]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab.c
slab: use well-defined macro, virt_to_slab()
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
5bfe53a7
LJ
191/*
192 * struct slab
193 *
194 * Manages the objs in a slab. Placed either at the beginning of mem allocated
195 * for a slab, or allocated from an general cache.
196 * Slabs are chained into three list: fully used, partial, fully free slabs.
197 */
198struct slab {
68126702
JK
199 struct {
200 struct list_head list;
201 void *s_mem; /* including colour offset */
202 unsigned int inuse; /* num of objs active in slab */
203 kmem_bufctl_t free;
5bfe53a7
LJ
204 };
205};
206
1da177e4
LT
207/*
208 * struct array_cache
209 *
1da177e4
LT
210 * Purpose:
211 * - LIFO ordering, to hand out cache-warm objects from _alloc
212 * - reduce the number of linked list operations
213 * - reduce spinlock operations
214 *
215 * The limit is stored in the per-cpu structure to reduce the data cache
216 * footprint.
217 *
218 */
219struct array_cache {
220 unsigned int avail;
221 unsigned int limit;
222 unsigned int batchcount;
223 unsigned int touched;
e498be7d 224 spinlock_t lock;
bda5b655 225 void *entry[]; /*
a737b3e2
AM
226 * Must have this definition in here for the proper
227 * alignment of array_cache. Also simplifies accessing
228 * the entries.
072bb0aa
MG
229 *
230 * Entries should not be directly dereferenced as
231 * entries belonging to slabs marked pfmemalloc will
232 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 233 */
1da177e4
LT
234};
235
072bb0aa
MG
236#define SLAB_OBJ_PFMEMALLOC 1
237static inline bool is_obj_pfmemalloc(void *objp)
238{
239 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
240}
241
242static inline void set_obj_pfmemalloc(void **objp)
243{
244 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
245 return;
246}
247
248static inline void clear_obj_pfmemalloc(void **objp)
249{
250 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
251}
252
a737b3e2
AM
253/*
254 * bootstrap: The caches do not work without cpuarrays anymore, but the
255 * cpuarrays are allocated from the generic caches...
1da177e4
LT
256 */
257#define BOOT_CPUCACHE_ENTRIES 1
258struct arraycache_init {
259 struct array_cache cache;
b28a02de 260 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
261};
262
e498be7d
CL
263/*
264 * Need this for bootstrapping a per node allocator.
265 */
556a169d 266#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 267static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 268#define CACHE_CACHE 0
556a169d 269#define SIZE_AC MAX_NUMNODES
ce8eb6c4 270#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 271
ed11d9eb 272static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 273 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
274static void free_block(struct kmem_cache *cachep, void **objpp, int len,
275 int node);
83b519e8 276static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 277static void cache_reap(struct work_struct *unused);
ed11d9eb 278
e0a42726
IM
279static int slab_early_init = 1;
280
e3366016 281#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 282#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 283
ce8eb6c4 284static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
285{
286 INIT_LIST_HEAD(&parent->slabs_full);
287 INIT_LIST_HEAD(&parent->slabs_partial);
288 INIT_LIST_HEAD(&parent->slabs_free);
289 parent->shared = NULL;
290 parent->alien = NULL;
2e1217cf 291 parent->colour_next = 0;
e498be7d
CL
292 spin_lock_init(&parent->list_lock);
293 parent->free_objects = 0;
294 parent->free_touched = 0;
295}
296
a737b3e2
AM
297#define MAKE_LIST(cachep, listp, slab, nodeid) \
298 do { \
299 INIT_LIST_HEAD(listp); \
6a67368c 300 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
301 } while (0)
302
a737b3e2
AM
303#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
304 do { \
e498be7d
CL
305 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
306 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
307 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
308 } while (0)
1da177e4 309
1da177e4
LT
310#define CFLGS_OFF_SLAB (0x80000000UL)
311#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
312
313#define BATCHREFILL_LIMIT 16
a737b3e2
AM
314/*
315 * Optimization question: fewer reaps means less probability for unnessary
316 * cpucache drain/refill cycles.
1da177e4 317 *
dc6f3f27 318 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
319 * which could lock up otherwise freeable slabs.
320 */
321#define REAPTIMEOUT_CPUC (2*HZ)
322#define REAPTIMEOUT_LIST3 (4*HZ)
323
324#if STATS
325#define STATS_INC_ACTIVE(x) ((x)->num_active++)
326#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
327#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
328#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 329#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
330#define STATS_SET_HIGH(x) \
331 do { \
332 if ((x)->num_active > (x)->high_mark) \
333 (x)->high_mark = (x)->num_active; \
334 } while (0)
1da177e4
LT
335#define STATS_INC_ERR(x) ((x)->errors++)
336#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 337#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 338#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
339#define STATS_SET_FREEABLE(x, i) \
340 do { \
341 if ((x)->max_freeable < i) \
342 (x)->max_freeable = i; \
343 } while (0)
1da177e4
LT
344#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
345#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
346#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
347#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
348#else
349#define STATS_INC_ACTIVE(x) do { } while (0)
350#define STATS_DEC_ACTIVE(x) do { } while (0)
351#define STATS_INC_ALLOCED(x) do { } while (0)
352#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 353#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
354#define STATS_SET_HIGH(x) do { } while (0)
355#define STATS_INC_ERR(x) do { } while (0)
356#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 357#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 358#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 359#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
360#define STATS_INC_ALLOCHIT(x) do { } while (0)
361#define STATS_INC_ALLOCMISS(x) do { } while (0)
362#define STATS_INC_FREEHIT(x) do { } while (0)
363#define STATS_INC_FREEMISS(x) do { } while (0)
364#endif
365
366#if DEBUG
1da177e4 367
a737b3e2
AM
368/*
369 * memory layout of objects:
1da177e4 370 * 0 : objp
3dafccf2 371 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
372 * the end of an object is aligned with the end of the real
373 * allocation. Catches writes behind the end of the allocation.
3dafccf2 374 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 375 * redzone word.
3dafccf2 376 * cachep->obj_offset: The real object.
3b0efdfa
CL
377 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
378 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 379 * [BYTES_PER_WORD long]
1da177e4 380 */
343e0d7a 381static int obj_offset(struct kmem_cache *cachep)
1da177e4 382{
3dafccf2 383 return cachep->obj_offset;
1da177e4
LT
384}
385
b46b8f19 386static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
387{
388 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
389 return (unsigned long long*) (objp + obj_offset(cachep) -
390 sizeof(unsigned long long));
1da177e4
LT
391}
392
b46b8f19 393static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
394{
395 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
396 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 397 return (unsigned long long *)(objp + cachep->size -
b46b8f19 398 sizeof(unsigned long long) -
87a927c7 399 REDZONE_ALIGN);
3b0efdfa 400 return (unsigned long long *) (objp + cachep->size -
b46b8f19 401 sizeof(unsigned long long));
1da177e4
LT
402}
403
343e0d7a 404static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
405{
406 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 407 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
408}
409
410#else
411
3dafccf2 412#define obj_offset(x) 0
b46b8f19
DW
413#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
414#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
415#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
416
417#endif
418
1da177e4 419/*
3df1cccd
DR
420 * Do not go above this order unless 0 objects fit into the slab or
421 * overridden on the command line.
1da177e4 422 */
543585cc
DR
423#define SLAB_MAX_ORDER_HI 1
424#define SLAB_MAX_ORDER_LO 0
425static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 426static bool slab_max_order_set __initdata;
1da177e4 427
6ed5eb22
PE
428static inline struct kmem_cache *virt_to_cache(const void *obj)
429{
b49af68f 430 struct page *page = virt_to_head_page(obj);
35026088 431 return page->slab_cache;
6ed5eb22
PE
432}
433
434static inline struct slab *virt_to_slab(const void *obj)
435{
b49af68f 436 struct page *page = virt_to_head_page(obj);
35026088
CL
437
438 VM_BUG_ON(!PageSlab(page));
439 return page->slab_page;
6ed5eb22
PE
440}
441
8fea4e96
PE
442static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
443 unsigned int idx)
444{
3b0efdfa 445 return slab->s_mem + cache->size * idx;
8fea4e96
PE
446}
447
6a2d7a95 448/*
3b0efdfa
CL
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
6a2d7a95
ED
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct slab *slab, void *obj)
8fea4e96 456{
6a2d7a95
ED
457 u32 offset = (obj - slab->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
459}
460
1da177e4 461static struct arraycache_init initarray_generic =
b28a02de 462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
463
464/* internal cache of cache description objs */
9b030cb8 465static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
3b0efdfa 469 .size = sizeof(struct kmem_cache),
b28a02de 470 .name = "kmem_cache",
1da177e4
LT
471};
472
056c6241
RT
473#define BAD_ALIEN_MAGIC 0x01020304ul
474
f1aaee53
AV
475#ifdef CONFIG_LOCKDEP
476
477/*
478 * Slab sometimes uses the kmalloc slabs to store the slab headers
479 * for other slabs "off slab".
480 * The locking for this is tricky in that it nests within the locks
481 * of all other slabs in a few places; to deal with this special
482 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
483 *
484 * We set lock class for alien array caches which are up during init.
485 * The lock annotation will be lost if all cpus of a node goes down and
486 * then comes back up during hotplug
f1aaee53 487 */
056c6241
RT
488static struct lock_class_key on_slab_l3_key;
489static struct lock_class_key on_slab_alc_key;
490
83835b3d
PZ
491static struct lock_class_key debugobj_l3_key;
492static struct lock_class_key debugobj_alc_key;
493
494static void slab_set_lock_classes(struct kmem_cache *cachep,
495 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
496 int q)
497{
498 struct array_cache **alc;
ce8eb6c4 499 struct kmem_cache_node *n;
83835b3d
PZ
500 int r;
501
ce8eb6c4
CL
502 n = cachep->node[q];
503 if (!n)
83835b3d
PZ
504 return;
505
ce8eb6c4
CL
506 lockdep_set_class(&n->list_lock, l3_key);
507 alc = n->alien;
83835b3d
PZ
508 /*
509 * FIXME: This check for BAD_ALIEN_MAGIC
510 * should go away when common slab code is taught to
511 * work even without alien caches.
512 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
513 * for alloc_alien_cache,
514 */
515 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
516 return;
517 for_each_node(r) {
518 if (alc[r])
519 lockdep_set_class(&alc[r]->lock, alc_key);
520 }
521}
522
523static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
524{
525 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
526}
527
528static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
529{
530 int node;
531
532 for_each_online_node(node)
533 slab_set_debugobj_lock_classes_node(cachep, node);
534}
535
ce79ddc8 536static void init_node_lock_keys(int q)
f1aaee53 537{
e3366016 538 int i;
056c6241 539
97d06609 540 if (slab_state < UP)
ce79ddc8
PE
541 return;
542
0f8f8094 543 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 544 struct kmem_cache_node *n;
e3366016
CL
545 struct kmem_cache *cache = kmalloc_caches[i];
546
547 if (!cache)
548 continue;
ce79ddc8 549
ce8eb6c4
CL
550 n = cache->node[q];
551 if (!n || OFF_SLAB(cache))
00afa758 552 continue;
83835b3d 553
e3366016 554 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 555 &on_slab_alc_key, q);
f1aaee53
AV
556 }
557}
ce79ddc8 558
6ccfb5bc
GC
559static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
560{
6a67368c 561 if (!cachep->node[q])
6ccfb5bc
GC
562 return;
563
564 slab_set_lock_classes(cachep, &on_slab_l3_key,
565 &on_slab_alc_key, q);
566}
567
568static inline void on_slab_lock_classes(struct kmem_cache *cachep)
569{
570 int node;
571
572 VM_BUG_ON(OFF_SLAB(cachep));
573 for_each_node(node)
574 on_slab_lock_classes_node(cachep, node);
575}
576
ce79ddc8
PE
577static inline void init_lock_keys(void)
578{
579 int node;
580
581 for_each_node(node)
582 init_node_lock_keys(node);
583}
f1aaee53 584#else
ce79ddc8
PE
585static void init_node_lock_keys(int q)
586{
587}
588
056c6241 589static inline void init_lock_keys(void)
f1aaee53
AV
590{
591}
83835b3d 592
6ccfb5bc
GC
593static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594{
595}
596
597static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
598{
599}
600
83835b3d
PZ
601static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
602{
603}
604
605static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
606{
607}
f1aaee53
AV
608#endif
609
1871e52c 610static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 611
343e0d7a 612static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
613{
614 return cachep->array[smp_processor_id()];
615}
616
fbaccacf 617static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 618{
fbaccacf
SR
619 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
620}
1da177e4 621
a737b3e2
AM
622/*
623 * Calculate the number of objects and left-over bytes for a given buffer size.
624 */
fbaccacf
SR
625static void cache_estimate(unsigned long gfporder, size_t buffer_size,
626 size_t align, int flags, size_t *left_over,
627 unsigned int *num)
628{
629 int nr_objs;
630 size_t mgmt_size;
631 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 632
fbaccacf
SR
633 /*
634 * The slab management structure can be either off the slab or
635 * on it. For the latter case, the memory allocated for a
636 * slab is used for:
637 *
638 * - The struct slab
639 * - One kmem_bufctl_t for each object
640 * - Padding to respect alignment of @align
641 * - @buffer_size bytes for each object
642 *
643 * If the slab management structure is off the slab, then the
644 * alignment will already be calculated into the size. Because
645 * the slabs are all pages aligned, the objects will be at the
646 * correct alignment when allocated.
647 */
648 if (flags & CFLGS_OFF_SLAB) {
649 mgmt_size = 0;
650 nr_objs = slab_size / buffer_size;
651
652 if (nr_objs > SLAB_LIMIT)
653 nr_objs = SLAB_LIMIT;
654 } else {
655 /*
656 * Ignore padding for the initial guess. The padding
657 * is at most @align-1 bytes, and @buffer_size is at
658 * least @align. In the worst case, this result will
659 * be one greater than the number of objects that fit
660 * into the memory allocation when taking the padding
661 * into account.
662 */
663 nr_objs = (slab_size - sizeof(struct slab)) /
664 (buffer_size + sizeof(kmem_bufctl_t));
665
666 /*
667 * This calculated number will be either the right
668 * amount, or one greater than what we want.
669 */
670 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
671 > slab_size)
672 nr_objs--;
673
674 if (nr_objs > SLAB_LIMIT)
675 nr_objs = SLAB_LIMIT;
676
677 mgmt_size = slab_mgmt_size(nr_objs, align);
678 }
679 *num = nr_objs;
680 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
681}
682
f28510d3 683#if DEBUG
d40cee24 684#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 685
a737b3e2
AM
686static void __slab_error(const char *function, struct kmem_cache *cachep,
687 char *msg)
1da177e4
LT
688{
689 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 690 function, cachep->name, msg);
1da177e4 691 dump_stack();
373d4d09 692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 693}
f28510d3 694#endif
1da177e4 695
3395ee05
PM
696/*
697 * By default on NUMA we use alien caches to stage the freeing of
698 * objects allocated from other nodes. This causes massive memory
699 * inefficiencies when using fake NUMA setup to split memory into a
700 * large number of small nodes, so it can be disabled on the command
701 * line
702 */
703
704static int use_alien_caches __read_mostly = 1;
705static int __init noaliencache_setup(char *s)
706{
707 use_alien_caches = 0;
708 return 1;
709}
710__setup("noaliencache", noaliencache_setup);
711
3df1cccd
DR
712static int __init slab_max_order_setup(char *str)
713{
714 get_option(&str, &slab_max_order);
715 slab_max_order = slab_max_order < 0 ? 0 :
716 min(slab_max_order, MAX_ORDER - 1);
717 slab_max_order_set = true;
718
719 return 1;
720}
721__setup("slab_max_order=", slab_max_order_setup);
722
8fce4d8e
CL
723#ifdef CONFIG_NUMA
724/*
725 * Special reaping functions for NUMA systems called from cache_reap().
726 * These take care of doing round robin flushing of alien caches (containing
727 * objects freed on different nodes from which they were allocated) and the
728 * flushing of remote pcps by calling drain_node_pages.
729 */
1871e52c 730static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
731
732static void init_reap_node(int cpu)
733{
734 int node;
735
7d6e6d09 736 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 737 if (node == MAX_NUMNODES)
442295c9 738 node = first_node(node_online_map);
8fce4d8e 739
1871e52c 740 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
741}
742
743static void next_reap_node(void)
744{
909ea964 745 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 746
8fce4d8e
CL
747 node = next_node(node, node_online_map);
748 if (unlikely(node >= MAX_NUMNODES))
749 node = first_node(node_online_map);
909ea964 750 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
751}
752
753#else
754#define init_reap_node(cpu) do { } while (0)
755#define next_reap_node(void) do { } while (0)
756#endif
757
1da177e4
LT
758/*
759 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
760 * via the workqueue/eventd.
761 * Add the CPU number into the expiration time to minimize the possibility of
762 * the CPUs getting into lockstep and contending for the global cache chain
763 * lock.
764 */
0db0628d 765static void start_cpu_timer(int cpu)
1da177e4 766{
1871e52c 767 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
768
769 /*
770 * When this gets called from do_initcalls via cpucache_init(),
771 * init_workqueues() has already run, so keventd will be setup
772 * at that time.
