]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/slab.c
slub: Use correct cpu_slab on dead cpu
[mirror_ubuntu-zesty-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/*
166 * kmem_bufctl_t:
167 *
168 * Bufctl's are used for linking objs within a slab
169 * linked offsets.
170 *
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
182 */
183
fa5b08d5 184typedef unsigned int kmem_bufctl_t;
1da177e4
LT
185#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
187#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 189
1da177e4
LT
190/*
191 * struct slab_rcu
192 *
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
200 *
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
1da177e4
LT
203 */
204struct slab_rcu {
b28a02de 205 struct rcu_head head;
343e0d7a 206 struct kmem_cache *cachep;
b28a02de 207 void *addr;
1da177e4
LT
208};
209
5bfe53a7
LJ
210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
218 union {
219 struct {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
226 };
227 struct slab_rcu __slab_cover_slab_rcu;
228 };
229};
230
1da177e4
LT
231/*
232 * struct array_cache
233 *
1da177e4
LT
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
238 *
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
241 *
242 */
243struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
e498be7d 248 spinlock_t lock;
bda5b655 249 void *entry[]; /*
a737b3e2
AM
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
072bb0aa
MG
253 *
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 257 */
1da177e4
LT
258};
259
072bb0aa
MG
260#define SLAB_OBJ_PFMEMALLOC 1
261static inline bool is_obj_pfmemalloc(void *objp)
262{
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
264}
265
266static inline void set_obj_pfmemalloc(void **objp)
267{
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
269 return;
270}
271
272static inline void clear_obj_pfmemalloc(void **objp)
273{
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
275}
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
556a169d 307#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 308static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 309#define CACHE_CACHE 0
556a169d
PE
310#define SIZE_AC MAX_NUMNODES
311#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
83b519e8 317static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
1c61fc40 336#include <linux/kmalloc_sizes.h>
e498be7d 337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4 374
1da177e4
LT
375#define CFLGS_OFF_SLAB (0x80000000UL)
376#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
377
378#define BATCHREFILL_LIMIT 16
a737b3e2
AM
379/*
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
1da177e4 382 *
dc6f3f27 383 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
384 * which could lock up otherwise freeable slabs.
385 */
386#define REAPTIMEOUT_CPUC (2*HZ)
387#define REAPTIMEOUT_LIST3 (4*HZ)
388
389#if STATS
390#define STATS_INC_ACTIVE(x) ((x)->num_active++)
391#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 394#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
395#define STATS_SET_HIGH(x) \
396 do { \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
399 } while (0)
1da177e4
LT
400#define STATS_INC_ERR(x) ((x)->errors++)
401#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 402#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 403#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
404#define STATS_SET_FREEABLE(x, i) \
405 do { \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
408 } while (0)
1da177e4
LT
409#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
413#else
414#define STATS_INC_ACTIVE(x) do { } while (0)
415#define STATS_DEC_ACTIVE(x) do { } while (0)
416#define STATS_INC_ALLOCED(x) do { } while (0)
417#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 418#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
419#define STATS_SET_HIGH(x) do { } while (0)
420#define STATS_INC_ERR(x) do { } while (0)
421#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 422#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 423#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 424#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
425#define STATS_INC_ALLOCHIT(x) do { } while (0)
426#define STATS_INC_ALLOCMISS(x) do { } while (0)
427#define STATS_INC_FREEHIT(x) do { } while (0)
428#define STATS_INC_FREEMISS(x) do { } while (0)
429#endif
430
431#if DEBUG
1da177e4 432
a737b3e2
AM
433/*
434 * memory layout of objects:
1da177e4 435 * 0 : objp
3dafccf2 436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
3dafccf2 439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 440 * redzone word.
3dafccf2 441 * cachep->obj_offset: The real object.
3b0efdfa
CL
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 444 * [BYTES_PER_WORD long]
1da177e4 445 */
343e0d7a 446static int obj_offset(struct kmem_cache *cachep)
1da177e4 447{
3dafccf2 448 return cachep->obj_offset;
1da177e4
LT
449}
450
b46b8f19 451static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
452{
453 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
454 return (unsigned long long*) (objp + obj_offset(cachep) -
455 sizeof(unsigned long long));
1da177e4
LT
456}
457
b46b8f19 458static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
459{
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
461 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 462 return (unsigned long long *)(objp + cachep->size -
b46b8f19 463 sizeof(unsigned long long) -
87a927c7 464 REDZONE_ALIGN);
3b0efdfa 465 return (unsigned long long *) (objp + cachep->size -
b46b8f19 466 sizeof(unsigned long long));
1da177e4
LT
467}
468
343e0d7a 469static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
470{
471 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 472 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
473}
474
475#else
476
3dafccf2 477#define obj_offset(x) 0
b46b8f19
DW
478#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
480#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
481
482#endif
483
1da177e4 484/*
3df1cccd
DR
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
1da177e4 487 */
543585cc
DR
488#define SLAB_MAX_ORDER_HI 1
489#define SLAB_MAX_ORDER_LO 0
490static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 491static bool slab_max_order_set __initdata;
1da177e4 492
6ed5eb22
PE
493static inline struct kmem_cache *virt_to_cache(const void *obj)
494{
b49af68f 495 struct page *page = virt_to_head_page(obj);
35026088 496 return page->slab_cache;
6ed5eb22
PE
497}
498
499static inline struct slab *virt_to_slab(const void *obj)
500{
b49af68f 501 struct page *page = virt_to_head_page(obj);
35026088
CL
502
503 VM_BUG_ON(!PageSlab(page));
504 return page->slab_page;
6ed5eb22
PE
505}
506
8fea4e96
PE
507static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
508 unsigned int idx)
509{
3b0efdfa 510 return slab->s_mem + cache->size * idx;
8fea4e96
PE
511}
512
6a2d7a95 513/*
3b0efdfa
CL
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
6a2d7a95
ED
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
518 */
519static inline unsigned int obj_to_index(const struct kmem_cache *cache,
520 const struct slab *slab, void *obj)
8fea4e96 521{
6a2d7a95
ED
522 u32 offset = (obj - slab->s_mem);
523 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
524}
525
a737b3e2
AM
526/*
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
528 */
1da177e4
LT
529struct cache_sizes malloc_sizes[] = {
530#define CACHE(x) { .cs_size = (x) },
531#include <linux/kmalloc_sizes.h>
532 CACHE(ULONG_MAX)
533#undef CACHE
534};
535EXPORT_SYMBOL(malloc_sizes);
536
537/* Must match cache_sizes above. Out of line to keep cache footprint low. */
538struct cache_names {
539 char *name;
540 char *name_dma;
541};
542
543static struct cache_names __initdata cache_names[] = {
544#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545#include <linux/kmalloc_sizes.h>
b28a02de 546 {NULL,}
1da177e4
LT
547#undef CACHE
548};
549
550static struct arraycache_init initarray_cache __initdata =
b28a02de 551 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 552static struct arraycache_init initarray_generic =
b28a02de 553 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
554
555/* internal cache of cache description objs */
9b030cb8
CL
556static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
557static struct kmem_cache kmem_cache_boot = {
558 .nodelists = kmem_cache_nodelists,
b28a02de
PE
559 .batchcount = 1,
560 .limit = BOOT_CPUCACHE_ENTRIES,
561 .shared = 1,
3b0efdfa 562 .size = sizeof(struct kmem_cache),
b28a02de 563 .name = "kmem_cache",
1da177e4
LT
564};
565
056c6241
RT
566#define BAD_ALIEN_MAGIC 0x01020304ul
567
f1aaee53
AV
568#ifdef CONFIG_LOCKDEP
569
570/*
571 * Slab sometimes uses the kmalloc slabs to store the slab headers
572 * for other slabs "off slab".
573 * The locking for this is tricky in that it nests within the locks
574 * of all other slabs in a few places; to deal with this special
575 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
576 *
577 * We set lock class for alien array caches which are up during init.
578 * The lock annotation will be lost if all cpus of a node goes down and
579 * then comes back up during hotplug
f1aaee53 580 */
056c6241
RT
581static struct lock_class_key on_slab_l3_key;
582static struct lock_class_key on_slab_alc_key;
583
83835b3d
PZ
584static struct lock_class_key debugobj_l3_key;
585static struct lock_class_key debugobj_alc_key;
586
587static void slab_set_lock_classes(struct kmem_cache *cachep,
588 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
589 int q)
590{
591 struct array_cache **alc;
592 struct kmem_list3 *l3;
593 int r;
594
595 l3 = cachep->nodelists[q];
596 if (!l3)
597 return;
598
599 lockdep_set_class(&l3->list_lock, l3_key);
600 alc = l3->alien;
601 /*
602 * FIXME: This check for BAD_ALIEN_MAGIC
603 * should go away when common slab code is taught to
604 * work even without alien caches.
605 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
606 * for alloc_alien_cache,
607 */
608 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
609 return;
610 for_each_node(r) {
611 if (alc[r])
612 lockdep_set_class(&alc[r]->lock, alc_key);
613 }
614}
615
616static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
617{
618 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
619}
620
621static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
622{
623 int node;
624
625 for_each_online_node(node)
626 slab_set_debugobj_lock_classes_node(cachep, node);
627}
628
ce79ddc8 629static void init_node_lock_keys(int q)
f1aaee53 630{
056c6241
RT
631 struct cache_sizes *s = malloc_sizes;
632
97d06609 633 if (slab_state < UP)
ce79ddc8
PE
634 return;
635
636 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 637 struct kmem_list3 *l3;
ce79ddc8
PE
638
639 l3 = s->cs_cachep->nodelists[q];
640 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 641 continue;
83835b3d
PZ
642
643 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
644 &on_slab_alc_key, q);
f1aaee53
AV
645 }
646}
ce79ddc8
PE
647
648static inline void init_lock_keys(void)
649{
650 int node;
651
652 for_each_node(node)
653 init_node_lock_keys(node);
654}
f1aaee53 655#else
ce79ddc8
PE
656static void init_node_lock_keys(int q)
657{
658}
659
056c6241 660static inline void init_lock_keys(void)
f1aaee53
AV
661{
662}
83835b3d
PZ
663
664static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
665{
666}
667
668static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
669{
670}
f1aaee53
AV
671#endif
672
1871e52c 673static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 674
343e0d7a 675static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
676{
677 return cachep->array[smp_processor_id()];
678}
679
a737b3e2
AM
680static inline struct kmem_cache *__find_general_cachep(size_t size,
681 gfp_t gfpflags)
1da177e4
LT
682{
683 struct cache_sizes *csizep = malloc_sizes;
684
685#if DEBUG
686 /* This happens if someone tries to call
b28a02de
PE
687 * kmem_cache_create(), or __kmalloc(), before
688 * the generic caches are initialized.
689 */
c7e43c78 690 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 691#endif
6cb8f913
CL
692 if (!size)
693 return ZERO_SIZE_PTR;
694
1da177e4
LT
695 while (size > csizep->cs_size)
696 csizep++;
697
698 /*
0abf40c1 699 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
700 * has cs_{dma,}cachep==NULL. Thus no special case
701 * for large kmalloc calls required.
702 */
4b51d669 703#ifdef CONFIG_ZONE_DMA
1da177e4
LT
704 if (unlikely(gfpflags & GFP_DMA))
705 return csizep->cs_dmacachep;
4b51d669 706#endif
1da177e4
LT
707 return csizep->cs_cachep;
708}
709
b221385b 710static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
711{
712 return __find_general_cachep(size, gfpflags);
713}
97e2bde4 714
fbaccacf 715static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 716{
fbaccacf
SR
717 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
718}
1da177e4 719
a737b3e2
AM
720/*
721 * Calculate the number of objects and left-over bytes for a given buffer size.
722 */
fbaccacf
SR
723static void cache_estimate(unsigned long gfporder, size_t buffer_size,
724 size_t align, int flags, size_t *left_over,
725 unsigned int *num)
726{
727 int nr_objs;
728 size_t mgmt_size;
729 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 730
fbaccacf
SR
731 /*
732 * The slab management structure can be either off the slab or
733 * on it. For the latter case, the memory allocated for a
734 * slab is used for:
735 *
736 * - The struct slab
737 * - One kmem_bufctl_t for each object
738 * - Padding to respect alignment of @align
739 * - @buffer_size bytes for each object
740 *
741 * If the slab management structure is off the slab, then the
742 * alignment will already be calculated into the size. Because
743 * the slabs are all pages aligned, the objects will be at the
744 * correct alignment when allocated.
745 */
746 if (flags & CFLGS_OFF_SLAB) {
747 mgmt_size = 0;
748 nr_objs = slab_size / buffer_size;
749
750 if (nr_objs > SLAB_LIMIT)
751 nr_objs = SLAB_LIMIT;
752 } else {
753 /*
754 * Ignore padding for the initial guess. The padding
755 * is at most @align-1 bytes, and @buffer_size is at
756 * least @align. In the worst case, this result will
757 * be one greater than the number of objects that fit
758 * into the memory allocation when taking the padding
759 * into account.
760 */
761 nr_objs = (slab_size - sizeof(struct slab)) /
762 (buffer_size + sizeof(kmem_bufctl_t));
763
764 /*
765 * This calculated number will be either the right
766 * amount, or one greater than what we want.
767 */
768 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
769 > slab_size)
770 nr_objs--;
771
772 if (nr_objs > SLAB_LIMIT)
773 nr_objs = SLAB_LIMIT;
774
775 mgmt_size = slab_mgmt_size(nr_objs, align);
776 }
777 *num = nr_objs;
778 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
779}
780
f28510d3 781#if DEBUG
d40cee24 782#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 783
a737b3e2
AM
784static void __slab_error(const char *function, struct kmem_cache *cachep,
785 char *msg)
1da177e4
LT
786{
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 788 function, cachep->name, msg);
1da177e4 789 dump_stack();
645df230 790 add_taint(TAINT_BAD_PAGE);
1da177e4 791}
f28510d3 792#endif
1da177e4 793
3395ee05
PM
794/*
795 * By default on NUMA we use alien caches to stage the freeing of
796 * objects allocated from other nodes. This causes massive memory
797 * inefficiencies when using fake NUMA setup to split memory into a
798 * large number of small nodes, so it can be disabled on the command
799 * line
800 */
801
802static int use_alien_caches __read_mostly = 1;
803static int __init noaliencache_setup(char *s)
804{
805 use_alien_caches = 0;
806 return 1;
807}
808__setup("noaliencache", noaliencache_setup);
809
3df1cccd
DR
810static int __init slab_max_order_setup(char *str)
811{
812 get_option(&str, &slab_max_order);
813 slab_max_order = slab_max_order < 0 ? 0 :
814 min(slab_max_order, MAX_ORDER - 1);
815 slab_max_order_set = true;
816
817 return 1;
818}
819__setup("slab_max_order=", slab_max_order_setup);
820
8fce4d8e
CL
821#ifdef CONFIG_NUMA
822/*
823 * Special reaping functions for NUMA systems called from cache_reap().
824 * These take care of doing round robin flushing of alien caches (containing
825 * objects freed on different nodes from which they were allocated) and the
826 * flushing of remote pcps by calling drain_node_pages.
827 */
1871e52c 828static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
829
830static void init_reap_node(int cpu)
831{
832 int node;
833
7d6e6d09 834 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 835 if (node == MAX_NUMNODES)
442295c9 836 node = first_node(node_online_map);
8fce4d8e 837
1871e52c 838 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
839}
840
841static void next_reap_node(void)
842{
909ea964 843 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 844
8fce4d8e
CL
845 node = next_node(node, node_online_map);
846 if (unlikely(node >= MAX_NUMNODES))
847 node = first_node(node_online_map);
909ea964 848 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
849}
850
851#else
852#define init_reap_node(cpu) do { } while (0)
853#define next_reap_node(void) do { } while (0)
854#endif
855
1da177e4
LT
856/*
857 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
858 * via the workqueue/eventd.
859 * Add the CPU number into the expiration time to minimize the possibility of
860 * the CPUs getting into lockstep and contending for the global cache chain
861 * lock.
862 */
897e679b 863static void __cpuinit start_cpu_timer(int cpu)
1da177e4 864{
1871e52c 865 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
866
867 /*
868 * When this gets called from do_initcalls via cpucache_init(),
869 * init_workqueues() has already run, so keventd will be setup
870 * at that time.
871 */
52bad64d 872 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 873 init_reap_node(cpu);
203b42f7 874 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
875 schedule_delayed_work_on(cpu, reap_work,
876 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
877 }
878}
879
e498be7d 880static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 881 int batchcount, gfp_t gfp)
1da177e4 882{
b28a02de 883 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
884 struct array_cache *nc = NULL;
885
83b519e8 886 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
887 /*
888 * The array_cache structures contain pointers to free object.
25985edc 889 * However, when such objects are allocated or transferred to another
d5cff635
CM
890 * cache the pointers are not cleared and they could be counted as
891 * valid references during a kmemleak scan. Therefore, kmemleak must
892 * not scan such objects.
