_each_online_node(node) {
ce8eb6c4
CL
2474 n = cachep->node[node];
2475 if (n && n->alien)
2476 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2477 }
2478
2479 for_each_online_node(node) {
ce8eb6c4
CL
2480 n = cachep->node[node];
2481 if (n)
2482 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2483 }
1da177e4
LT
2484}
2485
ed11d9eb
CL
2486/*
2487 * Remove slabs from the list of free slabs.
2488 * Specify the number of slabs to drain in tofree.
2489 *
2490 * Returns the actual number of slabs released.
2491 */
2492static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2493 struct kmem_cache_node *n, int tofree)
1da177e4 2494{
ed11d9eb
CL
2495 struct list_head *p;
2496 int nr_freed;
1da177e4 2497 struct slab *slabp;
1da177e4 2498
ed11d9eb 2499 nr_freed = 0;
ce8eb6c4 2500 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2501
ce8eb6c4
CL
2502 spin_lock_irq(&n->list_lock);
2503 p = n->slabs_free.prev;
2504 if (p == &n->slabs_free) {
2505 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2506 goto out;
2507 }
1da177e4 2508
ed11d9eb 2509 slabp = list_entry(p, struct slab, list);
1da177e4 2510#if DEBUG
40094fa6 2511 BUG_ON(slabp->inuse);
1da177e4
LT
2512#endif
2513 list_del(&slabp->list);
ed11d9eb
CL
2514 /*
2515 * Safe to drop the lock. The slab is no longer linked
2516 * to the cache.
2517 */
ce8eb6c4
CL
2518 n->free_objects -= cache->num;
2519 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2520 slab_destroy(cache, slabp);
2521 nr_freed++;
1da177e4 2522 }
ed11d9eb
CL
2523out:
2524 return nr_freed;
1da177e4
LT
2525}
2526
18004c5d 2527/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2528static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2529{
2530 int ret = 0, i = 0;
ce8eb6c4 2531 struct kmem_cache_node *n;
e498be7d
CL
2532
2533 drain_cpu_caches(cachep);
2534
2535 check_irq_on();
2536 for_each_online_node(i) {
ce8eb6c4
CL
2537 n = cachep->node[i];
2538 if (!n)
ed11d9eb
CL
2539 continue;
2540
0fa8103b 2541 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2542
ce8eb6c4
CL
2543 ret += !list_empty(&n->slabs_full) ||
2544 !list_empty(&n->slabs_partial);
e498be7d
CL
2545 }
2546 return (ret ? 1 : 0);
2547}
2548
1da177e4
LT
2549/**
2550 * kmem_cache_shrink - Shrink a cache.
2551 * @cachep: The cache to shrink.
2552 *
2553 * Releases as many slabs as possible for a cache.
2554 * To help debugging, a zero exit status indicates all slabs were released.
2555 */
343e0d7a 2556int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2557{
8f5be20b 2558 int ret;
40094fa6 2559 BUG_ON(!cachep || in_interrupt());
1da177e4 2560
95402b38 2561 get_online_cpus();
18004c5d 2562 mutex_lock(&slab_mutex);
8f5be20b 2563 ret = __cache_shrink(cachep);
18004c5d 2564 mutex_unlock(&slab_mutex);
95402b38 2565 put_online_cpus();
8f5be20b 2566 return ret;
1da177e4
LT
2567}
2568EXPORT_SYMBOL(kmem_cache_shrink);
2569
945cf2b6 2570int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2571{
12c3667f 2572 int i;
ce8eb6c4 2573 struct kmem_cache_node *n;
12c3667f 2574 int rc = __cache_shrink(cachep);
1da177e4 2575
12c3667f
CL
2576 if (rc)
2577 return rc;
1da177e4 2578
12c3667f
CL
2579 for_each_online_cpu(i)
2580 kfree(cachep->array[i]);
1da177e4 2581
ce8eb6c4 2582 /* NUMA: free the node structures */
12c3667f 2583 for_each_online_node(i) {
ce8eb6c4
CL
2584 n = cachep->node[i];
2585 if (n) {
2586 kfree(n->shared);
2587 free_alien_cache(n->alien);
2588 kfree(n);
12c3667f
CL
2589 }
2590 }
2591 return 0;
1da177e4 2592}
1da177e4 2593
e5ac9c5a
RT
2594/*
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2604 */
343e0d7a 2605static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2606 int colour_off, gfp_t local_flags,
2607 int nodeid)
1da177e4
LT
2608{
2609 struct slab *slabp;
b28a02de 2610
1da177e4
LT
2611 if (OFF_SLAB(cachep)) {
2612 /* Slab management obj is off-slab. */
5b74ada7 2613 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2614 local_flags, nodeid);
d5cff635
CM
2615 /*
2616 * If the first object in the slab is leaked (it's allocated
2617 * but no one has a reference to it), we want to make sure
2618 * kmemleak does not treat the ->s_mem pointer as a reference
2619 * to the object. Otherwise we will not report the leak.
2620 */
c017b4be
CM
2621 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2622 local_flags);
1da177e4
LT
2623 if (!slabp)
2624 return NULL;
2625 } else {
b28a02de 2626 slabp = objp + colour_off;
1da177e4
LT
2627 colour_off += cachep->slab_size;
2628 }
2629 slabp->inuse = 0;
2630 slabp->colouroff = colour_off;
b28a02de 2631 slabp->s_mem = objp + colour_off;
5b74ada7 2632 slabp->nodeid = nodeid;
e51bfd0a 2633 slabp->free = 0;
1da177e4
LT
2634 return slabp;
2635}
2636
2637static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2638{
b28a02de 2639 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2640}
2641
343e0d7a 2642static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2643 struct slab *slabp)
1da177e4
LT
2644{
2645 int i;
2646
2647 for (i = 0; i < cachep->num; i++) {
8fea4e96 2648 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2649#if DEBUG
2650 /* need to poison the objs? */
2651 if (cachep->flags & SLAB_POISON)
2652 poison_obj(cachep, objp, POISON_FREE);
2653 if (cachep->flags & SLAB_STORE_USER)
2654 *dbg_userword(cachep, objp) = NULL;
2655
2656 if (cachep->flags & SLAB_RED_ZONE) {
2657 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2658 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2659 }
2660 /*
a737b3e2
AM
2661 * Constructors are not allowed to allocate memory from the same
2662 * cache which they are a constructor for. Otherwise, deadlock.
2663 * They must also be threaded.
1da177e4
LT
2664 */
2665 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2666 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2667
2668 if (cachep->flags & SLAB_RED_ZONE) {
2669 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2670 slab_error(cachep, "constructor overwrote the"
b28a02de 2671 " end of an object");
1da177e4
LT
2672 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2673 slab_error(cachep, "constructor overwrote the"
b28a02de 2674 " start of an object");
1da177e4 2675 }
3b0efdfa 2676 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2677 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2678 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2679 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2680#else
2681 if (cachep->ctor)
51cc5068 2682 cachep->ctor(objp);
1da177e4 2683#endif
b28a02de 2684 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2685 }
b28a02de 2686 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2687}
2688
343e0d7a 2689static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2690{
4b51d669
CL
2691 if (CONFIG_ZONE_DMA_FLAG) {
2692 if (flags & GFP_DMA)
a618e89f 2693 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2694 else
a618e89f 2695 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2696 }
1da177e4
LT
2697}
2698
a737b3e2
AM
2699static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2700 int nodeid)
78d382d7 2701{
8fea4e96 2702 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2703 kmem_bufctl_t next;
2704
2705 slabp->inuse++;
2706 next = slab_bufctl(slabp)[slabp->free];
2707#if DEBUG
2708 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2709 WARN_ON(slabp->nodeid != nodeid);
2710#endif
2711 slabp->free = next;
2712
2713 return objp;
2714}
2715
a737b3e2
AM
2716static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2717 void *objp, int nodeid)
78d382d7 2718{
8fea4e96 2719 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2720
2721#if DEBUG
2722 /* Verify that the slab belongs to the intended node */
2723 WARN_ON(slabp->nodeid != nodeid);
2724
871751e2 2725 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2726 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2727 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2728 BUG();
2729 }
2730#endif
2731 slab_bufctl(slabp)[objnr] = slabp->free;
2732 slabp->free = objnr;
2733 slabp->inuse--;
2734}
2735
4776874f
PE
2736/*
2737 * Map pages beginning at addr to the given cache and slab. This is required
2738 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2739 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2740 */
2741static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2742 void *addr)
1da177e4 2743{
4776874f 2744 int nr_pages;
1da177e4
LT
2745 struct page *page;
2746
4776874f 2747 page = virt_to_page(addr);
84097518 2748
4776874f 2749 nr_pages = 1;
84097518 2750 if (likely(!PageCompound(page)))
4776874f
PE
2751 nr_pages <<= cache->gfporder;
2752
1da177e4 2753 do {
35026088
CL
2754 page->slab_cache = cache;
2755 page->slab_page = slab;
1da177e4 2756 page++;
4776874f 2757 } while (--nr_pages);
1da177e4
LT
2758}
2759
2760/*
2761 * Grow (by 1) the number of slabs within a cache. This is called by
2762 * kmem_cache_alloc() when there are no active objs left in a cache.