773 */
52bad64d 774 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 775 init_reap_node(cpu);
203b42f7 776 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
777 schedule_delayed_work_on(cpu, reap_work,
778 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
779 }
780}
781
e498be7d 782static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 783 int batchcount, gfp_t gfp)
1da177e4 784{
b28a02de 785 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
786 struct array_cache *nc = NULL;
787
83b519e8 788 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
789 /*
790 * The array_cache structures contain pointers to free object.
25985edc 791 * However, when such objects are allocated or transferred to another
d5cff635
CM
792 * cache the pointers are not cleared and they could be counted as
793 * valid references during a kmemleak scan. Therefore, kmemleak must
794 * not scan such objects.
795 */
796 kmemleak_no_scan(nc);
1da177e4
LT
797 if (nc) {
798 nc->avail = 0;
799 nc->limit = entries;
800 nc->batchcount = batchcount;
801 nc->touched = 0;
e498be7d 802 spin_lock_init(&nc->lock);
1da177e4
LT
803 }
804 return nc;
805}
806
072bb0aa
MG
807static inline bool is_slab_pfmemalloc(struct slab *slabp)
808{
809 struct page *page = virt_to_page(slabp->s_mem);
810
811 return PageSlabPfmemalloc(page);
812}
813
814/* Clears pfmemalloc_active if no slabs have pfmalloc set */
815static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
816 struct array_cache *ac)
817{
ce8eb6c4 818 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
072bb0aa
MG
819 struct slab *slabp;
820 unsigned long flags;
821
822 if (!pfmemalloc_active)
823 return;
824
ce8eb6c4
CL
825 spin_lock_irqsave(&n->list_lock, flags);
826 list_for_each_entry(slabp, &n->slabs_full, list)
072bb0aa
MG
827 if (is_slab_pfmemalloc(slabp))
828 goto out;
829
ce8eb6c4 830 list_for_each_entry(slabp, &n->slabs_partial, list)
072bb0aa
MG
831 if (is_slab_pfmemalloc(slabp))
832 goto out;
833
ce8eb6c4 834 list_for_each_entry(slabp, &n->slabs_free, list)
072bb0aa
MG
835 if (is_slab_pfmemalloc(slabp))
836 goto out;
837
838 pfmemalloc_active = false;
839out:
ce8eb6c4 840 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
841}
842
381760ea 843static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
844 gfp_t flags, bool force_refill)
845{
846 int i;
847 void *objp = ac->entry[--ac->avail];
848
849 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
850 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 851 struct kmem_cache_node *n;
072bb0aa
MG
852
853 if (gfp_pfmemalloc_allowed(flags)) {
854 clear_obj_pfmemalloc(&objp);
855 return objp;
856 }
857
858 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 859 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
860 /* If a !PFMEMALLOC object is found, swap them */
861 if (!is_obj_pfmemalloc(ac->entry[i])) {
862 objp = ac->entry[i];
863 ac->entry[i] = ac->entry[ac->avail];
864 ac->entry[ac->avail] = objp;
865 return objp;
866 }
867 }
868
869 /*
870 * If there are empty slabs on the slabs_free list and we are
871 * being forced to refill the cache, mark this one !pfmemalloc.
872 */
ce8eb6c4
CL
873 n = cachep->node[numa_mem_id()];
874 if (!list_empty(&n->slabs_free) && force_refill) {
072bb0aa 875 struct slab *slabp = virt_to_slab(objp);
30c29bea 876 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
877 clear_obj_pfmemalloc(&objp);
878 recheck_pfmemalloc_active(cachep, ac);
879 return objp;
880 }
881
882 /* No !PFMEMALLOC objects available */
883 ac->avail++;
884 objp = NULL;
885 }
886
887 return objp;
888}
889
381760ea
MG
890static inline void *ac_get_obj(struct kmem_cache *cachep,
891 struct array_cache *ac, gfp_t flags, bool force_refill)
892{
893 void *objp;
894
895 if (unlikely(sk_memalloc_socks()))
896 objp = __ac_get_obj(cachep, ac, flags, force_refill);
897 else
898 objp = ac->entry[--ac->avail];
899
900 return objp;
901}
902
903static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
904 void *objp)
905{
906 if (unlikely(pfmemalloc_active)) {
907 /* Some pfmemalloc slabs exist, check if this is one */
73293c2f
JK
908 struct slab *slabp = virt_to_slab(objp);
909 struct page *page = virt_to_head_page(slabp->s_mem);
072bb0aa
MG
910 if (PageSlabPfmemalloc(page))
911 set_obj_pfmemalloc(&objp);
912 }
913
381760ea
MG
914 return objp;
915}
916
917static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
918 void *objp)
919{
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_put_obj(cachep, ac, objp);
922
072bb0aa
MG
923 ac->entry[ac->avail++] = objp;
924}
925
3ded175a
CL
926/*
927 * Transfer objects in one arraycache to another.
928 * Locking must be handled by the caller.
929 *
930 * Return the number of entries transferred.
931 */
932static int transfer_objects(struct array_cache *to,
933 struct array_cache *from, unsigned int max)
934{
935 /* Figure out how many entries to transfer */
732eacc0 936 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
937
938 if (!nr)
939 return 0;
940
941 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
942 sizeof(void *) *nr);
943
944 from->avail -= nr;
945 to->avail += nr;
3ded175a
CL
946 return nr;
947}
948
765c4507
CL
949#ifndef CONFIG_NUMA
950
951#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 952#define reap_alien(cachep, n) do { } while (0)
765c4507 953
83b519e8 954static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
955{
956 return (struct array_cache **)BAD_ALIEN_MAGIC;
957}
958
959static inline void free_alien_cache(struct array_cache **ac_ptr)
960{
961}
962
963static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
964{
965 return 0;
966}
967
968static inline void *alternate_node_alloc(struct kmem_cache *cachep,
969 gfp_t flags)
970{
971 return NULL;
972}
973
8b98c169 974static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
975 gfp_t flags, int nodeid)
976{
977 return NULL;
978}
979
980#else /* CONFIG_NUMA */
981
8b98c169 982static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 983static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 984
83b519e8 985static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
986{
987 struct array_cache **ac_ptr;
8ef82866 988 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
989 int i;
990
991 if (limit > 1)
992 limit = 12;
f3186a9c 993 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
994 if (ac_ptr) {
995 for_each_node(i) {
f3186a9c 996 if (i == node || !node_online(i))
e498be7d 997 continue;
83b519e8 998 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 999 if (!ac_ptr[i]) {
cc550def 1000 for (i--; i >= 0; i--)
e498be7d
CL
1001 kfree(ac_ptr[i]);
1002 kfree(ac_ptr);
1003 return NULL;
1004 }
1005 }
1006 }
1007 return ac_ptr;
1008}
1009
5295a74c 1010static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1011{
1012 int i;
1013
1014 if (!ac_ptr)
1015 return;
e498be7d 1016 for_each_node(i)
b28a02de 1017 kfree(ac_ptr[i]);
e498be7d
CL
1018 kfree(ac_ptr);
1019}
1020
343e0d7a 1021static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1022 struct array_cache *ac, int node)
e498be7d 1023{
ce8eb6c4 1024 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
1025
1026 if (ac->avail) {
ce8eb6c4 1027 spin_lock(&n->list_lock);
e00946fe
CL
1028 /*
1029 * Stuff objects into the remote nodes shared array first.
1030 * That way we could avoid the overhead of putting the objects
1031 * into the free lists and getting them back later.
1032 */
ce8eb6c4
CL
1033 if (n->shared)
1034 transfer_objects(n->shared, ac, ac->limit);
e00946fe 1035
ff69416e 1036 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 1037 ac->avail = 0;
ce8eb6c4 1038 spin_unlock(&n->list_lock);
e498be7d
CL
1039 }
1040}
1041
8fce4d8e
CL
1042/*
1043 * Called from cache_reap() to regularly drain alien caches round robin.
1044 */
ce8eb6c4 1045static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1046{
909ea964 1047 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1048
ce8eb6c4
CL
1049 if (n->alien) {
1050 struct array_cache *ac = n->alien[node];
e00946fe
CL
1051
1052 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1053 __drain_alien_cache(cachep, ac, node);
1054 spin_unlock_irq(&ac->lock);
1055 }
1056 }
1057}
1058
a737b3e2
AM
1059static void drain_alien_cache(struct kmem_cache *cachep,
1060 struct array_cache **alien)
e498be7d 1061{
b28a02de 1062 int i = 0;
e498be7d
CL
1063 struct array_cache *ac;
1064 unsigned long flags;
1065
1066 for_each_online_node(i) {
4484ebf1 1067 ac = alien[i];
e498be7d
CL
1068 if (ac) {
1069 spin_lock_irqsave(&ac->lock, flags);
1070 __drain_alien_cache(cachep, ac, i);
1071 spin_unlock_irqrestore(&ac->lock, flags);
1072 }
1073 }
1074}
729bd0b7 1075
873623df 1076static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1077{
1ea991b0 1078 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1079 struct kmem_cache_node *n;
729bd0b7 1080 struct array_cache *alien = NULL;
1ca4cb24
PE
1081 int node;
1082
7d6e6d09 1083 node = numa_mem_id();
729bd0b7
PE
1084
1085 /*
1086 * Make sure we are not freeing a object from another node to the array
1087 * cache on this cpu.
1088 */
1ea991b0 1089 if (likely(nodeid == node))
729bd0b7
PE
1090 return 0;
1091
ce8eb6c4 1092 n = cachep->node[node];
729bd0b7 1093 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1094 if (n->alien && n->alien[nodeid]) {
1095 alien = n->alien[nodeid];
873623df 1096 spin_lock(&alien->lock);
729bd0b7
PE
1097 if (unlikely(alien->avail == alien->limit)) {
1098 STATS_INC_ACOVERFLOW(cachep);
1099 __drain_alien_cache(cachep, alien, nodeid);
1100 }
072bb0aa 1101 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1102 spin_unlock(&alien->lock);
1103 } else {
6a67368c 1104 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1105 free_block(cachep, &objp, 1, nodeid);
6a67368c 1106 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1107 }
1108 return 1;
1109}
e498be7d
CL
1110#endif
1111
8f9f8d9e 1112/*
6a67368c 1113 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1114 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1115 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1116 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1117 * already in use.
1118 *
18004c5d 1119 * Must hold slab_mutex.
8f9f8d9e 1120 */
6a67368c 1121static int init_cache_node_node(int node)
8f9f8d9e
DR
1122{
1123 struct kmem_cache *cachep;
ce8eb6c4 1124 struct kmem_cache_node *n;
6744f087 1125 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1126
18004c5d 1127 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1128 /*
1129 * Set up the size64 kmemlist for cpu before we can
1130 * begin anything. Make sure some other cpu on this
1131 * node has not already allocated this
1132 */
6a67368c 1133 if (!cachep->node[node]) {
ce8eb6c4
CL
1134 n = kmalloc_node(memsize, GFP_KERNEL, node);
1135 if (!n)
8f9f8d9e 1136 return -ENOMEM;
ce8eb6c4
CL
1137 kmem_cache_node_init(n);
1138 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1139 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1140
1141 /*
1142 * The l3s don't come and go as CPUs come and
18004c5d 1143 * go. slab_mutex is sufficient
8f9f8d9e
DR
1144 * protection here.
1145 */
ce8eb6c4 1146 cachep->node[node] = n;
8f9f8d9e
DR
1147 }
1148
6a67368c
CL
1149 spin_lock_irq(&cachep->node[node]->list_lock);
1150 cachep->node[node]->free_limit =
8f9f8d9e
DR
1151 (1 + nr_cpus_node(node)) *
1152 cachep->batchcount + cachep->num;
6a67368c 1153 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1154 }
1155 return 0;
1156}
1157
0fa8103b
WL
1158static inline int slabs_tofree(struct kmem_cache *cachep,
1159 struct kmem_cache_node *n)
1160{
1161 return (n->free_objects + cachep->num - 1) / cachep->num;
1162}
1163
0db0628d 1164static void cpuup_canceled(long cpu)
fbf1e473
AM
1165{
1166 struct kmem_cache *cachep;
ce8eb6c4 1167 struct kmem_cache_node *n = NULL;
7d6e6d09 1168 int node = cpu_to_mem(cpu);
a70f7302 1169 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1170
18004c5d 1171 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1172 struct array_cache *nc;
1173 struct array_cache *shared;
1174 struct array_cache **alien;
fbf1e473 1175
fbf1e473
AM
1176 /* cpu is dead; no one can alloc from it. */
1177 nc = cachep->array[cpu];
1178 cachep->array[cpu] = NULL;
ce8eb6c4 1179 n = cachep->node[node];
fbf1e473 1180
ce8eb6c4 1181 if (!n)
fbf1e473
AM
1182 goto free_array_cache;
1183
ce8eb6c4 1184 spin_lock_irq(&n->list_lock);
fbf1e473 1185
ce8eb6c4
CL
1186 /* Free limit for this kmem_cache_node */
1187 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1188 if (nc)
1189 free_block(cachep, nc->entry, nc->avail, node);
1190
58463c1f 1191 if (!cpumask_empty(mask)) {
ce8eb6c4 1192 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1193 goto free_array_cache;
1194 }
1195
ce8eb6c4 1196 shared = n->shared;
fbf1e473
AM
1197 if (shared) {
1198 free_block(cachep, shared->entry,
1199 shared->avail, node);
ce8eb6c4 1200 n->shared = NULL;
fbf1e473
AM
1201 }
1202
ce8eb6c4
CL
1203 alien = n->alien;
1204 n->alien = NULL;
fbf1e473 1205
ce8eb6c4 1206 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1207
1208 kfree(shared);
1209 if (alien) {
1210 drain_alien_cache(cachep, alien);
1211 free_alien_cache(alien);
1212 }
1213free_array_cache:
1214 kfree(nc);
1215 }
1216 /*
1217 * In the previous loop, all the objects were freed to
1218 * the respective cache's slabs, now we can go ahead and
1219 * shrink each nodelist to its limit.
1220 */
18004c5d 1221 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1222 n = cachep->node[node];
1223 if (!n)
fbf1e473 1224 continue;
0fa8103b 1225 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1226 }
1227}
1228
0db0628d 1229static int cpuup_prepare(long cpu)
1da177e4 1230{
343e0d7a 1231 struct kmem_cache *cachep;
ce8eb6c4 1232 struct kmem_cache_node *n = NULL;
7d6e6d09 1233 int node = cpu_to_mem(cpu);
8f9f8d9e 1234 int err;
1da177e4 1235
fbf1e473
AM
1236 /*
1237 * We need to do this right in the beginning since
1238 * alloc_arraycache's are going to use this list.
1239 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1240 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1241 */
6a67368c 1242 err = init_cache_node_node(node);
8f9f8d9e
DR
1243 if (err < 0)
1244 goto bad;
fbf1e473
AM
1245
1246 /*
1247 * Now we can go ahead with allocating the shared arrays and
1248 * array caches
1249 */
18004c5d 1250 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1251 struct array_cache *nc;
1252 struct array_cache *shared = NULL;
1253 struct array_cache **alien = NULL;
1254
1255 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1256 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1257 if (!nc)
1258 goto bad;
1259 if (cachep->shared) {
1260 shared = alloc_arraycache(node,
1261 cachep->shared * cachep->batchcount,
83b519e8 1262 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1263 if (!shared) {
1264 kfree(nc);
1da177e4 1265 goto bad;
12d00f6a 1266 }
fbf1e473
AM
1267 }
1268 if (use_alien_caches) {
83b519e8 1269 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1270 if (!alien) {
1271 kfree(shared);
1272 kfree(nc);
fbf1e473 1273 goto bad;
12d00f6a 1274 }
fbf1e473
AM
1275 }
1276 cachep->array[cpu] = nc;
ce8eb6c4
CL
1277 n = cachep->node[node];
1278 BUG_ON(!n);
fbf1e473 1279
ce8eb6c4
CL
1280 spin_lock_irq(&n->list_lock);
1281 if (!n->shared) {
fbf1e473
AM
1282 /*
1283 * We are serialised from CPU_DEAD or
1284 * CPU_UP_CANCELLED by the cpucontrol lock
1285 */
ce8eb6c4 1286 n->shared = shared;
fbf1e473
AM
1287 shared = NULL;
1288 }
4484ebf1 1289#ifdef CONFIG_NUMA
ce8eb6c4
CL
1290 if (!n->alien) {
1291 n->alien = alien;
fbf1e473 1292 alien = NULL;
1da177e4 1293 }
fbf1e473 1294#endif
ce8eb6c4 1295 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1296 kfree(shared);
1297 free_alien_cache(alien);
83835b3d
PZ
1298 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1299 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1300 else if (!OFF_SLAB(cachep) &&
1301 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1302 on_slab_lock_classes_node(cachep, node);
fbf1e473 1303 }
ce79ddc8
PE
1304 init_node_lock_keys(node);
1305
fbf1e473
AM
1306 return 0;
1307bad:
12d00f6a 1308 cpuup_canceled(cpu);
fbf1e473
AM
1309 return -ENOMEM;
1310}
1311
0db0628d 1312static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1313 unsigned long action, void *hcpu)
1314{
1315 long cpu = (long)hcpu;
1316 int err = 0;
1317
1318 switch (action) {
fbf1e473
AM
1319 case CPU_UP_PREPARE:
1320 case CPU_UP_PREPARE_FROZEN:
18004c5d 1321 mutex_lock(&slab_mutex);
fbf1e473 1322 err = cpuup_prepare(cpu);
18004c5d 1323 mutex_unlock(&slab_mutex);
1da177e4
LT
1324 break;
1325 case CPU_ONLINE:
8bb78442 1326 case CPU_ONLINE_FROZEN:
1da177e4
LT
1327 start_cpu_timer(cpu);
1328 break;
1329#ifdef CONFIG_HOTPLUG_CPU
5830c590 1330 case CPU_DOWN_PREPARE:
8bb78442 1331 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1332 /*
18004c5d 1333 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1334 * held so that if cache_reap() is invoked it cannot do
1335 * anything expensive but will only modify reap_work
1336 * and reschedule the timer.
