]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/slab.c
slab: Common name for the per node structures
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4 290 */
6744f087 291struct kmem_cache_node {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
556a169d 308#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
6744f087 309static struct kmem_cache_node __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 310#define CACHE_CACHE 0
556a169d
PE
311#define SIZE_AC MAX_NUMNODES
312#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 313
ed11d9eb 314static int drain_freelist(struct kmem_cache *cache,
6744f087 315 struct kmem_cache_node *l3, int tofree);
ed11d9eb
CL
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
83b519e8 318static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e3366016
CL
321struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
322EXPORT_SYMBOL(kmalloc_caches);
323
324#ifdef CONFIG_ZONE_DMA
325struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
326EXPORT_SYMBOL(kmalloc_dma_caches);
327#endif
e498be7d 328
e0a42726
IM
329static int slab_early_init = 1;
330
e3366016 331#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
6744f087 332#define INDEX_L3 kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 333
6744f087 334static void kmem_list3_init(struct kmem_cache_node *parent)
e498be7d
CL
335{
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
2e1217cf 341 parent->colour_next = 0;
e498be7d
CL
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
345}
346
a737b3e2
AM
347#define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
351 } while (0)
352
a737b3e2
AM
353#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
e498be7d
CL
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
1da177e4 359
1da177e4
LT
360#define CFLGS_OFF_SLAB (0x80000000UL)
361#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
362
363#define BATCHREFILL_LIMIT 16
a737b3e2
AM
364/*
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
1da177e4 367 *
dc6f3f27 368 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
369 * which could lock up otherwise freeable slabs.
370 */
371#define REAPTIMEOUT_CPUC (2*HZ)
372#define REAPTIMEOUT_LIST3 (4*HZ)
373
374#if STATS
375#define STATS_INC_ACTIVE(x) ((x)->num_active++)
376#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 379#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
380#define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
1da177e4
LT
385#define STATS_INC_ERR(x) ((x)->errors++)
386#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 387#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 388#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
389#define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
1da177e4
LT
394#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398#else
399#define STATS_INC_ACTIVE(x) do { } while (0)
400#define STATS_DEC_ACTIVE(x) do { } while (0)
401#define STATS_INC_ALLOCED(x) do { } while (0)
402#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 403#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
404#define STATS_SET_HIGH(x) do { } while (0)
405#define STATS_INC_ERR(x) do { } while (0)
406#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 407#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 408#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 409#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
410#define STATS_INC_ALLOCHIT(x) do { } while (0)
411#define STATS_INC_ALLOCMISS(x) do { } while (0)
412#define STATS_INC_FREEHIT(x) do { } while (0)
413#define STATS_INC_FREEMISS(x) do { } while (0)
414#endif
415
416#if DEBUG
1da177e4 417
a737b3e2
AM
418/*
419 * memory layout of objects:
1da177e4 420 * 0 : objp
3dafccf2 421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
3dafccf2 424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 425 * redzone word.
3dafccf2 426 * cachep->obj_offset: The real object.
3b0efdfa
CL
427 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 429 * [BYTES_PER_WORD long]
1da177e4 430 */
343e0d7a 431static int obj_offset(struct kmem_cache *cachep)
1da177e4 432{
3dafccf2 433 return cachep->obj_offset;
1da177e4
LT
434}
435
b46b8f19 436static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
437{
438 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
439 return (unsigned long long*) (objp + obj_offset(cachep) -
440 sizeof(unsigned long long));
1da177e4
LT
441}
442
b46b8f19 443static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
444{
445 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
446 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 447 return (unsigned long long *)(objp + cachep->size -
b46b8f19 448 sizeof(unsigned long long) -
87a927c7 449 REDZONE_ALIGN);
3b0efdfa 450 return (unsigned long long *) (objp + cachep->size -
b46b8f19 451 sizeof(unsigned long long));
1da177e4
LT
452}
453
343e0d7a 454static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
455{
456 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 457 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
458}
459
460#else
461
3dafccf2 462#define obj_offset(x) 0
b46b8f19
DW
463#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
464#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
465#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
466
467#endif
468
1da177e4 469/*
3df1cccd
DR
470 * Do not go above this order unless 0 objects fit into the slab or
471 * overridden on the command line.
1da177e4 472 */
543585cc
DR
473#define SLAB_MAX_ORDER_HI 1
474#define SLAB_MAX_ORDER_LO 0
475static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 476static bool slab_max_order_set __initdata;
1da177e4 477
6ed5eb22
PE
478static inline struct kmem_cache *virt_to_cache(const void *obj)
479{
b49af68f 480 struct page *page = virt_to_head_page(obj);
35026088 481 return page->slab_cache;
6ed5eb22
PE
482}
483
484static inline struct slab *virt_to_slab(const void *obj)
485{
b49af68f 486 struct page *page = virt_to_head_page(obj);
35026088
CL
487
488 VM_BUG_ON(!PageSlab(page));
489 return page->slab_page;
6ed5eb22
PE
490}
491
8fea4e96
PE
492static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
493 unsigned int idx)
494{
3b0efdfa 495 return slab->s_mem + cache->size * idx;
8fea4e96
PE
496}
497
6a2d7a95 498/*
3b0efdfa
CL
499 * We want to avoid an expensive divide : (offset / cache->size)
500 * Using the fact that size is a constant for a particular cache,
501 * we can replace (offset / cache->size) by
6a2d7a95
ED
502 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
503 */
504static inline unsigned int obj_to_index(const struct kmem_cache *cache,
505 const struct slab *slab, void *obj)
8fea4e96 506{
6a2d7a95
ED
507 u32 offset = (obj - slab->s_mem);
508 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
509}
510
1da177e4 511static struct arraycache_init initarray_generic =
b28a02de 512 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
513
514/* internal cache of cache description objs */
9b030cb8 515static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
516 .batchcount = 1,
517 .limit = BOOT_CPUCACHE_ENTRIES,
518 .shared = 1,
3b0efdfa 519 .size = sizeof(struct kmem_cache),
b28a02de 520 .name = "kmem_cache",
1da177e4
LT
521};
522
056c6241
RT
523#define BAD_ALIEN_MAGIC 0x01020304ul
524
f1aaee53
AV
525#ifdef CONFIG_LOCKDEP
526
527/*
528 * Slab sometimes uses the kmalloc slabs to store the slab headers
529 * for other slabs "off slab".
530 * The locking for this is tricky in that it nests within the locks
531 * of all other slabs in a few places; to deal with this special
532 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
533 *
534 * We set lock class for alien array caches which are up during init.
535 * The lock annotation will be lost if all cpus of a node goes down and
536 * then comes back up during hotplug
f1aaee53 537 */
056c6241
RT
538static struct lock_class_key on_slab_l3_key;
539static struct lock_class_key on_slab_alc_key;
540
83835b3d
PZ
541static struct lock_class_key debugobj_l3_key;
542static struct lock_class_key debugobj_alc_key;
543
544static void slab_set_lock_classes(struct kmem_cache *cachep,
545 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
546 int q)
547{
548 struct array_cache **alc;
6744f087 549 struct kmem_cache_node *l3;
83835b3d
PZ
550 int r;
551
552 l3 = cachep->nodelists[q];
553 if (!l3)
554 return;
555
556 lockdep_set_class(&l3->list_lock, l3_key);
557 alc = l3->alien;
558 /*
559 * FIXME: This check for BAD_ALIEN_MAGIC
560 * should go away when common slab code is taught to
561 * work even without alien caches.
562 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
563 * for alloc_alien_cache,
564 */
565 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
566 return;
567 for_each_node(r) {
568 if (alc[r])
569 lockdep_set_class(&alc[r]->lock, alc_key);
570 }
571}
572
573static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
574{
575 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
576}
577
578static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
579{
580 int node;
581
582 for_each_online_node(node)
583 slab_set_debugobj_lock_classes_node(cachep, node);
584}
585
ce79ddc8 586static void init_node_lock_keys(int q)
f1aaee53 587{
e3366016 588 int i;
056c6241 589
97d06609 590 if (slab_state < UP)
ce79ddc8
PE
591 return;
592
e3366016 593 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
6744f087 594 struct kmem_cache_node *l3;
e3366016
CL
595 struct kmem_cache *cache = kmalloc_caches[i];
596
597 if (!cache)
598 continue;
ce79ddc8 599
e3366016
CL
600 l3 = cache->nodelists[q];
601 if (!l3 || OFF_SLAB(cache))
00afa758 602 continue;
83835b3d 603
e3366016 604 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 605 &on_slab_alc_key, q);
f1aaee53
AV
606 }
607}
ce79ddc8 608
6ccfb5bc
GC
609static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
610{
6744f087
CL
611
612 if (!cachep->nodelists[q])
6ccfb5bc
GC
613 return;
614
615 slab_set_lock_classes(cachep, &on_slab_l3_key,
616 &on_slab_alc_key, q);
617}
618
619static inline void on_slab_lock_classes(struct kmem_cache *cachep)
620{
621 int node;
622
623 VM_BUG_ON(OFF_SLAB(cachep));
624 for_each_node(node)
625 on_slab_lock_classes_node(cachep, node);
626}
627
ce79ddc8
PE
628static inline void init_lock_keys(void)
629{
630 int node;
631
632 for_each_node(node)
633 init_node_lock_keys(node);
634}
f1aaee53 635#else
ce79ddc8
PE
636static void init_node_lock_keys(int q)
637{
638}
639
056c6241 640static inline void init_lock_keys(void)
f1aaee53
AV
641{
642}
83835b3d 643
6ccfb5bc
GC
644static inline void on_slab_lock_classes(struct kmem_cache *cachep)
645{
646}
647
648static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
649{
650}
651
83835b3d
PZ
652static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
653{
654}
655
656static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
657{
658}
f1aaee53
AV
659#endif
660
1871e52c 661static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 662
343e0d7a 663static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
664{
665 return cachep->array[smp_processor_id()];
666}
667
a737b3e2
AM
668static inline struct kmem_cache *__find_general_cachep(size_t size,
669 gfp_t gfpflags)
1da177e4 670{
e3366016 671 int i;
1da177e4
LT
672
673#if DEBUG
674 /* This happens if someone tries to call
b28a02de
PE
675 * kmem_cache_create(), or __kmalloc(), before
676 * the generic caches are initialized.
677 */
e3366016 678 BUG_ON(kmalloc_caches[INDEX_AC] == NULL);
1da177e4 679#endif
6cb8f913
CL
680 if (!size)
681 return ZERO_SIZE_PTR;
682
e3366016 683 i = kmalloc_index(size);
1da177e4
LT
684
685 /*
0abf40c1 686 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
687 * has cs_{dma,}cachep==NULL. Thus no special case
688 * for large kmalloc calls required.
689 */
4b51d669 690#ifdef CONFIG_ZONE_DMA
1da177e4 691 if (unlikely(gfpflags & GFP_DMA))
e3366016 692 return kmalloc_dma_caches[i];
4b51d669 693#endif
e3366016 694 return kmalloc_caches[i];
1da177e4
LT
695}
696
b221385b 697static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
698{
699 return __find_general_cachep(size, gfpflags);
700}
97e2bde4 701
fbaccacf 702static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 703{
fbaccacf
SR
704 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
705}
1da177e4 706
a737b3e2
AM
707/*
708 * Calculate the number of objects and left-over bytes for a given buffer size.
709 */
fbaccacf
SR
710static void cache_estimate(unsigned long gfporder, size_t buffer_size,
711 size_t align, int flags, size_t *left_over,
712 unsigned int *num)
713{
714 int nr_objs;
715 size_t mgmt_size;
716 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 717
fbaccacf
SR
718 /*
719 * The slab management structure can be either off the slab or
720 * on it. For the latter case, the memory allocated for a
721 * slab is used for:
722 *
723 * - The struct slab
724 * - One kmem_bufctl_t for each object
725 * - Padding to respect alignment of @align
726 * - @buffer_size bytes for each object
727 *
728 * If the slab management structure is off the slab, then the
729 * alignment will already be calculated into the size. Because
730 * the slabs are all pages aligned, the objects will be at the
731 * correct alignment when allocated.
732 */
733 if (flags & CFLGS_OFF_SLAB) {
734 mgmt_size = 0;
735 nr_objs = slab_size / buffer_size;
736
737 if (nr_objs > SLAB_LIMIT)
738 nr_objs = SLAB_LIMIT;
739 } else {
740 /*
741 * Ignore padding for the initial guess. The padding
742 * is at most @align-1 bytes, and @buffer_size is at
743 * least @align. In the worst case, this result will
744 * be one greater than the number of objects that fit
745 * into the memory allocation when taking the padding
746 * into account.
747 */
748 nr_objs = (slab_size - sizeof(struct slab)) /
749 (buffer_size + sizeof(kmem_bufctl_t));
750
751 /*
752 * This calculated number will be either the right
753 * amount, or one greater than what we want.
754 */
755 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
756 > slab_size)
757 nr_objs--;
758
759 if (nr_objs > SLAB_LIMIT)
760 nr_objs = SLAB_LIMIT;
761
762 mgmt_size = slab_mgmt_size(nr_objs, align);
763 }
764 *num = nr_objs;
765 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
766}
767
f28510d3 768#if DEBUG
d40cee24 769#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 770
a737b3e2
AM
771static void __slab_error(const char *function, struct kmem_cache *cachep,
772 char *msg)
1da177e4
LT
773{
774 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 775 function, cachep->name, msg);
1da177e4 776 dump_stack();
645df230 777 add_taint(TAINT_BAD_PAGE);
1da177e4 778}
f28510d3 779#endif
1da177e4 780
3395ee05
PM
781/*
782 * By default on NUMA we use alien caches to stage the freeing of
783 * objects allocated from other nodes. This causes massive memory
784 * inefficiencies when using fake NUMA setup to split memory into a
785 * large number of small nodes, so it can be disabled on the command
786 * line
787 */
788
789static int use_alien_caches __read_mostly = 1;
790static int __init noaliencache_setup(char *s)
791{
792 use_alien_caches = 0;
793 return 1;
794}
795__setup("noaliencache", noaliencache_setup);
796
3df1cccd
DR
797static int __init slab_max_order_setup(char *str)
798{
799 get_option(&str, &slab_max_order);
800 slab_max_order = slab_max_order < 0 ? 0 :
801 min(slab_max_order, MAX_ORDER - 1);
802 slab_max_order_set = true;
803
804 return 1;
805}
806__setup("slab_max_order=", slab_max_order_setup);
807
8fce4d8e
CL
808#ifdef CONFIG_NUMA
809/*
810 * Special reaping functions for NUMA systems called from cache_reap().
811 * These take care of doing round robin flushing of alien caches (containing
812 * objects freed on different nodes from which they were allocated) and the
813 * flushing of remote pcps by calling drain_node_pages.
814 */
1871e52c 815static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
816
817static void init_reap_node(int cpu)
818{
819 int node;
820
7d6e6d09 821 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 822 if (node == MAX_NUMNODES)
442295c9 823 node = first_node(node_online_map);
8fce4d8e 824
1871e52c 825 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
826}
827
828static void next_reap_node(void)
829{
909ea964 830 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 831
8fce4d8e
CL
832 node = next_node(node, node_online_map);
833 if (unlikely(node >= MAX_NUMNODES))
834 node = first_node(node_online_map);
909ea964 835 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
836}
837
838#else
839#define init_reap_node(cpu) do { } while (0)
840#define next_reap_node(void) do { } while (0)
841#endif
842
1da177e4
LT
843/*
844 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
845 * via the workqueue/eventd.
846 * Add the CPU number into the expiration time to minimize the possibility of
847 * the CPUs getting into lockstep and contending for the global cache chain
848 * lock.
849 */
897e679b 850static void __cpuinit start_cpu_timer(int cpu)
1da177e4 851{
1871e52c 852 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
853
854 /*
855 * When this gets called from do_initcalls via cpucache_init(),
856 * init_workqueues() has already run, so keventd will be setup
857 * at that time.
858 */
52bad64d 859 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 860 init_reap_node(cpu);
203b42f7 861 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
862 schedule_delayed_work_on(cpu, reap_work,
863 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
864 }
865}
866
e498be7d 867static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 868 int batchcount, gfp_t gfp)
1da177e4 869{
b28a02de 870 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
871 struct array_cache *nc = NULL;
872
83b519e8 873 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
874 /*
875 * The array_cache structures contain pointers to free object.
25985edc 876 * However, when such objects are allocated or transferred to another
d5cff635
CM
877 * cache the pointers are not cleared and they could be counted as
878 * valid references during a kmemleak scan. Therefore, kmemleak must
879 * not scan such objects.