893 */
894 kmemleak_no_scan(nc);
1da177e4
LT
895 if (nc) {
896 nc->avail = 0;
897 nc->limit = entries;
898 nc->batchcount = batchcount;
899 nc->touched = 0;
e498be7d 900 spin_lock_init(&nc->lock);
1da177e4
LT
901 }
902 return nc;
903}
904
072bb0aa
MG
905static inline bool is_slab_pfmemalloc(struct slab *slabp)
906{
907 struct page *page = virt_to_page(slabp->s_mem);
908
909 return PageSlabPfmemalloc(page);
910}
911
912/* Clears pfmemalloc_active if no slabs have pfmalloc set */
913static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
914 struct array_cache *ac)
915{
916 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
917 struct slab *slabp;
918 unsigned long flags;
919
920 if (!pfmemalloc_active)
921 return;
922
923 spin_lock_irqsave(&l3->list_lock, flags);
924 list_for_each_entry(slabp, &l3->slabs_full, list)
925 if (is_slab_pfmemalloc(slabp))
926 goto out;
927
928 list_for_each_entry(slabp, &l3->slabs_partial, list)
929 if (is_slab_pfmemalloc(slabp))
930 goto out;
931
932 list_for_each_entry(slabp, &l3->slabs_free, list)
933 if (is_slab_pfmemalloc(slabp))
934 goto out;
935
936 pfmemalloc_active = false;
937out:
938 spin_unlock_irqrestore(&l3->list_lock, flags);
939}
940
381760ea 941static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
942 gfp_t flags, bool force_refill)
943{
944 int i;
945 void *objp = ac->entry[--ac->avail];
946
947 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
948 if (unlikely(is_obj_pfmemalloc(objp))) {
949 struct kmem_list3 *l3;
950
951 if (gfp_pfmemalloc_allowed(flags)) {
952 clear_obj_pfmemalloc(&objp);
953 return objp;
954 }
955
956 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 957 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
958 /* If a !PFMEMALLOC object is found, swap them */
959 if (!is_obj_pfmemalloc(ac->entry[i])) {
960 objp = ac->entry[i];
961 ac->entry[i] = ac->entry[ac->avail];
962 ac->entry[ac->avail] = objp;
963 return objp;
964 }
965 }
966
967 /*
968 * If there are empty slabs on the slabs_free list and we are
969 * being forced to refill the cache, mark this one !pfmemalloc.
970 */
971 l3 = cachep->nodelists[numa_mem_id()];
972 if (!list_empty(&l3->slabs_free) && force_refill) {
973 struct slab *slabp = virt_to_slab(objp);
30c29bea 974 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
975 clear_obj_pfmemalloc(&objp);
976 recheck_pfmemalloc_active(cachep, ac);
977 return objp;
978 }
979
980 /* No !PFMEMALLOC objects available */
981 ac->avail++;
982 objp = NULL;
983 }
984
985 return objp;
986}
987
381760ea
MG
988static inline void *ac_get_obj(struct kmem_cache *cachep,
989 struct array_cache *ac, gfp_t flags, bool force_refill)
990{
991 void *objp;
992
993 if (unlikely(sk_memalloc_socks()))
994 objp = __ac_get_obj(cachep, ac, flags, force_refill);
995 else
996 objp = ac->entry[--ac->avail];
997
998 return objp;
999}
1000
1001static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1002 void *objp)
1003{
1004 if (unlikely(pfmemalloc_active)) {
1005 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 1006 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
1007 if (PageSlabPfmemalloc(page))
1008 set_obj_pfmemalloc(&objp);
1009 }
1010
381760ea
MG
1011 return objp;
1012}
1013
1014static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1015 void *objp)
1016{
1017 if (unlikely(sk_memalloc_socks()))
1018 objp = __ac_put_obj(cachep, ac, objp);
1019
072bb0aa
MG
1020 ac->entry[ac->avail++] = objp;
1021}
1022
3ded175a
CL
1023/*
1024 * Transfer objects in one arraycache to another.
1025 * Locking must be handled by the caller.
1026 *
1027 * Return the number of entries transferred.
1028 */
1029static int transfer_objects(struct array_cache *to,
1030 struct array_cache *from, unsigned int max)
1031{
1032 /* Figure out how many entries to transfer */
732eacc0 1033 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1034
1035 if (!nr)
1036 return 0;
1037
1038 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1039 sizeof(void *) *nr);
1040
1041 from->avail -= nr;
1042 to->avail += nr;
3ded175a
CL
1043 return nr;
1044}
1045
765c4507
CL
1046#ifndef CONFIG_NUMA
1047
1048#define drain_alien_cache(cachep, alien) do { } while (0)
1049#define reap_alien(cachep, l3) do { } while (0)
1050
83b519e8 1051static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1052{
1053 return (struct array_cache **)BAD_ALIEN_MAGIC;
1054}
1055
1056static inline void free_alien_cache(struct array_cache **ac_ptr)
1057{
1058}
1059
1060static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1061{
1062 return 0;
1063}
1064
1065static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1066 gfp_t flags)
1067{
1068 return NULL;
1069}
1070
8b98c169 1071static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1072 gfp_t flags, int nodeid)
1073{
1074 return NULL;
1075}
1076
1077#else /* CONFIG_NUMA */
1078
8b98c169 1079static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1080static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1081
83b519e8 1082static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1083{
1084 struct array_cache **ac_ptr;
8ef82866 1085 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1086 int i;
1087
1088 if (limit > 1)
1089 limit = 12;
f3186a9c 1090 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1091 if (ac_ptr) {
1092 for_each_node(i) {
f3186a9c 1093 if (i == node || !node_online(i))
e498be7d 1094 continue;
83b519e8 1095 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1096 if (!ac_ptr[i]) {
cc550def 1097 for (i--; i >= 0; i--)
e498be7d
CL
1098 kfree(ac_ptr[i]);
1099 kfree(ac_ptr);
1100 return NULL;
1101 }
1102 }
1103 }
1104 return ac_ptr;
1105}
1106
5295a74c 1107static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1108{
1109 int i;
1110
1111 if (!ac_ptr)
1112 return;
e498be7d 1113 for_each_node(i)
b28a02de 1114 kfree(ac_ptr[i]);
e498be7d
CL
1115 kfree(ac_ptr);
1116}
1117
343e0d7a 1118static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1119 struct array_cache *ac, int node)
e498be7d
CL
1120{
1121 struct kmem_list3 *rl3 = cachep->nodelists[node];
1122
1123 if (ac->avail) {
1124 spin_lock(&rl3->list_lock);
e00946fe
CL
1125 /*
1126 * Stuff objects into the remote nodes shared array first.
1127 * That way we could avoid the overhead of putting the objects
1128 * into the free lists and getting them back later.
1129 */
693f7d36
JS
1130 if (rl3->shared)
1131 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1132
ff69416e 1133 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1134 ac->avail = 0;
1135 spin_unlock(&rl3->list_lock);
1136 }
1137}
1138
8fce4d8e
CL
1139/*
1140 * Called from cache_reap() to regularly drain alien caches round robin.
1141 */
1142static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1143{
909ea964 1144 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1145
1146 if (l3->alien) {
1147 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1148
1149 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1150 __drain_alien_cache(cachep, ac, node);
1151 spin_unlock_irq(&ac->lock);
1152 }
1153 }
1154}
1155
a737b3e2
AM
1156static void drain_alien_cache(struct kmem_cache *cachep,
1157 struct array_cache **alien)
e498be7d 1158{
b28a02de 1159 int i = 0;
e498be7d
CL
1160 struct array_cache *ac;
1161 unsigned long flags;
1162
1163 for_each_online_node(i) {
4484ebf1 1164 ac = alien[i];
e498be7d
CL
1165 if (ac) {
1166 spin_lock_irqsave(&ac->lock, flags);
1167 __drain_alien_cache(cachep, ac, i);
1168 spin_unlock_irqrestore(&ac->lock, flags);
1169 }
1170 }
1171}
729bd0b7 1172
873623df 1173static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1174{
1175 struct slab *slabp = virt_to_slab(objp);
1176 int nodeid = slabp->nodeid;
1177 struct kmem_list3 *l3;
1178 struct array_cache *alien = NULL;
1ca4cb24
PE
1179 int node;
1180
7d6e6d09 1181 node = numa_mem_id();
729bd0b7
PE
1182
1183 /*
1184 * Make sure we are not freeing a object from another node to the array
1185 * cache on this cpu.
1186 */
62918a03 1187 if (likely(slabp->nodeid == node))
729bd0b7
PE
1188 return 0;
1189
1ca4cb24 1190 l3 = cachep->nodelists[node];
729bd0b7
PE
1191 STATS_INC_NODEFREES(cachep);
1192 if (l3->alien && l3->alien[nodeid]) {
1193 alien = l3->alien[nodeid];
873623df 1194 spin_lock(&alien->lock);
729bd0b7
PE
1195 if (unlikely(alien->avail == alien->limit)) {
1196 STATS_INC_ACOVERFLOW(cachep);
1197 __drain_alien_cache(cachep, alien, nodeid);
1198 }
072bb0aa 1199 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1200 spin_unlock(&alien->lock);
1201 } else {
1202 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1203 free_block(cachep, &objp, 1, nodeid);
1204 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1205 }
1206 return 1;
1207}
e498be7d
CL
1208#endif
1209
8f9f8d9e
DR
1210/*
1211 * Allocates and initializes nodelists for a node on each slab cache, used for
1212 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1213 * will be allocated off-node since memory is not yet online for the new node.
1214 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1215 * already in use.
1216 *
18004c5d 1217 * Must hold slab_mutex.
8f9f8d9e
DR
1218 */
1219static int init_cache_nodelists_node(int node)
1220{
1221 struct kmem_cache *cachep;
1222 struct kmem_list3 *l3;
1223 const int memsize = sizeof(struct kmem_list3);
1224
18004c5d 1225 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1226 /*
1227 * Set up the size64 kmemlist for cpu before we can
1228 * begin anything. Make sure some other cpu on this
1229 * node has not already allocated this
1230 */
1231 if (!cachep->nodelists[node]) {
1232 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1233 if (!l3)
1234 return -ENOMEM;
1235 kmem_list3_init(l3);
1236 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1237 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1238
1239 /*
1240 * The l3s don't come and go as CPUs come and
18004c5d 1241 * go. slab_mutex is sufficient
8f9f8d9e
DR
1242 * protection here.
1243 */
1244 cachep->nodelists[node] = l3;
1245 }
1246
1247 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1248 cachep->nodelists[node]->free_limit =
1249 (1 + nr_cpus_node(node)) *
1250 cachep->batchcount + cachep->num;
1251 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1252 }
1253 return 0;
1254}
1255
fbf1e473
AM
1256static void __cpuinit cpuup_canceled(long cpu)
1257{
1258 struct kmem_cache *cachep;
1259 struct kmem_list3 *l3 = NULL;
7d6e6d09 1260 int node = cpu_to_mem(cpu);
a70f7302 1261 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1262
18004c5d 1263 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1264 struct array_cache *nc;
1265 struct array_cache *shared;
1266 struct array_cache **alien;
fbf1e473 1267
fbf1e473
AM
1268 /* cpu is dead; no one can alloc from it. */
1269 nc = cachep->array[cpu];
1270 cachep->array[cpu] = NULL;
1271 l3 = cachep->nodelists[node];
1272
1273 if (!l3)
1274 goto free_array_cache;
1275
1276 spin_lock_irq(&l3->list_lock);
1277
1278 /* Free limit for this kmem_list3 */
1279 l3->free_limit -= cachep->batchcount;
1280 if (nc)
1281 free_block(cachep, nc->entry, nc->avail, node);
1282
58463c1f 1283 if (!cpumask_empty(mask)) {
fbf1e473
AM
1284 spin_unlock_irq(&l3->list_lock);
1285 goto free_array_cache;
1286 }
1287
1288 shared = l3->shared;
1289 if (shared) {
1290 free_block(cachep, shared->entry,
1291 shared->avail, node);
1292 l3->shared = NULL;
1293 }
1294
1295 alien = l3->alien;
1296 l3->alien = NULL;
1297
1298 spin_unlock_irq(&l3->list_lock);
1299
1300 kfree(shared);
1301 if (alien) {
1302 drain_alien_cache(cachep, alien);
1303 free_alien_cache(alien);
1304 }
1305free_array_cache:
1306 kfree(nc);
1307 }
1308 /*
1309 * In the previous loop, all the objects were freed to
1310 * the respective cache's slabs, now we can go ahead and
1311 * shrink each nodelist to its limit.
1312 */
18004c5d 1313 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1314 l3 = cachep->nodelists[node];
1315 if (!l3)
1316 continue;
1317 drain_freelist(cachep, l3, l3->free_objects);
1318 }
1319}
1320
1321static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1322{
343e0d7a 1323 struct kmem_cache *cachep;
e498be7d 1324 struct kmem_list3 *l3 = NULL;
7d6e6d09 1325 int node = cpu_to_mem(cpu);
8f9f8d9e 1326 int err;
1da177e4 1327
fbf1e473
AM
1328 /*
1329 * We need to do this right in the beginning since
1330 * alloc_arraycache's are going to use this list.
1331 * kmalloc_node allows us to add the slab to the right
1332 * kmem_list3 and not this cpu's kmem_list3
1333 */
8f9f8d9e
DR
1334 err = init_cache_nodelists_node(node);
1335 if (err < 0)
1336 goto bad;
fbf1e473
AM
1337
1338 /*
1339 * Now we can go ahead with allocating the shared arrays and
1340 * array caches
1341 */
18004c5d 1342 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1343 struct array_cache *nc;
1344 struct array_cache *shared = NULL;
1345 struct array_cache **alien = NULL;
1346
1347 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1348 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1349 if (!nc)
1350 goto bad;
1351 if (cachep->shared) {
1352 shared = alloc_arraycache(node,
1353 cachep->shared * cachep->batchcount,
83b519e8 1354 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1355 if (!shared) {
1356 kfree(nc);
1da177e4 1357 goto bad;
12d00f6a 1358 }
fbf1e473
AM
1359 }
1360 if (use_alien_caches) {
83b519e8 1361 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1362 if (!alien) {
1363 kfree(shared);
1364 kfree(nc);
fbf1e473 1365 goto bad;
12d00f6a 1366 }
fbf1e473
AM
1367 }
1368 cachep->array[cpu] = nc;
1369 l3 = cachep->nodelists[node];
1370 BUG_ON(!l3);
1371
1372 spin_lock_irq(&l3->list_lock);
1373 if (!l3->shared) {
1374 /*
1375 * We are serialised from CPU_DEAD or
1376 * CPU_UP_CANCELLED by the cpucontrol lock
1377 */
1378 l3->shared = shared;
1379 shared = NULL;
1380 }
4484ebf1 1381#ifdef CONFIG_NUMA
fbf1e473
AM
1382 if (!l3->alien) {
1383 l3->alien = alien;
1384 alien = NULL;
1da177e4 1385 }
fbf1e473
AM
1386#endif
1387 spin_unlock_irq(&l3->list_lock);
1388 kfree(shared);
1389 free_alien_cache(alien);
83835b3d
PZ
1390 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1391 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1392 }
ce79ddc8
PE
1393 init_node_lock_keys(node);
1394
fbf1e473
AM
1395 return 0;
1396bad:
12d00f6a 1397 cpuup_canceled(cpu);
fbf1e473
AM
1398 return -ENOMEM;
1399}
1400
1401static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1402 unsigned long action, void *hcpu)
1403{
1404 long cpu = (long)hcpu;
1405 int err = 0;
1406
1407 switch (action) {
fbf1e473
AM
1408 case CPU_UP_PREPARE:
1409 case CPU_UP_PREPARE_FROZEN:
18004c5d 1410 mutex_lock(&slab_mutex);
fbf1e473 1411 err = cpuup_prepare(cpu);
18004c5d 1412 mutex_unlock(&slab_mutex);
1da177e4
LT
1413 break;
1414 case CPU_ONLINE:
8bb78442 1415 case CPU_ONLINE_FROZEN:
1da177e4
LT
1416 start_cpu_timer(cpu);
1417 break;
1418#ifdef CONFIG_HOTPLUG_CPU
5830c590 1419 case CPU_DOWN_PREPARE:
8bb78442 1420 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1421 /*
18004c5d 1422 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1423 * held so that if cache_reap() is invoked it cannot do
1424 * anything expensive but will only modify reap_work
1425 * and reschedule the timer.
1426 */
afe2c511 1427 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1428 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1429 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1430 break;
1431 case CPU_DOWN_FAILED:
8bb78442 1432 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1433 start_cpu_timer(cpu);
1434 break;
1da177e4 1435 case CPU_DEAD:
8bb78442 1436 case CPU_DEAD_FROZEN:
4484ebf1
RT
1437 /*
1438 * Even if all the cpus of a node are down, we don't free the
1439 * kmem_list3 of any cache. This to avoid a race between
1440 * cpu_down, and a kmalloc allocation from another cpu for
1441 * memory from the node of the cpu going down. The list3
1442 * structure is usually allocated from kmem_cache_create() and
1443 * gets destroyed at kmem_cache_destroy().