1337 */
afe2c511 1338 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1339 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1340 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1341 break;
1342 case CPU_DOWN_FAILED:
8bb78442 1343 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1344 start_cpu_timer(cpu);
1345 break;
1da177e4 1346 case CPU_DEAD:
8bb78442 1347 case CPU_DEAD_FROZEN:
4484ebf1
RT
1348 /*
1349 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1350 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1351 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1352 * memory from the node of the cpu going down. The node
4484ebf1
RT
1353 * structure is usually allocated from kmem_cache_create() and
1354 * gets destroyed at kmem_cache_destroy().
1355 */
183ff22b 1356 /* fall through */
8f5be20b 1357#endif
1da177e4 1358 case CPU_UP_CANCELED:
8bb78442 1359 case CPU_UP_CANCELED_FROZEN:
18004c5d 1360 mutex_lock(&slab_mutex);
fbf1e473 1361 cpuup_canceled(cpu);
18004c5d 1362 mutex_unlock(&slab_mutex);
1da177e4 1363 break;
1da177e4 1364 }
eac40680 1365 return notifier_from_errno(err);
1da177e4
LT
1366}
1367
0db0628d 1368static struct notifier_block cpucache_notifier = {
74b85f37
CS
1369 &cpuup_callback, NULL, 0
1370};
1da177e4 1371
8f9f8d9e
DR
1372#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1373/*
1374 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1375 * Returns -EBUSY if all objects cannot be drained so that the node is not
1376 * removed.
1377 *
18004c5d 1378 * Must hold slab_mutex.
8f9f8d9e 1379 */
6a67368c 1380static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1381{
1382 struct kmem_cache *cachep;
1383 int ret = 0;
1384
18004c5d 1385 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1386 struct kmem_cache_node *n;
8f9f8d9e 1387
ce8eb6c4
CL
1388 n = cachep->node[node];
1389 if (!n)
8f9f8d9e
DR
1390 continue;
1391
0fa8103b 1392 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1393
ce8eb6c4
CL
1394 if (!list_empty(&n->slabs_full) ||
1395 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1396 ret = -EBUSY;
1397 break;
1398 }
1399 }
1400 return ret;
1401}
1402
1403static int __meminit slab_memory_callback(struct notifier_block *self,
1404 unsigned long action, void *arg)
1405{
1406 struct memory_notify *mnb = arg;
1407 int ret = 0;
1408 int nid;
1409
1410 nid = mnb->status_change_nid;
1411 if (nid < 0)
1412 goto out;
1413
1414 switch (action) {
1415 case MEM_GOING_ONLINE:
18004c5d 1416 mutex_lock(&slab_mutex);
6a67368c 1417 ret = init_cache_node_node(nid);
18004c5d 1418 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1419 break;
1420 case MEM_GOING_OFFLINE:
18004c5d 1421 mutex_lock(&slab_mutex);
6a67368c 1422 ret = drain_cache_node_node(nid);
18004c5d 1423 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1424 break;
1425 case MEM_ONLINE:
1426 case MEM_OFFLINE:
1427 case MEM_CANCEL_ONLINE:
1428 case MEM_CANCEL_OFFLINE:
1429 break;
1430 }
1431out:
5fda1bd5 1432 return notifier_from_errno(ret);
8f9f8d9e
DR
1433}
1434#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1435
e498be7d 1436/*
ce8eb6c4 1437 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1438 */
6744f087 1439static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1440 int nodeid)
e498be7d 1441{
6744f087 1442 struct kmem_cache_node *ptr;
e498be7d 1443
6744f087 1444 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1445 BUG_ON(!ptr);
1446
6744f087 1447 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1448 /*
1449 * Do not assume that spinlocks can be initialized via memcpy:
1450 */
1451 spin_lock_init(&ptr->list_lock);
1452
e498be7d 1453 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1454 cachep->node[nodeid] = ptr;
e498be7d
CL
1455}
1456
556a169d 1457/*
ce8eb6c4
CL
1458 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1459 * size of kmem_cache_node.
556a169d 1460 */
ce8eb6c4 1461static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1462{
1463 int node;
1464
1465 for_each_online_node(node) {
ce8eb6c4 1466 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1467 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1468 REAPTIMEOUT_LIST3 +
1469 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1470 }
1471}
1472
3c583465
CL
1473/*
1474 * The memory after the last cpu cache pointer is used for the
6a67368c 1475 * the node pointer.
3c583465 1476 */
6a67368c 1477static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1478{
6a67368c 1479 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1480}
1481
a737b3e2
AM
1482/*
1483 * Initialisation. Called after the page allocator have been initialised and
1484 * before smp_init().
1da177e4
LT
1485 */
1486void __init kmem_cache_init(void)
1487{
e498be7d
CL
1488 int i;
1489
68126702
JK
1490 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1491 sizeof(struct rcu_head));
9b030cb8 1492 kmem_cache = &kmem_cache_boot;
6a67368c 1493 setup_node_pointer(kmem_cache);
9b030cb8 1494
b6e68bc1 1495 if (num_possible_nodes() == 1)
62918a03
SS
1496 use_alien_caches = 0;
1497
3c583465 1498 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1499 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1500
ce8eb6c4 1501 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1502
1503 /*
1504 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1505 * page orders on machines with more than 32MB of memory if
1506 * not overridden on the command line.
1da177e4 1507 */
3df1cccd 1508 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1509 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1510
1da177e4
LT
1511 /* Bootstrap is tricky, because several objects are allocated
1512 * from caches that do not exist yet:
9b030cb8
CL
1513 * 1) initialize the kmem_cache cache: it contains the struct
1514 * kmem_cache structures of all caches, except kmem_cache itself:
1515 * kmem_cache is statically allocated.
e498be7d 1516 * Initially an __init data area is used for the head array and the
ce8eb6c4 1517 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1518 * array at the end of the bootstrap.
1da177e4 1519 * 2) Create the first kmalloc cache.
343e0d7a 1520 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1521 * An __init data area is used for the head array.
1522 * 3) Create the remaining kmalloc caches, with minimally sized
1523 * head arrays.
9b030cb8 1524 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1525 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1526 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1527 * the other cache's with kmalloc allocated memory.
1528 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1529 */
1530
9b030cb8 1531 /* 1) create the kmem_cache */
1da177e4 1532
8da3430d 1533 /*
b56efcf0 1534 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1535 */
2f9baa9f
CL
1536 create_boot_cache(kmem_cache, "kmem_cache",
1537 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1538 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1539 SLAB_HWCACHE_ALIGN);
1540 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1541
1542 /* 2+3) create the kmalloc caches */
1da177e4 1543
a737b3e2
AM
1544 /*
1545 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1546 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1547 * bug.
e498be7d
CL
1548 */
1549
e3366016
CL
1550 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1551 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1552
ce8eb6c4
CL
1553 if (INDEX_AC != INDEX_NODE)
1554 kmalloc_caches[INDEX_NODE] =
1555 create_kmalloc_cache("kmalloc-node",
1556 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1557
e0a42726
IM
1558 slab_early_init = 0;
1559
1da177e4
LT
1560 /* 4) Replace the bootstrap head arrays */
1561 {
2b2d5493 1562 struct array_cache *ptr;
e498be7d 1563
83b519e8 1564 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1565
9b030cb8 1566 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1567 sizeof(struct arraycache_init));
2b2d5493
IM
1568 /*
1569 * Do not assume that spinlocks can be initialized via memcpy:
1570 */
1571 spin_lock_init(&ptr->lock);
1572
9b030cb8 1573 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1574
83b519e8 1575 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1576
e3366016 1577 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1578 != &initarray_generic.cache);
e3366016 1579 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1580 sizeof(struct arraycache_init));
2b2d5493
IM
1581 /*
1582 * Do not assume that spinlocks can be initialized via memcpy:
1583 */
1584 spin_lock_init(&ptr->lock);
1585
e3366016 1586 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1587 }
ce8eb6c4 1588 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1589 {
1ca4cb24
PE
1590 int nid;
1591
9c09a95c 1592 for_each_online_node(nid) {
ce8eb6c4 1593 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1594
e3366016 1595 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1596 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1597
ce8eb6c4
CL
1598 if (INDEX_AC != INDEX_NODE) {
1599 init_list(kmalloc_caches[INDEX_NODE],
1600 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1601 }
1602 }
1603 }
1da177e4 1604
f97d5f63 1605 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1606}
1607
1608void __init kmem_cache_init_late(void)
1609{
1610 struct kmem_cache *cachep;
1611
97d06609 1612 slab_state = UP;
52cef189 1613
8429db5c 1614 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1615 mutex_lock(&slab_mutex);
1616 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1617 if (enable_cpucache(cachep, GFP_NOWAIT))
1618 BUG();
18004c5d 1619 mutex_unlock(&slab_mutex);
056c6241 1620
947ca185
MW
1621 /* Annotate slab for lockdep -- annotate the malloc caches */
1622 init_lock_keys();
1623
97d06609
CL
1624 /* Done! */
1625 slab_state = FULL;
1626
a737b3e2
AM
1627 /*
1628 * Register a cpu startup notifier callback that initializes
1629 * cpu_cache_get for all new cpus
1da177e4
LT
1630 */
1631 register_cpu_notifier(&cpucache_notifier);
1da177e4 1632
8f9f8d9e
DR
1633#ifdef CONFIG_NUMA
1634 /*
1635 * Register a memory hotplug callback that initializes and frees
6a67368c 1636 * node.
8f9f8d9e
DR
1637 */
1638 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1639#endif
1640
a737b3e2
AM
1641 /*
1642 * The reap timers are started later, with a module init call: That part
1643 * of the kernel is not yet operational.
1da177e4
LT
1644 */
1645}
1646
1647static int __init cpucache_init(void)
1648{
1649 int cpu;
1650
a737b3e2
AM
1651 /*
1652 * Register the timers that return unneeded pages to the page allocator
1da177e4 1653 */
e498be7d 1654 for_each_online_cpu(cpu)
a737b3e2 1655 start_cpu_timer(cpu);
a164f896
GC
1656
1657 /* Done! */
97d06609 1658 slab_state = FULL;
1da177e4
LT
1659 return 0;
1660}
1da177e4
LT
1661__initcall(cpucache_init);
1662
8bdec192
RA
1663static noinline void
1664slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1665{
ce8eb6c4 1666 struct kmem_cache_node *n;
8bdec192
RA
1667 struct slab *slabp;
1668 unsigned long flags;
1669 int node;
1670
1671 printk(KERN_WARNING
1672 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1673 nodeid, gfpflags);
1674 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1675 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1676
1677 for_each_online_node(node) {
1678 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1679 unsigned long active_slabs = 0, num_slabs = 0;
1680
ce8eb6c4
CL
1681 n = cachep->node[node];
1682 if (!n)
8bdec192
RA
1683 continue;
1684
ce8eb6c4
CL
1685 spin_lock_irqsave(&n->list_lock, flags);
1686 list_for_each_entry(slabp, &n->slabs_full, list) {
8bdec192
RA
1687 active_objs += cachep->num;
1688 active_slabs++;
1689 }
ce8eb6c4 1690 list_for_each_entry(slabp, &n->slabs_partial, list) {
8bdec192
RA
1691 active_objs += slabp->inuse;
1692 active_slabs++;
1693 }
ce8eb6c4 1694 list_for_each_entry(slabp, &n->slabs_free, list)
8bdec192
RA
1695 num_slabs++;
1696
ce8eb6c4
CL
1697 free_objects += n->free_objects;
1698 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1699
1700 num_slabs += active_slabs;
1701 num_objs = num_slabs * cachep->num;
1702 printk(KERN_WARNING
1703 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1704 node, active_slabs, num_slabs, active_objs, num_objs,
1705 free_objects);
1706 }
1707}
1708
1da177e4
LT
1709/*
1710 * Interface to system's page allocator. No need to hold the cache-lock.
1711 *
1712 * If we requested dmaable memory, we will get it. Even if we
1713 * did not request dmaable memory, we might get it, but that
1714 * would be relatively rare and ignorable.
1715 */
0c3aa83e
JK
1716static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1717 int nodeid)
1da177e4
LT
1718{
1719 struct page *page;
e1b6aa6f 1720 int nr_pages;
1da177e4
LT
1721 int i;
1722
d6fef9da 1723#ifndef CONFIG_MMU
e1b6aa6f
CH
1724 /*
1725 * Nommu uses slab's for process anonymous memory allocations, and thus
1726 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1727 */
e1b6aa6f 1728 flags |= __GFP_COMP;
d6fef9da 1729#endif
765c4507 1730
a618e89f 1731 flags |= cachep->allocflags;
e12ba74d
MG
1732 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1733 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1734
517d0869 1735 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1736 if (!page) {
1737 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1738 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1739 return NULL;
8bdec192 1740 }
1da177e4 1741
b37f1dd0 1742 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1743 if (unlikely(page->pfmemalloc))
1744 pfmemalloc_active = true;
1745
e1b6aa6f 1746 nr_pages = (1 << cachep->gfporder);
1da177e4 1747 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1748 add_zone_page_state(page_zone(page),
1749 NR_SLAB_RECLAIMABLE, nr_pages);
1750 else
1751 add_zone_page_state(page_zone(page),
1752 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1753 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1754 __SetPageSlab(page + i);
c175eea4 1755
072bb0aa 1756 if (page->pfmemalloc)
73293c2f 1757 SetPageSlabPfmemalloc(page);
072bb0aa 1758 }
1f458cbf 1759 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1760
b1eeab67
VN
1761 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1762 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1763
1764 if (cachep->ctor)
1765 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1766 else
1767 kmemcheck_mark_unallocated_pages(page, nr_pages);
1768 }
c175eea4 1769
0c3aa83e 1770 return page;
1da177e4
LT
1771}
1772
1773/*
1774 * Interface to system's page release.
