]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
fork: collapse copy_flags into copy_process
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * struct array_cache
168 *
1da177e4
LT
169 * Purpose:
170 * - LIFO ordering, to hand out cache-warm objects from _alloc
171 * - reduce the number of linked list operations
172 * - reduce spinlock operations
173 *
174 * The limit is stored in the per-cpu structure to reduce the data cache
175 * footprint.
176 *
177 */
178struct array_cache {
179 unsigned int avail;
180 unsigned int limit;
181 unsigned int batchcount;
182 unsigned int touched;
e498be7d 183 spinlock_t lock;
bda5b655 184 void *entry[]; /*
a737b3e2
AM
185 * Must have this definition in here for the proper
186 * alignment of array_cache. Also simplifies accessing
187 * the entries.
072bb0aa
MG
188 *
189 * Entries should not be directly dereferenced as
190 * entries belonging to slabs marked pfmemalloc will
191 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 192 */
1da177e4
LT
193};
194
072bb0aa
MG
195#define SLAB_OBJ_PFMEMALLOC 1
196static inline bool is_obj_pfmemalloc(void *objp)
197{
198 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
199}
200
201static inline void set_obj_pfmemalloc(void **objp)
202{
203 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
204 return;
205}
206
207static inline void clear_obj_pfmemalloc(void **objp)
208{
209 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
210}
211
a737b3e2
AM
212/*
213 * bootstrap: The caches do not work without cpuarrays anymore, but the
214 * cpuarrays are allocated from the generic caches...
1da177e4
LT
215 */
216#define BOOT_CPUCACHE_ENTRIES 1
217struct arraycache_init {
218 struct array_cache cache;
b28a02de 219 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
220};
221
e498be7d
CL
222/*
223 * Need this for bootstrapping a per node allocator.
224 */
556a169d 225#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 226static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 227#define CACHE_CACHE 0
556a169d 228#define SIZE_AC MAX_NUMNODES
ce8eb6c4 229#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 230
ed11d9eb 231static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 232 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
233static void free_block(struct kmem_cache *cachep, void **objpp, int len,
234 int node);
83b519e8 235static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 236static void cache_reap(struct work_struct *unused);
ed11d9eb 237
e0a42726
IM
238static int slab_early_init = 1;
239
e3366016 240#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 241#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 242
ce8eb6c4 243static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
244{
245 INIT_LIST_HEAD(&parent->slabs_full);
246 INIT_LIST_HEAD(&parent->slabs_partial);
247 INIT_LIST_HEAD(&parent->slabs_free);
248 parent->shared = NULL;
249 parent->alien = NULL;
2e1217cf 250 parent->colour_next = 0;
e498be7d
CL
251 spin_lock_init(&parent->list_lock);
252 parent->free_objects = 0;
253 parent->free_touched = 0;
254}
255
a737b3e2
AM
256#define MAKE_LIST(cachep, listp, slab, nodeid) \
257 do { \
258 INIT_LIST_HEAD(listp); \
6a67368c 259 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
260 } while (0)
261
a737b3e2
AM
262#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
263 do { \
e498be7d
CL
264 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
265 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
266 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
267 } while (0)
1da177e4 268
1da177e4
LT
269#define CFLGS_OFF_SLAB (0x80000000UL)
270#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
271
272#define BATCHREFILL_LIMIT 16
a737b3e2
AM
273/*
274 * Optimization question: fewer reaps means less probability for unnessary
275 * cpucache drain/refill cycles.
1da177e4 276 *
dc6f3f27 277 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
278 * which could lock up otherwise freeable slabs.
279 */
280#define REAPTIMEOUT_CPUC (2*HZ)
281#define REAPTIMEOUT_LIST3 (4*HZ)
282
283#if STATS
284#define STATS_INC_ACTIVE(x) ((x)->num_active++)
285#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
286#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
287#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 288#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
289#define STATS_SET_HIGH(x) \
290 do { \
291 if ((x)->num_active > (x)->high_mark) \
292 (x)->high_mark = (x)->num_active; \
293 } while (0)
1da177e4
LT
294#define STATS_INC_ERR(x) ((x)->errors++)
295#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 296#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 297#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
298#define STATS_SET_FREEABLE(x, i) \
299 do { \
300 if ((x)->max_freeable < i) \
301 (x)->max_freeable = i; \
302 } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
304#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
305#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
306#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
307#else
308#define STATS_INC_ACTIVE(x) do { } while (0)
309#define STATS_DEC_ACTIVE(x) do { } while (0)
310#define STATS_INC_ALLOCED(x) do { } while (0)
311#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 312#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
313#define STATS_SET_HIGH(x) do { } while (0)
314#define STATS_INC_ERR(x) do { } while (0)
315#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 316#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 317#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 318#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
319#define STATS_INC_ALLOCHIT(x) do { } while (0)
320#define STATS_INC_ALLOCMISS(x) do { } while (0)
321#define STATS_INC_FREEHIT(x) do { } while (0)
322#define STATS_INC_FREEMISS(x) do { } while (0)
323#endif
324
325#if DEBUG
1da177e4 326
a737b3e2
AM
327/*
328 * memory layout of objects:
1da177e4 329 * 0 : objp
3dafccf2 330 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
331 * the end of an object is aligned with the end of the real
332 * allocation. Catches writes behind the end of the allocation.
3dafccf2 333 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 334 * redzone word.
3dafccf2 335 * cachep->obj_offset: The real object.
3b0efdfa
CL
336 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
337 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 338 * [BYTES_PER_WORD long]
1da177e4 339 */
343e0d7a 340static int obj_offset(struct kmem_cache *cachep)
1da177e4 341{
3dafccf2 342 return cachep->obj_offset;
1da177e4
LT
343}
344
b46b8f19 345static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
346{
347 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
348 return (unsigned long long*) (objp + obj_offset(cachep) -
349 sizeof(unsigned long long));
1da177e4
LT
350}
351
b46b8f19 352static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
353{
354 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
355 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 356 return (unsigned long long *)(objp + cachep->size -
b46b8f19 357 sizeof(unsigned long long) -
87a927c7 358 REDZONE_ALIGN);
3b0efdfa 359 return (unsigned long long *) (objp + cachep->size -
b46b8f19 360 sizeof(unsigned long long));
1da177e4
LT
361}
362
343e0d7a 363static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
364{
365 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 366 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
367}
368
369#else
370
3dafccf2 371#define obj_offset(x) 0
b46b8f19
DW
372#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
373#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
374#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
375
376#endif
377
1da177e4 378/*
3df1cccd
DR
379 * Do not go above this order unless 0 objects fit into the slab or
380 * overridden on the command line.
1da177e4 381 */
543585cc
DR
382#define SLAB_MAX_ORDER_HI 1
383#define SLAB_MAX_ORDER_LO 0
384static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 385static bool slab_max_order_set __initdata;
1da177e4 386
6ed5eb22
PE
387static inline struct kmem_cache *virt_to_cache(const void *obj)
388{
b49af68f 389 struct page *page = virt_to_head_page(obj);
35026088 390 return page->slab_cache;
6ed5eb22
PE
391}
392
8456a648 393static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
394 unsigned int idx)
395{
8456a648 396 return page->s_mem + cache->size * idx;
8fea4e96
PE
397}
398
6a2d7a95 399/*
3b0efdfa
CL
400 * We want to avoid an expensive divide : (offset / cache->size)
401 * Using the fact that size is a constant for a particular cache,
402 * we can replace (offset / cache->size) by
6a2d7a95
ED
403 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
404 */
405static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 406 const struct page *page, void *obj)
8fea4e96 407{
8456a648 408 u32 offset = (obj - page->s_mem);
6a2d7a95 409 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
410}
411
1da177e4 412static struct arraycache_init initarray_generic =
b28a02de 413 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
414
415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
056c6241
RT
424#define BAD_ALIEN_MAGIC 0x01020304ul
425
f1aaee53
AV
426#ifdef CONFIG_LOCKDEP
427
428/*
429 * Slab sometimes uses the kmalloc slabs to store the slab headers
430 * for other slabs "off slab".
431 * The locking for this is tricky in that it nests within the locks
432 * of all other slabs in a few places; to deal with this special
433 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
434 *
435 * We set lock class for alien array caches which are up during init.
436 * The lock annotation will be lost if all cpus of a node goes down and
437 * then comes back up during hotplug
f1aaee53 438 */
056c6241
RT
439static struct lock_class_key on_slab_l3_key;
440static struct lock_class_key on_slab_alc_key;
441
83835b3d
PZ
442static struct lock_class_key debugobj_l3_key;
443static struct lock_class_key debugobj_alc_key;
444
445static void slab_set_lock_classes(struct kmem_cache *cachep,
446 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
447 int q)
448{
449 struct array_cache **alc;
ce8eb6c4 450 struct kmem_cache_node *n;
83835b3d
PZ
451 int r;
452
ce8eb6c4
CL
453 n = cachep->node[q];
454 if (!n)
83835b3d
PZ
455 return;
456
ce8eb6c4
CL
457 lockdep_set_class(&n->list_lock, l3_key);
458 alc = n->alien;
83835b3d
PZ
459 /*
460 * FIXME: This check for BAD_ALIEN_MAGIC
461 * should go away when common slab code is taught to
462 * work even without alien caches.
463 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
464 * for alloc_alien_cache,
465 */
466 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
467 return;
468 for_each_node(r) {
469 if (alc[r])
470 lockdep_set_class(&alc[r]->lock, alc_key);
471 }
472}
473
474static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
475{
476 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
477}
478
479static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
480{
481 int node;
482
483 for_each_online_node(node)
484 slab_set_debugobj_lock_classes_node(cachep, node);
485}
486
ce79ddc8 487static void init_node_lock_keys(int q)
f1aaee53 488{
e3366016 489 int i;
056c6241 490
97d06609 491 if (slab_state < UP)
ce79ddc8
PE
492 return;
493
0f8f8094 494 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 495 struct kmem_cache_node *n;
e3366016
CL
496 struct kmem_cache *cache = kmalloc_caches[i];
497
498 if (!cache)
499 continue;
ce79ddc8 500
ce8eb6c4
CL
501 n = cache->node[q];
502 if (!n || OFF_SLAB(cache))
00afa758 503 continue;
83835b3d 504
e3366016 505 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 506 &on_slab_alc_key, q);
f1aaee53
AV
507 }
508}
ce79ddc8 509
6ccfb5bc
GC
510static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
511{
6a67368c 512 if (!cachep->node[q])
6ccfb5bc
GC
513 return;
514
515 slab_set_lock_classes(cachep, &on_slab_l3_key,
516 &on_slab_alc_key, q);
517}
518
519static inline void on_slab_lock_classes(struct kmem_cache *cachep)
520{
521 int node;
522
523 VM_BUG_ON(OFF_SLAB(cachep));
524 for_each_node(node)
525 on_slab_lock_classes_node(cachep, node);
526}
527
ce79ddc8
PE
528static inline void init_lock_keys(void)
529{
530 int node;
531
532 for_each_node(node)
533 init_node_lock_keys(node);
534}
f1aaee53 535#else
ce79ddc8
PE
536static void init_node_lock_keys(int q)
537{
538}
539
056c6241 540static inline void init_lock_keys(void)
f1aaee53
AV
541{
542}
83835b3d 543
6ccfb5bc
GC
544static inline void on_slab_lock_classes(struct kmem_cache *cachep)
545{
546}
547
548static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550}
551
83835b3d
PZ
552static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
553{
554}
555
556static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
557{
558}
f1aaee53
AV
559#endif
560
1871e52c 561static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 562
343e0d7a 563static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
564{
565 return cachep->array[smp_processor_id()];
566}
567
fbaccacf 568static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 569{
8456a648 570 return ALIGN(nr_objs * sizeof(unsigned int), align);
fbaccacf 571}
1da177e4 572
a737b3e2
AM
573/*
574 * Calculate the number of objects and left-over bytes for a given buffer size.
575 */
fbaccacf
SR
576static void cache_estimate(unsigned long gfporder, size_t buffer_size,
577 size_t align, int flags, size_t *left_over,
578 unsigned int *num)
579{
580 int nr_objs;
581 size_t mgmt_size;
582 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 583
fbaccacf
SR
584 /*
585 * The slab management structure can be either off the slab or
586 * on it. For the latter case, the memory allocated for a
587 * slab is used for:
588 *
16025177 589 * - One unsigned int for each object
fbaccacf
SR
590 * - Padding to respect alignment of @align
591 * - @buffer_size bytes for each object
592 *
593 * If the slab management structure is off the slab, then the
594 * alignment will already be calculated into the size. Because
595 * the slabs are all pages aligned, the objects will be at the
596 * correct alignment when allocated.
597 */
598 if (flags & CFLGS_OFF_SLAB) {
599 mgmt_size = 0;
600 nr_objs = slab_size / buffer_size;
601
fbaccacf
SR
602 } else {
603 /*
604 * Ignore padding for the initial guess. The padding
605 * is at most @align-1 bytes, and @buffer_size is at
606 * least @align. In the worst case, this result will
607 * be one greater than the number of objects that fit
608 * into the memory allocation when taking the padding
609 * into account.
610 */
8456a648 611 nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
fbaccacf
SR
612
613 /*
614 * This calculated number will be either the right
615 * amount, or one greater than what we want.
616 */
617 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
618 > slab_size)
619 nr_objs--;
620
fbaccacf
SR
621 mgmt_size = slab_mgmt_size(nr_objs, align);
622 }
623 *num = nr_objs;
624 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
625}
626
f28510d3 627#if DEBUG
d40cee24 628#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 629
a737b3e2
AM
630static void __slab_error(const char *function, struct kmem_cache *cachep,
631 char *msg)
1da177e4
LT
632{
633 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 634 function, cachep->name, msg);
1da177e4 635 dump_stack();
373d4d09 636 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 637}
f28510d3 638#endif
1da177e4 639
3395ee05
PM
640/*
641 * By default on NUMA we use alien caches to stage the freeing of
642 * objects allocated from other nodes. This causes massive memory
643 * inefficiencies when using fake NUMA setup to split memory into a
644 * large number of small nodes, so it can be disabled on the command
645 * line
646 */
647
648static int use_alien_caches __read_mostly = 1;
649static int __init noaliencache_setup(char *s)
650{
651 use_alien_caches = 0;
652 return 1;
653}
654__setup("noaliencache", noaliencache_setup);
655
3df1cccd
DR
656static int __init slab_max_order_setup(char *str)
657{
658 get_option(&str, &slab_max_order);
659 slab_max_order = slab_max_order < 0 ? 0 :
660 min(slab_max_order, MAX_ORDER - 1);
661 slab_max_order_set = true;
662
663 return 1;
664}
665__setup("slab_max_order=", slab_max_order_setup);
666
8fce4d8e
CL
667#ifdef CONFIG_NUMA
668/*
669 * Special reaping functions for NUMA systems called from cache_reap().
670 * These take care of doing round robin flushing of alien caches (containing
671 * objects freed on different nodes from which they were allocated) and the
672 * flushing of remote pcps by calling drain_node_pages.
673 */
1871e52c 674static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
675
676static void init_reap_node(int cpu)
677{
678 int node;
679
7d6e6d09 680 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 681 if (node == MAX_NUMNODES)
442295c9 682 node = first_node(node_online_map);
8fce4d8e 683
1871e52c 684 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
685}
686
687static void next_reap_node(void)
688{
909ea964 689 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 690
8fce4d8e
CL
691 node = next_node(node, node_online_map);
692 if (unlikely(node >= MAX_NUMNODES))
693 node = first_node(node_online_map);
909ea964 694 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
695}
696
697#else
698#define init_reap_node(cpu) do { } while (0)
699#define next_reap_node(void) do { } while (0)
700#endif
701
1da177e4
LT
702/*
703 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
704 * via the workqueue/eventd.
705 * Add the CPU number into the expiration time to minimize the possibility of
706 * the CPUs getting into lockstep and contending for the global cache chain
707 * lock.
708 */
0db0628d 709static void start_cpu_timer(int cpu)
1da177e4 710{
1871e52c 711 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
712
713 /*
714 * When this gets called from do_initcalls via cpucache_init(),
715 * init_workqueues() has already run, so keventd will be setup
716 * at that time.
717 */
52bad64d 718 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 719 init_reap_node(cpu);
203b42f7 720 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
721 schedule_delayed_work_on(cpu, reap_work,
722 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
723 }
724}
725
e498be7d 726static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 727 int batchcount, gfp_t gfp)
1da177e4 728{
b28a02de 729 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
730 struct array_cache *nc = NULL;
731
83b519e8 732 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
733 /*
734 * The array_cache structures contain pointers to free object.