2763 */
3c517a61
CL
2764static int cache_grow(struct kmem_cache *cachep,
2765 gfp_t flags, int nodeid, void *objp)
1da177e4 2766{
b28a02de 2767 struct slab *slabp;
b28a02de
PE
2768 size_t offset;
2769 gfp_t local_flags;
ce8eb6c4 2770 struct kmem_cache_node *n;
1da177e4 2771
a737b3e2
AM
2772 /*
2773 * Be lazy and only check for valid flags here, keeping it out of the
2774 * critical path in kmem_cache_alloc().
1da177e4 2775 */
6cb06229
CL
2776 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2777 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2778
ce8eb6c4 2779 /* Take the node list lock to change the colour_next on this node */
1da177e4 2780 check_irq_off();
ce8eb6c4
CL
2781 n = cachep->node[nodeid];
2782 spin_lock(&n->list_lock);
1da177e4
LT
2783
2784 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2785 offset = n->colour_next;
2786 n->colour_next++;
2787 if (n->colour_next >= cachep->colour)
2788 n->colour_next = 0;
2789 spin_unlock(&n->list_lock);
1da177e4 2790
2e1217cf 2791 offset *= cachep->colour_off;
1da177e4
LT
2792
2793 if (local_flags & __GFP_WAIT)
2794 local_irq_enable();
2795
2796 /*
2797 * The test for missing atomic flag is performed here, rather than
2798 * the more obvious place, simply to reduce the critical path length
2799 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2800 * will eventually be caught here (where it matters).
2801 */
2802 kmem_flagcheck(cachep, flags);
2803
a737b3e2
AM
2804 /*
2805 * Get mem for the objs. Attempt to allocate a physical page from
2806 * 'nodeid'.
e498be7d 2807 */
3c517a61 2808 if (!objp)
b8c1c5da 2809 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2810 if (!objp)
1da177e4
LT
2811 goto failed;
2812
2813 /* Get slab management. */
3c517a61 2814 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2815 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2816 if (!slabp)
1da177e4
LT
2817 goto opps1;
2818
4776874f 2819 slab_map_pages(cachep, slabp, objp);
1da177e4 2820
a35afb83 2821 cache_init_objs(cachep, slabp);
1da177e4
LT
2822
2823 if (local_flags & __GFP_WAIT)
2824 local_irq_disable();
2825 check_irq_off();
ce8eb6c4 2826 spin_lock(&n->list_lock);
1da177e4
LT
2827
2828 /* Make slab active. */
ce8eb6c4 2829 list_add_tail(&slabp->list, &(n->slabs_free));
1da177e4 2830 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2831 n->free_objects += cachep->num;
2832 spin_unlock(&n->list_lock);
1da177e4 2833 return 1;
a737b3e2 2834opps1:
1da177e4 2835 kmem_freepages(cachep, objp);
a737b3e2 2836failed:
1da177e4
LT
2837 if (local_flags & __GFP_WAIT)
2838 local_irq_disable();
2839 return 0;
2840}
2841
2842#if DEBUG
2843
2844/*
2845 * Perform extra freeing checks:
2846 * - detect bad pointers.
2847 * - POISON/RED_ZONE checking
1da177e4
LT
2848 */
2849static void kfree_debugcheck(const void *objp)
2850{
1da177e4
LT
2851 if (!virt_addr_valid(objp)) {
2852 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2853 (unsigned long)objp);
2854 BUG();
1da177e4 2855 }
1da177e4
LT
2856}
2857
58ce1fd5
PE
2858static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2859{
b46b8f19 2860 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2861
2862 redzone1 = *dbg_redzone1(cache, obj);
2863 redzone2 = *dbg_redzone2(cache, obj);
2864
2865 /*
2866 * Redzone is ok.
2867 */
2868 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2869 return;
2870
2871 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2872 slab_error(cache, "double free detected");
2873 else
2874 slab_error(cache, "memory outside object was overwritten");
2875
b46b8f19 2876 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2877 obj, redzone1, redzone2);
2878}
2879
343e0d7a 2880static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2881 unsigned long caller)
1da177e4
LT
2882{
2883 struct page *page;
2884 unsigned int objnr;
2885 struct slab *slabp;
2886
80cbd911
MW
2887 BUG_ON(virt_to_cache(objp) != cachep);
2888
3dafccf2 2889 objp -= obj_offset(cachep);
1da177e4 2890 kfree_debugcheck(objp);
b49af68f 2891 page = virt_to_head_page(objp);
1da177e4 2892
35026088 2893 slabp = page->slab_page;
1da177e4
LT
2894
2895 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2896 verify_redzone_free(cachep, objp);
1da177e4
LT
2897 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2898 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2899 }
2900 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2901 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2902
8fea4e96 2903 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2904
2905 BUG_ON(objnr >= cachep->num);
8fea4e96 2906 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2907
871751e2
AV
2908#ifdef CONFIG_DEBUG_SLAB_LEAK
2909 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2910#endif
1da177e4
LT
2911 if (cachep->flags & SLAB_POISON) {
2912#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2913 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2914 store_stackinfo(cachep, objp, caller);
b28a02de 2915 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2916 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2917 } else {
2918 poison_obj(cachep, objp, POISON_FREE);
2919 }
2920#else
2921 poison_obj(cachep, objp, POISON_FREE);
2922#endif
2923 }
2924 return objp;
2925}
2926
343e0d7a 2927static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2928{
2929 kmem_bufctl_t i;
2930 int entries = 0;
b28a02de 2931
1da177e4
LT
2932 /* Check slab's freelist to see if this obj is there. */
2933 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2934 entries++;
2935 if (entries > cachep->num || i >= cachep->num)
2936 goto bad;
2937 }
2938 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2939bad:
2940 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2941 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2942 cachep->name, cachep->num, slabp, slabp->inuse,
2943 print_tainted());
fdde6abb
SAS
2944 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2945 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2946 1);
1da177e4
LT
2947 BUG();
2948 }
2949}
2950#else
2951#define kfree_debugcheck(x) do { } while(0)
2952#define cache_free_debugcheck(x,objp,z) (objp)
2953#define check_slabp(x,y) do { } while(0)
2954#endif
2955
072bb0aa
MG
2956static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2957 bool force_refill)
1da177e4
LT
2958{
2959 int batchcount;
ce8eb6c4 2960 struct kmem_cache_node *n;
1da177e4 2961 struct array_cache *ac;
1ca4cb24
PE
2962 int node;
2963
1da177e4 2964 check_irq_off();
7d6e6d09 2965 node = numa_mem_id();
072bb0aa
MG
2966 if (unlikely(force_refill))
2967 goto force_grow;
2968retry:
9a2dba4b 2969 ac = cpu_cache_get(cachep);
1da177e4
LT
2970 batchcount = ac->batchcount;
2971 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2972 /*
2973 * If there was little recent activity on this cache, then
2974 * perform only a partial refill. Otherwise we could generate
2975 * refill bouncing.