1775 */
0c3aa83e 1776static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1777{
b28a02de 1778 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1779 const unsigned long nr_freed = i;
1780
b1eeab67 1781 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1782
972d1a7b
CL
1783 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1784 sub_zone_page_state(page_zone(page),
1785 NR_SLAB_RECLAIMABLE, nr_freed);
1786 else
1787 sub_zone_page_state(page_zone(page),
1788 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f
JK
1789
1790 __ClearPageSlabPfmemalloc(page);
1da177e4 1791 while (i--) {
f205b2fe
NP
1792 BUG_ON(!PageSlab(page));
1793 __ClearPageSlab(page);
1da177e4
LT
1794 page++;
1795 }
1f458cbf
GC
1796
1797 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1798 if (current->reclaim_state)
1799 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1800 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1801}
1802
1803static void kmem_rcu_free(struct rcu_head *head)
1804{
68126702
JK
1805 struct kmem_cache *cachep;
1806 struct page *page;
1da177e4 1807
68126702
JK
1808 page = container_of(head, struct page, rcu_head);
1809 cachep = page->slab_cache;
1810
1811 kmem_freepages(cachep, page);
1da177e4
LT
1812}
1813
1814#if DEBUG
1815
1816#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1817static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1818 unsigned long caller)
1da177e4 1819{
8c138bc0 1820 int size = cachep->object_size;
1da177e4 1821
3dafccf2 1822 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1823
b28a02de 1824 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1825 return;
1826
b28a02de
PE
1827 *addr++ = 0x12345678;
1828 *addr++ = caller;
1829 *addr++ = smp_processor_id();
1830 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1831 {
1832 unsigned long *sptr = &caller;
1833 unsigned long svalue;
1834
1835 while (!kstack_end(sptr)) {
1836 svalue = *sptr++;
1837 if (kernel_text_address(svalue)) {
b28a02de 1838 *addr++ = svalue;
1da177e4
LT
1839 size -= sizeof(unsigned long);
1840 if (size <= sizeof(unsigned long))
1841 break;
1842 }
1843 }
1844
1845 }
b28a02de 1846 *addr++ = 0x87654321;
1da177e4
LT
1847}
1848#endif
1849
343e0d7a 1850static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1851{
8c138bc0 1852 int size = cachep->object_size;
3dafccf2 1853 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1854
1855 memset(addr, val, size);
b28a02de 1856 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1857}
1858
1859static void dump_line(char *data, int offset, int limit)
1860{
1861 int i;
aa83aa40
DJ
1862 unsigned char error = 0;
1863 int bad_count = 0;
1864
fdde6abb 1865 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1866 for (i = 0; i < limit; i++) {
1867 if (data[offset + i] != POISON_FREE) {
1868 error = data[offset + i];
1869 bad_count++;
1870 }
aa83aa40 1871 }
fdde6abb
SAS
1872 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1873 &data[offset], limit, 1);
aa83aa40
DJ
1874
1875 if (bad_count == 1) {
1876 error ^= POISON_FREE;
1877 if (!(error & (error - 1))) {
1878 printk(KERN_ERR "Single bit error detected. Probably "
1879 "bad RAM.\n");
1880#ifdef CONFIG_X86
1881 printk(KERN_ERR "Run memtest86+ or a similar memory "
1882 "test tool.\n");
1883#else
1884 printk(KERN_ERR "Run a memory test tool.\n");
1885#endif
1886 }
1887 }
1da177e4
LT
1888}
1889#endif
1890
1891#if DEBUG
1892
343e0d7a 1893static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1894{
1895 int i, size;
1896 char *realobj;
1897
1898 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1899 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1900 *dbg_redzone1(cachep, objp),
1901 *dbg_redzone2(cachep, objp));
1da177e4
LT
1902 }
1903
1904 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1905 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1906 *dbg_userword(cachep, objp),
1907 *dbg_userword(cachep, objp));
1da177e4 1908 }
3dafccf2 1909 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1910 size = cachep->object_size;
b28a02de 1911 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1912 int limit;
1913 limit = 16;
b28a02de
PE
1914 if (i + limit > size)
1915 limit = size - i;
1da177e4
LT
1916 dump_line(realobj, i, limit);
1917 }
1918}
1919
343e0d7a 1920static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1921{
1922 char *realobj;
1923 int size, i;
1924 int lines = 0;
1925
3dafccf2 1926 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1927 size = cachep->object_size;
1da177e4 1928
b28a02de 1929 for (i = 0; i < size; i++) {
1da177e4 1930 char exp = POISON_FREE;
b28a02de 1931 if (i == size - 1)
1da177e4
LT
1932 exp = POISON_END;
1933 if (realobj[i] != exp) {
1934 int limit;
1935 /* Mismatch ! */
1936 /* Print header */
1937 if (lines == 0) {
b28a02de 1938 printk(KERN_ERR
face37f5
DJ
1939 "Slab corruption (%s): %s start=%p, len=%d\n",
1940 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1941 print_objinfo(cachep, objp, 0);
1942 }
1943 /* Hexdump the affected line */
b28a02de 1944 i = (i / 16) * 16;
1da177e4 1945 limit = 16;
b28a02de
PE
1946 if (i + limit > size)
1947 limit = size - i;
1da177e4
LT
1948 dump_line(realobj, i, limit);
1949 i += 16;
1950 lines++;
1951 /* Limit to 5 lines */
1952 if (lines > 5)
1953 break;
1954 }
1955 }
1956 if (lines != 0) {
1957 /* Print some data about the neighboring objects, if they
1958 * exist:
1959 */
6ed5eb22 1960 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1961 unsigned int objnr;
1da177e4 1962
8fea4e96 1963 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1964 if (objnr) {
8fea4e96 1965 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1966 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1967 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1968 realobj, size);
1da177e4
LT
1969 print_objinfo(cachep, objp, 2);
1970 }
b28a02de 1971 if (objnr + 1 < cachep->num) {
8fea4e96 1972 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1973 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1974 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1975 realobj, size);
1da177e4
LT
1976 print_objinfo(cachep, objp, 2);
1977 }
1978 }
1979}
1980#endif
1981
12dd36fa 1982#if DEBUG
e79aec29 1983static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1984{
1da177e4
LT
1985 int i;
1986 for (i = 0; i < cachep->num; i++) {
8fea4e96 1987 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1988
1989 if (cachep->flags & SLAB_POISON) {
1990#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1991 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1992 OFF_SLAB(cachep))
b28a02de 1993 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1994 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1995 else
1996 check_poison_obj(cachep, objp);
1997#else
1998 check_poison_obj(cachep, objp);
1999#endif
2000 }
2001 if (cachep->flags & SLAB_RED_ZONE) {
2002 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2003 slab_error(cachep, "start of a freed object "
b28a02de 2004 "was overwritten");
1da177e4
LT
2005 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2006 slab_error(cachep, "end of a freed object "
b28a02de 2007 "was overwritten");
1da177e4 2008 }
1da177e4 2009 }
12dd36fa 2010}
1da177e4 2011#else
e79aec29 2012static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2013{
12dd36fa 2014}
1da177e4
LT
2015#endif
2016
911851e6
RD
2017/**
2018 * slab_destroy - destroy and release all objects in a slab
2019 * @cachep: cache pointer being destroyed
2020 * @slabp: slab pointer being destroyed
2021 *
12dd36fa 2022 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2023 * Before calling the slab must have been unlinked from the cache. The
2024 * cache-lock is not held/needed.
12dd36fa 2025 */
343e0d7a 2026static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2027{
0c3aa83e 2028 struct page *page = virt_to_head_page(slabp->s_mem);
12dd36fa 2029
e79aec29 2030 slab_destroy_debugcheck(cachep, slabp);
1da177e4 2031 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
2032 struct rcu_head *head;
2033
2034 /*
2035 * RCU free overloads the RCU head over the LRU.
2036 * slab_page has been overloeaded over the LRU,
2037 * however it is not used from now on so that
2038 * we can use it safely.
2039 */
2040 head = (void *)&page->rcu_head;
2041 call_rcu(head, kmem_rcu_free);
1da177e4 2042
1da177e4 2043 } else {
0c3aa83e 2044 kmem_freepages(cachep, page);
1da177e4 2045 }
68126702
JK
2046
2047 /*
2048 * From now on, we don't use slab management
2049 * although actual page can be freed in rcu context
2050 */
2051 if (OFF_SLAB(cachep))
2052 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2053}
2054
4d268eba 2055/**
a70773dd
RD
2056 * calculate_slab_order - calculate size (page order) of slabs
2057 * @cachep: pointer to the cache that is being created
2058 * @size: size of objects to be created in this cache.
2059 * @align: required alignment for the objects.
2060 * @flags: slab allocation flags
2061 *
2062 * Also calculates the number of objects per slab.
4d268eba
PE
2063 *
2064 * This could be made much more intelligent. For now, try to avoid using
2065 * high order pages for slabs. When the gfp() functions are more friendly
2066 * towards high-order requests, this should be changed.
2067 */
a737b3e2 2068static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2069 size_t size, size_t align, unsigned long flags)
4d268eba 2070{
b1ab41c4 2071 unsigned long offslab_limit;
4d268eba 2072 size_t left_over = 0;
9888e6fa 2073 int gfporder;
4d268eba 2074
0aa817f0 2075 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2076 unsigned int num;
2077 size_t remainder;
2078
9888e6fa 2079 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2080 if (!num)
2081 continue;
9888e6fa 2082
b1ab41c4
IM
2083 if (flags & CFLGS_OFF_SLAB) {
2084 /*
2085 * Max number of objs-per-slab for caches which
2086 * use off-slab slabs. Needed to avoid a possible
2087 * looping condition in cache_grow().
2088 */
2089 offslab_limit = size - sizeof(struct slab);
2090 offslab_limit /= sizeof(kmem_bufctl_t);
2091
2092 if (num > offslab_limit)
2093 break;
2094 }
4d268eba 2095
9888e6fa 2096 /* Found something acceptable - save it away */
4d268eba 2097 cachep->num = num;
9888e6fa 2098 cachep->gfporder = gfporder;
4d268eba
PE
2099 left_over = remainder;
2100
f78bb8ad
LT
2101 /*
2102 * A VFS-reclaimable slab tends to have most allocations
2103 * as GFP_NOFS and we really don't want to have to be allocating
2104 * higher-order pages when we are unable to shrink dcache.
2105 */
2106 if (flags & SLAB_RECLAIM_ACCOUNT)
2107 break;
2108
4d268eba
PE
2109 /*
2110 * Large number of objects is good, but very large slabs are
2111 * currently bad for the gfp()s.
2112 */
543585cc 2113 if (gfporder >= slab_max_order)
4d268eba
PE
2114 break;
2115
9888e6fa
LT
2116 /*
2117 * Acceptable internal fragmentation?
2118 */
a737b3e2 2119 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2120 break;
2121 }
2122 return left_over;
2123}
2124
83b519e8 2125static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2126{
97d06609 2127 if (slab_state >= FULL)
83b519e8 2128 return enable_cpucache(cachep, gfp);
2ed3a4ef 2129
97d06609 2130 if (slab_state == DOWN) {
f30cf7d1 2131 /*
2f9baa9f 2132 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2133 * The setup_node is taken care
2f9baa9f
CL
2134 * of by the caller of __kmem_cache_create
2135 */
2136 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2137 slab_state = PARTIAL;
2138 } else if (slab_state == PARTIAL) {
2139 /*
2140 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2141 * that's used by kmalloc(24), otherwise the creation of
2142 * further caches will BUG().
2143 */
2144 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2145
2146 /*
ce8eb6c4
CL
2147 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2148 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2149 * otherwise the creation of further caches will BUG().
2150 */
ce8eb6c4
CL
2151 set_up_node(cachep, SIZE_AC);
2152 if (INDEX_AC == INDEX_NODE)
2153 slab_state = PARTIAL_NODE;
f30cf7d1 2154 else
97d06609 2155 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2156 } else {
2f9baa9f 2157 /* Remaining boot caches */
f30cf7d1 2158 cachep->array[smp_processor_id()] =
83b519e8 2159 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2160
97d06609 2161 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2162 set_up_node(cachep, SIZE_NODE);
2163 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2164 } else {
2165 int node;
556a169d 2166 for_each_online_node(node) {
6a67368c 2167 cachep->node[node] =
6744f087 2168 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2169 gfp, node);
6a67368c 2170 BUG_ON(!cachep->node[node]);
ce8eb6c4 2171 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2172 }
2173 }
2174 }
6a67368c 2175 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2176 jiffies + REAPTIMEOUT_LIST3 +
2177 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2178
2179 cpu_cache_get(cachep)->avail = 0;
2180 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2181 cpu_cache_get(cachep)->batchcount = 1;
2182 cpu_cache_get(cachep)->touched = 0;
2183 cachep->batchcount = 1;
2184 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2185 return 0;
f30cf7d1
PE
2186}
2187
1da177e4 2188/**
039363f3 2189 * __kmem_cache_create - Create a cache.
a755b76a 2190 * @cachep: cache management descriptor
1da177e4 2191 * @flags: SLAB flags
1da177e4
LT
2192 *
2193 * Returns a ptr to the cache on success, NULL on failure.
2194 * Cannot be called within a int, but can be interrupted.
20c2df83 2195 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2196 *
1da177e4
LT
2197 * The flags are
2198 *
2199 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2200 * to catch references to uninitialised memory.
2201 *
2202 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2203 * for buffer overruns.
2204 *
1da177e4
LT
2205 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2206 * cacheline. This can be beneficial if you're counting cycles as closely
2207 * as davem.
2208 */
278b1bb1 2209int
8a13a4cc 2210__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2211{
2212 size_t left_over, slab_size, ralign;
83b519e8 2213 gfp_t gfp;
278b1bb1 2214 int err;
8a13a4cc 2215 size_t size = cachep->size;
1da177e4 2216
1da177e4 2217#if DEBUG
1da177e4
LT
2218#if FORCED_DEBUG
2219 /*
2220 * Enable redzoning and last user accounting, except for caches with
2221 * large objects, if the increased size would increase the object size
2222 * above the next power of two: caches with object sizes just above a
2223 * power of two have a significant amount of internal fragmentation.
2224 */
87a927c7
DW
2225 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2226 2 * sizeof(unsigned long long)))
b28a02de 2227 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2228 if (!(flags & SLAB_DESTROY_BY_RCU))
2229 flags |= SLAB_POISON;
2230#endif
2231 if (flags & SLAB_DESTROY_BY_RCU)
2232 BUG_ON(flags & SLAB_POISON);
2233#endif
1da177e4 2234
a737b3e2
AM
2235 /*
2236 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2237 * unaligned accesses for some archs when redzoning is used, and makes
2238 * sure any on-slab bufctl's are also correctly aligned.
2239 */
b28a02de
PE
2240 if (size & (BYTES_PER_WORD - 1)) {
2241 size += (BYTES_PER_WORD - 1);
2242 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2243 }
2244
ca5f9703 2245 /*
87a927c7
DW
2246 * Redzoning and user store require word alignment or possibly larger.
2247 * Note this will be overridden by architecture or caller mandated
2248 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2249 */
87a927c7
DW
2250 if (flags & SLAB_STORE_USER)
2251 ralign = BYTES_PER_WORD;
2252
2253 if (flags & SLAB_RED_ZONE) {
2254 ralign = REDZONE_ALIGN;
2255 /* If redzoning, ensure that the second redzone is suitably
2256 * aligned, by adjusting the object size accordingly. */
2257 size += REDZONE_ALIGN - 1;
2258 size &= ~(REDZONE_ALIGN - 1);
2259 }
ca5f9703 2260
a44b56d3 2261 /* 3) caller mandated alignment */
8a13a4cc
CL
2262 if (ralign < cachep->align) {
2263 ralign = cachep->align;
1da177e4 2264 }
3ff84a7f
PE
2265 /* disable debug if necessary */
2266 if (ralign > __alignof__(unsigned long long))
a44b56d3 2267 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2268 /*
ca5f9703 2269 * 4) Store it.
1da177e4 2270 */
8a13a4cc 2271 cachep->align = ralign;
1da177e4 2272
83b519e8
PE
2273 if (slab_is_available())
2274 gfp = GFP_KERNEL;
2275 else
2276 gfp = GFP_NOWAIT;
2277
6a67368c 2278 setup_node_pointer(cachep);
1da177e4 2279#if DEBUG
1da177e4 2280
ca5f9703
PE
2281 /*
2282 * Both debugging options require word-alignment which is calculated
2283 * into align above.
2284 */
1da177e4 2285 if (flags & SLAB_RED_ZONE) {
1da177e4 2286 /* add space for red zone words */
3ff84a7f
PE
2287 cachep->obj_offset += sizeof(unsigned long long);
2288 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2289 }
2290 if (flags & SLAB_STORE_USER) {
ca5f9703 2291 /* user store requires one word storage behind the end of
87a927c7
DW
2292 * the real object. But if the second red zone needs to be
2293 * aligned to 64 bits, we must allow that much space.
1da177e4 2294 */
87a927c7
DW
2295 if (flags & SLAB_RED_ZONE)
2296 size += REDZONE_ALIGN;
2297 else
2298 size += BYTES_PER_WORD;
1da177e4
LT
2299 }
2300#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2301 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2302 && cachep->object_size > cache_line_size()
2303 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2304 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2305 size = PAGE_SIZE;
2306 }
2307#endif
2308#endif
2309
e0a42726
IM
2310 /*
2311 * Determine if the slab management is 'on' or 'off' slab.
2312 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2313 * it too early on. Always use on-slab management when
2314 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2315 */
e7cb55b9
CM
2316 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2317 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2318 /*
2319 * Size is large, assume best to place the slab management obj
2320 * off-slab (should allow better packing of objs).
2321 */
2322 flags |= CFLGS_OFF_SLAB;
2323
8a13a4cc 2324 size = ALIGN(size, cachep->align);
1da177e4 2325
8a13a4cc 2326 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2327
8a13a4cc 2328 if (!cachep->num)
278b1bb1 2329 return -E2BIG;
1da177e4 2330
b28a02de 2331 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2332 + sizeof(struct slab), cachep->align);
1da177e4
LT
2333
2334 /*
2335 * If the slab has been placed off-slab, and we have enough space then
2336 * move it on-slab. This is at the expense of any extra colouring.
2337 */
2338 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2339 flags &= ~CFLGS_OFF_SLAB;
2340 left_over -= slab_size;
2341 }
2342
2343 if (flags & CFLGS_OFF_SLAB) {
2344 /* really off slab. No need for manual alignment */
b28a02de
PE
2345 slab_size =
2346 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2347
2348#ifdef CONFIG_PAGE_POISONING
2349 /* If we're going to use the generic kernel_map_pages()
2350 * poisoning, then it's going to smash the contents of
2351 * the redzone and userword anyhow, so switch them off.
2352 */
2353 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2354 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2355#endif
1da177e4
LT
2356 }
2357
2358 cachep->colour_off = cache_line_size();
2359 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2360 if (cachep->colour_off < cachep->align)
2361 cachep->colour_off = cachep->align;
b28a02de 2362 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2363 cachep->slab_size = slab_size;
2364 cachep->flags = flags;
a618e89f 2365 cachep->allocflags = 0;
4b51d669 2366 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2367 cachep->allocflags |= GFP_DMA;
3b0efdfa 2368 cachep->size = size;
6a2d7a95 2369 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2370
e5ac9c5a 2371 if (flags & CFLGS_OFF_SLAB) {
2c59dd65 2372 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
e5ac9c5a
RT
2373 /*
2374 * This is a possibility for one of the malloc_sizes caches.
2375 * But since we go off slab only for object size greater than
2376 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2377 * this should not happen at all.
2378 * But leave a BUG_ON for some lucky dude.