25985edc 735 * However, when such objects are allocated or transferred to another
d5cff635
CM
736 * cache the pointers are not cleared and they could be counted as
737 * valid references during a kmemleak scan. Therefore, kmemleak must
738 * not scan such objects.
739 */
740 kmemleak_no_scan(nc);
1da177e4
LT
741 if (nc) {
742 nc->avail = 0;
743 nc->limit = entries;
744 nc->batchcount = batchcount;
745 nc->touched = 0;
e498be7d 746 spin_lock_init(&nc->lock);
1da177e4
LT
747 }
748 return nc;
749}
750
8456a648 751static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 752{
072bb0aa
MG
753 return PageSlabPfmemalloc(page);
754}
755
756/* Clears pfmemalloc_active if no slabs have pfmalloc set */
757static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
758 struct array_cache *ac)
759{
ce8eb6c4 760 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
8456a648 761 struct page *page;
072bb0aa
MG
762 unsigned long flags;
763
764 if (!pfmemalloc_active)
765 return;
766
ce8eb6c4 767 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
768 list_for_each_entry(page, &n->slabs_full, lru)
769 if (is_slab_pfmemalloc(page))
072bb0aa
MG
770 goto out;
771
8456a648
JK
772 list_for_each_entry(page, &n->slabs_partial, lru)
773 if (is_slab_pfmemalloc(page))
072bb0aa
MG
774 goto out;
775
8456a648
JK
776 list_for_each_entry(page, &n->slabs_free, lru)
777 if (is_slab_pfmemalloc(page))
072bb0aa
MG
778 goto out;
779
780 pfmemalloc_active = false;
781out:
ce8eb6c4 782 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
783}
784
381760ea 785static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
786 gfp_t flags, bool force_refill)
787{
788 int i;
789 void *objp = ac->entry[--ac->avail];
790
791 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
792 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 793 struct kmem_cache_node *n;
072bb0aa
MG
794
795 if (gfp_pfmemalloc_allowed(flags)) {
796 clear_obj_pfmemalloc(&objp);
797 return objp;
798 }
799
800 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 801 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
802 /* If a !PFMEMALLOC object is found, swap them */
803 if (!is_obj_pfmemalloc(ac->entry[i])) {
804 objp = ac->entry[i];
805 ac->entry[i] = ac->entry[ac->avail];
806 ac->entry[ac->avail] = objp;
807 return objp;
808 }
809 }
810
811 /*
812 * If there are empty slabs on the slabs_free list and we are
813 * being forced to refill the cache, mark this one !pfmemalloc.
814 */
ce8eb6c4
CL
815 n = cachep->node[numa_mem_id()];
816 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 817 struct page *page = virt_to_head_page(objp);
7ecccf9d 818 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
819 clear_obj_pfmemalloc(&objp);
820 recheck_pfmemalloc_active(cachep, ac);
821 return objp;
822 }
823
824 /* No !PFMEMALLOC objects available */
825 ac->avail++;
826 objp = NULL;
827 }
828
829 return objp;
830}
831
381760ea
MG
832static inline void *ac_get_obj(struct kmem_cache *cachep,
833 struct array_cache *ac, gfp_t flags, bool force_refill)
834{
835 void *objp;
836
837 if (unlikely(sk_memalloc_socks()))
838 objp = __ac_get_obj(cachep, ac, flags, force_refill);
839 else
840 objp = ac->entry[--ac->avail];
841
842 return objp;
843}
844
845static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
846 void *objp)
847{
848 if (unlikely(pfmemalloc_active)) {
849 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 850 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
851 if (PageSlabPfmemalloc(page))
852 set_obj_pfmemalloc(&objp);
853 }
854
381760ea
MG
855 return objp;
856}
857
858static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
859 void *objp)
860{
861 if (unlikely(sk_memalloc_socks()))
862 objp = __ac_put_obj(cachep, ac, objp);
863
072bb0aa
MG
864 ac->entry[ac->avail++] = objp;
865}
866
3ded175a
CL
867/*
868 * Transfer objects in one arraycache to another.
869 * Locking must be handled by the caller.
870 *
871 * Return the number of entries transferred.
872 */
873static int transfer_objects(struct array_cache *to,
874 struct array_cache *from, unsigned int max)
875{
876 /* Figure out how many entries to transfer */
732eacc0 877 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
878
879 if (!nr)
880 return 0;
881
882 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
883 sizeof(void *) *nr);
884
885 from->avail -= nr;
886 to->avail += nr;
3ded175a
CL
887 return nr;
888}
889
765c4507
CL
890#ifndef CONFIG_NUMA
891
892#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 893#define reap_alien(cachep, n) do { } while (0)
765c4507 894
83b519e8 895static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
896{
897 return (struct array_cache **)BAD_ALIEN_MAGIC;
898}
899
900static inline void free_alien_cache(struct array_cache **ac_ptr)
901{
902}
903
904static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
905{
906 return 0;
907}
908
909static inline void *alternate_node_alloc(struct kmem_cache *cachep,
910 gfp_t flags)
911{
912 return NULL;
913}
914
8b98c169 915static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
916 gfp_t flags, int nodeid)
917{
918 return NULL;
919}
920
921#else /* CONFIG_NUMA */
922
8b98c169 923static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 924static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 925
83b519e8 926static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
927{
928 struct array_cache **ac_ptr;
8ef82866 929 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
930 int i;
931
932 if (limit > 1)
933 limit = 12;
f3186a9c 934 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
935 if (ac_ptr) {
936 for_each_node(i) {
f3186a9c 937 if (i == node || !node_online(i))
e498be7d 938 continue;
83b519e8 939 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 940 if (!ac_ptr[i]) {
cc550def 941 for (i--; i >= 0; i--)
e498be7d
CL
942 kfree(ac_ptr[i]);
943 kfree(ac_ptr);
944 return NULL;
945 }
946 }
947 }
948 return ac_ptr;
949}
950
5295a74c 951static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
952{
953 int i;
954
955 if (!ac_ptr)
956 return;
e498be7d 957 for_each_node(i)
b28a02de 958 kfree(ac_ptr[i]);
e498be7d
CL
959 kfree(ac_ptr);
960}
961
343e0d7a 962static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 963 struct array_cache *ac, int node)
e498be7d 964{
ce8eb6c4 965 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
966
967 if (ac->avail) {
ce8eb6c4 968 spin_lock(&n->list_lock);
e00946fe
CL
969 /*
970 * Stuff objects into the remote nodes shared array first.
971 * That way we could avoid the overhead of putting the objects
972 * into the free lists and getting them back later.
973 */
ce8eb6c4
CL
974 if (n->shared)
975 transfer_objects(n->shared, ac, ac->limit);
e00946fe 976
ff69416e 977 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 978 ac->avail = 0;
ce8eb6c4 979 spin_unlock(&n->list_lock);
e498be7d
CL
980 }
981}
982
8fce4d8e
CL
983/*
984 * Called from cache_reap() to regularly drain alien caches round robin.
985 */
ce8eb6c4 986static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 987{
909ea964 988 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 989
ce8eb6c4
CL
990 if (n->alien) {
991 struct array_cache *ac = n->alien[node];
e00946fe
CL
992
993 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
994 __drain_alien_cache(cachep, ac, node);
995 spin_unlock_irq(&ac->lock);
996 }
997 }
998}
999
a737b3e2
AM
1000static void drain_alien_cache(struct kmem_cache *cachep,
1001 struct array_cache **alien)
e498be7d 1002{
b28a02de 1003 int i = 0;
e498be7d
CL
1004 struct array_cache *ac;
1005 unsigned long flags;
1006
1007 for_each_online_node(i) {
4484ebf1 1008 ac = alien[i];
e498be7d
CL
1009 if (ac) {
1010 spin_lock_irqsave(&ac->lock, flags);
1011 __drain_alien_cache(cachep, ac, i);
1012 spin_unlock_irqrestore(&ac->lock, flags);
1013 }
1014 }
1015}
729bd0b7 1016
873623df 1017static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1018{
1ea991b0 1019 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1020 struct kmem_cache_node *n;
729bd0b7 1021 struct array_cache *alien = NULL;
1ca4cb24
PE
1022 int node;
1023
7d6e6d09 1024 node = numa_mem_id();
729bd0b7
PE
1025
1026 /*
1027 * Make sure we are not freeing a object from another node to the array
1028 * cache on this cpu.
1029 */
1ea991b0 1030 if (likely(nodeid == node))
729bd0b7
PE
1031 return 0;
1032
ce8eb6c4 1033 n = cachep->node[node];
729bd0b7 1034 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1035 if (n->alien && n->alien[nodeid]) {
1036 alien = n->alien[nodeid];
873623df 1037 spin_lock(&alien->lock);
729bd0b7
PE
1038 if (unlikely(alien->avail == alien->limit)) {
1039 STATS_INC_ACOVERFLOW(cachep);
1040 __drain_alien_cache(cachep, alien, nodeid);
1041 }
072bb0aa 1042 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1043 spin_unlock(&alien->lock);
1044 } else {
6a67368c 1045 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1046 free_block(cachep, &objp, 1, nodeid);
6a67368c 1047 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1048 }
1049 return 1;
1050}
e498be7d
CL
1051#endif
1052
8f9f8d9e 1053/*
6a67368c 1054 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1055 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1056 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1057 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1058 * already in use.
1059 *
18004c5d 1060 * Must hold slab_mutex.
8f9f8d9e 1061 */
6a67368c 1062static int init_cache_node_node(int node)
8f9f8d9e
DR
1063{
1064 struct kmem_cache *cachep;
ce8eb6c4 1065 struct kmem_cache_node *n;
6744f087 1066 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1067
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1069 /*
1070 * Set up the size64 kmemlist for cpu before we can
1071 * begin anything. Make sure some other cpu on this
1072 * node has not already allocated this
1073 */
6a67368c 1074 if (!cachep->node[node]) {
ce8eb6c4
CL
1075 n = kmalloc_node(memsize, GFP_KERNEL, node);
1076 if (!n)
8f9f8d9e 1077 return -ENOMEM;
ce8eb6c4
CL
1078 kmem_cache_node_init(n);
1079 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1080 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1081
1082 /*
1083 * The l3s don't come and go as CPUs come and
18004c5d 1084 * go. slab_mutex is sufficient
8f9f8d9e
DR
1085 * protection here.
1086 */
ce8eb6c4 1087 cachep->node[node] = n;
8f9f8d9e
DR
1088 }
1089
6a67368c
CL
1090 spin_lock_irq(&cachep->node[node]->list_lock);
1091 cachep->node[node]->free_limit =
8f9f8d9e
DR
1092 (1 + nr_cpus_node(node)) *
1093 cachep->batchcount + cachep->num;
6a67368c 1094 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1095 }
1096 return 0;
1097}
1098
0fa8103b
WL
1099static inline int slabs_tofree(struct kmem_cache *cachep,
1100 struct kmem_cache_node *n)
1101{
1102 return (n->free_objects + cachep->num - 1) / cachep->num;
1103}
1104
0db0628d 1105static void cpuup_canceled(long cpu)
fbf1e473
AM
1106{
1107 struct kmem_cache *cachep;
ce8eb6c4 1108 struct kmem_cache_node *n = NULL;
7d6e6d09 1109 int node = cpu_to_mem(cpu);
a70f7302 1110 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1111
18004c5d 1112 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1113 struct array_cache *nc;
1114 struct array_cache *shared;
1115 struct array_cache **alien;
fbf1e473 1116
fbf1e473
AM
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = cachep->array[cpu];
1119 cachep->array[cpu] = NULL;
ce8eb6c4 1120 n = cachep->node[node];
fbf1e473 1121
ce8eb6c4 1122 if (!n)
fbf1e473
AM
1123 goto free_array_cache;
1124
ce8eb6c4 1125 spin_lock_irq(&n->list_lock);
fbf1e473 1126
ce8eb6c4
CL
1127 /* Free limit for this kmem_cache_node */
1128 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1129 if (nc)
1130 free_block(cachep, nc->entry, nc->avail, node);
1131
58463c1f 1132 if (!cpumask_empty(mask)) {
ce8eb6c4 1133 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1134 goto free_array_cache;
1135 }
1136
ce8eb6c4 1137 shared = n->shared;
fbf1e473
AM
1138 if (shared) {
1139 free_block(cachep, shared->entry,
1140 shared->avail, node);
ce8eb6c4 1141 n->shared = NULL;
fbf1e473
AM
1142 }
1143
ce8eb6c4
CL
1144 alien = n->alien;
1145 n->alien = NULL;
fbf1e473 1146
ce8eb6c4 1147 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1148
1149 kfree(shared);
1150 if (alien) {
1151 drain_alien_cache(cachep, alien);
1152 free_alien_cache(alien);
1153 }
1154free_array_cache:
1155 kfree(nc);
1156 }
1157 /*
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1161 */
18004c5d 1162 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1163 n = cachep->node[node];
1164 if (!n)
fbf1e473 1165 continue;
0fa8103b 1166 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1167 }
1168}
1169
0db0628d 1170static int cpuup_prepare(long cpu)
1da177e4 1171{
343e0d7a 1172 struct kmem_cache *cachep;
ce8eb6c4 1173 struct kmem_cache_node *n = NULL;
7d6e6d09 1174 int node = cpu_to_mem(cpu);
8f9f8d9e 1175 int err;
1da177e4 1176
fbf1e473
AM
1177 /*
1178 * We need to do this right in the beginning since
1179 * alloc_arraycache's are going to use this list.
1180 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1181 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1182 */
6a67368c 1183 err = init_cache_node_node(node);
8f9f8d9e
DR
1184 if (err < 0)
1185 goto bad;
fbf1e473
AM
1186
1187 /*
1188 * Now we can go ahead with allocating the shared arrays and
1189 * array caches
1190 */
18004c5d 1191 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1192 struct array_cache *nc;
1193 struct array_cache *shared = NULL;
1194 struct array_cache **alien = NULL;
1195
1196 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1197 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1198 if (!nc)
1199 goto bad;
1200 if (cachep->shared) {
1201 shared = alloc_arraycache(node,
1202 cachep->shared * cachep->batchcount,
83b519e8 1203 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1204 if (!shared) {
1205 kfree(nc);
1da177e4 1206 goto bad;
12d00f6a 1207 }
fbf1e473
AM
1208 }
1209 if (use_alien_caches) {
83b519e8 1210 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1211 if (!alien) {
1212 kfree(shared);
1213 kfree(nc);
fbf1e473 1214 goto bad;
12d00f6a 1215 }
fbf1e473
AM
1216 }
1217 cachep->array[cpu] = nc;
ce8eb6c4
CL
1218 n = cachep->node[node];
1219 BUG_ON(!n);
fbf1e473 1220
ce8eb6c4
CL
1221 spin_lock_irq(&n->list_lock);
1222 if (!n->shared) {
fbf1e473
AM
1223 /*
1224 * We are serialised from CPU_DEAD or
1225 * CPU_UP_CANCELLED by the cpucontrol lock
1226 */
ce8eb6c4 1227 n->shared = shared;
fbf1e473
AM
1228 shared = NULL;
1229 }
4484ebf1 1230#ifdef CONFIG_NUMA
ce8eb6c4
CL
1231 if (!n->alien) {
1232 n->alien = alien;
fbf1e473 1233 alien = NULL;
1da177e4 1234 }
fbf1e473 1235#endif
ce8eb6c4 1236 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1237 kfree(shared);
1238 free_alien_cache(alien);
83835b3d
PZ
1239 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1240 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1241 else if (!OFF_SLAB(cachep) &&
1242 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1243 on_slab_lock_classes_node(cachep, node);
fbf1e473 1244 }
ce79ddc8
PE
1245 init_node_lock_keys(node);
1246
fbf1e473
AM
1247 return 0;
1248bad:
12d00f6a 1249 cpuup_canceled(cpu);
fbf1e473
AM
1250 return -ENOMEM;
1251}
1252
0db0628d 1253static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1254 unsigned long action, void *hcpu)
1255{
1256 long cpu = (long)hcpu;
1257 int err = 0;
1258
1259 switch (action) {
fbf1e473
AM
1260 case CPU_UP_PREPARE:
1261 case CPU_UP_PREPARE_FROZEN:
18004c5d 1262 mutex_lock(&slab_mutex);
fbf1e473 1263 err = cpuup_prepare(cpu);
18004c5d 1264 mutex_unlock(&slab_mutex);
1da177e4
LT
1265 break;
1266 case CPU_ONLINE:
8bb78442 1267 case CPU_ONLINE_FROZEN:
1da177e4
LT
1268 start_cpu_timer(cpu);
1269 break;
1270#ifdef CONFIG_HOTPLUG_CPU
5830c590 1271 case CPU_DOWN_PREPARE:
8bb78442 1272 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1273 /*
18004c5d 1274 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1275 * held so that if cache_reap() is invoked it cannot do
1276 * anything expensive but will only modify reap_work
1277 * and reschedule the timer.