1444 */
183ff22b 1445 /* fall through */
8f5be20b 1446#endif
1da177e4 1447 case CPU_UP_CANCELED:
8bb78442 1448 case CPU_UP_CANCELED_FROZEN:
18004c5d 1449 mutex_lock(&slab_mutex);
fbf1e473 1450 cpuup_canceled(cpu);
18004c5d 1451 mutex_unlock(&slab_mutex);
1da177e4 1452 break;
1da177e4 1453 }
eac40680 1454 return notifier_from_errno(err);
1da177e4
LT
1455}
1456
74b85f37
CS
1457static struct notifier_block __cpuinitdata cpucache_notifier = {
1458 &cpuup_callback, NULL, 0
1459};
1da177e4 1460
8f9f8d9e
DR
1461#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1462/*
1463 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1464 * Returns -EBUSY if all objects cannot be drained so that the node is not
1465 * removed.
1466 *
18004c5d 1467 * Must hold slab_mutex.
8f9f8d9e
DR
1468 */
1469static int __meminit drain_cache_nodelists_node(int node)
1470{
1471 struct kmem_cache *cachep;
1472 int ret = 0;
1473
18004c5d 1474 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1475 struct kmem_list3 *l3;
1476
1477 l3 = cachep->nodelists[node];
1478 if (!l3)
1479 continue;
1480
1481 drain_freelist(cachep, l3, l3->free_objects);
1482
1483 if (!list_empty(&l3->slabs_full) ||
1484 !list_empty(&l3->slabs_partial)) {
1485 ret = -EBUSY;
1486 break;
1487 }
1488 }
1489 return ret;
1490}
1491
1492static int __meminit slab_memory_callback(struct notifier_block *self,
1493 unsigned long action, void *arg)
1494{
1495 struct memory_notify *mnb = arg;
1496 int ret = 0;
1497 int nid;
1498
1499 nid = mnb->status_change_nid;
1500 if (nid < 0)
1501 goto out;
1502
1503 switch (action) {
1504 case MEM_GOING_ONLINE:
18004c5d 1505 mutex_lock(&slab_mutex);
8f9f8d9e 1506 ret = init_cache_nodelists_node(nid);
18004c5d 1507 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1508 break;
1509 case MEM_GOING_OFFLINE:
18004c5d 1510 mutex_lock(&slab_mutex);
8f9f8d9e 1511 ret = drain_cache_nodelists_node(nid);
18004c5d 1512 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1513 break;
1514 case MEM_ONLINE:
1515 case MEM_OFFLINE:
1516 case MEM_CANCEL_ONLINE:
1517 case MEM_CANCEL_OFFLINE:
1518 break;
1519 }
1520out:
5fda1bd5 1521 return notifier_from_errno(ret);
8f9f8d9e
DR
1522}
1523#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1524
e498be7d
CL
1525/*
1526 * swap the static kmem_list3 with kmalloced memory
1527 */
8f9f8d9e
DR
1528static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1529 int nodeid)
e498be7d
CL
1530{
1531 struct kmem_list3 *ptr;
1532
83b519e8 1533 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1534 BUG_ON(!ptr);
1535
e498be7d 1536 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->list_lock);
1541
e498be7d
CL
1542 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1543 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1544}
1545
556a169d
PE
1546/*
1547 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1548 * size of kmem_list3.
1549 */
1550static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1551{
1552 int node;
1553
1554 for_each_online_node(node) {
1555 cachep->nodelists[node] = &initkmem_list3[index + node];
1556 cachep->nodelists[node]->next_reap = jiffies +
1557 REAPTIMEOUT_LIST3 +
1558 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1559 }
1560}
1561
a737b3e2
AM
1562/*
1563 * Initialisation. Called after the page allocator have been initialised and
1564 * before smp_init().
1da177e4
LT
1565 */
1566void __init kmem_cache_init(void)
1567{
1568 size_t left_over;
1569 struct cache_sizes *sizes;
1570 struct cache_names *names;
e498be7d 1571 int i;
07ed76b2 1572 int order;
1ca4cb24 1573 int node;
e498be7d 1574
9b030cb8
CL
1575 kmem_cache = &kmem_cache_boot;
1576
b6e68bc1 1577 if (num_possible_nodes() == 1)
62918a03
SS
1578 use_alien_caches = 0;
1579
e498be7d
CL
1580 for (i = 0; i < NUM_INIT_LISTS; i++) {
1581 kmem_list3_init(&initkmem_list3[i]);
1582 if (i < MAX_NUMNODES)
9b030cb8 1583 kmem_cache->nodelists[i] = NULL;
e498be7d 1584 }
9b030cb8 1585 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1586
1587 /*
1588 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1589 * page orders on machines with more than 32MB of memory if
1590 * not overridden on the command line.
1da177e4 1591 */
3df1cccd 1592 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1593 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1594
1da177e4
LT
1595 /* Bootstrap is tricky, because several objects are allocated
1596 * from caches that do not exist yet:
9b030cb8
CL
1597 * 1) initialize the kmem_cache cache: it contains the struct
1598 * kmem_cache structures of all caches, except kmem_cache itself:
1599 * kmem_cache is statically allocated.
e498be7d
CL
1600 * Initially an __init data area is used for the head array and the
1601 * kmem_list3 structures, it's replaced with a kmalloc allocated
1602 * array at the end of the bootstrap.
1da177e4 1603 * 2) Create the first kmalloc cache.
343e0d7a 1604 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1605 * An __init data area is used for the head array.
1606 * 3) Create the remaining kmalloc caches, with minimally sized
1607 * head arrays.
9b030cb8 1608 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1609 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1610 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1611 * the other cache's with kmalloc allocated memory.
1612 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1613 */
1614
7d6e6d09 1615 node = numa_mem_id();
1ca4cb24 1616
9b030cb8 1617 /* 1) create the kmem_cache */
18004c5d 1618 INIT_LIST_HEAD(&slab_caches);
9b030cb8
CL
1619 list_add(&kmem_cache->list, &slab_caches);
1620 kmem_cache->colour_off = cache_line_size();
1621 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1622 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1623
8da3430d 1624 /*
b56efcf0 1625 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1626 */
9b030cb8 1627 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1628 nr_node_ids * sizeof(struct kmem_list3 *);
9b030cb8
CL
1629 kmem_cache->object_size = kmem_cache->size;
1630 kmem_cache->size = ALIGN(kmem_cache->object_size,
a737b3e2 1631 cache_line_size());
9b030cb8
CL
1632 kmem_cache->reciprocal_buffer_size =
1633 reciprocal_value(kmem_cache->size);
1da177e4 1634
07ed76b2 1635 for (order = 0; order < MAX_ORDER; order++) {
9b030cb8
CL
1636 cache_estimate(order, kmem_cache->size,
1637 cache_line_size(), 0, &left_over, &kmem_cache->num);
1638 if (kmem_cache->num)
07ed76b2
JS
1639 break;
1640 }
9b030cb8
CL
1641 BUG_ON(!kmem_cache->num);
1642 kmem_cache->gfporder = order;
1643 kmem_cache->colour = left_over / kmem_cache->colour_off;
1644 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
b28a02de 1645 sizeof(struct slab), cache_line_size());
1da177e4
LT
1646
1647 /* 2+3) create the kmalloc caches */
1648 sizes = malloc_sizes;
1649 names = cache_names;
1650
a737b3e2
AM
1651 /*
1652 * Initialize the caches that provide memory for the array cache and the
1653 * kmem_list3 structures first. Without this, further allocations will
1654 * bug.
e498be7d
CL
1655 */
1656
278b1bb1 1657 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1658 sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
1659 sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
1660 sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
1661 sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1662 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1663 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
e498be7d 1664
a737b3e2 1665 if (INDEX_AC != INDEX_L3) {
278b1bb1 1666 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1667 sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
1668 sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
1669 sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
1670 sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1671 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1672 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
a737b3e2 1673 }
e498be7d 1674
e0a42726
IM
1675 slab_early_init = 0;
1676
1da177e4 1677 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1678 /*
1679 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1680 * This should be particularly beneficial on SMP boxes, as it
1681 * eliminates "false sharing".
1682 * Note for systems short on memory removing the alignment will
e498be7d
CL
1683 * allow tighter packing of the smaller caches.
1684 */
a737b3e2 1685 if (!sizes->cs_cachep) {
278b1bb1 1686 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1687 sizes->cs_cachep->name = names->name;
1688 sizes->cs_cachep->size = sizes->cs_size;
1689 sizes->cs_cachep->object_size = sizes->cs_size;
1690 sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
1691 __kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
7c9adf5a 1692 list_add(&sizes->cs_cachep->list, &slab_caches);
a737b3e2 1693 }
4b51d669 1694#ifdef CONFIG_ZONE_DMA
278b1bb1 1695 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8a13a4cc
CL
1696 sizes->cs_dmacachep->name = names->name_dma;
1697 sizes->cs_dmacachep->size = sizes->cs_size;
1698 sizes->cs_dmacachep->object_size = sizes->cs_size;
1699 sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
278b1bb1 1700 __kmem_cache_create(sizes->cs_dmacachep,
8a13a4cc 1701 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
7c9adf5a 1702 list_add(&sizes->cs_dmacachep->list, &slab_caches);
4b51d669 1703#endif
1da177e4
LT
1704 sizes++;
1705 names++;
1706 }
1707 /* 4) Replace the bootstrap head arrays */
1708 {
2b2d5493 1709 struct array_cache *ptr;
e498be7d 1710
83b519e8 1711 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1712
9b030cb8
CL
1713 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1714 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1715 sizeof(struct arraycache_init));
2b2d5493
IM
1716 /*
1717 * Do not assume that spinlocks can be initialized via memcpy:
1718 */
1719 spin_lock_init(&ptr->lock);
1720
9b030cb8 1721 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1722
83b519e8 1723 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1724
9a2dba4b 1725 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1726 != &initarray_generic.cache);
9a2dba4b 1727 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1728 sizeof(struct arraycache_init));
2b2d5493
IM
1729 /*
1730 * Do not assume that spinlocks can be initialized via memcpy:
1731 */
1732 spin_lock_init(&ptr->lock);
1733
e498be7d 1734 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1735 ptr;
1da177e4 1736 }
e498be7d
CL
1737 /* 5) Replace the bootstrap kmem_list3's */
1738 {
1ca4cb24
PE
1739 int nid;
1740
9c09a95c 1741 for_each_online_node(nid) {
9b030cb8 1742 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1743
e498be7d 1744 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1745 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1746
1747 if (INDEX_AC != INDEX_L3) {
1748 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1749 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1750 }
1751 }
1752 }
1da177e4 1753
97d06609 1754 slab_state = UP;
8429db5c
PE
1755}
1756
1757void __init kmem_cache_init_late(void)
1758{
1759 struct kmem_cache *cachep;
1760
97d06609 1761 slab_state = UP;
52cef189 1762
8429db5c 1763 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1764 mutex_lock(&slab_mutex);
1765 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1766 if (enable_cpucache(cachep, GFP_NOWAIT))
1767 BUG();
18004c5d 1768 mutex_unlock(&slab_mutex);
056c6241 1769
947ca185
MW
1770 /* Annotate slab for lockdep -- annotate the malloc caches */
1771 init_lock_keys();
1772
97d06609
CL
1773 /* Done! */
1774 slab_state = FULL;
1775
a737b3e2
AM
1776 /*
1777 * Register a cpu startup notifier callback that initializes
1778 * cpu_cache_get for all new cpus
1da177e4
LT
1779 */
1780 register_cpu_notifier(&cpucache_notifier);
1da177e4 1781
8f9f8d9e
DR
1782#ifdef CONFIG_NUMA
1783 /*
1784 * Register a memory hotplug callback that initializes and frees
1785 * nodelists.
1786 */
1787 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1788#endif
1789
a737b3e2
AM
1790 /*
1791 * The reap timers are started later, with a module init call: That part
1792 * of the kernel is not yet operational.
1da177e4
LT
1793 */
1794}
1795
1796static int __init cpucache_init(void)
1797{
1798 int cpu;
1799
a737b3e2
AM
1800 /*
1801 * Register the timers that return unneeded pages to the page allocator
1da177e4 1802 */
e498be7d 1803 for_each_online_cpu(cpu)
a737b3e2 1804 start_cpu_timer(cpu);
a164f896
GC
1805
1806 /* Done! */
97d06609 1807 slab_state = FULL;
1da177e4
LT
1808 return 0;
1809}
1da177e4
LT
1810__initcall(cpucache_init);
1811
8bdec192
RA
1812static noinline void
1813slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1814{
1815 struct kmem_list3 *l3;
1816 struct slab *slabp;
1817 unsigned long flags;
1818 int node;
1819
1820 printk(KERN_WARNING
1821 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1822 nodeid, gfpflags);
1823 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1824 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1825
1826 for_each_online_node(node) {
1827 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1828 unsigned long active_slabs = 0, num_slabs = 0;
1829
1830 l3 = cachep->nodelists[node];
1831 if (!l3)
1832 continue;
1833
1834 spin_lock_irqsave(&l3->list_lock, flags);
1835 list_for_each_entry(slabp, &l3->slabs_full, list) {
1836 active_objs += cachep->num;
1837 active_slabs++;
1838 }
1839 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1840 active_objs += slabp->inuse;
1841 active_slabs++;
1842 }
1843 list_for_each_entry(slabp, &l3->slabs_free, list)
1844 num_slabs++;
1845
1846 free_objects += l3->free_objects;
1847 spin_unlock_irqrestore(&l3->list_lock, flags);
1848
1849 num_slabs += active_slabs;
1850 num_objs = num_slabs * cachep->num;
1851 printk(KERN_WARNING
1852 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1853 node, active_slabs, num_slabs, active_objs, num_objs,
1854 free_objects);
1855 }
1856}
1857
1da177e4
LT
1858/*
1859 * Interface to system's page allocator. No need to hold the cache-lock.
1860 *
1861 * If we requested dmaable memory, we will get it. Even if we
1862 * did not request dmaable memory, we might get it, but that
1863 * would be relatively rare and ignorable.
1864 */
343e0d7a 1865static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1866{
1867 struct page *page;
e1b6aa6f 1868 int nr_pages;
1da177e4
LT
1869 int i;
1870
d6fef9da 1871#ifndef CONFIG_MMU
e1b6aa6f
CH
1872 /*
1873 * Nommu uses slab's for process anonymous memory allocations, and thus
1874 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1875 */
e1b6aa6f 1876 flags |= __GFP_COMP;
d6fef9da 1877#endif
765c4507 1878
a618e89f 1879 flags |= cachep->allocflags;
e12ba74d
MG
1880 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1881 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1882
517d0869 1883 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1884 if (!page) {
1885 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1886 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1887 return NULL;
8bdec192 1888 }
1da177e4 1889
b37f1dd0 1890 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1891 if (unlikely(page->pfmemalloc))
1892 pfmemalloc_active = true;
1893
e1b6aa6f 1894 nr_pages = (1 << cachep->gfporder);
1da177e4 1895 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1896 add_zone_page_state(page_zone(page),
1897 NR_SLAB_RECLAIMABLE, nr_pages);
1898 else
1899 add_zone_page_state(page_zone(page),
1900 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1901 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1902 __SetPageSlab(page + i);
c175eea4 1903
072bb0aa
MG
1904 if (page->pfmemalloc)
1905 SetPageSlabPfmemalloc(page + i);
1906 }
1907
b1eeab67
VN
1908 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1909 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1910
1911 if (cachep->ctor)
1912 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1913 else
1914 kmemcheck_mark_unallocated_pages(page, nr_pages);
1915 }
c175eea4 1916
e1b6aa6f 1917 return page_address(page);
1da177e4
LT
1918}
1919
1920/*
1921 * Interface to system's page release.