2379 */
6cb8f913 2380 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2381 }
1da177e4 2382
278b1bb1
CL
2383 err = setup_cpu_cache(cachep, gfp);
2384 if (err) {
12c3667f 2385 __kmem_cache_shutdown(cachep);
278b1bb1 2386 return err;
2ed3a4ef 2387 }
1da177e4 2388
83835b3d
PZ
2389 if (flags & SLAB_DEBUG_OBJECTS) {
2390 /*
2391 * Would deadlock through slab_destroy()->call_rcu()->
2392 * debug_object_activate()->kmem_cache_alloc().
2393 */
2394 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2395
2396 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2397 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2398 on_slab_lock_classes(cachep);
83835b3d 2399
278b1bb1 2400 return 0;
1da177e4 2401}
1da177e4
LT
2402
2403#if DEBUG
2404static void check_irq_off(void)
2405{
2406 BUG_ON(!irqs_disabled());
2407}
2408
2409static void check_irq_on(void)
2410{
2411 BUG_ON(irqs_disabled());
2412}
2413
343e0d7a 2414static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2415{
2416#ifdef CONFIG_SMP
2417 check_irq_off();
6a67368c 2418 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2419#endif
2420}
e498be7d 2421
343e0d7a 2422static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2423{
2424#ifdef CONFIG_SMP
2425 check_irq_off();
6a67368c 2426 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2427#endif
2428}
2429
1da177e4
LT
2430#else
2431#define check_irq_off() do { } while(0)
2432#define check_irq_on() do { } while(0)
2433#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2434#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2435#endif
2436
ce8eb6c4 2437static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2438 struct array_cache *ac,
2439 int force, int node);
2440
1da177e4
LT
2441static void do_drain(void *arg)
2442{
a737b3e2 2443 struct kmem_cache *cachep = arg;
1da177e4 2444 struct array_cache *ac;
7d6e6d09 2445 int node = numa_mem_id();
1da177e4
LT
2446
2447 check_irq_off();
9a2dba4b 2448 ac = cpu_cache_get(cachep);
6a67368c 2449 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2450 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2451 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2452 ac->avail = 0;
2453}
2454
343e0d7a 2455static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2456{
ce8eb6c4 2457 struct kmem_cache_node *n;
e498be7d
CL
2458 int node;
2459
15c8b6c1 2460 on_each_cpu(do_drain, cachep, 1);
1da177e4 2461 check_irq_on();
b28a02de 2462 for_each_online_node(node) {
ce8eb6c4
CL
2463 n = cachep->node[node];
2464 if (n && n->alien)
2465 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2466 }
2467
2468 for_each_online_node(node) {
ce8eb6c4
CL
2469 n = cachep->node[node];
2470 if (n)
2471 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2472 }
1da177e4
LT
2473}
2474
ed11d9eb
CL
2475/*
2476 * Remove slabs from the list of free slabs.
2477 * Specify the number of slabs to drain in tofree.
2478 *
2479 * Returns the actual number of slabs released.
2480 */
2481static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2482 struct kmem_cache_node *n, int tofree)
1da177e4 2483{
ed11d9eb
CL
2484 struct list_head *p;
2485 int nr_freed;
1da177e4 2486 struct slab *slabp;
1da177e4 2487
ed11d9eb 2488 nr_freed = 0;
ce8eb6c4 2489 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2490
ce8eb6c4
CL
2491 spin_lock_irq(&n->list_lock);
2492 p = n->slabs_free.prev;
2493 if (p == &n->slabs_free) {
2494 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2495 goto out;
2496 }
1da177e4 2497
ed11d9eb 2498 slabp = list_entry(p, struct slab, list);
1da177e4 2499#if DEBUG
40094fa6 2500 BUG_ON(slabp->inuse);
1da177e4
LT
2501#endif
2502 list_del(&slabp->list);
ed11d9eb
CL
2503 /*
2504 * Safe to drop the lock. The slab is no longer linked
2505 * to the cache.
2506 */
ce8eb6c4
CL
2507 n->free_objects -= cache->num;
2508 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2509 slab_destroy(cache, slabp);
2510 nr_freed++;
1da177e4 2511 }
ed11d9eb
CL
2512out:
2513 return nr_freed;
1da177e4
LT
2514}
2515
18004c5d 2516/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2517static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2518{
2519 int ret = 0, i = 0;
ce8eb6c4 2520 struct kmem_cache_node *n;
e498be7d
CL
2521
2522 drain_cpu_caches(cachep);
2523
2524 check_irq_on();
2525 for_each_online_node(i) {
ce8eb6c4
CL
2526 n = cachep->node[i];
2527 if (!n)
ed11d9eb
CL
2528 continue;
2529
0fa8103b 2530 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2531
ce8eb6c4
CL
2532 ret += !list_empty(&n->slabs_full) ||
2533 !list_empty(&n->slabs_partial);
e498be7d
CL
2534 }
2535 return (ret ? 1 : 0);
2536}
2537
1da177e4
LT
2538/**
2539 * kmem_cache_shrink - Shrink a cache.
2540 * @cachep: The cache to shrink.
2541 *
2542 * Releases as many slabs as possible for a cache.
2543 * To help debugging, a zero exit status indicates all slabs were released.
2544 */
343e0d7a 2545int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2546{
8f5be20b 2547 int ret;
40094fa6 2548 BUG_ON(!cachep || in_interrupt());
1da177e4 2549
95402b38 2550 get_online_cpus();
18004c5d 2551 mutex_lock(&slab_mutex);
8f5be20b 2552 ret = __cache_shrink(cachep);
18004c5d 2553 mutex_unlock(&slab_mutex);
95402b38 2554 put_online_cpus();
8f5be20b 2555 return ret;
1da177e4
LT
2556}
2557EXPORT_SYMBOL(kmem_cache_shrink);
2558
945cf2b6 2559int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2560{
12c3667f 2561 int i;
ce8eb6c4 2562 struct kmem_cache_node *n;
12c3667f 2563 int rc = __cache_shrink(cachep);
1da177e4 2564
12c3667f
CL
2565 if (rc)
2566 return rc;
1da177e4 2567
12c3667f
CL
2568 for_each_online_cpu(i)
2569 kfree(cachep->array[i]);
1da177e4 2570
ce8eb6c4 2571 /* NUMA: free the node structures */
12c3667f 2572 for_each_online_node(i) {
ce8eb6c4
CL
2573 n = cachep->node[i];
2574 if (n) {
2575 kfree(n->shared);
2576 free_alien_cache(n->alien);
2577 kfree(n);
12c3667f
CL
2578 }
2579 }
2580 return 0;
1da177e4 2581}
1da177e4 2582
e5ac9c5a
RT
2583/*
2584 * Get the memory for a slab management obj.
2585 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2586 * always come from malloc_sizes caches. The slab descriptor cannot
2587 * come from the same cache which is getting created because,
2588 * when we are searching for an appropriate cache for these
2589 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2590 * If we are creating a malloc_sizes cache here it would not be visible to
2591 * kmem_find_general_cachep till the initialization is complete.
2592 * Hence we cannot have slabp_cache same as the original cache.
2593 */
0c3aa83e
JK
2594static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
2595 struct page *page, int colour_off,
2596 gfp_t local_flags, int nodeid)
1da177e4
LT
2597{
2598 struct slab *slabp;
0c3aa83e 2599 void *addr = page_address(page);
b28a02de 2600
1da177e4
LT
2601 if (OFF_SLAB(cachep)) {
2602 /* Slab management obj is off-slab. */
5b74ada7 2603 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2604 local_flags, nodeid);
d5cff635
CM
2605 /*
2606 * If the first object in the slab is leaked (it's allocated
2607 * but no one has a reference to it), we want to make sure
2608 * kmemleak does not treat the ->s_mem pointer as a reference
2609 * to the object. Otherwise we will not report the leak.
2610 */
c017b4be
CM
2611 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2612 local_flags);
1da177e4
LT
2613 if (!slabp)
2614 return NULL;
2615 } else {
0c3aa83e 2616 slabp = addr + colour_off;
1da177e4
LT
2617 colour_off += cachep->slab_size;
2618 }
2619 slabp->inuse = 0;
0c3aa83e 2620 slabp->s_mem = addr + colour_off;
e51bfd0a 2621 slabp->free = 0;
1da177e4
LT
2622 return slabp;
2623}
2624
2625static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2626{
b28a02de 2627 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2628}
2629
343e0d7a 2630static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2631 struct slab *slabp)
1da177e4
LT
2632{
2633 int i;
2634
2635 for (i = 0; i < cachep->num; i++) {
8fea4e96 2636 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2637#if DEBUG
2638 /* need to poison the objs? */
2639 if (cachep->flags & SLAB_POISON)
2640 poison_obj(cachep, objp, POISON_FREE);
2641 if (cachep->flags & SLAB_STORE_USER)
2642 *dbg_userword(cachep, objp) = NULL;
2643
2644 if (cachep->flags & SLAB_RED_ZONE) {
2645 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2646 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2647 }
2648 /*
a737b3e2
AM
2649 * Constructors are not allowed to allocate memory from the same
2650 * cache which they are a constructor for. Otherwise, deadlock.
2651 * They must also be threaded.
1da177e4
LT
2652 */
2653 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2654 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2655
2656 if (cachep->flags & SLAB_RED_ZONE) {
2657 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2658 slab_error(cachep, "constructor overwrote the"
b28a02de 2659 " end of an object");
1da177e4
LT
2660 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2661 slab_error(cachep, "constructor overwrote the"
b28a02de 2662 " start of an object");
1da177e4 2663 }
3b0efdfa 2664 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2665 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2666 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2667 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2668#else
2669 if (cachep->ctor)
51cc5068 2670 cachep->ctor(objp);
1da177e4 2671#endif
b28a02de 2672 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2673 }
b28a02de 2674 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2675}
2676
343e0d7a 2677static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2678{
4b51d669
CL
2679 if (CONFIG_ZONE_DMA_FLAG) {
2680 if (flags & GFP_DMA)
a618e89f 2681 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2682 else
a618e89f 2683 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2684 }
1da177e4
LT
2685}
2686
a737b3e2
AM
2687static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2688 int nodeid)
78d382d7 2689{
8fea4e96 2690 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2691 kmem_bufctl_t next;
2692
2693 slabp->inuse++;
2694 next = slab_bufctl(slabp)[slabp->free];
2695#if DEBUG
2696 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
1ea991b0 2697 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7
MD
2698#endif
2699 slabp->free = next;
2700
2701 return objp;
2702}
2703
a737b3e2
AM
2704static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2705 void *objp, int nodeid)
78d382d7 2706{
8fea4e96 2707 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2708
2709#if DEBUG
2710 /* Verify that the slab belongs to the intended node */
1ea991b0 2711 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2712
871751e2 2713 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2714 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2715 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2716 BUG();
2717 }
2718#endif
2719 slab_bufctl(slabp)[objnr] = slabp->free;
2720 slabp->free = objnr;
2721 slabp->inuse--;
2722}
2723
4776874f
PE
2724/*
2725 * Map pages beginning at addr to the given cache and slab. This is required
2726 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2727 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2728 */
2729static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
0c3aa83e 2730 struct page *page)
1da177e4 2731{
4776874f 2732 int nr_pages;
84097518 2733
4776874f 2734 nr_pages = 1;
84097518 2735 if (likely(!PageCompound(page)))
4776874f
PE
2736 nr_pages <<= cache->gfporder;
2737
1da177e4 2738 do {
35026088
CL
2739 page->slab_cache = cache;
2740 page->slab_page = slab;
1da177e4 2741 page++;
4776874f 2742 } while (--nr_pages);
1da177e4
LT
2743}
2744
2745/*
2746 * Grow (by 1) the number of slabs within a cache. This is called by
2747 * kmem_cache_alloc() when there are no active objs left in a cache.
2748 */
3c517a61 2749static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2750 gfp_t flags, int nodeid, struct page *page)
1da177e4 2751{
b28a02de 2752 struct slab *slabp;
b28a02de
PE
2753 size_t offset;
2754 gfp_t local_flags;
ce8eb6c4 2755 struct kmem_cache_node *n;
1da177e4 2756
a737b3e2
AM
2757 /*
2758 * Be lazy and only check for valid flags here, keeping it out of the
2759 * critical path in kmem_cache_alloc().
1da177e4 2760 */
6cb06229
CL
2761 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2762 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2763
ce8eb6c4 2764 /* Take the node list lock to change the colour_next on this node */
1da177e4 2765 check_irq_off();
ce8eb6c4
CL
2766 n = cachep->node[nodeid];
2767 spin_lock(&n->list_lock);
1da177e4
LT
2768
2769 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2770 offset = n->colour_next;
2771 n->colour_next++;
2772 if (n->colour_next >= cachep->colour)
2773 n->colour_next = 0;
2774 spin_unlock(&n->list_lock);
1da177e4 2775
2e1217cf 2776 offset *= cachep->colour_off;
1da177e4
LT
2777
2778 if (local_flags & __GFP_WAIT)
2779 local_irq_enable();
2780
2781 /*
2782 * The test for missing atomic flag is performed here, rather than
2783 * the more obvious place, simply to reduce the critical path length
2784 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2785 * will eventually be caught here (where it matters).
2786 */
2787 kmem_flagcheck(cachep, flags);
2788
a737b3e2
AM
2789 /*
2790 * Get mem for the objs. Attempt to allocate a physical page from
2791 * 'nodeid'.
e498be7d 2792 */
0c3aa83e
JK
2793 if (!page)
2794 page = kmem_getpages(cachep, local_flags, nodeid);
2795 if (!page)
1da177e4
LT
2796 goto failed;
2797
2798 /* Get slab management. */
0c3aa83e 2799 slabp = alloc_slabmgmt(cachep, page, offset,
6cb06229 2800 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2801 if (!slabp)
1da177e4
LT
2802 goto opps1;
2803
0c3aa83e 2804 slab_map_pages(cachep, slabp, page);
1da177e4 2805
a35afb83 2806 cache_init_objs(cachep, slabp);
1da177e4
LT
2807
2808 if (local_flags & __GFP_WAIT)
2809 local_irq_disable();
2810 check_irq_off();
ce8eb6c4 2811 spin_lock(&n->list_lock);
1da177e4
LT
2812
2813 /* Make slab active. */
ce8eb6c4 2814 list_add_tail(&slabp->list, &(n->slabs_free));
1da177e4 2815 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2816 n->free_objects += cachep->num;
2817 spin_unlock(&n->list_lock);
1da177e4 2818 return 1;
a737b3e2 2819opps1:
0c3aa83e 2820 kmem_freepages(cachep, page);
a737b3e2 2821failed:
1da177e4
LT
2822 if (local_flags & __GFP_WAIT)
2823 local_irq_disable();
2824 return 0;
2825}
2826
2827#if DEBUG
2828
2829/*
2830 * Perform extra freeing checks:
2831 * - detect bad pointers.
2832 * - POISON/RED_ZONE checking
1da177e4
LT
2833 */
2834static void kfree_debugcheck(const void *objp)
2835{
1da177e4
LT
2836 if (!virt_addr_valid(objp)) {
2837 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2838 (unsigned long)objp);
2839 BUG();
1da177e4 2840 }
1da177e4
LT
2841}
2842
58ce1fd5
PE
2843static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2844{
b46b8f19 2845 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2846
2847 redzone1 = *dbg_redzone1(cache, obj);
2848 redzone2 = *dbg_redzone2(cache, obj);
2849
2850 /*
2851 * Redzone is ok.
2852 */
2853 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2854 return;
2855
2856 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2857 slab_error(cache, "double free detected");
2858 else
2859 slab_error(cache, "memory outside object was overwritten");
2860
b46b8f19 2861 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2862 obj, redzone1, redzone2);
2863}
2864
343e0d7a 2865static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2866 unsigned long caller)
1da177e4 2867{
1da177e4
LT
2868 unsigned int objnr;
2869 struct slab *slabp;
2870
80cbd911
MW
2871 BUG_ON(virt_to_cache(objp) != cachep);
2872
3dafccf2 2873 objp -= obj_offset(cachep);
1da177e4 2874 kfree_debugcheck(objp);
56f295ef 2875 slabp = virt_to_slab(objp);
1da177e4
LT
2876
2877 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2878 verify_redzone_free(cachep, objp);
1da177e4
LT
2879 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2880 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2881 }
2882 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2883 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2884
8fea4e96 2885 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2886
2887 BUG_ON(objnr >= cachep->num);
8fea4e96 2888 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2889
871751e2
AV
2890#ifdef CONFIG_DEBUG_SLAB_LEAK
2891 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2892#endif
1da177e4
LT
2893 if (cachep->flags & SLAB_POISON) {
2894#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2895 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2896 store_stackinfo(cachep, objp, caller);
b28a02de 2897 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2898 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2899 } else {
2900 poison_obj(cachep, objp, POISON_FREE);
2901 }
2902#else
2903 poison_obj(cachep, objp, POISON_FREE);
2904#endif
2905 }
2906 return objp;
2907}
2908
343e0d7a 2909static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2910{
2911 kmem_bufctl_t i;
2912 int entries = 0;
b28a02de 2913
1da177e4
LT
2914 /* Check slab's freelist to see if this obj is there. */
2915 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2916 entries++;
2917 if (entries > cachep->num || i >= cachep->num)
2918 goto bad;
2919 }
2920 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2921bad:
2922 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2923 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2924 cachep->name, cachep->num, slabp, slabp->inuse,
2925 print_tainted());
fdde6abb
SAS
2926 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2927 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2928 1);
1da177e4
LT
2929 BUG();
2930 }
2931}
2932#else
2933#define kfree_debugcheck(x) do { } while(0)
2934#define cache_free_debugcheck(x,objp,z) (objp)
2935#define check_slabp(x,y) do { } while(0)
2936#endif
2937
072bb0aa
MG
2938static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2939 bool force_refill)
1da177e4
LT
2940{
2941 int batchcount;
ce8eb6c4 2942 struct kmem_cache_node *n;
1da177e4 2943 struct array_cache *ac;
1ca4cb24
PE
2944 int node;
2945
1da177e4 2946 check_irq_off();
7d6e6d09 2947 node = numa_mem_id();
072bb0aa
MG
2948 if (unlikely(force_refill))
2949 goto force_grow;
2950retry:
9a2dba4b 2951 ac = cpu_cache_get(cachep);
1da177e4
LT
2952 batchcount = ac->batchcount;
2953 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2954 /*
2955 * If there was little recent activity on this cache, then
2956 * perform only a partial refill. Otherwise we could generate
2957 * refill bouncing.