1278 */
afe2c511 1279 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1280 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1281 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1282 break;
1283 case CPU_DOWN_FAILED:
8bb78442 1284 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1285 start_cpu_timer(cpu);
1286 break;
1da177e4 1287 case CPU_DEAD:
8bb78442 1288 case CPU_DEAD_FROZEN:
4484ebf1
RT
1289 /*
1290 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1291 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1292 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1293 * memory from the node of the cpu going down. The node
4484ebf1
RT
1294 * structure is usually allocated from kmem_cache_create() and
1295 * gets destroyed at kmem_cache_destroy().
1296 */
183ff22b 1297 /* fall through */
8f5be20b 1298#endif
1da177e4 1299 case CPU_UP_CANCELED:
8bb78442 1300 case CPU_UP_CANCELED_FROZEN:
18004c5d 1301 mutex_lock(&slab_mutex);
fbf1e473 1302 cpuup_canceled(cpu);
18004c5d 1303 mutex_unlock(&slab_mutex);
1da177e4 1304 break;
1da177e4 1305 }
eac40680 1306 return notifier_from_errno(err);
1da177e4
LT
1307}
1308
0db0628d 1309static struct notifier_block cpucache_notifier = {
74b85f37
CS
1310 &cpuup_callback, NULL, 0
1311};
1da177e4 1312
8f9f8d9e
DR
1313#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1314/*
1315 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1316 * Returns -EBUSY if all objects cannot be drained so that the node is not
1317 * removed.
1318 *
18004c5d 1319 * Must hold slab_mutex.
8f9f8d9e 1320 */
6a67368c 1321static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1322{
1323 struct kmem_cache *cachep;
1324 int ret = 0;
1325
18004c5d 1326 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1327 struct kmem_cache_node *n;
8f9f8d9e 1328
ce8eb6c4
CL
1329 n = cachep->node[node];
1330 if (!n)
8f9f8d9e
DR
1331 continue;
1332
0fa8103b 1333 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1334
ce8eb6c4
CL
1335 if (!list_empty(&n->slabs_full) ||
1336 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1337 ret = -EBUSY;
1338 break;
1339 }
1340 }
1341 return ret;
1342}
1343
1344static int __meminit slab_memory_callback(struct notifier_block *self,
1345 unsigned long action, void *arg)
1346{
1347 struct memory_notify *mnb = arg;
1348 int ret = 0;
1349 int nid;
1350
1351 nid = mnb->status_change_nid;
1352 if (nid < 0)
1353 goto out;
1354
1355 switch (action) {
1356 case MEM_GOING_ONLINE:
18004c5d 1357 mutex_lock(&slab_mutex);
6a67368c 1358 ret = init_cache_node_node(nid);
18004c5d 1359 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1360 break;
1361 case MEM_GOING_OFFLINE:
18004c5d 1362 mutex_lock(&slab_mutex);
6a67368c 1363 ret = drain_cache_node_node(nid);
18004c5d 1364 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1365 break;
1366 case MEM_ONLINE:
1367 case MEM_OFFLINE:
1368 case MEM_CANCEL_ONLINE:
1369 case MEM_CANCEL_OFFLINE:
1370 break;
1371 }
1372out:
5fda1bd5 1373 return notifier_from_errno(ret);
8f9f8d9e
DR
1374}
1375#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1376
e498be7d 1377/*
ce8eb6c4 1378 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1379 */
6744f087 1380static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1381 int nodeid)
e498be7d 1382{
6744f087 1383 struct kmem_cache_node *ptr;
e498be7d 1384
6744f087 1385 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1386 BUG_ON(!ptr);
1387
6744f087 1388 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1389 /*
1390 * Do not assume that spinlocks can be initialized via memcpy:
1391 */
1392 spin_lock_init(&ptr->list_lock);
1393
e498be7d 1394 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1395 cachep->node[nodeid] = ptr;
e498be7d
CL
1396}
1397
556a169d 1398/*
ce8eb6c4
CL
1399 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1400 * size of kmem_cache_node.
556a169d 1401 */
ce8eb6c4 1402static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1403{
1404 int node;
1405
1406 for_each_online_node(node) {
ce8eb6c4 1407 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1408 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1409 REAPTIMEOUT_LIST3 +
1410 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1411 }
1412}
1413
3c583465
CL
1414/*
1415 * The memory after the last cpu cache pointer is used for the
6a67368c 1416 * the node pointer.
3c583465 1417 */
6a67368c 1418static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1419{
6a67368c 1420 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1421}
1422
a737b3e2
AM
1423/*
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1da177e4
LT
1426 */
1427void __init kmem_cache_init(void)
1428{
e498be7d
CL
1429 int i;
1430
68126702
JK
1431 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1432 sizeof(struct rcu_head));
9b030cb8 1433 kmem_cache = &kmem_cache_boot;
6a67368c 1434 setup_node_pointer(kmem_cache);
9b030cb8 1435
b6e68bc1 1436 if (num_possible_nodes() == 1)
62918a03
SS
1437 use_alien_caches = 0;
1438
3c583465 1439 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1440 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1441
ce8eb6c4 1442 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1443
1444 /*
1445 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1446 * page orders on machines with more than 32MB of memory if
1447 * not overridden on the command line.
1da177e4 1448 */
3df1cccd 1449 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1450 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1451
1da177e4
LT
1452 /* Bootstrap is tricky, because several objects are allocated
1453 * from caches that do not exist yet:
9b030cb8
CL
1454 * 1) initialize the kmem_cache cache: it contains the struct
1455 * kmem_cache structures of all caches, except kmem_cache itself:
1456 * kmem_cache is statically allocated.
e498be7d 1457 * Initially an __init data area is used for the head array and the
ce8eb6c4 1458 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1459 * array at the end of the bootstrap.
1da177e4 1460 * 2) Create the first kmalloc cache.
343e0d7a 1461 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1462 * An __init data area is used for the head array.
1463 * 3) Create the remaining kmalloc caches, with minimally sized
1464 * head arrays.
9b030cb8 1465 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1466 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1467 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1468 * the other cache's with kmalloc allocated memory.
1469 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1470 */
1471
9b030cb8 1472 /* 1) create the kmem_cache */
1da177e4 1473
8da3430d 1474 /*
b56efcf0 1475 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1476 */
2f9baa9f
CL
1477 create_boot_cache(kmem_cache, "kmem_cache",
1478 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1479 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1480 SLAB_HWCACHE_ALIGN);
1481 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1482
1483 /* 2+3) create the kmalloc caches */
1da177e4 1484
a737b3e2
AM
1485 /*
1486 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1487 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1488 * bug.
e498be7d
CL
1489 */
1490
e3366016
CL
1491 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1492 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1493
ce8eb6c4
CL
1494 if (INDEX_AC != INDEX_NODE)
1495 kmalloc_caches[INDEX_NODE] =
1496 create_kmalloc_cache("kmalloc-node",
1497 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1498
e0a42726
IM
1499 slab_early_init = 0;
1500
1da177e4
LT
1501 /* 4) Replace the bootstrap head arrays */
1502 {
2b2d5493 1503 struct array_cache *ptr;
e498be7d 1504
83b519e8 1505 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1506
9b030cb8 1507 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1508 sizeof(struct arraycache_init));
2b2d5493
IM
1509 /*
1510 * Do not assume that spinlocks can be initialized via memcpy:
1511 */
1512 spin_lock_init(&ptr->lock);
1513
9b030cb8 1514 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1515
83b519e8 1516 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1517
e3366016 1518 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1519 != &initarray_generic.cache);
e3366016 1520 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1521 sizeof(struct arraycache_init));
2b2d5493
IM
1522 /*
1523 * Do not assume that spinlocks can be initialized via memcpy:
1524 */
1525 spin_lock_init(&ptr->lock);
1526
e3366016 1527 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1528 }
ce8eb6c4 1529 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1530 {
1ca4cb24
PE
1531 int nid;
1532
9c09a95c 1533 for_each_online_node(nid) {
ce8eb6c4 1534 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1535
e3366016 1536 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1537 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1538
ce8eb6c4
CL
1539 if (INDEX_AC != INDEX_NODE) {
1540 init_list(kmalloc_caches[INDEX_NODE],
1541 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1542 }
1543 }
1544 }
1da177e4 1545
f97d5f63 1546 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1547}
1548
1549void __init kmem_cache_init_late(void)
1550{
1551 struct kmem_cache *cachep;
1552
97d06609 1553 slab_state = UP;
52cef189 1554
8429db5c 1555 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1556 mutex_lock(&slab_mutex);
1557 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1558 if (enable_cpucache(cachep, GFP_NOWAIT))
1559 BUG();
18004c5d 1560 mutex_unlock(&slab_mutex);
056c6241 1561
947ca185
MW
1562 /* Annotate slab for lockdep -- annotate the malloc caches */
1563 init_lock_keys();
1564
97d06609
CL
1565 /* Done! */
1566 slab_state = FULL;
1567
a737b3e2
AM
1568 /*
1569 * Register a cpu startup notifier callback that initializes
1570 * cpu_cache_get for all new cpus
1da177e4
LT
1571 */
1572 register_cpu_notifier(&cpucache_notifier);
1da177e4 1573
8f9f8d9e
DR
1574#ifdef CONFIG_NUMA
1575 /*
1576 * Register a memory hotplug callback that initializes and frees
6a67368c 1577 * node.
8f9f8d9e
DR
1578 */
1579 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1580#endif
1581
a737b3e2
AM
1582 /*
1583 * The reap timers are started later, with a module init call: That part
1584 * of the kernel is not yet operational.
1da177e4
LT
1585 */
1586}
1587
1588static int __init cpucache_init(void)
1589{
1590 int cpu;
1591
a737b3e2
AM
1592 /*
1593 * Register the timers that return unneeded pages to the page allocator
1da177e4 1594 */
e498be7d 1595 for_each_online_cpu(cpu)
a737b3e2 1596 start_cpu_timer(cpu);
a164f896
GC
1597
1598 /* Done! */
97d06609 1599 slab_state = FULL;
1da177e4
LT
1600 return 0;
1601}
1da177e4
LT
1602__initcall(cpucache_init);
1603
8bdec192
RA
1604static noinline void
1605slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1606{
ce8eb6c4 1607 struct kmem_cache_node *n;
8456a648 1608 struct page *page;
8bdec192
RA
1609 unsigned long flags;
1610 int node;
1611
1612 printk(KERN_WARNING
1613 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1614 nodeid, gfpflags);
1615 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1616 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1617
1618 for_each_online_node(node) {
1619 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1620 unsigned long active_slabs = 0, num_slabs = 0;
1621
ce8eb6c4
CL
1622 n = cachep->node[node];
1623 if (!n)
8bdec192
RA
1624 continue;
1625
ce8eb6c4 1626 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1627 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1628 active_objs += cachep->num;
1629 active_slabs++;
1630 }
8456a648
JK
1631 list_for_each_entry(page, &n->slabs_partial, lru) {
1632 active_objs += page->active;
8bdec192
RA
1633 active_slabs++;
1634 }
8456a648 1635 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1636 num_slabs++;
1637
ce8eb6c4
CL
1638 free_objects += n->free_objects;
1639 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1640
1641 num_slabs += active_slabs;
1642 num_objs = num_slabs * cachep->num;
1643 printk(KERN_WARNING
1644 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1645 node, active_slabs, num_slabs, active_objs, num_objs,
1646 free_objects);
1647 }
1648}
1649
1da177e4
LT
1650/*
1651 * Interface to system's page allocator. No need to hold the cache-lock.
1652 *
1653 * If we requested dmaable memory, we will get it. Even if we
1654 * did not request dmaable memory, we might get it, but that
1655 * would be relatively rare and ignorable.
1656 */
0c3aa83e
JK
1657static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1658 int nodeid)
1da177e4
LT
1659{
1660 struct page *page;
e1b6aa6f 1661 int nr_pages;
765c4507 1662
a618e89f 1663 flags |= cachep->allocflags;
e12ba74d
MG
1664 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1665 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1666
517d0869 1667 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1668 if (!page) {
1669 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1670 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1671 return NULL;
8bdec192 1672 }
1da177e4 1673
b37f1dd0 1674 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1675 if (unlikely(page->pfmemalloc))
1676 pfmemalloc_active = true;
1677
e1b6aa6f 1678 nr_pages = (1 << cachep->gfporder);
1da177e4 1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1680 add_zone_page_state(page_zone(page),
1681 NR_SLAB_RECLAIMABLE, nr_pages);
1682 else
1683 add_zone_page_state(page_zone(page),
1684 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1685 __SetPageSlab(page);
1686 if (page->pfmemalloc)
1687 SetPageSlabPfmemalloc(page);
1f458cbf 1688 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1689
b1eeab67
VN
1690 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1691 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1692
1693 if (cachep->ctor)
1694 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1695 else
1696 kmemcheck_mark_unallocated_pages(page, nr_pages);
1697 }
c175eea4 1698
0c3aa83e 1699 return page;
1da177e4
LT
1700}
1701
1702/*
1703 * Interface to system's page release.