880 */
881 kmemleak_no_scan(nc);
1da177e4
LT
882 if (nc) {
883 nc->avail = 0;
884 nc->limit = entries;
885 nc->batchcount = batchcount;
886 nc->touched = 0;
e498be7d 887 spin_lock_init(&nc->lock);
1da177e4
LT
888 }
889 return nc;
890}
891
072bb0aa
MG
892static inline bool is_slab_pfmemalloc(struct slab *slabp)
893{
894 struct page *page = virt_to_page(slabp->s_mem);
895
896 return PageSlabPfmemalloc(page);
897}
898
899/* Clears pfmemalloc_active if no slabs have pfmalloc set */
900static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
901 struct array_cache *ac)
902{
6744f087 903 struct kmem_cache_node *l3 = cachep->nodelists[numa_mem_id()];
072bb0aa
MG
904 struct slab *slabp;
905 unsigned long flags;
906
907 if (!pfmemalloc_active)
908 return;
909
910 spin_lock_irqsave(&l3->list_lock, flags);
911 list_for_each_entry(slabp, &l3->slabs_full, list)
912 if (is_slab_pfmemalloc(slabp))
913 goto out;
914
915 list_for_each_entry(slabp, &l3->slabs_partial, list)
916 if (is_slab_pfmemalloc(slabp))
917 goto out;
918
919 list_for_each_entry(slabp, &l3->slabs_free, list)
920 if (is_slab_pfmemalloc(slabp))
921 goto out;
922
923 pfmemalloc_active = false;
924out:
925 spin_unlock_irqrestore(&l3->list_lock, flags);
926}
927
381760ea 928static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
929 gfp_t flags, bool force_refill)
930{
931 int i;
932 void *objp = ac->entry[--ac->avail];
933
934 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
935 if (unlikely(is_obj_pfmemalloc(objp))) {
6744f087 936 struct kmem_cache_node *l3;
072bb0aa
MG
937
938 if (gfp_pfmemalloc_allowed(flags)) {
939 clear_obj_pfmemalloc(&objp);
940 return objp;
941 }
942
943 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 944 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
945 /* If a !PFMEMALLOC object is found, swap them */
946 if (!is_obj_pfmemalloc(ac->entry[i])) {
947 objp = ac->entry[i];
948 ac->entry[i] = ac->entry[ac->avail];
949 ac->entry[ac->avail] = objp;
950 return objp;
951 }
952 }
953
954 /*
955 * If there are empty slabs on the slabs_free list and we are
956 * being forced to refill the cache, mark this one !pfmemalloc.
957 */
958 l3 = cachep->nodelists[numa_mem_id()];
959 if (!list_empty(&l3->slabs_free) && force_refill) {
960 struct slab *slabp = virt_to_slab(objp);
30c29bea 961 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
962 clear_obj_pfmemalloc(&objp);
963 recheck_pfmemalloc_active(cachep, ac);
964 return objp;
965 }
966
967 /* No !PFMEMALLOC objects available */
968 ac->avail++;
969 objp = NULL;
970 }
971
972 return objp;
973}
974
381760ea
MG
975static inline void *ac_get_obj(struct kmem_cache *cachep,
976 struct array_cache *ac, gfp_t flags, bool force_refill)
977{
978 void *objp;
979
980 if (unlikely(sk_memalloc_socks()))
981 objp = __ac_get_obj(cachep, ac, flags, force_refill);
982 else
983 objp = ac->entry[--ac->avail];
984
985 return objp;
986}
987
988static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
989 void *objp)
990{
991 if (unlikely(pfmemalloc_active)) {
992 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 993 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
994 if (PageSlabPfmemalloc(page))
995 set_obj_pfmemalloc(&objp);
996 }
997
381760ea
MG
998 return objp;
999}
1000
1001static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1002 void *objp)
1003{
1004 if (unlikely(sk_memalloc_socks()))
1005 objp = __ac_put_obj(cachep, ac, objp);
1006
072bb0aa
MG
1007 ac->entry[ac->avail++] = objp;
1008}
1009
3ded175a
CL
1010/*
1011 * Transfer objects in one arraycache to another.
1012 * Locking must be handled by the caller.
1013 *
1014 * Return the number of entries transferred.
1015 */
1016static int transfer_objects(struct array_cache *to,
1017 struct array_cache *from, unsigned int max)
1018{
1019 /* Figure out how many entries to transfer */
732eacc0 1020 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1021
1022 if (!nr)
1023 return 0;
1024
1025 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1026 sizeof(void *) *nr);
1027
1028 from->avail -= nr;
1029 to->avail += nr;
3ded175a
CL
1030 return nr;
1031}
1032
765c4507
CL
1033#ifndef CONFIG_NUMA
1034
1035#define drain_alien_cache(cachep, alien) do { } while (0)
1036#define reap_alien(cachep, l3) do { } while (0)
1037
83b519e8 1038static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1039{
1040 return (struct array_cache **)BAD_ALIEN_MAGIC;
1041}
1042
1043static inline void free_alien_cache(struct array_cache **ac_ptr)
1044{
1045}
1046
1047static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1048{
1049 return 0;
1050}
1051
1052static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1053 gfp_t flags)
1054{
1055 return NULL;
1056}
1057
8b98c169 1058static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1059 gfp_t flags, int nodeid)
1060{
1061 return NULL;
1062}
1063
1064#else /* CONFIG_NUMA */
1065
8b98c169 1066static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1067static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1068
83b519e8 1069static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1070{
1071 struct array_cache **ac_ptr;
8ef82866 1072 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1073 int i;
1074
1075 if (limit > 1)
1076 limit = 12;
f3186a9c 1077 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1078 if (ac_ptr) {
1079 for_each_node(i) {
f3186a9c 1080 if (i == node || !node_online(i))
e498be7d 1081 continue;
83b519e8 1082 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1083 if (!ac_ptr[i]) {
cc550def 1084 for (i--; i >= 0; i--)
e498be7d
CL
1085 kfree(ac_ptr[i]);
1086 kfree(ac_ptr);
1087 return NULL;
1088 }
1089 }
1090 }
1091 return ac_ptr;
1092}
1093
5295a74c 1094static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1095{
1096 int i;
1097
1098 if (!ac_ptr)
1099 return;
e498be7d 1100 for_each_node(i)
b28a02de 1101 kfree(ac_ptr[i]);
e498be7d
CL
1102 kfree(ac_ptr);
1103}
1104
343e0d7a 1105static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1106 struct array_cache *ac, int node)
e498be7d 1107{
6744f087 1108 struct kmem_cache_node *rl3 = cachep->nodelists[node];
e498be7d
CL
1109
1110 if (ac->avail) {
1111 spin_lock(&rl3->list_lock);
e00946fe
CL
1112 /*
1113 * Stuff objects into the remote nodes shared array first.
1114 * That way we could avoid the overhead of putting the objects
1115 * into the free lists and getting them back later.
1116 */
693f7d36
JS
1117 if (rl3->shared)
1118 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1119
ff69416e 1120 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1121 ac->avail = 0;
1122 spin_unlock(&rl3->list_lock);
1123 }
1124}
1125
8fce4d8e
CL
1126/*
1127 * Called from cache_reap() to regularly drain alien caches round robin.
1128 */
6744f087 1129static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *l3)
8fce4d8e 1130{
909ea964 1131 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1132
1133 if (l3->alien) {
1134 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1135
1136 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1137 __drain_alien_cache(cachep, ac, node);
1138 spin_unlock_irq(&ac->lock);
1139 }
1140 }
1141}
1142
a737b3e2
AM
1143static void drain_alien_cache(struct kmem_cache *cachep,
1144 struct array_cache **alien)
e498be7d 1145{
b28a02de 1146 int i = 0;
e498be7d
CL
1147 struct array_cache *ac;
1148 unsigned long flags;
1149
1150 for_each_online_node(i) {
4484ebf1 1151 ac = alien[i];
e498be7d
CL
1152 if (ac) {
1153 spin_lock_irqsave(&ac->lock, flags);
1154 __drain_alien_cache(cachep, ac, i);
1155 spin_unlock_irqrestore(&ac->lock, flags);
1156 }
1157 }
1158}
729bd0b7 1159
873623df 1160static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1161{
1162 struct slab *slabp = virt_to_slab(objp);
1163 int nodeid = slabp->nodeid;
6744f087 1164 struct kmem_cache_node *l3;
729bd0b7 1165 struct array_cache *alien = NULL;
1ca4cb24
PE
1166 int node;
1167
7d6e6d09 1168 node = numa_mem_id();
729bd0b7
PE
1169
1170 /*
1171 * Make sure we are not freeing a object from another node to the array
1172 * cache on this cpu.
1173 */
62918a03 1174 if (likely(slabp->nodeid == node))
729bd0b7
PE
1175 return 0;
1176
1ca4cb24 1177 l3 = cachep->nodelists[node];
729bd0b7
PE
1178 STATS_INC_NODEFREES(cachep);
1179 if (l3->alien && l3->alien[nodeid]) {
1180 alien = l3->alien[nodeid];
873623df 1181 spin_lock(&alien->lock);
729bd0b7
PE
1182 if (unlikely(alien->avail == alien->limit)) {
1183 STATS_INC_ACOVERFLOW(cachep);
1184 __drain_alien_cache(cachep, alien, nodeid);
1185 }
072bb0aa 1186 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1187 spin_unlock(&alien->lock);
1188 } else {
1189 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1190 free_block(cachep, &objp, 1, nodeid);
1191 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1192 }
1193 return 1;
1194}
e498be7d
CL
1195#endif
1196
8f9f8d9e
DR
1197/*
1198 * Allocates and initializes nodelists for a node on each slab cache, used for
1199 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1200 * will be allocated off-node since memory is not yet online for the new node.
1201 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1202 * already in use.
1203 *
18004c5d 1204 * Must hold slab_mutex.
8f9f8d9e
DR
1205 */
1206static int init_cache_nodelists_node(int node)
1207{
1208 struct kmem_cache *cachep;
6744f087
CL
1209 struct kmem_cache_node *l3;
1210 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1211
18004c5d 1212 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1213 /*
1214 * Set up the size64 kmemlist for cpu before we can
1215 * begin anything. Make sure some other cpu on this
1216 * node has not already allocated this
1217 */
1218 if (!cachep->nodelists[node]) {
1219 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1220 if (!l3)
1221 return -ENOMEM;
1222 kmem_list3_init(l3);
1223 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1224 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1225
1226 /*
1227 * The l3s don't come and go as CPUs come and
18004c5d 1228 * go. slab_mutex is sufficient
8f9f8d9e
DR
1229 * protection here.
1230 */
1231 cachep->nodelists[node] = l3;
1232 }
1233
1234 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1235 cachep->nodelists[node]->free_limit =
1236 (1 + nr_cpus_node(node)) *
1237 cachep->batchcount + cachep->num;
1238 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1239 }
1240 return 0;
1241}
1242
fbf1e473
AM
1243static void __cpuinit cpuup_canceled(long cpu)
1244{
1245 struct kmem_cache *cachep;
6744f087 1246 struct kmem_cache_node *l3 = NULL;
7d6e6d09 1247 int node = cpu_to_mem(cpu);
a70f7302 1248 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1249
18004c5d 1250 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1251 struct array_cache *nc;
1252 struct array_cache *shared;
1253 struct array_cache **alien;
fbf1e473 1254
fbf1e473
AM
1255 /* cpu is dead; no one can alloc from it. */
1256 nc = cachep->array[cpu];
1257 cachep->array[cpu] = NULL;
1258 l3 = cachep->nodelists[node];
1259
1260 if (!l3)
1261 goto free_array_cache;
1262
1263 spin_lock_irq(&l3->list_lock);
1264
1265 /* Free limit for this kmem_list3 */
1266 l3->free_limit -= cachep->batchcount;
1267 if (nc)
1268 free_block(cachep, nc->entry, nc->avail, node);
1269
58463c1f 1270 if (!cpumask_empty(mask)) {
fbf1e473
AM
1271 spin_unlock_irq(&l3->list_lock);
1272 goto free_array_cache;
1273 }
1274
1275 shared = l3->shared;
1276 if (shared) {
1277 free_block(cachep, shared->entry,
1278 shared->avail, node);
1279 l3->shared = NULL;
1280 }
1281
1282 alien = l3->alien;
1283 l3->alien = NULL;
1284
1285 spin_unlock_irq(&l3->list_lock);
1286
1287 kfree(shared);
1288 if (alien) {
1289 drain_alien_cache(cachep, alien);
1290 free_alien_cache(alien);
1291 }
1292free_array_cache:
1293 kfree(nc);
1294 }
1295 /*
1296 * In the previous loop, all the objects were freed to
1297 * the respective cache's slabs, now we can go ahead and
1298 * shrink each nodelist to its limit.
1299 */
18004c5d 1300 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1301 l3 = cachep->nodelists[node];
1302 if (!l3)
1303 continue;
1304 drain_freelist(cachep, l3, l3->free_objects);
1305 }
1306}
1307
1308static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1309{
343e0d7a 1310 struct kmem_cache *cachep;
6744f087 1311 struct kmem_cache_node *l3 = NULL;
7d6e6d09 1312 int node = cpu_to_mem(cpu);
8f9f8d9e 1313 int err;
1da177e4 1314
fbf1e473
AM
1315 /*
1316 * We need to do this right in the beginning since
1317 * alloc_arraycache's are going to use this list.
1318 * kmalloc_node allows us to add the slab to the right
1319 * kmem_list3 and not this cpu's kmem_list3
1320 */
8f9f8d9e
DR
1321 err = init_cache_nodelists_node(node);
1322 if (err < 0)
1323 goto bad;
fbf1e473
AM
1324
1325 /*
1326 * Now we can go ahead with allocating the shared arrays and
1327 * array caches
1328 */
18004c5d 1329 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1330 struct array_cache *nc;
1331 struct array_cache *shared = NULL;
1332 struct array_cache **alien = NULL;
1333
1334 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1335 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1336 if (!nc)
1337 goto bad;
1338 if (cachep->shared) {
1339 shared = alloc_arraycache(node,
1340 cachep->shared * cachep->batchcount,
83b519e8 1341 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1342 if (!shared) {
1343 kfree(nc);
1da177e4 1344 goto bad;
12d00f6a 1345 }
fbf1e473
AM
1346 }
1347 if (use_alien_caches) {
83b519e8 1348 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1349 if (!alien) {
1350 kfree(shared);
1351 kfree(nc);
fbf1e473 1352 goto bad;
12d00f6a 1353 }
fbf1e473
AM
1354 }
1355 cachep->array[cpu] = nc;
1356 l3 = cachep->nodelists[node];
1357 BUG_ON(!l3);
1358
1359 spin_lock_irq(&l3->list_lock);
1360 if (!l3->shared) {
1361 /*
1362 * We are serialised from CPU_DEAD or
1363 * CPU_UP_CANCELLED by the cpucontrol lock
1364 */
1365 l3->shared = shared;
1366 shared = NULL;
1367 }
4484ebf1 1368#ifdef CONFIG_NUMA
fbf1e473
AM
1369 if (!l3->alien) {
1370 l3->alien = alien;
1371 alien = NULL;
1da177e4 1372 }
fbf1e473
AM
1373#endif
1374 spin_unlock_irq(&l3->list_lock);
1375 kfree(shared);
1376 free_alien_cache(alien);
83835b3d
PZ
1377 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1378 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1379 else if (!OFF_SLAB(cachep) &&
1380 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1381 on_slab_lock_classes_node(cachep, node);
fbf1e473 1382 }
ce79ddc8
PE
1383 init_node_lock_keys(node);
1384
fbf1e473
AM
1385 return 0;
1386bad:
12d00f6a 1387 cpuup_canceled(cpu);
fbf1e473
AM
1388 return -ENOMEM;
1389}
1390
1391static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1392 unsigned long action, void *hcpu)
1393{
1394 long cpu = (long)hcpu;
1395 int err = 0;
1396
1397 switch (action) {
fbf1e473
AM
1398 case CPU_UP_PREPARE:
1399 case CPU_UP_PREPARE_FROZEN:
18004c5d 1400 mutex_lock(&slab_mutex);
fbf1e473 1401 err = cpuup_prepare(cpu);
18004c5d 1402 mutex_unlock(&slab_mutex);
1da177e4
LT
1403 break;
1404 case CPU_ONLINE:
8bb78442 1405 case CPU_ONLINE_FROZEN:
1da177e4
LT
1406 start_cpu_timer(cpu);
1407 break;
1408#ifdef CONFIG_HOTPLUG_CPU
5830c590 1409 case CPU_DOWN_PREPARE:
8bb78442 1410 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1411 /*
18004c5d 1412 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1413 * held so that if cache_reap() is invoked it cannot do
1414 * anything expensive but will only modify reap_work
1415 * and reschedule the timer.
1416 */
afe2c511 1417 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1418 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1419 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1420 break;
1421 case CPU_DOWN_FAILED:
8bb78442 1422 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1423 start_cpu_timer(cpu);
1424 break;
1da177e4 1425 case CPU_DEAD:
8bb78442 1426 case CPU_DEAD_FROZEN:
4484ebf1
RT
1427 /*
1428 * Even if all the cpus of a node are down, we don't free the
1429 * kmem_list3 of any cache. This to avoid a race between
1430 * cpu_down, and a kmalloc allocation from another cpu for
1431 * memory from the node of the cpu going down. The list3
1432 * structure is usually allocated from kmem_cache_create() and
1433 * gets destroyed at kmem_cache_destroy().