1da177e4
LT
2958 */
2959 batchcount = BATCHREFILL_LIMIT;
2960 }
ce8eb6c4 2961 n = cachep->node[node];
e498be7d 2962
ce8eb6c4
CL
2963 BUG_ON(ac->avail > 0 || !n);
2964 spin_lock(&n->list_lock);
1da177e4 2965
3ded175a 2966 /* See if we can refill from the shared array */
ce8eb6c4
CL
2967 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2968 n->shared->touched = 1;
3ded175a 2969 goto alloc_done;
44b57f1c 2970 }
3ded175a 2971
1da177e4
LT
2972 while (batchcount > 0) {
2973 struct list_head *entry;
2974 struct slab *slabp;
2975 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2976 entry = n->slabs_partial.next;
2977 if (entry == &n->slabs_partial) {
2978 n->free_touched = 1;
2979 entry = n->slabs_free.next;
2980 if (entry == &n->slabs_free)
1da177e4
LT
2981 goto must_grow;
2982 }
2983
2984 slabp = list_entry(entry, struct slab, list);
2985 check_slabp(cachep, slabp);
2986 check_spinlock_acquired(cachep);
714b8171
PE
2987
2988 /*
2989 * The slab was either on partial or free list so
2990 * there must be at least one object available for
2991 * allocation.
2992 */
249b9f33 2993 BUG_ON(slabp->inuse >= cachep->num);
714b8171 2994
1da177e4 2995 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2996 STATS_INC_ALLOCED(cachep);
2997 STATS_INC_ACTIVE(cachep);
2998 STATS_SET_HIGH(cachep);
2999
072bb0aa
MG
3000 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3001 node));
1da177e4
LT
3002 }
3003 check_slabp(cachep, slabp);
3004
3005 /* move slabp to correct slabp list: */
3006 list_del(&slabp->list);
3007 if (slabp->free == BUFCTL_END)
ce8eb6c4 3008 list_add(&slabp->list, &n->slabs_full);
1da177e4 3009 else
ce8eb6c4 3010 list_add(&slabp->list, &n->slabs_partial);
1da177e4
LT
3011 }
3012
a737b3e2 3013must_grow:
ce8eb6c4 3014 n->free_objects -= ac->avail;
a737b3e2 3015alloc_done:
ce8eb6c4 3016 spin_unlock(&n->list_lock);
1da177e4
LT
3017
3018 if (unlikely(!ac->avail)) {
3019 int x;
072bb0aa 3020force_grow:
3c517a61 3021 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3022
a737b3e2 3023 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3024 ac = cpu_cache_get(cachep);
51cd8e6f 3025 node = numa_mem_id();
072bb0aa
MG
3026
3027 /* no objects in sight? abort */
3028 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3029 return NULL;
3030
a737b3e2 3031 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3032 goto retry;
3033 }
3034 ac->touched = 1;
072bb0aa
MG
3035
3036 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3037}
3038
a737b3e2
AM
3039static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3040 gfp_t flags)
1da177e4
LT
3041{
3042 might_sleep_if(flags & __GFP_WAIT);
3043#if DEBUG
3044 kmem_flagcheck(cachep, flags);
3045#endif
3046}
3047
3048#if DEBUG
a737b3e2 3049static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3050 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3051{
b28a02de 3052 if (!objp)
1da177e4 3053 return objp;
b28a02de 3054 if (cachep->flags & SLAB_POISON) {
1da177e4 3055#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3056 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3057 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3058 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3059 else
3060 check_poison_obj(cachep, objp);
3061#else
3062 check_poison_obj(cachep, objp);
3063#endif
3064 poison_obj(cachep, objp, POISON_INUSE);
3065 }
3066 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3067 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3068
3069 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3070 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3071 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3072 slab_error(cachep, "double free, or memory outside"
3073 " object was overwritten");
b28a02de 3074 printk(KERN_ERR
b46b8f19 3075 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3076 objp, *dbg_redzone1(cachep, objp),
3077 *dbg_redzone2(cachep, objp));
1da177e4
LT
3078 }
3079 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3080 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3081 }
871751e2
AV
3082#ifdef CONFIG_DEBUG_SLAB_LEAK
3083 {
3084 struct slab *slabp;
3085 unsigned objnr;
3086
56f295ef 3087 slabp = virt_to_slab(objp);
3b0efdfa 3088 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3089 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3090 }
3091#endif
3dafccf2 3092 objp += obj_offset(cachep);
4f104934 3093 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3094 cachep->ctor(objp);
7ea466f2
TH
3095 if (ARCH_SLAB_MINALIGN &&
3096 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3097 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3098 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3099 }
1da177e4
LT
3100 return objp;
3101}
3102#else
3103#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3104#endif
3105
773ff60e 3106static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3107{
9b030cb8 3108 if (cachep == kmem_cache)
773ff60e 3109 return false;
8a8b6502 3110
8c138bc0 3111 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3112}
3113
343e0d7a 3114static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3115{
b28a02de 3116 void *objp;
1da177e4 3117 struct array_cache *ac;
072bb0aa 3118 bool force_refill = false;
1da177e4 3119
5c382300 3120 check_irq_off();
8a8b6502 3121
9a2dba4b 3122 ac = cpu_cache_get(cachep);
1da177e4 3123 if (likely(ac->avail)) {
1da177e4 3124 ac->touched = 1;
072bb0aa
MG
3125 objp = ac_get_obj(cachep, ac, flags, false);
3126
ddbf2e83 3127 /*
072bb0aa
MG
3128 * Allow for the possibility all avail objects are not allowed
3129 * by the current flags
ddbf2e83 3130 */
072bb0aa
MG
3131 if (objp) {
3132 STATS_INC_ALLOCHIT(cachep);
3133 goto out;
3134 }
3135 force_refill = true;
1da177e4 3136 }
072bb0aa
MG
3137
3138 STATS_INC_ALLOCMISS(cachep);
3139 objp = cache_alloc_refill(cachep, flags, force_refill);
3140 /*
3141 * the 'ac' may be updated by cache_alloc_refill(),
3142 * and kmemleak_erase() requires its correct value.
3143 */
3144 ac = cpu_cache_get(cachep);
3145
3146out:
d5cff635
CM
3147 /*
3148 * To avoid a false negative, if an object that is in one of the
3149 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3150 * treat the array pointers as a reference to the object.
3151 */
f3d8b53a
O
3152 if (objp)
3153 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3154 return objp;
3155}
3156
e498be7d 3157#ifdef CONFIG_NUMA
c61afb18 3158/*
b2455396 3159 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3160 *
3161 * If we are in_interrupt, then process context, including cpusets and
3162 * mempolicy, may not apply and should not be used for allocation policy.
3163 */
3164static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3165{
3166 int nid_alloc, nid_here;
3167
765c4507 3168 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3169 return NULL;
7d6e6d09 3170 nid_alloc = nid_here = numa_mem_id();
c61afb18 3171 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3172 nid_alloc = cpuset_slab_spread_node();
c61afb18 3173 else if (current->mempolicy)
e7b691b0 3174 nid_alloc = slab_node();
c61afb18 3175 if (nid_alloc != nid_here)
8b98c169 3176 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3177 return NULL;
3178}
3179
765c4507
CL
3180/*
3181 * Fallback function if there was no memory available and no objects on a
3c517a61 3182 * certain node and fall back is permitted. First we scan all the
6a67368c 3183 * available node for available objects. If that fails then we
3c517a61
CL
3184 * perform an allocation without specifying a node. This allows the page
3185 * allocator to do its reclaim / fallback magic. We then insert the
3186 * slab into the proper nodelist and then allocate from it.
765c4507 3187 */
8c8cc2c1 3188static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3189{
8c8cc2c1
PE
3190 struct zonelist *zonelist;
3191 gfp_t local_flags;
dd1a239f 3192 struct zoneref *z;
54a6eb5c
MG
3193 struct zone *zone;
3194 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3195 void *obj = NULL;
3c517a61 3196 int nid;
cc9a6c87 3197 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3198
3199 if (flags & __GFP_THISNODE)
3200 return NULL;
3201
6cb06229 3202 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3203
cc9a6c87
MG
3204retry_cpuset:
3205 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3206 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3207
3c517a61
CL
3208retry:
3209 /*
3210 * Look through allowed nodes for objects available
3211 * from existing per node queues.
3212 */
54a6eb5c
MG
3213 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3214 nid = zone_to_nid(zone);
aedb0eb1 3215
54a6eb5c 3216 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3217 cache->node[nid] &&
3218 cache->node[nid]->free_objects) {
3c517a61
CL
3219 obj = ____cache_alloc_node(cache,
3220 flags | GFP_THISNODE, nid);
481c5346
CL
3221 if (obj)
3222 break;
3223 }
3c517a61
CL
3224 }
3225
cfce6604 3226 if (!obj) {
3c517a61
CL
3227 /*
3228 * This allocation will be performed within the constraints
3229 * of the current cpuset / memory policy requirements.
3230 * We may trigger various forms of reclaim on the allowed
3231 * set and go into memory reserves if necessary.
3232 */
0c3aa83e
JK
3233 struct page *page;
3234
dd47ea75
CL
3235 if (local_flags & __GFP_WAIT)
3236 local_irq_enable();
3237 kmem_flagcheck(cache, flags);
0c3aa83e 3238 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3239 if (local_flags & __GFP_WAIT)
3240 local_irq_disable();
0c3aa83e 3241 if (page) {
3c517a61
CL
3242 /*
3243 * Insert into the appropriate per node queues
3244 */
0c3aa83e
JK
3245 nid = page_to_nid(page);
3246 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3247 obj = ____cache_alloc_node(cache,
3248 flags | GFP_THISNODE, nid);
3249 if (!obj)
3250 /*
3251 * Another processor may allocate the
3252 * objects in the slab since we are
3253 * not holding any locks.
3254 */
3255 goto retry;
3256 } else {
b6a60451 3257 /* cache_grow already freed obj */
3c517a61
CL
3258 obj = NULL;
3259 }
3260 }
aedb0eb1 3261 }
cc9a6c87
MG
3262
3263 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3264 goto retry_cpuset;
765c4507
CL
3265 return obj;
3266}
3267
e498be7d
CL
3268/*
3269 * A interface to enable slab creation on nodeid
1da177e4 3270 */
8b98c169 3271static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3272 int nodeid)
e498be7d
CL
3273{
3274 struct list_head *entry;
b28a02de 3275 struct slab *slabp;
ce8eb6c4 3276 struct kmem_cache_node *n;
b28a02de 3277 void *obj;
b28a02de
PE
3278 int x;
3279
14e50c6a 3280 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3281 n = cachep->node[nodeid];
3282 BUG_ON(!n);
b28a02de 3283
a737b3e2 3284retry:
ca3b9b91 3285 check_irq_off();
ce8eb6c4
CL
3286 spin_lock(&n->list_lock);
3287 entry = n->slabs_partial.next;
3288 if (entry == &n->slabs_partial) {
3289 n->free_touched = 1;
3290 entry = n->slabs_free.next;
3291 if (entry == &n->slabs_free)
b28a02de
PE
3292 goto must_grow;
3293 }
3294
3295 slabp = list_entry(entry, struct slab, list);
3296 check_spinlock_acquired_node(cachep, nodeid);
3297 check_slabp(cachep, slabp);
3298
3299 STATS_INC_NODEALLOCS(cachep);
3300 STATS_INC_ACTIVE(cachep);
3301 STATS_SET_HIGH(cachep);
3302
3303 BUG_ON(slabp->inuse == cachep->num);
3304
78d382d7 3305 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de 3306 check_slabp(cachep, slabp);
ce8eb6c4 3307 n->free_objects--;
b28a02de
PE
3308 /* move slabp to correct slabp list: */
3309 list_del(&slabp->list);
3310
a737b3e2 3311 if (slabp->free == BUFCTL_END)
ce8eb6c4 3312 list_add(&slabp->list, &n->slabs_full);
a737b3e2 3313 else
ce8eb6c4 3314 list_add(&slabp->list, &n->slabs_partial);
e498be7d 3315
ce8eb6c4 3316 spin_unlock(&n->list_lock);
b28a02de 3317 goto done;
e498be7d 3318
a737b3e2 3319must_grow:
ce8eb6c4 3320 spin_unlock(&n->list_lock);
3c517a61 3321 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3322 if (x)
3323 goto retry;
1da177e4 3324
8c8cc2c1 3325 return fallback_alloc(cachep, flags);
e498be7d 3326
a737b3e2 3327done:
b28a02de 3328 return obj;
e498be7d 3329}
8c8cc2c1 3330
8c8cc2c1 3331static __always_inline void *
48356303 3332slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3333 unsigned long caller)
8c8cc2c1
PE
3334{
3335 unsigned long save_flags;
3336 void *ptr;
7d6e6d09 3337 int slab_node = numa_mem_id();
8c8cc2c1 3338
dcce284a 3339 flags &= gfp_allowed_mask;
7e85ee0c 3340
cf40bd16
NP
3341 lockdep_trace_alloc(flags);
3342
773ff60e 3343 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3344 return NULL;
3345
d79923fa
GC
3346 cachep = memcg_kmem_get_cache(cachep, flags);
3347
8c8cc2c1
PE
3348 cache_alloc_debugcheck_before(cachep, flags);
3349 local_irq_save(save_flags);
3350
eacbbae3 3351 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3352 nodeid = slab_node;
8c8cc2c1 3353
6a67368c 3354 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3355 /* Node not bootstrapped yet */
3356 ptr = fallback_alloc(cachep, flags);
3357 goto out;
3358 }
3359
7d6e6d09 3360 if (nodeid == slab_node) {
8c8cc2c1
PE
3361 /*
3362 * Use the locally cached objects if possible.
3363 * However ____cache_alloc does not allow fallback
3364 * to other nodes. It may fail while we still have
3365 * objects on other nodes available.
3366 */
3367 ptr = ____cache_alloc(cachep, flags);
3368 if (ptr)
3369 goto out;
3370 }
3371 /* ___cache_alloc_node can fall back to other nodes */
3372 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3373 out:
3374 local_irq_restore(save_flags);
3375 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3376 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3377 flags);
8c8cc2c1 3378
c175eea4 3379 if (likely(ptr))
8c138bc0 3380 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3381
d07dbea4 3382 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3383 memset(ptr, 0, cachep->object_size);
d07dbea4 3384
8c8cc2c1
PE
3385 return ptr;
3386}
3387
3388static __always_inline void *
3389__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3390{
3391 void *objp;
3392
3393 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3394 objp = alternate_node_alloc(cache, flags);
3395 if (objp)
3396 goto out;
3397 }
3398 objp = ____cache_alloc(cache, flags);
3399
3400 /*
3401 * We may just have run out of memory on the local node.
3402 * ____cache_alloc_node() knows how to locate memory on other nodes
3403 */
7d6e6d09
LS
3404 if (!objp)
3405 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3406
3407 out:
3408 return objp;
3409}
3410#else
3411
3412static __always_inline void *
3413__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3414{
3415 return ____cache_alloc(cachep, flags);
3416}
3417
3418#endif /* CONFIG_NUMA */
3419
3420static __always_inline void *
48356303 3421slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3422{
3423 unsigned long save_flags;
3424 void *objp;
3425
dcce284a 3426 flags &= gfp_allowed_mask;
7e85ee0c 3427
cf40bd16
NP
3428 lockdep_trace_alloc(flags);
3429
773ff60e 3430 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3431 return NULL;
3432
d79923fa
GC
3433 cachep = memcg_kmem_get_cache(cachep, flags);
3434
8c8cc2c1
PE
3435 cache_alloc_debugcheck_before(cachep, flags);
3436 local_irq_save(save_flags);
3437 objp = __do_cache_alloc(cachep, flags);
3438 local_irq_restore(save_flags);
3439 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3440 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3441 flags);
8c8cc2c1
PE
3442 prefetchw(objp);
3443
c175eea4 3444 if (likely(objp))
8c138bc0 3445 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3446
d07dbea4 3447 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3448 memset(objp, 0, cachep->object_size);
d07dbea4 3449
8c8cc2c1
PE
3450 return objp;
3451}
e498be7d
CL
3452
3453/*
3454 * Caller needs to acquire correct kmem_list's list_lock
3455 */
343e0d7a 3456static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3457 int node)
1da177e4
LT
3458{
3459 int i;
ce8eb6c4 3460 struct kmem_cache_node *n;
1da177e4
LT
3461
3462 for (i = 0; i < nr_objects; i++) {
072bb0aa 3463 void *objp;
1da177e4 3464 struct slab *slabp;
1da177e4 3465
072bb0aa
MG
3466 clear_obj_pfmemalloc(&objpp[i]);
3467 objp = objpp[i];
3468
6ed5eb22 3469 slabp = virt_to_slab(objp);
ce8eb6c4 3470 n = cachep->node[node];
1da177e4 3471 list_del(&slabp->list);
ff69416e 3472 check_spinlock_acquired_node(cachep, node);
1da177e4 3473 check_slabp(cachep, slabp);
78d382d7 3474 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3475 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3476 n->free_objects++;
1da177e4
LT
3477 check_slabp(cachep, slabp);
3478
3479 /* fixup slab chains */
3480 if (slabp->inuse == 0) {
ce8eb6c4
CL
3481 if (n->free_objects > n->free_limit) {
3482 n->free_objects -= cachep->num;
e5ac9c5a
RT
3483 /* No need to drop any previously held
3484 * lock here, even if we have a off-slab slab
3485 * descriptor it is guaranteed to come from
3486 * a different cache, refer to comments before
3487 * alloc_slabmgmt.