1922 */
343e0d7a 1923static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1924{
b28a02de 1925 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1926 struct page *page = virt_to_page(addr);
1927 const unsigned long nr_freed = i;
1928
b1eeab67 1929 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1930
972d1a7b
CL
1931 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1932 sub_zone_page_state(page_zone(page),
1933 NR_SLAB_RECLAIMABLE, nr_freed);
1934 else
1935 sub_zone_page_state(page_zone(page),
1936 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1937 while (i--) {
f205b2fe 1938 BUG_ON(!PageSlab(page));
072bb0aa 1939 __ClearPageSlabPfmemalloc(page);
f205b2fe 1940 __ClearPageSlab(page);
1da177e4
LT
1941 page++;
1942 }
1da177e4
LT
1943 if (current->reclaim_state)
1944 current->reclaim_state->reclaimed_slab += nr_freed;
1945 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1946}
1947
1948static void kmem_rcu_free(struct rcu_head *head)
1949{
b28a02de 1950 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1951 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1952
1953 kmem_freepages(cachep, slab_rcu->addr);
1954 if (OFF_SLAB(cachep))
1955 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1956}
1957
1958#if DEBUG
1959
1960#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1961static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1962 unsigned long caller)
1da177e4 1963{
8c138bc0 1964 int size = cachep->object_size;
1da177e4 1965
3dafccf2 1966 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1967
b28a02de 1968 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1969 return;
1970
b28a02de
PE
1971 *addr++ = 0x12345678;
1972 *addr++ = caller;
1973 *addr++ = smp_processor_id();
1974 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1975 {
1976 unsigned long *sptr = &caller;
1977 unsigned long svalue;
1978
1979 while (!kstack_end(sptr)) {
1980 svalue = *sptr++;
1981 if (kernel_text_address(svalue)) {
b28a02de 1982 *addr++ = svalue;
1da177e4
LT
1983 size -= sizeof(unsigned long);
1984 if (size <= sizeof(unsigned long))
1985 break;
1986 }
1987 }
1988
1989 }
b28a02de 1990 *addr++ = 0x87654321;
1da177e4
LT
1991}
1992#endif
1993
343e0d7a 1994static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1995{
8c138bc0 1996 int size = cachep->object_size;
3dafccf2 1997 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1998
1999 memset(addr, val, size);
b28a02de 2000 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2001}
2002
2003static void dump_line(char *data, int offset, int limit)
2004{
2005 int i;
aa83aa40
DJ
2006 unsigned char error = 0;
2007 int bad_count = 0;
2008
fdde6abb 2009 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2010 for (i = 0; i < limit; i++) {
2011 if (data[offset + i] != POISON_FREE) {
2012 error = data[offset + i];
2013 bad_count++;
2014 }
aa83aa40 2015 }
fdde6abb
SAS
2016 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2017 &data[offset], limit, 1);
aa83aa40
DJ
2018
2019 if (bad_count == 1) {
2020 error ^= POISON_FREE;
2021 if (!(error & (error - 1))) {
2022 printk(KERN_ERR "Single bit error detected. Probably "
2023 "bad RAM.\n");
2024#ifdef CONFIG_X86
2025 printk(KERN_ERR "Run memtest86+ or a similar memory "
2026 "test tool.\n");
2027#else
2028 printk(KERN_ERR "Run a memory test tool.\n");
2029#endif
2030 }
2031 }
1da177e4
LT
2032}
2033#endif
2034
2035#if DEBUG
2036
343e0d7a 2037static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2038{
2039 int i, size;
2040 char *realobj;
2041
2042 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2043 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2044 *dbg_redzone1(cachep, objp),
2045 *dbg_redzone2(cachep, objp));
1da177e4
LT
2046 }
2047
2048 if (cachep->flags & SLAB_STORE_USER) {
2049 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2050 *dbg_userword(cachep, objp));
1da177e4 2051 print_symbol("(%s)",
a737b3e2 2052 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2053 printk("\n");
2054 }
3dafccf2 2055 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2056 size = cachep->object_size;
b28a02de 2057 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2058 int limit;
2059 limit = 16;
b28a02de
PE
2060 if (i + limit > size)
2061 limit = size - i;
1da177e4
LT
2062 dump_line(realobj, i, limit);
2063 }
2064}
2065
343e0d7a 2066static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2067{
2068 char *realobj;
2069 int size, i;
2070 int lines = 0;
2071
3dafccf2 2072 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2073 size = cachep->object_size;
1da177e4 2074
b28a02de 2075 for (i = 0; i < size; i++) {
1da177e4 2076 char exp = POISON_FREE;
b28a02de 2077 if (i == size - 1)
1da177e4
LT
2078 exp = POISON_END;
2079 if (realobj[i] != exp) {
2080 int limit;
2081 /* Mismatch ! */
2082 /* Print header */
2083 if (lines == 0) {
b28a02de 2084 printk(KERN_ERR
face37f5
DJ
2085 "Slab corruption (%s): %s start=%p, len=%d\n",
2086 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2087 print_objinfo(cachep, objp, 0);
2088 }
2089 /* Hexdump the affected line */
b28a02de 2090 i = (i / 16) * 16;
1da177e4 2091 limit = 16;
b28a02de
PE
2092 if (i + limit > size)
2093 limit = size - i;
1da177e4
LT
2094 dump_line(realobj, i, limit);
2095 i += 16;
2096 lines++;
2097 /* Limit to 5 lines */
2098 if (lines > 5)
2099 break;
2100 }
2101 }
2102 if (lines != 0) {
2103 /* Print some data about the neighboring objects, if they
2104 * exist:
2105 */
6ed5eb22 2106 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2107 unsigned int objnr;
1da177e4 2108
8fea4e96 2109 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2110 if (objnr) {
8fea4e96 2111 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2112 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2113 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2114 realobj, size);
1da177e4
LT
2115 print_objinfo(cachep, objp, 2);
2116 }
b28a02de 2117 if (objnr + 1 < cachep->num) {
8fea4e96 2118 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2119 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2120 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2121 realobj, size);
1da177e4
LT
2122 print_objinfo(cachep, objp, 2);
2123 }
2124 }
2125}
2126#endif
2127
12dd36fa 2128#if DEBUG
e79aec29 2129static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2130{
1da177e4
LT
2131 int i;
2132 for (i = 0; i < cachep->num; i++) {
8fea4e96 2133 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2134
2135 if (cachep->flags & SLAB_POISON) {
2136#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2137 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2138 OFF_SLAB(cachep))
b28a02de 2139 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2140 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2141 else
2142 check_poison_obj(cachep, objp);
2143#else
2144 check_poison_obj(cachep, objp);
2145#endif
2146 }
2147 if (cachep->flags & SLAB_RED_ZONE) {
2148 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2149 slab_error(cachep, "start of a freed object "
b28a02de 2150 "was overwritten");
1da177e4
LT
2151 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2152 slab_error(cachep, "end of a freed object "
b28a02de 2153 "was overwritten");
1da177e4 2154 }
1da177e4 2155 }
12dd36fa 2156}
1da177e4 2157#else
e79aec29 2158static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2159{
12dd36fa 2160}
1da177e4
LT
2161#endif
2162
911851e6
RD
2163/**
2164 * slab_destroy - destroy and release all objects in a slab
2165 * @cachep: cache pointer being destroyed
2166 * @slabp: slab pointer being destroyed
2167 *
12dd36fa 2168 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2169 * Before calling the slab must have been unlinked from the cache. The
2170 * cache-lock is not held/needed.
12dd36fa 2171 */
343e0d7a 2172static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2173{
2174 void *addr = slabp->s_mem - slabp->colouroff;
2175
e79aec29 2176 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2177 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2178 struct slab_rcu *slab_rcu;
2179
b28a02de 2180 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2181 slab_rcu->cachep = cachep;
2182 slab_rcu->addr = addr;
2183 call_rcu(&slab_rcu->head, kmem_rcu_free);
2184 } else {
2185 kmem_freepages(cachep, addr);
873623df
IM
2186 if (OFF_SLAB(cachep))
2187 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2188 }
2189}
2190
4d268eba 2191/**
a70773dd
RD
2192 * calculate_slab_order - calculate size (page order) of slabs
2193 * @cachep: pointer to the cache that is being created
2194 * @size: size of objects to be created in this cache.
2195 * @align: required alignment for the objects.
2196 * @flags: slab allocation flags
2197 *
2198 * Also calculates the number of objects per slab.
4d268eba
PE
2199 *
2200 * This could be made much more intelligent. For now, try to avoid using
2201 * high order pages for slabs. When the gfp() functions are more friendly
2202 * towards high-order requests, this should be changed.
2203 */
a737b3e2 2204static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2205 size_t size, size_t align, unsigned long flags)
4d268eba 2206{
b1ab41c4 2207 unsigned long offslab_limit;
4d268eba 2208 size_t left_over = 0;
9888e6fa 2209 int gfporder;
4d268eba 2210
0aa817f0 2211 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2212 unsigned int num;
2213 size_t remainder;
2214
9888e6fa 2215 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2216 if (!num)
2217 continue;
9888e6fa 2218
b1ab41c4
IM
2219 if (flags & CFLGS_OFF_SLAB) {
2220 /*
2221 * Max number of objs-per-slab for caches which
2222 * use off-slab slabs. Needed to avoid a possible
2223 * looping condition in cache_grow().
2224 */
2225 offslab_limit = size - sizeof(struct slab);
2226 offslab_limit /= sizeof(kmem_bufctl_t);
2227
2228 if (num > offslab_limit)
2229 break;
2230 }
4d268eba 2231
9888e6fa 2232 /* Found something acceptable - save it away */
4d268eba 2233 cachep->num = num;
9888e6fa 2234 cachep->gfporder = gfporder;
4d268eba
PE
2235 left_over = remainder;
2236
f78bb8ad
LT
2237 /*
2238 * A VFS-reclaimable slab tends to have most allocations
2239 * as GFP_NOFS and we really don't want to have to be allocating
2240 * higher-order pages when we are unable to shrink dcache.
2241 */
2242 if (flags & SLAB_RECLAIM_ACCOUNT)
2243 break;
2244
4d268eba
PE
2245 /*
2246 * Large number of objects is good, but very large slabs are
2247 * currently bad for the gfp()s.
2248 */
543585cc 2249 if (gfporder >= slab_max_order)
4d268eba
PE
2250 break;
2251
9888e6fa
LT
2252 /*
2253 * Acceptable internal fragmentation?
2254 */
a737b3e2 2255 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2256 break;
2257 }
2258 return left_over;
2259}
2260
83b519e8 2261static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2262{
97d06609 2263 if (slab_state >= FULL)
83b519e8 2264 return enable_cpucache(cachep, gfp);
2ed3a4ef 2265
97d06609 2266 if (slab_state == DOWN) {
f30cf7d1
PE
2267 /*
2268 * Note: the first kmem_cache_create must create the cache
2269 * that's used by kmalloc(24), otherwise the creation of
2270 * further caches will BUG().
2271 */
2272 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2273
2274 /*
2275 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2276 * the first cache, then we need to set up all its list3s,
2277 * otherwise the creation of further caches will BUG().
2278 */
2279 set_up_list3s(cachep, SIZE_AC);
2280 if (INDEX_AC == INDEX_L3)
97d06609 2281 slab_state = PARTIAL_L3;
f30cf7d1 2282 else
97d06609 2283 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2284 } else {
2285 cachep->array[smp_processor_id()] =
83b519e8 2286 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2287
97d06609 2288 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2289 set_up_list3s(cachep, SIZE_L3);
97d06609 2290 slab_state = PARTIAL_L3;
f30cf7d1
PE
2291 } else {
2292 int node;
556a169d 2293 for_each_online_node(node) {
f30cf7d1
PE
2294 cachep->nodelists[node] =
2295 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2296 gfp, node);
f30cf7d1
PE
2297 BUG_ON(!cachep->nodelists[node]);
2298 kmem_list3_init(cachep->nodelists[node]);
2299 }
2300 }
2301 }
7d6e6d09 2302 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2303 jiffies + REAPTIMEOUT_LIST3 +
2304 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2305
2306 cpu_cache_get(cachep)->avail = 0;
2307 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2308 cpu_cache_get(cachep)->batchcount = 1;
2309 cpu_cache_get(cachep)->touched = 0;
2310 cachep->batchcount = 1;
2311 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2312 return 0;
f30cf7d1
PE
2313}
2314
1da177e4 2315/**
039363f3 2316 * __kmem_cache_create - Create a cache.
a755b76a 2317 * @cachep: cache management descriptor
1da177e4 2318 * @flags: SLAB flags
1da177e4
LT
2319 *
2320 * Returns a ptr to the cache on success, NULL on failure.
2321 * Cannot be called within a int, but can be interrupted.
20c2df83 2322 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2323 *
1da177e4
LT
2324 * The flags are
2325 *
2326 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2327 * to catch references to uninitialised memory.
2328 *
2329 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2330 * for buffer overruns.
2331 *
1da177e4
LT
2332 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2333 * cacheline. This can be beneficial if you're counting cycles as closely
2334 * as davem.
2335 */
278b1bb1 2336int
8a13a4cc 2337__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2338{
2339 size_t left_over, slab_size, ralign;
83b519e8 2340 gfp_t gfp;
278b1bb1 2341 int err;
8a13a4cc 2342 size_t size = cachep->size;
1da177e4 2343
1da177e4 2344#if DEBUG
1da177e4
LT
2345#if FORCED_DEBUG
2346 /*
2347 * Enable redzoning and last user accounting, except for caches with
2348 * large objects, if the increased size would increase the object size
2349 * above the next power of two: caches with object sizes just above a
2350 * power of two have a significant amount of internal fragmentation.
2351 */
87a927c7
DW
2352 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2353 2 * sizeof(unsigned long long)))
b28a02de 2354 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2355 if (!(flags & SLAB_DESTROY_BY_RCU))
2356 flags |= SLAB_POISON;
2357#endif
2358 if (flags & SLAB_DESTROY_BY_RCU)
2359 BUG_ON(flags & SLAB_POISON);
2360#endif
1da177e4 2361
a737b3e2
AM
2362 /*
2363 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2364 * unaligned accesses for some archs when redzoning is used, and makes
2365 * sure any on-slab bufctl's are also correctly aligned.
2366 */
b28a02de
PE
2367 if (size & (BYTES_PER_WORD - 1)) {
2368 size += (BYTES_PER_WORD - 1);
2369 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2370 }
2371
a737b3e2
AM
2372 /* calculate the final buffer alignment: */
2373
1da177e4
LT
2374 /* 1) arch recommendation: can be overridden for debug */
2375 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2376 /*
2377 * Default alignment: as specified by the arch code. Except if
2378 * an object is really small, then squeeze multiple objects into
2379 * one cacheline.
1da177e4
LT
2380 */
2381 ralign = cache_line_size();
b28a02de 2382 while (size <= ralign / 2)
1da177e4
LT
2383 ralign /= 2;
2384 } else {
2385 ralign = BYTES_PER_WORD;
2386 }
ca5f9703
PE
2387
2388 /*
87a927c7
DW
2389 * Redzoning and user store require word alignment or possibly larger.
2390 * Note this will be overridden by architecture or caller mandated
2391 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2392 */
87a927c7
DW
2393 if (flags & SLAB_STORE_USER)
2394 ralign = BYTES_PER_WORD;
2395
2396 if (flags & SLAB_RED_ZONE) {
2397 ralign = REDZONE_ALIGN;
2398 /* If redzoning, ensure that the second redzone is suitably
2399 * aligned, by adjusting the object size accordingly. */
2400 size += REDZONE_ALIGN - 1;
2401 size &= ~(REDZONE_ALIGN - 1);
2402 }
ca5f9703 2403
a44b56d3 2404 /* 2) arch mandated alignment */
1da177e4
LT
2405 if (ralign < ARCH_SLAB_MINALIGN) {
2406 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2407 }
a44b56d3 2408 /* 3) caller mandated alignment */
8a13a4cc
CL
2409 if (ralign < cachep->align) {
2410 ralign = cachep->align;
1da177e4 2411 }
3ff84a7f
PE
2412 /* disable debug if necessary */
2413 if (ralign > __alignof__(unsigned long long))
a44b56d3 2414 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2415 /*
ca5f9703 2416 * 4) Store it.
1da177e4 2417 */
8a13a4cc 2418 cachep->align = ralign;
1da177e4 2419
83b519e8
PE
2420 if (slab_is_available())
2421 gfp = GFP_KERNEL;
2422 else
2423 gfp = GFP_NOWAIT;
2424
b56efcf0 2425 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1da177e4 2426#if DEBUG
1da177e4 2427
ca5f9703
PE
2428 /*
2429 * Both debugging options require word-alignment which is calculated
2430 * into align above.
2431 */
1da177e4 2432 if (flags & SLAB_RED_ZONE) {
1da177e4 2433 /* add space for red zone words */
3ff84a7f
PE
2434 cachep->obj_offset += sizeof(unsigned long long);
2435 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2436 }
2437 if (flags & SLAB_STORE_USER) {
ca5f9703 2438 /* user store requires one word storage behind the end of
87a927c7
DW
2439 * the real object. But if the second red zone needs to be
2440 * aligned to 64 bits, we must allow that much space.
1da177e4 2441 */
87a927c7
DW
2442 if (flags & SLAB_RED_ZONE)
2443 size += REDZONE_ALIGN;
2444 else
2445 size += BYTES_PER_WORD;
1da177e4
LT
2446 }
2447#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2448 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
608da7e3
TH
2449 && cachep->object_size > cache_line_size()
2450 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2451 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2452 size = PAGE_SIZE;
2453 }
2454#endif
2455#endif
2456
e0a42726
IM
2457 /*
2458 * Determine if the slab management is 'on' or 'off' slab.
2459 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2460 * it too early on. Always use on-slab management when
2461 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2462 */
e7cb55b9
CM
2463 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2464 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2465 /*
2466 * Size is large, assume best to place the slab management obj
2467 * off-slab (should allow better packing of objs).
2468 */
2469 flags |= CFLGS_OFF_SLAB;
2470
8a13a4cc 2471 size = ALIGN(size, cachep->align);
1da177e4 2472
8a13a4cc 2473 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2474
8a13a4cc 2475 if (!cachep->num)
278b1bb1 2476 return -E2BIG;
1da177e4 2477
b28a02de 2478 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2479 + sizeof(struct slab), cachep->align);
1da177e4
LT
2480
2481 /*
2482 * If the slab has been placed off-slab, and we have enough space then
2483 * move it on-slab. This is at the expense of any extra colouring.