1da177e4
LT
2976 */
2977 batchcount = BATCHREFILL_LIMIT;
2978 }
ce8eb6c4 2979 n = cachep->node[node];
e498be7d 2980
ce8eb6c4
CL
2981 BUG_ON(ac->avail > 0 || !n);
2982 spin_lock(&n->list_lock);
1da177e4 2983
3ded175a 2984 /* See if we can refill from the shared array */
ce8eb6c4
CL
2985 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2986 n->shared->touched = 1;
3ded175a 2987 goto alloc_done;
44b57f1c 2988 }
3ded175a 2989
1da177e4
LT
2990 while (batchcount > 0) {
2991 struct list_head *entry;
2992 struct slab *slabp;
2993 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2994 entry = n->slabs_partial.next;
2995 if (entry == &n->slabs_partial) {
2996 n->free_touched = 1;
2997 entry = n->slabs_free.next;
2998 if (entry == &n->slabs_free)
1da177e4
LT
2999 goto must_grow;
3000 }
3001
3002 slabp = list_entry(entry, struct slab, list);
3003 check_slabp(cachep, slabp);
3004 check_spinlock_acquired(cachep);
714b8171
PE
3005
3006 /*
3007 * The slab was either on partial or free list so
3008 * there must be at least one object available for
3009 * allocation.
3010 */
249b9f33 3011 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3012
1da177e4 3013 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3014 STATS_INC_ALLOCED(cachep);
3015 STATS_INC_ACTIVE(cachep);
3016 STATS_SET_HIGH(cachep);
3017
072bb0aa
MG
3018 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3019 node));
1da177e4
LT
3020 }
3021 check_slabp(cachep, slabp);
3022
3023 /* move slabp to correct slabp list: */
3024 list_del(&slabp->list);
3025 if (slabp->free == BUFCTL_END)
ce8eb6c4 3026 list_add(&slabp->list, &n->slabs_full);
1da177e4 3027 else
ce8eb6c4 3028 list_add(&slabp->list, &n->slabs_partial);
1da177e4
LT
3029 }
3030
a737b3e2 3031must_grow:
ce8eb6c4 3032 n->free_objects -= ac->avail;
a737b3e2 3033alloc_done:
ce8eb6c4 3034 spin_unlock(&n->list_lock);
1da177e4
LT
3035
3036 if (unlikely(!ac->avail)) {
3037 int x;
072bb0aa 3038force_grow:
3c517a61 3039 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3040
a737b3e2 3041 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3042 ac = cpu_cache_get(cachep);
51cd8e6f 3043 node = numa_mem_id();
072bb0aa
MG
3044
3045 /* no objects in sight? abort */
3046 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3047 return NULL;
3048
a737b3e2 3049 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3050 goto retry;
3051 }
3052 ac->touched = 1;
072bb0aa
MG
3053
3054 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3055}
3056
a737b3e2
AM
3057static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3058 gfp_t flags)
1da177e4
LT
3059{
3060 might_sleep_if(flags & __GFP_WAIT);
3061#if DEBUG
3062 kmem_flagcheck(cachep, flags);
3063#endif
3064}
3065
3066#if DEBUG
a737b3e2 3067static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3068 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3069{
b28a02de 3070 if (!objp)
1da177e4 3071 return objp;
b28a02de 3072 if (cachep->flags & SLAB_POISON) {
1da177e4 3073#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3074 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3075 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3076 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3077 else
3078 check_poison_obj(cachep, objp);
3079#else
3080 check_poison_obj(cachep, objp);
3081#endif
3082 poison_obj(cachep, objp, POISON_INUSE);
3083 }
3084 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3085 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3086
3087 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3088 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3089 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3090 slab_error(cachep, "double free, or memory outside"
3091 " object was overwritten");
b28a02de 3092 printk(KERN_ERR
b46b8f19 3093 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
1da177e4
LT
3096 }
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 }
871751e2
AV
3100#ifdef CONFIG_DEBUG_SLAB_LEAK
3101 {
3102 struct slab *slabp;
3103 unsigned objnr;
3104
35026088 3105 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3106 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3107 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3108 }
3109#endif
3dafccf2 3110 objp += obj_offset(cachep);
4f104934 3111 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3112 cachep->ctor(objp);
7ea466f2
TH
3113 if (ARCH_SLAB_MINALIGN &&
3114 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3115 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3116 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3117 }
1da177e4
LT
3118 return objp;
3119}
3120#else
3121#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3122#endif
3123
773ff60e 3124static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3125{
9b030cb8 3126 if (cachep == kmem_cache)
773ff60e 3127 return false;
8a8b6502 3128
8c138bc0 3129 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3130}
3131
343e0d7a 3132static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3133{
b28a02de 3134 void *objp;
1da177e4 3135 struct array_cache *ac;
072bb0aa 3136 bool force_refill = false;
1da177e4 3137
5c382300 3138 check_irq_off();
8a8b6502 3139
9a2dba4b 3140 ac = cpu_cache_get(cachep);
1da177e4 3141 if (likely(ac->avail)) {
1da177e4 3142 ac->touched = 1;
072bb0aa
MG
3143 objp = ac_get_obj(cachep, ac, flags, false);
3144
ddbf2e83 3145 /*
072bb0aa
MG
3146 * Allow for the possibility all avail objects are not allowed
3147 * by the current flags
ddbf2e83 3148 */
072bb0aa
MG
3149 if (objp) {
3150 STATS_INC_ALLOCHIT(cachep);
3151 goto out;
3152 }
3153 force_refill = true;
1da177e4 3154 }
072bb0aa
MG
3155
3156 STATS_INC_ALLOCMISS(cachep);
3157 objp = cache_alloc_refill(cachep, flags, force_refill);
3158 /*
3159 * the 'ac' may be updated by cache_alloc_refill(),
3160 * and kmemleak_erase() requires its correct value.
3161 */
3162 ac = cpu_cache_get(cachep);
3163
3164out:
d5cff635
CM
3165 /*
3166 * To avoid a false negative, if an object that is in one of the
3167 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3168 * treat the array pointers as a reference to the object.
3169 */
f3d8b53a
O
3170 if (objp)
3171 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3172 return objp;
3173}
3174
e498be7d 3175#ifdef CONFIG_NUMA
c61afb18 3176/*
b2455396 3177 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3178 *
3179 * If we are in_interrupt, then process context, including cpusets and
3180 * mempolicy, may not apply and should not be used for allocation policy.
3181 */
3182static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3183{
3184 int nid_alloc, nid_here;
3185
765c4507 3186 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3187 return NULL;
7d6e6d09 3188 nid_alloc = nid_here = numa_mem_id();
c61afb18 3189 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3190 nid_alloc = cpuset_slab_spread_node();
c61afb18 3191 else if (current->mempolicy)
e7b691b0 3192 nid_alloc = slab_node();
c61afb18 3193 if (nid_alloc != nid_here)
8b98c169 3194 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3195 return NULL;
3196}
3197
765c4507
CL
3198/*
3199 * Fallback function if there was no memory available and no objects on a
3c517a61 3200 * certain node and fall back is permitted. First we scan all the
6a67368c 3201 * available node for available objects. If that fails then we
3c517a61
CL
3202 * perform an allocation without specifying a node. This allows the page
3203 * allocator to do its reclaim / fallback magic. We then insert the
3204 * slab into the proper nodelist and then allocate from it.
765c4507 3205 */
8c8cc2c1 3206static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3207{
8c8cc2c1
PE
3208 struct zonelist *zonelist;
3209 gfp_t local_flags;
dd1a239f 3210 struct zoneref *z;
54a6eb5c
MG
3211 struct zone *zone;
3212 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3213 void *obj = NULL;
3c517a61 3214 int nid;
cc9a6c87 3215 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3216
3217 if (flags & __GFP_THISNODE)
3218 return NULL;
3219
6cb06229 3220 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3221
cc9a6c87
MG
3222retry_cpuset:
3223 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3224 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3225
3c517a61
CL
3226retry:
3227 /*
3228 * Look through allowed nodes for objects available
3229 * from existing per node queues.
3230 */
54a6eb5c
MG
3231 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3232 nid = zone_to_nid(zone);
aedb0eb1 3233
54a6eb5c 3234 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3235 cache->node[nid] &&
3236 cache->node[nid]->free_objects) {
3c517a61
CL
3237 obj = ____cache_alloc_node(cache,
3238 flags | GFP_THISNODE, nid);
481c5346
CL
3239 if (obj)
3240 break;
3241 }
3c517a61
CL
3242 }
3243
cfce6604 3244 if (!obj) {
3c517a61
CL
3245 /*
3246 * This allocation will be performed within the constraints
3247 * of the current cpuset / memory policy requirements.