1704 */
0c3aa83e 1705static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1706{
a57a4988 1707 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1708
b1eeab67 1709 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1710
972d1a7b
CL
1711 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1712 sub_zone_page_state(page_zone(page),
1713 NR_SLAB_RECLAIMABLE, nr_freed);
1714 else
1715 sub_zone_page_state(page_zone(page),
1716 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1717
a57a4988 1718 BUG_ON(!PageSlab(page));
73293c2f 1719 __ClearPageSlabPfmemalloc(page);
a57a4988 1720 __ClearPageSlab(page);
8456a648
JK
1721 page_mapcount_reset(page);
1722 page->mapping = NULL;
1f458cbf
GC
1723
1724 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1725 if (current->reclaim_state)
1726 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1727 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1728}
1729
1730static void kmem_rcu_free(struct rcu_head *head)
1731{
68126702
JK
1732 struct kmem_cache *cachep;
1733 struct page *page;
1da177e4 1734
68126702
JK
1735 page = container_of(head, struct page, rcu_head);
1736 cachep = page->slab_cache;
1737
1738 kmem_freepages(cachep, page);
1da177e4
LT
1739}
1740
1741#if DEBUG
1742
1743#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1744static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1745 unsigned long caller)
1da177e4 1746{
8c138bc0 1747 int size = cachep->object_size;
1da177e4 1748
3dafccf2 1749 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1750
b28a02de 1751 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1752 return;
1753
b28a02de
PE
1754 *addr++ = 0x12345678;
1755 *addr++ = caller;
1756 *addr++ = smp_processor_id();
1757 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1758 {
1759 unsigned long *sptr = &caller;
1760 unsigned long svalue;
1761
1762 while (!kstack_end(sptr)) {
1763 svalue = *sptr++;
1764 if (kernel_text_address(svalue)) {
b28a02de 1765 *addr++ = svalue;
1da177e4
LT
1766 size -= sizeof(unsigned long);
1767 if (size <= sizeof(unsigned long))
1768 break;
1769 }
1770 }
1771
1772 }
b28a02de 1773 *addr++ = 0x87654321;
1da177e4
LT
1774}
1775#endif
1776
343e0d7a 1777static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1778{
8c138bc0 1779 int size = cachep->object_size;
3dafccf2 1780 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1781
1782 memset(addr, val, size);
b28a02de 1783 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1784}
1785
1786static void dump_line(char *data, int offset, int limit)
1787{
1788 int i;
aa83aa40
DJ
1789 unsigned char error = 0;
1790 int bad_count = 0;
1791
fdde6abb 1792 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1793 for (i = 0; i < limit; i++) {
1794 if (data[offset + i] != POISON_FREE) {
1795 error = data[offset + i];
1796 bad_count++;
1797 }
aa83aa40 1798 }
fdde6abb
SAS
1799 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1800 &data[offset], limit, 1);
aa83aa40
DJ
1801
1802 if (bad_count == 1) {
1803 error ^= POISON_FREE;
1804 if (!(error & (error - 1))) {
1805 printk(KERN_ERR "Single bit error detected. Probably "
1806 "bad RAM.\n");
1807#ifdef CONFIG_X86
1808 printk(KERN_ERR "Run memtest86+ or a similar memory "
1809 "test tool.\n");
1810#else
1811 printk(KERN_ERR "Run a memory test tool.\n");
1812#endif
1813 }
1814 }
1da177e4
LT
1815}
1816#endif
1817
1818#if DEBUG
1819
343e0d7a 1820static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1821{
1822 int i, size;
1823 char *realobj;
1824
1825 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1826 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1827 *dbg_redzone1(cachep, objp),
1828 *dbg_redzone2(cachep, objp));
1da177e4
LT
1829 }
1830
1831 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1832 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1833 *dbg_userword(cachep, objp),
1834 *dbg_userword(cachep, objp));
1da177e4 1835 }
3dafccf2 1836 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1837 size = cachep->object_size;
b28a02de 1838 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1839 int limit;
1840 limit = 16;
b28a02de
PE
1841 if (i + limit > size)
1842 limit = size - i;
1da177e4
LT
1843 dump_line(realobj, i, limit);
1844 }
1845}
1846
343e0d7a 1847static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1848{
1849 char *realobj;
1850 int size, i;
1851 int lines = 0;
1852
3dafccf2 1853 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1854 size = cachep->object_size;
1da177e4 1855
b28a02de 1856 for (i = 0; i < size; i++) {
1da177e4 1857 char exp = POISON_FREE;
b28a02de 1858 if (i == size - 1)
1da177e4
LT
1859 exp = POISON_END;
1860 if (realobj[i] != exp) {
1861 int limit;
1862 /* Mismatch ! */
1863 /* Print header */
1864 if (lines == 0) {
b28a02de 1865 printk(KERN_ERR
face37f5
DJ
1866 "Slab corruption (%s): %s start=%p, len=%d\n",
1867 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1868 print_objinfo(cachep, objp, 0);
1869 }
1870 /* Hexdump the affected line */
b28a02de 1871 i = (i / 16) * 16;
1da177e4 1872 limit = 16;
b28a02de
PE
1873 if (i + limit > size)
1874 limit = size - i;
1da177e4
LT
1875 dump_line(realobj, i, limit);
1876 i += 16;
1877 lines++;
1878 /* Limit to 5 lines */
1879 if (lines > 5)
1880 break;
1881 }
1882 }
1883 if (lines != 0) {
1884 /* Print some data about the neighboring objects, if they
1885 * exist:
1886 */
8456a648 1887 struct page *page = virt_to_head_page(objp);
8fea4e96 1888 unsigned int objnr;
1da177e4 1889
8456a648 1890 objnr = obj_to_index(cachep, page, objp);
1da177e4 1891 if (objnr) {
8456a648 1892 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1893 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1894 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1895 realobj, size);
1da177e4
LT
1896 print_objinfo(cachep, objp, 2);
1897 }
b28a02de 1898 if (objnr + 1 < cachep->num) {
8456a648 1899 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1900 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1901 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1902 realobj, size);
1da177e4
LT
1903 print_objinfo(cachep, objp, 2);
1904 }
1905 }
1906}
1907#endif
1908
12dd36fa 1909#if DEBUG
8456a648
JK
1910static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1911 struct page *page)
1da177e4 1912{
1da177e4
LT
1913 int i;
1914 for (i = 0; i < cachep->num; i++) {
8456a648 1915 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1916
1917 if (cachep->flags & SLAB_POISON) {
1918#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1919 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1920 OFF_SLAB(cachep))
b28a02de 1921 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1922 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1923 else
1924 check_poison_obj(cachep, objp);
1925#else
1926 check_poison_obj(cachep, objp);
1927#endif
1928 }
1929 if (cachep->flags & SLAB_RED_ZONE) {
1930 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1931 slab_error(cachep, "start of a freed object "
b28a02de 1932 "was overwritten");
1da177e4
LT
1933 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1934 slab_error(cachep, "end of a freed object "
b28a02de 1935 "was overwritten");
1da177e4 1936 }
1da177e4 1937 }
12dd36fa 1938}
1da177e4 1939#else
8456a648
JK
1940static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1941 struct page *page)
12dd36fa 1942{
12dd36fa 1943}
1da177e4
LT
1944#endif
1945
911851e6
RD
1946/**
1947 * slab_destroy - destroy and release all objects in a slab
1948 * @cachep: cache pointer being destroyed
cb8ee1a3 1949 * @page: page pointer being destroyed
911851e6 1950 *
12dd36fa 1951 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1952 * Before calling the slab must have been unlinked from the cache. The
1953 * cache-lock is not held/needed.
12dd36fa 1954 */
8456a648 1955static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1956{
7e007355 1957 void *freelist;
12dd36fa 1958
8456a648
JK
1959 freelist = page->freelist;
1960 slab_destroy_debugcheck(cachep, page);
1da177e4 1961 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1962 struct rcu_head *head;
1963
1964 /*
1965 * RCU free overloads the RCU head over the LRU.
1966 * slab_page has been overloeaded over the LRU,
1967 * however it is not used from now on so that
1968 * we can use it safely.
1969 */
1970 head = (void *)&page->rcu_head;
1971 call_rcu(head, kmem_rcu_free);
1da177e4 1972
1da177e4 1973 } else {
0c3aa83e 1974 kmem_freepages(cachep, page);
1da177e4 1975 }
68126702
JK
1976
1977 /*
8456a648 1978 * From now on, we don't use freelist
68126702
JK
1979 * although actual page can be freed in rcu context
1980 */
1981 if (OFF_SLAB(cachep))
8456a648 1982 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1983}
1984
4d268eba 1985/**
a70773dd
RD
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1991 *
1992 * Also calculates the number of objects per slab.
4d268eba
PE
1993 *
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1997 */
a737b3e2 1998static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1999 size_t size, size_t align, unsigned long flags)
4d268eba 2000{
b1ab41c4 2001 unsigned long offslab_limit;
4d268eba 2002 size_t left_over = 0;
9888e6fa 2003 int gfporder;
4d268eba 2004
0aa817f0 2005 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2006 unsigned int num;
2007 size_t remainder;
2008
9888e6fa 2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2010 if (!num)
2011 continue;
9888e6fa 2012
b1ab41c4
IM
2013 if (flags & CFLGS_OFF_SLAB) {
2014 /*
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2018 */
8456a648 2019 offslab_limit = size;
16025177 2020 offslab_limit /= sizeof(unsigned int);
b1ab41c4
IM
2021
2022 if (num > offslab_limit)
2023 break;
2024 }
4d268eba 2025
9888e6fa 2026 /* Found something acceptable - save it away */
4d268eba 2027 cachep->num = num;
9888e6fa 2028 cachep->gfporder = gfporder;
4d268eba
PE
2029 left_over = remainder;
2030
f78bb8ad
LT
2031 /*
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2035 */
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2038
4d268eba
PE
2039 /*
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2042 */
543585cc 2043 if (gfporder >= slab_max_order)
4d268eba
PE
2044 break;
2045
9888e6fa
LT
2046 /*
2047 * Acceptable internal fragmentation?
2048 */
a737b3e2 2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2050 break;
2051 }
2052 return left_over;
2053}
2054
83b519e8 2055static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2056{
97d06609 2057 if (slab_state >= FULL)
83b519e8 2058 return enable_cpucache(cachep, gfp);
2ed3a4ef 2059
97d06609 2060 if (slab_state == DOWN) {
f30cf7d1 2061 /*
2f9baa9f 2062 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2063 * The setup_node is taken care
2f9baa9f
CL
2064 * of by the caller of __kmem_cache_create
2065 */
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067 slab_state = PARTIAL;
2068 } else if (slab_state == PARTIAL) {
2069 /*
2070 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2071 * that's used by kmalloc(24), otherwise the creation of
2072 * further caches will BUG().
2073 */
2074 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2075
2076 /*
ce8eb6c4
CL
2077 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2078 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2079 * otherwise the creation of further caches will BUG().
2080 */
ce8eb6c4
CL
2081 set_up_node(cachep, SIZE_AC);
2082 if (INDEX_AC == INDEX_NODE)
2083 slab_state = PARTIAL_NODE;
f30cf7d1 2084 else
97d06609 2085 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2086 } else {
2f9baa9f 2087 /* Remaining boot caches */
f30cf7d1 2088 cachep->array[smp_processor_id()] =
83b519e8 2089 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2090
97d06609 2091 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2092 set_up_node(cachep, SIZE_NODE);
2093 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2094 } else {
2095 int node;
556a169d 2096 for_each_online_node(node) {
6a67368c 2097 cachep->node[node] =
6744f087 2098 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2099 gfp, node);
6a67368c 2100 BUG_ON(!cachep->node[node]);
ce8eb6c4 2101 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2102 }
2103 }
2104 }
6a67368c 2105 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2106 jiffies + REAPTIMEOUT_LIST3 +
2107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2108
2109 cpu_cache_get(cachep)->avail = 0;
2110 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2111 cpu_cache_get(cachep)->batchcount = 1;
2112 cpu_cache_get(cachep)->touched = 0;
2113 cachep->batchcount = 1;
2114 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2115 return 0;
f30cf7d1
PE
2116}
2117
1da177e4 2118/**
039363f3 2119 * __kmem_cache_create - Create a cache.
a755b76a 2120 * @cachep: cache management descriptor
1da177e4 2121 * @flags: SLAB flags
1da177e4
LT
2122 *
2123 * Returns a ptr to the cache on success, NULL on failure.
2124 * Cannot be called within a int, but can be interrupted.
20c2df83 2125 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2126 *
1da177e4
LT
2127 * The flags are
2128 *
2129 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2130 * to catch references to uninitialised memory.
2131 *
2132 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2133 * for buffer overruns.
2134 *
1da177e4
LT
2135 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2136 * cacheline. This can be beneficial if you're counting cycles as closely
2137 * as davem.
2138 */
278b1bb1 2139int
8a13a4cc 2140__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2141{
8456a648 2142 size_t left_over, freelist_size, ralign;
83b519e8 2143 gfp_t gfp;
278b1bb1 2144 int err;
8a13a4cc 2145 size_t size = cachep->size;
1da177e4 2146
1da177e4 2147#if DEBUG
1da177e4
LT
2148#if FORCED_DEBUG
2149 /*
2150 * Enable redzoning and last user accounting, except for caches with
2151 * large objects, if the increased size would increase the object size
2152 * above the next power of two: caches with object sizes just above a
2153 * power of two have a significant amount of internal fragmentation.
2154 */
87a927c7
DW
2155 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2156 2 * sizeof(unsigned long long)))
b28a02de 2157 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2158 if (!(flags & SLAB_DESTROY_BY_RCU))
2159 flags |= SLAB_POISON;
2160#endif
2161 if (flags & SLAB_DESTROY_BY_RCU)
2162 BUG_ON(flags & SLAB_POISON);
2163#endif
1da177e4 2164
a737b3e2
AM
2165 /*
2166 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2167 * unaligned accesses for some archs when redzoning is used, and makes
2168 * sure any on-slab bufctl's are also correctly aligned.
2169 */
b28a02de
PE
2170 if (size & (BYTES_PER_WORD - 1)) {
2171 size += (BYTES_PER_WORD - 1);
2172 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2173 }
2174
ca5f9703 2175 /*
87a927c7
DW
2176 * Redzoning and user store require word alignment or possibly larger.
2177 * Note this will be overridden by architecture or caller mandated
2178 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2179 */
87a927c7
DW
2180 if (flags & SLAB_STORE_USER)
2181 ralign = BYTES_PER_WORD;
2182
2183 if (flags & SLAB_RED_ZONE) {
2184 ralign = REDZONE_ALIGN;
2185 /* If redzoning, ensure that the second redzone is suitably
2186 * aligned, by adjusting the object size accordingly. */
2187 size += REDZONE_ALIGN - 1;
2188 size &= ~(REDZONE_ALIGN - 1);
2189 }
ca5f9703 2190
a44b56d3 2191 /* 3) caller mandated alignment */
8a13a4cc
CL
2192 if (ralign < cachep->align) {
2193 ralign = cachep->align;
1da177e4 2194 }
3ff84a7f
PE
2195 /* disable debug if necessary */
2196 if (ralign > __alignof__(unsigned long long))
a44b56d3 2197 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2198 /*
ca5f9703 2199 * 4) Store it.
1da177e4 2200 */
8a13a4cc 2201 cachep->align = ralign;
1da177e4 2202
83b519e8
PE
2203 if (slab_is_available())
2204 gfp = GFP_KERNEL;
2205 else
2206 gfp = GFP_NOWAIT;
2207
6a67368c 2208 setup_node_pointer(cachep);
1da177e4 2209#if DEBUG
1da177e4 2210
ca5f9703
PE
2211 /*
2212 * Both debugging options require word-alignment which is calculated
2213 * into align above.
2214 */
1da177e4 2215 if (flags & SLAB_RED_ZONE) {
1da177e4 2216 /* add space for red zone words */
3ff84a7f
PE
2217 cachep->obj_offset += sizeof(unsigned long long);
2218 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2219 }
2220 if (flags & SLAB_STORE_USER) {
ca5f9703 2221 /* user store requires one word storage behind the end of
87a927c7
DW
2222 * the real object. But if the second red zone needs to be
2223 * aligned to 64 bits, we must allow that much space.
1da177e4 2224 */
87a927c7
DW
2225 if (flags & SLAB_RED_ZONE)
2226 size += REDZONE_ALIGN;
2227 else
2228 size += BYTES_PER_WORD;
1da177e4
LT
2229 }
2230#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2231 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2232 && cachep->object_size > cache_line_size()
2233 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2234 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2235 size = PAGE_SIZE;
2236 }
2237#endif
2238#endif
2239
e0a42726
IM
2240 /*
2241 * Determine if the slab management is 'on' or 'off' slab.
2242 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2243 * it too early on. Always use on-slab management when
2244 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2245 */
e7cb55b9
CM
2246 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2247 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2248 /*
2249 * Size is large, assume best to place the slab management obj
2250 * off-slab (should allow better packing of objs).
2251 */
2252 flags |= CFLGS_OFF_SLAB;
2253
8a13a4cc 2254 size = ALIGN(size, cachep->align);
1da177e4 2255
8a13a4cc 2256 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2257
8a13a4cc 2258 if (!cachep->num)
278b1bb1 2259 return -E2BIG;
1da177e4 2260
8456a648
JK
2261 freelist_size =
2262 ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
1da177e4
LT
2263
2264 /*
2265 * If the slab has been placed off-slab, and we have enough space then
2266 * move it on-slab. This is at the expense of any extra colouring.
2267 */
8456a648 2268 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2269 flags &= ~CFLGS_OFF_SLAB;
8456a648 2270 left_over -= freelist_size;
1da177e4
LT
2271 }
2272
2273 if (flags & CFLGS_OFF_SLAB) {
2274 /* really off slab. No need for manual alignment */
8456a648 2275 freelist_size = cachep->num * sizeof(unsigned int);
67461365
RL
2276
2277#ifdef CONFIG_PAGE_POISONING
2278 /* If we're going to use the generic kernel_map_pages()
2279 * poisoning, then it's going to smash the contents of
2280 * the redzone and userword anyhow, so switch them off.
2281 */
2282 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2283 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2284#endif
1da177e4
LT
2285 }
2286
2287 cachep->colour_off = cache_line_size();
2288 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2289 if (cachep->colour_off < cachep->align)
2290 cachep->colour_off = cachep->align;
b28a02de 2291 cachep->colour = left_over / cachep->colour_off;
8456a648 2292 cachep->freelist_size = freelist_size;
1da177e4 2293 cachep->flags = flags;
a57a4988 2294 cachep->allocflags = __GFP_COMP;
4b51d669 2295 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2296 cachep->allocflags |= GFP_DMA;
3b0efdfa 2297 cachep->size = size;
6a2d7a95 2298 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2299
e5ac9c5a 2300 if (flags & CFLGS_OFF_SLAB) {
8456a648 2301 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a
RT
2302 /*
2303 * This is a possibility for one of the malloc_sizes caches.
2304 * But since we go off slab only for object size greater than
2305 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2306 * this should not happen at all.
2307 * But leave a BUG_ON for some lucky dude.
2308 */
8456a648 2309 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2310 }
1da177e4 2311
278b1bb1
CL
2312 err = setup_cpu_cache(cachep, gfp);
2313 if (err) {
12c3667f 2314 __kmem_cache_shutdown(cachep);
278b1bb1 2315 return err;
2ed3a4ef 2316 }
1da177e4 2317
83835b3d
PZ
2318 if (flags & SLAB_DEBUG_OBJECTS) {
2319 /*
2320 * Would deadlock through slab_destroy()->call_rcu()->
2321 * debug_object_activate()->kmem_cache_alloc().