2484 */
2485 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2486 flags &= ~CFLGS_OFF_SLAB;
2487 left_over -= slab_size;
2488 }
2489
2490 if (flags & CFLGS_OFF_SLAB) {
2491 /* really off slab. No need for manual alignment */
b28a02de
PE
2492 slab_size =
2493 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2494
2495#ifdef CONFIG_PAGE_POISONING
2496 /* If we're going to use the generic kernel_map_pages()
2497 * poisoning, then it's going to smash the contents of
2498 * the redzone and userword anyhow, so switch them off.
2499 */
2500 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2501 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2502#endif
1da177e4
LT
2503 }
2504
2505 cachep->colour_off = cache_line_size();
2506 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2507 if (cachep->colour_off < cachep->align)
2508 cachep->colour_off = cachep->align;
b28a02de 2509 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2510 cachep->slab_size = slab_size;
2511 cachep->flags = flags;
a618e89f 2512 cachep->allocflags = 0;
4b51d669 2513 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2514 cachep->allocflags |= GFP_DMA;
3b0efdfa 2515 cachep->size = size;
6a2d7a95 2516 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2517
e5ac9c5a 2518 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2519 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2520 /*
2521 * This is a possibility for one of the malloc_sizes caches.
2522 * But since we go off slab only for object size greater than
2523 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2524 * this should not happen at all.
2525 * But leave a BUG_ON for some lucky dude.
2526 */
6cb8f913 2527 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2528 }
1da177e4 2529
278b1bb1
CL
2530 err = setup_cpu_cache(cachep, gfp);
2531 if (err) {
12c3667f 2532 __kmem_cache_shutdown(cachep);
278b1bb1 2533 return err;
2ed3a4ef 2534 }
1da177e4 2535
83835b3d
PZ
2536 if (flags & SLAB_DEBUG_OBJECTS) {
2537 /*
2538 * Would deadlock through slab_destroy()->call_rcu()->
2539 * debug_object_activate()->kmem_cache_alloc().
2540 */
2541 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2542
2543 slab_set_debugobj_lock_classes(cachep);
2544 }
2545
278b1bb1 2546 return 0;
1da177e4 2547}
1da177e4
LT
2548
2549#if DEBUG
2550static void check_irq_off(void)
2551{
2552 BUG_ON(!irqs_disabled());
2553}
2554
2555static void check_irq_on(void)
2556{
2557 BUG_ON(irqs_disabled());
2558}
2559
343e0d7a 2560static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2561{
2562#ifdef CONFIG_SMP
2563 check_irq_off();
7d6e6d09 2564 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2565#endif
2566}
e498be7d 2567
343e0d7a 2568static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2569{
2570#ifdef CONFIG_SMP
2571 check_irq_off();
2572 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2573#endif
2574}
2575
1da177e4
LT
2576#else
2577#define check_irq_off() do { } while(0)
2578#define check_irq_on() do { } while(0)
2579#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2580#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2581#endif
2582
aab2207c
CL
2583static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2584 struct array_cache *ac,
2585 int force, int node);
2586
1da177e4
LT
2587static void do_drain(void *arg)
2588{
a737b3e2 2589 struct kmem_cache *cachep = arg;
1da177e4 2590 struct array_cache *ac;
7d6e6d09 2591 int node = numa_mem_id();
1da177e4
LT
2592
2593 check_irq_off();
9a2dba4b 2594 ac = cpu_cache_get(cachep);
ff69416e
CL
2595 spin_lock(&cachep->nodelists[node]->list_lock);
2596 free_block(cachep, ac->entry, ac->avail, node);
2597 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2598 ac->avail = 0;
2599}
2600
343e0d7a 2601static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2602{
e498be7d
CL
2603 struct kmem_list3 *l3;
2604 int node;
2605
15c8b6c1 2606 on_each_cpu(do_drain, cachep, 1);
1da177e4 2607 check_irq_on();
b28a02de 2608 for_each_online_node(node) {
e498be7d 2609 l3 = cachep->nodelists[node];
a4523a8b
RD
2610 if (l3 && l3->alien)
2611 drain_alien_cache(cachep, l3->alien);
2612 }
2613
2614 for_each_online_node(node) {
2615 l3 = cachep->nodelists[node];
2616 if (l3)
aab2207c 2617 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2618 }
1da177e4
LT
2619}
2620
ed11d9eb
CL
2621/*
2622 * Remove slabs from the list of free slabs.
2623 * Specify the number of slabs to drain in tofree.
2624 *
2625 * Returns the actual number of slabs released.
2626 */
2627static int drain_freelist(struct kmem_cache *cache,
2628 struct kmem_list3 *l3, int tofree)
1da177e4 2629{
ed11d9eb
CL
2630 struct list_head *p;
2631 int nr_freed;
1da177e4 2632 struct slab *slabp;
1da177e4 2633
ed11d9eb
CL
2634 nr_freed = 0;
2635 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2636
ed11d9eb 2637 spin_lock_irq(&l3->list_lock);
e498be7d 2638 p = l3->slabs_free.prev;
ed11d9eb
CL
2639 if (p == &l3->slabs_free) {
2640 spin_unlock_irq(&l3->list_lock);
2641 goto out;
2642 }
1da177e4 2643
ed11d9eb 2644 slabp = list_entry(p, struct slab, list);
1da177e4 2645#if DEBUG
40094fa6 2646 BUG_ON(slabp->inuse);
1da177e4
LT
2647#endif
2648 list_del(&slabp->list);
ed11d9eb
CL
2649 /*
2650 * Safe to drop the lock. The slab is no longer linked
2651 * to the cache.
2652 */
2653 l3->free_objects -= cache->num;
e498be7d 2654 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2655 slab_destroy(cache, slabp);
2656 nr_freed++;
1da177e4 2657 }
ed11d9eb
CL
2658out:
2659 return nr_freed;
1da177e4
LT
2660}
2661
18004c5d 2662/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2663static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2664{
2665 int ret = 0, i = 0;
2666 struct kmem_list3 *l3;
2667
2668 drain_cpu_caches(cachep);
2669
2670 check_irq_on();
2671 for_each_online_node(i) {
2672 l3 = cachep->nodelists[i];
ed11d9eb
CL
2673 if (!l3)
2674 continue;
2675
2676 drain_freelist(cachep, l3, l3->free_objects);
2677
2678 ret += !list_empty(&l3->slabs_full) ||
2679 !list_empty(&l3->slabs_partial);
e498be7d
CL
2680 }
2681 return (ret ? 1 : 0);
2682}
2683
1da177e4
LT
2684/**
2685 * kmem_cache_shrink - Shrink a cache.
2686 * @cachep: The cache to shrink.
2687 *
2688 * Releases as many slabs as possible for a cache.
2689 * To help debugging, a zero exit status indicates all slabs were released.
2690 */
343e0d7a 2691int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2692{
8f5be20b 2693 int ret;
40094fa6 2694 BUG_ON(!cachep || in_interrupt());
1da177e4 2695
95402b38 2696 get_online_cpus();
18004c5d 2697 mutex_lock(&slab_mutex);
8f5be20b 2698 ret = __cache_shrink(cachep);
18004c5d 2699 mutex_unlock(&slab_mutex);
95402b38 2700 put_online_cpus();
8f5be20b 2701 return ret;
1da177e4
LT
2702}
2703EXPORT_SYMBOL(kmem_cache_shrink);
2704
945cf2b6 2705int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2706{
12c3667f
CL
2707 int i;
2708 struct kmem_list3 *l3;
2709 int rc = __cache_shrink(cachep);
1da177e4 2710
12c3667f
CL
2711 if (rc)
2712 return rc;
1da177e4 2713
12c3667f
CL
2714 for_each_online_cpu(i)
2715 kfree(cachep->array[i]);
1da177e4 2716
12c3667f
CL
2717 /* NUMA: free the list3 structures */
2718 for_each_online_node(i) {
2719 l3 = cachep->nodelists[i];
2720 if (l3) {
2721 kfree(l3->shared);
2722 free_alien_cache(l3->alien);
2723 kfree(l3);
2724 }
2725 }
2726 return 0;
1da177e4 2727}
1da177e4 2728
e5ac9c5a
RT
2729/*
2730 * Get the memory for a slab management obj.
2731 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2732 * always come from malloc_sizes caches. The slab descriptor cannot
2733 * come from the same cache which is getting created because,
2734 * when we are searching for an appropriate cache for these
2735 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2736 * If we are creating a malloc_sizes cache here it would not be visible to
2737 * kmem_find_general_cachep till the initialization is complete.
2738 * Hence we cannot have slabp_cache same as the original cache.
2739 */
343e0d7a 2740static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2741 int colour_off, gfp_t local_flags,
2742 int nodeid)
1da177e4
LT
2743{
2744 struct slab *slabp;
b28a02de 2745
1da177e4
LT
2746 if (OFF_SLAB(cachep)) {
2747 /* Slab management obj is off-slab. */
5b74ada7 2748 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2749 local_flags, nodeid);
d5cff635
CM
2750 /*
2751 * If the first object in the slab is leaked (it's allocated
2752 * but no one has a reference to it), we want to make sure
2753 * kmemleak does not treat the ->s_mem pointer as a reference
2754 * to the object. Otherwise we will not report the leak.
2755 */
c017b4be
CM
2756 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2757 local_flags);
1da177e4
LT
2758 if (!slabp)
2759 return NULL;
2760 } else {
b28a02de 2761 slabp = objp + colour_off;
1da177e4
LT
2762 colour_off += cachep->slab_size;
2763 }
2764 slabp->inuse = 0;
2765 slabp->colouroff = colour_off;
b28a02de 2766 slabp->s_mem = objp + colour_off;
5b74ada7 2767 slabp->nodeid = nodeid;
e51bfd0a 2768 slabp->free = 0;
1da177e4
LT
2769 return slabp;
2770}
2771
2772static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2773{
b28a02de 2774 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2775}
2776
343e0d7a 2777static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2778 struct slab *slabp)
1da177e4
LT
2779{
2780 int i;
2781
2782 for (i = 0; i < cachep->num; i++) {
8fea4e96 2783 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2784#if DEBUG
2785 /* need to poison the objs? */
2786 if (cachep->flags & SLAB_POISON)
2787 poison_obj(cachep, objp, POISON_FREE);
2788 if (cachep->flags & SLAB_STORE_USER)
2789 *dbg_userword(cachep, objp) = NULL;
2790
2791 if (cachep->flags & SLAB_RED_ZONE) {
2792 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2793 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2794 }
2795 /*
a737b3e2
AM
2796 * Constructors are not allowed to allocate memory from the same
2797 * cache which they are a constructor for. Otherwise, deadlock.
2798 * They must also be threaded.
1da177e4
LT
2799 */
2800 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2801 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2802
2803 if (cachep->flags & SLAB_RED_ZONE) {
2804 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2805 slab_error(cachep, "constructor overwrote the"
b28a02de 2806 " end of an object");
1da177e4
LT
2807 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2808 slab_error(cachep, "constructor overwrote the"
b28a02de 2809 " start of an object");
1da177e4 2810 }
3b0efdfa 2811 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2812 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2813 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2814 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2815#else
2816 if (cachep->ctor)
51cc5068 2817 cachep->ctor(objp);
1da177e4 2818#endif
b28a02de 2819 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2820 }
b28a02de 2821 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2822}
2823
343e0d7a 2824static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2825{
4b51d669
CL
2826 if (CONFIG_ZONE_DMA_FLAG) {
2827 if (flags & GFP_DMA)
a618e89f 2828 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2829 else
a618e89f 2830 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2831 }
1da177e4
LT
2832}
2833
a737b3e2
AM
2834static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2835 int nodeid)
78d382d7 2836{
8fea4e96 2837 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2838 kmem_bufctl_t next;
2839
2840 slabp->inuse++;
2841 next = slab_bufctl(slabp)[slabp->free];
2842#if DEBUG
2843 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2844 WARN_ON(slabp->nodeid != nodeid);
2845#endif
2846 slabp->free = next;
2847
2848 return objp;
2849}
2850
a737b3e2
AM
2851static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2852 void *objp, int nodeid)
78d382d7 2853{
8fea4e96 2854 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2855
2856#if DEBUG
2857 /* Verify that the slab belongs to the intended node */
2858 WARN_ON(slabp->nodeid != nodeid);
2859
871751e2 2860 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2861 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2862 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2863 BUG();
2864 }
2865#endif
2866 slab_bufctl(slabp)[objnr] = slabp->free;
2867 slabp->free = objnr;
2868 slabp->inuse--;
2869}
2870
4776874f
PE
2871/*
2872 * Map pages beginning at addr to the given cache and slab. This is required
2873 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2874 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2875 */
2876static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2877 void *addr)
1da177e4 2878{
4776874f 2879 int nr_pages;
1da177e4
LT
2880 struct page *page;
2881
4776874f 2882 page = virt_to_page(addr);
84097518 2883
4776874f 2884 nr_pages = 1;
84097518 2885 if (likely(!PageCompound(page)))
4776874f
PE
2886 nr_pages <<= cache->gfporder;
2887
1da177e4 2888 do {
35026088
CL
2889 page->slab_cache = cache;
2890 page->slab_page = slab;
1da177e4 2891 page++;
4776874f 2892 } while (--nr_pages);
1da177e4
LT
2893}
2894
2895/*
2896 * Grow (by 1) the number of slabs within a cache. This is called by
2897 * kmem_cache_alloc() when there are no active objs left in a cache.
2898 */
3c517a61
CL
2899static int cache_grow(struct kmem_cache *cachep,
2900 gfp_t flags, int nodeid, void *objp)
1da177e4 2901{
b28a02de 2902 struct slab *slabp;
b28a02de
PE
2903 size_t offset;
2904 gfp_t local_flags;
e498be7d 2905 struct kmem_list3 *l3;
1da177e4 2906
a737b3e2
AM
2907 /*
2908 * Be lazy and only check for valid flags here, keeping it out of the
2909 * critical path in kmem_cache_alloc().
1da177e4 2910 */
6cb06229
CL
2911 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2912 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2913
2e1217cf 2914 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2915 check_irq_off();
2e1217cf
RT
2916 l3 = cachep->nodelists[nodeid];
2917 spin_lock(&l3->list_lock);
1da177e4
LT
2918
2919 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2920 offset = l3->colour_next;
2921 l3->colour_next++;
2922 if (l3->colour_next >= cachep->colour)
2923 l3->colour_next = 0;
2924 spin_unlock(&l3->list_lock);
1da177e4 2925
2e1217cf 2926 offset *= cachep->colour_off;
1da177e4
LT
2927
2928 if (local_flags & __GFP_WAIT)
2929 local_irq_enable();
2930
2931 /*
2932 * The test for missing atomic flag is performed here, rather than
2933 * the more obvious place, simply to reduce the critical path length
2934 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2935 * will eventually be caught here (where it matters).
2936 */
2937 kmem_flagcheck(cachep, flags);
2938
a737b3e2
AM
2939 /*
2940 * Get mem for the objs. Attempt to allocate a physical page from
2941 * 'nodeid'.
e498be7d 2942 */
3c517a61 2943 if (!objp)
b8c1c5da 2944 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2945 if (!objp)
1da177e4
LT
2946 goto failed;
2947
2948 /* Get slab management. */
3c517a61 2949 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2950 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2951 if (!slabp)
1da177e4
LT
2952 goto opps1;
2953
4776874f 2954 slab_map_pages(cachep, slabp, objp);
1da177e4 2955
a35afb83 2956 cache_init_objs(cachep, slabp);
1da177e4
LT
2957
2958 if (local_flags & __GFP_WAIT)
2959 local_irq_disable();
2960 check_irq_off();
e498be7d 2961 spin_lock(&l3->list_lock);
1da177e4
LT
2962
2963 /* Make slab active. */
e498be7d 2964 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2965 STATS_INC_GROWN(cachep);
e498be7d
CL
2966 l3->free_objects += cachep->num;
2967 spin_unlock(&l3->list_lock);
1da177e4 2968 return 1;
a737b3e2 2969opps1:
1da177e4 2970 kmem_freepages(cachep, objp);
a737b3e2 2971failed:
1da177e4
LT
2972 if (local_flags & __GFP_WAIT)
2973 local_irq_disable();
2974 return 0;
2975}
2976
2977#if DEBUG
2978
2979/*
2980 * Perform extra freeing checks:
2981 * - detect bad pointers.
2982 * - POISON/RED_ZONE checking
1da177e4
LT
2983 */
2984static void kfree_debugcheck(const void *objp)
2985{
1da177e4
LT
2986 if (!virt_addr_valid(objp)) {
2987 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2988 (unsigned long)objp);
2989 BUG();
1da177e4 2990 }
1da177e4
LT
2991}
2992
58ce1fd5
PE
2993static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2994{
b46b8f19 2995 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2996
2997 redzone1 = *dbg_redzone1(cache, obj);
2998 redzone2 = *dbg_redzone2(cache, obj);
2999
3000 /*
3001 * Redzone is ok.