3248 * We may trigger various forms of reclaim on the allowed
3249 * set and go into memory reserves if necessary.
3250 */
dd47ea75
CL
3251 if (local_flags & __GFP_WAIT)
3252 local_irq_enable();
3253 kmem_flagcheck(cache, flags);
7d6e6d09 3254 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3255 if (local_flags & __GFP_WAIT)
3256 local_irq_disable();
3c517a61
CL
3257 if (obj) {
3258 /*
3259 * Insert into the appropriate per node queues
3260 */
3261 nid = page_to_nid(virt_to_page(obj));
3262 if (cache_grow(cache, flags, nid, obj)) {
3263 obj = ____cache_alloc_node(cache,
3264 flags | GFP_THISNODE, nid);
3265 if (!obj)
3266 /*
3267 * Another processor may allocate the
3268 * objects in the slab since we are
3269 * not holding any locks.
3270 */
3271 goto retry;
3272 } else {
b6a60451 3273 /* cache_grow already freed obj */
3c517a61
CL
3274 obj = NULL;
3275 }
3276 }
aedb0eb1 3277 }
cc9a6c87
MG
3278
3279 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3280 goto retry_cpuset;
765c4507
CL
3281 return obj;
3282}
3283
e498be7d
CL
3284/*
3285 * A interface to enable slab creation on nodeid
1da177e4 3286 */
8b98c169 3287static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3288 int nodeid)
e498be7d
CL
3289{
3290 struct list_head *entry;
b28a02de 3291 struct slab *slabp;
ce8eb6c4 3292 struct kmem_cache_node *n;
b28a02de 3293 void *obj;
b28a02de
PE
3294 int x;
3295
14e50c6a 3296 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3297 n = cachep->node[nodeid];
3298 BUG_ON(!n);
b28a02de 3299
a737b3e2 3300retry:
ca3b9b91 3301 check_irq_off();
ce8eb6c4
CL
3302 spin_lock(&n->list_lock);
3303 entry = n->slabs_partial.next;
3304 if (entry == &n->slabs_partial) {
3305 n->free_touched = 1;
3306 entry = n->slabs_free.next;
3307 if (entry == &n->slabs_free)
b28a02de
PE
3308 goto must_grow;
3309 }
3310
3311 slabp = list_entry(entry, struct slab, list);
3312 check_spinlock_acquired_node(cachep, nodeid);
3313 check_slabp(cachep, slabp);
3314
3315 STATS_INC_NODEALLOCS(cachep);
3316 STATS_INC_ACTIVE(cachep);
3317 STATS_SET_HIGH(cachep);
3318
3319 BUG_ON(slabp->inuse == cachep->num);
3320
78d382d7 3321 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de 3322 check_slabp(cachep, slabp);
ce8eb6c4 3323 n->free_objects--;
b28a02de
PE
3324 /* move slabp to correct slabp list: */
3325 list_del(&slabp->list);
3326
a737b3e2 3327 if (slabp->free == BUFCTL_END)
ce8eb6c4 3328 list_add(&slabp->list, &n->slabs_full);
a737b3e2 3329 else
ce8eb6c4 3330 list_add(&slabp->list, &n->slabs_partial);
e498be7d 3331
ce8eb6c4 3332 spin_unlock(&n->list_lock);
b28a02de 3333 goto done;
e498be7d 3334
a737b3e2 3335must_grow:
ce8eb6c4 3336 spin_unlock(&n->list_lock);
3c517a61 3337 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3338 if (x)
3339 goto retry;
1da177e4 3340
8c8cc2c1 3341 return fallback_alloc(cachep, flags);
e498be7d 3342
a737b3e2 3343done:
b28a02de 3344 return obj;
e498be7d 3345}
8c8cc2c1 3346
8c8cc2c1 3347static __always_inline void *
48356303 3348slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3349 unsigned long caller)
8c8cc2c1
PE
3350{
3351 unsigned long save_flags;
3352 void *ptr;
7d6e6d09 3353 int slab_node = numa_mem_id();
8c8cc2c1 3354
dcce284a 3355 flags &= gfp_allowed_mask;
7e85ee0c 3356
cf40bd16
NP
3357 lockdep_trace_alloc(flags);
3358
773ff60e 3359 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3360 return NULL;
3361
d79923fa
GC
3362 cachep = memcg_kmem_get_cache(cachep, flags);
3363
8c8cc2c1
PE
3364 cache_alloc_debugcheck_before(cachep, flags);
3365 local_irq_save(save_flags);
3366
eacbbae3 3367 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3368 nodeid = slab_node;
8c8cc2c1 3369
6a67368c 3370 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3371 /* Node not bootstrapped yet */
3372 ptr = fallback_alloc(cachep, flags);
3373 goto out;
3374 }
3375
7d6e6d09 3376 if (nodeid == slab_node) {
8c8cc2c1
PE
3377 /*
3378 * Use the locally cached objects if possible.
3379 * However ____cache_alloc does not allow fallback
3380 * to other nodes. It may fail while we still have
3381 * objects on other nodes available.
3382 */
3383 ptr = ____cache_alloc(cachep, flags);
3384 if (ptr)
3385 goto out;
3386 }
3387 /* ___cache_alloc_node can fall back to other nodes */
3388 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3389 out:
3390 local_irq_restore(save_flags);
3391 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3392 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3393 flags);
8c8cc2c1 3394
c175eea4 3395 if (likely(ptr))
8c138bc0 3396 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3397
d07dbea4 3398 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3399 memset(ptr, 0, cachep->object_size);
d07dbea4 3400
8c8cc2c1
PE
3401 return ptr;
3402}
3403
3404static __always_inline void *
3405__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3406{
3407 void *objp;
3408
3409 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3410 objp = alternate_node_alloc(cache, flags);
3411 if (objp)
3412 goto out;
3413 }
3414 objp = ____cache_alloc(cache, flags);
3415
3416 /*
3417 * We may just have run out of memory on the local node.