1434 */
183ff22b 1435 /* fall through */
8f5be20b 1436#endif
1da177e4 1437 case CPU_UP_CANCELED:
8bb78442 1438 case CPU_UP_CANCELED_FROZEN:
18004c5d 1439 mutex_lock(&slab_mutex);
fbf1e473 1440 cpuup_canceled(cpu);
18004c5d 1441 mutex_unlock(&slab_mutex);
1da177e4 1442 break;
1da177e4 1443 }
eac40680 1444 return notifier_from_errno(err);
1da177e4
LT
1445}
1446
74b85f37
CS
1447static struct notifier_block __cpuinitdata cpucache_notifier = {
1448 &cpuup_callback, NULL, 0
1449};
1da177e4 1450
8f9f8d9e
DR
1451#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1452/*
1453 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1454 * Returns -EBUSY if all objects cannot be drained so that the node is not
1455 * removed.
1456 *
18004c5d 1457 * Must hold slab_mutex.
8f9f8d9e
DR
1458 */
1459static int __meminit drain_cache_nodelists_node(int node)
1460{
1461 struct kmem_cache *cachep;
1462 int ret = 0;
1463
18004c5d 1464 list_for_each_entry(cachep, &slab_caches, list) {
6744f087 1465 struct kmem_cache_node *l3;
8f9f8d9e
DR
1466
1467 l3 = cachep->nodelists[node];
1468 if (!l3)
1469 continue;
1470
1471 drain_freelist(cachep, l3, l3->free_objects);
1472
1473 if (!list_empty(&l3->slabs_full) ||
1474 !list_empty(&l3->slabs_partial)) {
1475 ret = -EBUSY;
1476 break;
1477 }
1478 }
1479 return ret;
1480}
1481
1482static int __meminit slab_memory_callback(struct notifier_block *self,
1483 unsigned long action, void *arg)
1484{
1485 struct memory_notify *mnb = arg;
1486 int ret = 0;
1487 int nid;
1488
1489 nid = mnb->status_change_nid;
1490 if (nid < 0)
1491 goto out;
1492
1493 switch (action) {
1494 case MEM_GOING_ONLINE:
18004c5d 1495 mutex_lock(&slab_mutex);
8f9f8d9e 1496 ret = init_cache_nodelists_node(nid);
18004c5d 1497 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1498 break;
1499 case MEM_GOING_OFFLINE:
18004c5d 1500 mutex_lock(&slab_mutex);
8f9f8d9e 1501 ret = drain_cache_nodelists_node(nid);
18004c5d 1502 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1503 break;
1504 case MEM_ONLINE:
1505 case MEM_OFFLINE:
1506 case MEM_CANCEL_ONLINE:
1507 case MEM_CANCEL_OFFLINE:
1508 break;
1509 }
1510out:
5fda1bd5 1511 return notifier_from_errno(ret);
8f9f8d9e
DR
1512}
1513#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1514
e498be7d
CL
1515/*
1516 * swap the static kmem_list3 with kmalloced memory
1517 */
6744f087 1518static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1519 int nodeid)
e498be7d 1520{
6744f087 1521 struct kmem_cache_node *ptr;
e498be7d 1522
6744f087 1523 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1524 BUG_ON(!ptr);
1525
6744f087 1526 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1527 /*
1528 * Do not assume that spinlocks can be initialized via memcpy:
1529 */
1530 spin_lock_init(&ptr->list_lock);
1531
e498be7d
CL
1532 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1533 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1534}
1535
556a169d
PE
1536/*
1537 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1538 * size of kmem_list3.
1539 */
1540static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1541{
1542 int node;
1543
1544 for_each_online_node(node) {
1545 cachep->nodelists[node] = &initkmem_list3[index + node];
1546 cachep->nodelists[node]->next_reap = jiffies +
1547 REAPTIMEOUT_LIST3 +
1548 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1549 }
1550}
1551
3c583465
CL
1552/*
1553 * The memory after the last cpu cache pointer is used for the
1554 * the nodelists pointer.
1555 */
1556static void setup_nodelists_pointer(struct kmem_cache *cachep)
1557{
6744f087 1558 cachep->nodelists = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1559}
1560
a737b3e2
AM
1561/*
1562 * Initialisation. Called after the page allocator have been initialised and
1563 * before smp_init().
1da177e4
LT
1564 */
1565void __init kmem_cache_init(void)
1566{
e498be7d
CL
1567 int i;
1568
9b030cb8 1569 kmem_cache = &kmem_cache_boot;
3c583465 1570 setup_nodelists_pointer(kmem_cache);
9b030cb8 1571
b6e68bc1 1572 if (num_possible_nodes() == 1)
62918a03
SS
1573 use_alien_caches = 0;
1574
3c583465 1575 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1576 kmem_list3_init(&initkmem_list3[i]);
3c583465 1577
9b030cb8 1578 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1579
1580 /*
1581 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1582 * page orders on machines with more than 32MB of memory if
1583 * not overridden on the command line.
1da177e4 1584 */
3df1cccd 1585 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1586 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1587
1da177e4
LT
1588 /* Bootstrap is tricky, because several objects are allocated
1589 * from caches that do not exist yet:
9b030cb8
CL
1590 * 1) initialize the kmem_cache cache: it contains the struct
1591 * kmem_cache structures of all caches, except kmem_cache itself:
1592 * kmem_cache is statically allocated.
e498be7d
CL
1593 * Initially an __init data area is used for the head array and the
1594 * kmem_list3 structures, it's replaced with a kmalloc allocated
1595 * array at the end of the bootstrap.
1da177e4 1596 * 2) Create the first kmalloc cache.
343e0d7a 1597 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1598 * An __init data area is used for the head array.
1599 * 3) Create the remaining kmalloc caches, with minimally sized
1600 * head arrays.
9b030cb8 1601 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1602 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1603 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1604 * the other cache's with kmalloc allocated memory.
1605 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1606 */
1607
9b030cb8 1608 /* 1) create the kmem_cache */
1da177e4 1609
8da3430d 1610 /*
b56efcf0 1611 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1612 */
2f9baa9f
CL
1613 create_boot_cache(kmem_cache, "kmem_cache",
1614 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1615 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1616 SLAB_HWCACHE_ALIGN);
1617 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1618
1619 /* 2+3) create the kmalloc caches */
1da177e4 1620
a737b3e2
AM
1621 /*
1622 * Initialize the caches that provide memory for the array cache and the
1623 * kmem_list3 structures first. Without this, further allocations will
1624 * bug.
e498be7d
CL
1625 */
1626
e3366016
CL
1627 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1628 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44
CL
1629
1630 if (INDEX_AC != INDEX_L3)
e3366016
CL
1631 kmalloc_caches[INDEX_L3] =
1632 create_kmalloc_cache("kmalloc-l3",
1633 kmalloc_size(INDEX_L3), ARCH_KMALLOC_FLAGS);
e498be7d 1634
e0a42726
IM
1635 slab_early_init = 0;
1636
e3366016
CL
1637 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
1638 size_t cs_size = kmalloc_size(i);
1639
1640 if (cs_size < KMALLOC_MIN_SIZE)
1641 continue;
1642
1643 if (!kmalloc_caches[i]) {
1644 /*
1645 * For performance, all the general caches are L1 aligned.
1646 * This should be particularly beneficial on SMP boxes, as it
1647 * eliminates "false sharing".
1648 * Note for systems short on memory removing the alignment will
1649 * allow tighter packing of the smaller caches.
1650 */
1651 kmalloc_caches[i] = create_kmalloc_cache("kmalloc",
1652 cs_size, ARCH_KMALLOC_FLAGS);
1653 }
45530c44 1654
4b51d669 1655#ifdef CONFIG_ZONE_DMA
e3366016
CL
1656 kmalloc_dma_caches[i] = create_kmalloc_cache(
1657 "kmalloc-dma", cs_size,
45530c44 1658 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
4b51d669 1659#endif
1da177e4
LT
1660 }
1661 /* 4) Replace the bootstrap head arrays */
1662 {
2b2d5493 1663 struct array_cache *ptr;
e498be7d 1664
83b519e8 1665 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1666
9b030cb8 1667 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1668 sizeof(struct arraycache_init));
2b2d5493
IM
1669 /*
1670 * Do not assume that spinlocks can be initialized via memcpy:
1671 */
1672 spin_lock_init(&ptr->lock);
1673
9b030cb8 1674 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1675
83b519e8 1676 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1677
e3366016 1678 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1679 != &initarray_generic.cache);
e3366016 1680 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1681 sizeof(struct arraycache_init));
2b2d5493
IM
1682 /*
1683 * Do not assume that spinlocks can be initialized via memcpy:
1684 */
1685 spin_lock_init(&ptr->lock);
1686
e3366016 1687 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1688 }
e498be7d
CL
1689 /* 5) Replace the bootstrap kmem_list3's */
1690 {
1ca4cb24
PE
1691 int nid;
1692
9c09a95c 1693 for_each_online_node(nid) {
9b030cb8 1694 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1695
e3366016 1696 init_list(kmalloc_caches[INDEX_AC],
1ca4cb24 1697 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1698
1699 if (INDEX_AC != INDEX_L3) {
e3366016 1700 init_list(kmalloc_caches[INDEX_L3],
1ca4cb24 1701 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1702 }
1703 }
1704 }
1da177e4 1705
97d06609 1706 slab_state = UP;
e3366016
CL
1707
1708 /* Create the proper names */
1709 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
1710 char *s;
1711 struct kmem_cache *c = kmalloc_caches[i];
1712
1713 if (!c)
1714 continue;
1715
1716 s = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
1717
1718 BUG_ON(!s);
1719 c->name = s;
1720
1721#ifdef CONFIG_ZONE_DMA
1722 c = kmalloc_dma_caches[i];
1723 BUG_ON(!c);
1724 s = kasprintf(GFP_NOWAIT, "dma-kmalloc-%d", kmalloc_size(i));
1725 BUG_ON(!s);
1726 c->name = s;
1727#endif
1728 }
8429db5c
PE
1729}
1730
1731void __init kmem_cache_init_late(void)
1732{
1733 struct kmem_cache *cachep;
1734
97d06609 1735 slab_state = UP;
52cef189 1736
8429db5c 1737 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1738 mutex_lock(&slab_mutex);
1739 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1740 if (enable_cpucache(cachep, GFP_NOWAIT))
1741 BUG();
18004c5d 1742 mutex_unlock(&slab_mutex);
056c6241 1743
947ca185
MW
1744 /* Annotate slab for lockdep -- annotate the malloc caches */
1745 init_lock_keys();
1746
97d06609
CL
1747 /* Done! */
1748 slab_state = FULL;
1749
a737b3e2
AM
1750 /*
1751 * Register a cpu startup notifier callback that initializes
1752 * cpu_cache_get for all new cpus
1da177e4
LT
1753 */
1754 register_cpu_notifier(&cpucache_notifier);
1da177e4 1755
8f9f8d9e
DR
1756#ifdef CONFIG_NUMA
1757 /*
1758 * Register a memory hotplug callback that initializes and frees
1759 * nodelists.
1760 */
1761 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1762#endif
1763
a737b3e2
AM
1764 /*
1765 * The reap timers are started later, with a module init call: That part
1766 * of the kernel is not yet operational.
1da177e4
LT
1767 */
1768}
1769
1770static int __init cpucache_init(void)
1771{
1772 int cpu;
1773
a737b3e2
AM
1774 /*
1775 * Register the timers that return unneeded pages to the page allocator
1da177e4 1776 */
e498be7d 1777 for_each_online_cpu(cpu)
a737b3e2 1778 start_cpu_timer(cpu);
a164f896
GC
1779
1780 /* Done! */
97d06609 1781 slab_state = FULL;
1da177e4
LT
1782 return 0;
1783}
1da177e4
LT
1784__initcall(cpucache_init);
1785
8bdec192
RA
1786static noinline void
1787slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1788{
6744f087 1789 struct kmem_cache_node *l3;
8bdec192
RA
1790 struct slab *slabp;
1791 unsigned long flags;
1792 int node;
1793
1794 printk(KERN_WARNING
1795 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1796 nodeid, gfpflags);
1797 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1798 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1799
1800 for_each_online_node(node) {
1801 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1802 unsigned long active_slabs = 0, num_slabs = 0;
1803
1804 l3 = cachep->nodelists[node];
1805 if (!l3)
1806 continue;
1807
1808 spin_lock_irqsave(&l3->list_lock, flags);
1809 list_for_each_entry(slabp, &l3->slabs_full, list) {
1810 active_objs += cachep->num;
1811 active_slabs++;
1812 }
1813 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1814 active_objs += slabp->inuse;
1815 active_slabs++;
1816 }
1817 list_for_each_entry(slabp, &l3->slabs_free, list)
1818 num_slabs++;
1819
1820 free_objects += l3->free_objects;
1821 spin_unlock_irqrestore(&l3->list_lock, flags);
1822
1823 num_slabs += active_slabs;
1824 num_objs = num_slabs * cachep->num;
1825 printk(KERN_WARNING
1826 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1827 node, active_slabs, num_slabs, active_objs, num_objs,
1828 free_objects);
1829 }
1830}
1831
1da177e4
LT
1832/*
1833 * Interface to system's page allocator. No need to hold the cache-lock.
1834 *
1835 * If we requested dmaable memory, we will get it. Even if we
1836 * did not request dmaable memory, we might get it, but that
1837 * would be relatively rare and ignorable.
1838 */
343e0d7a 1839static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1840{
1841 struct page *page;
e1b6aa6f 1842 int nr_pages;
1da177e4
LT
1843 int i;
1844
d6fef9da 1845#ifndef CONFIG_MMU
e1b6aa6f
CH
1846 /*
1847 * Nommu uses slab's for process anonymous memory allocations, and thus
1848 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1849 */
e1b6aa6f 1850 flags |= __GFP_COMP;
d6fef9da 1851#endif
765c4507 1852
a618e89f 1853 flags |= cachep->allocflags;
e12ba74d
MG
1854 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1855 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1856
517d0869 1857 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1858 if (!page) {
1859 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1860 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1861 return NULL;
8bdec192 1862 }
1da177e4 1863
b37f1dd0 1864 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1865 if (unlikely(page->pfmemalloc))
1866 pfmemalloc_active = true;
1867
e1b6aa6f 1868 nr_pages = (1 << cachep->gfporder);
1da177e4 1869 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1870 add_zone_page_state(page_zone(page),
1871 NR_SLAB_RECLAIMABLE, nr_pages);
1872 else
1873 add_zone_page_state(page_zone(page),
1874 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1875 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1876 __SetPageSlab(page + i);
c175eea4 1877
072bb0aa
MG
1878 if (page->pfmemalloc)
1879 SetPageSlabPfmemalloc(page + i);
1880 }
1f458cbf 1881 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1882
b1eeab67
VN
1883 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1884 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1885
1886 if (cachep->ctor)
1887 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1888 else
1889 kmemcheck_mark_unallocated_pages(page, nr_pages);
1890 }
c175eea4 1891
e1b6aa6f 1892 return page_address(page);
1da177e4
LT
1893}
1894
1895/*
1896 * Interface to system's page release.