3002 */
3003 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3004 return;
3005
3006 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3007 slab_error(cache, "double free detected");
3008 else
3009 slab_error(cache, "memory outside object was overwritten");
3010
b46b8f19 3011 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3012 obj, redzone1, redzone2);
3013}
3014
343e0d7a 3015static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3016 unsigned long caller)
1da177e4
LT
3017{
3018 struct page *page;
3019 unsigned int objnr;
3020 struct slab *slabp;
3021
80cbd911
MW
3022 BUG_ON(virt_to_cache(objp) != cachep);
3023
3dafccf2 3024 objp -= obj_offset(cachep);
1da177e4 3025 kfree_debugcheck(objp);
b49af68f 3026 page = virt_to_head_page(objp);
1da177e4 3027
35026088 3028 slabp = page->slab_page;
1da177e4
LT
3029
3030 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3031 verify_redzone_free(cachep, objp);
1da177e4
LT
3032 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3033 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3034 }
3035 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3036 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3037
8fea4e96 3038 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3039
3040 BUG_ON(objnr >= cachep->num);
8fea4e96 3041 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3042
871751e2
AV
3043#ifdef CONFIG_DEBUG_SLAB_LEAK
3044 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3045#endif
1da177e4
LT
3046 if (cachep->flags & SLAB_POISON) {
3047#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3048 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3049 store_stackinfo(cachep, objp, caller);
b28a02de 3050 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3051 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3052 } else {
3053 poison_obj(cachep, objp, POISON_FREE);
3054 }
3055#else
3056 poison_obj(cachep, objp, POISON_FREE);
3057#endif
3058 }
3059 return objp;
3060}
3061
343e0d7a 3062static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3063{
3064 kmem_bufctl_t i;
3065 int entries = 0;
b28a02de 3066
1da177e4
LT
3067 /* Check slab's freelist to see if this obj is there. */
3068 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3069 entries++;
3070 if (entries > cachep->num || i >= cachep->num)
3071 goto bad;
3072 }
3073 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3074bad:
3075 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3076 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3077 cachep->name, cachep->num, slabp, slabp->inuse,
3078 print_tainted());
fdde6abb
SAS
3079 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3080 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3081 1);
1da177e4
LT
3082 BUG();
3083 }
3084}
3085#else
3086#define kfree_debugcheck(x) do { } while(0)
3087#define cache_free_debugcheck(x,objp,z) (objp)
3088#define check_slabp(x,y) do { } while(0)
3089#endif
3090
072bb0aa
MG
3091static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3092 bool force_refill)
1da177e4
LT
3093{
3094 int batchcount;
3095 struct kmem_list3 *l3;
3096 struct array_cache *ac;
1ca4cb24
PE
3097 int node;
3098
1da177e4 3099 check_irq_off();
7d6e6d09 3100 node = numa_mem_id();
072bb0aa
MG
3101 if (unlikely(force_refill))
3102 goto force_grow;
3103retry:
9a2dba4b 3104 ac = cpu_cache_get(cachep);
1da177e4
LT
3105 batchcount = ac->batchcount;
3106 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3107 /*
3108 * If there was little recent activity on this cache, then
3109 * perform only a partial refill. Otherwise we could generate
3110 * refill bouncing.
1da177e4
LT
3111 */
3112 batchcount = BATCHREFILL_LIMIT;
3113 }
1ca4cb24 3114 l3 = cachep->nodelists[node];
e498be7d
CL
3115
3116 BUG_ON(ac->avail > 0 || !l3);
3117 spin_lock(&l3->list_lock);
1da177e4 3118
3ded175a 3119 /* See if we can refill from the shared array */
44b57f1c
NP
3120 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3121 l3->shared->touched = 1;
3ded175a 3122 goto alloc_done;
44b57f1c 3123 }
3ded175a 3124
1da177e4
LT
3125 while (batchcount > 0) {
3126 struct list_head *entry;
3127 struct slab *slabp;
3128 /* Get slab alloc is to come from. */
3129 entry = l3->slabs_partial.next;
3130 if (entry == &l3->slabs_partial) {
3131 l3->free_touched = 1;
3132 entry = l3->slabs_free.next;
3133 if (entry == &l3->slabs_free)
3134 goto must_grow;
3135 }
3136
3137 slabp = list_entry(entry, struct slab, list);
3138 check_slabp(cachep, slabp);
3139 check_spinlock_acquired(cachep);
714b8171
PE
3140
3141 /*
3142 * The slab was either on partial or free list so
3143 * there must be at least one object available for
3144 * allocation.
3145 */
249b9f33 3146 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3147
1da177e4 3148 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3149 STATS_INC_ALLOCED(cachep);
3150 STATS_INC_ACTIVE(cachep);
3151 STATS_SET_HIGH(cachep);
3152
072bb0aa
MG
3153 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3154 node));
1da177e4
LT
3155 }
3156 check_slabp(cachep, slabp);
3157
3158 /* move slabp to correct slabp list: */
3159 list_del(&slabp->list);
3160 if (slabp->free == BUFCTL_END)
3161 list_add(&slabp->list, &l3->slabs_full);
3162 else
3163 list_add(&slabp->list, &l3->slabs_partial);
3164 }
3165
a737b3e2 3166must_grow:
1da177e4 3167 l3->free_objects -= ac->avail;
a737b3e2 3168alloc_done:
e498be7d 3169 spin_unlock(&l3->list_lock);
1da177e4
LT
3170
3171 if (unlikely(!ac->avail)) {
3172 int x;
072bb0aa 3173force_grow:
3c517a61 3174 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3175
a737b3e2 3176 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3177 ac = cpu_cache_get(cachep);
51cd8e6f 3178 node = numa_mem_id();
072bb0aa
MG
3179
3180 /* no objects in sight? abort */
3181 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3182 return NULL;
3183
a737b3e2 3184 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3185 goto retry;
3186 }
3187 ac->touched = 1;
072bb0aa
MG
3188
3189 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3190}
3191
a737b3e2
AM
3192static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3193 gfp_t flags)
1da177e4
LT
3194{
3195 might_sleep_if(flags & __GFP_WAIT);
3196#if DEBUG
3197 kmem_flagcheck(cachep, flags);
3198#endif
3199}
3200
3201#if DEBUG
a737b3e2 3202static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3203 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3204{
b28a02de 3205 if (!objp)
1da177e4 3206 return objp;
b28a02de 3207 if (cachep->flags & SLAB_POISON) {
1da177e4 3208#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3209 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3210 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3211 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3212 else
3213 check_poison_obj(cachep, objp);
3214#else
3215 check_poison_obj(cachep, objp);
3216#endif
3217 poison_obj(cachep, objp, POISON_INUSE);
3218 }
3219 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3220 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3221
3222 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3223 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3224 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3225 slab_error(cachep, "double free, or memory outside"
3226 " object was overwritten");
b28a02de 3227 printk(KERN_ERR
b46b8f19 3228 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3229 objp, *dbg_redzone1(cachep, objp),
3230 *dbg_redzone2(cachep, objp));
1da177e4
LT
3231 }
3232 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3233 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3234 }
871751e2
AV
3235#ifdef CONFIG_DEBUG_SLAB_LEAK
3236 {
3237 struct slab *slabp;
3238 unsigned objnr;
3239
35026088 3240 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3241 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3242 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3243 }
3244#endif
3dafccf2 3245 objp += obj_offset(cachep);
4f104934 3246 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3247 cachep->ctor(objp);
7ea466f2
TH
3248 if (ARCH_SLAB_MINALIGN &&
3249 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3250 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3251 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3252 }
1da177e4
LT
3253 return objp;
3254}
3255#else
3256#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3257#endif
3258
773ff60e 3259static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3260{
9b030cb8 3261 if (cachep == kmem_cache)
773ff60e 3262 return false;
8a8b6502 3263
8c138bc0 3264 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3265}
3266
343e0d7a 3267static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3268{
b28a02de 3269 void *objp;
1da177e4 3270 struct array_cache *ac;
072bb0aa 3271 bool force_refill = false;
1da177e4 3272
5c382300 3273 check_irq_off();
8a8b6502 3274
9a2dba4b 3275 ac = cpu_cache_get(cachep);
1da177e4 3276 if (likely(ac->avail)) {
1da177e4 3277 ac->touched = 1;
072bb0aa
MG
3278 objp = ac_get_obj(cachep, ac, flags, false);
3279
ddbf2e83 3280 /*
072bb0aa
MG
3281 * Allow for the possibility all avail objects are not allowed
3282 * by the current flags
ddbf2e83 3283 */
072bb0aa
MG
3284 if (objp) {
3285 STATS_INC_ALLOCHIT(cachep);
3286 goto out;
3287 }
3288 force_refill = true;
1da177e4 3289 }
072bb0aa
MG
3290
3291 STATS_INC_ALLOCMISS(cachep);
3292 objp = cache_alloc_refill(cachep, flags, force_refill);
3293 /*
3294 * the 'ac' may be updated by cache_alloc_refill(),
3295 * and kmemleak_erase() requires its correct value.
3296 */
3297 ac = cpu_cache_get(cachep);
3298
3299out:
d5cff635
CM
3300 /*
3301 * To avoid a false negative, if an object that is in one of the
3302 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3303 * treat the array pointers as a reference to the object.
3304 */
f3d8b53a
O
3305 if (objp)
3306 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3307 return objp;
3308}
3309
e498be7d 3310#ifdef CONFIG_NUMA
c61afb18 3311/*
b2455396 3312 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3313 *
3314 * If we are in_interrupt, then process context, including cpusets and
3315 * mempolicy, may not apply and should not be used for allocation policy.
3316 */
3317static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3318{
3319 int nid_alloc, nid_here;
3320
765c4507 3321 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3322 return NULL;
7d6e6d09 3323 nid_alloc = nid_here = numa_mem_id();
c61afb18 3324 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3325 nid_alloc = cpuset_slab_spread_node();
c61afb18 3326 else if (current->mempolicy)
e7b691b0 3327 nid_alloc = slab_node();
c61afb18 3328 if (nid_alloc != nid_here)
8b98c169 3329 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3330 return NULL;
3331}
3332
765c4507
CL
3333/*
3334 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3335 * certain node and fall back is permitted. First we scan all the
3336 * available nodelists for available objects. If that fails then we
3337 * perform an allocation without specifying a node. This allows the page
3338 * allocator to do its reclaim / fallback magic. We then insert the
3339 * slab into the proper nodelist and then allocate from it.
765c4507 3340 */
8c8cc2c1 3341static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3342{
8c8cc2c1
PE
3343 struct zonelist *zonelist;
3344 gfp_t local_flags;
dd1a239f 3345 struct zoneref *z;
54a6eb5c
MG
3346 struct zone *zone;
3347 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3348 void *obj = NULL;
3c517a61 3349 int nid;
cc9a6c87 3350 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3351
3352 if (flags & __GFP_THISNODE)
3353 return NULL;
3354
6cb06229 3355 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3356
cc9a6c87
MG
3357retry_cpuset:
3358 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3359 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3360
3c517a61
CL
3361retry:
3362 /*
3363 * Look through allowed nodes for objects available
3364 * from existing per node queues.
3365 */
54a6eb5c
MG
3366 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3367 nid = zone_to_nid(zone);
aedb0eb1 3368
54a6eb5c 3369 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3370 cache->nodelists[nid] &&
481c5346 3371 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3372 obj = ____cache_alloc_node(cache,
3373 flags | GFP_THISNODE, nid);
481c5346
CL
3374 if (obj)
3375 break;
3376 }
3c517a61
CL
3377 }
3378
cfce6604 3379 if (!obj) {
3c517a61
CL
3380 /*
3381 * This allocation will be performed within the constraints
3382 * of the current cpuset / memory policy requirements.
3383 * We may trigger various forms of reclaim on the allowed
3384 * set and go into memory reserves if necessary.
3385 */
dd47ea75
CL
3386 if (local_flags & __GFP_WAIT)
3387 local_irq_enable();
3388 kmem_flagcheck(cache, flags);
7d6e6d09 3389 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3390 if (local_flags & __GFP_WAIT)
3391 local_irq_disable();
3c517a61
CL
3392 if (obj) {
3393 /*
3394 * Insert into the appropriate per node queues
3395 */
3396 nid = page_to_nid(virt_to_page(obj));
3397 if (cache_grow(cache, flags, nid, obj)) {
3398 obj = ____cache_alloc_node(cache,
3399 flags | GFP_THISNODE, nid);
3400 if (!obj)
3401 /*
3402 * Another processor may allocate the
3403 * objects in the slab since we are
3404 * not holding any locks.
3405 */
3406 goto retry;
3407 } else {
b6a60451 3408 /* cache_grow already freed obj */
3c517a61
CL
3409 obj = NULL;
3410 }
3411 }
aedb0eb1 3412 }
cc9a6c87
MG
3413
3414 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3415 goto retry_cpuset;
765c4507
CL
3416 return obj;
3417}
3418
e498be7d
CL
3419/*
3420 * A interface to enable slab creation on nodeid
1da177e4 3421 */
8b98c169 3422static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3423 int nodeid)
e498be7d
CL
3424{
3425 struct list_head *entry;
b28a02de
PE
3426 struct slab *slabp;
3427 struct kmem_list3 *l3;
3428 void *obj;
b28a02de
PE
3429 int x;
3430
3431 l3 = cachep->nodelists[nodeid];
3432 BUG_ON(!l3);
3433
a737b3e2 3434retry:
ca3b9b91 3435 check_irq_off();
b28a02de
PE
3436 spin_lock(&l3->list_lock);
3437 entry = l3->slabs_partial.next;
3438 if (entry == &l3->slabs_partial) {
3439 l3->free_touched = 1;
3440 entry = l3->slabs_free.next;
3441 if (entry == &l3->slabs_free)
3442 goto must_grow;
3443 }
3444
3445 slabp = list_entry(entry, struct slab, list);
3446 check_spinlock_acquired_node(cachep, nodeid);
3447 check_slabp(cachep, slabp);
3448
3449 STATS_INC_NODEALLOCS(cachep);
3450 STATS_INC_ACTIVE(cachep);
3451 STATS_SET_HIGH(cachep);
3452
3453 BUG_ON(slabp->inuse == cachep->num);
3454
78d382d7 3455 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3456 check_slabp(cachep, slabp);
3457 l3->free_objects--;
3458 /* move slabp to correct slabp list: */
3459 list_del(&slabp->list);
3460
a737b3e2 3461 if (slabp->free == BUFCTL_END)
b28a02de 3462 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3463 else
b28a02de 3464 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3465
b28a02de
PE
3466 spin_unlock(&l3->list_lock);
3467 goto done;
e498be7d 3468
a737b3e2 3469must_grow:
b28a02de 3470 spin_unlock(&l3->list_lock);
3c517a61 3471 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3472 if (x)
3473 goto retry;
1da177e4 3474
8c8cc2c1 3475 return fallback_alloc(cachep, flags);
e498be7d 3476
a737b3e2 3477done:
b28a02de 3478 return obj;
e498be7d 3479}
8c8cc2c1
PE
3480
3481/**
3482 * kmem_cache_alloc_node - Allocate an object on the specified node
3483 * @cachep: The cache to allocate from.
3484 * @flags: See kmalloc().
3485 * @nodeid: node number of the target node.
3486 * @caller: return address of caller, used for debug information
3487 *
3488 * Identical to kmem_cache_alloc but it will allocate memory on the given
3489 * node, which can improve the performance for cpu bound structures.
3490 *
3491 * Fallback to other node is possible if __GFP_THISNODE is not set.
3492 */
3493static __always_inline void *
48356303 3494slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3495 unsigned long caller)
8c8cc2c1
PE
3496{
3497 unsigned long save_flags;
3498 void *ptr;
7d6e6d09 3499 int slab_node = numa_mem_id();
8c8cc2c1 3500
dcce284a 3501 flags &= gfp_allowed_mask;
7e85ee0c 3502
cf40bd16
NP
3503 lockdep_trace_alloc(flags);
3504
773ff60e 3505 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3506 return NULL;
3507
8c8cc2c1
PE
3508 cache_alloc_debugcheck_before(cachep, flags);
3509 local_irq_save(save_flags);
3510
eacbbae3 3511 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3512 nodeid = slab_node;
8c8cc2c1
PE
3513
3514 if (unlikely(!cachep->nodelists[nodeid])) {
3515 /* Node not bootstrapped yet */
3516 ptr = fallback_alloc(cachep, flags);
3517 goto out;
3518 }
3519
7d6e6d09 3520 if (nodeid == slab_node) {
8c8cc2c1
PE
3521 /*
3522 * Use the locally cached objects if possible.
3523 * However ____cache_alloc does not allow fallback
3524 * to other nodes. It may fail while we still have
3525 * objects on other nodes available.