3418 * ____cache_alloc_node() knows how to locate memory on other nodes
3419 */
7d6e6d09
LS
3420 if (!objp)
3421 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3422
3423 out:
3424 return objp;
3425}
3426#else
3427
3428static __always_inline void *
3429__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3430{
3431 return ____cache_alloc(cachep, flags);
3432}
3433
3434#endif /* CONFIG_NUMA */
3435
3436static __always_inline void *
48356303 3437slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3438{
3439 unsigned long save_flags;
3440 void *objp;
3441
dcce284a 3442 flags &= gfp_allowed_mask;
7e85ee0c 3443
cf40bd16
NP
3444 lockdep_trace_alloc(flags);
3445
773ff60e 3446 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3447 return NULL;
3448
d79923fa
GC
3449 cachep = memcg_kmem_get_cache(cachep, flags);
3450
8c8cc2c1
PE
3451 cache_alloc_debugcheck_before(cachep, flags);
3452 local_irq_save(save_flags);
3453 objp = __do_cache_alloc(cachep, flags);
3454 local_irq_restore(save_flags);
3455 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3456 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3457 flags);
8c8cc2c1
PE
3458 prefetchw(objp);
3459
c175eea4 3460 if (likely(objp))
8c138bc0 3461 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3462
d07dbea4 3463 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3464 memset(objp, 0, cachep->object_size);
d07dbea4 3465
8c8cc2c1
PE
3466 return objp;
3467}
e498be7d
CL
3468
3469/*
3470 * Caller needs to acquire correct kmem_list's list_lock
3471 */
343e0d7a 3472static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3473 int node)
1da177e4
LT
3474{
3475 int i;
ce8eb6c4 3476 struct kmem_cache_node *n;
1da177e4
LT
3477
3478 for (i = 0; i < nr_objects; i++) {
072bb0aa 3479 void *objp;
1da177e4 3480 struct slab *slabp;
1da177e4 3481
072bb0aa
MG
3482 clear_obj_pfmemalloc(&objpp[i]);
3483 objp = objpp[i];
3484
6ed5eb22 3485 slabp = virt_to_slab(objp);
ce8eb6c4 3486 n = cachep->node[node];
1da177e4 3487 list_del(&slabp->list);
ff69416e 3488 check_spinlock_acquired_node(cachep, node);
1da177e4 3489 check_slabp(cachep, slabp);
78d382d7 3490 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3491 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3492 n->free_objects++;
1da177e4
LT
3493 check_slabp(cachep, slabp);
3494
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
ce8eb6c4
CL
3497 if (n->free_objects > n->free_limit) {
3498 n->free_objects -= cachep->num;
e5ac9c5a
RT
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3504 */
1da177e4
LT
3505 slab_destroy(cachep, slabp);
3506 } else {
ce8eb6c4 3507 list_add(&slabp->list, &n->slabs_free);
1da177e4
LT
3508 }
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3513 */
ce8eb6c4 3514 list_add_tail(&slabp->list, &n->slabs_partial);
1da177e4
LT
3515 }
3516 }
3517}
3518
343e0d7a 3519static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3520{
3521 int batchcount;
ce8eb6c4 3522 struct kmem_cache_node *n;
7d6e6d09 3523 int node = numa_mem_id();
1da177e4
LT
3524
3525 batchcount = ac->batchcount;
3526#if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528#endif
3529 check_irq_off();
ce8eb6c4
CL
3530 n = cachep->node[node];
3531 spin_lock(&n->list_lock);
3532 if (n->shared) {
3533 struct array_cache *shared_array = n->shared;
b28a02de 3534 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
e498be7d 3538 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3539 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3540 shared_array->avail += batchcount;
3541 goto free_done;
3542 }
3543 }
3544
ff69416e 3545 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3546free_done:
1da177e4
LT
3547#if STATS
3548 {
3549 int i = 0;
3550 struct list_head *p;
3551
ce8eb6c4
CL
3552 p = n->slabs_free.next;
3553 while (p != &(n->slabs_free)) {
1da177e4
LT
3554 struct slab *slabp;
3555
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3558
3559 i++;
3560 p = p->next;
3561 }
3562 STATS_SET_FREEABLE(cachep, i);
3563 }
3564#endif
ce8eb6c4 3565 spin_unlock(&n->list_lock);
1da177e4 3566 ac->avail -= batchcount;
a737b3e2 3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3568}
3569
3570/*
a737b3e2
AM
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3573 */
a947eb95 3574static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3575 unsigned long caller)
1da177e4 3576{
9a2dba4b 3577 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3578
3579 check_irq_off();
d5cff635 3580 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3581 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3582
8c138bc0 3583 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3584
1807a1aa
SS
3585 /*
3586 * Skip calling cache_free_alien() when the platform is not numa.
3587 * This will avoid cache misses that happen while accessing slabp (which
3588 * is per page memory reference) to get nodeid. Instead use a global
3589 * variable to skip the call, which is mostly likely to be present in
3590 * the cache.
3591 */
b6e68bc1 3592 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3593 return;
3594
1da177e4
LT
3595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3597 } else {
3598 STATS_INC_FREEMISS(cachep);
3599 cache_flusharray(cachep, ac);
1da177e4 3600 }
42c8c99c 3601
072bb0aa 3602 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3603}
3604
3605/**
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3612 */
343e0d7a 3613void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3614{
48356303 3615 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3616
ca2b84cb 3617 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3618 cachep->object_size, cachep->size, flags);
36555751
EGM
3619
3620 return ret;
1da177e4
LT
3621}
3622EXPORT_SYMBOL(kmem_cache_alloc);
3623
0f24f128 3624#ifdef CONFIG_TRACING
85beb586 3625void *
4052147c 3626kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3627{
85beb586
SR
3628 void *ret;
3629
48356303 3630 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3631
3632 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3633 size, cachep->size, flags);
85beb586 3634 return ret;
36555751 3635}
85beb586 3636EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3637#endif
3638
1da177e4 3639#ifdef CONFIG_NUMA
d0d04b78
ZL
3640/**
3641 * kmem_cache_alloc_node - Allocate an object on the specified node
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 * @nodeid: node number of the target node.
3645 *
3646 * Identical to kmem_cache_alloc but it will allocate memory on the given
3647 * node, which can improve the performance for cpu bound structures.
3648 *
3649 * Fallback to other node is possible if __GFP_THISNODE is not set.
3650 */
8b98c169
CH
3651void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3652{
48356303 3653 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3654
ca2b84cb 3655 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3656 cachep->object_size, cachep->size,
ca2b84cb 3657 flags, nodeid);
36555751
EGM
3658
3659 return ret;
8b98c169 3660}
1da177e4
LT
3661EXPORT_SYMBOL(kmem_cache_alloc_node);
3662
0f24f128 3663#ifdef CONFIG_TRACING
4052147c 3664void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3665 gfp_t flags,
4052147c
EG
3666 int nodeid,
3667 size_t size)
36555751 3668{
85beb586
SR
3669 void *ret;
3670
592f4145 3671 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3672
85beb586 3673 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3674 size, cachep->size,
85beb586
SR
3675 flags, nodeid);
3676 return ret;
36555751 3677}
85beb586 3678EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3679#endif
3680
8b98c169 3681static __always_inline void *
7c0cb9c6 3682__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3683{
343e0d7a 3684 struct kmem_cache *cachep;
97e2bde4 3685
2c59dd65 3686 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3687 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 return cachep;
4052147c 3689 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3690}
8b98c169 3691
0bb38a5c 3692#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3693void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694{
7c0cb9c6 3695 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3696}
dbe5e69d 3697EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3698
3699void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3700 int node, unsigned long caller)
8b98c169 3701{
7c0cb9c6 3702 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3703}
3704EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705#else
3706void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707{
7c0cb9c6 3708 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3709}
3710EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3711#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3712#endif /* CONFIG_NUMA */
1da177e4
LT
3713
3714/**
800590f5 3715 * __do_kmalloc - allocate memory
1da177e4 3716 * @size: how many bytes of memory are required.
800590f5 3717 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3718 * @caller: function caller for debug tracking of the caller
1da177e4 3719 */
7fd6b141 3720static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3721 unsigned long caller)
1da177e4 3722{
343e0d7a 3723 struct kmem_cache *cachep;
36555751 3724 void *ret;
1da177e4 3725
97e2bde4
MS
3726 /* If you want to save a few bytes .text space: replace
3727 * __ with kmem_.
3728 * Then kmalloc uses the uninlined functions instead of the inline
3729 * functions.
3730 */
2c59dd65 3731 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3732 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3733 return cachep;
48356303 3734 ret = slab_alloc(cachep, flags, caller);
36555751 3735
7c0cb9c6 3736 trace_kmalloc(caller, ret,
3b0efdfa 3737 size, cachep->size, flags);
36555751
EGM
3738
3739 return ret;
7fd6b141
PE
3740}
3741
7fd6b141 3742
0bb38a5c 3743#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
7c0cb9c6 3746 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
ce71e27c 3750void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3751{
7c0cb9c6 3752 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3755
3756#else
3757void *__kmalloc(size_t size, gfp_t flags)
3758{
7c0cb9c6 3759 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3760}
3761EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3762#endif
3763
1da177e4
LT
3764/**
3765 * kmem_cache_free - Deallocate an object
3766 * @cachep: The cache the allocation was from.
3767 * @objp: The previously allocated object.
3768 *
3769 * Free an object which was previously allocated from this
3770 * cache.
3771 */
343e0d7a 3772void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3773{
3774 unsigned long flags;
b9ce5ef4
GC
3775 cachep = cache_from_obj(cachep, objp);
3776 if (!cachep)
3777 return;
1da177e4
LT
3778
3779 local_irq_save(flags);
d97d476b 3780 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3781 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3782 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3783 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3784 local_irq_restore(flags);
36555751 3785
ca2b84cb 3786 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3787}
3788EXPORT_SYMBOL(kmem_cache_free);
3789
1da177e4
LT
3790/**
3791 * kfree - free previously allocated memory
3792 * @objp: pointer returned by kmalloc.
3793 *
80e93eff
PE
3794 * If @objp is NULL, no operation is performed.
3795 *
1da177e4
LT
3796 * Don't free memory not originally allocated by kmalloc()
3797 * or you will run into trouble.