1897 */
343e0d7a 1898static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1899{
b28a02de 1900 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1901 struct page *page = virt_to_page(addr);
1902 const unsigned long nr_freed = i;
1903
b1eeab67 1904 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1905
972d1a7b
CL
1906 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1907 sub_zone_page_state(page_zone(page),
1908 NR_SLAB_RECLAIMABLE, nr_freed);
1909 else
1910 sub_zone_page_state(page_zone(page),
1911 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1912 while (i--) {
f205b2fe 1913 BUG_ON(!PageSlab(page));
072bb0aa 1914 __ClearPageSlabPfmemalloc(page);
f205b2fe 1915 __ClearPageSlab(page);
1da177e4
LT
1916 page++;
1917 }
1f458cbf
GC
1918
1919 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1920 if (current->reclaim_state)
1921 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1922 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1923}
1924
1925static void kmem_rcu_free(struct rcu_head *head)
1926{
b28a02de 1927 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1928 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1929
1930 kmem_freepages(cachep, slab_rcu->addr);
1931 if (OFF_SLAB(cachep))
1932 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1933}
1934
1935#if DEBUG
1936
1937#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1938static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1939 unsigned long caller)
1da177e4 1940{
8c138bc0 1941 int size = cachep->object_size;
1da177e4 1942
3dafccf2 1943 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1944
b28a02de 1945 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1946 return;
1947
b28a02de
PE
1948 *addr++ = 0x12345678;
1949 *addr++ = caller;
1950 *addr++ = smp_processor_id();
1951 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1952 {
1953 unsigned long *sptr = &caller;
1954 unsigned long svalue;
1955
1956 while (!kstack_end(sptr)) {
1957 svalue = *sptr++;
1958 if (kernel_text_address(svalue)) {
b28a02de 1959 *addr++ = svalue;
1da177e4
LT
1960 size -= sizeof(unsigned long);
1961 if (size <= sizeof(unsigned long))
1962 break;
1963 }
1964 }
1965
1966 }
b28a02de 1967 *addr++ = 0x87654321;
1da177e4
LT
1968}
1969#endif
1970
343e0d7a 1971static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1972{
8c138bc0 1973 int size = cachep->object_size;
3dafccf2 1974 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1975
1976 memset(addr, val, size);
b28a02de 1977 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1978}
1979
1980static void dump_line(char *data, int offset, int limit)
1981{
1982 int i;
aa83aa40
DJ
1983 unsigned char error = 0;
1984 int bad_count = 0;
1985
fdde6abb 1986 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1987 for (i = 0; i < limit; i++) {
1988 if (data[offset + i] != POISON_FREE) {
1989 error = data[offset + i];
1990 bad_count++;
1991 }
aa83aa40 1992 }
fdde6abb
SAS
1993 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1994 &data[offset], limit, 1);
aa83aa40
DJ
1995
1996 if (bad_count == 1) {
1997 error ^= POISON_FREE;
1998 if (!(error & (error - 1))) {
1999 printk(KERN_ERR "Single bit error detected. Probably "
2000 "bad RAM.\n");
2001#ifdef CONFIG_X86
2002 printk(KERN_ERR "Run memtest86+ or a similar memory "
2003 "test tool.\n");
2004#else
2005 printk(KERN_ERR "Run a memory test tool.\n");
2006#endif
2007 }
2008 }
1da177e4
LT
2009}
2010#endif
2011
2012#if DEBUG
2013
343e0d7a 2014static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2015{
2016 int i, size;
2017 char *realobj;
2018
2019 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2020 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2021 *dbg_redzone1(cachep, objp),
2022 *dbg_redzone2(cachep, objp));
1da177e4
LT
2023 }
2024
2025 if (cachep->flags & SLAB_STORE_USER) {
2026 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2027 *dbg_userword(cachep, objp));
1da177e4 2028 print_symbol("(%s)",
a737b3e2 2029 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2030 printk("\n");
2031 }
3dafccf2 2032 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2033 size = cachep->object_size;
b28a02de 2034 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2035 int limit;
2036 limit = 16;
b28a02de
PE
2037 if (i + limit > size)
2038 limit = size - i;
1da177e4
LT
2039 dump_line(realobj, i, limit);
2040 }
2041}
2042
343e0d7a 2043static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2044{
2045 char *realobj;
2046 int size, i;
2047 int lines = 0;
2048
3dafccf2 2049 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2050 size = cachep->object_size;
1da177e4 2051
b28a02de 2052 for (i = 0; i < size; i++) {
1da177e4 2053 char exp = POISON_FREE;
b28a02de 2054 if (i == size - 1)
1da177e4
LT
2055 exp = POISON_END;
2056 if (realobj[i] != exp) {
2057 int limit;
2058 /* Mismatch ! */
2059 /* Print header */
2060 if (lines == 0) {
b28a02de 2061 printk(KERN_ERR
face37f5
DJ
2062 "Slab corruption (%s): %s start=%p, len=%d\n",
2063 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2064 print_objinfo(cachep, objp, 0);
2065 }
2066 /* Hexdump the affected line */
b28a02de 2067 i = (i / 16) * 16;
1da177e4 2068 limit = 16;
b28a02de
PE
2069 if (i + limit > size)
2070 limit = size - i;
1da177e4
LT
2071 dump_line(realobj, i, limit);
2072 i += 16;
2073 lines++;
2074 /* Limit to 5 lines */
2075 if (lines > 5)
2076 break;
2077 }
2078 }
2079 if (lines != 0) {
2080 /* Print some data about the neighboring objects, if they
2081 * exist:
2082 */
6ed5eb22 2083 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2084 unsigned int objnr;
1da177e4 2085
8fea4e96 2086 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2087 if (objnr) {
8fea4e96 2088 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2089 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2090 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2091 realobj, size);
1da177e4
LT
2092 print_objinfo(cachep, objp, 2);
2093 }
b28a02de 2094 if (objnr + 1 < cachep->num) {
8fea4e96 2095 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2096 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2097 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2098 realobj, size);
1da177e4
LT
2099 print_objinfo(cachep, objp, 2);
2100 }
2101 }
2102}
2103#endif
2104
12dd36fa 2105#if DEBUG
e79aec29 2106static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2107{
1da177e4
LT
2108 int i;
2109 for (i = 0; i < cachep->num; i++) {
8fea4e96 2110 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2111
2112 if (cachep->flags & SLAB_POISON) {
2113#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2114 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2115 OFF_SLAB(cachep))
b28a02de 2116 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2117 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2118 else
2119 check_poison_obj(cachep, objp);
2120#else
2121 check_poison_obj(cachep, objp);
2122#endif
2123 }
2124 if (cachep->flags & SLAB_RED_ZONE) {
2125 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2126 slab_error(cachep, "start of a freed object "
b28a02de 2127 "was overwritten");
1da177e4
LT
2128 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2129 slab_error(cachep, "end of a freed object "
b28a02de 2130 "was overwritten");
1da177e4 2131 }
1da177e4 2132 }
12dd36fa 2133}
1da177e4 2134#else
e79aec29 2135static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2136{
12dd36fa 2137}
1da177e4
LT
2138#endif
2139
911851e6
RD
2140/**
2141 * slab_destroy - destroy and release all objects in a slab
2142 * @cachep: cache pointer being destroyed
2143 * @slabp: slab pointer being destroyed
2144 *
12dd36fa 2145 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2146 * Before calling the slab must have been unlinked from the cache. The
2147 * cache-lock is not held/needed.
12dd36fa 2148 */
343e0d7a 2149static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2150{
2151 void *addr = slabp->s_mem - slabp->colouroff;
2152
e79aec29 2153 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2154 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2155 struct slab_rcu *slab_rcu;
2156
b28a02de 2157 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2158 slab_rcu->cachep = cachep;
2159 slab_rcu->addr = addr;
2160 call_rcu(&slab_rcu->head, kmem_rcu_free);
2161 } else {
2162 kmem_freepages(cachep, addr);
873623df
IM
2163 if (OFF_SLAB(cachep))
2164 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2165 }
2166}
2167
4d268eba 2168/**
a70773dd
RD
2169 * calculate_slab_order - calculate size (page order) of slabs
2170 * @cachep: pointer to the cache that is being created
2171 * @size: size of objects to be created in this cache.
2172 * @align: required alignment for the objects.
2173 * @flags: slab allocation flags
2174 *
2175 * Also calculates the number of objects per slab.
4d268eba
PE
2176 *
2177 * This could be made much more intelligent. For now, try to avoid using
2178 * high order pages for slabs. When the gfp() functions are more friendly
2179 * towards high-order requests, this should be changed.
2180 */
a737b3e2 2181static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2182 size_t size, size_t align, unsigned long flags)
4d268eba 2183{
b1ab41c4 2184 unsigned long offslab_limit;
4d268eba 2185 size_t left_over = 0;
9888e6fa 2186 int gfporder;
4d268eba 2187
0aa817f0 2188 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2189 unsigned int num;
2190 size_t remainder;
2191
9888e6fa 2192 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2193 if (!num)
2194 continue;
9888e6fa 2195
b1ab41c4
IM
2196 if (flags & CFLGS_OFF_SLAB) {
2197 /*
2198 * Max number of objs-per-slab for caches which
2199 * use off-slab slabs. Needed to avoid a possible
2200 * looping condition in cache_grow().
2201 */
2202 offslab_limit = size - sizeof(struct slab);
2203 offslab_limit /= sizeof(kmem_bufctl_t);
2204
2205 if (num > offslab_limit)
2206 break;
2207 }
4d268eba 2208
9888e6fa 2209 /* Found something acceptable - save it away */
4d268eba 2210 cachep->num = num;
9888e6fa 2211 cachep->gfporder = gfporder;
4d268eba
PE
2212 left_over = remainder;
2213
f78bb8ad
LT
2214 /*
2215 * A VFS-reclaimable slab tends to have most allocations
2216 * as GFP_NOFS and we really don't want to have to be allocating
2217 * higher-order pages when we are unable to shrink dcache.
2218 */
2219 if (flags & SLAB_RECLAIM_ACCOUNT)
2220 break;
2221
4d268eba
PE
2222 /*
2223 * Large number of objects is good, but very large slabs are
2224 * currently bad for the gfp()s.
2225 */
543585cc 2226 if (gfporder >= slab_max_order)
4d268eba
PE
2227 break;
2228
9888e6fa
LT
2229 /*
2230 * Acceptable internal fragmentation?
2231 */
a737b3e2 2232 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2233 break;
2234 }
2235 return left_over;
2236}
2237
83b519e8 2238static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2239{
97d06609 2240 if (slab_state >= FULL)
83b519e8 2241 return enable_cpucache(cachep, gfp);
2ed3a4ef 2242
97d06609 2243 if (slab_state == DOWN) {
f30cf7d1 2244 /*
2f9baa9f
CL
2245 * Note: Creation of first cache (kmem_cache).
2246 * The setup_list3s is taken care
2247 * of by the caller of __kmem_cache_create
2248 */
2249 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2250 slab_state = PARTIAL;
2251 } else if (slab_state == PARTIAL) {
2252 /*
2253 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2254 * that's used by kmalloc(24), otherwise the creation of
2255 * further caches will BUG().
2256 */
2257 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2258
2259 /*
2260 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2f9baa9f 2261 * the second cache, then we need to set up all its list3s,
f30cf7d1
PE
2262 * otherwise the creation of further caches will BUG().
2263 */
2264 set_up_list3s(cachep, SIZE_AC);
2265 if (INDEX_AC == INDEX_L3)
97d06609 2266 slab_state = PARTIAL_L3;
f30cf7d1 2267 else
97d06609 2268 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2269 } else {
2f9baa9f 2270 /* Remaining boot caches */
f30cf7d1 2271 cachep->array[smp_processor_id()] =
83b519e8 2272 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2273
97d06609 2274 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2275 set_up_list3s(cachep, SIZE_L3);
97d06609 2276 slab_state = PARTIAL_L3;
f30cf7d1
PE
2277 } else {
2278 int node;
556a169d 2279 for_each_online_node(node) {
f30cf7d1 2280 cachep->nodelists[node] =
6744f087 2281 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2282 gfp, node);
f30cf7d1
PE
2283 BUG_ON(!cachep->nodelists[node]);
2284 kmem_list3_init(cachep->nodelists[node]);
2285 }
2286 }
2287 }
7d6e6d09 2288 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2289 jiffies + REAPTIMEOUT_LIST3 +
2290 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2291
2292 cpu_cache_get(cachep)->avail = 0;
2293 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2294 cpu_cache_get(cachep)->batchcount = 1;
2295 cpu_cache_get(cachep)->touched = 0;
2296 cachep->batchcount = 1;
2297 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2298 return 0;
f30cf7d1
PE
2299}
2300
1da177e4 2301/**
039363f3 2302 * __kmem_cache_create - Create a cache.
a755b76a 2303 * @cachep: cache management descriptor
1da177e4 2304 * @flags: SLAB flags
1da177e4
LT
2305 *
2306 * Returns a ptr to the cache on success, NULL on failure.
2307 * Cannot be called within a int, but can be interrupted.
20c2df83 2308 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2309 *
1da177e4
LT
2310 * The flags are
2311 *
2312 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2313 * to catch references to uninitialised memory.
2314 *
2315 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2316 * for buffer overruns.
2317 *
1da177e4
LT
2318 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2319 * cacheline. This can be beneficial if you're counting cycles as closely
2320 * as davem.
2321 */
278b1bb1 2322int
8a13a4cc 2323__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2324{
2325 size_t left_over, slab_size, ralign;
83b519e8 2326 gfp_t gfp;
278b1bb1 2327 int err;
8a13a4cc 2328 size_t size = cachep->size;
1da177e4 2329
1da177e4 2330#if DEBUG
1da177e4
LT
2331#if FORCED_DEBUG
2332 /*
2333 * Enable redzoning and last user accounting, except for caches with
2334 * large objects, if the increased size would increase the object size
2335 * above the next power of two: caches with object sizes just above a
2336 * power of two have a significant amount of internal fragmentation.
2337 */
87a927c7
DW
2338 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2339 2 * sizeof(unsigned long long)))
b28a02de 2340 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2341 if (!(flags & SLAB_DESTROY_BY_RCU))
2342 flags |= SLAB_POISON;
2343#endif
2344 if (flags & SLAB_DESTROY_BY_RCU)
2345 BUG_ON(flags & SLAB_POISON);
2346#endif
1da177e4 2347
a737b3e2
AM
2348 /*
2349 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2350 * unaligned accesses for some archs when redzoning is used, and makes
2351 * sure any on-slab bufctl's are also correctly aligned.
2352 */
b28a02de
PE
2353 if (size & (BYTES_PER_WORD - 1)) {
2354 size += (BYTES_PER_WORD - 1);
2355 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2356 }
2357
ca5f9703 2358 /*
87a927c7
DW
2359 * Redzoning and user store require word alignment or possibly larger.
2360 * Note this will be overridden by architecture or caller mandated
2361 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2362 */
87a927c7
DW
2363 if (flags & SLAB_STORE_USER)
2364 ralign = BYTES_PER_WORD;
2365
2366 if (flags & SLAB_RED_ZONE) {
2367 ralign = REDZONE_ALIGN;
2368 /* If redzoning, ensure that the second redzone is suitably
2369 * aligned, by adjusting the object size accordingly. */
2370 size += REDZONE_ALIGN - 1;
2371 size &= ~(REDZONE_ALIGN - 1);
2372 }
ca5f9703 2373
a44b56d3 2374 /* 3) caller mandated alignment */
8a13a4cc
CL
2375 if (ralign < cachep->align) {
2376 ralign = cachep->align;
1da177e4 2377 }
3ff84a7f
PE
2378 /* disable debug if necessary */
2379 if (ralign > __alignof__(unsigned long long))
a44b56d3 2380 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2381 /*
ca5f9703 2382 * 4) Store it.
1da177e4 2383 */
8a13a4cc 2384 cachep->align = ralign;
1da177e4 2385
83b519e8
PE
2386 if (slab_is_available())
2387 gfp = GFP_KERNEL;
2388 else
2389 gfp = GFP_NOWAIT;
2390
3c583465 2391 setup_nodelists_pointer(cachep);
1da177e4 2392#if DEBUG
1da177e4 2393
ca5f9703
PE
2394 /*
2395 * Both debugging options require word-alignment which is calculated
2396 * into align above.
2397 */
1da177e4 2398 if (flags & SLAB_RED_ZONE) {
1da177e4 2399 /* add space for red zone words */
3ff84a7f
PE
2400 cachep->obj_offset += sizeof(unsigned long long);
2401 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2402 }
2403 if (flags & SLAB_STORE_USER) {
ca5f9703 2404 /* user store requires one word storage behind the end of
87a927c7
DW
2405 * the real object. But if the second red zone needs to be
2406 * aligned to 64 bits, we must allow that much space.
1da177e4 2407 */
87a927c7
DW
2408 if (flags & SLAB_RED_ZONE)
2409 size += REDZONE_ALIGN;
2410 else
2411 size += BYTES_PER_WORD;
1da177e4
LT
2412 }
2413#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
e3366016
CL
2414 if (size >= kmalloc_size(INDEX_L3 + 1)
2415 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2416 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2417 size = PAGE_SIZE;
2418 }
2419#endif
2420#endif
2421
e0a42726
IM
2422 /*
2423 * Determine if the slab management is 'on' or 'off' slab.
2424 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2425 * it too early on. Always use on-slab management when
2426 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2427 */
e7cb55b9
CM
2428 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2429 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2430 /*
2431 * Size is large, assume best to place the slab management obj
2432 * off-slab (should allow better packing of objs).
2433 */
2434 flags |= CFLGS_OFF_SLAB;
2435
8a13a4cc 2436 size = ALIGN(size, cachep->align);
1da177e4 2437
8a13a4cc 2438 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2439
8a13a4cc 2440 if (!cachep->num)
278b1bb1 2441 return -E2BIG;
1da177e4 2442
b28a02de 2443 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2444 + sizeof(struct slab), cachep->align);
1da177e4
LT
2445
2446 /*
2447 * If the slab has been placed off-slab, and we have enough space then
2448 * move it on-slab. This is at the expense of any extra colouring.
2449 */
2450 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2451 flags &= ~CFLGS_OFF_SLAB;
2452 left_over -= slab_size;
2453 }
2454
2455 if (flags & CFLGS_OFF_SLAB) {
2456 /* really off slab. No need for manual alignment */
b28a02de
PE
2457 slab_size =
2458 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2459
2460#ifdef CONFIG_PAGE_POISONING
2461 /* If we're going to use the generic kernel_map_pages()
2462 * poisoning, then it's going to smash the contents of
2463 * the redzone and userword anyhow, so switch them off.
2464 */
2465 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2466 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2467#endif
1da177e4
LT
2468 }
2469
2470 cachep->colour_off = cache_line_size();
2471 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2472 if (cachep->colour_off < cachep->align)
2473 cachep->colour_off = cachep->align;
b28a02de 2474 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2475 cachep->slab_size = slab_size;
2476 cachep->flags = flags;
a618e89f 2477 cachep->allocflags = 0;
4b51d669 2478 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2479 cachep->allocflags |= GFP_DMA;
3b0efdfa 2480 cachep->size = size;
6a2d7a95 2481 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2482
e5ac9c5a 2483 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2484 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2485 /*
2486 * This is a possibility for one of the malloc_sizes caches.