3488 */
1da177e4
LT
3489 slab_destroy(cachep, slabp);
3490 } else {
ce8eb6c4 3491 list_add(&slabp->list, &n->slabs_free);
1da177e4
LT
3492 }
3493 } else {
3494 /* Unconditionally move a slab to the end of the
3495 * partial list on free - maximum time for the
3496 * other objects to be freed, too.
3497 */
ce8eb6c4 3498 list_add_tail(&slabp->list, &n->slabs_partial);
1da177e4
LT
3499 }
3500 }
3501}
3502
343e0d7a 3503static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3504{
3505 int batchcount;
ce8eb6c4 3506 struct kmem_cache_node *n;
7d6e6d09 3507 int node = numa_mem_id();
1da177e4
LT
3508
3509 batchcount = ac->batchcount;
3510#if DEBUG
3511 BUG_ON(!batchcount || batchcount > ac->avail);
3512#endif
3513 check_irq_off();
ce8eb6c4
CL
3514 n = cachep->node[node];
3515 spin_lock(&n->list_lock);
3516 if (n->shared) {
3517 struct array_cache *shared_array = n->shared;
b28a02de 3518 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3519 if (max) {
3520 if (batchcount > max)
3521 batchcount = max;
e498be7d 3522 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3523 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3524 shared_array->avail += batchcount;
3525 goto free_done;
3526 }
3527 }
3528
ff69416e 3529 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3530free_done:
1da177e4
LT
3531#if STATS
3532 {
3533 int i = 0;
3534 struct list_head *p;
3535
ce8eb6c4
CL
3536 p = n->slabs_free.next;
3537 while (p != &(n->slabs_free)) {
1da177e4
LT
3538 struct slab *slabp;
3539
3540 slabp = list_entry(p, struct slab, list);
3541 BUG_ON(slabp->inuse);
3542
3543 i++;
3544 p = p->next;
3545 }
3546 STATS_SET_FREEABLE(cachep, i);
3547 }
3548#endif
ce8eb6c4 3549 spin_unlock(&n->list_lock);
1da177e4 3550 ac->avail -= batchcount;
a737b3e2 3551 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3552}
3553
3554/*
a737b3e2
AM
3555 * Release an obj back to its cache. If the obj has a constructed state, it must
3556 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3557 */
a947eb95 3558static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3559 unsigned long caller)
1da177e4 3560{
9a2dba4b 3561 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3562
3563 check_irq_off();
d5cff635 3564 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3565 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3566
8c138bc0 3567 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3568
1807a1aa
SS
3569 /*
3570 * Skip calling cache_free_alien() when the platform is not numa.
3571 * This will avoid cache misses that happen while accessing slabp (which
3572 * is per page memory reference) to get nodeid. Instead use a global
3573 * variable to skip the call, which is mostly likely to be present in
3574 * the cache.
3575 */
b6e68bc1 3576 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3577 return;
3578
1da177e4
LT
3579 if (likely(ac->avail < ac->limit)) {
3580 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3581 } else {
3582 STATS_INC_FREEMISS(cachep);
3583 cache_flusharray(cachep, ac);
1da177e4 3584 }
42c8c99c 3585
072bb0aa 3586 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3587}
3588
3589/**
3590 * kmem_cache_alloc - Allocate an object
3591 * @cachep: The cache to allocate from.
3592 * @flags: See kmalloc().
3593 *
3594 * Allocate an object from this cache. The flags are only relevant
3595 * if the cache has no available objects.
3596 */
343e0d7a 3597void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3598{
48356303 3599 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3600
ca2b84cb 3601 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3602 cachep->object_size, cachep->size, flags);
36555751
EGM
3603
3604 return ret;
1da177e4
LT
3605}
3606EXPORT_SYMBOL(kmem_cache_alloc);
3607
0f24f128 3608#ifdef CONFIG_TRACING
85beb586 3609void *
4052147c 3610kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3611{
85beb586
SR
3612 void *ret;
3613
48356303 3614 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3615
3616 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3617 size, cachep->size, flags);
85beb586 3618 return ret;
36555751 3619}
85beb586 3620EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3621#endif
3622
1da177e4 3623#ifdef CONFIG_NUMA
d0d04b78
ZL
3624/**
3625 * kmem_cache_alloc_node - Allocate an object on the specified node
3626 * @cachep: The cache to allocate from.
3627 * @flags: See kmalloc().
3628 * @nodeid: node number of the target node.
3629 *
3630 * Identical to kmem_cache_alloc but it will allocate memory on the given
3631 * node, which can improve the performance for cpu bound structures.
3632 *
3633 * Fallback to other node is possible if __GFP_THISNODE is not set.
3634 */
8b98c169
CH
3635void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3636{
48356303 3637 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3638
ca2b84cb 3639 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3640 cachep->object_size, cachep->size,
ca2b84cb 3641 flags, nodeid);
36555751
EGM
3642
3643 return ret;
8b98c169 3644}
1da177e4
LT
3645EXPORT_SYMBOL(kmem_cache_alloc_node);
3646
0f24f128 3647#ifdef CONFIG_TRACING
4052147c 3648void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3649 gfp_t flags,
4052147c
EG
3650 int nodeid,
3651 size_t size)
36555751 3652{
85beb586
SR
3653 void *ret;
3654
592f4145 3655 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3656
85beb586 3657 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3658 size, cachep->size,
85beb586
SR
3659 flags, nodeid);
3660 return ret;
36555751 3661}
85beb586 3662EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3663#endif
3664
8b98c169 3665static __always_inline void *
7c0cb9c6 3666__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3667{
343e0d7a 3668 struct kmem_cache *cachep;
97e2bde4 3669
2c59dd65 3670 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3671 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3672 return cachep;
4052147c 3673 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3674}
8b98c169 3675
0bb38a5c 3676#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3677void *__kmalloc_node(size_t size, gfp_t flags, int node)
3678{
7c0cb9c6 3679 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3680}
dbe5e69d 3681EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3682
3683void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3684 int node, unsigned long caller)
8b98c169 3685{
7c0cb9c6 3686 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3687}
3688EXPORT_SYMBOL(__kmalloc_node_track_caller);
3689#else
3690void *__kmalloc_node(size_t size, gfp_t flags, int node)
3691{
7c0cb9c6 3692 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3693}
3694EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3695#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3696#endif /* CONFIG_NUMA */
1da177e4
LT
3697
3698/**
800590f5 3699 * __do_kmalloc - allocate memory
1da177e4 3700 * @size: how many bytes of memory are required.
800590f5 3701 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3702 * @caller: function caller for debug tracking of the caller
1da177e4 3703 */
7fd6b141 3704static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3705 unsigned long caller)
1da177e4 3706{
343e0d7a 3707 struct kmem_cache *cachep;
36555751 3708 void *ret;
1da177e4 3709
97e2bde4
MS
3710 /* If you want to save a few bytes .text space: replace
3711 * __ with kmem_.
3712 * Then kmalloc uses the uninlined functions instead of the inline
3713 * functions.
3714 */
2c59dd65 3715 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3716 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3717 return cachep;
48356303 3718 ret = slab_alloc(cachep, flags, caller);
36555751 3719
7c0cb9c6 3720 trace_kmalloc(caller, ret,
3b0efdfa 3721 size, cachep->size, flags);
36555751
EGM
3722
3723 return ret;
7fd6b141
PE
3724}
3725
7fd6b141 3726
0bb38a5c 3727#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3728void *__kmalloc(size_t size, gfp_t flags)
3729{
7c0cb9c6 3730 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3731}
3732EXPORT_SYMBOL(__kmalloc);
3733
ce71e27c 3734void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3735{
7c0cb9c6 3736 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3737}
3738EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3739
3740#else
3741void *__kmalloc(size_t size, gfp_t flags)
3742{
7c0cb9c6 3743 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3744}
3745EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3746#endif
3747
1da177e4
LT
3748/**
3749 * kmem_cache_free - Deallocate an object
3750 * @cachep: The cache the allocation was from.
3751 * @objp: The previously allocated object.
3752 *
3753 * Free an object which was previously allocated from this
3754 * cache.
3755 */
343e0d7a 3756void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3757{
3758 unsigned long flags;
b9ce5ef4
GC
3759 cachep = cache_from_obj(cachep, objp);
3760 if (!cachep)
3761 return;
1da177e4
LT
3762
3763 local_irq_save(flags);
d97d476b 3764 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3765 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3766 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3767 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3768 local_irq_restore(flags);
36555751 3769
ca2b84cb 3770 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3771}
3772EXPORT_SYMBOL(kmem_cache_free);
3773
1da177e4
LT
3774/**
3775 * kfree - free previously allocated memory
3776 * @objp: pointer returned by kmalloc.
3777 *
80e93eff
PE
3778 * If @objp is NULL, no operation is performed.
3779 *
1da177e4
LT
3780 * Don't free memory not originally allocated by kmalloc()
3781 * or you will run into trouble.
3782 */
3783void kfree(const void *objp)
3784{
343e0d7a 3785 struct kmem_cache *c;
1da177e4
LT
3786 unsigned long flags;
3787
2121db74
PE
3788 trace_kfree(_RET_IP_, objp);
3789
6cb8f913 3790 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3791 return;
3792 local_irq_save(flags);
3793 kfree_debugcheck(objp);
6ed5eb22 3794 c = virt_to_cache(objp);
8c138bc0
CL
3795 debug_check_no_locks_freed(objp, c->object_size);
3796
3797 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3798 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3799 local_irq_restore(flags);
3800}
3801EXPORT_SYMBOL(kfree);
3802
e498be7d 3803/*
ce8eb6c4 3804 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3805 */
83b519e8 3806static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3807{
3808 int node;
ce8eb6c4 3809 struct kmem_cache_node *n;
cafeb02e 3810 struct array_cache *new_shared;
3395ee05 3811 struct array_cache **new_alien = NULL;
e498be7d 3812
9c09a95c 3813 for_each_online_node(node) {
cafeb02e 3814
3395ee05 3815 if (use_alien_caches) {
83b519e8 3816 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3817 if (!new_alien)
3818 goto fail;
3819 }
cafeb02e 3820
63109846
ED
3821 new_shared = NULL;
3822 if (cachep->shared) {
3823 new_shared = alloc_arraycache(node,
0718dc2a 3824 cachep->shared*cachep->batchcount,
83b519e8 3825 0xbaadf00d, gfp);
63109846
ED
3826 if (!new_shared) {
3827 free_alien_cache(new_alien);
3828 goto fail;
3829 }
0718dc2a 3830 }
cafeb02e 3831
ce8eb6c4
CL
3832 n = cachep->node[node];
3833 if (n) {
3834 struct array_cache *shared = n->shared;
cafeb02e 3835
ce8eb6c4 3836 spin_lock_irq(&n->list_lock);
e498be7d 3837
cafeb02e 3838 if (shared)
0718dc2a
CL
3839 free_block(cachep, shared->entry,
3840 shared->avail, node);
e498be7d 3841
ce8eb6c4
CL
3842 n->shared = new_shared;
3843 if (!n->alien) {
3844 n->alien = new_alien;
e498be7d
CL
3845 new_alien = NULL;
3846 }
ce8eb6c4 3847 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3848 cachep->batchcount + cachep->num;
ce8eb6c4 3849 spin_unlock_irq(&n->list_lock);
cafeb02e 3850 kfree(shared);
e498be7d
CL
3851 free_alien_cache(new_alien);
3852 continue;
3853 }
ce8eb6c4
CL
3854 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3855 if (!n) {
0718dc2a
CL
3856 free_alien_cache(new_alien);
3857 kfree(new_shared);
e498be7d 3858 goto fail;
0718dc2a 3859 }
e498be7d 3860
ce8eb6c4
CL
3861 kmem_cache_node_init(n);
3862 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3863 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3864 n->shared = new_shared;
3865 n->alien = new_alien;
3866 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3867 cachep->batchcount + cachep->num;
ce8eb6c4 3868 cachep->node[node] = n;
e498be7d 3869 }
cafeb02e 3870 return 0;
0718dc2a 3871
a737b3e2 3872fail:
3b0efdfa 3873 if (!cachep->list.next) {
0718dc2a
CL
3874 /* Cache is not active yet. Roll back what we did */
3875 node--;
3876 while (node >= 0) {
6a67368c 3877 if (cachep->node[node]) {
ce8eb6c4 3878 n = cachep->node[node];
0718dc2a 3879
ce8eb6c4
CL
3880 kfree(n->shared);
3881 free_alien_cache(n->alien);
3882 kfree(n);
6a67368c 3883 cachep->node[node] = NULL;
0718dc2a
CL
3884 }
3885 node--;
3886 }
3887 }
cafeb02e 3888 return -ENOMEM;
e498be7d
CL
3889}
3890
1da177e4 3891struct ccupdate_struct {
343e0d7a 3892 struct kmem_cache *cachep;
acfe7d74 3893 struct array_cache *new[0];
1da177e4
LT
3894};
3895
3896static void do_ccupdate_local(void *info)
3897{
a737b3e2 3898 struct ccupdate_struct *new = info;
1da177e4
LT
3899 struct array_cache *old;
3900
3901 check_irq_off();
9a2dba4b 3902 old = cpu_cache_get(new->cachep);
e498be7d 3903
1da177e4
LT
3904 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3905 new->new[smp_processor_id()] = old;
3906}
3907
18004c5d 3908/* Always called with the slab_mutex held */
943a451a 3909static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3910 int batchcount, int shared, gfp_t gfp)
1da177e4 3911{
d2e7b7d0 3912 struct ccupdate_struct *new;
2ed3a4ef 3913 int i;
1da177e4 3914
acfe7d74
ED
3915 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3916 gfp);
d2e7b7d0
SS
3917 if (!new)
3918 return -ENOMEM;
3919
e498be7d 3920 for_each_online_cpu(i) {
7d6e6d09 3921 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3922 batchcount, gfp);
d2e7b7d0 3923 if (!new->new[i]) {
b28a02de 3924 for (i--; i >= 0; i--)
d2e7b7d0
SS
3925 kfree(new->new[i]);
3926 kfree(new);
e498be7d 3927 return -ENOMEM;
1da177e4
LT
3928 }
3929 }
d2e7b7d0 3930 new->cachep = cachep;
1da177e4 3931
15c8b6c1 3932 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3933
1da177e4 3934 check_irq_on();
1da177e4
LT
3935 cachep->batchcount = batchcount;
3936 cachep->limit = limit;
e498be7d 3937 cachep->shared = shared;
1da177e4 3938
e498be7d 3939 for_each_online_cpu(i) {
d2e7b7d0 3940 struct array_cache *ccold = new->new[i];
1da177e4
LT
3941 if (!ccold)
3942 continue;
6a67368c 3943 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3944 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3945 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3946 kfree(ccold);
3947 }
d2e7b7d0 3948 kfree(new);
83b519e8 3949 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3950}
3951
943a451a
GC
3952static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3953 int batchcount, int shared, gfp_t gfp)
3954{
3955 int ret;
3956 struct kmem_cache *c = NULL;
3957 int i = 0;
3958
3959 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3960
3961 if (slab_state < FULL)
3962 return ret;
3963
3964 if ((ret < 0) || !is_root_cache(cachep))
3965 return ret;
3966
ebe945c2 3967 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3968 for_each_memcg_cache_index(i) {
3969 c = cache_from_memcg(cachep, i);
3970 if (c)
3971 /* return value determined by the parent cache only */
3972 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3973 }
3974
3975 return ret;
3976}
3977
18004c5d 3978/* Called with slab_mutex held always */
83b519e8 3979static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3980{
3981 int err;
943a451a
GC
3982 int limit = 0;
3983 int shared = 0;
3984 int batchcount = 0;
3985
3986 if (!is_root_cache(cachep)) {
3987 struct kmem_cache *root = memcg_root_cache(cachep);
3988 limit = root->limit;
3989 shared = root->shared;
3990 batchcount = root->batchcount;
3991 }
1da177e4 3992
943a451a
GC
3993 if (limit && shared && batchcount)
3994 goto skip_setup;
a737b3e2
AM
3995 /*
3996 * The head array serves three purposes:
1da177e4
LT
3997 * - create a LIFO ordering, i.e. return objects that are cache-warm
3998 * - reduce the number of spinlock operations.
a737b3e2 3999 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4000 * bufctl chains: array operations are cheaper.