3526 */
3527 ptr = ____cache_alloc(cachep, flags);
3528 if (ptr)
3529 goto out;
3530 }
3531 /* ___cache_alloc_node can fall back to other nodes */
3532 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3533 out:
3534 local_irq_restore(save_flags);
3535 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3536 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3537 flags);
8c8cc2c1 3538
c175eea4 3539 if (likely(ptr))
8c138bc0 3540 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3541
d07dbea4 3542 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3543 memset(ptr, 0, cachep->object_size);
d07dbea4 3544
8c8cc2c1
PE
3545 return ptr;
3546}
3547
3548static __always_inline void *
3549__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3550{
3551 void *objp;
3552
3553 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3554 objp = alternate_node_alloc(cache, flags);
3555 if (objp)
3556 goto out;
3557 }
3558 objp = ____cache_alloc(cache, flags);
3559
3560 /*
3561 * We may just have run out of memory on the local node.
3562 * ____cache_alloc_node() knows how to locate memory on other nodes
3563 */
7d6e6d09
LS
3564 if (!objp)
3565 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3566
3567 out:
3568 return objp;
3569}
3570#else
3571
3572static __always_inline void *
3573__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3574{
3575 return ____cache_alloc(cachep, flags);
3576}
3577
3578#endif /* CONFIG_NUMA */
3579
3580static __always_inline void *
48356303 3581slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3582{
3583 unsigned long save_flags;
3584 void *objp;
3585
dcce284a 3586 flags &= gfp_allowed_mask;
7e85ee0c 3587
cf40bd16
NP
3588 lockdep_trace_alloc(flags);
3589
773ff60e 3590 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3591 return NULL;
3592
8c8cc2c1
PE
3593 cache_alloc_debugcheck_before(cachep, flags);
3594 local_irq_save(save_flags);
3595 objp = __do_cache_alloc(cachep, flags);
3596 local_irq_restore(save_flags);
3597 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3598 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3599 flags);
8c8cc2c1
PE
3600 prefetchw(objp);
3601
c175eea4 3602 if (likely(objp))
8c138bc0 3603 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3604
d07dbea4 3605 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3606 memset(objp, 0, cachep->object_size);
d07dbea4 3607
8c8cc2c1
PE
3608 return objp;
3609}
e498be7d
CL
3610
3611/*
3612 * Caller needs to acquire correct kmem_list's list_lock
3613 */
343e0d7a 3614static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3615 int node)
1da177e4
LT
3616{
3617 int i;
e498be7d 3618 struct kmem_list3 *l3;
1da177e4
LT
3619
3620 for (i = 0; i < nr_objects; i++) {
072bb0aa 3621 void *objp;
1da177e4 3622 struct slab *slabp;
1da177e4 3623
072bb0aa
MG
3624 clear_obj_pfmemalloc(&objpp[i]);
3625 objp = objpp[i];
3626
6ed5eb22 3627 slabp = virt_to_slab(objp);
ff69416e 3628 l3 = cachep->nodelists[node];
1da177e4 3629 list_del(&slabp->list);
ff69416e 3630 check_spinlock_acquired_node(cachep, node);
1da177e4 3631 check_slabp(cachep, slabp);
78d382d7 3632 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3633 STATS_DEC_ACTIVE(cachep);
e498be7d 3634 l3->free_objects++;
1da177e4
LT
3635 check_slabp(cachep, slabp);
3636
3637 /* fixup slab chains */
3638 if (slabp->inuse == 0) {
e498be7d
CL
3639 if (l3->free_objects > l3->free_limit) {
3640 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3641 /* No need to drop any previously held
3642 * lock here, even if we have a off-slab slab
3643 * descriptor it is guaranteed to come from
3644 * a different cache, refer to comments before
3645 * alloc_slabmgmt.
3646 */
1da177e4
LT
3647 slab_destroy(cachep, slabp);
3648 } else {
e498be7d 3649 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3650 }
3651 } else {
3652 /* Unconditionally move a slab to the end of the
3653 * partial list on free - maximum time for the
3654 * other objects to be freed, too.
3655 */
e498be7d 3656 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3657 }
3658 }
3659}
3660
343e0d7a 3661static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3662{
3663 int batchcount;
e498be7d 3664 struct kmem_list3 *l3;
7d6e6d09 3665 int node = numa_mem_id();
1da177e4
LT
3666
3667 batchcount = ac->batchcount;
3668#if DEBUG
3669 BUG_ON(!batchcount || batchcount > ac->avail);
3670#endif
3671 check_irq_off();
ff69416e 3672 l3 = cachep->nodelists[node];
873623df 3673 spin_lock(&l3->list_lock);
e498be7d
CL
3674 if (l3->shared) {
3675 struct array_cache *shared_array = l3->shared;
b28a02de 3676 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3677 if (max) {
3678 if (batchcount > max)
3679 batchcount = max;
e498be7d 3680 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3681 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3682 shared_array->avail += batchcount;
3683 goto free_done;
3684 }
3685 }
3686
ff69416e 3687 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3688free_done:
1da177e4
LT
3689#if STATS
3690 {
3691 int i = 0;
3692 struct list_head *p;
3693
e498be7d
CL
3694 p = l3->slabs_free.next;
3695 while (p != &(l3->slabs_free)) {
1da177e4
LT
3696 struct slab *slabp;
3697
3698 slabp = list_entry(p, struct slab, list);
3699 BUG_ON(slabp->inuse);
3700
3701 i++;
3702 p = p->next;
3703 }
3704 STATS_SET_FREEABLE(cachep, i);
3705 }
3706#endif
e498be7d 3707 spin_unlock(&l3->list_lock);
1da177e4 3708 ac->avail -= batchcount;
a737b3e2 3709 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3710}
3711
3712/*
a737b3e2
AM
3713 * Release an obj back to its cache. If the obj has a constructed state, it must
3714 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3715 */
a947eb95 3716static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3717 unsigned long caller)
1da177e4 3718{
9a2dba4b 3719 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3720
3721 check_irq_off();
d5cff635 3722 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3723 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3724
8c138bc0 3725 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3726
1807a1aa
SS
3727 /*
3728 * Skip calling cache_free_alien() when the platform is not numa.
3729 * This will avoid cache misses that happen while accessing slabp (which
3730 * is per page memory reference) to get nodeid. Instead use a global
3731 * variable to skip the call, which is mostly likely to be present in
3732 * the cache.
3733 */
b6e68bc1 3734 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3735 return;
3736
1da177e4
LT
3737 if (likely(ac->avail < ac->limit)) {
3738 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3739 } else {
3740 STATS_INC_FREEMISS(cachep);
3741 cache_flusharray(cachep, ac);
1da177e4 3742 }
42c8c99c 3743
072bb0aa 3744 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3745}
3746
3747/**
3748 * kmem_cache_alloc - Allocate an object
3749 * @cachep: The cache to allocate from.
3750 * @flags: See kmalloc().
3751 *
3752 * Allocate an object from this cache. The flags are only relevant
3753 * if the cache has no available objects.
3754 */
343e0d7a 3755void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3756{
48356303 3757 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3758
ca2b84cb 3759 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3760 cachep->object_size, cachep->size, flags);
36555751
EGM
3761
3762 return ret;
1da177e4
LT
3763}
3764EXPORT_SYMBOL(kmem_cache_alloc);
3765
0f24f128 3766#ifdef CONFIG_TRACING
85beb586 3767void *
4052147c 3768kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3769{
85beb586
SR
3770 void *ret;
3771
48356303 3772 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3773
3774 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3775 size, cachep->size, flags);
85beb586 3776 return ret;
36555751 3777}
85beb586 3778EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3779#endif
3780
1da177e4 3781#ifdef CONFIG_NUMA
8b98c169
CH
3782void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3783{
48356303 3784 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3785
ca2b84cb 3786 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3787 cachep->object_size, cachep->size,
ca2b84cb 3788 flags, nodeid);
36555751
EGM
3789
3790 return ret;
8b98c169 3791}
1da177e4
LT
3792EXPORT_SYMBOL(kmem_cache_alloc_node);
3793
0f24f128 3794#ifdef CONFIG_TRACING
4052147c 3795void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3796 gfp_t flags,
4052147c
EG
3797 int nodeid,
3798 size_t size)
36555751 3799{
85beb586
SR
3800 void *ret;
3801
592f4145 3802 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3803
85beb586 3804 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3805 size, cachep->size,
85beb586
SR
3806 flags, nodeid);
3807 return ret;
36555751 3808}
85beb586 3809EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3810#endif
3811
8b98c169 3812static __always_inline void *
7c0cb9c6 3813__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3814{
343e0d7a 3815 struct kmem_cache *cachep;
97e2bde4
MS
3816
3817 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3818 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3819 return cachep;
4052147c 3820 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3821}
8b98c169 3822
0bb38a5c 3823#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3824void *__kmalloc_node(size_t size, gfp_t flags, int node)
3825{
7c0cb9c6 3826 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3827}
dbe5e69d 3828EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3829
3830void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3831 int node, unsigned long caller)
8b98c169 3832{
7c0cb9c6 3833 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3834}
3835EXPORT_SYMBOL(__kmalloc_node_track_caller);
3836#else
3837void *__kmalloc_node(size_t size, gfp_t flags, int node)
3838{
7c0cb9c6 3839 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3840}
3841EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3842#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3843#endif /* CONFIG_NUMA */
1da177e4
LT
3844
3845/**
800590f5 3846 * __do_kmalloc - allocate memory
1da177e4 3847 * @size: how many bytes of memory are required.
800590f5 3848 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3849 * @caller: function caller for debug tracking of the caller
1da177e4 3850 */
7fd6b141 3851static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3852 unsigned long caller)
1da177e4 3853{
343e0d7a 3854 struct kmem_cache *cachep;
36555751 3855 void *ret;
1da177e4 3856
97e2bde4
MS
3857 /* If you want to save a few bytes .text space: replace
3858 * __ with kmem_.
3859 * Then kmalloc uses the uninlined functions instead of the inline
3860 * functions.
3861 */
3862 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3863 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3864 return cachep;
48356303 3865 ret = slab_alloc(cachep, flags, caller);
36555751 3866
7c0cb9c6 3867 trace_kmalloc(caller, ret,
3b0efdfa 3868 size, cachep->size, flags);
36555751
EGM
3869
3870 return ret;
7fd6b141
PE
3871}
3872
7fd6b141 3873
0bb38a5c 3874#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3875void *__kmalloc(size_t size, gfp_t flags)
3876{
7c0cb9c6 3877 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3878}
3879EXPORT_SYMBOL(__kmalloc);
3880
ce71e27c 3881void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3882{
7c0cb9c6 3883 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3884}
3885EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3886
3887#else
3888void *__kmalloc(size_t size, gfp_t flags)
3889{
7c0cb9c6 3890 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3891}
3892EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3893#endif
3894
1da177e4
LT
3895/**
3896 * kmem_cache_free - Deallocate an object
3897 * @cachep: The cache the allocation was from.
3898 * @objp: The previously allocated object.
3899 *
3900 * Free an object which was previously allocated from this
3901 * cache.
3902 */
343e0d7a 3903void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3904{
3905 unsigned long flags;
3906
3907 local_irq_save(flags);
d97d476b 3908 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3909 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3910 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3911 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3912 local_irq_restore(flags);
36555751 3913
ca2b84cb 3914 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3915}
3916EXPORT_SYMBOL(kmem_cache_free);
3917
1da177e4
LT
3918/**
3919 * kfree - free previously allocated memory
3920 * @objp: pointer returned by kmalloc.
3921 *
80e93eff
PE
3922 * If @objp is NULL, no operation is performed.
3923 *
1da177e4
LT
3924 * Don't free memory not originally allocated by kmalloc()
3925 * or you will run into trouble.
3926 */
3927void kfree(const void *objp)
3928{
343e0d7a 3929 struct kmem_cache *c;
1da177e4
LT
3930 unsigned long flags;
3931
2121db74
PE
3932 trace_kfree(_RET_IP_, objp);
3933
6cb8f913 3934 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3935 return;
3936 local_irq_save(flags);
3937 kfree_debugcheck(objp);
6ed5eb22 3938 c = virt_to_cache(objp);
8c138bc0
CL
3939 debug_check_no_locks_freed(objp, c->object_size);
3940
3941 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3942 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3943 local_irq_restore(flags);
3944}
3945EXPORT_SYMBOL(kfree);
3946
e498be7d 3947/*
183ff22b 3948 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3949 */
83b519e8 3950static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3951{
3952 int node;
3953 struct kmem_list3 *l3;
cafeb02e 3954 struct array_cache *new_shared;
3395ee05 3955 struct array_cache **new_alien = NULL;
e498be7d 3956
9c09a95c 3957 for_each_online_node(node) {
cafeb02e 3958
3395ee05 3959 if (use_alien_caches) {
83b519e8 3960 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3961 if (!new_alien)
3962 goto fail;
3963 }
cafeb02e 3964
63109846
ED
3965 new_shared = NULL;
3966 if (cachep->shared) {
3967 new_shared = alloc_arraycache(node,
0718dc2a 3968 cachep->shared*cachep->batchcount,
83b519e8 3969 0xbaadf00d, gfp);
63109846
ED
3970 if (!new_shared) {
3971 free_alien_cache(new_alien);
3972 goto fail;
3973 }
0718dc2a 3974 }
cafeb02e 3975
a737b3e2
AM
3976 l3 = cachep->nodelists[node];
3977 if (l3) {
cafeb02e
CL
3978 struct array_cache *shared = l3->shared;
3979
e498be7d
CL
3980 spin_lock_irq(&l3->list_lock);
3981
cafeb02e 3982 if (shared)
0718dc2a
CL
3983 free_block(cachep, shared->entry,
3984 shared->avail, node);
e498be7d 3985
cafeb02e
CL
3986 l3->shared = new_shared;
3987 if (!l3->alien) {
e498be7d
CL
3988 l3->alien = new_alien;
3989 new_alien = NULL;
3990 }
b28a02de 3991 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3992 cachep->batchcount + cachep->num;
e498be7d 3993 spin_unlock_irq(&l3->list_lock);
cafeb02e 3994 kfree(shared);
e498be7d
CL
3995 free_alien_cache(new_alien);
3996 continue;
3997 }
83b519e8 3998 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3999 if (!l3) {
4000 free_alien_cache(new_alien);
4001 kfree(new_shared);
e498be7d 4002 goto fail;
0718dc2a 4003 }
e498be7d
CL
4004
4005 kmem_list3_init(l3);
4006 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4007 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4008 l3->shared = new_shared;
e498be7d 4009 l3->alien = new_alien;
b28a02de 4010 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4011 cachep->batchcount + cachep->num;
e498be7d
CL
4012 cachep->nodelists[node] = l3;
4013 }
cafeb02e 4014 return 0;
0718dc2a 4015
a737b3e2 4016fail:
3b0efdfa 4017 if (!cachep->list.next) {
0718dc2a
CL
4018 /* Cache is not active yet. Roll back what we did */
4019 node--;
4020 while (node >= 0) {
4021 if (cachep->nodelists[node]) {
4022 l3 = cachep->nodelists[node];
4023
4024 kfree(l3->shared);
4025 free_alien_cache(l3->alien);
4026 kfree(l3);
4027 cachep->nodelists[node] = NULL;
4028 }
4029 node--;
4030 }
4031 }
cafeb02e 4032 return -ENOMEM;
e498be7d
CL
4033}
4034
1da177e4 4035struct ccupdate_struct {
343e0d7a 4036 struct kmem_cache *cachep;
acfe7d74 4037 struct array_cache *new[0];
1da177e4
LT
4038};
4039
4040static void do_ccupdate_local(void *info)
4041{
a737b3e2 4042 struct ccupdate_struct *new = info;
1da177e4
LT
4043 struct array_cache *old;
4044
4045 check_irq_off();
9a2dba4b 4046 old = cpu_cache_get(new->cachep);
e498be7d 4047
1da177e4
LT
4048 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4049 new->new[smp_processor_id()] = old;
4050}
4051
18004c5d 4052/* Always called with the slab_mutex held */
a737b3e2 4053static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4054 int batchcount, int shared, gfp_t gfp)
1da177e4 4055{
d2e7b7d0 4056 struct ccupdate_struct *new;
2ed3a4ef 4057 int i;
1da177e4 4058
acfe7d74
ED
4059 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4060 gfp);
d2e7b7d0
SS
4061 if (!new)
4062 return -ENOMEM;
4063
e498be7d 4064 for_each_online_cpu(i) {
7d6e6d09 4065 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4066 batchcount, gfp);
d2e7b7d0 4067 if (!new->new[i]) {
b28a02de 4068 for (i--; i >= 0; i--)
d2e7b7d0
SS
4069 kfree(new->new[i]);
4070 kfree(new);
e498be7d 4071 return -ENOMEM;
1da177e4
LT
4072 }
4073 }
d2e7b7d0 4074 new->cachep = cachep;
1da177e4 4075
15c8b6c1 4076 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4077
1da177e4 4078 check_irq_on();
1da177e4
LT
4079 cachep->batchcount = batchcount;
4080 cachep->limit = limit;
e498be7d 4081 cachep->shared = shared;
1da177e4 4082
e498be7d 4083 for_each_online_cpu(i) {
d2e7b7d0 4084 struct array_cache *ccold = new->new[i];
1da177e4
LT
4085 if (!ccold)
4086 continue;
7d6e6d09
LS
4087 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4088 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4089 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4090 kfree(ccold);
4091 }
d2e7b7d0 4092 kfree(new);
83b519e8 4093 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4094}
4095
18004c5d 4096/* Called with slab_mutex held always */
83b519e8 4097static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4098{
4099 int err;
4100 int limit, shared;
4101
a737b3e2
AM
4102 /*
4103 * The head array serves three purposes:
1da177e4
LT
4104 * - create a LIFO ordering, i.e. return objects that are cache-warm
4105 * - reduce the number of spinlock operations.
a737b3e2 4106 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4107 * bufctl chains: array operations are cheaper.