3798 */
3799void kfree(const void *objp)
3800{
343e0d7a 3801 struct kmem_cache *c;
1da177e4
LT
3802 unsigned long flags;
3803
2121db74
PE
3804 trace_kfree(_RET_IP_, objp);
3805
6cb8f913 3806 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3807 return;
3808 local_irq_save(flags);
3809 kfree_debugcheck(objp);
6ed5eb22 3810 c = virt_to_cache(objp);
8c138bc0
CL
3811 debug_check_no_locks_freed(objp, c->object_size);
3812
3813 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3814 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3815 local_irq_restore(flags);
3816}
3817EXPORT_SYMBOL(kfree);
3818
e498be7d 3819/*
ce8eb6c4 3820 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3821 */
83b519e8 3822static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3823{
3824 int node;
ce8eb6c4 3825 struct kmem_cache_node *n;
cafeb02e 3826 struct array_cache *new_shared;
3395ee05 3827 struct array_cache **new_alien = NULL;
e498be7d 3828
9c09a95c 3829 for_each_online_node(node) {
cafeb02e 3830
3395ee05 3831 if (use_alien_caches) {
83b519e8 3832 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3833 if (!new_alien)
3834 goto fail;
3835 }
cafeb02e 3836
63109846
ED
3837 new_shared = NULL;
3838 if (cachep->shared) {
3839 new_shared = alloc_arraycache(node,
0718dc2a 3840 cachep->shared*cachep->batchcount,
83b519e8 3841 0xbaadf00d, gfp);
63109846
ED
3842 if (!new_shared) {
3843 free_alien_cache(new_alien);
3844 goto fail;
3845 }
0718dc2a 3846 }
cafeb02e 3847
ce8eb6c4
CL
3848 n = cachep->node[node];
3849 if (n) {
3850 struct array_cache *shared = n->shared;
cafeb02e 3851
ce8eb6c4 3852 spin_lock_irq(&n->list_lock);
e498be7d 3853
cafeb02e 3854 if (shared)
0718dc2a
CL
3855 free_block(cachep, shared->entry,
3856 shared->avail, node);
e498be7d 3857
ce8eb6c4
CL
3858 n->shared = new_shared;
3859 if (!n->alien) {
3860 n->alien = new_alien;
e498be7d
CL
3861 new_alien = NULL;
3862 }
ce8eb6c4 3863 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3864 cachep->batchcount + cachep->num;
ce8eb6c4 3865 spin_unlock_irq(&n->list_lock);
cafeb02e 3866 kfree(shared);
e498be7d
CL
3867 free_alien_cache(new_alien);
3868 continue;
3869 }
ce8eb6c4
CL
3870 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3871 if (!n) {
0718dc2a
CL
3872 free_alien_cache(new_alien);
3873 kfree(new_shared);
e498be7d 3874 goto fail;
0718dc2a 3875 }
e498be7d 3876
ce8eb6c4
CL
3877 kmem_cache_node_init(n);
3878 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3879 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3880 n->shared = new_shared;
3881 n->alien = new_alien;
3882 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3883 cachep->batchcount + cachep->num;
ce8eb6c4 3884 cachep->node[node] = n;
e498be7d 3885 }
cafeb02e 3886 return 0;
0718dc2a 3887
a737b3e2 3888fail:
3b0efdfa 3889 if (!cachep->list.next) {
0718dc2a
CL
3890 /* Cache is not active yet. Roll back what we did */
3891 node--;
3892 while (node >= 0) {
6a67368c 3893 if (cachep->node[node]) {
ce8eb6c4 3894 n = cachep->node[node];
0718dc2a 3895
ce8eb6c4
CL
3896 kfree(n->shared);
3897 free_alien_cache(n->alien);
3898 kfree(n);
6a67368c 3899 cachep->node[node] = NULL;
0718dc2a
CL
3900 }
3901 node--;
3902 }
3903 }
cafeb02e 3904 return -ENOMEM;
e498be7d
CL
3905}
3906
1da177e4 3907struct ccupdate_struct {
343e0d7a 3908 struct kmem_cache *cachep;
acfe7d74 3909 struct array_cache *new[0];
1da177e4
LT
3910};
3911
3912static void do_ccupdate_local(void *info)
3913{
a737b3e2 3914 struct ccupdate_struct *new = info;
1da177e4
LT
3915 struct array_cache *old;
3916
3917 check_irq_off();
9a2dba4b 3918 old = cpu_cache_get(new->cachep);
e498be7d 3919
1da177e4
LT
3920 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3921 new->new[smp_processor_id()] = old;
3922}
3923
18004c5d 3924/* Always called with the slab_mutex held */
943a451a 3925static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3926 int batchcount, int shared, gfp_t gfp)
1da177e4 3927{
d2e7b7d0 3928 struct ccupdate_struct *new;
2ed3a4ef 3929 int i;
1da177e4 3930
acfe7d74
ED
3931 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3932 gfp);
d2e7b7d0
SS
3933 if (!new)
3934 return -ENOMEM;
3935
e498be7d 3936 for_each_online_cpu(i) {
7d6e6d09 3937 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3938 batchcount, gfp);
d2e7b7d0 3939 if (!new->new[i]) {
b28a02de 3940 for (i--; i >= 0; i--)
d2e7b7d0
SS
3941 kfree(new->new[i]);
3942 kfree(new);
e498be7d 3943 return -ENOMEM;
1da177e4
LT
3944 }
3945 }
d2e7b7d0 3946 new->cachep = cachep;
1da177e4 3947
15c8b6c1 3948 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3949
1da177e4 3950 check_irq_on();
1da177e4
LT
3951 cachep->batchcount = batchcount;
3952 cachep->limit = limit;
e498be7d 3953 cachep->shared = shared;
1da177e4 3954
e498be7d 3955 for_each_online_cpu(i) {
d2e7b7d0 3956 struct array_cache *ccold = new->new[i];
1da177e4
LT
3957 if (!ccold)
3958 continue;
6a67368c 3959 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3960 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3961 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3962 kfree(ccold);
3963 }
d2e7b7d0 3964 kfree(new);
83b519e8 3965 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3966}
3967
943a451a
GC
3968static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3969 int batchcount, int shared, gfp_t gfp)
3970{
3971 int ret;
3972 struct kmem_cache *c = NULL;
3973 int i = 0;
3974
3975 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3976
3977 if (slab_state < FULL)
3978 return ret;
3979
3980 if ((ret < 0) || !is_root_cache(cachep))
3981 return ret;
3982
ebe945c2 3983 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3984 for_each_memcg_cache_index(i) {
3985 c = cache_from_memcg(cachep, i);
3986 if (c)
3987 /* return value determined by the parent cache only */
3988 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3989 }
3990
3991 return ret;
3992}
3993
18004c5d 3994/* Called with slab_mutex held always */
83b519e8 3995static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3996{
3997 int err;
943a451a
GC
3998 int limit = 0;
3999 int shared = 0;
4000 int batchcount = 0;
4001
4002 if (!is_root_cache(cachep)) {
4003 struct kmem_cache *root = memcg_root_cache(cachep);
4004 limit = root->limit;
4005 shared = root->shared;
4006 batchcount = root->batchcount;
4007 }
1da177e4 4008
943a451a
GC
4009 if (limit && shared && batchcount)
4010 goto skip_setup;
a737b3e2
AM
4011 /*
4012 * The head array serves three purposes:
1da177e4
LT
4013 * - create a LIFO ordering, i.e. return objects that are cache-warm
4014 * - reduce the number of spinlock operations.
a737b3e2 4015 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4016 * bufctl chains: array operations are cheaper.
4017 * The numbers are guessed, we should auto-tune as described by
4018 * Bonwick.
4019 */
3b0efdfa 4020 if (cachep->size > 131072)
1da177e4 4021 limit = 1;
3b0efdfa 4022 else if (cachep->size > PAGE_SIZE)
1da177e4 4023 limit = 8;
3b0efdfa 4024 else if (cachep->size > 1024)
1da177e4 4025 limit = 24;
3b0efdfa 4026 else if (cachep->size > 256)
1da177e4
LT
4027 limit = 54;
4028 else
4029 limit = 120;
4030
a737b3e2
AM
4031 /*
4032 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4033 * allocation behaviour: Most allocs on one cpu, most free operations
4034 * on another cpu. For these cases, an efficient object passing between
4035 * cpus is necessary. This is provided by a shared array. The array
4036 * replaces Bonwick's magazine layer.