2487 * But since we go off slab only for object size greater than
2488 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2489 * this should not happen at all.
2490 * But leave a BUG_ON for some lucky dude.
2491 */
6cb8f913 2492 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2493 }
1da177e4 2494
278b1bb1
CL
2495 err = setup_cpu_cache(cachep, gfp);
2496 if (err) {
12c3667f 2497 __kmem_cache_shutdown(cachep);
278b1bb1 2498 return err;
2ed3a4ef 2499 }
1da177e4 2500
83835b3d
PZ
2501 if (flags & SLAB_DEBUG_OBJECTS) {
2502 /*
2503 * Would deadlock through slab_destroy()->call_rcu()->
2504 * debug_object_activate()->kmem_cache_alloc().
2505 */
2506 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2507
2508 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2509 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2510 on_slab_lock_classes(cachep);
83835b3d 2511
278b1bb1 2512 return 0;
1da177e4 2513}
1da177e4
LT
2514
2515#if DEBUG
2516static void check_irq_off(void)
2517{
2518 BUG_ON(!irqs_disabled());
2519}
2520
2521static void check_irq_on(void)
2522{
2523 BUG_ON(irqs_disabled());
2524}
2525
343e0d7a 2526static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2527{
2528#ifdef CONFIG_SMP
2529 check_irq_off();
7d6e6d09 2530 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2531#endif
2532}
e498be7d 2533
343e0d7a 2534static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2535{
2536#ifdef CONFIG_SMP
2537 check_irq_off();
2538 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2539#endif
2540}
2541
1da177e4
LT
2542#else
2543#define check_irq_off() do { } while(0)
2544#define check_irq_on() do { } while(0)
2545#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2546#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2547#endif
2548
6744f087 2549static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
aab2207c
CL
2550 struct array_cache *ac,
2551 int force, int node);
2552
1da177e4
LT
2553static void do_drain(void *arg)
2554{
a737b3e2 2555 struct kmem_cache *cachep = arg;
1da177e4 2556 struct array_cache *ac;
7d6e6d09 2557 int node = numa_mem_id();
1da177e4
LT
2558
2559 check_irq_off();
9a2dba4b 2560 ac = cpu_cache_get(cachep);
ff69416e
CL
2561 spin_lock(&cachep->nodelists[node]->list_lock);
2562 free_block(cachep, ac->entry, ac->avail, node);
2563 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2564 ac->avail = 0;
2565}
2566
343e0d7a 2567static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2568{
6744f087 2569 struct kmem_cache_node *l3;
e498be7d
CL
2570 int node;
2571
15c8b6c1 2572 on_each_cpu(do_drain, cachep, 1);
1da177e4 2573 check_irq_on();
b28a02de 2574 for_each_online_node(node) {
e498be7d 2575 l3 = cachep->nodelists[node];
a4523a8b
RD
2576 if (l3 && l3->alien)
2577 drain_alien_cache(cachep, l3->alien);
2578 }
2579
2580 for_each_online_node(node) {
2581 l3 = cachep->nodelists[node];
2582 if (l3)
aab2207c 2583 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2584 }
1da177e4
LT
2585}
2586
ed11d9eb
CL
2587/*
2588 * Remove slabs from the list of free slabs.
2589 * Specify the number of slabs to drain in tofree.
2590 *
2591 * Returns the actual number of slabs released.
2592 */
2593static int drain_freelist(struct kmem_cache *cache,
6744f087 2594 struct kmem_cache_node *l3, int tofree)
1da177e4 2595{
ed11d9eb
CL
2596 struct list_head *p;
2597 int nr_freed;
1da177e4 2598 struct slab *slabp;
1da177e4 2599
ed11d9eb
CL
2600 nr_freed = 0;
2601 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2602
ed11d9eb 2603 spin_lock_irq(&l3->list_lock);
e498be7d 2604 p = l3->slabs_free.prev;
ed11d9eb
CL
2605 if (p == &l3->slabs_free) {
2606 spin_unlock_irq(&l3->list_lock);
2607 goto out;
2608 }
1da177e4 2609
ed11d9eb 2610 slabp = list_entry(p, struct slab, list);
1da177e4 2611#if DEBUG
40094fa6 2612 BUG_ON(slabp->inuse);
1da177e4
LT
2613#endif
2614 list_del(&slabp->list);
ed11d9eb
CL
2615 /*
2616 * Safe to drop the lock. The slab is no longer linked
2617 * to the cache.
2618 */
2619 l3->free_objects -= cache->num;
e498be7d 2620 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2621 slab_destroy(cache, slabp);
2622 nr_freed++;
1da177e4 2623 }
ed11d9eb
CL
2624out:
2625 return nr_freed;
1da177e4
LT
2626}
2627
18004c5d 2628/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2629static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2630{
2631 int ret = 0, i = 0;
6744f087 2632 struct kmem_cache_node *l3;
e498be7d
CL
2633
2634 drain_cpu_caches(cachep);
2635
2636 check_irq_on();
2637 for_each_online_node(i) {
2638 l3 = cachep->nodelists[i];
ed11d9eb
CL
2639 if (!l3)
2640 continue;
2641
2642 drain_freelist(cachep, l3, l3->free_objects);
2643
2644 ret += !list_empty(&l3->slabs_full) ||
2645 !list_empty(&l3->slabs_partial);
e498be7d
CL
2646 }
2647 return (ret ? 1 : 0);
2648}
2649
1da177e4
LT
2650/**
2651 * kmem_cache_shrink - Shrink a cache.
2652 * @cachep: The cache to shrink.
2653 *
2654 * Releases as many slabs as possible for a cache.
2655 * To help debugging, a zero exit status indicates all slabs were released.
2656 */
343e0d7a 2657int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2658{
8f5be20b 2659 int ret;
40094fa6 2660 BUG_ON(!cachep || in_interrupt());
1da177e4 2661
95402b38 2662 get_online_cpus();
18004c5d 2663 mutex_lock(&slab_mutex);
8f5be20b 2664 ret = __cache_shrink(cachep);
18004c5d 2665 mutex_unlock(&slab_mutex);
95402b38 2666 put_online_cpus();
8f5be20b 2667 return ret;
1da177e4
LT
2668}
2669EXPORT_SYMBOL(kmem_cache_shrink);
2670
945cf2b6 2671int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2672{
12c3667f 2673 int i;
6744f087 2674 struct kmem_cache_node *l3;
12c3667f 2675 int rc = __cache_shrink(cachep);
1da177e4 2676
12c3667f
CL
2677 if (rc)
2678 return rc;
1da177e4 2679
12c3667f
CL
2680 for_each_online_cpu(i)
2681 kfree(cachep->array[i]);
1da177e4 2682
12c3667f
CL
2683 /* NUMA: free the list3 structures */
2684 for_each_online_node(i) {
2685 l3 = cachep->nodelists[i];
2686 if (l3) {
2687 kfree(l3->shared);
2688 free_alien_cache(l3->alien);
2689 kfree(l3);
2690 }
2691 }
2692 return 0;
1da177e4 2693}
1da177e4 2694
e5ac9c5a
RT
2695/*
2696 * Get the memory for a slab management obj.
2697 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2698 * always come from malloc_sizes caches. The slab descriptor cannot
2699 * come from the same cache which is getting created because,
2700 * when we are searching for an appropriate cache for these
2701 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2702 * If we are creating a malloc_sizes cache here it would not be visible to
2703 * kmem_find_general_cachep till the initialization is complete.
2704 * Hence we cannot have slabp_cache same as the original cache.
2705 */
343e0d7a 2706static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2707 int colour_off, gfp_t local_flags,
2708 int nodeid)
1da177e4
LT
2709{
2710 struct slab *slabp;
b28a02de 2711
1da177e4
LT
2712 if (OFF_SLAB(cachep)) {
2713 /* Slab management obj is off-slab. */
5b74ada7 2714 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2715 local_flags, nodeid);
d5cff635
CM
2716 /*
2717 * If the first object in the slab is leaked (it's allocated
2718 * but no one has a reference to it), we want to make sure
2719 * kmemleak does not treat the ->s_mem pointer as a reference
2720 * to the object. Otherwise we will not report the leak.
2721 */
c017b4be
CM
2722 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2723 local_flags);
1da177e4
LT
2724 if (!slabp)
2725 return NULL;
2726 } else {
b28a02de 2727 slabp = objp + colour_off;
1da177e4
LT
2728 colour_off += cachep->slab_size;
2729 }
2730 slabp->inuse = 0;
2731 slabp->colouroff = colour_off;
b28a02de 2732 slabp->s_mem = objp + colour_off;
5b74ada7 2733 slabp->nodeid = nodeid;
e51bfd0a 2734 slabp->free = 0;
1da177e4
LT
2735 return slabp;
2736}
2737
2738static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2739{
b28a02de 2740 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2741}
2742
343e0d7a 2743static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2744 struct slab *slabp)
1da177e4
LT
2745{
2746 int i;
2747
2748 for (i = 0; i < cachep->num; i++) {
8fea4e96 2749 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2750#if DEBUG
2751 /* need to poison the objs? */
2752 if (cachep->flags & SLAB_POISON)
2753 poison_obj(cachep, objp, POISON_FREE);
2754 if (cachep->flags & SLAB_STORE_USER)
2755 *dbg_userword(cachep, objp) = NULL;
2756
2757 if (cachep->flags & SLAB_RED_ZONE) {
2758 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2759 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2760 }
2761 /*
a737b3e2
AM
2762 * Constructors are not allowed to allocate memory from the same
2763 * cache which they are a constructor for. Otherwise, deadlock.
2764 * They must also be threaded.
1da177e4
LT
2765 */
2766 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2767 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2768
2769 if (cachep->flags & SLAB_RED_ZONE) {
2770 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2771 slab_error(cachep, "constructor overwrote the"
b28a02de 2772 " end of an object");
1da177e4
LT
2773 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2774 slab_error(cachep, "constructor overwrote the"
b28a02de 2775 " start of an object");
1da177e4 2776 }
3b0efdfa 2777 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2778 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2779 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2780 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2781#else
2782 if (cachep->ctor)
51cc5068 2783 cachep->ctor(objp);
1da177e4 2784#endif
b28a02de 2785 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2786 }
b28a02de 2787 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2788}
2789
343e0d7a 2790static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2791{
4b51d669
CL
2792 if (CONFIG_ZONE_DMA_FLAG) {
2793 if (flags & GFP_DMA)
a618e89f 2794 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2795 else
a618e89f 2796 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2797 }
1da177e4
LT
2798}
2799
a737b3e2
AM
2800static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2801 int nodeid)
78d382d7 2802{
8fea4e96 2803 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2804 kmem_bufctl_t next;
2805
2806 slabp->inuse++;
2807 next = slab_bufctl(slabp)[slabp->free];
2808#if DEBUG
2809 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2810 WARN_ON(slabp->nodeid != nodeid);
2811#endif
2812 slabp->free = next;
2813
2814 return objp;
2815}
2816
a737b3e2
AM
2817static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2818 void *objp, int nodeid)
78d382d7 2819{
8fea4e96 2820 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2821
2822#if DEBUG
2823 /* Verify that the slab belongs to the intended node */
2824 WARN_ON(slabp->nodeid != nodeid);
2825
871751e2 2826 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2827 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2828 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2829 BUG();
2830 }
2831#endif
2832 slab_bufctl(slabp)[objnr] = slabp->free;
2833 slabp->free = objnr;
2834 slabp->inuse--;
2835}
2836
4776874f
PE
2837/*
2838 * Map pages beginning at addr to the given cache and slab. This is required
2839 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2840 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2841 */
2842static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2843 void *addr)
1da177e4 2844{
4776874f 2845 int nr_pages;
1da177e4
LT
2846 struct page *page;
2847
4776874f 2848 page = virt_to_page(addr);
84097518 2849
4776874f 2850 nr_pages = 1;
84097518 2851 if (likely(!PageCompound(page)))
4776874f
PE
2852 nr_pages <<= cache->gfporder;
2853
1da177e4 2854 do {
35026088
CL
2855 page->slab_cache = cache;
2856 page->slab_page = slab;
1da177e4 2857 page++;
4776874f 2858 } while (--nr_pages);
1da177e4
LT
2859}
2860
2861/*
2862 * Grow (by 1) the number of slabs within a cache. This is called by
2863 * kmem_cache_alloc() when there are no active objs left in a cache.
2864 */
3c517a61
CL
2865static int cache_grow(struct kmem_cache *cachep,
2866 gfp_t flags, int nodeid, void *objp)
1da177e4 2867{
b28a02de 2868 struct slab *slabp;
b28a02de
PE
2869 size_t offset;
2870 gfp_t local_flags;
6744f087 2871 struct kmem_cache_node *l3;
1da177e4 2872
a737b3e2
AM
2873 /*
2874 * Be lazy and only check for valid flags here, keeping it out of the
2875 * critical path in kmem_cache_alloc().
1da177e4 2876 */
6cb06229
CL
2877 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2878 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2879
2e1217cf 2880 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2881 check_irq_off();
2e1217cf
RT
2882 l3 = cachep->nodelists[nodeid];
2883 spin_lock(&l3->list_lock);
1da177e4
LT
2884
2885 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2886 offset = l3->colour_next;
2887 l3->colour_next++;
2888 if (l3->colour_next >= cachep->colour)
2889 l3->colour_next = 0;
2890 spin_unlock(&l3->list_lock);
1da177e4 2891
2e1217cf 2892 offset *= cachep->colour_off;
1da177e4
LT
2893
2894 if (local_flags & __GFP_WAIT)
2895 local_irq_enable();
2896
2897 /*
2898 * The test for missing atomic flag is performed here, rather than
2899 * the more obvious place, simply to reduce the critical path length
2900 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2901 * will eventually be caught here (where it matters).
2902 */
2903 kmem_flagcheck(cachep, flags);
2904
a737b3e2
AM
2905 /*
2906 * Get mem for the objs. Attempt to allocate a physical page from
2907 * 'nodeid'.
e498be7d 2908 */
3c517a61 2909 if (!objp)
b8c1c5da 2910 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2911 if (!objp)
1da177e4
LT
2912 goto failed;
2913
2914 /* Get slab management. */
3c517a61 2915 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2916 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2917 if (!slabp)
1da177e4
LT
2918 goto opps1;
2919
4776874f 2920 slab_map_pages(cachep, slabp, objp);
1da177e4 2921
a35afb83 2922 cache_init_objs(cachep, slabp);
1da177e4
LT
2923
2924 if (local_flags & __GFP_WAIT)
2925 local_irq_disable();
2926 check_irq_off();
e498be7d 2927 spin_lock(&l3->list_lock);
1da177e4
LT
2928
2929 /* Make slab active. */
e498be7d 2930 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2931 STATS_INC_GROWN(cachep);
e498be7d
CL
2932 l3->free_objects += cachep->num;
2933 spin_unlock(&l3->list_lock);
1da177e4 2934 return 1;
a737b3e2 2935opps1:
1da177e4 2936 kmem_freepages(cachep, objp);
a737b3e2 2937failed:
1da177e4
LT
2938 if (local_flags & __GFP_WAIT)
2939 local_irq_disable();
2940 return 0;
2941}
2942
2943#if DEBUG
2944
2945/*
2946 * Perform extra freeing checks:
2947 * - detect bad pointers.
2948 * - POISON/RED_ZONE checking
1da177e4
LT
2949 */
2950static void kfree_debugcheck(const void *objp)
2951{
1da177e4
LT
2952 if (!virt_addr_valid(objp)) {
2953 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2954 (unsigned long)objp);
2955 BUG();
1da177e4 2956 }
1da177e4
LT
2957}
2958
58ce1fd5
PE
2959static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2960{
b46b8f19 2961 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2962
2963 redzone1 = *dbg_redzone1(cache, obj);
2964 redzone2 = *dbg_redzone2(cache, obj);
2965
2966 /*
2967 * Redzone is ok.