2322 */
2323 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2324
2325 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2326 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2327 on_slab_lock_classes(cachep);
83835b3d 2328
278b1bb1 2329 return 0;
1da177e4 2330}
1da177e4
LT
2331
2332#if DEBUG
2333static void check_irq_off(void)
2334{
2335 BUG_ON(!irqs_disabled());
2336}
2337
2338static void check_irq_on(void)
2339{
2340 BUG_ON(irqs_disabled());
2341}
2342
343e0d7a 2343static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2344{
2345#ifdef CONFIG_SMP
2346 check_irq_off();
6a67368c 2347 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2348#endif
2349}
e498be7d 2350
343e0d7a 2351static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2352{
2353#ifdef CONFIG_SMP
2354 check_irq_off();
6a67368c 2355 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2356#endif
2357}
2358
1da177e4
LT
2359#else
2360#define check_irq_off() do { } while(0)
2361#define check_irq_on() do { } while(0)
2362#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2363#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2364#endif
2365
ce8eb6c4 2366static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2367 struct array_cache *ac,
2368 int force, int node);
2369
1da177e4
LT
2370static void do_drain(void *arg)
2371{
a737b3e2 2372 struct kmem_cache *cachep = arg;
1da177e4 2373 struct array_cache *ac;
7d6e6d09 2374 int node = numa_mem_id();
1da177e4
LT
2375
2376 check_irq_off();
9a2dba4b 2377 ac = cpu_cache_get(cachep);
6a67368c 2378 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2379 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2380 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2381 ac->avail = 0;
2382}
2383
343e0d7a 2384static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2385{
ce8eb6c4 2386 struct kmem_cache_node *n;
e498be7d
CL
2387 int node;
2388
15c8b6c1 2389 on_each_cpu(do_drain, cachep, 1);
1da177e4 2390 check_irq_on();
b28a02de 2391 for_each_online_node(node) {
ce8eb6c4
CL
2392 n = cachep->node[node];
2393 if (n && n->alien)
2394 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2395 }
2396
2397 for_each_online_node(node) {
ce8eb6c4
CL
2398 n = cachep->node[node];
2399 if (n)
2400 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2401 }
1da177e4
LT
2402}
2403
ed11d9eb
CL
2404/*
2405 * Remove slabs from the list of free slabs.
2406 * Specify the number of slabs to drain in tofree.
2407 *
2408 * Returns the actual number of slabs released.
2409 */
2410static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2411 struct kmem_cache_node *n, int tofree)
1da177e4 2412{
ed11d9eb
CL
2413 struct list_head *p;
2414 int nr_freed;
8456a648 2415 struct page *page;
1da177e4 2416
ed11d9eb 2417 nr_freed = 0;
ce8eb6c4 2418 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2419
ce8eb6c4
CL
2420 spin_lock_irq(&n->list_lock);
2421 p = n->slabs_free.prev;
2422 if (p == &n->slabs_free) {
2423 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2424 goto out;
2425 }
1da177e4 2426
8456a648 2427 page = list_entry(p, struct page, lru);
1da177e4 2428#if DEBUG
8456a648 2429 BUG_ON(page->active);
1da177e4 2430#endif
8456a648 2431 list_del(&page->lru);
ed11d9eb
CL
2432 /*
2433 * Safe to drop the lock. The slab is no longer linked
2434 * to the cache.
2435 */
ce8eb6c4
CL
2436 n->free_objects -= cache->num;
2437 spin_unlock_irq(&n->list_lock);
8456a648 2438 slab_destroy(cache, page);
ed11d9eb 2439 nr_freed++;
1da177e4 2440 }
ed11d9eb
CL
2441out:
2442 return nr_freed;
1da177e4
LT
2443}
2444
18004c5d 2445/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2446static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2447{
2448 int ret = 0, i = 0;
ce8eb6c4 2449 struct kmem_cache_node *n;
e498be7d
CL
2450
2451 drain_cpu_caches(cachep);
2452
2453 check_irq_on();
2454 for_each_online_node(i) {
ce8eb6c4
CL
2455 n = cachep->node[i];
2456 if (!n)
ed11d9eb
CL
2457 continue;
2458
0fa8103b 2459 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2460
ce8eb6c4
CL
2461 ret += !list_empty(&n->slabs_full) ||
2462 !list_empty(&n->slabs_partial);
e498be7d
CL
2463 }
2464 return (ret ? 1 : 0);
2465}
2466
1da177e4
LT
2467/**
2468 * kmem_cache_shrink - Shrink a cache.
2469 * @cachep: The cache to shrink.
2470 *
2471 * Releases as many slabs as possible for a cache.
2472 * To help debugging, a zero exit status indicates all slabs were released.
2473 */
343e0d7a 2474int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2475{
8f5be20b 2476 int ret;
40094fa6 2477 BUG_ON(!cachep || in_interrupt());
1da177e4 2478
95402b38 2479 get_online_cpus();
18004c5d 2480 mutex_lock(&slab_mutex);
8f5be20b 2481 ret = __cache_shrink(cachep);
18004c5d 2482 mutex_unlock(&slab_mutex);
95402b38 2483 put_online_cpus();
8f5be20b 2484 return ret;
1da177e4
LT
2485}
2486EXPORT_SYMBOL(kmem_cache_shrink);
2487
945cf2b6 2488int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2489{
12c3667f 2490 int i;
ce8eb6c4 2491 struct kmem_cache_node *n;
12c3667f 2492 int rc = __cache_shrink(cachep);
1da177e4 2493
12c3667f
CL
2494 if (rc)
2495 return rc;
1da177e4 2496
12c3667f
CL
2497 for_each_online_cpu(i)
2498 kfree(cachep->array[i]);
1da177e4 2499
ce8eb6c4 2500 /* NUMA: free the node structures */
12c3667f 2501 for_each_online_node(i) {
ce8eb6c4
CL
2502 n = cachep->node[i];
2503 if (n) {
2504 kfree(n->shared);
2505 free_alien_cache(n->alien);
2506 kfree(n);
12c3667f
CL
2507 }
2508 }
2509 return 0;
1da177e4 2510}
1da177e4 2511
e5ac9c5a
RT
2512/*
2513 * Get the memory for a slab management obj.
2514 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2515 * always come from malloc_sizes caches. The slab descriptor cannot
2516 * come from the same cache which is getting created because,
2517 * when we are searching for an appropriate cache for these
2518 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2519 * If we are creating a malloc_sizes cache here it would not be visible to
2520 * kmem_find_general_cachep till the initialization is complete.
8456a648 2521 * Hence we cannot have freelist_cache same as the original cache.
e5ac9c5a 2522 */
7e007355 2523static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2524 struct page *page, int colour_off,
2525 gfp_t local_flags, int nodeid)
1da177e4 2526{
7e007355 2527 void *freelist;
0c3aa83e 2528 void *addr = page_address(page);
b28a02de 2529
1da177e4
LT
2530 if (OFF_SLAB(cachep)) {
2531 /* Slab management obj is off-slab. */
8456a648 2532 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2533 local_flags, nodeid);
8456a648 2534 if (!freelist)
1da177e4
LT
2535 return NULL;
2536 } else {
8456a648
JK
2537 freelist = addr + colour_off;
2538 colour_off += cachep->freelist_size;
1da177e4 2539 }
8456a648
JK
2540 page->active = 0;
2541 page->s_mem = addr + colour_off;
2542 return freelist;
1da177e4
LT
2543}
2544
e7444d9b 2545static inline unsigned int *slab_freelist(struct page *page)
1da177e4 2546{
8456a648 2547 return (unsigned int *)(page->freelist);
1da177e4
LT
2548}
2549
343e0d7a 2550static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2551 struct page *page)
1da177e4
LT
2552{
2553 int i;
2554
2555 for (i = 0; i < cachep->num; i++) {
8456a648 2556 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2557#if DEBUG
2558 /* need to poison the objs? */
2559 if (cachep->flags & SLAB_POISON)
2560 poison_obj(cachep, objp, POISON_FREE);
2561 if (cachep->flags & SLAB_STORE_USER)
2562 *dbg_userword(cachep, objp) = NULL;
2563
2564 if (cachep->flags & SLAB_RED_ZONE) {
2565 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2566 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2567 }
2568 /*
a737b3e2
AM
2569 * Constructors are not allowed to allocate memory from the same
2570 * cache which they are a constructor for. Otherwise, deadlock.
2571 * They must also be threaded.
1da177e4
LT
2572 */
2573 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2574 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2575
2576 if (cachep->flags & SLAB_RED_ZONE) {
2577 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2578 slab_error(cachep, "constructor overwrote the"
b28a02de 2579 " end of an object");
1da177e4
LT
2580 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2581 slab_error(cachep, "constructor overwrote the"
b28a02de 2582 " start of an object");
1da177e4 2583 }
3b0efdfa 2584 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2585 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2586 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2587 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2588#else
2589 if (cachep->ctor)
51cc5068 2590 cachep->ctor(objp);
1da177e4 2591#endif
e7444d9b 2592 slab_freelist(page)[i] = i;
1da177e4 2593 }
1da177e4
LT
2594}
2595
343e0d7a 2596static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2597{
4b51d669
CL
2598 if (CONFIG_ZONE_DMA_FLAG) {
2599 if (flags & GFP_DMA)
a618e89f 2600 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2601 else
a618e89f 2602 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2603 }
1da177e4
LT
2604}
2605
8456a648 2606static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2607 int nodeid)
78d382d7 2608{
b1cb0982 2609 void *objp;
78d382d7 2610
e7444d9b 2611 objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
8456a648 2612 page->active++;
78d382d7 2613#if DEBUG
1ea991b0 2614 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2615#endif
78d382d7
MD
2616
2617 return objp;
2618}
2619
8456a648 2620static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2621 void *objp, int nodeid)
78d382d7 2622{
8456a648 2623 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2624#if DEBUG
16025177 2625 unsigned int i;
b1cb0982 2626
78d382d7 2627 /* Verify that the slab belongs to the intended node */
1ea991b0 2628 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2629
b1cb0982 2630 /* Verify double free bug */
8456a648 2631 for (i = page->active; i < cachep->num; i++) {
e7444d9b 2632 if (slab_freelist(page)[i] == objnr) {
b1cb0982
JK
2633 printk(KERN_ERR "slab: double free detected in cache "
2634 "'%s', objp %p\n", cachep->name, objp);
2635 BUG();
2636 }
78d382d7
MD
2637 }
2638#endif
8456a648 2639 page->active--;
e7444d9b 2640 slab_freelist(page)[page->active] = objnr;
78d382d7
MD
2641}
2642
4776874f
PE
2643/*
2644 * Map pages beginning at addr to the given cache and slab. This is required
2645 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2646 * virtual address for kfree, ksize, and slab debugging.
4776874f 2647 */
8456a648 2648static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2649 void *freelist)
1da177e4 2650{
a57a4988 2651 page->slab_cache = cache;
8456a648 2652 page->freelist = freelist;
1da177e4
LT
2653}
2654
2655/*
2656 * Grow (by 1) the number of slabs within a cache. This is called by
2657 * kmem_cache_alloc() when there are no active objs left in a cache.
2658 */
3c517a61 2659static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2660 gfp_t flags, int nodeid, struct page *page)
1da177e4 2661{
7e007355 2662 void *freelist;
b28a02de
PE
2663 size_t offset;
2664 gfp_t local_flags;
ce8eb6c4 2665 struct kmem_cache_node *n;
1da177e4 2666
a737b3e2
AM
2667 /*
2668 * Be lazy and only check for valid flags here, keeping it out of the
2669 * critical path in kmem_cache_alloc().
1da177e4 2670 */
6cb06229
CL
2671 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2672 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2673
ce8eb6c4 2674 /* Take the node list lock to change the colour_next on this node */
1da177e4 2675 check_irq_off();
ce8eb6c4
CL
2676 n = cachep->node[nodeid];
2677 spin_lock(&n->list_lock);
1da177e4
LT
2678
2679 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2680 offset = n->colour_next;
2681 n->colour_next++;
2682 if (n->colour_next >= cachep->colour)
2683 n->colour_next = 0;
2684 spin_unlock(&n->list_lock);
1da177e4 2685
2e1217cf 2686 offset *= cachep->colour_off;
1da177e4
LT
2687
2688 if (local_flags & __GFP_WAIT)
2689 local_irq_enable();
2690
2691 /*
2692 * The test for missing atomic flag is performed here, rather than
2693 * the more obvious place, simply to reduce the critical path length
2694 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2695 * will eventually be caught here (where it matters).
2696 */
2697 kmem_flagcheck(cachep, flags);
2698
a737b3e2
AM
2699 /*
2700 * Get mem for the objs. Attempt to allocate a physical page from
2701 * 'nodeid'.
e498be7d 2702 */
0c3aa83e
JK
2703 if (!page)
2704 page = kmem_getpages(cachep, local_flags, nodeid);
2705 if (!page)
1da177e4
LT
2706 goto failed;
2707
2708 /* Get slab management. */
8456a648 2709 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2710 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2711 if (!freelist)
1da177e4
LT
2712 goto opps1;
2713
8456a648 2714 slab_map_pages(cachep, page, freelist);
1da177e4 2715
8456a648 2716 cache_init_objs(cachep, page);
1da177e4
LT
2717
2718 if (local_flags & __GFP_WAIT)
2719 local_irq_disable();
2720 check_irq_off();
ce8eb6c4 2721 spin_lock(&n->list_lock);
1da177e4
LT
2722
2723 /* Make slab active. */
8456a648 2724 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2725 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2726 n->free_objects += cachep->num;
2727 spin_unlock(&n->list_lock);
1da177e4 2728 return 1;
a737b3e2 2729opps1:
0c3aa83e 2730 kmem_freepages(cachep, page);
a737b3e2 2731failed:
1da177e4
LT
2732 if (local_flags & __GFP_WAIT)
2733 local_irq_disable();
2734 return 0;
2735}
2736
2737#if DEBUG
2738
2739/*
2740 * Perform extra freeing checks:
2741 * - detect bad pointers.
2742 * - POISON/RED_ZONE checking
1da177e4
LT
2743 */
2744static void kfree_debugcheck(const void *objp)
2745{
1da177e4
LT
2746 if (!virt_addr_valid(objp)) {
2747 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2748 (unsigned long)objp);
2749 BUG();
1da177e4 2750 }
1da177e4
LT
2751}
2752
58ce1fd5
PE
2753static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2754{
b46b8f19 2755 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2756
2757 redzone1 = *dbg_redzone1(cache, obj);
2758 redzone2 = *dbg_redzone2(cache, obj);
2759
2760 /*
2761 * Redzone is ok.
2762 */
2763 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2764 return;
2765
2766 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2767 slab_error(cache, "double free detected");
2768 else
2769 slab_error(cache, "memory outside object was overwritten");
2770
b46b8f19 2771 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2772 obj, redzone1, redzone2);
2773}
2774
343e0d7a 2775static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2776 unsigned long caller)
1da177e4 2777{
1da177e4 2778 unsigned int objnr;
8456a648 2779 struct page *page;
1da177e4 2780
80cbd911
MW
2781 BUG_ON(virt_to_cache(objp) != cachep);
2782
3dafccf2 2783 objp -= obj_offset(cachep);
1da177e4 2784 kfree_debugcheck(objp);
b49af68f 2785 page = virt_to_head_page(objp);
1da177e4 2786
1da177e4 2787 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2788 verify_redzone_free(cachep, objp);
1da177e4
LT
2789 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2790 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2791 }
2792 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2793 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2794
8456a648 2795 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2796
2797 BUG_ON(objnr >= cachep->num);
8456a648 2798 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2799
1da177e4
LT
2800 if (cachep->flags & SLAB_POISON) {
2801#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2802 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2803 store_stackinfo(cachep, objp, caller);
b28a02de 2804 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2805 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2806 } else {
2807 poison_obj(cachep, objp, POISON_FREE);
2808 }
2809#else
2810 poison_obj(cachep, objp, POISON_FREE);
2811#endif
2812 }
2813 return objp;
2814}
2815
1da177e4
LT
2816#else
2817#define kfree_debugcheck(x) do { } while(0)
2818#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2819#endif
2820
072bb0aa
MG
2821static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2822 bool force_refill)
1da177e4
LT
2823{
2824 int batchcount;
ce8eb6c4 2825 struct kmem_cache_node *n;
1da177e4 2826 struct array_cache *ac;
1ca4cb24
PE
2827 int node;
2828
1da177e4 2829 check_irq_off();
7d6e6d09 2830 node = numa_mem_id();
072bb0aa
MG
2831 if (unlikely(force_refill))
2832 goto force_grow;
2833retry:
9a2dba4b 2834 ac = cpu_cache_get(cachep);
1da177e4
LT
2835 batchcount = ac->batchcount;
2836 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2837 /*
2838 * If there was little recent activity on this cache, then
2839 * perform only a partial refill. Otherwise we could generate
2840 * refill bouncing.