4037 * On uniprocessor, it's functionally equivalent (but less efficient)
4038 * to a larger limit. Thus disabled by default.
4039 */
4040 shared = 0;
3b0efdfa 4041 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4042 shared = 8;
1da177e4
LT
4043
4044#if DEBUG
a737b3e2
AM
4045 /*
4046 * With debugging enabled, large batchcount lead to excessively long
4047 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4048 */
4049 if (limit > 32)
4050 limit = 32;
4051#endif
943a451a
GC
4052 batchcount = (limit + 1) / 2;
4053skip_setup:
4054 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4055 if (err)
4056 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4057 cachep->name, -err);
2ed3a4ef 4058 return err;
1da177e4
LT
4059}
4060
1b55253a 4061/*
ce8eb6c4
CL
4062 * Drain an array if it contains any elements taking the node lock only if
4063 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4064 * if drain_array() is used on the shared array.
1b55253a 4065 */
ce8eb6c4 4066static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 4067 struct array_cache *ac, int force, int node)
1da177e4
LT
4068{
4069 int tofree;
4070
1b55253a
CL
4071 if (!ac || !ac->avail)
4072 return;
1da177e4
LT
4073 if (ac->touched && !force) {
4074 ac->touched = 0;
b18e7e65 4075 } else {
ce8eb6c4 4076 spin_lock_irq(&n->list_lock);
b18e7e65
CL
4077 if (ac->avail) {
4078 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4079 if (tofree > ac->avail)
4080 tofree = (ac->avail + 1) / 2;
4081 free_block(cachep, ac->entry, tofree, node);
4082 ac->avail -= tofree;
4083 memmove(ac->entry, &(ac->entry[tofree]),
4084 sizeof(void *) * ac->avail);
4085 }
ce8eb6c4 4086 spin_unlock_irq(&n->list_lock);
1da177e4
LT
4087 }
4088}
4089
4090/**
4091 * cache_reap - Reclaim memory from caches.
05fb6bf0 4092 * @w: work descriptor
1da177e4
LT
4093 *
4094 * Called from workqueue/eventd every few seconds.
4095 * Purpose:
4096 * - clear the per-cpu caches for this CPU.
4097 * - return freeable pages to the main free memory pool.
4098 *
a737b3e2
AM
4099 * If we cannot acquire the cache chain mutex then just give up - we'll try
4100 * again on the next iteration.
1da177e4 4101 */
7c5cae36 4102static void cache_reap(struct work_struct *w)
1da177e4 4103{
7a7c381d 4104 struct kmem_cache *searchp;
ce8eb6c4 4105 struct kmem_cache_node *n;
7d6e6d09 4106 int node = numa_mem_id();
bf6aede7 4107 struct delayed_work *work = to_delayed_work(w);
1da177e4 4108
18004c5d 4109 if (!mutex_trylock(&slab_mutex))
1da177e4 4110 /* Give up. Setup the next iteration. */
7c5cae36 4111 goto out;
1da177e4 4112
18004c5d 4113 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4114 check_irq_on();
4115
35386e3b 4116 /*
ce8eb6c4 4117 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4118 * have established with reasonable certainty that
4119 * we can do some work if the lock was obtained.
4120 */
ce8eb6c4 4121 n = searchp->node[node];
35386e3b 4122
ce8eb6c4 4123 reap_alien(searchp, n);
1da177e4 4124
ce8eb6c4 4125 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4126
35386e3b
CL
4127 /*
4128 * These are racy checks but it does not matter
4129 * if we skip one check or scan twice.
4130 */
ce8eb6c4 4131 if (time_after(n->next_reap, jiffies))
35386e3b 4132 goto next;
1da177e4 4133
ce8eb6c4 4134 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4135
ce8eb6c4 4136 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4137
ce8eb6c4
CL
4138 if (n->free_touched)
4139 n->free_touched = 0;
ed11d9eb
CL
4140 else {
4141 int freed;
1da177e4 4142
ce8eb6c4 4143 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4144 5 * searchp->num - 1) / (5 * searchp->num));
4145 STATS_ADD_REAPED(searchp, freed);
4146 }
35386e3b 4147next:
1da177e4
LT
4148 cond_resched();
4149 }
4150 check_irq_on();
18004c5d 4151 mutex_unlock(&slab_mutex);
8fce4d8e 4152 next_reap_node();
7c5cae36 4153out:
a737b3e2 4154 /* Set up the next iteration */
7c5cae36 4155 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4156}
4157
158a9624 4158#ifdef CONFIG_SLABINFO
0d7561c6 4159void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4160{
b28a02de
PE
4161 struct slab *slabp;
4162 unsigned long active_objs;
4163 unsigned long num_objs;
4164 unsigned long active_slabs = 0;
4165 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4166 const char *name;
1da177e4 4167 char *error = NULL;
e498be7d 4168 int node;
ce8eb6c4 4169 struct kmem_cache_node *n;
1da177e4 4170
1da177e4
LT
4171 active_objs = 0;
4172 num_slabs = 0;
e498be7d 4173 for_each_online_node(node) {
ce8eb6c4
CL
4174 n = cachep->node[node];
4175 if (!n)
e498be7d
CL
4176 continue;
4177
ca3b9b91 4178 check_irq_on();
ce8eb6c4 4179 spin_lock_irq(&n->list_lock);
e498be7d 4180
ce8eb6c4 4181 list_for_each_entry(slabp, &n->slabs_full, list) {
e498be7d
CL
4182 if (slabp->inuse != cachep->num && !error)
4183 error = "slabs_full accounting error";
4184 active_objs += cachep->num;
4185 active_slabs++;
4186 }
ce8eb6c4 4187 list_for_each_entry(slabp, &n->slabs_partial, list) {
e498be7d
CL
4188 if (slabp->inuse == cachep->num && !error)
4189 error = "slabs_partial inuse accounting error";
4190 if (!slabp->inuse && !error)
4191 error = "slabs_partial/inuse accounting error";
4192 active_objs += slabp->inuse;
4193 active_slabs++;
4194 }
ce8eb6c4 4195 list_for_each_entry(slabp, &n->slabs_free, list) {
e498be7d
CL
4196 if (slabp->inuse && !error)
4197 error = "slabs_free/inuse accounting error";
4198 num_slabs++;
4199 }
ce8eb6c4
CL
4200 free_objects += n->free_objects;
4201 if (n->shared)
4202 shared_avail += n->shared->avail;
e498be7d 4203
ce8eb6c4 4204 spin_unlock_irq(&n->list_lock);
1da177e4 4205 }
b28a02de
PE
4206 num_slabs += active_slabs;
4207 num_objs = num_slabs * cachep->num;
e498be7d 4208 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4209 error = "free_objects accounting error";
4210
b28a02de 4211 name = cachep->name;
1da177e4
LT
4212 if (error)
4213 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4214
0d7561c6
GC
4215 sinfo->active_objs = active_objs;
4216 sinfo->num_objs = num_objs;
4217 sinfo->active_slabs = active_slabs;
4218 sinfo->num_slabs = num_slabs;
4219 sinfo->shared_avail = shared_avail;
4220 sinfo->limit = cachep->limit;
4221 sinfo->batchcount = cachep->batchcount;
4222 sinfo->shared = cachep->shared;
4223 sinfo->objects_per_slab = cachep->num;
4224 sinfo->cache_order = cachep->gfporder;
4225}
4226
4227void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4228{
1da177e4 4229#if STATS
ce8eb6c4 4230 { /* node stats */
1da177e4
LT
4231 unsigned long high = cachep->high_mark;
4232 unsigned long allocs = cachep->num_allocations;
4233 unsigned long grown = cachep->grown;
4234 unsigned long reaped = cachep->reaped;
4235 unsigned long errors = cachep->errors;
4236 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4237 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4238 unsigned long node_frees = cachep->node_frees;
fb7faf33 4239 unsigned long overflows = cachep->node_overflow;
1da177e4 4240
e92dd4fd
JP
4241 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4242 "%4lu %4lu %4lu %4lu %4lu",
4243 allocs, high, grown,
4244 reaped, errors, max_freeable, node_allocs,
4245 node_frees, overflows);
1da177e4
LT
4246 }
4247 /* cpu stats */
4248 {
4249 unsigned long allochit = atomic_read(&cachep->allochit);