2968 */
2969 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2970 return;
2971
2972 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2973 slab_error(cache, "double free detected");
2974 else
2975 slab_error(cache, "memory outside object was overwritten");
2976
b46b8f19 2977 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2978 obj, redzone1, redzone2);
2979}
2980
343e0d7a 2981static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2982 unsigned long caller)
1da177e4
LT
2983{
2984 struct page *page;
2985 unsigned int objnr;
2986 struct slab *slabp;
2987
80cbd911
MW
2988 BUG_ON(virt_to_cache(objp) != cachep);
2989
3dafccf2 2990 objp -= obj_offset(cachep);
1da177e4 2991 kfree_debugcheck(objp);
b49af68f 2992 page = virt_to_head_page(objp);
1da177e4 2993
35026088 2994 slabp = page->slab_page;
1da177e4
LT
2995
2996 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2997 verify_redzone_free(cachep, objp);
1da177e4
LT
2998 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2999 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3000 }
3001 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3002 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3003
8fea4e96 3004 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3005
3006 BUG_ON(objnr >= cachep->num);
8fea4e96 3007 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3008
871751e2
AV
3009#ifdef CONFIG_DEBUG_SLAB_LEAK
3010 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3011#endif
1da177e4
LT
3012 if (cachep->flags & SLAB_POISON) {
3013#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3014 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3015 store_stackinfo(cachep, objp, caller);
b28a02de 3016 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3017 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3018 } else {
3019 poison_obj(cachep, objp, POISON_FREE);
3020 }
3021#else
3022 poison_obj(cachep, objp, POISON_FREE);
3023#endif
3024 }
3025 return objp;
3026}
3027
343e0d7a 3028static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3029{
3030 kmem_bufctl_t i;
3031 int entries = 0;
b28a02de 3032
1da177e4
LT
3033 /* Check slab's freelist to see if this obj is there. */
3034 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3035 entries++;
3036 if (entries > cachep->num || i >= cachep->num)
3037 goto bad;
3038 }
3039 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3040bad:
3041 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3042 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3043 cachep->name, cachep->num, slabp, slabp->inuse,
3044 print_tainted());
fdde6abb
SAS
3045 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3046 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3047 1);
1da177e4
LT
3048 BUG();
3049 }
3050}
3051#else
3052#define kfree_debugcheck(x) do { } while(0)
3053#define cache_free_debugcheck(x,objp,z) (objp)
3054#define check_slabp(x,y) do { } while(0)
3055#endif
3056
072bb0aa
MG
3057static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3058 bool force_refill)
1da177e4
LT
3059{
3060 int batchcount;
6744f087 3061 struct kmem_cache_node *l3;
1da177e4 3062 struct array_cache *ac;
1ca4cb24
PE
3063 int node;
3064
1da177e4 3065 check_irq_off();
7d6e6d09 3066 node = numa_mem_id();
072bb0aa
MG
3067 if (unlikely(force_refill))
3068 goto force_grow;
3069retry:
9a2dba4b 3070 ac = cpu_cache_get(cachep);
1da177e4
LT
3071 batchcount = ac->batchcount;
3072 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3073 /*
3074 * If there was little recent activity on this cache, then
3075 * perform only a partial refill. Otherwise we could generate
3076 * refill bouncing.
1da177e4
LT
3077 */
3078 batchcount = BATCHREFILL_LIMIT;
3079 }
1ca4cb24 3080 l3 = cachep->nodelists[node];
e498be7d
CL
3081
3082 BUG_ON(ac->avail > 0 || !l3);
3083 spin_lock(&l3->list_lock);
1da177e4 3084
3ded175a 3085 /* See if we can refill from the shared array */
44b57f1c
NP
3086 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3087 l3->shared->touched = 1;
3ded175a 3088 goto alloc_done;
44b57f1c 3089 }
3ded175a 3090
1da177e4
LT
3091 while (batchcount > 0) {
3092 struct list_head *entry;
3093 struct slab *slabp;
3094 /* Get slab alloc is to come from. */
3095 entry = l3->slabs_partial.next;
3096 if (entry == &l3->slabs_partial) {
3097 l3->free_touched = 1;
3098 entry = l3->slabs_free.next;
3099 if (entry == &l3->slabs_free)
3100 goto must_grow;
3101 }
3102
3103 slabp = list_entry(entry, struct slab, list);
3104 check_slabp(cachep, slabp);
3105 check_spinlock_acquired(cachep);
714b8171
PE
3106
3107 /*
3108 * The slab was either on partial or free list so
3109 * there must be at least one object available for
3110 * allocation.
3111 */
249b9f33 3112 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3113
1da177e4 3114 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3115 STATS_INC_ALLOCED(cachep);
3116 STATS_INC_ACTIVE(cachep);
3117 STATS_SET_HIGH(cachep);
3118
072bb0aa
MG
3119 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3120 node));
1da177e4
LT
3121 }
3122 check_slabp(cachep, slabp);
3123
3124 /* move slabp to correct slabp list: */
3125 list_del(&slabp->list);
3126 if (slabp->free == BUFCTL_END)
3127 list_add(&slabp->list, &l3->slabs_full);
3128 else
3129 list_add(&slabp->list, &l3->slabs_partial);
3130 }
3131
a737b3e2 3132must_grow:
1da177e4 3133 l3->free_objects -= ac->avail;
a737b3e2 3134alloc_done:
e498be7d 3135 spin_unlock(&l3->list_lock);
1da177e4
LT
3136
3137 if (unlikely(!ac->avail)) {
3138 int x;
072bb0aa 3139force_grow:
3c517a61 3140 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3141
a737b3e2 3142 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3143 ac = cpu_cache_get(cachep);
51cd8e6f 3144 node = numa_mem_id();
072bb0aa
MG
3145
3146 /* no objects in sight? abort */
3147 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3148 return NULL;
3149
a737b3e2 3150 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3151 goto retry;
3152 }
3153 ac->touched = 1;
072bb0aa
MG
3154
3155 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3156}
3157
a737b3e2
AM
3158static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3159 gfp_t flags)
1da177e4
LT
3160{
3161 might_sleep_if(flags & __GFP_WAIT);
3162#if DEBUG
3163 kmem_flagcheck(cachep, flags);
3164#endif
3165}
3166
3167#if DEBUG
a737b3e2 3168static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3169 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3170{
b28a02de 3171 if (!objp)
1da177e4 3172 return objp;
b28a02de 3173 if (cachep->flags & SLAB_POISON) {
1da177e4 3174#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3175 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3176 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3177 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3178 else
3179 check_poison_obj(cachep, objp);
3180#else
3181 check_poison_obj(cachep, objp);
3182#endif
3183 poison_obj(cachep, objp, POISON_INUSE);
3184 }
3185 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3186 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3187
3188 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3189 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3190 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3191 slab_error(cachep, "double free, or memory outside"
3192 " object was overwritten");
b28a02de 3193 printk(KERN_ERR
b46b8f19 3194 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3195 objp, *dbg_redzone1(cachep, objp),
3196 *dbg_redzone2(cachep, objp));
1da177e4
LT
3197 }
3198 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3199 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3200 }
871751e2
AV
3201#ifdef CONFIG_DEBUG_SLAB_LEAK
3202 {
3203 struct slab *slabp;
3204 unsigned objnr;
3205
35026088 3206 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3207 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3208 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3209 }
3210#endif
3dafccf2 3211 objp += obj_offset(cachep);
4f104934 3212 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3213 cachep->ctor(objp);
7ea466f2
TH
3214 if (ARCH_SLAB_MINALIGN &&
3215 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3216 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3217 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3218 }
1da177e4
LT
3219 return objp;
3220}
3221#else
3222#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3223#endif
3224
773ff60e 3225static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3226{
9b030cb8 3227 if (cachep == kmem_cache)
773ff60e 3228 return false;
8a8b6502 3229
8c138bc0 3230 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3231}
3232
343e0d7a 3233static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3234{
b28a02de 3235 void *objp;
1da177e4 3236 struct array_cache *ac;
072bb0aa 3237 bool force_refill = false;
1da177e4 3238
5c382300 3239 check_irq_off();
8a8b6502 3240
9a2dba4b 3241 ac = cpu_cache_get(cachep);
1da177e4 3242 if (likely(ac->avail)) {
1da177e4 3243 ac->touched = 1;
072bb0aa
MG
3244 objp = ac_get_obj(cachep, ac, flags, false);
3245
ddbf2e83 3246 /*
072bb0aa
MG
3247 * Allow for the possibility all avail objects are not allowed
3248 * by the current flags
ddbf2e83 3249 */
072bb0aa
MG
3250 if (objp) {
3251 STATS_INC_ALLOCHIT(cachep);
3252 goto out;
3253 }
3254 force_refill = true;
1da177e4 3255 }
072bb0aa
MG
3256
3257 STATS_INC_ALLOCMISS(cachep);
3258 objp = cache_alloc_refill(cachep, flags, force_refill);
3259 /*
3260 * the 'ac' may be updated by cache_alloc_refill(),
3261 * and kmemleak_erase() requires its correct value.
3262 */
3263 ac = cpu_cache_get(cachep);
3264
3265out:
d5cff635
CM
3266 /*
3267 * To avoid a false negative, if an object that is in one of the
3268 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3269 * treat the array pointers as a reference to the object.
3270 */
f3d8b53a
O
3271 if (objp)
3272 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3273 return objp;
3274}
3275
e498be7d 3276#ifdef CONFIG_NUMA
c61afb18 3277/*
b2455396 3278 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3279 *
3280 * If we are in_interrupt, then process context, including cpusets and
3281 * mempolicy, may not apply and should not be used for allocation policy.
3282 */
3283static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3284{
3285 int nid_alloc, nid_here;
3286
765c4507 3287 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3288 return NULL;
7d6e6d09 3289 nid_alloc = nid_here = numa_mem_id();
c61afb18 3290 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3291 nid_alloc = cpuset_slab_spread_node();
c61afb18 3292 else if (current->mempolicy)
e7b691b0 3293 nid_alloc = slab_node();
c61afb18 3294 if (nid_alloc != nid_here)
8b98c169 3295 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3296 return NULL;
3297}
3298
765c4507
CL
3299/*
3300 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3301 * certain node and fall back is permitted. First we scan all the
3302 * available nodelists for available objects. If that fails then we
3303 * perform an allocation without specifying a node. This allows the page
3304 * allocator to do its reclaim / fallback magic. We then insert the
3305 * slab into the proper nodelist and then allocate from it.
765c4507 3306 */
8c8cc2c1 3307static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3308{
8c8cc2c1
PE
3309 struct zonelist *zonelist;
3310 gfp_t local_flags;
dd1a239f 3311 struct zoneref *z;
54a6eb5c
MG
3312 struct zone *zone;
3313 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3314 void *obj = NULL;
3c517a61 3315 int nid;
cc9a6c87 3316 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3317
3318 if (flags & __GFP_THISNODE)
3319 return NULL;
3320
6cb06229 3321 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3322
cc9a6c87
MG
3323retry_cpuset:
3324 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3325 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3326
3c517a61
CL
3327retry:
3328 /*
3329 * Look through allowed nodes for objects available
3330 * from existing per node queues.
3331 */
54a6eb5c
MG
3332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3333 nid = zone_to_nid(zone);
aedb0eb1 3334
54a6eb5c 3335 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3336 cache->nodelists[nid] &&
481c5346 3337 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3338 obj = ____cache_alloc_node(cache,
3339 flags | GFP_THISNODE, nid);
481c5346
CL
3340 if (obj)
3341 break;
3342 }
3c517a61
CL
3343 }
3344
cfce6604 3345 if (!obj) {
3c517a61
CL
3346 /*
3347 * This allocation will be performed within the constraints
3348 * of the current cpuset / memory policy requirements.
3349 * We may trigger various forms of reclaim on the allowed
3350 * set and go into memory reserves if necessary.
3351 */
dd47ea75
CL
3352 if (local_flags & __GFP_WAIT)
3353 local_irq_enable();
3354 kmem_flagcheck(cache, flags);
7d6e6d09 3355 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3356 if (local_flags & __GFP_WAIT)
3357 local_irq_disable();
3c517a61
CL
3358 if (obj) {
3359 /*
3360 * Insert into the appropriate per node queues
3361 */
3362 nid = page_to_nid(virt_to_page(obj));
3363 if (cache_grow(cache, flags, nid, obj)) {
3364 obj = ____cache_alloc_node(cache,
3365 flags | GFP_THISNODE, nid);
3366 if (!obj)
3367 /*
3368 * Another processor may allocate the
3369 * objects in the slab since we are
3370 * not holding any locks.
3371 */
3372 goto retry;
3373 } else {
b6a60451 3374 /* cache_grow already freed obj */
3c517a61
CL
3375 obj = NULL;
3376 }
3377 }
aedb0eb1 3378 }
cc9a6c87
MG
3379
3380 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3381 goto retry_cpuset;
765c4507
CL
3382 return obj;
3383}
3384
e498be7d
CL
3385/*
3386 * A interface to enable slab creation on nodeid
1da177e4 3387 */
8b98c169 3388static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3389 int nodeid)
e498be7d
CL
3390{
3391 struct list_head *entry;
b28a02de 3392 struct slab *slabp;
6744f087 3393 struct kmem_cache_node *l3;
b28a02de 3394 void *obj;
b28a02de
PE
3395 int x;
3396
3397 l3 = cachep->nodelists[nodeid];
3398 BUG_ON(!l3);
3399
a737b3e2 3400retry:
ca3b9b91 3401 check_irq_off();
b28a02de
PE
3402 spin_lock(&l3->list_lock);
3403 entry = l3->slabs_partial.next;
3404 if (entry == &l3->slabs_partial) {
3405 l3->free_touched = 1;
3406 entry = l3->slabs_free.next;
3407 if (entry == &l3->slabs_free)
3408 goto must_grow;
3409 }
3410
3411 slabp = list_entry(entry, struct slab, list);
3412 check_spinlock_acquired_node(cachep, nodeid);
3413 check_slabp(cachep, slabp);
3414
3415 STATS_INC_NODEALLOCS(cachep);
3416 STATS_INC_ACTIVE(cachep);
3417 STATS_SET_HIGH(cachep);
3418
3419 BUG_ON(slabp->inuse == cachep->num);
3420
78d382d7 3421 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3422 check_slabp(cachep, slabp);
3423 l3->free_objects--;
3424 /* move slabp to correct slabp list: */
3425 list_del(&slabp->list);
3426
a737b3e2 3427 if (slabp->free == BUFCTL_END)
b28a02de 3428 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3429 else
b28a02de 3430 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3431
b28a02de
PE
3432 spin_unlock(&l3->list_lock);
3433 goto done;
e498be7d 3434
a737b3e2 3435must_grow:
b28a02de 3436 spin_unlock(&l3->list_lock);
3c517a61 3437 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3438 if (x)
3439 goto retry;
1da177e4 3440
8c8cc2c1 3441 return fallback_alloc(cachep, flags);
e498be7d 3442
a737b3e2 3443done:
b28a02de 3444 return obj;
e498be7d 3445}
8c8cc2c1
PE
3446
3447/**
3448 * kmem_cache_alloc_node - Allocate an object on the specified node
3449 * @cachep: The cache to allocate from.
3450 * @flags: See kmalloc().
3451 * @nodeid: node number of the target node.
3452 * @caller: return address of caller, used for debug information
3453 *
3454 * Identical to kmem_cache_alloc but it will allocate memory on the given
3455 * node, which can improve the performance for cpu bound structures.
3456 *
3457 * Fallback to other node is possible if __GFP_THISNODE is not set.
3458 */
3459static __always_inline void *
48356303 3460slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3461 unsigned long caller)
8c8cc2c1
PE
3462{
3463 unsigned long save_flags;
3464 void *ptr;
7d6e6d09 3465 int slab_node = numa_mem_id();
8c8cc2c1 3466
dcce284a 3467 flags &= gfp_allowed_mask;
7e85ee0c 3468
cf40bd16
NP
3469 lockdep_trace_alloc(flags);
3470
773ff60e 3471 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3472 return NULL;
3473
d79923fa
GC
3474 cachep = memcg_kmem_get_cache(cachep, flags);
3475
8c8cc2c1
PE
3476 cache_alloc_debugcheck_before(cachep, flags);
3477 local_irq_save(save_flags);
3478
eacbbae3 3479 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3480 nodeid = slab_node;
8c8cc2c1
PE
3481
3482 if (unlikely(!cachep->nodelists[nodeid])) {
3483 /* Node not bootstrapped yet */
3484 ptr = fallback_alloc(cachep, flags);
3485 goto out;
3486 }
3487
7d6e6d09 3488 if (nodeid == slab_node) {
8c8cc2c1
PE
3489 /*
3490 * Use the locally cached objects if possible.
3491 * However ____cache_alloc does not allow fallback
3492 * to other nodes. It may fail while we still have
3493 * objects on other nodes available.
3494 */
3495 ptr = ____cache_alloc(cachep, flags);
3496 if (ptr)
3497 goto out;
3498 }
3499 /* ___cache_alloc_node can fall back to other nodes */
3500 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3501 out:
3502 local_irq_restore(save_flags);
3503 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3504 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3505 flags);
8c8cc2c1 3506
c175eea4 3507 if (likely(ptr))
8c138bc0 3508 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3509
d07dbea4 3510 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3511 memset(ptr, 0, cachep->object_size);
d07dbea4 3512
8c8cc2c1
PE
3513 return ptr;
3514}
3515
3516static __always_inline void *
3517__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3518{
3519 void *objp;
3520
3521 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3522 objp = alternate_node_alloc(cache, flags);
3523 if (objp)
3524 goto out;
3525 }
3526 objp = ____cache_alloc(cache, flags);
3527
3528 /*
3529 * We may just have run out of memory on the local node.