1da177e4
LT
2841 */
2842 batchcount = BATCHREFILL_LIMIT;
2843 }
ce8eb6c4 2844 n = cachep->node[node];
e498be7d 2845
ce8eb6c4
CL
2846 BUG_ON(ac->avail > 0 || !n);
2847 spin_lock(&n->list_lock);
1da177e4 2848
3ded175a 2849 /* See if we can refill from the shared array */
ce8eb6c4
CL
2850 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2851 n->shared->touched = 1;
3ded175a 2852 goto alloc_done;
44b57f1c 2853 }
3ded175a 2854
1da177e4
LT
2855 while (batchcount > 0) {
2856 struct list_head *entry;
8456a648 2857 struct page *page;
1da177e4 2858 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2859 entry = n->slabs_partial.next;
2860 if (entry == &n->slabs_partial) {
2861 n->free_touched = 1;
2862 entry = n->slabs_free.next;
2863 if (entry == &n->slabs_free)
1da177e4
LT
2864 goto must_grow;
2865 }
2866
8456a648 2867 page = list_entry(entry, struct page, lru);
1da177e4 2868 check_spinlock_acquired(cachep);
714b8171
PE
2869
2870 /*
2871 * The slab was either on partial or free list so
2872 * there must be at least one object available for
2873 * allocation.
2874 */
8456a648 2875 BUG_ON(page->active >= cachep->num);
714b8171 2876
8456a648 2877 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2878 STATS_INC_ALLOCED(cachep);
2879 STATS_INC_ACTIVE(cachep);
2880 STATS_SET_HIGH(cachep);
2881
8456a648 2882 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2883 node));
1da177e4 2884 }
1da177e4
LT
2885
2886 /* move slabp to correct slabp list: */
8456a648
JK
2887 list_del(&page->lru);
2888 if (page->active == cachep->num)
2889 list_add(&page->list, &n->slabs_full);
1da177e4 2890 else
8456a648 2891 list_add(&page->list, &n->slabs_partial);
1da177e4
LT
2892 }
2893
a737b3e2 2894must_grow:
ce8eb6c4 2895 n->free_objects -= ac->avail;
a737b3e2 2896alloc_done:
ce8eb6c4 2897 spin_unlock(&n->list_lock);
1da177e4
LT
2898
2899 if (unlikely(!ac->avail)) {
2900 int x;
072bb0aa 2901force_grow:
3c517a61 2902 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2903
a737b3e2 2904 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2905 ac = cpu_cache_get(cachep);
51cd8e6f 2906 node = numa_mem_id();
072bb0aa
MG
2907
2908 /* no objects in sight? abort */
2909 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2910 return NULL;
2911
a737b3e2 2912 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2913 goto retry;
2914 }
2915 ac->touched = 1;
072bb0aa
MG
2916
2917 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2918}
2919
a737b3e2
AM
2920static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2921 gfp_t flags)
1da177e4
LT
2922{
2923 might_sleep_if(flags & __GFP_WAIT);
2924#if DEBUG
2925 kmem_flagcheck(cachep, flags);
2926#endif
2927}
2928
2929#if DEBUG
a737b3e2 2930static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2931 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2932{
b28a02de 2933 if (!objp)
1da177e4 2934 return objp;
b28a02de 2935 if (cachep->flags & SLAB_POISON) {
1da177e4 2936#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2937 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2938 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2939 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2940 else
2941 check_poison_obj(cachep, objp);
2942#else
2943 check_poison_obj(cachep, objp);
2944#endif
2945 poison_obj(cachep, objp, POISON_INUSE);
2946 }
2947 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2948 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2949
2950 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2951 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2952 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2953 slab_error(cachep, "double free, or memory outside"
2954 " object was overwritten");
b28a02de 2955 printk(KERN_ERR
b46b8f19 2956 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2957 objp, *dbg_redzone1(cachep, objp),
2958 *dbg_redzone2(cachep, objp));
1da177e4
LT
2959 }
2960 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2961 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2962 }
3dafccf2 2963 objp += obj_offset(cachep);
4f104934 2964 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2965 cachep->ctor(objp);
7ea466f2
TH
2966 if (ARCH_SLAB_MINALIGN &&
2967 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2968 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2969 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2970 }
1da177e4
LT
2971 return objp;
2972}
2973#else
2974#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2975#endif
2976
773ff60e 2977static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2978{
9b030cb8 2979 if (cachep == kmem_cache)
773ff60e 2980 return false;
8a8b6502 2981
8c138bc0 2982 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2983}
2984
343e0d7a 2985static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2986{
b28a02de 2987 void *objp;
1da177e4 2988 struct array_cache *ac;
072bb0aa 2989 bool force_refill = false;
1da177e4 2990
5c382300 2991 check_irq_off();
8a8b6502 2992
9a2dba4b 2993 ac = cpu_cache_get(cachep);
1da177e4 2994 if (likely(ac->avail)) {
1da177e4 2995 ac->touched = 1;
072bb0aa
MG
2996 objp = ac_get_obj(cachep, ac, flags, false);
2997
ddbf2e83 2998 /*
072bb0aa
MG
2999 * Allow for the possibility all avail objects are not allowed
3000 * by the current flags
ddbf2e83 3001 */
072bb0aa
MG
3002 if (objp) {
3003 STATS_INC_ALLOCHIT(cachep);
3004 goto out;
3005 }
3006 force_refill = true;
1da177e4 3007 }
072bb0aa
MG
3008
3009 STATS_INC_ALLOCMISS(cachep);
3010 objp = cache_alloc_refill(cachep, flags, force_refill);
3011 /*
3012 * the 'ac' may be updated by cache_alloc_refill(),
3013 * and kmemleak_erase() requires its correct value.
3014 */
3015 ac = cpu_cache_get(cachep);
3016
3017out:
d5cff635
CM
3018 /*
3019 * To avoid a false negative, if an object that is in one of the
3020 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3021 * treat the array pointers as a reference to the object.
3022 */
f3d8b53a
O
3023 if (objp)
3024 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3025 return objp;
3026}
3027
e498be7d 3028#ifdef CONFIG_NUMA
c61afb18 3029/*
b2455396 3030 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3031 *
3032 * If we are in_interrupt, then process context, including cpusets and
3033 * mempolicy, may not apply and should not be used for allocation policy.
3034 */
3035static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3036{
3037 int nid_alloc, nid_here;
3038
765c4507 3039 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3040 return NULL;
7d6e6d09 3041 nid_alloc = nid_here = numa_mem_id();
c61afb18 3042 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3043 nid_alloc = cpuset_slab_spread_node();
c61afb18 3044 else if (current->mempolicy)
e7b691b0 3045 nid_alloc = slab_node();
c61afb18 3046 if (nid_alloc != nid_here)
8b98c169 3047 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3048 return NULL;
3049}
3050
765c4507
CL
3051/*
3052 * Fallback function if there was no memory available and no objects on a
3c517a61 3053 * certain node and fall back is permitted. First we scan all the
6a67368c 3054 * available node for available objects. If that fails then we
3c517a61
CL
3055 * perform an allocation without specifying a node. This allows the page
3056 * allocator to do its reclaim / fallback magic. We then insert the
3057 * slab into the proper nodelist and then allocate from it.
765c4507 3058 */
8c8cc2c1 3059static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3060{
8c8cc2c1
PE
3061 struct zonelist *zonelist;
3062 gfp_t local_flags;
dd1a239f 3063 struct zoneref *z;
54a6eb5c
MG
3064 struct zone *zone;
3065 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3066 void *obj = NULL;
3c517a61 3067 int nid;
cc9a6c87 3068 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3069
3070 if (flags & __GFP_THISNODE)
3071 return NULL;
3072
6cb06229 3073 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3074
cc9a6c87 3075retry_cpuset:
d26914d1 3076 cpuset_mems_cookie = read_mems_allowed_begin();
e7b691b0 3077 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3078
3c517a61
CL
3079retry:
3080 /*
3081 * Look through allowed nodes for objects available
3082 * from existing per node queues.
3083 */
54a6eb5c
MG
3084 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3085 nid = zone_to_nid(zone);
aedb0eb1 3086
54a6eb5c 3087 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3088 cache->node[nid] &&
3089 cache->node[nid]->free_objects) {
3c517a61
CL
3090 obj = ____cache_alloc_node(cache,
3091 flags | GFP_THISNODE, nid);
481c5346
CL
3092 if (obj)
3093 break;
3094 }
3c517a61
CL
3095 }
3096
cfce6604 3097 if (!obj) {
3c517a61
CL
3098 /*
3099 * This allocation will be performed within the constraints
3100 * of the current cpuset / memory policy requirements.
3101 * We may trigger various forms of reclaim on the allowed
3102 * set and go into memory reserves if necessary.
3103 */
0c3aa83e
JK
3104 struct page *page;
3105
dd47ea75
CL
3106 if (local_flags & __GFP_WAIT)
3107 local_irq_enable();
3108 kmem_flagcheck(cache, flags);
0c3aa83e 3109 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3110 if (local_flags & __GFP_WAIT)
3111 local_irq_disable();
0c3aa83e 3112 if (page) {
3c517a61
CL
3113 /*
3114 * Insert into the appropriate per node queues
3115 */
0c3aa83e
JK
3116 nid = page_to_nid(page);
3117 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3118 obj = ____cache_alloc_node(cache,
3119 flags | GFP_THISNODE, nid);
3120 if (!obj)
3121 /*
3122 * Another processor may allocate the
3123 * objects in the slab since we are
3124 * not holding any locks.
3125 */
3126 goto retry;
3127 } else {
b6a60451 3128 /* cache_grow already freed obj */
3c517a61
CL
3129 obj = NULL;
3130 }
3131 }
aedb0eb1 3132 }
cc9a6c87 3133
d26914d1 3134 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3135 goto retry_cpuset;
765c4507
CL
3136 return obj;
3137}
3138
e498be7d
CL
3139/*
3140 * A interface to enable slab creation on nodeid
1da177e4 3141 */
8b98c169 3142static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3143 int nodeid)
e498be7d
CL
3144{
3145 struct list_head *entry;
8456a648 3146 struct page *page;
ce8eb6c4 3147 struct kmem_cache_node *n;
b28a02de 3148 void *obj;
b28a02de
PE
3149 int x;
3150
14e50c6a 3151 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3152 n = cachep->node[nodeid];
3153 BUG_ON(!n);
b28a02de 3154
a737b3e2 3155retry:
ca3b9b91 3156 check_irq_off();
ce8eb6c4
CL
3157 spin_lock(&n->list_lock);
3158 entry = n->slabs_partial.next;
3159 if (entry == &n->slabs_partial) {
3160 n->free_touched = 1;
3161 entry = n->slabs_free.next;
3162 if (entry == &n->slabs_free)
b28a02de
PE
3163 goto must_grow;
3164 }
3165
8456a648 3166 page = list_entry(entry, struct page, lru);
b28a02de 3167 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3168
3169 STATS_INC_NODEALLOCS(cachep);
3170 STATS_INC_ACTIVE(cachep);
3171 STATS_SET_HIGH(cachep);
3172
8456a648 3173 BUG_ON(page->active == cachep->num);
b28a02de 3174
8456a648 3175 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3176 n->free_objects--;
b28a02de 3177 /* move slabp to correct slabp list: */
8456a648 3178 list_del(&page->lru);
b28a02de 3179
8456a648
JK
3180 if (page->active == cachep->num)
3181 list_add(&page->lru, &n->slabs_full);
a737b3e2 3182 else
8456a648 3183 list_add(&page->lru, &n->slabs_partial);
e498be7d 3184
ce8eb6c4 3185 spin_unlock(&n->list_lock);
b28a02de 3186 goto done;
e498be7d 3187
a737b3e2 3188must_grow:
ce8eb6c4 3189 spin_unlock(&n->list_lock);
3c517a61 3190 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3191 if (x)
3192 goto retry;
1da177e4 3193
8c8cc2c1 3194 return fallback_alloc(cachep, flags);
e498be7d 3195
a737b3e2 3196done:
b28a02de 3197 return obj;
e498be7d 3198}
8c8cc2c1 3199
8c8cc2c1 3200static __always_inline void *
48356303 3201slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3202 unsigned long caller)
8c8cc2c1
PE
3203{
3204 unsigned long save_flags;
3205 void *ptr;
7d6e6d09 3206 int slab_node = numa_mem_id();
8c8cc2c1 3207
dcce284a 3208 flags &= gfp_allowed_mask;
7e85ee0c 3209
cf40bd16
NP
3210 lockdep_trace_alloc(flags);
3211
773ff60e 3212 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3213 return NULL;
3214
d79923fa
GC
3215 cachep = memcg_kmem_get_cache(cachep, flags);
3216
8c8cc2c1
PE
3217 cache_alloc_debugcheck_before(cachep, flags);
3218 local_irq_save(save_flags);
3219
eacbbae3 3220 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3221 nodeid = slab_node;
8c8cc2c1 3222
6a67368c 3223 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3224 /* Node not bootstrapped yet */
3225 ptr = fallback_alloc(cachep, flags);
3226 goto out;
3227 }
3228
7d6e6d09 3229 if (nodeid == slab_node) {
8c8cc2c1
PE
3230 /*
3231 * Use the locally cached objects if possible.
3232 * However ____cache_alloc does not allow fallback
3233 * to other nodes. It may fail while we still have
3234 * objects on other nodes available.
3235 */
3236 ptr = ____cache_alloc(cachep, flags);
3237 if (ptr)
3238 goto out;
3239 }
3240 /* ___cache_alloc_node can fall back to other nodes */
3241 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3242 out:
3243 local_irq_restore(save_flags);
3244 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3245 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3246 flags);
8c8cc2c1 3247
c175eea4 3248 if (likely(ptr))
8c138bc0 3249 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3250
d07dbea4 3251 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3252 memset(ptr, 0, cachep->object_size);
d07dbea4 3253
8c8cc2c1
PE
3254 return ptr;
3255}
3256
3257static __always_inline void *
3258__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3259{
3260 void *objp;
3261
3262 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3263 objp = alternate_node_alloc(cache, flags);
3264 if (objp)
3265 goto out;
3266 }
3267 objp = ____cache_alloc(cache, flags);
3268
3269 /*
3270 * We may just have run out of memory on the local node.
3271 * ____cache_alloc_node() knows how to locate memory on other nodes
3272 */
7d6e6d09
LS
3273 if (!objp)
3274 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3275
3276 out:
3277 return objp;
3278}
3279#else
3280
3281static __always_inline void *
3282__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3283{
3284 return ____cache_alloc(cachep, flags);
3285}
3286
3287#endif /* CONFIG_NUMA */
3288
3289static __always_inline void *
48356303 3290slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3291{
3292 unsigned long save_flags;
3293 void *objp;
3294
dcce284a 3295 flags &= gfp_allowed_mask;
7e85ee0c 3296
cf40bd16
NP
3297 lockdep_trace_alloc(flags);
3298
773ff60e 3299 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3300 return NULL;
3301
d79923fa
GC
3302 cachep = memcg_kmem_get_cache(cachep, flags);
3303
8c8cc2c1
PE
3304 cache_alloc_debugcheck_before(cachep, flags);
3305 local_irq_save(save_flags);
3306 objp = __do_cache_alloc(cachep, flags);
3307 local_irq_restore(save_flags);
3308 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3309 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3310 flags);
8c8cc2c1
PE
3311 prefetchw(objp);
3312
c175eea4 3313 if (likely(objp))
8c138bc0 3314 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3315
d07dbea4 3316 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3317 memset(objp, 0, cachep->object_size);
d07dbea4 3318
8c8cc2c1
PE
3319 return objp;
3320}
e498be7d
CL
3321
3322/*
3323 * Caller needs to acquire correct kmem_list's list_lock
3324 */
343e0d7a 3325static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3326 int node)
1da177e4
LT
3327{
3328 int i;
ce8eb6c4 3329 struct kmem_cache_node *n;
1da177e4
LT
3330
3331 for (i = 0; i < nr_objects; i++) {
072bb0aa 3332 void *objp;
8456a648 3333 struct page *page;
1da177e4 3334
072bb0aa
MG
3335 clear_obj_pfmemalloc(&objpp[i]);
3336 objp = objpp[i];
3337
8456a648 3338 page = virt_to_head_page(objp);
ce8eb6c4 3339 n = cachep->node[node];
8456a648 3340 list_del(&page->lru);
ff69416e 3341 check_spinlock_acquired_node(cachep, node);
8456a648 3342 slab_put_obj(cachep, page, objp, node);
1da177e4 3343 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3344 n->free_objects++;
1da177e4
LT
3345
3346 /* fixup slab chains */
8456a648 3347 if (page->active == 0) {
ce8eb6c4
CL
3348 if (n->free_objects > n->free_limit) {
3349 n->free_objects -= cachep->num;
e5ac9c5a
RT
3350 /* No need to drop any previously held
3351 * lock here, even if we have a off-slab slab
3352 * descriptor it is guaranteed to come from
3353 * a different cache, refer to comments before
3354 * alloc_slabmgmt.