4250 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4251 unsigned long freehit = atomic_read(&cachep->freehit);
4252 unsigned long freemiss = atomic_read(&cachep->freemiss);
4253
4254 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4255 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4256 }
4257#endif
1da177e4
LT
4258}
4259
1da177e4
LT
4260#define MAX_SLABINFO_WRITE 128
4261/**
4262 * slabinfo_write - Tuning for the slab allocator
4263 * @file: unused
4264 * @buffer: user buffer
4265 * @count: data length
4266 * @ppos: unused
4267 */
b7454ad3 4268ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4269 size_t count, loff_t *ppos)
1da177e4 4270{
b28a02de 4271 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4272 int limit, batchcount, shared, res;
7a7c381d 4273 struct kmem_cache *cachep;
b28a02de 4274
1da177e4
LT
4275 if (count > MAX_SLABINFO_WRITE)
4276 return -EINVAL;
4277 if (copy_from_user(&kbuf, buffer, count))
4278 return -EFAULT;
b28a02de 4279 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4280
4281 tmp = strchr(kbuf, ' ');
4282 if (!tmp)
4283 return -EINVAL;
4284 *tmp = '\0';
4285 tmp++;
4286 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4287 return -EINVAL;
4288
4289 /* Find the cache in the chain of caches. */
18004c5d 4290 mutex_lock(&slab_mutex);
1da177e4 4291 res = -EINVAL;
18004c5d 4292 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4293 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4294 if (limit < 1 || batchcount < 1 ||
4295 batchcount > limit || shared < 0) {
e498be7d 4296 res = 0;
1da177e4 4297 } else {
e498be7d 4298 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4299 batchcount, shared,
4300 GFP_KERNEL);
1da177e4
LT
4301 }
4302 break;
4303 }
4304 }
18004c5d 4305 mutex_unlock(&slab_mutex);
1da177e4
LT
4306 if (res >= 0)
4307 res = count;
4308 return res;
4309}
871751e2
AV
4310
4311#ifdef CONFIG_DEBUG_SLAB_LEAK
4312
4313static void *leaks_start(struct seq_file *m, loff_t *pos)
4314{
18004c5d
CL
4315 mutex_lock(&slab_mutex);
4316 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4317}
4318
4319static inline int add_caller(unsigned long *n, unsigned long v)
4320{
4321 unsigned long *p;
4322 int l;
4323 if (!v)
4324 return 1;
4325 l = n[1];
4326 p = n + 2;
4327 while (l) {
4328 int i = l/2;
4329 unsigned long *q = p + 2 * i;
4330 if (*q == v) {
4331 q[1]++;
4332 return 1;
4333 }
4334 if (*q > v) {
4335 l = i;
4336 } else {
4337 p = q + 2;
4338 l -= i + 1;
4339 }
4340 }
4341 if (++n[1] == n[0])
4342 return 0;
4343 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4344 p[0] = v;
4345 p[1] = 1;
4346 return 1;
4347}
4348
4349static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4350{
4351 void *p;
4352 int i;
4353 if (n[0] == n[1])
4354 return;
3b0efdfa 4355 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4356 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4357 continue;
4358 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4359 return;
4360 }
4361}
4362
4363static void show_symbol(struct seq_file *m, unsigned long address)
4364{
4365#ifdef CONFIG_KALLSYMS
871751e2 4366 unsigned long offset, size;
9281acea 4367 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4368
a5c43dae 4369 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4370 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4371 if (modname[0])
871751e2
AV
4372 seq_printf(m, " [%s]", modname);
4373 return;
4374 }
4375#endif
4376 seq_printf(m, "%p", (void *)address);
4377}
4378
4379static int leaks_show(struct seq_file *m, void *p)
4380{
0672aa7c 4381 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4382 struct slab *slabp;
ce8eb6c4 4383 struct kmem_cache_node *n;
871751e2 4384 const char *name;
db845067 4385 unsigned long *x = m->private;
871751e2
AV
4386 int node;
4387 int i;
4388
4389 if (!(cachep->flags & SLAB_STORE_USER))
4390 return 0;
4391 if (!(cachep->flags & SLAB_RED_ZONE))
4392 return 0;
4393
4394 /* OK, we can do it */
4395
db845067 4396 x[1] = 0;
871751e2
AV
4397
4398 for_each_online_node(node) {
ce8eb6c4
CL
4399 n = cachep->node[node];
4400 if (!n)
871751e2
AV
4401 continue;
4402
4403 check_irq_on();
ce8eb6c4 4404 spin_lock_irq(&n->list_lock);
871751e2 4405
ce8eb6c4 4406 list_for_each_entry(slabp, &n->slabs_full, list)
db845067 4407 handle_slab(x, cachep, slabp);
ce8eb6c4 4408 list_for_each_entry(slabp, &n->slabs_partial, list)
db845067 4409 handle_slab(x, cachep, slabp);
ce8eb6c4 4410 spin_unlock_irq(&n->list_lock);
871751e2
AV
4411 }
4412 name = cachep->name;
db845067 4413 if (x[0] == x[1]) {
871751e2 4414 /* Increase the buffer size */
18004c5d 4415 mutex_unlock(&slab_mutex);
db845067 4416 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4417 if (!m->private) {
4418 /* Too bad, we are really out */
db845067 4419 m->private = x;
18004c5d 4420 mutex_lock(&slab_mutex);
871751e2
AV
4421 return -ENOMEM;
4422 }
db845067
CL
4423 *(unsigned long *)m->private = x[0] * 2;
4424 kfree(x);
18004c5d 4425 mutex_lock(&slab_mutex);
871751e2
AV
4426 /* Now make sure this entry will be retried */
4427 m->count = m->size;
4428 return 0;
4429 }
db845067
CL
4430 for (i = 0; i < x[1]; i++) {
4431 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4432 show_symbol(m, x[2*i+2]);
871751e2
AV
4433 seq_putc(m, '\n');
4434 }
d2e7b7d0 4435
871751e2
AV
4436 return 0;
4437}
4438
a0ec95a8 4439static const struct seq_operations slabstats_op = {
871751e2 4440 .start = leaks_start,
276a2439
WL
4441 .next = slab_next,
4442 .stop = slab_stop,
871751e2
AV
4443 .show = leaks_show,
4444};
a0ec95a8
AD
4445
4446static int slabstats_open(struct inode *inode, struct file *file)
4447{
4448 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4449 int ret = -ENOMEM;
4450 if (n) {
4451 ret = seq_open(file, &slabstats_op);
4452 if (!ret) {
4453 struct seq_file *m = file->private_data;
4454 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4455 m->private = n;
4456 n = NULL;
4457 }
4458 kfree(n);
4459 }
4460 return ret;
4461}
4462
4463static const struct file_operations proc_slabstats_operations = {
4464 .open = slabstats_open,
4465 .read = seq_read,
4466 .llseek = seq_lseek,
4467 .release = seq_release_private,
4468};
4469#endif
4470
4471static int __init slab_proc_init(void)
4472{
4473#ifdef CONFIG_DEBUG_SLAB_LEAK
4474 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4475#endif
a0ec95a8
AD
4476 return 0;
4477}
4478module_init(slab_proc_init);
1da177e4
LT
4479#endif
4480
00e145b6
MS
4481/**
4482 * ksize - get the actual amount of memory allocated for a given object
4483 * @objp: Pointer to the object
4484 *
4485 * kmalloc may internally round up allocations and return more memory
4486 * than requested. ksize() can be used to determine the actual amount of
4487 * memory allocated. The caller may use this additional memory, even though
4488 * a smaller amount of memory was initially specified with the kmalloc call.
4489 * The caller must guarantee that objp points to a valid object previously
4490 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4491 * must not be freed during the duration of the call.
4492 */
fd76bab2 4493size_t ksize(const void *objp)
1da177e4 4494{
ef8b4520
CL
4495 BUG_ON(!objp);
4496 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4497 return 0;
1da177e4 4498
8c138bc0 4499 return virt_to_cache(objp)->object_size;
1da177e4 4500}
b1aabecd 4501EXPORT_SYMBOL(ksize);