3530 * ____cache_alloc_node() knows how to locate memory on other nodes
3531 */
7d6e6d09
LS
3532 if (!objp)
3533 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3534
3535 out:
3536 return objp;
3537}
3538#else
3539
3540static __always_inline void *
3541__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3542{
3543 return ____cache_alloc(cachep, flags);
3544}
3545
3546#endif /* CONFIG_NUMA */
3547
3548static __always_inline void *
48356303 3549slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3550{
3551 unsigned long save_flags;
3552 void *objp;
3553
dcce284a 3554 flags &= gfp_allowed_mask;
7e85ee0c 3555
cf40bd16
NP
3556 lockdep_trace_alloc(flags);
3557
773ff60e 3558 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3559 return NULL;
3560
d79923fa
GC
3561 cachep = memcg_kmem_get_cache(cachep, flags);
3562
8c8cc2c1
PE
3563 cache_alloc_debugcheck_before(cachep, flags);
3564 local_irq_save(save_flags);
3565 objp = __do_cache_alloc(cachep, flags);
3566 local_irq_restore(save_flags);
3567 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3568 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3569 flags);
8c8cc2c1
PE
3570 prefetchw(objp);
3571
c175eea4 3572 if (likely(objp))
8c138bc0 3573 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3574
d07dbea4 3575 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3576 memset(objp, 0, cachep->object_size);
d07dbea4 3577
8c8cc2c1
PE
3578 return objp;
3579}
e498be7d
CL
3580
3581/*
3582 * Caller needs to acquire correct kmem_list's list_lock
3583 */
343e0d7a 3584static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3585 int node)
1da177e4
LT
3586{
3587 int i;
6744f087 3588 struct kmem_cache_node *l3;
1da177e4
LT
3589
3590 for (i = 0; i < nr_objects; i++) {
072bb0aa 3591 void *objp;
1da177e4 3592 struct slab *slabp;
1da177e4 3593
072bb0aa
MG
3594 clear_obj_pfmemalloc(&objpp[i]);
3595 objp = objpp[i];
3596
6ed5eb22 3597 slabp = virt_to_slab(objp);
ff69416e 3598 l3 = cachep->nodelists[node];
1da177e4 3599 list_del(&slabp->list);
ff69416e 3600 check_spinlock_acquired_node(cachep, node);
1da177e4 3601 check_slabp(cachep, slabp);
78d382d7 3602 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3603 STATS_DEC_ACTIVE(cachep);
e498be7d 3604 l3->free_objects++;
1da177e4
LT
3605 check_slabp(cachep, slabp);
3606
3607 /* fixup slab chains */
3608 if (slabp->inuse == 0) {
e498be7d
CL
3609 if (l3->free_objects > l3->free_limit) {
3610 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3611 /* No need to drop any previously held
3612 * lock here, even if we have a off-slab slab
3613 * descriptor it is guaranteed to come from
3614 * a different cache, refer to comments before
3615 * alloc_slabmgmt.
3616 */
1da177e4
LT
3617 slab_destroy(cachep, slabp);
3618 } else {
e498be7d 3619 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3620 }
3621 } else {
3622 /* Unconditionally move a slab to the end of the
3623 * partial list on free - maximum time for the
3624 * other objects to be freed, too.
3625 */
e498be7d 3626 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3627 }
3628 }
3629}
3630
343e0d7a 3631static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3632{
3633 int batchcount;
6744f087 3634 struct kmem_cache_node *l3;
7d6e6d09 3635 int node = numa_mem_id();
1da177e4
LT
3636
3637 batchcount = ac->batchcount;
3638#if DEBUG
3639 BUG_ON(!batchcount || batchcount > ac->avail);
3640#endif
3641 check_irq_off();
ff69416e 3642 l3 = cachep->nodelists[node];
873623df 3643 spin_lock(&l3->list_lock);
e498be7d
CL
3644 if (l3->shared) {
3645 struct array_cache *shared_array = l3->shared;
b28a02de 3646 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3647 if (max) {
3648 if (batchcount > max)
3649 batchcount = max;
e498be7d 3650 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3651 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3652 shared_array->avail += batchcount;
3653 goto free_done;
3654 }
3655 }
3656
ff69416e 3657 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3658free_done:
1da177e4
LT
3659#if STATS
3660 {
3661 int i = 0;
3662 struct list_head *p;
3663
e498be7d
CL
3664 p = l3->slabs_free.next;
3665 while (p != &(l3->slabs_free)) {
1da177e4
LT
3666 struct slab *slabp;
3667
3668 slabp = list_entry(p, struct slab, list);
3669 BUG_ON(slabp->inuse);
3670
3671 i++;
3672 p = p->next;
3673 }
3674 STATS_SET_FREEABLE(cachep, i);
3675 }
3676#endif
e498be7d 3677 spin_unlock(&l3->list_lock);
1da177e4 3678 ac->avail -= batchcount;
a737b3e2 3679 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3680}
3681
3682/*
a737b3e2
AM
3683 * Release an obj back to its cache. If the obj has a constructed state, it must
3684 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3685 */
a947eb95 3686static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3687 unsigned long caller)
1da177e4 3688{
9a2dba4b 3689 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3690
3691 check_irq_off();
d5cff635 3692 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3693 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3694
8c138bc0 3695 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3696
1807a1aa
SS
3697 /*
3698 * Skip calling cache_free_alien() when the platform is not numa.
3699 * This will avoid cache misses that happen while accessing slabp (which
3700 * is per page memory reference) to get nodeid. Instead use a global
3701 * variable to skip the call, which is mostly likely to be present in
3702 * the cache.
3703 */
b6e68bc1 3704 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3705 return;
3706
1da177e4
LT
3707 if (likely(ac->avail < ac->limit)) {
3708 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3709 } else {
3710 STATS_INC_FREEMISS(cachep);
3711 cache_flusharray(cachep, ac);
1da177e4 3712 }
42c8c99c 3713
072bb0aa 3714 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3715}
3716
3717/**
3718 * kmem_cache_alloc - Allocate an object
3719 * @cachep: The cache to allocate from.
3720 * @flags: See kmalloc().
3721 *
3722 * Allocate an object from this cache. The flags are only relevant
3723 * if the cache has no available objects.
3724 */
343e0d7a 3725void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3726{
48356303 3727 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3728
ca2b84cb 3729 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3730 cachep->object_size, cachep->size, flags);
36555751
EGM
3731
3732 return ret;
1da177e4
LT
3733}
3734EXPORT_SYMBOL(kmem_cache_alloc);
3735
0f24f128 3736#ifdef CONFIG_TRACING
85beb586 3737void *
4052147c 3738kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3739{
85beb586
SR
3740 void *ret;
3741
48356303 3742 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3743
3744 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3745 size, cachep->size, flags);
85beb586 3746 return ret;
36555751 3747}
85beb586 3748EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3749#endif
3750
1da177e4 3751#ifdef CONFIG_NUMA
8b98c169
CH
3752void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3753{
48356303 3754 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3755
ca2b84cb 3756 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3757 cachep->object_size, cachep->size,
ca2b84cb 3758 flags, nodeid);
36555751
EGM
3759
3760 return ret;
8b98c169 3761}
1da177e4
LT
3762EXPORT_SYMBOL(kmem_cache_alloc_node);
3763
0f24f128 3764#ifdef CONFIG_TRACING
4052147c 3765void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3766 gfp_t flags,
4052147c
EG
3767 int nodeid,
3768 size_t size)
36555751 3769{
85beb586
SR
3770 void *ret;
3771
592f4145 3772 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3773
85beb586 3774 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3775 size, cachep->size,
85beb586
SR
3776 flags, nodeid);
3777 return ret;
36555751 3778}
85beb586 3779EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3780#endif
3781
8b98c169 3782static __always_inline void *
7c0cb9c6 3783__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3784{
343e0d7a 3785 struct kmem_cache *cachep;
97e2bde4
MS
3786
3787 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3788 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3789 return cachep;
4052147c 3790 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3791}
8b98c169 3792
0bb38a5c 3793#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3794void *__kmalloc_node(size_t size, gfp_t flags, int node)
3795{
7c0cb9c6 3796 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3797}
dbe5e69d 3798EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3799
3800void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3801 int node, unsigned long caller)
8b98c169 3802{
7c0cb9c6 3803 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3804}
3805EXPORT_SYMBOL(__kmalloc_node_track_caller);
3806#else
3807void *__kmalloc_node(size_t size, gfp_t flags, int node)
3808{
7c0cb9c6 3809 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3810}
3811EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3812#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3813#endif /* CONFIG_NUMA */
1da177e4
LT
3814
3815/**
800590f5 3816 * __do_kmalloc - allocate memory
1da177e4 3817 * @size: how many bytes of memory are required.
800590f5 3818 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3819 * @caller: function caller for debug tracking of the caller
1da177e4 3820 */
7fd6b141 3821static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3822 unsigned long caller)
1da177e4 3823{
343e0d7a 3824 struct kmem_cache *cachep;
36555751 3825 void *ret;
1da177e4 3826
97e2bde4
MS
3827 /* If you want to save a few bytes .text space: replace
3828 * __ with kmem_.
3829 * Then kmalloc uses the uninlined functions instead of the inline
3830 * functions.
3831 */
3832 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3833 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3834 return cachep;
48356303 3835 ret = slab_alloc(cachep, flags, caller);
36555751 3836
7c0cb9c6 3837 trace_kmalloc(caller, ret,
3b0efdfa 3838 size, cachep->size, flags);
36555751
EGM
3839
3840 return ret;
7fd6b141
PE
3841}
3842
7fd6b141 3843
0bb38a5c 3844#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3845void *__kmalloc(size_t size, gfp_t flags)
3846{
7c0cb9c6 3847 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3848}
3849EXPORT_SYMBOL(__kmalloc);
3850
ce71e27c 3851void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3852{
7c0cb9c6 3853 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3854}
3855EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3856
3857#else
3858void *__kmalloc(size_t size, gfp_t flags)
3859{
7c0cb9c6 3860 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3861}
3862EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3863#endif
3864
1da177e4
LT
3865/**
3866 * kmem_cache_free - Deallocate an object
3867 * @cachep: The cache the allocation was from.
3868 * @objp: The previously allocated object.
3869 *
3870 * Free an object which was previously allocated from this
3871 * cache.
3872 */
343e0d7a 3873void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3874{
3875 unsigned long flags;
b9ce5ef4
GC
3876 cachep = cache_from_obj(cachep, objp);
3877 if (!cachep)
3878 return;
1da177e4
LT
3879
3880 local_irq_save(flags);
d97d476b 3881 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3882 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3883 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3884 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3885 local_irq_restore(flags);
36555751 3886
ca2b84cb 3887 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3888}
3889EXPORT_SYMBOL(kmem_cache_free);
3890
1da177e4
LT
3891/**
3892 * kfree - free previously allocated memory
3893 * @objp: pointer returned by kmalloc.
3894 *
80e93eff
PE
3895 * If @objp is NULL, no operation is performed.
3896 *
1da177e4
LT
3897 * Don't free memory not originally allocated by kmalloc()
3898 * or you will run into trouble.
3899 */
3900void kfree(const void *objp)
3901{
343e0d7a 3902 struct kmem_cache *c;
1da177e4
LT
3903 unsigned long flags;
3904
2121db74
PE
3905 trace_kfree(_RET_IP_, objp);
3906
6cb8f913 3907 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3908 return;
3909 local_irq_save(flags);
3910 kfree_debugcheck(objp);
6ed5eb22 3911 c = virt_to_cache(objp);
8c138bc0
CL
3912 debug_check_no_locks_freed(objp, c->object_size);
3913
3914 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3915 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3916 local_irq_restore(flags);
3917}
3918EXPORT_SYMBOL(kfree);
3919
e498be7d 3920/*
183ff22b 3921 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3922 */
83b519e8 3923static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3924{
3925 int node;
6744f087 3926 struct kmem_cache_node *l3;
cafeb02e 3927 struct array_cache *new_shared;
3395ee05 3928 struct array_cache **new_alien = NULL;
e498be7d 3929
9c09a95c 3930 for_each_online_node(node) {
cafeb02e 3931
3395ee05 3932 if (use_alien_caches) {
83b519e8 3933 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3934 if (!new_alien)
3935 goto fail;
3936 }
cafeb02e 3937
63109846
ED
3938 new_shared = NULL;
3939 if (cachep->shared) {
3940 new_shared = alloc_arraycache(node,
0718dc2a 3941 cachep->shared*cachep->batchcount,
83b519e8 3942 0xbaadf00d, gfp);
63109846
ED
3943 if (!new_shared) {
3944 free_alien_cache(new_alien);
3945 goto fail;
3946 }
0718dc2a 3947 }
cafeb02e 3948
a737b3e2
AM
3949 l3 = cachep->nodelists[node];
3950 if (l3) {
cafeb02e
CL
3951 struct array_cache *shared = l3->shared;
3952
e498be7d
CL
3953 spin_lock_irq(&l3->list_lock);
3954
cafeb02e 3955 if (shared)
0718dc2a
CL
3956 free_block(cachep, shared->entry,
3957 shared->avail, node);
e498be7d 3958
cafeb02e
CL
3959 l3->shared = new_shared;
3960 if (!l3->alien) {
e498be7d
CL
3961 l3->alien = new_alien;
3962 new_alien = NULL;
3963 }
b28a02de 3964 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3965 cachep->batchcount + cachep->num;
e498be7d 3966 spin_unlock_irq(&l3->list_lock);
cafeb02e 3967 kfree(shared);
e498be7d
CL
3968 free_alien_cache(new_alien);
3969 continue;
3970 }
6744f087 3971 l3 = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
0718dc2a
CL
3972 if (!l3) {
3973 free_alien_cache(new_alien);
3974 kfree(new_shared);
e498be7d 3975 goto fail;
0718dc2a 3976 }
e498be7d
CL
3977
3978 kmem_list3_init(l3);
3979 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3980 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3981 l3->shared = new_shared;
e498be7d 3982 l3->alien = new_alien;
b28a02de 3983 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3984 cachep->batchcount + cachep->num;
e498be7d
CL
3985 cachep->nodelists[node] = l3;
3986 }
cafeb02e 3987 return 0;
0718dc2a 3988
a737b3e2 3989fail:
3b0efdfa 3990 if (!cachep->list.next) {
0718dc2a
CL
3991 /* Cache is not active yet. Roll back what we did */
3992 node--;
3993 while (node >= 0) {
3994 if (cachep->nodelists[node]) {
3995 l3 = cachep->nodelists[node];
3996
3997 kfree(l3->shared);
3998 free_alien_cache(l3->alien);
3999 kfree(l3);
4000 cachep->nodelists[node] = NULL;
4001 }
4002 node--;
4003 }
4004 }
cafeb02e 4005 return -ENOMEM;
e498be7d
CL
4006}
4007
1da177e4 4008struct ccupdate_struct {
343e0d7a 4009 struct kmem_cache *cachep;
acfe7d74 4010 struct array_cache *new[0];
1da177e4
LT
4011};
4012
4013static void do_ccupdate_local(void *info)
4014{
a737b3e2 4015 struct ccupdate_struct *new = info;
1da177e4
LT
4016 struct array_cache *old;
4017
4018 check_irq_off();
9a2dba4b 4019 old = cpu_cache_get(new->cachep);
e498be7d 4020
1da177e4
LT
4021 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4022 new->new[smp_processor_id()] = old;
4023}
4024
18004c5d 4025/* Always called with the slab_mutex held */
943a451a 4026static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4027 int batchcount, int shared, gfp_t gfp)
1da177e4 4028{
d2e7b7d0 4029 struct ccupdate_struct *new;
2ed3a4ef 4030 int i;
1da177e4 4031
acfe7d74
ED
4032 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4033 gfp);
d2e7b7d0
SS
4034 if (!new)
4035 return -ENOMEM;
4036
e498be7d 4037 for_each_online_cpu(i) {
7d6e6d09 4038 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4039 batchcount, gfp);
d2e7b7d0 4040 if (!new->new[i]) {
b28a02de 4041 for (i--; i >= 0; i--)
d2e7b7d0
SS
4042 kfree(new->new[i]);
4043 kfree(new);
e498be7d 4044 return -ENOMEM;
1da177e4
LT
4045 }
4046 }
d2e7b7d0 4047 new->cachep = cachep;
1da177e4 4048
15c8b6c1 4049 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4050
1da177e4 4051 check_irq_on();
1da177e4
LT
4052 cachep->batchcount = batchcount;
4053 cachep->limit = limit;
e498be7d 4054 cachep->shared = shared;
1da177e4 4055
e498be7d 4056 for_each_online_cpu(i) {
d2e7b7d0 4057 struct array_cache *ccold = new->new[i];
1da177e4
LT
4058 if (!ccold)
4059 continue;
7d6e6d09
LS
4060 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4061 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4062 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4063 kfree(ccold);
4064 }
d2e7b7d0 4065 kfree(new);
83b519e8 4066 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4067}
4068
943a451a
GC
4069static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4070 int batchcount, int shared, gfp_t gfp)
4071{
4072 int ret;
4073 struct kmem_cache *c = NULL;
4074 int i = 0;
4075
4076 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4077
4078 if (slab_state < FULL)
4079 return ret;
4080
4081 if ((ret < 0) || !is_root_cache(cachep))
4082 return ret;
4083
ebe945c2 4084 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
4085 for_each_memcg_cache_index(i) {
4086 c = cache_from_memcg(cachep, i);
4087 if (c)
4088 /* return value determined by the parent cache only */
4089 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
4090 }
4091
4092 return ret;
4093}
4094
18004c5d 4095/* Called with slab_mutex held always */
83b519e8 4096static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4097{
4098 int err;
943a451a
GC
4099 int limit = 0;
4100 int shared = 0;
4101 int batchcount = 0;
4102
4103 if (!is_root_cache(cachep)) {
4104 struct kmem_cache *root = memcg_root_cache(cachep);
4105 limit = root->limit;
4106 shared = root->shared;
4107 batchcount = root->batchcount;
4108 }
1da177e4 4109
943a451a
GC
4110 if (limit && shared && batchcount)
4111 goto skip_setup;
a737b3e2
AM
4112 /*
4113 * The head array serves three purposes:
1da177e4
LT
4114 * - create a LIFO ordering, i.e. return objects that are cache-warm
4115 * - reduce the number of spinlock operations.
a737b3e2 4116 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4117 * bufctl chains: array operations are cheaper.