3355 */
8456a648 3356 slab_destroy(cachep, page);
1da177e4 3357 } else {
8456a648 3358 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3359 }
3360 } else {
3361 /* Unconditionally move a slab to the end of the
3362 * partial list on free - maximum time for the
3363 * other objects to be freed, too.
3364 */
8456a648 3365 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3366 }
3367 }
3368}
3369
343e0d7a 3370static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3371{
3372 int batchcount;
ce8eb6c4 3373 struct kmem_cache_node *n;
7d6e6d09 3374 int node = numa_mem_id();
1da177e4
LT
3375
3376 batchcount = ac->batchcount;
3377#if DEBUG
3378 BUG_ON(!batchcount || batchcount > ac->avail);
3379#endif
3380 check_irq_off();
ce8eb6c4
CL
3381 n = cachep->node[node];
3382 spin_lock(&n->list_lock);
3383 if (n->shared) {
3384 struct array_cache *shared_array = n->shared;
b28a02de 3385 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3386 if (max) {
3387 if (batchcount > max)
3388 batchcount = max;
e498be7d 3389 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3390 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3391 shared_array->avail += batchcount;
3392 goto free_done;
3393 }
3394 }
3395
ff69416e 3396 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3397free_done:
1da177e4
LT
3398#if STATS
3399 {
3400 int i = 0;
3401 struct list_head *p;
3402
ce8eb6c4
CL
3403 p = n->slabs_free.next;
3404 while (p != &(n->slabs_free)) {
8456a648 3405 struct page *page;
1da177e4 3406
8456a648
JK
3407 page = list_entry(p, struct page, lru);
3408 BUG_ON(page->active);
1da177e4
LT
3409
3410 i++;
3411 p = p->next;
3412 }
3413 STATS_SET_FREEABLE(cachep, i);
3414 }
3415#endif
ce8eb6c4 3416 spin_unlock(&n->list_lock);
1da177e4 3417 ac->avail -= batchcount;
a737b3e2 3418 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3419}
3420
3421/*
a737b3e2
AM
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3424 */
a947eb95 3425static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3426 unsigned long caller)
1da177e4 3427{
9a2dba4b 3428 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3429
3430 check_irq_off();
d5cff635 3431 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3432 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3433
8c138bc0 3434 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3435
1807a1aa
SS
3436 /*
3437 * Skip calling cache_free_alien() when the platform is not numa.
3438 * This will avoid cache misses that happen while accessing slabp (which
3439 * is per page memory reference) to get nodeid. Instead use a global
3440 * variable to skip the call, which is mostly likely to be present in
3441 * the cache.
3442 */
b6e68bc1 3443 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3444 return;
3445
1da177e4
LT
3446 if (likely(ac->avail < ac->limit)) {
3447 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3448 } else {
3449 STATS_INC_FREEMISS(cachep);
3450 cache_flusharray(cachep, ac);
1da177e4 3451 }
42c8c99c 3452
072bb0aa 3453 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3454}
3455
3456/**
3457 * kmem_cache_alloc - Allocate an object
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 *
3461 * Allocate an object from this cache. The flags are only relevant
3462 * if the cache has no available objects.
3463 */
343e0d7a 3464void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3465{
48356303 3466 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3467
ca2b84cb 3468 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3469 cachep->object_size, cachep->size, flags);
36555751
EGM
3470
3471 return ret;
1da177e4
LT
3472}
3473EXPORT_SYMBOL(kmem_cache_alloc);
3474
0f24f128 3475#ifdef CONFIG_TRACING
85beb586 3476void *
4052147c 3477kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3478{
85beb586
SR
3479 void *ret;
3480
48356303 3481 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3482
3483 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3484 size, cachep->size, flags);
85beb586 3485 return ret;
36555751 3486}
85beb586 3487EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3488#endif
3489
1da177e4 3490#ifdef CONFIG_NUMA
d0d04b78
ZL
3491/**
3492 * kmem_cache_alloc_node - Allocate an object on the specified node
3493 * @cachep: The cache to allocate from.
3494 * @flags: See kmalloc().
3495 * @nodeid: node number of the target node.
3496 *
3497 * Identical to kmem_cache_alloc but it will allocate memory on the given
3498 * node, which can improve the performance for cpu bound structures.
3499 *
3500 * Fallback to other node is possible if __GFP_THISNODE is not set.
3501 */
8b98c169
CH
3502void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3503{
48356303 3504 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3505
ca2b84cb 3506 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3507 cachep->object_size, cachep->size,
ca2b84cb 3508 flags, nodeid);
36555751
EGM
3509
3510 return ret;
8b98c169 3511}
1da177e4
LT
3512EXPORT_SYMBOL(kmem_cache_alloc_node);
3513
0f24f128 3514#ifdef CONFIG_TRACING
4052147c 3515void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3516 gfp_t flags,
4052147c
EG
3517 int nodeid,
3518 size_t size)
36555751 3519{
85beb586
SR
3520 void *ret;
3521
592f4145 3522 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3523
85beb586 3524 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3525 size, cachep->size,
85beb586
SR
3526 flags, nodeid);
3527 return ret;
36555751 3528}
85beb586 3529EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3530#endif
3531
8b98c169 3532static __always_inline void *
7c0cb9c6 3533__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3534{
343e0d7a 3535 struct kmem_cache *cachep;
97e2bde4 3536
2c59dd65 3537 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3538 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3539 return cachep;
4052147c 3540 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3541}
8b98c169 3542
0bb38a5c 3543#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3544void *__kmalloc_node(size_t size, gfp_t flags, int node)
3545{
7c0cb9c6 3546 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3547}
dbe5e69d 3548EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3549
3550void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3551 int node, unsigned long caller)
8b98c169 3552{
7c0cb9c6 3553 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3554}
3555EXPORT_SYMBOL(__kmalloc_node_track_caller);
3556#else
3557void *__kmalloc_node(size_t size, gfp_t flags, int node)
3558{
7c0cb9c6 3559 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3560}
3561EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3562#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3563#endif /* CONFIG_NUMA */
1da177e4
LT
3564
3565/**
800590f5 3566 * __do_kmalloc - allocate memory
1da177e4 3567 * @size: how many bytes of memory are required.
800590f5 3568 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3569 * @caller: function caller for debug tracking of the caller
1da177e4 3570 */
7fd6b141 3571static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3572 unsigned long caller)
1da177e4 3573{
343e0d7a 3574 struct kmem_cache *cachep;
36555751 3575 void *ret;
1da177e4 3576
97e2bde4
MS
3577 /* If you want to save a few bytes .text space: replace
3578 * __ with kmem_.
3579 * Then kmalloc uses the uninlined functions instead of the inline
3580 * functions.
3581 */
2c59dd65 3582 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3583 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3584 return cachep;
48356303 3585 ret = slab_alloc(cachep, flags, caller);
36555751 3586
7c0cb9c6 3587 trace_kmalloc(caller, ret,
3b0efdfa 3588 size, cachep->size, flags);
36555751
EGM
3589
3590 return ret;
7fd6b141
PE
3591}
3592
7fd6b141 3593
0bb38a5c 3594#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3595void *__kmalloc(size_t size, gfp_t flags)
3596{
7c0cb9c6 3597 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3598}
3599EXPORT_SYMBOL(__kmalloc);
3600
ce71e27c 3601void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3602{
7c0cb9c6 3603 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3604}
3605EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3606
3607#else
3608void *__kmalloc(size_t size, gfp_t flags)
3609{
7c0cb9c6 3610 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3611}
3612EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3613#endif
3614
1da177e4
LT
3615/**
3616 * kmem_cache_free - Deallocate an object
3617 * @cachep: The cache the allocation was from.
3618 * @objp: The previously allocated object.
3619 *
3620 * Free an object which was previously allocated from this
3621 * cache.
3622 */
343e0d7a 3623void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3624{
3625 unsigned long flags;
b9ce5ef4
GC
3626 cachep = cache_from_obj(cachep, objp);
3627 if (!cachep)
3628 return;
1da177e4
LT
3629
3630 local_irq_save(flags);
d97d476b 3631 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3632 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3633 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3634 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3635 local_irq_restore(flags);
36555751 3636
ca2b84cb 3637 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3638}
3639EXPORT_SYMBOL(kmem_cache_free);
3640
1da177e4
LT
3641/**
3642 * kfree - free previously allocated memory
3643 * @objp: pointer returned by kmalloc.
3644 *
80e93eff
PE
3645 * If @objp is NULL, no operation is performed.
3646 *
1da177e4
LT
3647 * Don't free memory not originally allocated by kmalloc()
3648 * or you will run into trouble.
3649 */
3650void kfree(const void *objp)
3651{
343e0d7a 3652 struct kmem_cache *c;
1da177e4
LT
3653 unsigned long flags;
3654
2121db74
PE
3655 trace_kfree(_RET_IP_, objp);
3656
6cb8f913 3657 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3658 return;
3659 local_irq_save(flags);
3660 kfree_debugcheck(objp);
6ed5eb22 3661 c = virt_to_cache(objp);
8c138bc0
CL
3662 debug_check_no_locks_freed(objp, c->object_size);
3663
3664 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3665 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3666 local_irq_restore(flags);
3667}
3668EXPORT_SYMBOL(kfree);
3669
e498be7d 3670/*
ce8eb6c4 3671 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3672 */
83b519e8 3673static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3674{
3675 int node;
ce8eb6c4 3676 struct kmem_cache_node *n;
cafeb02e 3677 struct array_cache *new_shared;
3395ee05 3678 struct array_cache **new_alien = NULL;
e498be7d 3679
9c09a95c 3680 for_each_online_node(node) {
cafeb02e 3681
3395ee05 3682 if (use_alien_caches) {
83b519e8 3683 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3684 if (!new_alien)
3685 goto fail;
3686 }
cafeb02e 3687
63109846
ED
3688 new_shared = NULL;
3689 if (cachep->shared) {
3690 new_shared = alloc_arraycache(node,
0718dc2a 3691 cachep->shared*cachep->batchcount,
83b519e8 3692 0xbaadf00d, gfp);
63109846
ED
3693 if (!new_shared) {
3694 free_alien_cache(new_alien);
3695 goto fail;
3696 }
0718dc2a 3697 }
cafeb02e 3698
ce8eb6c4
CL
3699 n = cachep->node[node];
3700 if (n) {
3701 struct array_cache *shared = n->shared;
cafeb02e 3702
ce8eb6c4 3703 spin_lock_irq(&n->list_lock);
e498be7d 3704
cafeb02e 3705 if (shared)
0718dc2a
CL
3706 free_block(cachep, shared->entry,
3707 shared->avail, node);
e498be7d 3708
ce8eb6c4
CL
3709 n->shared = new_shared;
3710 if (!n->alien) {
3711 n->alien = new_alien;
e498be7d
CL
3712 new_alien = NULL;
3713 }
ce8eb6c4 3714 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3715 cachep->batchcount + cachep->num;
ce8eb6c4 3716 spin_unlock_irq(&n->list_lock);
cafeb02e 3717 kfree(shared);
e498be7d
CL
3718 free_alien_cache(new_alien);
3719 continue;
3720 }
ce8eb6c4
CL
3721 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3722 if (!n) {
0718dc2a
CL
3723 free_alien_cache(new_alien);
3724 kfree(new_shared);
e498be7d 3725 goto fail;
0718dc2a 3726 }
e498be7d 3727
ce8eb6c4
CL
3728 kmem_cache_node_init(n);
3729 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3730 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3731 n->shared = new_shared;
3732 n->alien = new_alien;
3733 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3734 cachep->batchcount + cachep->num;
ce8eb6c4 3735 cachep->node[node] = n;
e498be7d 3736 }
cafeb02e 3737 return 0;
0718dc2a 3738
a737b3e2 3739fail:
3b0efdfa 3740 if (!cachep->list.next) {
0718dc2a
CL
3741 /* Cache is not active yet. Roll back what we did */
3742 node--;
3743 while (node >= 0) {
6a67368c 3744 if (cachep->node[node]) {
ce8eb6c4 3745 n = cachep->node[node];
0718dc2a 3746
ce8eb6c4
CL
3747 kfree(n->shared);
3748 free_alien_cache(n->alien);
3749 kfree(n);
6a67368c 3750 cachep->node[node] = NULL;
0718dc2a
CL
3751 }
3752 node--;
3753 }
3754 }
cafeb02e 3755 return -ENOMEM;
e498be7d
CL
3756}
3757
1da177e4 3758struct ccupdate_struct {
343e0d7a 3759 struct kmem_cache *cachep;
acfe7d74 3760 struct array_cache *new[0];
1da177e4
LT
3761};
3762
3763static void do_ccupdate_local(void *info)
3764{
a737b3e2 3765 struct ccupdate_struct *new = info;
1da177e4
LT
3766 struct array_cache *old;
3767
3768 check_irq_off();
9a2dba4b 3769 old = cpu_cache_get(new->cachep);
e498be7d 3770
1da177e4
LT
3771 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3772 new->new[smp_processor_id()] = old;
3773}
3774
18004c5d 3775/* Always called with the slab_mutex held */
943a451a 3776static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3777 int batchcount, int shared, gfp_t gfp)
1da177e4 3778{
d2e7b7d0 3779 struct ccupdate_struct *new;
2ed3a4ef 3780 int i;
1da177e4 3781
acfe7d74
ED
3782 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3783 gfp);
d2e7b7d0
SS
3784 if (!new)
3785 return -ENOMEM;
3786
e498be7d 3787 for_each_online_cpu(i) {
7d6e6d09 3788 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3789 batchcount, gfp);
d2e7b7d0 3790 if (!new->new[i]) {
b28a02de 3791 for (i--; i >= 0; i--)
d2e7b7d0
SS
3792 kfree(new->new[i]);
3793 kfree(new);
e498be7d 3794 return -ENOMEM;
1da177e4
LT
3795 }
3796 }
d2e7b7d0 3797 new->cachep = cachep;
1da177e4 3798
15c8b6c1 3799 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3800
1da177e4 3801 check_irq_on();
1da177e4
LT
3802 cachep->batchcount = batchcount;
3803 cachep->limit = limit;
e498be7d 3804 cachep->shared = shared;
1da177e4 3805
e498be7d 3806 for_each_online_cpu(i) {
d2e7b7d0 3807 struct array_cache *ccold = new->new[i];
1da177e4
LT
3808 if (!ccold)
3809 continue;
6a67368c 3810 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3811 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3812 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3813 kfree(ccold);
3814 }
d2e7b7d0 3815 kfree(new);
83b519e8 3816 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3817}
3818
943a451a
GC
3819static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3820 int batchcount, int shared, gfp_t gfp)
3821{
3822 int ret;
3823 struct kmem_cache *c = NULL;
3824 int i = 0;
3825
3826 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3827
3828 if (slab_state < FULL)
3829 return ret;
3830
3831 if ((ret < 0) || !is_root_cache(cachep))
3832 return ret;
3833
ebe945c2 3834 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a 3835 for_each_memcg_cache_index(i) {
2ade4de8 3836 c = cache_from_memcg_idx(cachep, i);
943a451a
GC
3837 if (c)
3838 /* return value determined by the parent cache only */
3839 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3840 }
3841
3842 return ret;
3843}
3844
18004c5d 3845/* Called with slab_mutex held always */
83b519e8 3846static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3847{
3848 int err;
943a451a
GC
3849 int limit = 0;
3850 int shared = 0;
3851 int batchcount = 0;
3852
3853 if (!is_root_cache(cachep)) {
3854 struct kmem_cache *root = memcg_root_cache(cachep);
3855 limit = root->limit;
3856 shared = root->shared;
3857 batchcount = root->batchcount;
3858 }
1da177e4 3859
943a451a
GC
3860 if (limit && shared && batchcount)
3861 goto skip_setup;
a737b3e2
AM
3862 /*
3863 * The head array serves three purposes:
1da177e4
LT
3864 * - create a LIFO ordering, i.e. return objects that are cache-warm
3865 * - reduce the number of spinlock operations.
a737b3e2 3866 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3867 * bufctl chains: array operations are cheaper.
3868 * The numbers are guessed, we should auto-tune as described by
3869 * Bonwick.
3870 */
3b0efdfa 3871 if (cachep->size > 131072)
1da177e4 3872 limit = 1;
3b0efdfa 3873 else if (cachep->size > PAGE_SIZE)
1da177e4 3874 limit = 8;
3b0efdfa 3875 else if (cachep->size > 1024)
1da177e4 3876 limit = 24;
3b0efdfa 3877 else if (cachep->size > 256)
1da177e4
LT
3878 limit = 54;
3879 else
3880 limit = 120;
3881
a737b3e2
AM
3882 /*
3883 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3884 * allocation behaviour: Most allocs on one cpu, most free operations
3885 * on another cpu. For these cases, an efficient object passing between
3886 * cpus is necessary. This is provided by a shared array. The array
3887 * replaces Bonwick's magazine layer.