4001 * The numbers are guessed, we should auto-tune as described by
4002 * Bonwick.
4003 */
3b0efdfa 4004 if (cachep->size > 131072)
1da177e4 4005 limit = 1;
3b0efdfa 4006 else if (cachep->size > PAGE_SIZE)
1da177e4 4007 limit = 8;
3b0efdfa 4008 else if (cachep->size > 1024)
1da177e4 4009 limit = 24;
3b0efdfa 4010 else if (cachep->size > 256)
1da177e4
LT
4011 limit = 54;
4012 else
4013 limit = 120;
4014
a737b3e2
AM
4015 /*
4016 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4017 * allocation behaviour: Most allocs on one cpu, most free operations
4018 * on another cpu. For these cases, an efficient object passing between
4019 * cpus is necessary. This is provided by a shared array. The array
4020 * replaces Bonwick's magazine layer.
4021 * On uniprocessor, it's functionally equivalent (but less efficient)
4022 * to a larger limit. Thus disabled by default.
4023 */
4024 shared = 0;
3b0efdfa 4025 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4026 shared = 8;
1da177e4
LT
4027
4028#if DEBUG
a737b3e2
AM
4029 /*
4030 * With debugging enabled, large batchcount lead to excessively long
4031 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4032 */
4033 if (limit > 32)
4034 limit = 32;
4035#endif
943a451a
GC
4036 batchcount = (limit + 1) / 2;
4037skip_setup:
4038 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4039 if (err)
4040 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4041 cachep->name, -err);
2ed3a4ef 4042 return err;
1da177e4
LT
4043}
4044
1b55253a 4045/*
ce8eb6c4
CL
4046 * Drain an array if it contains any elements taking the node lock only if
4047 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4048 * if drain_array() is used on the shared array.
1b55253a 4049 */
ce8eb6c4 4050static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 4051 struct array_cache *ac, int force, int node)
1da177e4
LT
4052{
4053 int tofree;
4054
1b55253a
CL
4055 if (!ac || !ac->avail)
4056 return;
1da177e4
LT
4057 if (ac->touched && !force) {
4058 ac->touched = 0;
b18e7e65 4059 } else {
ce8eb6c4 4060 spin_lock_irq(&n->list_lock);
b18e7e65
CL
4061 if (ac->avail) {
4062 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4063 if (tofree > ac->avail)
4064 tofree = (ac->avail + 1) / 2;
4065 free_block(cachep, ac->entry, tofree, node);
4066 ac->avail -= tofree;
4067 memmove(ac->entry, &(ac->entry[tofree]),
4068 sizeof(void *) * ac->avail);
4069 }
ce8eb6c4 4070 spin_unlock_irq(&n->list_lock);
1da177e4
LT
4071 }
4072}
4073
4074/**
4075 * cache_reap - Reclaim memory from caches.
05fb6bf0 4076 * @w: work descriptor
1da177e4
LT
4077 *
4078 * Called from workqueue/eventd every few seconds.
4079 * Purpose:
4080 * - clear the per-cpu caches for this CPU.
4081 * - return freeable pages to the main free memory pool.
4082 *
a737b3e2
AM
4083 * If we cannot acquire the cache chain mutex then just give up - we'll try
4084 * again on the next iteration.
1da177e4 4085 */
7c5cae36 4086static void cache_reap(struct work_struct *w)
1da177e4 4087{
7a7c381d 4088 struct kmem_cache *searchp;
ce8eb6c4 4089 struct kmem_cache_node *n;
7d6e6d09 4090 int node = numa_mem_id();
bf6aede7 4091 struct delayed_work *work = to_delayed_work(w);
1da177e4 4092
18004c5d 4093 if (!mutex_trylock(&slab_mutex))
1da177e4 4094 /* Give up. Setup the next iteration. */
7c5cae36 4095 goto out;
1da177e4 4096
18004c5d 4097 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4098 check_irq_on();
4099
35386e3b 4100 /*
ce8eb6c4 4101 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4102 * have established with reasonable certainty that
4103 * we can do some work if the lock was obtained.
4104 */
ce8eb6c4 4105 n = searchp->node[node];
35386e3b 4106
ce8eb6c4 4107 reap_alien(searchp, n);
1da177e4 4108
ce8eb6c4 4109 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 4110
35386e3b
CL
4111 /*
4112 * These are racy checks but it does not matter
4113 * if we skip one check or scan twice.
4114 */
ce8eb6c4 4115 if (time_after(n->next_reap, jiffies))
35386e3b 4116 goto next;
1da177e4 4117
ce8eb6c4 4118 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4119
ce8eb6c4 4120 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4121
ce8eb6c4
CL
4122 if (n->free_touched)
4123 n->free_touched = 0;
ed11d9eb
CL
4124 else {
4125 int freed;
1da177e4 4126
ce8eb6c4 4127 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4128 5 * searchp->num - 1) / (5 * searchp->num));
4129 STATS_ADD_REAPED(searchp, freed);
4130 }
35386e3b 4131next:
1da177e4
LT
4132 cond_resched();
4133 }
4134 check_irq_on();
18004c5d 4135 mutex_unlock(&slab_mutex);
8fce4d8e 4136 next_reap_node();
7c5cae36 4137out:
a737b3e2 4138 /* Set up the next iteration */
7c5cae36 4139 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4140}
4141
158a9624 4142#ifdef CONFIG_SLABINFO
0d7561c6 4143void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4144{
b28a02de
PE
4145 struct slab *slabp;
4146 unsigned long active_objs;
4147 unsigned long num_objs;
4148 unsigned long active_slabs = 0;
4149 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4150 const char *name;
1da177e4 4151 char *error = NULL;
e498be7d 4152 int node;
ce8eb6c4 4153 struct kmem_cache_node *n;
1da177e4 4154
1da177e4
LT
4155 active_objs = 0;
4156 num_slabs = 0;
e498be7d 4157 for_each_online_node(node) {
ce8eb6c4
CL
4158 n = cachep->node[node];
4159 if (!n)
e498be7d
CL
4160 continue;
4161
ca3b9b91 4162 check_irq_on();
ce8eb6c4 4163 spin_lock_irq(&n->list_lock);
e498be7d 4164
ce8eb6c4 4165 list_for_each_entry(slabp, &n->slabs_full, list) {
e498be7d
CL
4166 if (slabp->inuse != cachep->num && !error)
4167 error = "slabs_full accounting error";
4168 active_objs += cachep->num;
4169 active_slabs++;
4170 }
ce8eb6c4 4171 list_for_each_entry(slabp, &n->slabs_partial, list) {
e498be7d
CL
4172 if (slabp->inuse == cachep->num && !error)
4173 error = "slabs_partial inuse accounting error";
4174 if (!slabp->inuse && !error)
4175 error = "slabs_partial/inuse accounting error";
4176 active_objs += slabp->inuse;
4177 active_slabs++;
4178 }
ce8eb6c4 4179 list_for_each_entry(slabp, &n->slabs_free, list) {
e498be7d
CL
4180 if (slabp->inuse && !error)
4181 error = "slabs_free/inuse accounting error";
4182 num_slabs++;
4183 }
ce8eb6c4
CL
4184 free_objects += n->free_objects;
4185 if (n->shared)
4186 shared_avail += n->shared->avail;
e498be7d 4187
ce8eb6c4 4188 spin_unlock_irq(&n->list_lock);
1da177e4 4189 }
b28a02de
PE
4190 num_slabs += active_slabs;
4191 num_objs = num_slabs * cachep->num;
e498be7d 4192 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4193 error = "free_objects accounting error";
4194
b28a02de 4195 name = cachep->name;
1da177e4
LT
4196 if (error)
4197 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4198
0d7561c6
GC
4199 sinfo->active_objs = active_objs;
4200 sinfo->num_objs = num_objs;
4201 sinfo->active_slabs = active_slabs;
4202 sinfo->num_slabs = num_slabs;
4203 sinfo->shared_avail = shared_avail;
4204 sinfo->limit = cachep->limit;
4205 sinfo->batchcount = cachep->batchcount;
4206 sinfo->shared = cachep->shared;
4207 sinfo->objects_per_slab = cachep->num;
4208 sinfo->cache_order = cachep->gfporder;
4209}
4210
4211void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4212{
1da177e4 4213#if STATS
ce8eb6c4 4214 { /* node stats */
1da177e4
LT
4215 unsigned long high = cachep->high_mark;
4216 unsigned long allocs = cachep->num_allocations;
4217 unsigned long grown = cachep->grown;
4218 unsigned long reaped = cachep->reaped;
4219 unsigned long errors = cachep->errors;
4220 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4221 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4222 unsigned long node_frees = cachep->node_frees;
fb7faf33 4223 unsigned long overflows = cachep->node_overflow;
1da177e4 4224
e92dd4fd
JP
4225 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4226 "%4lu %4lu %4lu %4lu %4lu",
4227 allocs, high, grown,
4228 reaped, errors, max_freeable, node_allocs,
4229 node_frees, overflows);
1da177e4
LT
4230 }
4231 /* cpu stats */
4232 {
4233 unsigned long allochit = atomic_read(&cachep->allochit);
4234 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4235 unsigned long freehit = atomic_read(&cachep->freehit);
4236 unsigned long freemiss = atomic_read(&cachep->freemiss);
4237
4238 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4239 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4240 }
4241#endif
1da177e4
LT
4242}
4243
1da177e4
LT
4244#define MAX_SLABINFO_WRITE 128
4245/**
4246 * slabinfo_write - Tuning for the slab allocator
4247 * @file: unused
4248 * @buffer: user buffer
4249 * @count: data length
4250 * @ppos: unused
4251 */
b7454ad3 4252ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4253 size_t count, loff_t *ppos)
1da177e4 4254{
b28a02de 4255 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4256 int limit, batchcount, shared, res;
7a7c381d 4257 struct kmem_cache *cachep;
b28a02de 4258
1da177e4
LT
4259 if (count > MAX_SLABINFO_WRITE)
4260 return -EINVAL;
4261 if (copy_from_user(&kbuf, buffer, count))
4262 return -EFAULT;
b28a02de 4263 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4264
4265 tmp = strchr(kbuf, ' ');
4266 if (!tmp)
4267 return -EINVAL;
4268 *tmp = '\0';
4269 tmp++;
4270 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4271 return -EINVAL;
4272
4273 /* Find the cache in the chain of caches. */
18004c5d 4274 mutex_lock(&slab_mutex);
1da177e4 4275 res = -EINVAL;
18004c5d 4276 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4277 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4278 if (limit < 1 || batchcount < 1 ||
4279 batchcount > limit || shared < 0) {
e498be7d 4280 res = 0;
1da177e4 4281 } else {
e498be7d 4282 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4283 batchcount, shared,
4284 GFP_KERNEL);
1da177e4
LT
4285 }
4286 break;
4287 }
4288 }
18004c5d 4289 mutex_unlock(&slab_mutex);
1da177e4
LT
4290 if (res >= 0)
4291 res = count;
4292 return res;
4293}
871751e2
AV
4294
4295#ifdef CONFIG_DEBUG_SLAB_LEAK
4296
4297static void *leaks_start(struct seq_file *m, loff_t *pos)
4298{
18004c5d
CL
4299 mutex_lock(&slab_mutex);
4300 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4301}
4302
4303static inline int add_caller(unsigned long *n, unsigned long v)
4304{
4305 unsigned long *p;
4306 int l;
4307 if (!v)
4308 return 1;
4309 l = n[1];
4310 p = n + 2;
4311 while (l) {
4312 int i = l/2;
4313 unsigned long *q = p + 2 * i;
4314 if (*q == v) {
4315 q[1]++;
4316 return 1;
4317 }
4318 if (*q > v) {
4319 l = i;
4320 } else {
4321 p = q + 2;
4322 l -= i + 1;
4323 }
4324 }
4325 if (++n[1] == n[0])
4326 return 0;
4327 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4328 p[0] = v;
4329 p[1] = 1;
4330 return 1;
4331}
4332
4333static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4334{
4335 void *p;
4336 int i;
4337 if (n[0] == n[1])
4338 return;
3b0efdfa 4339 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4340 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4341 continue;
4342 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4343 return;
4344 }
4345}
4346
4347static void show_symbol(struct seq_file *m, unsigned long address)
4348{
4349#ifdef CONFIG_KALLSYMS
871751e2 4350 unsigned long offset, size;
9281acea 4351 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4352
a5c43dae 4353 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4354 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4355 if (modname[0])
871751e2
AV
4356 seq_printf(m, " [%s]", modname);
4357 return;
4358 }
4359#endif
4360 seq_printf(m, "%p", (void *)address);
4361}
4362
4363static int leaks_show(struct seq_file *m, void *p)
4364{
0672aa7c 4365 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4366 struct slab *slabp;
ce8eb6c4 4367 struct kmem_cache_node *n;
871751e2 4368 const char *name;
db845067 4369 unsigned long *x = m->private;
871751e2
AV
4370 int node;
4371 int i;
4372
4373 if (!(cachep->flags & SLAB_STORE_USER))
4374 return 0;
4375 if (!(cachep->flags & SLAB_RED_ZONE))
4376 return 0;
4377
4378 /* OK, we can do it */
4379
db845067 4380 x[1] = 0;
871751e2
AV
4381
4382 for_each_online_node(node) {
ce8eb6c4
CL
4383 n = cachep->node[node];
4384 if (!n)
871751e2
AV
4385 continue;
4386
4387 check_irq_on();
ce8eb6c4 4388 spin_lock_irq(&n->list_lock);
871751e2 4389
ce8eb6c4 4390 list_for_each_entry(slabp, &n->slabs_full, list)
db845067 4391 handle_slab(x, cachep, slabp);
ce8eb6c4 4392 list_for_each_entry(slabp, &n->slabs_partial, list)
db845067 4393 handle_slab(x, cachep, slabp);
ce8eb6c4 4394 spin_unlock_irq(&n->list_lock);
871751e2
AV
4395 }
4396 name = cachep->name;
db845067 4397 if (x[0] == x[1]) {
871751e2 4398 /* Increase the buffer size */
18004c5d 4399 mutex_unlock(&slab_mutex);
db845067 4400 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4401 if (!m->private) {
4402 /* Too bad, we are really out */
db845067 4403 m->private = x;
18004c5d 4404 mutex_lock(&slab_mutex);
871751e2
AV
4405 return -ENOMEM;
4406 }
db845067
CL
4407 *(unsigned long *)m->private = x[0] * 2;
4408 kfree(x);
18004c5d 4409 mutex_lock(&slab_mutex);
871751e2
AV
4410 /* Now make sure this entry will be retried */
4411 m->count = m->size;
4412 return 0;
4413 }
db845067
CL
4414 for (i = 0; i < x[1]; i++) {
4415 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4416 show_symbol(m, x[2*i+2]);
871751e2
AV
4417 seq_putc(m, '\n');
4418 }
d2e7b7d0 4419
871751e2
AV
4420 return 0;
4421}
4422
a0ec95a8 4423static const struct seq_operations slabstats_op = {
871751e2 4424 .start = leaks_start,
276a2439
WL
4425 .next = slab_next,
4426 .stop = slab_stop,
871751e2
AV
4427 .show = leaks_show,
4428};
a0ec95a8
AD
4429
4430static int slabstats_open(struct inode *inode, struct file *file)
4431{
4432 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4433 int ret = -ENOMEM;
4434 if (n) {
4435 ret = seq_open(file, &slabstats_op);
4436 if (!ret) {
4437 struct seq_file *m = file->private_data;
4438 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4439 m->private = n;
4440 n = NULL;
4441 }
4442 kfree(n);
4443 }
4444 return ret;
4445}
4446
4447static const struct file_operations proc_slabstats_operations = {
4448 .open = slabstats_open,
4449 .read = seq_read,
4450 .llseek = seq_lseek,
4451 .release = seq_release_private,
4452};
4453#endif
4454
4455static int __init slab_proc_init(void)
4456{
4457#ifdef CONFIG_DEBUG_SLAB_LEAK
4458 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4459#endif
a0ec95a8
AD
4460 return 0;
4461}
4462module_init(slab_proc_init);
1da177e4
LT
4463#endif
4464
00e145b6
MS
4465/**
4466 * ksize - get the actual amount of memory allocated for a given object
4467 * @objp: Pointer to the object
4468 *
4469 * kmalloc may internally round up allocations and return more memory
4470 * than requested. ksize() can be used to determine the actual amount of
4471 * memory allocated. The caller may use this additional memory, even though
4472 * a smaller amount of memory was initially specified with the kmalloc call.
4473 * The caller must guarantee that objp points to a valid object previously
4474 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4475 * must not be freed during the duration of the call.
4476 */
fd76bab2 4477size_t ksize(const void *objp)
1da177e4 4478{
ef8b4520
CL
4479 BUG_ON(!objp);
4480 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4481 return 0;
1da177e4 4482
8c138bc0 4483 return virt_to_cache(objp)->object_size;
1da177e4 4484}
b1aabecd 4485EXPORT_SYMBOL(ksize);