4118 * The numbers are guessed, we should auto-tune as described by
4119 * Bonwick.
4120 */
3b0efdfa 4121 if (cachep->size > 131072)
1da177e4 4122 limit = 1;
3b0efdfa 4123 else if (cachep->size > PAGE_SIZE)
1da177e4 4124 limit = 8;
3b0efdfa 4125 else if (cachep->size > 1024)
1da177e4 4126 limit = 24;
3b0efdfa 4127 else if (cachep->size > 256)
1da177e4
LT
4128 limit = 54;
4129 else
4130 limit = 120;
4131
a737b3e2
AM
4132 /*
4133 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4134 * allocation behaviour: Most allocs on one cpu, most free operations
4135 * on another cpu. For these cases, an efficient object passing between
4136 * cpus is necessary. This is provided by a shared array. The array
4137 * replaces Bonwick's magazine layer.
4138 * On uniprocessor, it's functionally equivalent (but less efficient)
4139 * to a larger limit. Thus disabled by default.
4140 */
4141 shared = 0;
3b0efdfa 4142 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4143 shared = 8;
1da177e4
LT
4144
4145#if DEBUG
a737b3e2
AM
4146 /*
4147 * With debugging enabled, large batchcount lead to excessively long
4148 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4149 */
4150 if (limit > 32)
4151 limit = 32;
4152#endif
943a451a
GC
4153 batchcount = (limit + 1) / 2;
4154skip_setup:
4155 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4156 if (err)
4157 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4158 cachep->name, -err);
2ed3a4ef 4159 return err;
1da177e4
LT
4160}
4161
1b55253a
CL
4162/*
4163 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4164 * necessary. Note that the l3 listlock also protects the array_cache
4165 * if drain_array() is used on the shared array.
1b55253a 4166 */
6744f087 4167static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
1b55253a 4168 struct array_cache *ac, int force, int node)
1da177e4
LT
4169{
4170 int tofree;
4171
1b55253a
CL
4172 if (!ac || !ac->avail)
4173 return;
1da177e4
LT
4174 if (ac->touched && !force) {
4175 ac->touched = 0;
b18e7e65 4176 } else {
1b55253a 4177 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4178 if (ac->avail) {
4179 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4180 if (tofree > ac->avail)
4181 tofree = (ac->avail + 1) / 2;
4182 free_block(cachep, ac->entry, tofree, node);
4183 ac->avail -= tofree;
4184 memmove(ac->entry, &(ac->entry[tofree]),
4185 sizeof(void *) * ac->avail);
4186 }
1b55253a 4187 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4188 }
4189}
4190
4191/**
4192 * cache_reap - Reclaim memory from caches.
05fb6bf0 4193 * @w: work descriptor
1da177e4
LT
4194 *
4195 * Called from workqueue/eventd every few seconds.
4196 * Purpose:
4197 * - clear the per-cpu caches for this CPU.
4198 * - return freeable pages to the main free memory pool.
4199 *
a737b3e2
AM
4200 * If we cannot acquire the cache chain mutex then just give up - we'll try
4201 * again on the next iteration.
1da177e4 4202 */
7c5cae36 4203static void cache_reap(struct work_struct *w)
1da177e4 4204{
7a7c381d 4205 struct kmem_cache *searchp;
6744f087 4206 struct kmem_cache_node *l3;
7d6e6d09 4207 int node = numa_mem_id();
bf6aede7 4208 struct delayed_work *work = to_delayed_work(w);
1da177e4 4209
18004c5d 4210 if (!mutex_trylock(&slab_mutex))
1da177e4 4211 /* Give up. Setup the next iteration. */
7c5cae36 4212 goto out;
1da177e4 4213
18004c5d 4214 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4215 check_irq_on();
4216
35386e3b
CL
4217 /*
4218 * We only take the l3 lock if absolutely necessary and we
4219 * have established with reasonable certainty that
4220 * we can do some work if the lock was obtained.
4221 */
aab2207c 4222 l3 = searchp->nodelists[node];
35386e3b 4223
8fce4d8e 4224 reap_alien(searchp, l3);
1da177e4 4225
aab2207c 4226 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4227
35386e3b
CL
4228 /*
4229 * These are racy checks but it does not matter
4230 * if we skip one check or scan twice.
4231 */
e498be7d 4232 if (time_after(l3->next_reap, jiffies))
35386e3b 4233 goto next;
1da177e4 4234
e498be7d 4235 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4236
aab2207c 4237 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4238
ed11d9eb 4239 if (l3->free_touched)
e498be7d 4240 l3->free_touched = 0;
ed11d9eb
CL
4241 else {
4242 int freed;
1da177e4 4243
ed11d9eb
CL
4244 freed = drain_freelist(searchp, l3, (l3->free_limit +
4245 5 * searchp->num - 1) / (5 * searchp->num));
4246 STATS_ADD_REAPED(searchp, freed);
4247 }
35386e3b 4248next:
1da177e4
LT
4249 cond_resched();
4250 }
4251 check_irq_on();
18004c5d 4252 mutex_unlock(&slab_mutex);
8fce4d8e 4253 next_reap_node();
7c5cae36 4254out:
a737b3e2 4255 /* Set up the next iteration */
7c5cae36 4256 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4257}
4258
158a9624 4259#ifdef CONFIG_SLABINFO
0d7561c6 4260void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4261{
b28a02de
PE
4262 struct slab *slabp;
4263 unsigned long active_objs;
4264 unsigned long num_objs;
4265 unsigned long active_slabs = 0;
4266 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4267 const char *name;
1da177e4 4268 char *error = NULL;
e498be7d 4269 int node;
6744f087 4270 struct kmem_cache_node *l3;
1da177e4 4271
1da177e4
LT
4272 active_objs = 0;
4273 num_slabs = 0;
e498be7d
CL
4274 for_each_online_node(node) {
4275 l3 = cachep->nodelists[node];
4276 if (!l3)
4277 continue;
4278
ca3b9b91
RT
4279 check_irq_on();
4280 spin_lock_irq(&l3->list_lock);
e498be7d 4281
7a7c381d 4282 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4283 if (slabp->inuse != cachep->num && !error)
4284 error = "slabs_full accounting error";
4285 active_objs += cachep->num;
4286 active_slabs++;
4287 }
7a7c381d 4288 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4289 if (slabp->inuse == cachep->num && !error)
4290 error = "slabs_partial inuse accounting error";
4291 if (!slabp->inuse && !error)
4292 error = "slabs_partial/inuse accounting error";
4293 active_objs += slabp->inuse;
4294 active_slabs++;
4295 }
7a7c381d 4296 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4297 if (slabp->inuse && !error)
4298 error = "slabs_free/inuse accounting error";
4299 num_slabs++;
4300 }
4301 free_objects += l3->free_objects;
4484ebf1
RT
4302 if (l3->shared)
4303 shared_avail += l3->shared->avail;
e498be7d 4304
ca3b9b91 4305 spin_unlock_irq(&l3->list_lock);
1da177e4 4306 }
b28a02de
PE
4307 num_slabs += active_slabs;
4308 num_objs = num_slabs * cachep->num;
e498be7d 4309 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4310 error = "free_objects accounting error";
4311
b28a02de 4312 name = cachep->name;
1da177e4
LT
4313 if (error)
4314 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4315
0d7561c6
GC
4316 sinfo->active_objs = active_objs;
4317 sinfo->num_objs = num_objs;
4318 sinfo->active_slabs = active_slabs;
4319 sinfo->num_slabs = num_slabs;
4320 sinfo->shared_avail = shared_avail;
4321 sinfo->limit = cachep->limit;
4322 sinfo->batchcount = cachep->batchcount;
4323 sinfo->shared = cachep->shared;
4324 sinfo->objects_per_slab = cachep->num;
4325 sinfo->cache_order = cachep->gfporder;
4326}
4327
4328void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4329{
1da177e4 4330#if STATS
b28a02de 4331 { /* list3 stats */
1da177e4
LT
4332 unsigned long high = cachep->high_mark;
4333 unsigned long allocs = cachep->num_allocations;
4334 unsigned long grown = cachep->grown;
4335 unsigned long reaped = cachep->reaped;
4336 unsigned long errors = cachep->errors;
4337 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4338 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4339 unsigned long node_frees = cachep->node_frees;
fb7faf33 4340 unsigned long overflows = cachep->node_overflow;
1da177e4 4341
e92dd4fd
JP
4342 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4343 "%4lu %4lu %4lu %4lu %4lu",
4344 allocs, high, grown,
4345 reaped, errors, max_freeable, node_allocs,
4346 node_frees, overflows);
1da177e4
LT
4347 }
4348 /* cpu stats */
4349 {
4350 unsigned long allochit = atomic_read(&cachep->allochit);
4351 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4352 unsigned long freehit = atomic_read(&cachep->freehit);
4353 unsigned long freemiss = atomic_read(&cachep->freemiss);
4354
4355 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4356 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4357 }
4358#endif
1da177e4
LT
4359}
4360
1da177e4
LT
4361#define MAX_SLABINFO_WRITE 128
4362/**
4363 * slabinfo_write - Tuning for the slab allocator
4364 * @file: unused
4365 * @buffer: user buffer
4366 * @count: data length
4367 * @ppos: unused
4368 */
b7454ad3 4369ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4370 size_t count, loff_t *ppos)
1da177e4 4371{
b28a02de 4372 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4373 int limit, batchcount, shared, res;
7a7c381d 4374 struct kmem_cache *cachep;
b28a02de 4375
1da177e4
LT
4376 if (count > MAX_SLABINFO_WRITE)
4377 return -EINVAL;
4378 if (copy_from_user(&kbuf, buffer, count))
4379 return -EFAULT;
b28a02de 4380 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4381
4382 tmp = strchr(kbuf, ' ');
4383 if (!tmp)
4384 return -EINVAL;
4385 *tmp = '\0';
4386 tmp++;
4387 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4388 return -EINVAL;
4389
4390 /* Find the cache in the chain of caches. */
18004c5d 4391 mutex_lock(&slab_mutex);
1da177e4 4392 res = -EINVAL;
18004c5d 4393 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4394 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4395 if (limit < 1 || batchcount < 1 ||
4396 batchcount > limit || shared < 0) {
e498be7d 4397 res = 0;
1da177e4 4398 } else {
e498be7d 4399 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4400 batchcount, shared,
4401 GFP_KERNEL);
1da177e4
LT
4402 }
4403 break;
4404 }
4405 }
18004c5d 4406 mutex_unlock(&slab_mutex);
1da177e4
LT
4407 if (res >= 0)
4408 res = count;
4409 return res;
4410}
871751e2
AV
4411
4412#ifdef CONFIG_DEBUG_SLAB_LEAK
4413
4414static void *leaks_start(struct seq_file *m, loff_t *pos)
4415{
18004c5d
CL
4416 mutex_lock(&slab_mutex);
4417 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4418}
4419
4420static inline int add_caller(unsigned long *n, unsigned long v)
4421{
4422 unsigned long *p;
4423 int l;
4424 if (!v)
4425 return 1;
4426 l = n[1];
4427 p = n + 2;
4428 while (l) {
4429 int i = l/2;
4430 unsigned long *q = p + 2 * i;
4431 if (*q == v) {
4432 q[1]++;
4433 return 1;
4434 }
4435 if (*q > v) {
4436 l = i;
4437 } else {
4438 p = q + 2;
4439 l -= i + 1;
4440 }
4441 }
4442 if (++n[1] == n[0])
4443 return 0;
4444 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4445 p[0] = v;
4446 p[1] = 1;
4447 return 1;
4448}
4449
4450static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4451{
4452 void *p;
4453 int i;
4454 if (n[0] == n[1])
4455 return;
3b0efdfa 4456 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4457 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4458 continue;
4459 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4460 return;
4461 }
4462}
4463
4464static void show_symbol(struct seq_file *m, unsigned long address)
4465{
4466#ifdef CONFIG_KALLSYMS
871751e2 4467 unsigned long offset, size;
9281acea 4468 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4469
a5c43dae 4470 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4471 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4472 if (modname[0])
871751e2
AV
4473 seq_printf(m, " [%s]", modname);
4474 return;
4475 }
4476#endif
4477 seq_printf(m, "%p", (void *)address);
4478}
4479
4480static int leaks_show(struct seq_file *m, void *p)
4481{
0672aa7c 4482 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4483 struct slab *slabp;
6744f087 4484 struct kmem_cache_node *l3;
871751e2
AV
4485 const char *name;
4486 unsigned long *n = m->private;
4487 int node;
4488 int i;
4489
4490 if (!(cachep->flags & SLAB_STORE_USER))
4491 return 0;
4492 if (!(cachep->flags & SLAB_RED_ZONE))
4493 return 0;
4494
4495 /* OK, we can do it */
4496
4497 n[1] = 0;
4498
4499 for_each_online_node(node) {
4500 l3 = cachep->nodelists[node];
4501 if (!l3)
4502 continue;
4503
4504 check_irq_on();
4505 spin_lock_irq(&l3->list_lock);
4506
7a7c381d 4507 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4508 handle_slab(n, cachep, slabp);
7a7c381d 4509 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4510 handle_slab(n, cachep, slabp);
871751e2
AV
4511 spin_unlock_irq(&l3->list_lock);
4512 }
4513 name = cachep->name;
4514 if (n[0] == n[1]) {
4515 /* Increase the buffer size */
18004c5d 4516 mutex_unlock(&slab_mutex);
871751e2
AV
4517 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4518 if (!m->private) {
4519 /* Too bad, we are really out */
4520 m->private = n;
18004c5d 4521 mutex_lock(&slab_mutex);
871751e2
AV
4522 return -ENOMEM;
4523 }
4524 *(unsigned long *)m->private = n[0] * 2;
4525 kfree(n);
18004c5d 4526 mutex_lock(&slab_mutex);
871751e2
AV
4527 /* Now make sure this entry will be retried */
4528 m->count = m->size;
4529 return 0;
4530 }
4531 for (i = 0; i < n[1]; i++) {
4532 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4533 show_symbol(m, n[2*i+2]);
4534 seq_putc(m, '\n');
4535 }
d2e7b7d0 4536
871751e2
AV
4537 return 0;
4538}
4539
b7454ad3
GC
4540static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4541{
4542 return seq_list_next(p, &slab_caches, pos);
4543}
4544
4545static void s_stop(struct seq_file *m, void *p)
4546{
4547 mutex_unlock(&slab_mutex);
4548}
4549
a0ec95a8 4550static const struct seq_operations slabstats_op = {
871751e2
AV
4551 .start = leaks_start,
4552 .next = s_next,
4553 .stop = s_stop,
4554 .show = leaks_show,
4555};
a0ec95a8
AD
4556
4557static int slabstats_open(struct inode *inode, struct file *file)
4558{
4559 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4560 int ret = -ENOMEM;
4561 if (n) {
4562 ret = seq_open(file, &slabstats_op);
4563 if (!ret) {
4564 struct seq_file *m = file->private_data;
4565 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4566 m->private = n;
4567 n = NULL;
4568 }
4569 kfree(n);
4570 }
4571 return ret;
4572}
4573
4574static const struct file_operations proc_slabstats_operations = {
4575 .open = slabstats_open,
4576 .read = seq_read,
4577 .llseek = seq_lseek,
4578 .release = seq_release_private,
4579};
4580#endif
4581
4582static int __init slab_proc_init(void)
4583{
4584#ifdef CONFIG_DEBUG_SLAB_LEAK
4585 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4586#endif
a0ec95a8
AD
4587 return 0;
4588}
4589module_init(slab_proc_init);
1da177e4
LT
4590#endif
4591
00e145b6
MS
4592/**
4593 * ksize - get the actual amount of memory allocated for a given object
4594 * @objp: Pointer to the object
4595 *
4596 * kmalloc may internally round up allocations and return more memory
4597 * than requested. ksize() can be used to determine the actual amount of
4598 * memory allocated. The caller may use this additional memory, even though
4599 * a smaller amount of memory was initially specified with the kmalloc call.
4600 * The caller must guarantee that objp points to a valid object previously
4601 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4602 * must not be freed during the duration of the call.
4603 */
fd76bab2 4604size_t ksize(const void *objp)
1da177e4 4605{
ef8b4520
CL
4606 BUG_ON(!objp);
4607 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4608 return 0;
1da177e4 4609
8c138bc0 4610 return virt_to_cache(objp)->object_size;
1da177e4 4611}
b1aabecd 4612EXPORT_SYMBOL(ksize);