3888 * On uniprocessor, it's functionally equivalent (but less efficient)
3889 * to a larger limit. Thus disabled by default.
3890 */
3891 shared = 0;
3b0efdfa 3892 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3893 shared = 8;
1da177e4
LT
3894
3895#if DEBUG
a737b3e2
AM
3896 /*
3897 * With debugging enabled, large batchcount lead to excessively long
3898 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3899 */
3900 if (limit > 32)
3901 limit = 32;
3902#endif
943a451a
GC
3903 batchcount = (limit + 1) / 2;
3904skip_setup:
3905 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3906 if (err)
3907 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3908 cachep->name, -err);
2ed3a4ef 3909 return err;
1da177e4
LT
3910}
3911
1b55253a 3912/*
ce8eb6c4
CL
3913 * Drain an array if it contains any elements taking the node lock only if
3914 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3915 * if drain_array() is used on the shared array.
1b55253a 3916 */
ce8eb6c4 3917static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3918 struct array_cache *ac, int force, int node)
1da177e4
LT
3919{
3920 int tofree;
3921
1b55253a
CL
3922 if (!ac || !ac->avail)
3923 return;
1da177e4
LT
3924 if (ac->touched && !force) {
3925 ac->touched = 0;
b18e7e65 3926 } else {
ce8eb6c4 3927 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3928 if (ac->avail) {
3929 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3930 if (tofree > ac->avail)
3931 tofree = (ac->avail + 1) / 2;
3932 free_block(cachep, ac->entry, tofree, node);
3933 ac->avail -= tofree;
3934 memmove(ac->entry, &(ac->entry[tofree]),
3935 sizeof(void *) * ac->avail);
3936 }
ce8eb6c4 3937 spin_unlock_irq(&n->list_lock);
1da177e4
LT
3938 }
3939}
3940
3941/**
3942 * cache_reap - Reclaim memory from caches.
05fb6bf0 3943 * @w: work descriptor
1da177e4
LT
3944 *
3945 * Called from workqueue/eventd every few seconds.
3946 * Purpose:
3947 * - clear the per-cpu caches for this CPU.
3948 * - return freeable pages to the main free memory pool.
3949 *
a737b3e2
AM
3950 * If we cannot acquire the cache chain mutex then just give up - we'll try
3951 * again on the next iteration.
1da177e4 3952 */
7c5cae36 3953static void cache_reap(struct work_struct *w)
1da177e4 3954{
7a7c381d 3955 struct kmem_cache *searchp;
ce8eb6c4 3956 struct kmem_cache_node *n;
7d6e6d09 3957 int node = numa_mem_id();
bf6aede7 3958 struct delayed_work *work = to_delayed_work(w);
1da177e4 3959
18004c5d 3960 if (!mutex_trylock(&slab_mutex))
1da177e4 3961 /* Give up. Setup the next iteration. */
7c5cae36 3962 goto out;
1da177e4 3963
18004c5d 3964 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3965 check_irq_on();
3966
35386e3b 3967 /*
ce8eb6c4 3968 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3969 * have established with reasonable certainty that
3970 * we can do some work if the lock was obtained.
3971 */
ce8eb6c4 3972 n = searchp->node[node];
35386e3b 3973
ce8eb6c4 3974 reap_alien(searchp, n);
1da177e4 3975
ce8eb6c4 3976 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3977
35386e3b
CL
3978 /*
3979 * These are racy checks but it does not matter
3980 * if we skip one check or scan twice.
3981 */
ce8eb6c4 3982 if (time_after(n->next_reap, jiffies))
35386e3b 3983 goto next;
1da177e4 3984
ce8eb6c4 3985 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3986
ce8eb6c4 3987 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3988
ce8eb6c4
CL
3989 if (n->free_touched)
3990 n->free_touched = 0;
ed11d9eb
CL
3991 else {
3992 int freed;
1da177e4 3993
ce8eb6c4 3994 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3995 5 * searchp->num - 1) / (5 * searchp->num));
3996 STATS_ADD_REAPED(searchp, freed);
3997 }
35386e3b 3998next:
1da177e4
LT
3999 cond_resched();
4000 }
4001 check_irq_on();
18004c5d 4002 mutex_unlock(&slab_mutex);
8fce4d8e 4003 next_reap_node();
7c5cae36 4004out:
a737b3e2 4005 /* Set up the next iteration */
7c5cae36 4006 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4007}
4008
158a9624 4009#ifdef CONFIG_SLABINFO
0d7561c6 4010void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4011{
8456a648 4012 struct page *page;
b28a02de
PE
4013 unsigned long active_objs;
4014 unsigned long num_objs;
4015 unsigned long active_slabs = 0;
4016 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4017 const char *name;
1da177e4 4018 char *error = NULL;
e498be7d 4019 int node;
ce8eb6c4 4020 struct kmem_cache_node *n;
1da177e4 4021
1da177e4
LT
4022 active_objs = 0;
4023 num_slabs = 0;
e498be7d 4024 for_each_online_node(node) {
ce8eb6c4
CL
4025 n = cachep->node[node];
4026 if (!n)
e498be7d
CL
4027 continue;
4028
ca3b9b91 4029 check_irq_on();
ce8eb6c4 4030 spin_lock_irq(&n->list_lock);
e498be7d 4031
8456a648
JK
4032 list_for_each_entry(page, &n->slabs_full, lru) {
4033 if (page->active != cachep->num && !error)
e498be7d
CL
4034 error = "slabs_full accounting error";
4035 active_objs += cachep->num;
4036 active_slabs++;
4037 }
8456a648
JK
4038 list_for_each_entry(page, &n->slabs_partial, lru) {
4039 if (page->active == cachep->num && !error)
106a74e1 4040 error = "slabs_partial accounting error";
8456a648 4041 if (!page->active && !error)
106a74e1 4042 error = "slabs_partial accounting error";
8456a648 4043 active_objs += page->active;
e498be7d
CL
4044 active_slabs++;
4045 }
8456a648
JK
4046 list_for_each_entry(page, &n->slabs_free, lru) {
4047 if (page->active && !error)
106a74e1 4048 error = "slabs_free accounting error";
e498be7d
CL
4049 num_slabs++;
4050 }
ce8eb6c4
CL
4051 free_objects += n->free_objects;
4052 if (n->shared)
4053 shared_avail += n->shared->avail;
e498be7d 4054
ce8eb6c4 4055 spin_unlock_irq(&n->list_lock);
1da177e4 4056 }
b28a02de
PE
4057 num_slabs += active_slabs;
4058 num_objs = num_slabs * cachep->num;
e498be7d 4059 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4060 error = "free_objects accounting error";
4061
b28a02de 4062 name = cachep->name;
1da177e4
LT
4063 if (error)
4064 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4065
0d7561c6
GC
4066 sinfo->active_objs = active_objs;
4067 sinfo->num_objs = num_objs;
4068 sinfo->active_slabs = active_slabs;
4069 sinfo->num_slabs = num_slabs;
4070 sinfo->shared_avail = shared_avail;
4071 sinfo->limit = cachep->limit;
4072 sinfo->batchcount = cachep->batchcount;
4073 sinfo->shared = cachep->shared;
4074 sinfo->objects_per_slab = cachep->num;
4075 sinfo->cache_order = cachep->gfporder;
4076}
4077
4078void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4079{
1da177e4 4080#if STATS
ce8eb6c4 4081 { /* node stats */
1da177e4
LT
4082 unsigned long high = cachep->high_mark;
4083 unsigned long allocs = cachep->num_allocations;
4084 unsigned long grown = cachep->grown;
4085 unsigned long reaped = cachep->reaped;
4086 unsigned long errors = cachep->errors;
4087 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4088 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4089 unsigned long node_frees = cachep->node_frees;
fb7faf33 4090 unsigned long overflows = cachep->node_overflow;
1da177e4 4091
e92dd4fd
JP
4092 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4093 "%4lu %4lu %4lu %4lu %4lu",
4094 allocs, high, grown,
4095 reaped, errors, max_freeable, node_allocs,
4096 node_frees, overflows);
1da177e4
LT
4097 }
4098 /* cpu stats */
4099 {
4100 unsigned long allochit = atomic_read(&cachep->allochit);
4101 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4102 unsigned long freehit = atomic_read(&cachep->freehit);
4103 unsigned long freemiss = atomic_read(&cachep->freemiss);
4104
4105 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4106 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4107 }
4108#endif
1da177e4
LT
4109}
4110
1da177e4
LT
4111#define MAX_SLABINFO_WRITE 128
4112/**
4113 * slabinfo_write - Tuning for the slab allocator
4114 * @file: unused
4115 * @buffer: user buffer
4116 * @count: data length
4117 * @ppos: unused
4118 */
b7454ad3 4119ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4120 size_t count, loff_t *ppos)
1da177e4 4121{
b28a02de 4122 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4123 int limit, batchcount, shared, res;
7a7c381d 4124 struct kmem_cache *cachep;
b28a02de 4125
1da177e4
LT
4126 if (count > MAX_SLABINFO_WRITE)
4127 return -EINVAL;
4128 if (copy_from_user(&kbuf, buffer, count))
4129 return -EFAULT;
b28a02de 4130 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4131
4132 tmp = strchr(kbuf, ' ');
4133 if (!tmp)
4134 return -EINVAL;
4135 *tmp = '\0';
4136 tmp++;
4137 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4138 return -EINVAL;
4139
4140 /* Find the cache in the chain of caches. */
18004c5d 4141 mutex_lock(&slab_mutex);
1da177e4 4142 res = -EINVAL;
18004c5d 4143 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4144 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4145 if (limit < 1 || batchcount < 1 ||
4146 batchcount > limit || shared < 0) {
e498be7d 4147 res = 0;
1da177e4 4148 } else {
e498be7d 4149 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4150 batchcount, shared,
4151 GFP_KERNEL);
1da177e4
LT
4152 }
4153 break;
4154 }
4155 }
18004c5d 4156 mutex_unlock(&slab_mutex);
1da177e4
LT
4157 if (res >= 0)
4158 res = count;
4159 return res;
4160}
871751e2
AV
4161
4162#ifdef CONFIG_DEBUG_SLAB_LEAK
4163
4164static void *leaks_start(struct seq_file *m, loff_t *pos)
4165{
18004c5d
CL
4166 mutex_lock(&slab_mutex);
4167 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4168}
4169
4170static inline int add_caller(unsigned long *n, unsigned long v)
4171{
4172 unsigned long *p;
4173 int l;
4174 if (!v)
4175 return 1;
4176 l = n[1];
4177 p = n + 2;
4178 while (l) {
4179 int i = l/2;
4180 unsigned long *q = p + 2 * i;
4181 if (*q == v) {
4182 q[1]++;
4183 return 1;
4184 }
4185 if (*q > v) {
4186 l = i;
4187 } else {
4188 p = q + 2;
4189 l -= i + 1;
4190 }
4191 }
4192 if (++n[1] == n[0])
4193 return 0;
4194 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4195 p[0] = v;
4196 p[1] = 1;
4197 return 1;
4198}
4199
8456a648
JK
4200static void handle_slab(unsigned long *n, struct kmem_cache *c,
4201 struct page *page)
871751e2
AV
4202{
4203 void *p;
b1cb0982
JK
4204 int i, j;
4205
871751e2
AV
4206 if (n[0] == n[1])
4207 return;
8456a648 4208 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
b1cb0982
JK
4209 bool active = true;
4210
8456a648 4211 for (j = page->active; j < c->num; j++) {
b1cb0982 4212 /* Skip freed item */
e7444d9b 4213 if (slab_freelist(page)[j] == i) {
b1cb0982
JK
4214 active = false;
4215 break;
4216 }
4217 }
4218 if (!active)
871751e2 4219 continue;
b1cb0982 4220
871751e2
AV
4221 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4222 return;
4223 }
4224}
4225
4226static void show_symbol(struct seq_file *m, unsigned long address)
4227{
4228#ifdef CONFIG_KALLSYMS
871751e2 4229 unsigned long offset, size;
9281acea 4230 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4231
a5c43dae 4232 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4233 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4234 if (modname[0])
871751e2
AV
4235 seq_printf(m, " [%s]", modname);
4236 return;
4237 }
4238#endif
4239 seq_printf(m, "%p", (void *)address);
4240}
4241
4242static int leaks_show(struct seq_file *m, void *p)
4243{
0672aa7c 4244 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4245 struct page *page;
ce8eb6c4 4246 struct kmem_cache_node *n;
871751e2 4247 const char *name;
db845067 4248 unsigned long *x = m->private;
871751e2
AV
4249 int node;
4250 int i;
4251
4252 if (!(cachep->flags & SLAB_STORE_USER))
4253 return 0;
4254 if (!(cachep->flags & SLAB_RED_ZONE))
4255 return 0;
4256
4257 /* OK, we can do it */
4258
db845067 4259 x[1] = 0;
871751e2
AV
4260
4261 for_each_online_node(node) {
ce8eb6c4
CL
4262 n = cachep->node[node];
4263 if (!n)
871751e2
AV
4264 continue;
4265
4266 check_irq_on();
ce8eb6c4 4267 spin_lock_irq(&n->list_lock);
871751e2 4268
8456a648
JK
4269 list_for_each_entry(page, &n->slabs_full, lru)
4270 handle_slab(x, cachep, page);
4271 list_for_each_entry(page, &n->slabs_partial, lru)
4272 handle_slab(x, cachep, page);
ce8eb6c4 4273 spin_unlock_irq(&n->list_lock);
871751e2
AV
4274 }
4275 name = cachep->name;
db845067 4276 if (x[0] == x[1]) {
871751e2 4277 /* Increase the buffer size */
18004c5d 4278 mutex_unlock(&slab_mutex);
db845067 4279 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4280 if (!m->private) {
4281 /* Too bad, we are really out */
db845067 4282 m->private = x;
18004c5d 4283 mutex_lock(&slab_mutex);
871751e2
AV
4284 return -ENOMEM;
4285 }
db845067
CL
4286 *(unsigned long *)m->private = x[0] * 2;
4287 kfree(x);
18004c5d 4288 mutex_lock(&slab_mutex);
871751e2
AV
4289 /* Now make sure this entry will be retried */
4290 m->count = m->size;
4291 return 0;
4292 }
db845067
CL
4293 for (i = 0; i < x[1]; i++) {
4294 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4295 show_symbol(m, x[2*i+2]);
871751e2
AV
4296 seq_putc(m, '\n');
4297 }
d2e7b7d0 4298
871751e2
AV
4299 return 0;
4300}
4301
a0ec95a8 4302static const struct seq_operations slabstats_op = {
871751e2 4303 .start = leaks_start,
276a2439
WL
4304 .next = slab_next,
4305 .stop = slab_stop,
871751e2
AV
4306 .show = leaks_show,
4307};
a0ec95a8
AD
4308
4309static int slabstats_open(struct inode *inode, struct file *file)
4310{
4311 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4312 int ret = -ENOMEM;
4313 if (n) {
4314 ret = seq_open(file, &slabstats_op);
4315 if (!ret) {
4316 struct seq_file *m = file->private_data;
4317 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4318 m->private = n;
4319 n = NULL;
4320 }
4321 kfree(n);
4322 }
4323 return ret;
4324}
4325
4326static const struct file_operations proc_slabstats_operations = {
4327 .open = slabstats_open,
4328 .read = seq_read,
4329 .llseek = seq_lseek,
4330 .release = seq_release_private,
4331};
4332#endif
4333
4334static int __init slab_proc_init(void)
4335{
4336#ifdef CONFIG_DEBUG_SLAB_LEAK
4337 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4338#endif
a0ec95a8
AD
4339 return 0;
4340}
4341module_init(slab_proc_init);
1da177e4
LT
4342#endif
4343
00e145b6
MS
4344/**
4345 * ksize - get the actual amount of memory allocated for a given object
4346 * @objp: Pointer to the object
4347 *
4348 * kmalloc may internally round up allocations and return more memory
4349 * than requested. ksize() can be used to determine the actual amount of
4350 * memory allocated. The caller may use this additional memory, even though
4351 * a smaller amount of memory was initially specified with the kmalloc call.
4352 * The caller must guarantee that objp points to a valid object previously
4353 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4354 * must not be freed during the duration of the call.
4355 */
fd76bab2 4356size_t ksize(const void *objp)
1da177e4 4357{
ef8b4520
CL
4358 BUG_ON(!objp);
4359 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4360 return 0;
1da177e4 4361
8c138bc0 4362 return virt_to_cache(objp)->object_size;
1da177e4 4363}
b1aabecd 4364EXPORT_SYMBOL(ksize);