4108 * The numbers are guessed, we should auto-tune as described by
4109 * Bonwick.
4110 */
3b0efdfa 4111 if (cachep->size > 131072)
1da177e4 4112 limit = 1;
3b0efdfa 4113 else if (cachep->size > PAGE_SIZE)
1da177e4 4114 limit = 8;
3b0efdfa 4115 else if (cachep->size > 1024)
1da177e4 4116 limit = 24;
3b0efdfa 4117 else if (cachep->size > 256)
1da177e4
LT
4118 limit = 54;
4119 else
4120 limit = 120;
4121
a737b3e2
AM
4122 /*
4123 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4124 * allocation behaviour: Most allocs on one cpu, most free operations
4125 * on another cpu. For these cases, an efficient object passing between
4126 * cpus is necessary. This is provided by a shared array. The array
4127 * replaces Bonwick's magazine layer.
4128 * On uniprocessor, it's functionally equivalent (but less efficient)
4129 * to a larger limit. Thus disabled by default.
4130 */
4131 shared = 0;
3b0efdfa 4132 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4133 shared = 8;
1da177e4
LT
4134
4135#if DEBUG
a737b3e2
AM
4136 /*
4137 * With debugging enabled, large batchcount lead to excessively long
4138 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4139 */
4140 if (limit > 32)
4141 limit = 32;
4142#endif
83b519e8 4143 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4144 if (err)
4145 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4146 cachep->name, -err);
2ed3a4ef 4147 return err;
1da177e4
LT
4148}
4149
1b55253a
CL
4150/*
4151 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4152 * necessary. Note that the l3 listlock also protects the array_cache
4153 * if drain_array() is used on the shared array.
1b55253a 4154 */
68a1b195 4155static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4156 struct array_cache *ac, int force, int node)
1da177e4
LT
4157{
4158 int tofree;
4159
1b55253a
CL
4160 if (!ac || !ac->avail)
4161 return;
1da177e4
LT
4162 if (ac->touched && !force) {
4163 ac->touched = 0;
b18e7e65 4164 } else {
1b55253a 4165 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4166 if (ac->avail) {
4167 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4168 if (tofree > ac->avail)
4169 tofree = (ac->avail + 1) / 2;
4170 free_block(cachep, ac->entry, tofree, node);
4171 ac->avail -= tofree;
4172 memmove(ac->entry, &(ac->entry[tofree]),
4173 sizeof(void *) * ac->avail);
4174 }
1b55253a 4175 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4176 }
4177}
4178
4179/**
4180 * cache_reap - Reclaim memory from caches.
05fb6bf0 4181 * @w: work descriptor
1da177e4
LT
4182 *
4183 * Called from workqueue/eventd every few seconds.
4184 * Purpose:
4185 * - clear the per-cpu caches for this CPU.
4186 * - return freeable pages to the main free memory pool.
4187 *
a737b3e2
AM
4188 * If we cannot acquire the cache chain mutex then just give up - we'll try
4189 * again on the next iteration.
1da177e4 4190 */
7c5cae36 4191static void cache_reap(struct work_struct *w)
1da177e4 4192{
7a7c381d 4193 struct kmem_cache *searchp;
e498be7d 4194 struct kmem_list3 *l3;
7d6e6d09 4195 int node = numa_mem_id();
bf6aede7 4196 struct delayed_work *work = to_delayed_work(w);
1da177e4 4197
18004c5d 4198 if (!mutex_trylock(&slab_mutex))
1da177e4 4199 /* Give up. Setup the next iteration. */
7c5cae36 4200 goto out;
1da177e4 4201
18004c5d 4202 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4203 check_irq_on();
4204
35386e3b
CL
4205 /*
4206 * We only take the l3 lock if absolutely necessary and we
4207 * have established with reasonable certainty that
4208 * we can do some work if the lock was obtained.
4209 */
aab2207c 4210 l3 = searchp->nodelists[node];
35386e3b 4211
8fce4d8e 4212 reap_alien(searchp, l3);
1da177e4 4213
aab2207c 4214 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4215
35386e3b
CL
4216 /*
4217 * These are racy checks but it does not matter
4218 * if we skip one check or scan twice.
4219 */
e498be7d 4220 if (time_after(l3->next_reap, jiffies))
35386e3b 4221 goto next;
1da177e4 4222
e498be7d 4223 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4224
aab2207c 4225 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4226
ed11d9eb 4227 if (l3->free_touched)
e498be7d 4228 l3->free_touched = 0;
ed11d9eb
CL
4229 else {
4230 int freed;
1da177e4 4231
ed11d9eb
CL
4232 freed = drain_freelist(searchp, l3, (l3->free_limit +
4233 5 * searchp->num - 1) / (5 * searchp->num));
4234 STATS_ADD_REAPED(searchp, freed);
4235 }
35386e3b 4236next:
1da177e4
LT
4237 cond_resched();
4238 }
4239 check_irq_on();
18004c5d 4240 mutex_unlock(&slab_mutex);
8fce4d8e 4241 next_reap_node();
7c5cae36 4242out:
a737b3e2 4243 /* Set up the next iteration */
7c5cae36 4244 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4245}
4246
158a9624 4247#ifdef CONFIG_SLABINFO
0d7561c6 4248void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4249{
b28a02de
PE
4250 struct slab *slabp;
4251 unsigned long active_objs;
4252 unsigned long num_objs;
4253 unsigned long active_slabs = 0;
4254 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4255 const char *name;
1da177e4 4256 char *error = NULL;
e498be7d
CL
4257 int node;
4258 struct kmem_list3 *l3;
1da177e4 4259
1da177e4
LT
4260 active_objs = 0;
4261 num_slabs = 0;
e498be7d
CL
4262 for_each_online_node(node) {
4263 l3 = cachep->nodelists[node];
4264 if (!l3)
4265 continue;
4266
ca3b9b91
RT
4267 check_irq_on();
4268 spin_lock_irq(&l3->list_lock);
e498be7d 4269
7a7c381d 4270 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4271 if (slabp->inuse != cachep->num && !error)
4272 error = "slabs_full accounting error";
4273 active_objs += cachep->num;
4274 active_slabs++;
4275 }
7a7c381d 4276 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4277 if (slabp->inuse == cachep->num && !error)
4278 error = "slabs_partial inuse accounting error";
4279 if (!slabp->inuse && !error)
4280 error = "slabs_partial/inuse accounting error";
4281 active_objs += slabp->inuse;
4282 active_slabs++;
4283 }
7a7c381d 4284 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4285 if (slabp->inuse && !error)
4286 error = "slabs_free/inuse accounting error";
4287 num_slabs++;
4288 }
4289 free_objects += l3->free_objects;
4484ebf1
RT
4290 if (l3->shared)
4291 shared_avail += l3->shared->avail;
e498be7d 4292
ca3b9b91 4293 spin_unlock_irq(&l3->list_lock);
1da177e4 4294 }
b28a02de
PE
4295 num_slabs += active_slabs;
4296 num_objs = num_slabs * cachep->num;
e498be7d 4297 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4298 error = "free_objects accounting error";
4299
b28a02de 4300 name = cachep->name;
1da177e4
LT
4301 if (error)
4302 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4303
0d7561c6
GC
4304 sinfo->active_objs = active_objs;
4305 sinfo->num_objs = num_objs;
4306 sinfo->active_slabs = active_slabs;
4307 sinfo->num_slabs = num_slabs;
4308 sinfo->shared_avail = shared_avail;
4309 sinfo->limit = cachep->limit;
4310 sinfo->batchcount = cachep->batchcount;
4311 sinfo->shared = cachep->shared;
4312 sinfo->objects_per_slab = cachep->num;
4313 sinfo->cache_order = cachep->gfporder;
4314}
4315
4316void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4317{
1da177e4 4318#if STATS
b28a02de 4319 { /* list3 stats */
1da177e4
LT
4320 unsigned long high = cachep->high_mark;
4321 unsigned long allocs = cachep->num_allocations;
4322 unsigned long grown = cachep->grown;
4323 unsigned long reaped = cachep->reaped;
4324 unsigned long errors = cachep->errors;
4325 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4326 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4327 unsigned long node_frees = cachep->node_frees;
fb7faf33 4328 unsigned long overflows = cachep->node_overflow;
1da177e4 4329
e92dd4fd
JP
4330 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4331 "%4lu %4lu %4lu %4lu %4lu",
4332 allocs, high, grown,
4333 reaped, errors, max_freeable, node_allocs,
4334 node_frees, overflows);
1da177e4
LT
4335 }
4336 /* cpu stats */
4337 {
4338 unsigned long allochit = atomic_read(&cachep->allochit);
4339 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4340 unsigned long freehit = atomic_read(&cachep->freehit);
4341 unsigned long freemiss = atomic_read(&cachep->freemiss);
4342
4343 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4344 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4345 }
4346#endif
1da177e4
LT
4347}
4348
1da177e4
LT
4349#define MAX_SLABINFO_WRITE 128
4350/**
4351 * slabinfo_write - Tuning for the slab allocator
4352 * @file: unused
4353 * @buffer: user buffer
4354 * @count: data length
4355 * @ppos: unused
4356 */
b7454ad3 4357ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4358 size_t count, loff_t *ppos)
1da177e4 4359{
b28a02de 4360 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4361 int limit, batchcount, shared, res;
7a7c381d 4362 struct kmem_cache *cachep;
b28a02de 4363
1da177e4
LT
4364 if (count > MAX_SLABINFO_WRITE)
4365 return -EINVAL;
4366 if (copy_from_user(&kbuf, buffer, count))
4367 return -EFAULT;
b28a02de 4368 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4369
4370 tmp = strchr(kbuf, ' ');
4371 if (!tmp)
4372 return -EINVAL;
4373 *tmp = '\0';
4374 tmp++;
4375 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4376 return -EINVAL;
4377
4378 /* Find the cache in the chain of caches. */
18004c5d 4379 mutex_lock(&slab_mutex);
1da177e4 4380 res = -EINVAL;
18004c5d 4381 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4382 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4383 if (limit < 1 || batchcount < 1 ||
4384 batchcount > limit || shared < 0) {
e498be7d 4385 res = 0;
1da177e4 4386 } else {
e498be7d 4387 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4388 batchcount, shared,
4389 GFP_KERNEL);
1da177e4
LT
4390 }
4391 break;
4392 }
4393 }
18004c5d 4394 mutex_unlock(&slab_mutex);
1da177e4
LT
4395 if (res >= 0)
4396 res = count;
4397 return res;
4398}
871751e2
AV
4399
4400#ifdef CONFIG_DEBUG_SLAB_LEAK
4401
4402static void *leaks_start(struct seq_file *m, loff_t *pos)
4403{
18004c5d
CL
4404 mutex_lock(&slab_mutex);
4405 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4406}
4407
4408static inline int add_caller(unsigned long *n, unsigned long v)
4409{
4410 unsigned long *p;
4411 int l;
4412 if (!v)
4413 return 1;
4414 l = n[1];
4415 p = n + 2;
4416 while (l) {
4417 int i = l/2;
4418 unsigned long *q = p + 2 * i;
4419 if (*q == v) {
4420 q[1]++;
4421 return 1;
4422 }
4423 if (*q > v) {
4424 l = i;
4425 } else {
4426 p = q + 2;
4427 l -= i + 1;
4428 }
4429 }
4430 if (++n[1] == n[0])
4431 return 0;
4432 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4433 p[0] = v;
4434 p[1] = 1;
4435 return 1;
4436}
4437
4438static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4439{
4440 void *p;
4441 int i;
4442 if (n[0] == n[1])
4443 return;
3b0efdfa 4444 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4445 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4446 continue;
4447 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4448 return;
4449 }
4450}
4451
4452static void show_symbol(struct seq_file *m, unsigned long address)
4453{
4454#ifdef CONFIG_KALLSYMS
871751e2 4455 unsigned long offset, size;
9281acea 4456 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4457
a5c43dae 4458 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4459 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4460 if (modname[0])
871751e2
AV
4461 seq_printf(m, " [%s]", modname);
4462 return;
4463 }
4464#endif
4465 seq_printf(m, "%p", (void *)address);
4466}
4467
4468static int leaks_show(struct seq_file *m, void *p)
4469{
0672aa7c 4470 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4471 struct slab *slabp;
4472 struct kmem_list3 *l3;
4473 const char *name;
4474 unsigned long *n = m->private;
4475 int node;
4476 int i;
4477
4478 if (!(cachep->flags & SLAB_STORE_USER))
4479 return 0;
4480 if (!(cachep->flags & SLAB_RED_ZONE))
4481 return 0;
4482
4483 /* OK, we can do it */
4484
4485 n[1] = 0;
4486
4487 for_each_online_node(node) {
4488 l3 = cachep->nodelists[node];
4489 if (!l3)
4490 continue;
4491
4492 check_irq_on();
4493 spin_lock_irq(&l3->list_lock);
4494
7a7c381d 4495 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4496 handle_slab(n, cachep, slabp);
7a7c381d 4497 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4498 handle_slab(n, cachep, slabp);
871751e2
AV
4499 spin_unlock_irq(&l3->list_lock);
4500 }
4501 name = cachep->name;
4502 if (n[0] == n[1]) {
4503 /* Increase the buffer size */
18004c5d 4504 mutex_unlock(&slab_mutex);
871751e2
AV
4505 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4506 if (!m->private) {
4507 /* Too bad, we are really out */
4508 m->private = n;
18004c5d 4509 mutex_lock(&slab_mutex);
871751e2
AV
4510 return -ENOMEM;
4511 }
4512 *(unsigned long *)m->private = n[0] * 2;
4513 kfree(n);
18004c5d 4514 mutex_lock(&slab_mutex);
871751e2
AV
4515 /* Now make sure this entry will be retried */
4516 m->count = m->size;
4517 return 0;
4518 }
4519 for (i = 0; i < n[1]; i++) {
4520 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4521 show_symbol(m, n[2*i+2]);
4522 seq_putc(m, '\n');
4523 }
d2e7b7d0 4524
871751e2
AV
4525 return 0;
4526}
4527
b7454ad3
GC
4528static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4529{
4530 return seq_list_next(p, &slab_caches, pos);
4531}
4532
4533static void s_stop(struct seq_file *m, void *p)
4534{
4535 mutex_unlock(&slab_mutex);
4536}
4537
a0ec95a8 4538static const struct seq_operations slabstats_op = {
871751e2
AV
4539 .start = leaks_start,
4540 .next = s_next,
4541 .stop = s_stop,
4542 .show = leaks_show,
4543};
a0ec95a8
AD
4544
4545static int slabstats_open(struct inode *inode, struct file *file)
4546{
4547 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4548 int ret = -ENOMEM;
4549 if (n) {
4550 ret = seq_open(file, &slabstats_op);
4551 if (!ret) {
4552 struct seq_file *m = file->private_data;
4553 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4554 m->private = n;
4555 n = NULL;
4556 }
4557 kfree(n);
4558 }
4559 return ret;
4560}
4561
4562static const struct file_operations proc_slabstats_operations = {
4563 .open = slabstats_open,
4564 .read = seq_read,
4565 .llseek = seq_lseek,
4566 .release = seq_release_private,
4567};
4568#endif
4569
4570static int __init slab_proc_init(void)
4571{
4572#ifdef CONFIG_DEBUG_SLAB_LEAK
4573 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4574#endif
a0ec95a8
AD
4575 return 0;
4576}
4577module_init(slab_proc_init);
1da177e4
LT
4578#endif
4579
00e145b6
MS
4580/**
4581 * ksize - get the actual amount of memory allocated for a given object
4582 * @objp: Pointer to the object
4583 *
4584 * kmalloc may internally round up allocations and return more memory
4585 * than requested. ksize() can be used to determine the actual amount of
4586 * memory allocated. The caller may use this additional memory, even though
4587 * a smaller amount of memory was initially specified with the kmalloc call.
4588 * The caller must guarantee that objp points to a valid object previously
4589 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4590 * must not be freed during the duration of the call.
4591 */
fd76bab2 4592size_t ksize(const void *objp)
1da177e4 4593{
ef8b4520
CL
4594 BUG_ON(!objp);
4595 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4596 return 0;
1da177e4 4597
8c138bc0 4598 return virt_to_cache(objp)->object_size;
1da177e4 4599}
b1aabecd 4600EXPORT_SYMBOL(ksize);